
Java Platform, Standard Edition
Security Developer’s Guide

Release 17
F40863-17
April 2025

Java Platform, Standard Edition Security Developer’s Guide, Release 17

F40863-17

Copyright © 1993, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xx

Documentation Accessibility xx

Diversity and Inclusion xx

Related Documents xx

Conventions xx

1 General Security

Terms and Definitions 1-1

Java Security Overview 1-4

Introduction to Java Security 1-4

Java Language Security and Bytecode Verification 1-5

Basic Security Architecture 1-6

Security Providers 1-6

Java Cryptography 1-8

Public Key Infrastructure 1-9

Key and Certificate Storage 1-9

Public Key Infrastructure Tools 1-10

Authentication 1-11

Secure Communication 1-12

TLS and DTLS Protocols 1-12

Simple Authentication and Security Layer (SASL) 1-13

Generic Security Service API and Kerberos 1-13

Access Control 1-14

Permissions 1-14

Security Policy 1-15

Access Control Enforcement 1-15

XML Signature 1-17

Java API for XML Processing (JAXP) 1-18

Security Tools Summary 1-18

Built-In Providers 1-19

The Security Properties File 1-19

Specifying an Alternative Security Properties File 1-20

iii

Statically Setting a Security Property in a Security Properties File 1-20

Dynamically Setting a Security Property in Application Code 1-21

Troubleshooting Security Properties 1-21

Java SE Platform Security Architecture 1-21

Introduction 1-22

The Original Sandbox Model 1-22

Evolving the Sandbox Model 1-23

Protection Mechanisms – Overview of Basic Concepts 1-25

Permissions and Security Policy 1-27

The Permission Classes 1-27

java.security.CodeSource 1-36

java.security.Policy 1-36

java.security.GeneralSecurityException 1-49

Access Control Mechanisms and Algorithms 1-49

java.security.ProtectionDomain 1-49

java.security.AccessController 1-50

Inheritance of Access Control Context 1-54

java.security.AccessControlContext 1-55

Secure Class Loading 1-56

Class Loader Class Hierarchies 1-57

The Primordial Class Loader 1-57

Class Loader Delegation 1-57

Class Resolution Algorithm 1-58

Security Management 1-59

Managing Applets and Applications 1-59

SecurityManager versus AccessController 1-60

Auxiliary Tools 1-60

GuardedObject and SignedObject 1-61

java.security.GuardedObject and java.security.Guard 1-61

java.security.SignedObject 1-63

Discussion and Future Directions 1-64

Resource Consumption Management 1-64

Arbitrary Grouping of Permissions 1-64

Object-Level Protection 1-64

Subdividing Protection Domains 1-64

Running Applets with Signed Content 1-65

Appendix A: API for Privileged Blocks 1-65

Using the doPrivileged API 1-65

What It Means to Have Privileged Code 1-71

Reflection 1-72

Appendix B: Acknowledgments 1-72

Appendix C: References 1-72

iv

Standard Algorithm Names 1-73

Permissions in the JDK 1-73

Permission Descriptions and Risks 1-74

Methods and the Permissions They Require 1-75

java.lang.SecurityManager Method Permission Checks 1-100

JDK Supported Permissions 1-104

Default Policy Implementation and Policy File Syntax 1-105

Default Policy Implementation 1-105

Default Policy File Locations 1-105

Modifying the Policy Implementation 1-107

Policy File Syntax 1-108

Policy File Examples 1-113

Property Expansion in Policy Files 1-115

Windows Systems, File Paths, and Property Expansion 1-117

General Expansion in Policy Files 1-117

Appendix A: FilePermission Path Name Canonicalization Disabled By Default 1-119

Troubleshooting Security 1-121

The java.security.debug System Property 1-121

Printing Thread and Timestamp Information 1-124

The java -XshowSettings:security Option 1-125

2 Java Cryptography Architecture (JCA) Reference Guide

Introduction to Java Cryptography Architecture 2-1

JCA Design Principles 2-2

Provider Architecture 2-3

Cryptographic Service Providers 2-3

How Providers Are Actually Implemented 2-5

Keystores 2-6

Engine Classes and Algorithms 2-7

Core Classes and Interfaces 2-8

The Provider Class 2-9

How Provider Implementations Are Requested and Supplied 2-10

Installing Providers 2-11

Provider Class Methods 2-12

The Security Class 2-12

Managing Providers 2-13

Security Properties 2-14

The SecureRandom Class 2-15

Creating a SecureRandom Object 2-15

Seeding or Re-Seeding the SecureRandom Object 2-16

Using a SecureRandom Object 2-16

v

Generating Seed Bytes 2-16

The MessageDigest Class 2-16

Creating a MessageDigest Object 2-17

Updating a Message Digest Object 2-17

Computing the Digest 2-17

The Signature Class 2-18

Signature Object States 2-18

Creating a Signature Object 2-19

Initializing a Signature Object 2-19

Signing with a Signature Object 2-19

Verifying with a Signature Object 2-20

The Cipher Class 2-21

Other Cipher-based Classes 2-29

The Cipher Stream Classes 2-29

The SealedObject Class 2-32

The Mac Class 2-33

The KEM Class 2-34

Key Interfaces 2-35

The KeyPair Class 2-37

Key Specification Interfaces and Classes 2-37

The KeySpec Interface 2-37

The KeySpec Subinterfaces 2-38

The EncodedKeySpec Class 2-38

Generators and Factories 2-39

The KeyFactory Class 2-39

The SecretKeyFactory Class 2-41

The KeyPairGenerator Class 2-42

The KeyGenerator Class 2-44

The KeyAgreement Class 2-45

Key Management 2-47

The KeyStore Class 2-49

Algorithm Parameters Classes 2-52

The AlgorithmParameterSpec Interface 2-53

The AlgorithmParameters Class 2-53

The AlgorithmParameterGenerator Class 2-54

The CertificateFactory Class 2-55

Standard Names 2-57

How the JCA Might Be Used in a SSL/TLS Implementation 2-57

Cryptographic Strength Configuration 2-59

Jurisdiction Policy File Format 2-62

How to Make Applications Exempt from Cryptographic Restrictions 2-64

Packaging Your Application 2-68

vi

Additional JCA Code Samples 2-69

Computing a MessageDigest Object 2-69

Generating a Pair of Keys 2-71

Generating and Verifying a Signature Using Generated Keys 2-72

Generating/Verifying Signatures Using Key Specifications and KeyFactory 2-73

Generating Random Numbers 2-74

Determining If Two Keys Are Equal 2-75

Reading Base64-Encoded Certificates 2-76

Parsing a Certificate Reply 2-77

Using Encryption 2-77

Using Password-Based Encryption 2-78

Encapsulating and Decapsulating Keys 2-79

Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256 2-80

Diffie-Hellman Key Exchange between Two Parties 2-80

Diffie-Hellman Key Exchange between Three Parties 2-83

AES/GCM Example 2-85

HMAC-SHA256 Example 2-86

3 How to Implement a Provider in the Java Cryptography Architecture

Who Should Read This Document 3-1

Notes on Terminology 3-1

Introduction to Implementing Providers 3-1

Engine Classes and Corresponding Service Provider Interface Classes 3-2

Steps to Implement and Integrate a Provider 3-5

Step 1: Write your Service Implementation Code 3-5

Step 1.1: Consider Additional JCA Provider Requirements and Recommendations
for Encryption Implementations 3-6

Step 2: Give your Provider a Name 3-7

Step 3: Write Your Master Class, a Subclass of Provider 3-7

Step 3.1: Create a Provider That Uses String Objects to Register Its Services 3-7

Step 3.2: Create a Provider That Uses Provider.Service 3-10

Step 3.3: Specify Additional Information for Cipher Implementations 3-12

Step 4: Create a Module Declaration for Your Provider 3-14

Step 5: Compile Your Code 3-15

Step 6: Place Your Provider in a JAR File 3-15

Step 7: Sign Your JAR File, If Necessary 3-16

Step 7.1: Get a Code-Signing Certificate 3-16

Step 7.2: Sign Your Provider 3-18

Step 8: Prepare for Testing 3-19

Step 8.1: Configure the Provider 3-19

Step 8.2: Set Provider Permissions 3-21

vii

Step 9: Write and Compile Your Test Programs 3-22

Step 10: Run Your Test Programs 3-22

Step 11: Apply for U.S. Government Export Approval If Required 3-24

Step 12: Document Your Provider and Its Supported Services 3-25

Step 12.1: Indicate Whether Your Implementation is Cloneable for Message Digests
and MACs 3-25

Step 13: Make Your Class Files and Documentation Available to Clients 3-27

Further Implementation Details and Requirements 3-27

Alias Names 3-27

Service Interdependencies 3-28

Default Initialization 3-30

Default Key Pair Generator Parameter Requirements 3-30

The Provider.Service Class 3-31

Signature Formats 3-32

DSA Interfaces and their Required Implementations 3-32

RSA Interfaces and their Required Implementations 3-35

Diffie-Hellman Interfaces and their Required Implementations 3-36

Interfaces for Other Algorithm Types 3-38

Algorithm Parameter Specification Interfaces and Classes 3-38

Key Specification Interfaces and Classes Required by Key Factories 3-41

Secret-Key Generation 3-46

Adding New Object Identifiers 3-46

Ensuring Exportability 3-48

Sample Code for MyProvider 3-48

4 JDK Providers Documentation

Introduction to JDK Providers 4-1

Import Limits on Cryptographic Algorithms 4-2

Cipher Transformations 4-3

SecureRandom Implementations 4-3

The SunPKCS11 Provider 4-4

The SUN Provider 4-4

The SunRsaSign Provider 4-8

The SunJSSE Provider 4-9

The SunJCE Provider 4-15

The SunJGSS Provider 4-22

The SunSASL Provider 4-22

The XMLDSig Provider 4-22

The SunPCSC Provider 4-23

The SunMSCAPI Provider 4-24

The SunEC Provider 4-25

viii

The Apple Provider 4-28

The JdkLDAP Provider 4-29

The JdkSASL Provider 4-29

5 PKCS#11 Reference Guide

SunPKCS11 Provider 5-1

SunPKCS11 Requirements 5-2

SunPKCS11 Configuration 5-2

Accessing Network Security Services (NSS) 5-13

Troubleshooting PKCS#11 5-15

Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms 5-16

Application Developers 5-17

Token Login 5-17

Token Keys 5-18

Delayed Provider Selection 5-19

JAAS KeyStoreLoginModule 5-20

Tokens as JSSE Keystore and Trust Stores 5-21

Using keytool and jarsigner with PKCS#11 Tokens 5-21

Keystore Entry Syntax in Policy File 5-23

Provider Developers 5-23

Provider Services 5-23

Parameter Support 5-25

SunPKCS11 Provider Supported Algorithms 5-25

SunPKCS11 Provider KeyStore Requirements 5-30

Example Provider 5-32

6 Java Authentication and Authorization Service (JAAS)

Java Authentication and Authorization Service (JAAS) Reference Guide 6-1

Who Should Read This Document 6-2

Related Documentation 6-2

Core Classes and Interfaces 6-2

Common Classes 6-2

Authentication Classes and Interfaces 6-8

Authorization Classes 6-10

JAAS Tutorials and Sample Programs 6-11

Appendix A: JAAS Settings in the java.security Security Properties File 6-12

Login Configuration Provider 6-13

Login Configuration URLs 6-14

Policy Provider 6-14

Policy File URLs 6-14

ix

Appendix B: JAAS Login Configuration File 6-15

Login Configuration File Structure and Contents 6-15

Where to Specify Which Login Configuration File Should Be Used 6-17

JAAS Tutorials 6-18

JAAS Authentication Tutorial 6-18

The Authentication Tutorial Code 6-19

The Login Configuration 6-34

Running the Code 6-34

Running the Code with a Security Manager 6-36

JAAS Authorization Tutorial 6-39

What is JAAS Authorization? 6-40

How is JAAS Authorization Performed? 6-40

The Authorization Tutorial Code 6-42

The Login Configuration File for the JAAS Authorization Tutorial 6-47

The Policy File 6-48

Running the Authorization Tutorial Code 6-49

Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide 6-52

Introduction to LoginModule 6-52

Steps to Implement a LoginModule 6-54

Step 1: Understand the Authentication Technology 6-54

Step 2: Name the LoginModule Implementation 6-54

Step 3: Implement the LoginModule Interface 6-54

Step 4: Choose or Write a Sample Application 6-59

Step 5: Compile the LoginModule and Application 6-59

Step 6: Prepare for Testing 6-59

Step 7: Test Use of the LoginModule 6-61

Step 8: Document Your LoginModule Implementation 6-62

Step 9: Make LoginModule JAR File and Documents Available 6-62

7 Java Generic Security Services (Java GSS-API)

Introduction to JAAS and Java GSS-API Tutorials 7-1

When to Use Java GSS-API Versus JSSE 7-2

Use of Java GSS-API for Secure Message Exchanges Without JAAS Programming 7-3

Overview of the Client and Server Applications 7-4

The SampleClient and SampleServer Code 7-5

Kerberos User and Service Principal Names 7-18

The Login Configuration File 7-19

The useSubjectCredsOnly System Property 7-20

Running the SampleClient and SampleServer Programs 7-20

JAAS Authentication 7-23

The Authentication Tutorial Code 7-24

x

The Login Configuration 7-26

Running the Code 7-26

Running the Code with a Security Manager 7-28

JAAS Authorization 7-30

What is JAAS Authorization? 7-31

How Is JAAS Authorization Performed? 7-31

The Authorization Tutorial Code 7-33

The Login Configuration File 7-34

The Policy File 7-35

Running the Authorization Tutorial Code 7-36

Use of JAAS Login Utility 7-38

What You Need to Know About the Login Utility 7-38

Application and Other File Requirements 7-39

The Sample Application Program 7-40

The Login Configuration File 7-40

The Policy File 7-41

Running the Sample Program with the Login Utility 7-42

Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges 7-44

Before You Start: Recommended Reading 7-45

Overview of the Client and Server Applications 7-45

Kerberos User and Service Principal Names 7-46

The Login Configuration File 7-47

The Policy Files 7-48

Running the SampleClient and SampleServer Programs 7-51

More Things You Can Do with Java GSS-API and JAAS 7-56

Executing Code on Behalf of the Client User 7-56

Using Credentials Delegated from the Client 7-62

Permission Required In Order to Delegate Credentials 7-63

Kerberos Requirements 7-64

Setting Properties to Indicate the Default Realm and KDC 7-65

Locating the krb5.conf Configuration File 7-65

Naming Conventions for Realm Names and Hostnames 7-66

Cross-Realm Authentication 7-66

Troubleshooting 7-66

Source Code for JAAS and Java GSS-API Tutorials 7-69

Related Documentation 7-90

Accessing Native GSS-API 7-91

Single Sign-on Using Kerberos in Java 7-95

Abstract 7-95

Introduction 7-95

Kerberos V5 7-95

Java Authentication and Authorization Service (JAAS) 7-95

xi

Pluggable and Stackable Framework 7-96

Authentication and Authorization 7-96

Subject 7-96

doAs and doAsPrivileged 7-96

LoginContext 7-98

Callbacks 7-98

LoginModules 7-98

The Kerberos Login Module 7-98

Kerberos Classes 7-100

Authorization 7-100

Java Generic Security Service Application Program Interface (Java GSS-API) 7-100

Generic Security Service API (GSS-API) 7-100

Java GSS-API 7-101

The GSSName Interface 7-102

The GSSCredential Interface 7-103

The GSSContext Interface 7-104

Message Protection 7-107

Credential Delegation 7-108

Default Credential Acquisition Model 7-110

Exceptions to the Model 7-111

Security Risks 7-112

Credential Acquisition 7-112

Context Establishment 7-113

Credential Delegation 7-113

Conclusions 7-114

Acknowledgements 7-114

References 7-114

Advanced Security Programming in Java SE Authentication, Secure Communication and
Single Sign-On 7-115

Part I : Secure Authentication using the Java Authentication and Authorization Service
(JAAS) 7-116

Exercise 1: Using the JAAS API 7-116

Exercise 2: Configuring JAAS for Kerberos Authentication 7-117

Part II : Secure Communications using the Java SE Security API 7-119

Exercise 3: Using the Java Generic Security Service (GSS) API 7-119

Exercise 4: Using the Java SASL API 7-121

Exercise 5: Using the Java Secure Socket Extension with Kerberos 7-124

Part III : Deploying for Single Sign-On in a Kerberos Environment 7-126

Exercise 6: Deploying for Single Sign-On 7-126

Part IV : Secure Communications Using Stronger Encryption Algorithms 7-127

Exercise 7: Configuring to Use Stronger Encryption Algorithms in a Kerberos
Environment, to Secure the Communication 7-127

Part V : Secure Authentication Using SPNEGO Java GSS Mechanism 7-129

xii

Exercise 8: Using the Java Generic Security Services (GSS) API with SPNEGO 7-129

Part VI: HTTP/SPNEGO Authentication 7-131

Exercise 9: Using HTTP/SPNEGO Authentication 7-131

Source Code for Advanced Security Programming in Java SE Authentication, Secure
Communication and Single Sign-On 7-135

Appendix A: Setting up Kerberos Accounts 7-168

The Kerberos 5 GSS-API Mechanism 7-168

8 Java Secure Socket Extension (JSSE) Reference Guide

Introduction to JSSE 8-1

JSSE Features and Benefits 8-2

JSSE Standard API 8-2

SunJSSE Provider 8-3

JSSE Related Documentation 8-3

JSSE Classes and Interfaces 8-4

JSSE Core Classes and Interfaces 8-5

SocketFactory and ServerSocketFactory Classes 8-5

SSLSocketFactory and SSLServerSocketFactory Classes 8-5

Obtaining an SSLSocketFactory 8-6

SSLSocket and SSLServerSocket Classes 8-6

Obtaining an SSLSocket 8-7

Cipher Suite Choice and Remote Entity Verification 8-7

SSLEngine Class 8-7

SSLEngine Methods 8-9

Understanding SSLEngine Operation Statuses 8-10

SSLEngine for TLS Protocols 8-15

SSLEngine for DTLS Protocols 8-20

Dealing With Blocking Tasks 8-28

Shutting Down a TLS/DTLS Connection 8-28

SSLSession and ExtendedSSLSession 8-29

HttpsURLConnection Class 8-30

Setting the Assigned SSLSocketFactory 8-31

Setting the Assigned HostnameVerifier 8-31

Support Classes and Interfaces 8-31

SSLContext Class 8-32

TrustManager Interface 8-34

TrustManagerFactory Class 8-34

X509TrustManager Interface 8-38

X509ExtendedTrustManager Class 8-41

KeyManager Interface 8-44

KeyManagerFactory Class 8-44

xiii

X509KeyManager Interface 8-45

X509ExtendedKeyManager Class 8-46

Relationship Between a TrustManager and a KeyManager 8-46

Secondary Support Classes and Interfaces 8-46

SSLParameters Class 8-47

SSLSessionContext Interface 8-48

SSLSessionBindingListener Interface 8-48

SSLSessionBindingEvent Class 8-48

HandShakeCompletedListener Interface 8-48

HandShakeCompletedEvent Class 8-48

HostnameVerifier Interface 8-48

X509Certificate Class 8-49

AlgorithmConstraints Interface 8-49

StandardConstants Class 8-50

SNIServerName Class 8-50

SNIMatcher Class 8-50

SNIHostName Class 8-50

Customizing JSSE 8-51

How to Specify a java.lang.System Property 8-61

How to Specify a java.security.Security Property 8-61

Customizing the X509Certificate Implementation 8-62

Specifying Default Enabled Cipher Suites 8-62

Specifying an Alternative HTTPS Protocol Implementation 8-63

Customizing the Provider Implementation 8-64

Registering the Cryptographic Provider Statically 8-64

Registering the Cryptographic Service Provider Dynamically 8-64

Provider Configuration 8-64

Configuring the Preferred Provider for Specific Algorithms 8-65

Customizing the Default Keystores and Truststores, Store Types, and Store Passwords 8-66

Customizing the Default Key Managers and Trust Managers 8-67

Disabled and Restricted Cryptographic Algorithms 8-68

Legacy Cryptographic Algorithms 8-70

Customizing the Encryption Algorithm Providers 8-70

Customizing the Size of Ephemeral Diffie-Hellman Keys 8-70

Customizing the Maximum Fragment Length Negotiation (MFLN) Extension 8-72

Configuring the Maximum and Minimum Packet Size 8-73

Limiting Amount of Data Algorithms May Encrypt with a Set of Keys 8-73

Resuming Session Without Server-Side State 8-73

Specifying That close_notify Alert Is Sent When One Is Received 8-74

Enabling certificate_authorities Extension for Server Certificate Selection 8-75

SunJSSE Renegotiation Interoperability Modes 8-75

Workarounds and Alternatives to SSL/TLS Renegotiation 8-77

xiv

Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations 8-78

Client-Driven OCSP and OCSP Stapling 8-78

Client-Driven OCSP and Certificate Revocation 8-79

OCSP Stapling and Certificate Revocation 8-80

OCSP Stapling Configuration Properties 8-81

Configuring Default Extensions 8-83

Hardware Acceleration and Smartcard Support 8-84

Configuring JSSE to Use Smartcards as Keystores and Truststores 8-84

Multiple and Dynamic Keystores 8-84

Additional Keystore Formats (PKCS12) 8-85

Server Name Indication (SNI) Extension 8-85

TLS Application Layer Protocol Negotiation 8-87

Setting up ALPN on the Client 8-88

Setting up Default ALPN on the Server 8-89

Setting up Custom ALPN on the Server 8-90

Determining Negotiated ALPN Value during Handshaking 8-92

Reading and Writing ALPN Values with the SunJSSE Provider 8-95

ALPN Related Classes and Methods 8-98

Troubleshooting JSSE 8-98

Configuration Problems 8-98

SSLHandshakeException: No Available Authentication Scheme, Handshake Failure 8-99

CertificateException While Handshaking 8-99

Runtime Exception: SSL Service Not Available 8-100

Runtime Exception: "No available certificate corresponding to the SSL cipher suites
which are enabled" 8-100

Runtime Exception: No Cipher Suites in Common 8-101

Socket Disconnected After Sending ClientHello Message 8-101

SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and
Causes a NoSuchAlgorithmException 8-102

Exception Thrown When Obtaining Application Resources from a Virtual Host Web
Server that Requires an SNI Extension 8-103

IllegalArgumentException When RC4 Cipher Suites are Configured for DTLS 8-104

Debugging Utilities 8-104

Debugging TLS Connections 8-106

Compatibility Risks and Known Issues 8-123

Code Examples 8-123

Converting an Unsecure Socket to a Secure Socket 8-123

Running the JSSE Sample Code 8-126

Creating a Keystore to Use with JSSE 8-133

Using the Server Name Indication (SNI) Extension 8-137

Typical Client-Side Usage Examples 8-138

Typical Server-Side Usage Examples 8-138

Working with Virtual Infrastructures 8-139

xv

Standard Names 8-144

Provider Pluggability 8-144

Transport Layer Security (TLS) Protocol Overview 8-144

How TLS Works 8-145

Cryptographic Processes 8-145

Secret-Key Cryptography 8-145

Public-Key Cryptography 8-146

Comparison Between Secret-Key and Public-Key Cryptography 8-146

Public Key Certificates 8-146

Cryptographic Hash Functions 8-147

Message Authentication Code 8-147

Digital Signatures 8-148

The TLS 1.3 Handshake 8-148

The TLS 1.3 Protocol 8-148

Session Resumption with a Pre-Shared Key 8-152

Post-Handshake Messages 8-154

Compatibility Risks and Known Issues 8-155

The TLS 1.2 Handshake 8-155

The TLS 1.2 Protocol 8-156

Datagram Transport Layer Security (DTLS) Protocol 8-158

The DTLS Handshake 8-159

9 Java PKI Programmer's Guide

PKI Programmer's Guide Overview 9-1

Introduction to Public Key Certificates 9-2

X.509 Certificates and Certificate Revocation Lists (CRLs) 9-3

Core Classes and Interfaces 9-6

Basic Certification Path Classes 9-7

The CertPath Class 9-7

The CertificateFactory Class 9-9

The CertPathParameters Interface 9-10

Certification Path Validation Classes 9-11

The CertPathValidator Class 9-11

The CertPathValidatorResult Interface 9-12

Certification Path Building Classes 9-13

The CertPathBuilder Class 9-13

The CertPathBuilderResult Interface 9-14

Certificate/CRL Storage Classes 9-14

The CertStore Class 9-15

The CertStoreParameters Interface 9-16

The CertSelector and CRLSelector Interfaces 9-17

xvi

PKIX Classes 9-22

The TrustAnchor Class 9-23

The PKIXParameters Class 9-24

The PKIXCertPathValidatorResult Class 9-26

The PolicyNode Interface and PolicyQualifierInfo Class 9-26

The PKIXBuilderParameters Class 9-28

The PKIXCertPathBuilderResult Class 9-29

The PKIXCertPathChecker Class 9-30

Using PKIXCertPathChecker in Certificate Path Validation 9-35

Implementing a Service Provider 9-40

Steps to Implement and Integrate a Provider 9-40

Service Interdependencies 9-42

Certification Path Parameter Specification Interfaces 9-42

Certification Path Result Specification Interfaces 9-43

Certification Path Exception Classes 9-43

Appendix A: Standard Names 9-44

Appendix B: CertPath Implementation in SUN Provider 9-44

Appendix C: OCSP Support 9-47

Enable OSCP Nonce Extension 9-49

Maximum Allowable Clock Skew 9-50

Fallback Option for POST-Only OCSP Requests 9-50

Appendix D: CertPath Implementation in JdkLDAP Provider 9-50

Appendix E: Disabling Cryptographic Algorithms 9-51

10

Java SASL API Programming and Deployment Guide

Java SASL API Overview 10-2

Creating the Mechanisms 10-2

Passing Input to the Mechanisms 10-3

Using the Mechanisms 10-3

Using the Negotiated Security Layer 10-5

How SASL Mechanisms are Installed and Selected 10-6

The SunSASL Provider 10-7

The SunSASL Provider Client Mechanisms 10-7

The SunSASL Provider Server Mechanisms 10-12

The JdkSASL Provider 10-13

The JdkSASL Provider Client Mechanism 10-13

The JdkSASL Provider Server Mechanism 10-15

Debugging and Monitoring 10-15

Implementing a SASL Security Provider 10-16

xvii

11

XML Digital Signature API Overview and Tutorial

Package Hierarchy 11-1

Service Providers 11-2

Introduction to XML Signatures 11-3

Example of an XML Signature 11-3

XML Signature Secure Validation Mode 11-4

XML Digital Signature API Examples 11-5

Validate Example 11-5

Validating an XML Signature 11-9

Instantiating the Document that Contains the Signature 11-9

Specifying the Signature Element to be Validated 11-9

Creating a Validation Context 11-10

Unmarshalling the XML Signature 11-10

Validating the XML Signature 11-10

Using KeySelectors 11-11

GenEnveloped Example 11-12

Generating an XML Signature 11-15

Instantiating the Document to be Signed 11-16

Creating a Public Key Pair 11-16

Creating a Signing Context 11-16

Assembling the XML Signature 11-17

Generating the XML Signature 11-18

Printing or Displaying the Resulting Document 11-18

12

Java API for XML Processing (JAXP) Security Guide

Potential Attacks During XML Processing 12-1

XML External Entity Injection Attack 12-1

External Resources Supported by XML, Schema, and XSLT Standards 12-1

Exponential Entity Expansion Attack 12-3

Feature for Secure Processing (FSP) 12-3

JAXP Properties for Processing Limits 12-4

JAXP Properties for External Access Restrictions 12-5

Scope and Order 12-7

Relationship with Security Manager 12-8

When to Use Processing Limits 12-9

When to Use External Access Restrictions 12-10

Using JAXP Properties 12-11

Handling Errors from JAXP Properties 12-14

Streaming API for XML and JAXP Properties 12-15

Extension Functions 12-16

xviii

Disabling DTD Processing 12-17

Using Resolvers and Catalogs 12-17

Java XML Resolvers 12-17

Entity Resolvers for SAX and DOM 12-18

XMLResolver for StAX 12-18

URIResolver for javax.xml.transform 12-19

LSResourceResolver for javax.xml.validation 12-19

The Catalog API 12-19

Catalog Resolver 12-20

Enable Catalogs on JDK XML Processors 12-20

Third-Party Parsers 12-20

JAXP Security Processing 12-21

General Recommendations for JAXP Security 12-25

Appendix A: Glossary of Java API for XML Processing Terms and Definitions 12-25

Appendix B: Java and JDK XML Features and Properties Naming Convention 12-26

xix

Preface

This guide provides information about the Java security technology, tools, and implementations
of commonly used security algorithms, mechanisms, and protocols on the Java Platform,
Standard Edition (Java SE).

Audience
This document is intended for experienced developers who build applications using the
comprehensive Java security framework. It is also intended for the user or administrator with a
set of tools to securely manage applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
• Serialization Filtering in Java Platform, Standard Edition Core Libraries

• RMI Security Recommendations in Java Platform, Standard Edition Java Remote Method
Invocation User's Guide

Conventions
The following text conventions are used in this document:

Preface

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxi

1
General Security

Terms and Definitions list commonly used cryptography terms and their definitions.

Java Security Overview provides an overview of the motivation of major security features, an
introduction to security classes and their usage, a discussion of the impact of the security
architecture on code, and thoughts on writing security-sensitive code.

Certain aspects of Java security may be customized by setting security properties in the
securities properties file. The Security Properties File describes this file.

Java Security Standard Algorithm Names Specification describes the set of standard names
for algorithms, certificate and keystore types that Java SE requires and uses.

Troubleshooting Security lists options for the java.security.debug system property that
enable you to monitor security access.

Terms and Definitions
The following are commonly used cryptography terms and their definitions.

authentication
The process of confirming the identity of a party with whom one is communicating.

certificate
A digitally signed statement vouching for the identity and public key of an entity (person,
company, and so on). Certificates can either be self-signed or issued by a Certificate Authority
(CA) an entity that is trusted to issue valid certificates for other entities. Well-known CAs
include Comodo, DigiCert, and GoDaddy. X509 is a common certificate format that can be
managed by the JDK's keytool.

cipher suite
A combination of cryptographic parameters that define the security algorithms and key sizes
used for authentication, key agreement, encryption, and integrity protection.

cryptographic hash function
An algorithm that is used to produce a relatively small fixed-size string of bits (called a hash)
from an arbitrary block of data. A cryptographic hash function is similar to a checksum and has
three primary characteristics: it’s a one-way function, meaning that it is not possible to produce
the original data from the hash; a small change in the original data produces a large change in
the resulting hash; and it doesn’t require a cryptographic key.

Cryptographic Service Provider (CSP)
Sometimes referred to simply as providers for short, the Java Cryptography Architecture (JCA)
defines it as a package (or set of packages) that implements one or more engine classes for
specific cryptographic algorithms. An engine class defines a cryptographic service in an
abstract fashion without a concrete implementation.

1-1

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Datagram Transport Layer Security (DTLS) Protocol
A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server based on an unreliable transport channel such
as UDP.

decryption
See encryption/decryption.

digital signature
A digital equivalent of a handwritten signature. It is used to ensure that data transmitted over a
network was sent by whoever claims to have sent it and that the data has not been modified in
transit. For example, an RSA-based digital signature is calculated by first computing a
cryptographic hash of the data and then encrypting the hash with the sender's private key.

encryption/decryption
Encryption is the process of using a complex algorithm to convert an original message
(cleartext) to an encoded message (ciphertext) that is unintelligible unless it is decrypted.
Decryption is the inverse process of producing cleartext from ciphertext.
The algorithms used to encrypt and decrypt data typically come in two categories: secret key
(symmetric) cryptography and public key (asymmetric) cryptography.

endpoint identification
An IPv4 or IPv6 address used to identify an endpoint on the network.
Endpoint identification procedures are handled during SSL/TLS handshake.

handshake protocol
The negotiation phase during which the two socket peers agree to use a new or existing
session. The handshake protocol is a series of messages exchanged over the record protocol.
At the end of the handshake, new connection-specific encryption and integrity protection keys
are generated based on the key agreement secrets in the session.

java-home
Variable placeholder used throughout this document to refer to the directory where the Java
Development Kit (JDK) is installed.

key agreement
A method by which two parties cooperate to establish a common key. Each side generates
some data, which is exchanged. These two pieces of data are then combined to generate a
key. Only those holding the proper private initialization data can obtain the final key. Diffie-
Hellman (DH) is the most common example of a key agreement algorithm.

Key Encapsulation Mechanism (KEM)
An encryption technique for securing symmetric keys using public key cryptography. In the
encapsulation process, the sender reads in the receiver's public key and generates a secret
key and a key encapsulation message. The key encapsulation message is sent to the
receiver. In the decapsulation process, the receiver uses its own private key to recover the
same secret key from the key encapsulation message.

key exchange
A method by which keys are exchanged. One side generates a private key and encrypts it
using the peer's public key (typically RSA). The data is transmitted to the peer, who decrypts
the key using the corresponding private key.

key manager/trust manager
Key managers and trust managers use keystores for their key material. A key manager
manages a keystore and supplies public keys to others as needed (for example, for use in

Chapter 1
Terms and Definitions

1-2

authenticating the user to others). A trust manager decides who to trust based on information
in the truststore it manages.

Keyed-Hash Message Code (HMAC)
A specific type of message authentication code that involves a cryptographic hash function
and a secret cryptographic key.

Keyed-Hash Message Code (HMAC)-based Extract-and-Expand Key Derivation Function
(HKDF)
A function used for key generation and validation.

keystore/truststore
A keystore is a database of key material. Key material is used for a variety of purposes,
including authentication and data integrity. Various types of keystores are available, including
PKCS12 and Oracle's JKS.
Generally speaking, keystore information can be grouped into two categories: key entries and
trusted certificate entries. A key entry consists of an entity's identity and its private key, and
can be used for a variety of cryptographic purposes. In contrast, a trusted certificate entry
contains only a public key in addition to the entity's identity. Thus, a trusted certificate entry
can’t be used where a private key is required, such as in a javax.net.ssl.KeyManager. In the
JDK implementation of JKS, a keystore may contain both key entries and trusted certificate
entries.
A truststore is a keystore that is used when making decisions about what to trust. If you
receive data from an entity that you already trust, and if you can verify that the entity is the one
that it claims to be, then you can assume that the data really came from that entity.
An entry should only be added to a truststore if the user trusts that entity. By either generating
a key pair or by importing a certificate, the user gives trust to that entry. Any entry in the
truststore is considered a trusted entry.
It may be useful to have two different keystore files: one containing just your key entries, and
the other containing your trusted certificate entries, including CA certificates. The former
contains private information, whereas the latter does not. Using two files instead of a single
keystore file provides a cleaner separation of the logical distinction between your own
certificates (and corresponding private keys) and others' certificates. To provide more
protection for your private keys, store them in a keystore with restricted access, and provide
the trusted certificates in a more publicly accessible keystore if needed.

message authentication code (MAC)
Provides a way to check the integrity of information transmitted over or stored in an unreliable
medium, based on a secret key. Typically, MACs are used between two parties that share a
secret key in order to validate information transmitted between these parties.
A MAC mechanism that is based on cryptographic hash functions is referred to as HMAC.
HMAC can be used with any cryptographic hash function, such as Message Digest 5 (MD5)
and the Secure Hash Algorithm (SHA-256), in combination with a secret shared key. HMAC is
specified in RFC 2104.

public-key cryptography
A cryptographic system that uses an encryption algorithm in which two keys are produced.
One key is made public, whereas the other is kept private. The public key and the private key
are cryptographic inverses; what one key encrypts only the other key can decrypt. Public-key
cryptography is also called asymmetric cryptography.

Record Protocol
A protocol that packages all data (whether application-level or as part of the handshake
process) into discrete records of data much like a TCP stream socket converts an application
byte stream into network packets. The individual records are then protected by the current
encryption and integrity protection keys.

Chapter 1
Terms and Definitions

1-3

secret-key cryptography
A cryptographic system that uses an encryption algorithm in which the same key is used both
to encrypt and decrypt the data. Secret-key cryptography is also called symmetric
cryptography.

Secure Sockets Layer (SSL) Protocol
A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server. SSL has been renamed to Transport Layer
Security (TLS).

session
A named collection of state information including authenticated peer identity, cipher suite, and
key agreement secrets that are negotiated through a secure socket handshake and that can
be shared among multiple secure socket instances.

Transport Layer Security (TLS) Protocol
A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server based on a reliable transport channel such as
TCP.

trust manager
See key manager/trust manager.

truststore
See keystore/truststore.

Java Security Overview
Java security includes a large set of APIs, tools, and implementations of commonly-used
security algorithms, mechanisms, and protocols. The Java security APIs span a wide range of
areas, including cryptography, public key infrastructure, secure communication, authentication,
and access control. Java security technology provides the developer with a comprehensive
security framework for writing applications, and also provides the user or administrator with a
set of tools to securely manage applications.

Introduction to Java Security
The JDK is designed with a strong emphasis on security. At its core, the Java language itself is
type-safe and provides automatic garbage collection, enhancing the robustness of application
code. A secure class loading and verification mechanism ensures that only legitimate Java
code is executed. The Java security architecture includes a large set of application
programming interfaces (APIs), tools, and implementations of commonly-used security
algorithms, mechanisms, and protocols.

The Java security APIs span a wide range of areas. Cryptographic and public key
infrastructure (PKI) interfaces provide the underlying basis for developing secure applications.

The APIs allow for multiple interoperable implementations of algorithms and other security
services. Services are implemented in providers, which are plugged into the JDK through a
standard interface that makes it easy for applications to obtain security services without having
to know anything about their implementations. This allows developers to focus on how to
integrate security into their applications, rather than on how to actually implement complex
security mechanisms.

The JDK includes a number of providers that implement a core set of security services. It also
allows for additional custom providers to be installed. This enables developers to extend the
platform with new security mechanisms.

Chapter 1
Java Security Overview

1-4

The JDK is divided into modules. Modules that contain security APIs include the following:

Table 1-1 Modules That Contain Security APIs

Module Description

java.base Defines the foundational APIs of Java SE.
Contained packages include java.security,
javax.crypto, javax.net.ssl, and
javax.security.auth.

java.security.jgss Defines the Java binding of the IETF Generic
Security Services API (GSS-API). This module also
contains GSS-API mechanisms including Kerberos
v5 and SPNEGO.

java.security.sasl Defines Java support for the IETF Simple
Authentication and Security Layer (SASL). This
module also contains SASL mechanisms including
DIGEST-MD5, CRAM-MD5, and NTLM,

java.smartcardio Defines the Java Smart Card I/O API.

java.xml.crypto Defines the API for XML cryptography.

jdk.jartool Defines APIs for signing JAR files.

jdk.security.auth Provides implementations of the
javax.security.auth.* interfaces and
various authentication modules.

jdk.security.jgss Defines Java extensions to the GSS-API and an
implementation of the SASL GSS-API mechanism.

Java Language Security and Bytecode Verification
The Java language is designed to be type-safe and easy to use. It provides automatic memory
management, garbage collection, and range-checking on arrays. This reduces the overall
programming burden placed on developers, leading to fewer subtle programming errors and to
safer, more robust code.

A compiler translates Java programs into a machine-independent bytecode representation. A
bytecode verifier is invoked to ensure that only legitimate bytecodes are executed in the Java
runtime. It checks that the bytecodes conform to the Java Language Specification and do not
violate Java language rules or namespace restrictions. The verifier also checks for memory
management violations, stack underflows or overflows, and illegal data typecasts. Once
bytecodes have been verified, the Java runtime prepares them for execution.

In addition, the Java language defines different access modifiers that can be assigned to Java
classes, methods, and fields, enabling developers to restrict access to their class
implementations as appropriate. The language defines four distinct access levels:

• private: Most restrictive modifier; access is not allowed outside the particular class in
which the private member (a method, for example) is defined.

• protected: Allows access to any subclass or to other classes within the same package.

• Package-private: If not specified, then this is the default access level; allows access to
classes within the same package.

• public: No longer guarantees that the element is accessible everywhere; accessibility
depends upon whether the package containing that element is exported by its defining
module and whether that module is readable by the module containing the code that is
attempting to access it.

Chapter 1
Java Security Overview

1-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.smartcardio/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/module-summary.html

Basic Security Architecture
The JDK defines a set of APIs spanning major security areas, including cryptography, public
key infrastructure, authentication, secure communication, and access control. The APIs allow
developers to easily integrate security into their application code.

The APIs are designed around the following principles:

Implementation independence
Applications do not need to implement security themselves. Rather, they can request security
services from the JDK. Security services are implemented in providers (see the section
Security Providers), which are plugged into the JDK via a standard interface. An application
may rely on multiple independent providers for security functionality.

Implementation interoperability
Providers are interoperable across applications. Specifically, an application is not bound to a
specific provider if it does not rely on default values from the provider.

Algorithm extensibility
The JDK includes a number of built-in providers that implement a basic set of security services
that are widely used today. However, some applications may rely on emerging standards not
yet implemented, or on proprietary services. The JDK supports the installation of custom
providers that implement such services.

Security Providers
The java.security.Provider class encapsulates the notion of a security provider in the Java
platform. It specifies the provider's name and lists the security services it implements. Multiple
providers may be configured at the same time and are listed in order of preference. When a
security service is requested, the highest priority provider that implements that service is
selected.

Applications rely on the relevant getInstance method to request a security service from an
underlying provider.

For example, message digest creation represents one type of service available from providers.
To request an implementation of a specific message digest algorithm, call the method
java.security.MessageDigest.getInstance. The following statement requests a
SHA-256 message digest implementation without specifying a provider name:

 MessageDigest md = MessageDigest.getInstance("SHA-256");

The following figure illustrates how this statement obtains a SHA-256 message digest
implementation. The providers are searched in preference order, and the implementation from
the first provider supplying that particular algorithm, ProviderB, is returned.

Chapter 1
Java Security Overview

1-6

Figure 1-1 Request SHA-256 Message Digest Implementation Without Specifying
Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”)

SHA-256 MessageDigest
from ProviderB

You can optionally request an implementation from a specific provider by specifying the
provider's name. The following statement requests a SHA-256 message digest implementation
from a specific provider, ProviderC:

 MessageDigest md = MessageDigest.getInstance("SHA-256", "ProviderC");

The following figure illustrates how this statement requests a SHA-256 message digest
implementation from a specific provider, ProviderC. In this case, the implementation from that
provider is returned, even though a provider with a higher preference order, ProviderB, also
supplies a SHA-256 implementation.

Chapter 1
Java Security Overview

1-7

Figure 1-2 Request SHA-256 Message Digest Implementation from Specific Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”, “ProviderC”)

SHA-256 MessageDigest
from ProviderC

For more information about cryptographic services, such as message digest algorithms, see
the section Java Cryptography.

Oracle's implementation of the Java platform includes a number of built-in default providers
that implement a basic set of security services that can be used by applications. Note that
other vendor implementations of the Java platform may include different sets of providers that
encapsulate vendor-specific sets of security services. The term built-in default providers refers
to the providers available in Oracle's implementation.

Java Cryptography
The Java cryptography architecture is a framework for accessing and developing cryptographic
functionality for the Java platform.

It includes APIs for a large variety of cryptographic services, including the following:

• Message digest algorithms

• Digital signature algorithms

• Symmetric bulk and stream encryption

• Asymmetric encryption

• Password-based encryption (PBE)

• Elliptic Curve Cryptography (ECC)

• Key agreement algorithms

• Key generators

• Key Encapsulation Mechanisms (KEMs)

• Message Authentication Codes (MACs)

Chapter 1
Java Security Overview

1-8

• Secure Random Number Generators

For historical (export control) reasons, the cryptography APIs are organized into two distinct
packages:

• The java.security and java.security.* packages contains classes that are not subject
to export controls (like Signature and MessageDigest)

• The javax.crypto package contains classes that are subject to export controls (like
Cipher, KeyAgreement, and KEM)

The cryptographic interfaces are provider-based, allowing for multiple and interoperable
cryptography implementations. Some providers may perform cryptographic operations in
software; others may perform the operations on a hardware token (for example, on a smart
card device or on a hardware cryptographic accelerator). Providers that implement export-
controlled services must be digitally signed by a certificate issued by the Oracle JCE Certificate
Authority.

The Java platform includes built-in providers for many of the most commonly used
cryptographic algorithms, including the RSA, DSA, and ECDSA signature algorithms, the AES
encryption algorithm, the SHA-2 message digest algorithms, and the Diffie-Hellman (DH) and
Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithms. Most of the built-in providers
implement cryptographic algorithms in Java code.

The Java platform also includes a built-in provider that acts as a bridge to a native PKCS#11
(v2.x) token. This provider, named SunPKCS11, allows Java applications to seamlessly access
cryptographic services located on PKCS#11-compliant tokens.

On Windows, the Java platform includes a built-in provider that acts as a bridge to the native
Microsoft CryptoAPI. This provider, named SunMSCAPI, allows Java applications to seamlessly
access cryptographic services on Windows through the CryptoAPI.

On macOS, the Java platform includes a built-in provider named Apple that implements a
java.security.KeyStore that provides access to the macOS Keychain.

Public Key Infrastructure
Public Key Infrastructure (PKI) is a term used for a framework that enables secure exchange of
information based on public key cryptography. It allows identities (of people, organizations,
etc.) to be bound to digital certificates and provides a means of verifying the authenticity of
certificates. PKI encompasses keys, certificates, public key encryption, and trusted
Certification Authorities (CAs) who generate and digitally sign certificates.

The Java platform includes APIs and provider support for X.509 digital certificates and
Certificate Revocation Lists (CRLs), as well as PKIX-compliant certification path building and
validation. The classes related to PKI are located in the java.security and
java.security.cert packages.

Key and Certificate Storage
The Java platform provides for long-term persistent storage of cryptographic keys and
certificates via key and certificate stores. Specifically, the java.security.KeyStore class
represents a key store, a secure repository of cryptographic keys and/or trusted certificates (to
be used, for example, during certification path validation), and the
java.security.cert.CertStore class represents a certificate store, a public and potentially
vast repository of unrelated and typically untrusted certificates. A CertStore may also store
CRLs.

Chapter 1
Java Security Overview

1-9

KeyStore and CertStore implementations are distinguished by types. The Java platform
includes the standard PKCS11 and PKCS12 key store types (whose implementations are
compliant with the corresponding PKCS specifications from the Internet Engineering Task
Force (IETF)). It also contains a proprietary file-based key store type called JKS (which stands
for Java Key Store), and a type called DKS (Domain Key Store) which is a collection of
keystores that are presented as a single logical keystore.

The Java platform includes a special built-in key store, cacerts, that contains a number of
certificates for well-known, trusted CAs. The keytool utility is able to list the certificates included
in cacerts. See keytool in Java Development Kit Tool Specifications.

The SunPKCS11 provider mentioned in the section Java Cryptography includes a PKCS11
KeyStore implementation. This means that keys and certificates residing in secure hardware
(such as a smart card) can be accessed and used by Java applications via the KeyStore API.
Note that smart card keys may not be permitted to leave the device. In such cases, the
java.security.Key object returned by the KeyStore API may simply be a reference to the key
(that is, it would not contain the actual key material). Such a Key object can only be used to
perform cryptographic operations on the device where the actual key resides.

The Java platform also includes an LDAP certificate store type (for accessing certificates
stored in an LDAP directory), as well as an in-memory Collection certificate store type (for
accessing certificates managed in a java.util.Collection object).

The Java platform supports native Microsoft Windows keystore types. See the algorithm
names for the KeyStore engine class in The SunMSCAPI Provider. The Java platform also
includes a KeyStore implementation that proivdes access to the macOS Keychain. See the
algorithm names for the KeyStore engine class in The Apple Provider.

Public Key Infrastructure Tools
There are two built-in tools for working with keys, certificates, and key stores:

• keytool creates and manages key stores. Use it to perform the following tasks:

– Create public/private key pairs

– Display, import, and export X.509 v1, v2, and v3 certificates stored as files

– Create X.509 certificates

– Issue certificate (PKCS#10) requests to be sent to CAs

– Create certificates based on certificate requests

– Import certificate replies (obtained from the CAs sent certificate requests)

– Designate public key certificates as trusted

– Accept a password and store it securely as a secret key

• jarsigner signs JAR files and verifies signatures on signed JAR files. The Java ARchive
(JAR) file format enables the bundling of multiple files into a single file. Typically, a JAR file
contains the class files and auxiliary resources associated with applets and applications.

To digitally sign code, perform the following:

1. Use keytool to generate or import appropriate keys and certificates into your key store (if
they are not there already).

2. Use the jar tool to package the code in a JAR file.

Chapter 1
Java Security Overview

1-10

3. Use the jarsigner tool (or the jdk.security.jarsigner API) to sign the JAR file. The
jarsigner tool accesses a key store to find any keys and certificates needed to sign a JAR
file or to verify the signature of a signed JAR file.

Note:

jarsigner can optionally generate signatures that include a timestamp. Systems
that verify JAR file signatures can check the timestamp and accept a JAR file that
was signed while the signing certificate was valid rather than requiring the
certificate to be current. (Certificates typically expire annually, and it is not
reasonable to expect JAR file creators to re-sign deployed JAR files annually.)

See keytool and jarsigner in Java Development Kit Tool Specifications.

Authentication

Authentication is the process of determining the identity of a user. In the context of the Java
runtime environment, it is the process of identifying the user of an executing Java program. In
certain cases, this process may rely on the services described in the section Java
Cryptography.

The Java platform provides APIs that enable an application to perform user authentication via
pluggable login modules. Applications call into the LoginContext class (in the
javax.security.auth.login package), which in turn references a configuration. The
configuration specifies which login module (an implementation of the
javax.security.auth.spi.LoginModule interface) is to be used to perform the actual
authentication.

Since applications solely talk to the standard LoginContext API, they can remain independent
from the underlying plug-in modules. New or updated modules can be plugged in for an
application without having to modify the application itself. The following figure illustrates the
independence between applications and underlying login modules:

Figure 1-3 Authentication Login Modules Plugging into the Authentication Framework

Application

Smartcard Kerberos Username/
Password

Authentication Framework

Configuration

Chapter 1
Java Security Overview

1-11

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

It is important to note that although login modules are pluggable components that can be
configured into the Java platform, they are not plugged in via security providers. Therefore,
they do not follow the provider searching model as described in the section Security Providers.
Instead, as is shown in Figure 1-3, login modules are administered by their own unique
configuration.

The Java platform provides the following built-in login modules, all in the
com.sun.security.auth.module package:

• JndiLoginModule for username/password authentication using LDAP or NIS databases

• KeyStoreLoginModule for logging into any type of key store, including a PKCS#11 token
key store

• Krb5LoginModule for authentication using Kerberos protocols

• LdapLoginModule for LDAP-based authentication

• NTLoginModule for authentication using a user's Windows NT security information

• UnixLoginModule for authentication using a user's UNIX Principal information

Authentication can also be achieved during the process of establishing a secure
communication channel between two peers. The Java platform provides implementations of a
number of standard communication protocols, which are discussed in the section Secure
Communication.

Secure Communication
The data that travels across a network can be accessed by someone who is not the intended
recipient. When the data includes private information, such as passwords and credit card
numbers, steps must be taken to make the data unintelligible to unauthorized parties. It is also
important to ensure that you are sending the data to the appropriate party, and that the data
has not been modified, either intentionally or unintentionally, during transport.

Cryptography forms the basis required for secure communication; see the section Java
Cryptography. The Java platform also provides API support and provider implementations for a
number of standard secure communication protocols.

TLS and DTLS Protocols

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols which provide a secure channel between two communication peers.
TLS uses a combination of cryptographic processes by providing authentication, confidentiality
and integrity properties for communication over a untrusted or potential hostile network. TLS
runs over a reliable, stream-oriented transport channel, typically Transport Control Protocol
(TCP). TLS is application protocol independent. Higher-level protocols, for example Hypertext
Transfer Protocol (HTTP), can layer on top of TLS transparently.

The Datagram Transport Layer Security (DTLS) protocols are based on the stream-oriented
TLS protocols and are intended to provider similar security properties for datagram transport,
like User Datagram Protocol (UDP), which does not provide reliable or in-order delivery of
data.

The JDK provides APIs and an implementation of the SSL, TLS, and DTLS protocols that
includes functionality for data encryption, message integrity, and server and client
authentication. Applications can use (D)TLS to provide for the secure passage of data between
two peers over any application protocol, such as HTTP on top of TCP/IP.

Chapter 1
Java Security Overview

1-12

The javax.net.ssl.SSLSocket class represents a network socket that encapsulates TLS
support on top of a normal stream socket (java.net.Socket). Some applications might want to
use alternate data transport abstractions (for example, New-I/O); the
javax.net.ssl.SSLEngine class is available to produce and consume TLS/DTLS packets.

The JDK also includes APIs that support the notion of pluggable (provider-based) key
managers and trust managers. A key manager is encapsulated by the
javax.net.ssl.KeyManager class, and manages the keys used to perform authentication. A
trust manager is encapsulated by the TrustManager class (in the same package), and makes
decisions about who to trust based on certificates in the key store it manages.

The JDK includes a built-in provider that implements the SSL/TLS/DTLS protocols:

• SSL 3.0

• TLS 1.0

• TLS 1.1

• TLS 1.2

• TLS 1.3

• DTLS 1.0

• DTLS 1.2

Simple Authentication and Security Layer (SASL)
Simple Authentication and Security Layer (SASL) is an Internet standard that specifies a
protocol for authentication and optional establishment of a security layer between client and
server applications. SASL defines how authentication data is to be exchanged, but does not
itself specify the contents of that data. It is a framework into which specific authentication
mechanisms that specify the contents and semantics of the authentication data can fit. There
are a number of standard SASL mechanisms defined by the Internet community for various
security levels and deployment scenarios.

The Java SASL API, which is in the java.security.sasl module, defines classes and
interfaces for applications that use SASL mechanisms. It is defined to be mechanism-neutral;
an application that uses the API need not be hardwired into using any particular SASL
mechanism. Applications can select the mechanism to use based on desired security features.
The API supports both client and server applications. The javax.security.sasl.Sasl class is
used to create SaslClient and SaslServer objects.

SASL mechanism implementations are supplied in provider packages. Each provider may
support one or more SASL mechanisms and is registered and invoked via the standard
provider architecture.

The Java platform includes a built-in provider that implements the following SASL
mechanisms:

• CRAM-MD5, DIGEST-MD5, EXTERNAL, GSSAPI, NTLM, and PLAIN client mechanisms

• CRAM-MD5, DIGEST-MD5, GSSAPI, and NTLM server mechanisms

Generic Security Service API and Kerberos

The Java platform contains an API with the Java language bindings for the Generic Security
Service Application Programming Interface (GSS-API), which is in the java.security.jgss module.
GSS-API offers application programmers uniform access to security services atop a variety of

Chapter 1
Java Security Overview

1-13

https://www.rfc-editor.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc4346.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc4347.txt
https://tools.ietf.org/html/rfc6347.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/module-summary.html

underlying security mechanisms. The Java GSS-API currently requires use of a Kerberos v5
mechanism, and the Java platform includes a built-in implementation of this mechanism. At this
time, it is not possible to plug in additional mechanisms.

Note:

The Krb5LoginModule mentioned in the section Authentication can be used in
conjunction with the GSS Kerberos mechanism.

The Java platform also includes a built-in implementation of the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO) GSS-API mechanism.

Before two applications can use GSS-API to securely exchange messages between them, they
must establish a joint security context. The context encapsulates shared state information that
might include, for example, cryptographic keys. Both applications create and use an
org.ietf.jgss.GSSContext object to establish and maintain the shared information that
makes up the security context. Once a security context has been established, it can be used to
prepare secure messages for exchange.

The Java GSS APIs are in the org.ietf.jgss package. The Java platform also defines basic
Kerberos classes, like KerberosPrincipal, KerberosTicket, KerberosKey, and KeyTab, which
are located in the javax.security.auth.kerberos package.

Access Control
The access control architecture in the Java platform protects access to sensitive resources (for
example, local files) or sensitive application code (for example, methods in a class). All access
control decisions are mediated by a security manager, represented by the
java.lang.SecurityManager class. A SecurityManager must be installed into the Java runtime
in order to activate the access control checks.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Local applications executed via the java command are by default not run with a
SecurityManager installed. In order to run local applications with a SecurityManager, either the
application itself must programmatically set one via the setSecurityManager method (in the
java.lang.System class), or java must be invoked with a -Djava.security.manager argument
on the command line.

Permissions
A permission represents access to a system resource. In order for a resource access to be
allowed for an applet (or an application running with a security manager), the corresponding
permission must be explicitly granted to the code attempting the access.

When Java code is loaded by a class loader into the Java runtime, the class loader
automatically associates the following information with that code:

Chapter 1
Java Security Overview

1-14

https://openjdk.java.net/jeps/411

• Where the code was loaded from

• Who signed the code (if anyone)

• Default permissions granted to the code

This information is associated with the code regardless of whether the code is downloaded
over an untrusted network (e.g., an applet) or loaded from the filesystem (e.g., a local
application). The location from which the code was loaded is represented by a URL, the code
signer is represented by the signer's certificate chain, and default permissions are represented
by java.security.Permission objects.

The default permissions automatically granted to downloaded code include the ability to make
network connections back to the host from which it originated. The default permissions
automatically granted to code loaded from the local filesystem include the ability to read files
from the directory it came from, and also from subdirectories of that directory.

Note that the identity of the user executing the code is not available at class loading time. It is
the responsibility of application code to authenticate the end user if necessary (see the section
Authentication). Once the user has been authenticated, the application can dynamically
associate that user with executing code by invoking the doAs method in the
javax.security.auth.Subject class.

Security Policy
A limited set of default permissions are granted to code by class loaders. Administrators have
the ability to flexibly manage additional code permissions via a security policy.

Java SE encapsulates the notion of a security policy in the java.security.Policy class.
There is only one Policy object installed into the Java runtime at any given time. The basic
responsibility of the Policy object is to determine whether access to a protected resource is
permitted to code (characterized by where it was loaded from, who signed it, and who is
executing it). How a Policy object makes this determination is implementation-dependent. For
example, it may consult a database containing authorization data, or it may contact another
service.

Java SE includes a default Policy implementation that reads its authorization data from one or
more ASCII (UTF-8) files configured in the security properties file. These policy files contain
the exact sets of permissions granted to code: specifically, the exact sets of permissions
granted to code loaded from particular locations, signed by particular entities, and executing as
particular users. The policy entries in each file must conform to a documented proprietary
syntax and may be composed via a simple text editor.

Access Control Enforcement
The Java runtime keeps track of the sequence of Java calls that are made as a program
executes. When access to a protected resource is requested, the entire call stack, by default,
is evaluated to determine whether the requested access is permitted.

As mentioned previously, resources are protected by the SecurityManager. Security-sensitive
code in the JDK and in applications protects access to resources via code like the following:

SecurityManager sm = System.getSecurityManager();
if (sm != null) {
 sm.checkPermission(perm);
}

Chapter 1
Java Security Overview

1-15

The Permission object perm corresponds to the requested access. For example, if an
attempt is made to read the file /tmp/abc, the permission may be constructed as follows:

Permission perm = new java.io.FilePermission("/tmp/abc", "read");

The default implementation of SecurityManager delegates its decision to the
java.security.AccessController implementation. The AccessController traverses the call
stack, passing to the installed security Policy each code element in the stack, along with the
requested permission (for example, the FilePermission in the previous example). The Policy
determines whether the requested access is granted, based on the permissions configured by
the administrator. If access is not granted, the AccessController throws a
java.lang.SecurityException.
Figure 1-4 illustrates access control enforcement. In this particular example, there are initially
two elements on the call stack, ClassA and ClassB. ClassA invokes a method in ClassB, which
then attempts to access the file /tmp/abc by creating an instance of
java.io.FileInputStream. The FileInputStream constructor creates a FilePermission,
perm, as shown previously, and then passes perm to the SecurityManager class's
checkPermission method. In this particular case, only the permissions for ClassA and ClassB
need to be checked, because all classes in the java.base module, including FileInputStream,
SecurityManager, and AccessController, automatically receives all permissions.

In this example, ClassA and ClassB have different code characteristics – they come from
different locations and have different signers. Each may have been granted a different set of
permissions. The AccessController only grants access to the requested file if the Policy
indicates that both classes have been granted the required FilePermission.

Chapter 1
Java Security Overview

1-16

Figure 1-4 Controlling Access to Resources

ClassA

ClassB

FileInputStream

SecurityManager

AccessController

Policy

Who Signers

Authorization
Data

Who SignersLocation

Location

Permission perm = new java.io.FilePermission("/tmp/abc", "read");

/tmp/abc

SecurityManager sm = System.getSecurityManager();

if (sm != null) {

 sm.checkPermission(perm);

}

Access granted
or denied

XML Signature
The Java XML Digital Signature API is a standard Java API for generating and validating XML
Signatures.

Chapter 1
Java Security Overview

1-17

XML Signatures can be applied to data of any type, XML or binary (see XML Signature Syntax
and Processing). The resulting signature is represented in XML. An XML Signature can be
used to secure your data and provide data integrity, message authentication, and signer
authentication.

The API is designed to support all of the required or recommended features of the W3C
Recommendation for XML-Signature Syntax and Processing. The API is extensible and
pluggable and is based on the Java Cryptography Service Provider Architecture.

The Java XML Digital Signature API, which is in the java.xml.crypto module, consists of
six packages:

• javax.xml.crypto
• javax.xml.crypto.dsig
• javax.xml.crypto.dsig.keyinfo
• javax.xml.crypto.dsig.spec
• javax.xml.crypto.dom
• javax.xml.crypto.dsig.dom

Java API for XML Processing (JAXP)
Java API for XML Processing (JAXP) is for processing XML data using Java applications. It
includes support for Simple API for XML (SAX), Document Object Models (DOM) and
Streaming API for XML (StAX) parsers, XML Schema Validation, and Extensible Stylesheet
Language Transformations (XSLT). In addition, JAXP provides secure processing features that
can help safeguard your applications and system from XML-related attacks. See the Java API
for XML Processing (JAXP) Security Guide.

Note:

Secure Coding Guidelines for Java SE contains additional recommendations that can
help defend against XML-related attacks.

Security Tools Summary
The following tables describe Java security and Kerberos-related tools.

Table 1-2 Java Security Tools

Tool Usage

jar Creates Java Archive (JAR) files

jarsigner Signs and verifies signatures on JAR files

keytool Creates and manages key stores

There are also three Kerberos-related tools that are shipped with the JDK for Windows.
Equivalent functionality is provided in tools of the same name that are automatically part of
Linux and macOS.

Chapter 1
Java Security Overview

1-18

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/module-summary.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Table 1-3 Kerberos-related Tools

Tool Usage

kinit Obtains and caches Kerberos ticket-granting tickets

klist Lists entries in the local Kerberos credentials cache
and key table

ktab Manages the names and service keys stored in the
local Kerberos key table

Built-In Providers
The Java SE implementation from Oracle includes a number of built-in provider packages. See
JDK Providers Documentation.

The Security Properties File
A security properties file is a text file that contains names of security properties and their
values. You can customize certain aspects of Java security by setting these properties.

When you launch a Java application from a JDK located in $JAVA_HOME, by default, the JVM
will set the set the security properties to the values specified in $JAVA_HOME/conf/security/
java.security, which is known as the master security properties file. It's possible to specify
another security properties file; see Specifying an Alternative Security Properties File.

A security property set in a security properties file is statically set. You can dynamically set
security properties by setting their values in your application's code. See Statically Setting a
Security Property in a Security Properties File and Dynamically Setting a Security Property in
Application Code.

See Troubleshooting Security Properties for information about enabling logging for security
properties and viewing them.

By default, the master security properties file sets security properties that customize certain
aspects of Java, which include the following:

• Registering a security provider: A security provider is a package or set of packages that
supply a concrete implementation of a subset of the cryptography aspects of the Java
Security API. The master security properties file sets several security properties in the form
security.provider.n, where n is the provider's preference order. The preference order is
the order in which providers are searched for requested algorithms (when no specific
provider is requested).

See Step 8.1: Configure the Provider for more information.

• Algorithm restrictions: This covers restricted and legacy algorithms for certificate path
validation, TLS, signed JAR files, and XML signature validations. For example,
jdk.certpath.disabledAlgorithms and jdk.tls.disabledAlgorithm list which
algorithms to disable during certification path validation and TLS/DTLS protocol
negotiation.

• Java Secure Socket Extension (JSSE): JSSE enables secure Internet communications. It
provides a framework and an implementation for a Java version of the TLS and DTLS
protocols and includes functionality for data encryption, server authentication, message
integrity, and optional client authentication. Related security properties include:

Chapter 1
The Security Properties File

1-19

– jdk.tls.keyLimits, which limits the amount of data algorithms may encrypt with a set
of keys

– ssl.KeyManagerFactory and ssl.TrustManagerFactory, which specify the default key
and trust manager factory algorithms for the javax.net.ssl package

See Customizing JSSE for more information.

• Other aspects of Java security: This includes default keystore type, configuration of
SecureRandom implementations, and Kerberos.

Specifying an Alternative Security Properties File
You can specify an alternate java.security properties file from the command line with the
system property java.security.properties=<URL>. This properties file is appended to the
master security properties file. If you specify a properties file with
java.security.properties==<URL> (using two equals signs), then that properties file will
completely override the master security properties file.

Statically Setting a Security Property in a Security Properties File
To statically set a security property value in a security properties file, add or modify an existing
line in the following form:

propertyName=propertyValue

For example, suppose that you want to specify a different key manager factory algorithm name
than the default SunX509. You do this by specifying the algorithm name as the value of a
security property named ssl.KeyManagerFactory.algorithm. For example, to set the value to
MyX509, add the following line:

ssl.KeyManagerFactory.algorithm=MyX509

To comment out a line in a security properties file, which means the JVM ignores it when it sets
security properties from a security properties file, insert the number sign (#) at the beginning of
the line.

By default, the master security properties file contains many comments that describe in detail
the security properties specified in it. Sometimes, these security properties themselves are
commented out. These security properties that are commented out might have a value
specified or no value at all.

Note:

A security property that has been set to no value is set to the empty string. A security
property that has been commented out is set to a null value. In this case, the security
property might be assigned a default value. The comments in the master security
properties file should specify whether a security property has a default value.

Chapter 1
The Security Properties File

1-20

Dynamically Setting a Security Property in Application Code
To set a security property dynamically in application code, call the
java.security.Security.setProperty method:

Security.setProperty("propertyName," "propertyValue");

For example, a call to the setProperty() method corresponding to the previous example for
specifying the key manager factory algorithm name would be:

Security.setProperty("ssl.KeyManagerFactory.algorithm", "MyX509");

Note:

Some security properties cannot be set dynamically if they have already been read
from a security properties file and cached, which happens when the
java.security.Security class is initialized. No exception will be thrown if your
code attempts to do this.

Troubleshooting Security Properties

Enable logging for security properties by specifying the command-line option -
Djava.security.debug=properties. Messages prefixed by properties contain the final
values for all security properties and information on how include directives have been
processed. See The java.security.debug System Property.

The command-line option -XshowSettings:security prints an overview of the security settings
that are effective in the JDK. See The java -XshowSettings:security Option.

You can use the Java Flight Recorder (JFR) event jdk.InitialSecurityProperty to obtain
the initial values for security properties on a running JDK.

Java SE Platform Security Architecture
This document gives an overview of the motivation of the major security features implemented
for the JDK, describes the classes that are part of the Java security architecture, discusses the
impact of this architecture on existing code, and gives thoughts on writing security-sensitive
code.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Chapter 1
Java SE Platform Security Architecture

1-21

https://openjdk.java.net/jeps/411

Introduction
Since the inception of Java technology, there has been strong and growing interest around the
security of the Java platform as well as new security issues raised by the deployment of Java
technology.

From a technology provider's point of view, Java security includes two aspects:

• Provide the Java platform as a secure, ready-built platform on which to run Java-enabled
applications in a secure fashion.

• Provide security tools and services implemented in the Java programming language that
enable a wider range of security-sensitive applications, for example, in the enterprise
world.

This document discusses issues related to the first aspect, where the customers for such
technologies include vendors that bundle or embed Java technology in their products (such as
browsers and operating systems).

The Original Sandbox Model
The original security model provided by the Java platform is known as the sandbox model,
which existed in order to provide a very restricted environment in which to run untrusted code
obtained from the open network. The essence of the sandbox model is that local code is
trusted to have full access to vital system resources (such as the file system) while
downloaded remote code (an applet) is not trusted and can access only the limited resources
provided inside the sandbox. This sandbox model is illustrated in Figure 1-5.

Figure 1-5 Original Java Platform Security Model

JVM

sandbox

valuable resources
(files, etc.)

local code remote code

The sandbox model was deployed through the Java Development Kit (JDK), and was generally
adopted by applications built with JDK 1.0, including Java-enabled web browsers.

Overall security is enforced through a number of mechanisms. First of all, the language is
designed to be type-safe and easy to use. The hope is that the burden on the programmer is
such that the likelihood of making subtle mistakes is lessened compared with using other
programming languages such as C or C++. Language features such as automatic memory

Chapter 1
Java SE Platform Security Architecture

1-22

management, garbage collection, and range checking on strings and arrays are examples of
how the language helps the programmer to write safe code.

Second, compilers and a bytecode verifier ensure that only legitimate Java bytecodes are
executed. The bytecode verifier, together with the Java Virtual Machine, guarantees language
safety at run time.

Moreover, a classloader defines a local name space, which can be used to ensure that an
untrusted applet cannot interfere with the running of other programs.

Finally, access to crucial system resources is mediated by the Java Virtual Machine and is
checked in advance by a SecurityManager class that restricts the actions of a piece of
untrusted code to the bare minimum.

JDK 1.1 introduced the concept of a "signed applet", as illustrated in Figure 1-6. In that
release, a correctly digitally signed applet is treated as if it is trusted local code if the signature
key is recognized as trusted by the end system that receives the applet. Signed applets,
together with their signatures, are delivered in the JAR (Java Archive) format. In JDK 1.1,
unsigned applets still run in the sandbox.

Figure 1-6 JDK 1.1 Security Model

JVM

sandbox

valuable resources
(files, etc.)

local code remote code

trusted

Evolving the Sandbox Model
The new Java SE Platform Security Architecture, illustrated in Figure 1-7, is introduced
primarily for the following purposes.

Chapter 1
Java SE Platform Security Architecture

1-23

Figure 1-7 Java SE Security Architecture

JVM

input

sandbox

security policy class loader

local or remote
code (signed or not)

valuable resources
(files, etc.)

codes run
with different
permissions, no
built-in notion of
trusted code

• Fine-grained access control.

This capability existed in the JDK from the beginning, but to use it, the application writer
had to do substantial programming (e.g., by subclassing and customizing the
SecurityManager and ClassLoader classes). The HotJava browser 1.0 is such an
application, as it allows the browser user to choose from a small number of different
security levels.

However, such programming is extremely security-sensitive and requires sophisticated
skills and in-depth knowledge of computer security. The new architecture will make this
exercise simpler and safer.

• Easily configurable security policy.

Once again, this capability existed previously in the JDK but was not easy to use.
Moreover, writing security code is not straightforward, so it is desirable to allow application
builders and users to configure security policies without having to program.

• Easily extensible access control structure.

Up to JDK 1.1, in order to create a new access permission, you had to add a new check
method to the SecurityManager class. The new architecture allows typed permissions
(each representing an access to a system resource) and automatic handling of all
permissions (including yet-to-be-defined permissions) of the correct type. No new method
in the SecurityManager class needs to be created in most cases. (In fact, we have so
far not encountered a situation where a new method must be created.)

• Extension of security checks to all Java programs, including applications as well as
applets.

Chapter 1
Java SE Platform Security Architecture

1-24

There is no longer a built-in concept that all local code is trusted. Instead, local code (e.g.,
non-system code, application packages installed on the local file system) is subjected to
the same security control as applets, although it is possible, if desired, to declare that the
policy on local code (or remote code) be the most liberal, thus enabling such code to
effectively run as totally trusted. The same principle applies to signed applets and any Java
application.

Finally, an implicit goal is to make internal adjustment to the design of security classes
(including the SecurityManager and ClassLoader classes) to reduce the risks of
creating subtle security holes in future programming.

Protection Mechanisms – Overview of Basic Concepts
We now go over, in some detail, the new protection architecture and give a brief explanation of
its functionality. We start with an overview of the basic concepts behind the new architecture.
We then introduce the major new classes in a natural order, starting with permission
specifications, going on to the policy and related features, followed by access control and its
usage, and then covering secure class loading and resolution.

A fundamental concept and important building block of system security is the protection
domain [Saltzer and Schroeder 75]. A domain can be scoped by the set of objects that are
currently directly accessible by a principal, where a principal is an entity in the computer
system to which permissions (and as a result, accountability) are granted. The sandbox utilized
in JDK 1.0 is one example of a protection domain with a fixed boundary.

The protection domain concept serves as a convenient mechanism for grouping and isolation
between units of protection. For example, it is possible (but not yet provided as a built-in
feature) to separate protection domains from interacting with each other so that any permitted
interaction must be either through trusted system code or explicitly allowed by the domains
concerned. Note that existing object accessibility rules remain valid under the new security
architecture.

Protection domains generally fall into two distinct categories: system domain and application
domain. It is important that all protected external resources, such as the file system, the
networking facility, and the screen and keyboard, be accessible only via system domains.
Figure 1-8 illustrates the domain composition of a Java application environment.

Figure 1-8 Domain Composition of a Java Application Environment

system domain

net I/O file I/O printerAWT

App-1 App-2 App-n

A domain conceptually encloses a set of classes whose instances are granted the same set of
permissions. Protection domains are determined by the policy currently in effect. The Java
application environment maintains a mapping from code (classes and instances) to their
protection domains and then to their permissions, as illustrated in Figure 1-9.

Chapter 1
Java SE Platform Security Architecture

1-25

Figure 1-9 Mapping from Code to Domains and to Permissions

Class Domain Permissions

classes in
Java runtime

e.class

d.class

c.class

b.class

a.class

security policy

domain A

domain B

permissions

permissions

A thread of execution (which is often, but not necessarily tied to, a single Java thread, which in
turn is not necessarily tied to the thread concept of the underlying operation system) may occur
completely within a single protection domain or may involve an application domain and also the
system domain. For example, an application that prints a message out will have to interact with
the system domain that is the only access point to an output stream. In this case, it is crucial
that at any time the application domain does not gain additional permissions by calling the
system domain. Otherwise, there can be serious security implications.

In the reverse situation where a system domain invokes a method from an application domain,
such as when the AWT system domain calls an applet's paint method to display the applet, it is
again crucial that at any time the effective access rights are the same as current rights enabled
in the application domain.

In other words, a less "powerful" domain cannot gain additional permissions as a result of
calling or being called by a more powerful domain.

This discussion of one thread involving two protection domains naturally generalizes to a
thread that traverses multiple protection domains. A simple and prudent rule of thumb for
calculating permissions is the following:

• The permission set of an execution thread is considered to be the intersection of the
permissions of all protection domains traversed by the execution thread.

• When a piece of code calls the doPrivileged method, the permission set of the
execution thread is considered to include a permission if it is allowed by the said code's
protection domain and by all protection domains that are called or entered directly or
indirectly subsequently.

As you can see, the doPrivileged method enables a piece of trusted code to temporarily
enable access to more resources than are available directly to the application that called it.
This is necessary in some situations. For example, an application may not be allowed direct
access to files that contain fonts, but the system utility to display a document must obtain those
fonts, on behalf of the user. We provide the doPrivileged method for the system domain to
deal with this situation, and the method is in fact available to all domains.

During execution, when access to a critical system resource (such as file I/O and network I/O)
is requested, the resource-handling code directly or indirectly invokes a special
AccessController class method that evaluates the request and decides if the request
should be granted or denied.

Such an evaluation follows and generalizes the "rule of thumb" given previously. The actual
way in which the evaluation is conducted can vary between implementations. The basic

Chapter 1
Java SE Platform Security Architecture

1-26

principle is to examine the call history and the permissions granted to the relevant protection
domains, and to return silently if the request is granted or throw a security exception if the
request is denied.

Finally, each domain (system or application) may also implement additional protection of its
internal resources within its own domain boundary. For example, a banking application may
need to support and protect internal concepts such as checking accounts, deposits and
withdrawals. Because the semantics of such protection is unlikely to be predictable or
enforceable by the JDK, the protection system at this level is best left to the system or
application developers. Nevertheless, whenever appropriate, we provide helpful primitives to
simplify developers' tasks. One such primitive is the SignedObject class, whose detail we
will describe later.

Permissions and Security Policy

The Permission Classes
The permission classes represent access to system resources. The
java.security.Permission class is an abstract class and is subclassed, as appropriate,
to represent specific accesses.

As an example of a permission, the following code can be used to produce a permission to
read the file named abc in the /tmp directory:

 perm = new java.io.FilePermission("/tmp/abc", "read");

New permissions are subclassed either from the Permission class or one of its subclasses,
such as java.security.BasicPermission. Subclassed permissions (other than
BasicPermission) generally belong to their own packages. Thus, FilePermission is
found in the java.io package.

A crucial abstract method that needs to be implemented for each new class of permission is
the implies method. Basically, "a implies b" means that if one is granted permission "a", one is
naturally granted permission "b". This is important when making access control decisions.

Associated with the abstract class java.security.Permission are the abstract class
named java.security.PermissionCollection and the final class
java.security.Permissions.

Class java.security.PermissionCollection represents a collection (i.e., a set that
allows duplicates) of Permission objects for a single category (such as file permissions), for
ease of grouping. In cases where permissions can be added to the PermissionCollection
object in any order, such as for file permissions, it is crucial that the PermissionCollection
object ensure that the correct semantics are followed when the implies method is called.

Class java.security.Permissions represents a collection of collections of Permission
objects, or in other words, a super collection of heterogeneous permissions.

Applications are free to add new categories of permissions that the system supports. How to
add such application-specific permissions is discussed later in this document.

Now we describe the syntax and semantics of all built-in permissions.

Chapter 1
Java SE Platform Security Architecture

1-27

java.security.Permission
This abstract class is the ancestor of all permissions. It defines the essential functionalities
required for all permissions.

Each permission instance is typically generated by passing one or more string parameters to
the constructor. In a common case with two parameters, the first parameter is usually "the
name of the target" (such as the name of a file for which the permission is aimed), and the
second parameter is the action (such as "read" action on a file). Generally, a set of actions can
be specified together as a comma-separated composite string.

java.security.PermissionCollection
This class holds a homogeneous collection of permissions. In other words, each instance of
the class holds only permissions of the same type.

java.security.Permissions
This class is designed to hold a heterogeneous collection of permissions. Basically, it is a
collection of java.security.PermissionCollection objects.

java.security.UnresolvedPermission
Recall that the internal state of a security policy is normally expressed by the permission
objects that are associated with each code source. Given the dynamic nature of Java
technology, however, it is possible that when the policy is initialized the actual code that
implements a particular permission class has not yet been loaded and defined in the Java
application environment. For example, a referenced permission class may be in a JAR file that
will later be loaded.

The UnresolvedPermission class is used to hold such "unresolved" permissions. Similarly,
the class java.security.UnresolvedPermissionCollection stores a collection of
UnresolvedPermission permissions.

During access control checking on a permission of a type that was previously unresolved, but
whose class has since been loaded, the unresolved permission is "resolved" and the
appropriate access control decision is made. That is, a new object of the appropriate class type
is instantiated, if possible, based on the information in the UnresolvedPermission. This
new object replaces the UnresolvedPermission, which is removed. If the permission is still
unresolvable at this time, the permission is considered invalid, as if it is never granted in a
security policy.

java.io.FilePermission
The targets for this class can be specified in the following ways, where directory and file names
are strings that cannot contain white spaces.

file
directory (same as directory/)
directory/file
directory/* (all files in this directory)
* (all files in the current directory)
directory/- (all files in the file system under this directory)
- (all files in the file system under the current directory)
"<<ALL FILES>>" (all files in the file system)

Chapter 1
Java SE Platform Security Architecture

1-28

Note that <<ALL FILES>> is a special string denoting all files in the system. On Linux or
macOS, this includes all files under the root directory. On Windows, this includes all files on all
drives.

The actions are: read, write, delete, and execute. Therefore, the following are valid code
samples for creating file permissions:

import java.io.FilePermission;

FilePermission p = new FilePermission("myfile", "read,write");
FilePermission p = new FilePermission("/home/gong/", "read");
FilePermission p = new FilePermission("/tmp/mytmp", "read,delete");
FilePermission p = new FilePermission("/bin/*", "execute");
FilePermission p = new FilePermission("*", "read");
FilePermission p = new FilePermission("/-", "read,execute");
FilePermission p = new FilePermission("-", "read,execute");
FilePermission p = new FilePermission("<<ALL FILES>>", "read");

The implies method in this class correctly interprets the file system. For example,
FilePermission("/-", "read,execute") implies FilePermission("/home/gong/
public_html/index.html", "read"), and FilePermission("bin/*", "execute") implies
FilePermission("bin/emacs19.31", "execute").

Chapter 1
Java SE Platform Security Architecture

1-29

Note:

Most of these strings are given in platform-dependent format. For example, to
represent read access to the file named foo in the temp directory on the C drive of a
Windows system, you would use

FilePermission p = new FilePermission("c:\\temp\\foo", "read");

The double backslashes are necessary to represent a single backslash because the
strings are processed by a tokenizer (java.io.StreamTokenizer), which allows \
to be used as an escape string (e.g., \n to indicate a new line) and which thus
requires two backslashes to indicate a single backslash. After the tokenizer has
processed the FilePermission target string, converting double backslashes to
single backslashes, the end result is the actual path:

"c:\temp\foo"

It is necessary that the strings be given in platform-dependent format until there is a
universal file description language. Note also that the use of meta symbols such as *
and - prevents the use of specific file names. We think this is a small limitation that
can be tolerated for the moment. Finally, note that -/ and <<ALL FILES>> are the
same target on Linux and macOS in that they both refer to the entire file system.
(They can refer to multiple file systems if they are all available). The two targets are
potentially different on other operating systems, such as Windows and macOS.

Also note that a target name that specifies just a directory, with a "read" action, as in

FilePermission p = new FilePermission("/home/gong/", "read");

means you are only giving permission to list the files in that directory, not read any of
them. To allow read access to files, you must specify either an explicit file name, or
an * or -, as in

FilePermission p = new FilePermission("/home/gong/myfile", "read");
FilePermission p = new FilePermission("/home/gong/*", "read");
FilePermission p = new FilePermission("/home/gong/-", "read");

And finally, note that code always automatically has permission to read files from its
same (URL) location, and subdirectories of that location; it does not need explicit
permission to do so.

java.net.SocketPermission
This class represents access to a network via sockets. The target for this class can be given as
hostname:port_range, where hostname can be given in the following ways:

hostname (a single host)
IP address (a single host)
localhost (the local machine)
"" (equivalent to "localhost")

Chapter 1
Java SE Platform Security Architecture

1-30

hostname.domain (a single host within the domain)
hostname.subdomain.domain
*.domain (all hosts in the domain)
*.subdomain.domain
* (all hosts)

That is, the host is expressed as a DNS name, as a numerical IP address, as "localhost" (for
the local machine) or as "" (which is equivalent to specifying "localhost").

The wildcard * may be included once in a DNS name host specification. If it is included, it must
be in the leftmost position, as in *.sun.com.

The port_range can be given as follows:

N (a single port)
N- (all ports numbered N and above)
-N (all ports numbered N and below)
N1-N2 (all ports between N1 and N2, inclusive)

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535 (216-1).

The actions on sockets are accept, connect, listen, and resolve (which is basically DNS
lookup). Note that implicitly, the action "resolve" is implied by "accept", "connect", and "listen" –
i.e., those who can listen or accept incoming connections from or initiate out-going connections
to a host should be able to look up the name of the remote host.

The following are some examples of socket permissions.

import java.net.SocketPermission;

SocketPermission p = new SocketPermission("java.example.com","accept");
p = new SocketPermission("192.0.2.99","accept");
p = new SocketPermission("*.com","connect");
p = new SocketPermission("*.example.com:80","accept");
p = new SocketPermission("*.example.com:-1023","accept");
p = new SocketPermission("*.example.com:1024-","connect");
p = new SocketPermission("java.example.com:8000-9000",
 "connect,accept");
p = new SocketPermission("localhost:1024-",
 "accept,connect,listen");

Note:

SocketPermission("java.example.com:80,8080","accept") and
SocketPermission("java.example.com,javasun.example.com","accept") are not
valid socket permissions.

Moreover, because listen is an action that applies only to ports on the local host,
whereas accept is an action that applies to ports on both the local and remote host,
both actions are necessary.

Chapter 1
Java SE Platform Security Architecture

1-31

java.security.BasicPermission
The BasicPermission class extends the Permission class. It can be used as the base
class for permissions that want to follow the same naming convention as BasicPermission.

The name for a BasicPermission is the name of the given permission (for example,
"exitVM", "setFactory", "queuePrintJob", etc). The naming convention follows the hierarchical
property naming convention. An asterisk may appear at the end of the name, following a ".", or
by itself, to signify a wildcard match. For example: "java.*" or "*" is valid, "*java" or "a*b" is not
valid.

The action string (inherited from Permission) is unused. Thus, BasicPermission is
commonly used as the base class for "named" permissions (ones that contain a name but no
actions list; you either have the named permission or you don't.) Subclasses may implement
actions on top of BasicPermission, if desired.

Some of the BasicPermission subclasses are java.lang.RuntimePermission,
java.security.SecurityPermission, java.util.PropertyPermission, and
java.net.NetPermission.

java.util.PropertyPermission
The targets for this class are basically the names of Java properties as set in various property
files. Examples are the java.home and os.name properties. Targets can be specified as "*" (any
property), "a.*" (any property whose name has a prefix "a."), "a.b.*", and so on. Note that the
wildcard can occur only once and can only be at the rightmost position.

This is one of the BasicPermission subclasses that implements actions on top of
BasicPermission. The actions are read and write. Their meaning is defined as follows:
"read" permission allows the getProperty method in java.lang.System to be called to get
the property value, and "write" permission allows the setProperty method to be called to set
the property value.

java.lang.RuntimePermission
The target for a RuntimePermission can be represented by any string, and there is no
action associated with the targets. For example, RuntimePermission("exitVM") denotes the
permission to exit the Java Virtual Machine.

The target names are:

createClassLoader
getClassLoader
setContextClassLoader
setSecurityManager
createSecurityManager
exitVM
setFactory
setIO
modifyThread
stopThread
modifyThreadGroup
getProtectionDomain
readFileDescriptor
writeFileDescriptor

Chapter 1
Java SE Platform Security Architecture

1-32

loadLibrary.{library name}
accessClassInPackage.{package name}
defineClassInPackage.{package name}
accessDeclaredMembers.{class name}
queuePrintJob

java.awt.AWTPermission
This is in the same spirit as the RuntimePermission; it's a permission without actions. The
targets for this class are:

accessClipboard
accessEventQueue
listenToAllAWTEvents
showWindowWithoutWarningBanner

java.net.NetPermission
This class contains the following targets and no actions:

requestPasswordAuthentication
setDefaultAuthenticator
specifyStreamHandler

java.lang.reflect.ReflectPermission
This is the Permission class for reflective operations. A ReflectPermission is a named
permission (like RuntimePermission) and has no actions. The only name currently defined
is suppressAccessChecks, which allows suppressing the standard Java programming language
access checks – for public, default (package) access, protected, and private members –
performed by reflected objects at their point of use.

java.io.SerializablePermission
This class contains the following targets and no actions:

enableSubclassImplementation
enableSubstitution

java.security.SecurityPermission
SecurityPermissions control access to security-related objects, such as Security,
Policy, Provider, Signer, and Identity objects. This class contains the following targets
and no actions:

getPolicy
setPolicy
getProperty.{key}
setProperty.{key}
insertProvider.{provider name}
removeProvider.{provider name}
setSystemScope
setIdentityPublicKey

Chapter 1
Java SE Platform Security Architecture

1-33

setIdentityInfo
printIdentity
addIdentityCertificate
removeIdentityCertificate
clearProviderProperties.{provider name}
putProviderProperty.{provider name}
removeProviderProperty.{provider name}
getSignerPrivateKey
setSignerKeyPair

java.security.AllPermission
This permission implies all permissions. It is introduced to simplify the work of system
administrators who might need to perform multiple tasks that require all (or numerous)
permissions. It would be inconvenient to require the security policy to iterate through all
permissions. Note that AllPermission also implies new permissions that are defined in the
future.

Clearly, much caution is necessary when considering granting this permission.

javax.security.auth.AuthPermission
AuthPermission handles authentication permissions and authentication-related object such
as Subject, SubjectDomainCombiner, LoginContext, and Configuration. This class
contains the following targets and no actions:

doAs
doAsPrivileged
getSubject
getSubjectFromDomainCombiner
setReadOnly
modifyPrincipals
modifyPublicCredentials
modifyPrivateCredentials
refreshCredential
destroyCredential
createLoginContext.{name}
getLoginConfiguration
setLoginConfiguration
refreshLoginConfiguration

Discussion of Permission Implications
Recall that permissions are often compared against each other, and to facilitate such
comparisons, we require that each permission class defines an implies method that
represents how the particular permission class relates to other permission classes. For
example, java.io.FilePermission("/tmp/*", "read") implies
java.io.FilePermission("/tmp/a.txt", "read") but does not imply any
java.net.NetPermission.

There is another layer of implication that may not be immediately obvious to some readers.
Suppose that one applet has been granted the permission to write to the entire file system.
This presumably allows the applet to replace the system binary, including the JVM runtime
environment. This effectively means that the applet has been granted all permissions.

Chapter 1
Java SE Platform Security Architecture

1-34

Another example is that if an applet is granted the runtime permission to create class loaders,
it is effectively granted many more permissions, as a class loader can perform sensitive
operations.

Other permissions that are "dangerous" to give out include those that allow the setting of
system properties, runtime permissions for defining packages and for loading native code
libraries (because the Java security architecture is not designed to and does not prevent
malicious behavior at the level of native code), and of course the AllPermission.

For more information about permissions, including tables enumerating the risks of assigning
specific permissions as well as a table of all the JDK built-in methods that require permissions,
see Permissions in the JDK.

How To Create New Types of Permissions
It is essential that no one except Oracle should extend the permissions that are built into the
JDK, either by adding new functionality or by introducing additional target keywords into a
class such as java.lang.RuntimePermission. This maintains consistency.

To create a new permission, the following steps are recommended, as shown by an example.
Suppose an application developer from company ABC wants to create a customized
permission to "watch TV".

First, create a new class com.abc.Permission that extends the abstract class
java.security.Permission (or one of its subclasses), and another new class
com.abc.TVPermission that extends the com.abc.Permission. Make sure that the implies
method, among others, is correctly implemented. (Of course, com.abc.TVPermission can
directly extend java.security.Permission; the intermediate com.abc.Permission is not
required.)

public class com.abc.Permission extends java.security.Permission

public class com.abc.TVPermission extends com.abc.Permission

Figure 1-10 shows the subclass relationship.

Figure 1-10 Subclass Relationship of com.abc.TV.Permission

Permission
(abstract class)

File
Permission

Net
Permission

com.abc.
Permission

com.abc.TV.
Permission

Second, include these new classes with the application package.

Each user that wants to allow this new type of permission for specific code does so by adding
an entry in a policy file. (Details of the policy file syntax are given in a later section.) An
example of a policy file entry granting code from http://example.com/ permission to watch
channel 5 would be:

grant codeBase "http://example.com/" {
 permission com.abc.TVPermission "channel-5", "watch";
}

Chapter 1
Java SE Platform Security Architecture

1-35

In the application's resource management code, when checking to see if a permission should
be granted, call AccessController's checkPermission method using a
com.abc.TVPermission object as the parameter.

 com.abc.TVPermission tvperm = new
 com.abc.TVPermission("channel-5", "watch");
 AccessController.checkPermission(tvperm);

Note that, when adding a new permission, one should create a new (permission) class and not
add a new method to the security manager. (In the past, in order to enable checking of a new
type of access, you had to add a new method to the SecurityManager class.)

If more elaborate TVPermissions such as "channel-1:13" or "channel-*" are allowed, then it
may be necessary to implement a TVPermissionCollection object that knows how to deal with
the semantics of these pseudo names.

New code should always invoke a permission check by calling the checkPermission method of
the AccessController class in order to exercise the built-in access control algorithm. There
is no essential need to examine whether there is a ClassLoader or a SecurityManager.
On the other hand, if the algorithm should be left to the installed security manager class, then
the method SecurityManager.checkPermission should be invoked instead.

java.security.CodeSource
This class extends the concept of a codebase within HTML to encapsulate not only the code
location (URL) but also the certificate(s) containing public keys that should be used to verify
signed code originating from that location. Note that this is not the equivalent of the CodeBase
tag in HTML files. Each certificate is represented as a
java.security.cert.Certificate, and each URL as a java.net.URL.

java.security.Policy
The system security policy for a Java application environment, specifying which permissions
are available for code from various sources, is represented by a Policy object. More
specifically, it is represented by a Policy subclass providing an implementation of the abstract
methods in the Policy class.

In order for an applet (or an application running under a SecurityManager) to be allowed to
perform secured actions, such as reading or writing a file, the applet (or application) must be
granted permission for that particular action. The only exception is that code always
automatically has permission to read files from its same CodeSource, and subdirectories of
that CodeSource; it does not need explicit permission to do so.

There could be multiple instances of the Policy object, although only one is "in effect" at any
time. The currently-installed Policy object can be obtained by calling the getPolicy method,
and it can be changed by a call to the setPolicy method (by code with permission to reset the
Policy).

The source location for the policy information utilized by the Policy object is up to the Policy
implementation. The policy configuration may be stored, for example, as a flat ASCII file, as a
serialized binary file of the Policy class, or as a database. There is a Policy reference
implementation that obtains its information from static policy configuration files.

Chapter 1
Java SE Platform Security Architecture

1-36

Policy File Format
In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration files indicate what permissions are allowed for code from
specified code sources. Each configuration file must be encoded in UTF-8.

A policy configuration file essentially contains a list of entries. It may contain a keystore entry,
and contains zero or more grant entries.

A keystore is a database of private keys and their associated digital certificates such as X.509
certificate chains authenticating the corresponding public keys. The keytool utility is used to
create and administer keystores. The keystore specified in a policy configuration file is used to
look up the public keys of the signers specified in the grant entries of the file. A keystore entry
must appear in a policy configuration file if any grant entries specify signer aliases, or if any
grant entries specify a principal alias.

At this time, there can be only one keystore entry in the policy file (others after the first one are
ignored), and it can appear anywhere outside the file's grant entries . It has the following
syntax:

keystore "some_keystore_url", "keystore_type";

Here, some_keystore_url specifies the URL location of the keystore, and keystore_type
specifies the keystore type. The latter is optional. If not specified, the type is assumed to be
that specified by the keystore.type property in the security properties file.

The URL is relative to the policy file location. Thus if the policy file is specified in the security
properties file as:

policy.url.1=http://foo.bar.example.com/blah/some.policy

and that policy file has an entry:

keystore ".keystore";

then the keystore will be loaded from:

http://foo.bar.example.com/blah/.keystore

The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and the
algorithms used to protect private keys in the keystore and the integrity of the keystore itself.
The Oracle JDK's default keystore type is PKCS12.

Each grant entry in a policy file essentially consists of a CodeSource and its permissions.
Actually, a CodeSource consists of a URL and a set of certificates, while a policy file entry
includes a URL and a list of signer names. The system creates the corresponding
CodeSource after consulting the keystore to determine the certificate(s) of the specified
signers.

Each grant entry in the policy file is of the following format, where the leading grant is a
reserved word that signifies the beginning of a new entry and optional items appear in
brackets. Within each entry, a leading permission is another reserved word that marks the

Chapter 1
Java SE Platform Security Architecture

1-37

beginning of a new permission in the entry. Each grant entry grants a set of permissions to a
specified code source and principals.

grant [SignedBy "signer_names"] [, CodeBase "URL"]
 [, Principal [principal_class_name] "principal_name"]
 [, Principal [principal_class_name] "principal_name"] ... {
 permission permission_class_name ["target_name"]
 [, "action"] [, SignedBy "signer_names"];
 permission ...
};

White spaces are allowed immediately before or after any comma. The name of the permission
class must be a fully qualified class name, such as java.io.FilePermission, and cannot
be abbreviated (for example, to FilePermission).

Note that the action field is optional in that it can be omitted if the permission class does not
require it. If it is present, then it must come immediately after the target field.

The exact meaning of a CodeBase URL value depends on the characters at the end. A
CodeBase with a trailing "/" matches all class files (not JAR files) in the specified directory. A
CodeBase with a trailing "/*" matches all files (both class and JAR files) contained in that
directory. A CodeBase with a trailing "/-" matches all files (both class and JAR files) in the
directory and recursively all files in subdirectories contained in that directory.

The CodeBase field (URL) is optional in that, if it is omitted, it signifies "any code base".

The first signer name field is a string alias that is mapped, via a separate mechanism, to a set
of public keys (within certificates in the keystore) that are associated with the signers. These
keys are used to verify that certain signed classes are really signed by these signers.

This signer field can be a comma-separated string containing names of multiple signers, an
example of which is Adam,Eve,Charles, which means signed by Adam and Eve and Charles
(i.e., the relationship is AND, not OR).

This field is optional in that, if it is omitted, it signifies "any signer", or in other words, "It doesn't
matter whether the code is signed or not".

The second signer field, inside a permission entry, represents the alias to the keystore entry
containing the public key corresponding to the private key used to sign the bytecodes that
implemented the said permission class. This permission entry is effective (i.e., access control
permission will be granted based on this entry) only if the bytecode implementation is verified
to be correctly signed by the said alias.

A principal value specifies a class_name/principal_name pair which must be present within the
executing threads principal set. The principal set is associated with the executing code by way
of a Subject. The principal field is optional in that, if it is omitted, it signifies "any principals".

Chapter 1
Java SE Platform Security Architecture

1-38

Note:

Regarding keystore alias replacement: If the principal class_name/principal_name
pair is specified as a single quoted string, it is treated as a keystore alias. The
keystore is consulted and queried (via the alias) for an X509 Certificate. If one is
found, the principal_class is automatically treated as
javax.security.auth.x500.X500Principal, and the principal_name is
automatically treated as the subject distinguished name from the certificate. If an
X509 Certificate mapping is not found, the entire grant entry is ignored.

The order between the CodeBase, SignedBy, and Principal fields does not matter.

The following is an informal BNF grammar for the policy file format, where non-capitalized
terms are terminals:

PolicyFile -> PolicyEntry | PolicyEntry; PolicyFile
PolicyEntry -> grant {PermissionEntry}; |
 grant SignerEntry {PermissionEntry} |
 grant CodebaseEntry {PermissionEntry} |
 grant PrincipalEntry {PermissionEntry} |
 grant SignerEntry, CodebaseEntry {PermissionEntry} |
 grant CodebaseEntry, SignerEntry {PermissionEntry} |
 grant SignerEntry, PrincipalEntry {PermissionEntry} |
 grant PrincipalEntry, SignerEntry {PermissionEntry} |
 grant CodebaseEntry, PrincipalEntry {PermissionEntry} |
 grant PrincipalEntry, CodebaseEntry {PermissionEntry} |
 grant SignerEntry, CodebaseEntry, PrincipalEntry {PermissionEntry}
|
 grant CodebaseEntry, SignerEntry, PrincipalEntry {PermissionEntry}
|
 grant SignerEntry, PrincipalEntry, CodebaseEntry {PermissionEntry}
|
 grant CodebaseEntry, PrincipalEntry, SignerEntry {PermissionEntry}
|
 grant PrincipalEntry, CodebaseEntry, SignerEntry {PermissionEntry}
|
 grant PrincipalEntry, SignerEntry, CodebaseEntry {PermissionEntry}
|
 keystore "url"
SignerEntry -> signedby (a comma-separated list of strings)
CodebaseEntry -> codebase (a string representation of a URL)
PrincipalEntry -> OnePrincipal | OnePrincipal, PrincipalEntry
OnePrincipal -> principal [principal_class_name] "principal_name" (a
principal)
PermissionEntry -> OnePermission | OnePermission PermissionEntry
OnePermission -> permission permission_class_name
 ["target_name"] [, "action_list"]
 [, SignerEntry];

Chapter 1
Java SE Platform Security Architecture

1-39

Now we give some examples. The following policy grants permission a.b.Foo to code signed
by Roland:

grant signedBy "Roland" {
 permission a.b.Foo;
};

The following grants a FilePermission to all code (regardless of the signer and/or
CodeBase):

grant {
 permission java.io.FilePermission ".tmp", "read";
};

The following grants two permissions to code that is signed by both Li and Roland:

grant signedBy "Roland,Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission java.util.PropertyPermission "user.*";
};

The following grants two permissions to code that is signed by Li and that comes from http://
example.com:

grant codeBase "http://example.com/*", signedBy "Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission java.io.SocketPermission "*", "connect";
};

The following grants two permissions to code that is signed by both Li and Roland, and only if
the bytecodes implementing com.abc.TVPermission are genuinely signed by Li.

grant signedBy "Roland,Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission com.abc.TVPermission "channel-5", "watch",
 signedBy "Li";
};

The reason for including the second signer field is to prevent spoofing when a permission class
does not reside with the Java runtime installation. For example, a copy of the
com.abc.TVPermission class can be downloaded as part of a remote JAR archive, and the
user policy might include an entry that refers to it. Because the archive is not long-lived, the
second time the com.abc.TVPermission class is downloaded, possibly from a different web
site, it is crucial that the second copy is authentic, as the presence of the permission entry in
the user policy might reflect the user's confidence or belief in the first copy of the class
bytecode.

The reason we chose to use digital signatures to ensure authenticity, rather than storing (a
hash value of) the first copy of the bytecodes and using it to compare with the second copy, is
because the author of the permission class can legitimately update the class file to reflect a
new design or implementation.

Chapter 1
Java SE Platform Security Architecture

1-40

Note:

The strings for a file path must be specified in a platform-dependent format; this is
necessary until there is a universal file description language. The previous examples
have shown strings appropriate on Linux or macOS. On Windows, when you directly
specify a file path in a string, you need to include two backslashes for each actual
single backslash in the path, as in

grant signedBy "Roland" {
 permission java.io.FilePermission "C:\\users\\Cathy*", "read";
};

This is because the strings are processed by a tokenizer
(java.io.StreamTokenizer), which allows "\" to be used as an escape string
(e.g., "\n" to indicate a new line) and which thus requires two backslashes to indicate
a single backslash. After the tokenizer has processed the previous
FilePermission target string, converting double backslashes to single
backslashes, the end result is the actual path:

"C:\users\Cathy*"

Finally, here are some principal-based grant entries:

grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/home/Alice", "read, write";
};

This permits any code executing as the X500Principal, cn=Alice, permission to read and
write to /home/Alice.

The following example shows a grant statement with both codesource and principal
information.

grant codebase "http://www.games.example.com",
 signedBy "Duke",
 principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
};

This allows code downloaded from www.games.example.com, signed by Duke, and executed by
cn=Alice, permission to read and write into the /tmp/games directory.

he following example shows a grant statement with KeyStore alias replacement:

keystore "http://foo.bar.example.com/blah/.keystore";

grant principal "alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
};

Chapter 1
Java SE Platform Security Architecture

1-41

alice will be replaced by javax.security.auth.x500.X500Principal cn=Alice
assuming the X.509 certificate associated with the keystore alias, alice, has a subject
distinguished name of cn=Alice. This allows code executed by the X500Principal cn=Alice
permission to read and write into the /tmp/games directory.

Property Expansion in Policy Files
Property expansion is possible in policy files and in the security properties file. Property
expansion is similar to expanding variables in a shell. That is, when a string like $
{some.property} appears in a policy file, or in the security properties file, it will be expanded to
the value of the specified system property. For example,

permission java.io.FilePermission "${user.home}", "read";

will expand ${user.home} to use the value of the user.home system property. If that property's
value is /home/cathy, then the previous example is equivalent to

permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special notation of $
{/}, which is a shortcut for ${file.separator}. This allows permission designations such as

permission java.io.FilePermission "${user.home}${/}*", "read";

If user.home is /home/cathy, and you are on Linux, the previous example gets converted to:

permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand user.home is C:\users\cathy and you are on a Windows system, the
previous example gets converted to:

permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:/${java.home}/lib/ext/"

then any file.separator characters will be automatically converted to slashes (/), which is
desirable since codebases are URLs. Thus on a Windows system, even if java.home is set to
C:\j2sdk1.2, the previous example would get converted to

grant codeBase "file:/C:/j2sdk1.2/lib/ext/"

Thus you don't need to use ${/} in codebase strings (and you shouldn't).

Property expansion takes place anywhere a double quoted string is allowed in the policy file.
This includes the signedby, codebase, target names, and action fields.

Whether or not property expansion is allowed is controlled by the value of the
policy.expandProperties property in the Security Properties file. If the value of this Security
Property is true (the default), expansion is allowed.

Chapter 1
Java SE Platform Security Architecture

1-42

Please note: You can't use nested properties; they will not work. For example,

"${user.${foo}}"

doesn't work, even if the foo property is set to home. The reason is the property parser doesn't
recognize nested properties; it simply looks for the first ${, and then keeps looking until it finds
the first } and tries to interpret the result ${user.$foo} as a property, but fails if there is no
such property.

Also note: If a property can't be expanded in a grant entry, permission entry, or keystore entry,
that entry is ignored. For example, if the system property foo is not defined and you have:

grant codeBase "${foo}" {
 permission ...;
 permission ...;
};

then all the permissions in this grant entry are ignored. If you have

grant {
 permission Foo "${foo}";
 permission Bar;
};

then only the permission Foo "${foo}"; entry is ignored. And finally, if you have

keystore "${foo}";

then the keystore entry is ignored.

One final note: On Windows systems, when you directly specify a file path in a string, you need
to include two backslashes for each actual single backslash in the path, as in

"C:\\users\\cathy\\foo.bat"

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer),
which allows the backslash (\) to be used as an escape string (e.g., \n to indicate a new line)
and which thus requires two backslashes to indicate a single backslash. After the tokenizer has
processed the previous string, converting double backslashes to single backslashes, the end
result is

"C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed the string.
Thus if you have the string

"${user.home}\\foo.bat"

Chapter 1
Java SE Platform Security Architecture

1-43

then first the tokenizer processes the string, converting the double backslashes to a single
backslash, and the result is

"${user.home}\foo.bat"

Then the ${user.home} property is expanded and the end result is

"C:\users\cathy\foo.bat"

assuming the user.home value is C:\users\cathy. Of course, for platform independence, it
would be better if the string was initially specified without any explicit slashes, i.e., using the $
{/} property instead, as in

"${user.home}${/}foo.bat"

General Expansion in Policy Files
Generalized forms of expansion are also supported in policy files. For example, permission
names may contain a string of the form: ${{protocol:protocol_data}} If such a string occurs
in a permission name, then the value in protocol determines the exact type of expansion that
should occur, and protocol_data is used to help perform the expansion. protocol_data may
be empty, in which case the this string should simply take the form:

${{protocol}}
There are two protocols supported in the default policy file implementation:

1. ${{self}}
The protocol, self, denotes a replacement of the entire string, ${{self}}, with one or
more principal class/name pairs. The exact replacement performed depends upon the
contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will be
ignored (permissions containing ${{self}} in their target names are only valid in the
context of a principal-based grant clause). For example, BarPermission will always be
ignored in the following grant clause:

grant codebase "www.foo.example.com", signedby "duke" {
 permission BarPermission "... ${{self}} ...";
};

If the grant clause contains principal information, ${{self}} will be replaced with that
same principal information. For example, ${{self}} in BarPermission will be replaced by
javax.security.auth.x500.X500Principal "cn=Duke" in the following grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" {
 permission BarPermission "... ${{self}} ...";
};

If there is a comma-separated list of principals in the grant clause, then ${{self}} will be
replaced by the same comma-separated list or principals. In the case where both the
principal class and name are wildcarded in the grant clause, ${{self}} is replaced with all
the principals associated with the Subject in the current AccessControlContext.

Chapter 1
Java SE Platform Security Architecture

1-44

The following example describes a scenario involving both self and KeyStore alias
replacement together:

 keystore "http://foo.bar.example.com/blah/.keystore";

 grant principal "duke" {
 permission BarPermission "... ${{self}} ...";
 };

In the previous example, "duke" will first be expanded into
javax.security.auth.x500.X500Principal "cn=Duke" assuming the X.509 certificate
associated with the KeyStore alias, "duke", has a subject distinguished name of
"cn=Duke". Next, ${{self}} will be replaced with the same principal information that just
got expanded in the grant clause: javax.security.auth.x500.X500Principal "cn=Duke".

2. ${{alias:alias_name}}
The protocol, alias, denotes a java.security.KeyStore alias substitution. The
KeyStore used is the one specified in the KeyStore entry; see Policy File Format.
alias_name represents an alias into the KeyStore. ${{alias:alias_name}} is replaced
with javax.security.auth.x500.X500Principal "DN", where DN represents the subject
distinguished name of the certificate belonging to alias_name. For example:

 keystore "http://foo.bar.example.com/blah/.keystore";

 grant codebase "www.foo.example.com" {
 permission BarPermission "... ${{alias:duke}} ...";
 };

In the previous example the X.509 certificate associated with the alias, duke, is retrieved
from the KeyStore, foo.bar.example.com/blah/.keystore. Assuming duke's certificate
specifies "o=dukeOrg, cn=duke" as the subject distinguished name, then $
{{alias:duke}} is replaced with javax.security.auth.x500.X500Principal
"o=dukeOrg, cn=duke".
The permission entry is ignored under the following error conditions:

• The keystore entry is unspecified

• The alias_name is not provided

• The certificate for alias_name cannot be retrieved

• The certificate retrieved is not an X.509 certificate

Assigning Permissions
When a principal executes a class that originated from a particular CodeSource, the security
mechanism consults the policy object to determine what permissions to grant. This is done by
invoking the getPermissions or implies method on the Policy object that is installed in the
VM.

Clearly, a given code source in a ProtectionDomain can match the code source given in
multiple entries in the policy, for example because the wildcard (*) is allowed.

The following algorithm is used to locate the appropriate set of permissions in the policy.

1. Match the public keys, if code is signed.

Chapter 1
Java SE Platform Security Architecture

1-45

2. If a key is not recognized in the policy, then ignore the key.

If every key is ignored, then treat the code as unsigned.

3. If the keys are matched or no signer was specified, then try to match all URLs in the policy
for the keys.

4. If the keys are matched (or no signer was specified) and the URLs are matched (or no
codebase was specified), then try to match all principals in the policy with the principals
associated with the current executing thread.

5. If either key, URL, or principals are not matched, then use the built-in default permission,
which is the original sandbox permission.

The exact meaning of a policy entry codeBase URL value depends on the characters at the
end. A codeBase with a trailing "/" matches all class files (not JAR files) in the specified
directory. A codeBase with a trailing "/*" matches all files (both class and JAR files) contained
in that directory. A codeBase with a trailing "/-" matches all files (both class and JAR files) in
the directory and recursively all files in subdirectories contained in that directory.

As an example, given "http://example.com/-" in the policy, then any code base that is on
this web site matches the policy entry. Matching code bases include "http://example.com/
j2se/sdk/" and "http://example.com/people/gong/appl.jar".

If multiple entries are matched, then all the permissions given in those entries are granted. In
other words, permission assignment is additive. For example, if code signed with key A gets
permission X and code signed by key B gets permission Y and no particular codebase is
specified, then code signed by both A and B gets permissions X and Y. Similarly, if code with
codeBase "http://example.com/-" is given permission X, and "http://example.com/
people/*" is given permission Y, and no particular signers are specified, then an applet from
"http://example.com/people/applet.jar" gets both X and Y.

Note that URL matching here is purely syntactic. For example, a policy can give an entry that
specifies a URL "ftp://ftp.example.com". Such an entry is useful only when one can obtain
Java code directly from ftp for execution.

To specify URLs for the local file system, a file URL can be used. For example, to specify files
in the /home/cathy/temp directory on Linux, you'd use

"file:/home/cathy/temp/*"

To specify files in the temp directory on the C drive on Windows, use

"file:/c:/temp/*"

Note: codeBase URLs always use slashes (no backlashes), regardless of the platform they
apply to.

You can also use an absolute path name such as

"/home/gong/bin/MyWonderfulJava"

Default System and User Policy Files
In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration files specify what permissions are allowed for code from
specified code sources. A policy file can be composed via a simple text editor. There is by

Chapter 1
Java SE Platform Security Architecture

1-46

default a single system-wide policy file, and a single user policy file. The system policy file is by
default located at

• {java.home}/conf/security/java.policy (Linux and macOS)

• {java.home}\conf\security\java.policy (Windows)

Here, java.home is a system property specifying the directory into which the JDK was installed.
The user policy file is by default located at

• {user.home}/.java.policy (Linux and macOS)

• {user.home}\.java.policy (Windows)

Here, user.home is a system property specifying the user's home directory.

When the Policy is initialized, the system policy is loaded in first, and then the user policy is
added to it. If neither policy is present, a built-in policy is used. This built-in policy is the same
as the original sandbox policy. Policy file locations are specified in the security properties file,
which is located at

• {java.home}/conf/security/java.security (Linux and macOS)

• {java.home}\conf\security\java.security (Windows)

The policy file locations are specified as the values of properties whose names are of the form

policy.url.n

Here, n is a number. You specify each such property value in a line of the following form:

policy.url.n=URL

Here, URL is a URL specification. For example, the default system and user policy files are
defined in the security properties file as

policy.url.1=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

You can actually specify a number of URLs, including ones of the form "http://", and all the
designated policy files will get loaded. You can also comment out or change the second one to
disable reading the default user policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not find a URL.
Thus if you have policy.url.1 and policy.url.3, policy.url.3 will never be read.

It is also possible to specify an additional or a different policy file when invoking execution of an
application. This can be done via the -Djava.security.policy command-line argument, which
sets the value of the java.security.policy property. For example, consider the following
example:

java -Djava.security.manager -Djava.security.policy=pURL SomeApp

Here, pURL is a URL specifying the location of a policy file, then the specified policy file will be
loaded in addition to all the policy files that are specified in the security properties file. (The -
Djava.security.manager argument ensures that the default security manager is installed, and

Chapter 1
Java SE Platform Security Architecture

1-47

thus the application is subject to policy checks, as described in Managing Applets and
Applications. It is not required if the application SomeApp installs a security manager.)

If you use the following, with a double equals sign (==), then just the specified policy file will be
used; all others will be ignored.

java -Djava.security.manager -Djava.security.policy==pURL SomeApp

Note:

• Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the
changes are properly reflected.

• Use the double equals sign (==) with the java.security.policy property with
care as it overrides the built-in JDK policy file, which grants a set of default
permissions that are designed to provide a secure, out-of-the-box configuration
for the JDK. Overriding this policy may result in unexpected behavior (JDK code
may not be granted the right permissions) and should only be done by
experienced users.

• The -Djava.security.policy policy file value will be ignored (for both java and
appletviewer commands) if the policy.allowSystemProperty property in the
security properties file is set to false. The default is true.

Customizing Policy Evaluation
The current design of the Policy class is not as comprehensive as it could be. We have given
the issues much thought and are progressing cautiously, partly to ensure that we define
method calls that are appropriate for the most common cases. For the meantime, an
alternative policy class can be given to replace the default policy class, as long as the former is
a subclass of the abstract Policy class and implements the getPermissions method (and
other methods as necessary).

The Policy reference implementation can be changed by resetting the value of the
policy.provider Security Property (in the Security Properties file, <java-home>/conf/
security/java.security) to the fully qualified name of the desired Policy
implementation class.

The Security Property policy.provider specifies the name of the policy class, and the
default is the following:

policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

policy.provider=com.mycom.MyPolicy

Note that the MyPolicy class must be a subclass of java.security.Policy. It is perhaps
worth emphasizing that such an override of the policy class is a temporary solution and a more
comprehensive policy API will probably make this unnecessary.

Chapter 1
Java SE Platform Security Architecture

1-48

java.security.GeneralSecurityException
This is an exception class that is a subclass of java.lang.Exception. The intention is that
there should be two types of exceptions associated with security and the security packages.

• java.lang.SecurityException and its subclasses should be runtime exceptions
(unchecked, not declared) that are likely to cause the execution of a program to stop.

Such an exception is thrown only when some sort of security violation is detected. For
example, such an exception is thrown when some code attempts to access a file, but it
does not have permission for the access. Application developers may catch these
exceptions, if they want.

• java.security.GeneralSecurityException, which is a subclass of
java.lang.Exception (must be declared or caught) that is thrown in all other cases
from within the security packages.

Such an exception is security related but non-vital. For example, passing in an invalid key
is probably not a security violation and should be caught and dealt with by a developer.

There are currently still two exceptions within the java.security package that are
subclasses from RuntimeException. We at this moment cannot change these due to
backward compatibility requirements. We will revisit this issue in the future.

Access Control Mechanisms and Algorithms

java.security.ProtectionDomain
The ProtectionDomain class encapsulates the characteristics of a domain. Such a domain
encloses a set of classes whose instances are granted a set of permissions when being
executed on behalf of a given set of Principals.

A ProtectionDomain is constructed with a CodeSource, a ClassLoader, an array of
Principals, and a collection of Permissions. The CodeSource encapsulates the codebase
(java.net.URL) for all classes in this domain, as well as a set of certificates (of type
java.security.cert.Certificate) for public keys that correspond to the private keys
that signed all code in this domain. The Principals represent the user on whose behalf the
code is running.

The permissions passed in at ProtectionDomain construction time represent a static set of
permissions bound to the domain regardless of the Policy in force. The ProtectionDomain
subsequently consults the current policy during each security check to retrieve dynamic
permissions granted to the domain.

Classes from different CodeSources, or that are being executed on behalf of different
principals, belong to different domains.

Today all code shipped as part of the JDK is considered system code and run inside the unique
system domain. Each applet or application runs in its appropriate domain, determined by
policy.

It is possible to ensure that objects in any non-system domain cannot automatically discover
objects in another non-system domain. This partition can be achieved by careful class
resolution and loading, for example, using different classloaders for different domains.
However, SecureClassLoader (or its subclasses) can, at its choice, load classes from
different domains, thus allowing these classes to co-exist within the same name space (as
partitioned by a classloader).

Chapter 1
Java SE Platform Security Architecture

1-49

java.security.AccessController
The AccessController class is used for the following three purposes:

• To decide whether an access to a critical system resource is to be allowed or denied,
based on the security policy currently in effect

• To mark code as being "privileged," thus affecting subsequent access determinations

• To obtain a "snapshot" of the current calling context so access-control decisions from a
different context can be made with respect to the saved context

Any code that controls access to system resources should invoke AccessController
methods if it wishes to use the specific security model and access control algorithm utilized by
these methods. If, on the other hand, the application wishes to defer the security model to that
of the SecurityManager installed at runtime, then it should instead invoke corresponding
methods in the SecurityManager class.

For example, the typical way to invoke access control has been the following code (taken from
an earlier version of the JDK):

ClassLoader loader = this.getClass().getClassLoader();
if (loader != null) {
 SecurityManager security = System.getSecurityManager();
 if (security != null) {
 security.checkRead("path/file");
 }
}

Under the current architecture, the check typically should be invoked whether or not there is a
classloader associated with a calling class. It could be simply, for example:

FilePermission perm = new FilePermission("path/file", "read");
AccessController.checkPermission(perm);

The AccessController checkPermission method examines the current execution context
and makes the right decision as to whether or not the requested access is allowed. If it is, this
check returns quietly. Otherwise, an AccessControlException (a subclass of
java.lang.SecurityException) is thrown.

Note that there are (legacy) cases, for example, in some browsers, where whether there is a
SecurityManager installed signifies one or the other security state that may result in
different actions being taken. For backward compatibility, the checkPermission method on
SecurityManager can be used.

SecurityManager security = System.getSecurityManager();
if (security != null) {
 FilePermission perm = new FilePermission("path/file", "read");
 security.checkPermission(perm);
}

We currently do not change this aspect of the SecurityManager usage, but would
encourage application developers to use new techniques introduced in the JDK in their future
programming when the built-in access control algorithm is appropriate.

Chapter 1
Java SE Platform Security Architecture

1-50

The default behavior of the SecurityManager checkPermission method is actually to call the
AccessController checkPermission method. A different SecurityManager
implementation may implement its own security management approach, possibly including the
addition of further constraints used in determining whether or not an access is permitted.

Algorithm for Checking Permissions
Suppose access control checking occurs in a thread of computation that has a chain of
multiple callers (think of this as multiple method calls that cross the protection domain
boundaries), as illustrated in Figure 1-11.

Figure 1-11 Multiple Method Calls that Cross Protection Domain Boundaries

AccessController.check.Permission(Permission p)

classes in
Java runtime

AC.class

File.class

c.class

a.class

security policy

domain A

domain B

permissions

permissions

When the checkPermission method of the AccessController is invoked by the most recent
caller (e.g., a method in the File class), the basic algorithm for deciding whether to allow or
deny the requested access is as follows.

If any caller in the call chain does not have the requested permission,
AccessControlException is thrown, unless the following is true – a caller whose domain is
granted the said permission has been marked as "privileged" (see the next section) and all
parties subsequently called by this caller (directly or indirectly) all have the said permission.

There are obviously two implementation strategies:

• In an "eager evaluation" implementation, whenever a thread enters a new protection
domain or exits from one, the set of effective permissions is updated dynamically.

The benefit is that checking whether a permission is allowed is simplified and can be faster
in many cases. The disadvantage is that, because permission checking occurs much less
frequently than cross-domain calls, a large percentage of permission updates are likely to
be useless effort.

• In a "lazy evaluation" implementation, whenever permission checking is requested, the
thread state (as reflected by the current state, including the current thread's call stack or its
equivalent) is examined and a decision is reached to either deny or grant the particular
access requested.

One potential downside of this approach is performance penalty at permission checking
time, although this penalty would have been incurred anyway in the "eager evaluation"
approach (albeit at earlier times and spread out among each cross-domain call). Our
implementation so far has yielded acceptable performance, so we feel that lazy evaluation
is the most economical approach overall.

Therefore, the algorithm for checking permissions is currently implemented as "lazy
evaluation". Suppose the current thread traversed m callers, in the order of caller 1 to caller 2

Chapter 1
Java SE Platform Security Architecture

1-51

to caller m. Then caller m invoked the checkPermission method. The basic algorithm
checkPermission uses to determine whether access is granted or denied is the following (see
subsequent sections for refinements):

 for (int i = m; i > 0; i--) {

 if (caller i's domain does not have the permission)
 throw AccessControlException

 else if (caller i is marked as privileged) {
 if (a context was specified in the call to doPrivileged)
 context.checkPermission(permission)
 if (limited permissions were specified in the call to
doPrivileged) {
 for (each limited permission) {
 if (the limited permission implies the requested
permission)
 return;
 }
 } else
 return;
 }
 }

 // Next, check the context inherited when the thread was created.
 // Whenever a new thread is created, the AccessControlContext at
 // that time is stored and associated with the new thread, as the
 // "inherited" context.

 inheritedContext.checkPermission(permission);

Handling Privileges
A static method in the AccessController class allows code in a class instance to inform the
AccessController that a body of its code is "privileged" in that it is solely responsible for
requesting access to its available resources, no matter what code caused it to do so.

That is, a caller can be marked as being "privileged" when it calls the doPrivileged method.
When making access control decisions, the checkPermission method stops checking if it
reaches a caller that was marked as "privileged" via a doPrivileged call without a context
argument (see a subsequent section for information about a context argument). If that caller's
domain has the specified permission, no further checking is done and checkPermission
returns quietly, indicating that the requested access is allowed. If that domain does not have
the specified permission, an exception is thrown, as usual.

The normal use of the "privileged" feature is as follows:

If you don't need to return a value from within the "privileged" block, do the following:

 somemethod() {
 ...normal code here...
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 // privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return

Chapter 1
Java SE Platform Security Architecture

1-52

 }
 });
 ...normal code here...
 }

PrivilegedAction is an interface with a single method, named run, that returns an Object.
This example shows creation of an anonymous inner class implementing that interface; a
concrete implementation of the run method is supplied. When the call to doPrivileged is
made, an instance of the PrivilegedAction implementation is passed to it. The doPrivileged
method calls the run method from the PrivilegedAction implementation after enabling
privileges, and returns the run method's return value as the doPrivileged return value, which
is ignored in this example. (For more information about inner classes, see Nested Classes in
the Java Tutorials.

If you need to return a value, you can do something like the following:

 somemethod() {
 ...normal code here...
 String user = (String) AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 return System.getProperty("user.name");
 }
 }
);
 ...normal code here...
 }

If the action performed in your run method could throw a "checked" exception (one listed in the
throws clause of a method), then you need to use the PrivilegedExceptionAction interface
instead of the PrivilegedAction interface:

 somemethod() throws FileNotFoundException {
 ...normal code here...
 try {
 FileInputStream fis = (FileInputStream)
 AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws FileNotFoundException {
 return new FileInputStream("someFile");
 }
 }
);
 } catch (PrivilegedActionException e) {
 // e.getException() should be an instance of
 // FileNotFoundException,
 // as only "checked" exceptions will be "wrapped" in a
 // <code>PrivilegedActionException</code>.
 throw (FileNotFoundException) e.getException();
 }
 ...normal code here...
 }

Chapter 1
Java SE Platform Security Architecture

1-53

http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Some important points about being privileged: Firstly, this concept only exists within a single
thread. As soon as the privileged code completes, the privilege is guaranteed to be erased or
revoked.

Secondly, in this example, the body of code in the run method is privileged. However, if it calls
less trustworthy code that is less privileged, that code will not gain any privileges as a result; a
permission is only granted if the privileged code has the permission and so do all the
subsequent callers in the call chain up to the checkPermission call.

A variant of AccessController.doPrivileged enables code to assert a subset of its
privileges without preventing the full traversal of the stack to check for other permissions. See
Asserting a Subset of Privileges.

For more information about marking code as "privileged," see Appendix A: API for Privileged
Blocks.

Inheritance of Access Control Context
When a thread creates a new thread, a new stack is created. If the current security context
was not retained when this new thread was created, then when
AccessController.checkPermission was called inside the new thread, a security decision
would be made based solely upon the new thread's context, not taking into consideration that
of the parent thread.

This clean stack issue would not be a security problem per se, but it would make the writing of
secure code, and especially system code, more prone to subtle errors. For example, a non-
expert developer might assume, quite reasonably, that a child thread (e.g., one that does not
involve untrusted code) inherits the same security context from the parent thread (e.g., one
that involves untrusted code). This would cause unintended security holes when accessing
controlled resources from inside the new thread (and then passing the resources along to less
trusted code), if the parent context was not in fact saved.

Thus, when a new thread is created, we actually ensure (via thread creation and other code)
that it automatically inherits the parent thread's security context at the time of creation of the
child thread, in such a way that subsequent checkPermission calls in the child thread will take
into consideration the inherited parent context.

In other words, the logical thread context is expanded to include both the parent context (in the
form of an AccessControlContext, described in the next section) and the current context,
and the algorithm for checking permissions is expanded to the following. (Recall there are m
callers up to the call to checkPermission, and see the next section for information about the
AccessControlContext checkPermission method.)

 for (int i = m; i > 0; i--) {

 if (caller i's domain does not have the permission)
 throw AccessControlException

 else if (caller i is marked as privileged) {
 if (a context was specified in the call to doPrivileged)
 context.checkPermission(permission)
 if (limited permissions were specified in the call to
doPrivileged) {
 for (each limited permission) {
 if (the limited permission implies the requested
permission)
 return;

Chapter 1
Java SE Platform Security Architecture

1-54

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction,java.security.AccessControlContext,java.security.Permission...)

 }
 } else
 return;
 }
 }

 // Next, check the context inherited when the thread was created.
 // Whenever a new thread is created, the AccessControlContext at
 // that time is stored and associated with the new thread, as the
 // "inherited" context.

 inheritedContext.checkPermission(permission);

Note that this inheritance is transitive so that, for example, a grandchild inherits both from the
parent and the grandparent. Also note that the inherited context snapshot is taken when the
new child is created, and not when the child is first run. There is no public API change for the
inheritance feature.

java.security.AccessControlContext
Recall that the AccessController checkPermission method performs security checks
within the context of the current execution thread (including the inherited context). A difficulty
arises when such a security check can only be done in a different context. That is, sometimes
a security check that should be made within a given context will actually need to be done from
within a different context. For example, when one thread posts an event to another thread, the
second thread serving the requesting event would not have the proper context to complete
access control, if the service requests access to controller resources.

To address this issue, we provide the AccessController getContext method and
AccessControlContext class. The getContext method takes a "snapshot" of the current
calling context, and places it in an AccessControlContext object, which it returns. A
sample call is the following:

 AccessControlContext acc = AccessController.getContext();

This context captures relevant information so that an access control decision can be made by
checking, from within a different context, against this context information. For example, one
thread can post a request event to a second thread, while also supplying this context
information. AccessControlContext itself has a checkPermission method that makes
access decisions based on the context it encapsulates, rather than that of the current
execution thread. Thus, the second thread can perform an appropriate security check if
necessary by invoking the following:

 acc.checkPermission(permission);

This method call is equivalent to performing the same security check in the context of the first
thread, even though it is done in the second thread.

There are also times where one or more permissions must be checked against an access
control context, but it is unclear a priori which permissions are to be checked. In these cases
you can use the doPrivileged method that takes a context:

 somemethod() {
 AccessController.doPrivileged(new PrivilegedAction() {

Chapter 1
Java SE Platform Security Architecture

1-55

 public Object run() {
 // Code goes here. Any permission checks from
 // this point forward require both the current
 // context and the snapshot's context to have
 // the desired permission.
 }
 });
 ...normal code here...

Now the complete algorithm utilized by the AccessController checkPermission method
can be given. Suppose the current thread traversed m callers, in the order of caller 1 to caller 2
to caller m. Then caller m invoked the checkPermission method. The algorithm
checkPermission uses to determine whether access is granted or denied is the following

 for (int i = m; i > 0; i--) {

 if (caller i's domain does not have the permission)
 throw AccessControlException

 else if (caller i is marked as privileged) {
 if (a context was specified in the call to doPrivileged)
 context.checkPermission(permission)
 if (limited permissions were specified in the call to
doPrivileged) {
 for (each limited permission) {
 if (the limited permission implies the requested
permission)
 return;
 }
 } else
 return;
 }
 }

 // Next, check the context inherited when the thread was created.
 // Whenever a new thread is created, the AccessControlContext at
 // that time is stored and associated with the new thread, as the
 // "inherited" context.

 inheritedContext.checkPermission(permission);

Secure Class Loading
Dynamic class loading is an important feature of the Java Virtual Machine because it provides
the Java platform with the ability to install software components at run-time. It has a number of
unique characteristics. First of all, lazy loading means that classes are loaded on demand and
at the last moment possible. Second, dynamic class loading maintains the type safety of the
Java Virtual Machine by adding link-time checks, which replace certain run-time checks and
are performed only once. Moreover, programmers can define their own class loaders that, for
example, specify the remote location from which certain classes are loaded, or assign
appropriate security attributes to them. Finally, class loaders can be used to provide separate
name spaces for various software components. For example, a browser can load applets from
different web pages using separate class loaders, thus maintaining a degree of isolation

Chapter 1
Java SE Platform Security Architecture

1-56

between those applet classes. In fact, these applets can contain classes of the same name –
these classes are treated as distinct types by the Java Virtual Machine.

The class loading mechanism is not only central to the dynamic nature of the Java
programming language. It also plays a critical role in providing security because the class
loader is responsible for locating and fetching the class file, consulting the security policy, and
defining the class object with the appropriate permissions.

Class Loader Class Hierarchies
When loading a class, because there can be multiple instances of class loader objects in one
Java Virtual Machine, an important question is how do we determine which class loader to use.
The JDK has introduced multiple class loader classes are introduced that have distinct
properties, so another important question is what type of class loader we should use.

The root of the class loader class hierarchy is an abstract class called
java.lang.ClassLoader. Class java.security.SecureClassLoader is a subclass
and a concrete implementation of the abstract ClassLoader class. Class
java.net.URLClassLoader is a subclass of SecureClassLoader.

When creating a custom class loader class, one can subclass from any of the previous class
loader classes, depending on the particular needs of the custom class loader.

The Primordial Class Loader
Because each class is loaded by its class loader, and each class loader itself is a class and
must be loaded by another class loader, we seem to have the obvious chicken-and-egg
problem, i.e., where does the first class loader come from? There is a "primordial'' class loader
that bootstraps the class loading process. The primordial class loader is generally written in a
native language, such as C, and does not manifest itself within the Java context. The
primordial class loader often loads classes from the local file system in a platform-dependent
manner.

Some classes, such as those defined in the java.* package, are essential for the correct
functioning of the Java Virtual Machine and runtime system. They are often referred to as base
classes. Due to historical reasons, all such classes have a class loader that is a null. This null
class loader is perhaps the only sign of the existence of a primordial class loader. In fact, it is
easier to simply view the null class loader as the primordial class loader.

Given all classes in one Java application environment, we can easily form a class loading tree
to reflect the class loading relationship. Each class that is not a class loader is a leaf node.
Each class's parent node is its class loader, with the null class loader being the root class.
Such a structure is a tree because there cannot be cycles – a class loader cannot have loaded
its own ancestor class loader.

Class Loader Delegation
When one class loader is asked to load a class, this class loader either loads the class itself or
it can ask another class loader to do so. In other words, the first class loader can delegate to
the second class loader. The delegation relationship is virtual in the sense that it has nothing to
do with which class loader loads which other class loader. Instead, the delegation relationship
is formed when class loader objects are created, and in the form of a parent-child relationship.
Nevertheless, the system class loader is the delegation root ancestor of all class loaders. Care
must be taken to ensure that the delegation relationship does not contain cycles. Otherwise,
the delegation process may enter into an infinite loop.

Chapter 1
Java SE Platform Security Architecture

1-57

Class Resolution Algorithm
The default implementation of the JDK ClassLoader method for loading a class searches for
classes in the following order:

1. Check if the class has already been loaded.

2. If the current class loader has a specified delegation parent, delegate to the parent to try to
load this class. If there is no parent, delegate to the primordial class loader.

3. Call a customizable method to find the class elsewhere.

Here, the first step looks into the class loader's local cache (or its functional equivalent, such
as a global cache) to see if a loaded class matches the target class. The last step provides a
way to customize the mechanism for looking for classes; thus a custom class loader can
override this method to specify how a class should be looked up. For example, an applet class
loader can override this method to go back to the applet host and try to locate the class file and
load it over the network.

If at any step a class is located, it is returned. If the class is not found using these steps, a
ClassNotFound exception is thrown.

Observe that it is critical for type safety that the same class not be loaded more than once by
the same class loader. If the class is not among those already loaded, the current class loader
attempts to delegate the task to the parent class loader. This can occur recursively. This
ensures that the appropriate class loader is used. For example, when locating a system class,
the delegation process continues until the system class loader is reached.

We have seen the delegation algorithm earlier. But, given the name of any class, which class
loader do we start with in trying to load the class? The rules for determining the class loader
are the following:

• When loading the first class of an application, a new instance of the URLClassLoader is
used.

• When loading the first class of an applet, a new instance of the AppletClassLoader is
used.

• When java.lang.Class.ForName is directly called, the primordial class loader is used.

• If the request to load a class is triggered by a reference to it from an existing class, the
class loader for the existing class is asked to load the class.

Note that rules about the use of URLClassLoader and AppletClassLoader instances have
exceptions and can vary depending on the particular system environment. For example, a web
browser may choose to reuse an existing AppletClassLoader to load applet classes from
the same web page.

Due to the power of class loaders, we severely restrict who can create class loader instances.
On the other hand, it is desirable to provide a convenient mechanism for applications or
applets to specify URL locations and load classes from them. We provide static methods to
allow any program to create instances of the URLClassLoader class, although not other
types of class loaders.

Chapter 1
Java SE Platform Security Architecture

1-58

Security Management

Managing Applets and Applications
Currently, all JDK system code invokes SecurityManager methods to check the policy
currently in effect and perform access control checks. There is typically a security manager
(SecurityManager implementation) installed whenever an applet is running; the
appletviewer and most browsers install a security manager.

A security manager is not automatically installed when an application is running. To apply the
same security policy to an application found on the local file system as to downloaded applets,
either the user running the application must invoke the Java Virtual Machine with the -
Djava.security.manager command-line argument (which sets the value of the
java.security.manager property), as in

java -Djava.security.manager SomeApp

or the application itself must call the setSecurityManager method in the java.lang.System
class to install a security manager.

It is possible to specify on the command line a particular security manager to be utilized, by
following -Djava.security.manager with an equals and the name of the class to be used as
the security manager, as in

java -Djava.security.manager=COM.abc.MySecMgr SomeApp

If no security manager is specified, the built-in default security manager is utilized (unless the
application installs a different security manager). All of the following are equivalent and result in
usage of the default security manager:

java -Djava.security.manager SomeApp
java -Djava.security.manager="" SomeApp
java -Djava.security.manager=default SomeApp

The JDK includes a property named java.class.path. Classes that are stored on the local file
system but should not be treated as base classes (e.g., classes built into the SDK) should be
on this path. Classes on this path are loaded with a secure class loader and are thus subjected
to the security policy being enforced.

There is also a -Djava.security.policy command-line argument whose usage determines
what policy files are utilized. This command-line argument is described in detail in Default
Policy Implementation and Policy File Syntax. Basically, if you don't include -
Djava.security.policy on the command line, then the policy files specified in the security
properties file will be used.

You can use a -Djava.security.policy command-line argument to specify an additional or a
different policy file when invoking execution of an application. For example, if you type the
following, where pURL is a URL specifying the location of a policy file, then the specified policy
file will be loaded in addition to all the policy files specified in the security properties file:

java -Djava.security.manager -Djava.security.policy=pURL SomeApp

Chapter 1
Java SE Platform Security Architecture

1-59

If you instead type the following command, using a double equals, then just the specified policy
file will be used; all others will be ignored:

java -Djava.security.manager -Djava.security.policy==pURL SomeApp

SecurityManager versus AccessController
The new access control mechanism is fully backward compatible. For example, all check
methods in SecurityManager are still supported, although most of their implementations are
changed to call the new SecurityManager checkPermission method, whose default
implementation calls the AccessController checkPermission method. Note that certain
internal security checks may stay in the SecurityManager class, unless it can be
parameterized.

We have not at this time revised any system code to call AccessController instead of
calling SecurityManager (and checking for the existence of a classloader), because of the
potential of existing third-party applications that subclass the SecurityManager and
customize the check methods. In fact, we added a new method
SecurityManager.checkPermission that by default simply invokes
AccessController.checkPermission.

To understand the relationship between SecurityManager and AccessController, it is
sufficient to note that SecurityManager represents the concept of a central point of access
control, while AccessController implements a particular access control algorithm, with
special features such as the doPrivileged method. By keeping SecurityManager up to
date, we maintain backward compatibility (e.g., for those applications that have written their
own security manager classes based on earlier versions of the JDK) and flexibility (e.g., for
someone wanting to customize the security model to implement mandatory access control or
multilevel security). By providing AccessController, we build in the algorithm that we
believe is the most restrictive and that relieves the typical programmer from the burden of
having to write extensive security code in most scenarios.

We encourage the use of AccessController in application code, while customization of a
security manager (via subclassing) should be the last resort and should be done with extreme
care. Moreover, a customized security manager, such as one that always checks the time of
the day before invoking standard security checks, could and should utilize the algorithm
provided by AccessController whenever appropriate.

One thing to remember is that, when you implement your own SecurityManager, you should
install it as trusted software and grant it java.security.AllPermission. You can do this by
adjusting the policy file to grant AllPermission to your SecurityManager. For more
information, see Default Policy Implementation and Policy File Syntax.

Auxiliary Tools
This section briefly describes the usage of two tools that assist in the deployment of security
features.

The Key and Certificate Management Tool
keytool is a key and certificate management utility. It enables users to administer their own
public/private key pairs and associated certificates for use in self-authentication (where the
user authenticates himself/herself to other users/services) or data integrity and authentication
services, using digital signatures. The authentication information includes both a sequence
(chain) of X.509 certificates, and an associated private key, which can be referenced by a so-

Chapter 1
Java SE Platform Security Architecture

1-60

called "alias". This tool also manages certificates (that are "trusted" by the user), which are
stored in the same database as the authentication information, and can be referenced by an
"alias".

keytool stores the keys and certificates in a so-called keystore. The default keystore
implementation implements the keystore as a file. It protects private keys with a password.

The chains of X.509 certificates are provided by organizations called Certification Authorities,
or CAs. Identities (including CAs) use their private keys to authenticate their association with
objects (such as with channels which are secured using SSL), with archives of code they
signed, or (for CAs) with X.509 certificates they have issued. As a bootstrapping tool,
certificates generated using the -gencert option may be used until a Certification Authority
returns a certificate chain.

The private keys in this database are always stored in encrypted form, to make it difficult to
disclose these private keys inappropriately. A password is required to access or modify the
database. These private keys are encrypted using the "password", which should be several
words long. If the password is lost, those authentication keys cannot be recovered.

In fact, each private key in the keystore can be protected using its own individual password,
which may or may not be the same as the password that protects the keystore's overall
integrity.

This tool is (currently) intended to be used from the command line, where one simply types
keytool as a shell prompt. keytool is a script that executes the appropriate Java classes and
is built together with the SDK.

The command line options for each command may be provided in any order. Typing an
incorrect option or typing keytool -help will cause the tool's usage to be summarized on the
output device (such as a shell window).

The JAR Signing and Verification Tool
The jarsigner tool can be used to digitally sign Java archives (JAR files), and to verify such
signatures. This tool depends on the keystore that is managed by keytool.

Note:

You can also use the jdk.security.jarsigner API to sign JAR files.

GuardedObject and SignedObject

java.security.GuardedObject and java.security.Guard
Recall that the class AccessControlContext is useful when an access control decision has
to be made in a different context. There is another such scenario, where the supplier of a
resource is not in the same thread as the consumer of that resource, and the consumer thread
cannot provide the supplier thread the access control context information (because the context
is security-sensitive, or the context is too large to pass, or for other reasons). For this case, we
provide a class called GuardedObject to protect access to the resource, illustrated in
Figure 1-12.

Chapter 1
Java SE Platform Security Architecture

1-61

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

Figure 1-12 How a Guarded Object Protects Access to a Resource

Guarded Object

request access requestor

Guard
object

check guard

return reference
to resource

protected object
embedding
resource

2

1

3

The basic idea is that the supplier of the resource can create an object representing the
resource, create a GuardedObject that embeds the resource object inside, and then provide
the GuardedObject to the consumer. In creating the GuardedObject, the supplier also
specifies a Guard object such that anyone (including the consumer) can only obtain the
resource object if certain (security) checks inside the Guard are satisfied.

Guard is an interface, so any object can choose to become a Guard. The only method in this
interface is called checkGuard. It takes an Object argument and it performs certain (security)
checks. The Permission class in java.security implements the Guard interface.

For example, suppose a system thread is asked to open a file /a/b/c.txt for read access,
but the system thread does not know who the requestor is or under what circumstances the
request is made. Therefore, the correct access control decision cannot be made at the server
side. The system thread can use GuardedObject to delay the access control checking, as
follows.

 FileInputStream f = new FileInputStream("/a/b/c.txt");
 FilePermission p = new FilePermission("/a/b/c.txt", "read");
 GuardedObject g = new GuardedObject(f, p);

Now the system thread can pass g to the consumer thread. For that thread to obtain the file
input stream, it has to call

 FileInputStream fis = (FileInputStream) g.getObject();

This method in turn invokes the checkGuard method on the Guard object p, and because p is a
Permission, its checkGuard method is in fact:

 SecurityManager sm = System.getSecurityManager();
 if (sm != null) sm.checkPermission(this);

This ensures that a proper access control check takes place within the consumer context. In
fact, one can replace often-used hash tables and access control lists in many cases and simply
store a hash table of GuardedObjects.

This basic pattern of GuardedObject and Guard is very general, and we expect that by
extending the basic Guard and GuardedObject classes, developers can easily obtain quite
powerful access control tools. For example, per-method invocation can be achieved with an
appropriate Guard for each method, and a Guard can check the time of the day, the signer or
other identification of the caller, or any other relevant information.

Chapter 1
Java SE Platform Security Architecture

1-62

Note that certain typing information is lost because GuardedObject returns an Object.
GuardedObject is intended to be used between cooperating parties so that the receiving
party should know what type of object to expect (and to cast for). In fact, we envision that most
usage of GuardedObject involves subclassing it (say to form a
GuardedFileInputStream class), thus encapsulating typing information, and casting can
happen suitably in the subclass.

java.security.SignedObject
This class is an essential building block for other security primitives. SignedObject contains
another Serializable object, the (to-be-)signed object and its signature. If the signature is
not null, it contains a valid digital signature of the signed object. This is illustrated in
Figure 1-13.

Figure 1-13 Signed Object Contents

Signed Object

original
object

signature

snapshot

The underlying signing algorithm is set through a Signature object as a parameter to the sign
method call, and the algorithm can be, among others, the NIST standard DSA, using DSA and
SHA-256. The algorithm is specified using the same convention for signatures, such as "SHA/
DSA".

The signed object is a "deep copy" (in serialized form) of an original object. Once the copy is
made, further manipulation of the original object has no side effect on the copy. A signed object
is immutable.

A typical example of creating a signed object is the following:

 Signature signingEngine = Signature.getInstance(algorithm,provider);
 SignedObject so = new SignedObject(myobject, signingKey, signingEngine);

A typical example of verification is the following (having received SignedObject so), where
the first line is not needed if the name of the algorithm is known:

 String algorithm = so.getAlgorithm();
 Signature verificationEngine = Signature.getInstance(algorithm, provider);
 so.verify(verificationEngine);

Potential applications of SignedObject include:

• It can be used internally to any Java application environment as an unforgeable
authorization token – one that can be passed around without the fear that the token can be
maliciously modified without being detected.

• It can be used to sign and serialize data/object for storage outside the Java runtime (e.g.,
storing critical access control data on disk).

• Nested SignedObjects can be used to construct a logical sequence of signatures,
resembling a chain of authorization and delegation.

Chapter 1
Java SE Platform Security Architecture

1-63

It is intended that this class can be subclassed in the future to allow multiple signatures on the
same signed object. In that case, existing method calls in this base class will be fully
compatible in semantics. In particular, any get method will return the unique value if there is
only one signature, and will return an arbitrary one from the set of signatures if there is more
than one signature.

Discussion and Future Directions

Resource Consumption Management
Resource consumption management is relatively easy to implement in some cases (e.g., to
limit the number of windows any application can pop up at any one time), while it can be quite
hard to implement efficiently in other cases (e.g., to limit memory or file system usage). We
plan to coherently address such issues in the future.

Arbitrary Grouping of Permissions
Sometimes it is convenient to group a number of permissions together and use a short-hand
name to refer to them. For example, if we would like to have a permission called
SuperPermission to include (and imply) both FilePermission("-", "read,write") and
SocketPermission("*", "connect,accept"), technically we can use the class Permissions
or a similar class to implement this super permission by using the add methods to add the
required permissions. And such grouping can be arbitrarily complicated.

The more difficult issues are the following. First, to understand what actual permissions one is
granting when giving out such a super permission, either a fixed and named permission class
is created to denote a statically specified group of permissions, or the member permissions
need to be spelled out in the policy file. Second, processing the policy (file) can become more
complicated because the grouped permissions may need to be expanded. Moreover, nesting
of grouped permission increases complexity even more.

Object-Level Protection
Given the object-oriented nature of the Java programming language, it is conceivable that
developers will benefit from a set of appropriate object-level protection mechanisms that (1)
goes beyond the natural protection provided by the Java programming language and that (2)
supplements the thread-based access control mechanism.

One such mechanism is SignedObject. Another is the SealedObject class, which uses
encryption to hide the content of an object.

GuardedObject is a general way to enforce access control at a per class/object per method
level. This method, however, should be used only selectively, partly because this type of
control can be difficult to administer at a high level.

Subdividing Protection Domains
A potentially useful concept not currently implemented is that of "subdomains." A subdomain is
one that is enclosed in another. A subdomain would not have more permissions or privileges
than the domain of which it is a subpart. A domain could be created, for example, to selectively
further limit what a program can do.

Often a domain is thought of as supporting inheritance: a subdomain would automatically
inherit the parent domain's security attributes, except in certain cases where the parent further

Chapter 1
Java SE Platform Security Architecture

1-64

restricts the subdomain explicitly. Relaxing a subdomain by right amplification is a possibility
with the notion of trusted code.

For convenience, we can think of the system domain as a single, big collection of all system
code. For better protection, though, system code should be run in multiple system domains,
where each domain protects a particular type of resource and is given a special set of rights.
For example, if file system code and network system code run in separate domains, where the
former has no rights to the networking resources and the latter has no rights to the file system
resources, the risks and consequence of an error or security flaw in one system domain is
more likely to be confined within its boundary.

Running Applets with Signed Content
The JAR and Manifest specifications on code signing allow a very flexible format. Classes
within the same archive can be signed with different keys, and a class can be unsigned, signed
with one key, or signed with multiple keys. Other resources within the archive, such as audio
clips and graphic images, can also be signed or unsigned, just like classes can.

This flexibility brings about the issue of interpretation. The following questions need to be
answered, especially when keys are treated differently:

1. Should images and audios be required to be signed with the same key if any class in the
archive is signed?

2. If images and audios are signed with different keys, can they be placed in the same
appletviewer (or browser page), or should they be sent to different viewers for
processing?

These questions are not easy to answer, and require consistency across platforms and
products to be the most effective. Our intermediate approach is to provide a simple answer –
all images and audio clips are forwarded to be processed within the same applet classloader,
whether they are signed or not. This temporary solution will be improved once a consensus is
reached.

Moreover, if a digital signature cannot be verified because the bytecode content of a class file
does not match the signed hash value in the JAR, a security exception is thrown, as the
original intention of the JAR author is clearly altered. Previously, there was a suggestion to run
such code as untrusted. This idea is undesirable because the applet classloader allows the
loading of code signed by multiple parties. This means that accepting a partially modified JAR
file would allow an untrusted piece of code to run together with and access other code through
the same classloader.

Appendix A: API for Privileged Blocks
This section explains what privileged code is and what it is used for. It also shows you how to
use the doPrivileged API.

• Using the doPrivileged API

• What It Means to Have Privileged Code

• Reflection

Using the doPrivileged API
This section describes the doPrivileged API and the use of the privileged feature.

• No Return Value, No Exception Thrown

• Accessing Local Variables

Chapter 1
Java SE Platform Security Architecture

1-65

• Handling Exceptions

• Asserting a Subset of Privileges

• Least Privilege

• More Privilege

No Return Value, No Exception Thrown
If you do not need to return a value from within the privileged block, your call to doPrivileged
can look like Example 1-1.

Note that the invocation of doPrivileged with a lambda expression explicitly casts the lambda
expression as of type PrivilegedAction<Void>. Another version of the method doPrivileged
exists that takes an object of type PrivilegedExceptionAction; see Handling Exceptions.

PrivilegedAction is a functional interface with a single abstract method, named run, that
returns a value of type specified by its type parameter.

Note that this example ignores the return value of the run method. Also, depending on what
privileged code actually consists of, you might have to make some changes due to the way
inner classes work. For example, if privileged code throws an exception or attempts to access
local variables, then you will have to make some changes, which is described later.

Be very careful in your use of the privileged construct, and always remember to make the
privileged code section as small as possible. That is, try to limit the code within the run method
to only what needs to be run with privileges, and do more general things outside the run
method. Also note that the call to doPrivileged should be made in the code that wants to
enable its privileges. Do not be tempted to write a utility class that itself calls doPrivileged as
that could lead to security holes. You can write utility classes for PrivilegedAction classes
though, as shown in the preceding example. See Guideline 9-3: Safely invoke
java.security.AccessController.doPrivileged in Secure Coding Guidelines for the Java
Programming Language.

Example 1-1 Sample Code for Privileged Block

• In a class that implements the interface PrivilegedAction.

• In an anonymous class.

• In a lambda expression.

import java.security.*;

public class NoReturnNoException {

 class MyAction implements PrivilegedAction<Void> {
 public Void run() {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 }

 public void somemethod() {

 MyAction mya = new MyAction();

 // Become privileged:

Chapter 1
Java SE Platform Security Architecture

1-66

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedExceptionAction.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedAction.html

 AccessController.doPrivileged(mya);

 // Anonymous class
 AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Void run() {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 });

 // Lambda expression
 AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 // Privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
);
 }

 public static void main(String... args) {
 NoReturnNoException myApplication = new NoReturnNoException();
 myApplication.somemethod();
 }
}

Returning Values

If you need to return a value, then you can do something like the following:

System.out.println(
 AccessController.doPrivileged((PrivilegedAction<String>)
 () -> System.getProperty("user.name")
)
);

Accessing Local Variables
If you are using a lambda expression or anonymous inner class, then any local variables you
access must be final or effectively final.

For example:

String lib = "awt";
AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 System.loadLibrary(lib);
 return null; // nothing to return
 }
);

AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Object run() {

Chapter 1
Java SE Platform Security Architecture

1-67

 System.loadLibrary(lib);
 return null; // nothing to return
 }
});

The variable lib is effectively final because its value has not been modified. For example,
suppose you add the following assignment statement after the declaration of the variable lib:

lib = "swing";

The compiler generates the following errors when it encounters the invocation
System.loadLibrary both in the lambda expression and the anonymous class:

• error: local variables referenced from a lambda expression must be final or
effectively final

• error: local variables referenced from an inner class must be final or
effectively final

See Accessing Members of an Enclosing Class in Local Classes for more information.

If there are cases where you cannot make an existing variable effectively final (because it gets
set multiple times), then you can create a new final variable right before invoking the
doPrivileged method, and set that variable equal to the other variable. For example:

String lib;

// The lib variable gets set multiple times so you can't make it
// effectively final.

// Create a final String that you can use inside of the run method
final String fLib = lib;

AccessController.doPrivileged((PrivilegedAction<Void>)
 () -> {
 System.loadLibrary(fLib);
 return null; // nothing to return
 }
);

Handling Exceptions
If the action performed in your run method could throw a checked exception (one that must be
listed in the throws clause of a method), then you need to use the
PrivilegedExceptionAction interface instead of the PrivilegedAction interface.

Example 1-2 Sample for Handling Exceptions

If a checked exception is thrown during execution of the run method, then it is placed in a
PrivilegedActionException wrapper exception that is then thrown and should be caught by
your code, as illustrated in the following example:

public void processSomefile() throws IOException {

 try {
 Path path = FileSystems.getDefault().getPath("somefile");

Chapter 1
Java SE Platform Security Architecture

1-68

http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html#accessing-members-of-an-enclosing-class
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html

 BufferedReader br = AccessController.doPrivileged(
 (PrivilegedExceptionAction<BufferedReader>)
 () -> Files.newBufferedReader(path)
);
 // ... read from file and do something
 } catch (PrivilegedActionException e) {

 // e.getException() should be an instance of IOException
 // as only checked exceptions will be wrapped in a
 // PrivilegedActionException.
 throw (IOException) e.getException();
 }
}

Asserting a Subset of Privileges

As of JDK 8, a variant of doPrivileged is available that enables code to assert a subset of
its privileges, without preventing the full traversal of the stack to check for other permissions.
This variant of the doPrivileged variant has three parameters, one of which you use to specify
this subset of privileges. For example, the following excerpt asserts a privilege to retrieve
system properties:

// Returns the value of the specified property. All code
// is allowed to read the app.version and app.vendor
// properties.

public String getProperty(final String prop) {
 return AccessController.doPrivileged(
 (PrivilegedAction<String>) () -> System.getProperty(prop),
 null,
 new java.util.PropertyPermission("app.version", "read"),
 new java.util.PropertyPermission("app.vendor", "read")
);
 }

The first parameter of this version of doPrivileged is of type
java.security.PrivilegedAction. In this example, the first parameter is a lambda expression
that implements the functional interface PrivilegedAction whose run method returns the
value of the system property specified by the parameter prop.

The second parameter of this version of doPrivileged is of type AccessControlContext.
Sometimes you need to perform an additional security check within a different context, such as
a worker thread. You can obtain an AccessControlContext instance from a particular calling
context with the method AccessControlContext.getContext. If you specify null for this
parameter (as in this example), then the invocation of doPrivileged does not perform any
additional security checks.

The third parameter of this version of doPrivileged is of type Permission..., which is a
varargs parameter. This means that you can specify one or more Permission parameters or an
array of Permission objects, as in Permission[]. In this example, the invocation of
doPrivileged can retrieve the properties app.version and app.vendor.

You can use this three parameter variant of doPrivileged in a mode of least privilege or a
mode of more privilege.

Chapter 1
Java SE Platform Security Architecture

1-69

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction,java.security.AccessControlContext,java.security.Permission...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessControlContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Permission.html

Least Privilege
The typical use case of the doPrivileged method is to enable the method that invokes it to
perform one or more actions that require permission checks without requiring the callers of the
current method to have all the necessary permissions.

For example, the current method might need to open a file or make a network request for its
own internal implementation purposes.

Before JDK 8, calls to doPrivileged methods had only two parameters. They worked by
granting temporary privileges to the calling method and stopping the normal full traversal of the
stack for access checking when it reached that class, rather than continuing up the call stack
where it might reach a method whose defining class does not have the required permission.
Typically, the class that is calling doPrivileged might have additional permissions that are not
required in that code path and which might also be missing from some caller classes.

Normally, these extra permissions are not exercised at runtime. Not elevating them through
use of doPrivileged helps to block exploitation of any incorrect code that could perform
unintended actions. This is especially true when the PrivilegedAction is more complex than
usual, or when it calls code outside the class or package boundary that might evolve
independently over time.

The three-parameter variant of doPrivileged is generally safer to use because it avoids
unnecessarily elevating permissions that are not intended to be required. However, it executes
less efficiently so simple or performance-critical code paths might choose not to use it.

More Privilege
When coding the current method, you want to temporarily extend the permission of the calling
method to perform an action.

For example, a framework I/O API might have a general purpose method for opening files of a
particular data format. This API would take a normal file path parameter and use it to open an
underlying FileInputStream using the calling code's permissions. However, this might also
allow any caller to open the data files in a special directory that contains some standard
demonstration samples.

The callers of this API could be directly granted a FilePermission for read access. However, it
might not be convenient or possible for the security policy of the calling code to be updated.
For example, the calling code could be a sandboxed applet.

One way to implement this is for the code to check the incoming path and determine if it refers
to a file in the special directory. If it does, then it would call doPrivileged, enabling all
permissions, then open the file inside the PrivilegedAction. If the file was not in the special
directory, the code would open the file without using doPrivileged.

This technique requires the implementation to carefully handle the requested file path to
determine if it refers to the special shared directory. The file path must be canonicalized before
calling doPrivileged so that any relative path will be processed (and permission to read the
user.dir system property will be checked) prior to determining if the path refers to a file in the
special directory. It must also prevent malicious "../" path elements meant to escape out of the
special directory.

A simpler and better implementation would use the variant of doPrivileged with the third
parameter. It would pass a FilePermission with read access to the special directory as the
third parameter. Then any manipulation of the file would be inside the PrivilegedAction. This
implementation is simpler and much less prone to contain a security flaw.

Chapter 1
Java SE Platform Security Architecture

1-70

What It Means to Have Privileged Code
Marking code as privileged enables a piece of trusted code to temporarily enable access to
more resources than are available directly to the code that called it.

The policy for a JDK installation specifies what permissions which types of system resource
accesses – are allowed for code from specified code sources. A code source (of type
CodeSource) essentially consists of the code location (URL) and a reference to the
certificates containing the public keys corresponding to the private keys used to sign the code
(if it was signed).

The policy is represented by a Policy object. More specifically, it is represented by a Policy
subclass providing an implementation of the abstract methods in the Policy class (which is in
the java.security package).

The source location for the policy information used by the Policy object depends on the
Policy implementation. The Policy reference implementation obtains its information from
policy configuration files. See Default Policy Implementation and Policy File Syntax for
information about the Policy reference implementation and the syntax that must be used in
policy files it reads.

A protection domain encompasses a CodeSource instance and the permissions granted to
code from that CodeSource, as determined by the security policy currently in effect. Thus,
classes signed by the same keys and from the same URL are typically placed in the same
domain, and a class belongs to one and only one protection domain. (However, classes signed
by the same keys and from the same URL but loaded by separate class loader instances are
typically placed in separate domains.) Classes that have the same permissions but are from
different code sources belong to different domains.

Classes shipped with the JDK run-time image and loaded by the bootstrap class loader are
granted AllPermission. However, classes shipped with the JDK run-time image and loaded
by the platform class loader are granted permissions as specified by the default policy of the
JDK. Each module's classes are assigned a unique protection domain using the jrt URL
scheme and may only be granted the permissions necessary for them to function correctly, and
not necessarily AllPermission.

Each applet or application runs in its appropriate domain, determined by its code source. For
an applet (or an application running under a security manager) to be allowed to perform a
secured action (such as reading or writing a file), the applet or application must be granted
permission for that particular action.

More specifically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access, unless some
code on the thread has been marked as privileged. That is, suppose that access control
checking occurs in a thread of execution that has a chain of multiple callers. (Think of this as
multiple method calls that potentially cross the protection domain boundaries.) When the
AccessController.checkPermission method is invoked by the most recent caller, the
basic algorithm for deciding whether to allow or deny the requested access is as follows: If the
code for any caller in the call chain does not have the requested permission, then an
AccessControlException is thrown, unless the following is true: a caller whose code is
granted the said permission has been marked as privileged, and all parties subsequently called
by this caller (directly or indirectly) have the said permission.

Chapter 1
Java SE Platform Security Architecture

1-71

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/CodeSource.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Policy.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessControlException.html

Note:

The method AccessController.checkPermission is normally invoked indirectly
through invocations of specific SecurityManager methods that begin with the word
check such as checkConnect or through the method
SecurityManager.checkPermission. Normally, these checks only occur if a
SecurityManager has been installed; code checked by the
AccessController.checkPermission method first checks if the method
System.getSecurityManager returns null.

Marking code as privileged enables a piece of trusted code to temporarily enable access to
more resources than are available directly to the code that called it. This is necessary in some
situations. For example, an application might not be allowed direct access to files that contain
fonts, but the system utility to display a document must obtain those fonts, on behalf of the
user. The system utility must become privileged in order to obtain the fonts.

Reflection
The doPrivileged method can be invoked reflectively using the
java.lang.reflect.Method.invoke method.

One subtlety that must be considered is the interaction of this API with reflection. The
doPrivileged method can be invoked reflectively using the
java.lang.reflect.Method.invoke method. In this case, the privileges granted in
privileged mode are not those of Method.invoke but of the non-reflective code that invoked it.
Otherwise, system privileges could erroneously (or maliciously) be conferred on user code.
Note that similar requirements exist when using reflection in the existing API.

Appendix B: Acknowledgments
The design and implementation of new security features in Java 2 SDK is the work of primarily
members of the JavaSoft security group. Other (past and present) members of the JavaSoft
community provided invaluable insight, detailed reviews, and much needed technical
assistance. Significant contributors, in alphabetical order, include but are not limited to: Gigi
Ankeny, Josh Bloch, Satya Dodda, Charlie Lai, Sheng Liang, Jan Luehe, Marianne Mueller,
Jeff Nisewanger, Hemma Prafullchandra, Roger Riggs, Nakul Saraiya, Bill Shannon, Roland
Schemers, and Vijay Srinivasan.

This work is not possible without strong support from JavaSoft management (our thanks go to
Dick Neiss, Jon Kannegaard, and Alan Baratz), and the testing and documentation groups
(especially Mary Dageforde). We are grateful for technical guidance from James Gosling,
Graham Hamilton, and Jim Mitchell.

We received numerous suggestions from our corporate partners and licensees, whom we
could not fully list here.

Appendix C: References
M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co., New York, 1988.

L. Gong, "Java Security: Present and Near Future". IEEE Micro, 17(3):14--19, May/June 1997.

Chapter 1
Java SE Platform Security Architecture

1-72

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/reflect/Method.html#invoke(java.lang.Object,java.lang.Object...)

L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer, "Protecting Poorly Chosen Secrets
from Guessing Attacks". IEEE Journal on Selected Areas in Communications, 11(5):648--656,
June, 1993.

J. Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley, Menlo
Park, California, August 1996.

A.K. Jones. Protection in Programmed Systems. Ph.D. dissertation, Carnegie-Mellon
University, Pittsburgh, PA 15213, June 1973.

B.W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Information
Sciences and Systems, Princeton University, March 1971. Reprinted in ACM Operating
Systems Review, 8(1):18--24, January, 1974.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Menlo
Park, California, 1997.

P.G. Neumann. Computer-Related Risks. Addison-Wesley, Menlo Park, California, 1995.

U.S. General Accounting Office. Information Security: Computer Attacks at Department of
Defense Pose Increasing Risks. Technical Report GAO/AIMD-96-84, Washington, D.C. 20548,
May 1996.

J.H. Saltzer. Protection and the Control of Information Sharing in Multics. Communications of
the ACM, 17(7):388--402, July 1974.

J.H. Saltzer and M.D. Schroeder. The Protection of Information in Computer Systems}.
Proceedings of the IEEE, 63(9):1278--1308, September 1975.

M.D. Schroeder. Cooperation of Mutually Suspicious Subsystems in a Computer Utility. Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA 02139, September 1972.

W.A. Wulf, R. Levin, and S.P. Harbison. HYDRA/C.mmp -- An Experimental Computer System.
McGraw-Hill, 1981.

Standard Algorithm Names
See Java Security Standard Algorithm Names Specification for information about the set of
standard names for algorithms, certificate and keystore types that Java SE requires and uses.

Permissions in the JDK
A permission represents access to a system resource. In order for a resource access to be
allowed for an applet (or an application running with a security manager), the corresponding
permission must be explicitly granted to the code attempting the access.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Chapter 1
Standard Algorithm Names

1-73

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://openjdk.java.net/jeps/411

A permission typically has a name (often referred to as a "target name") and, in some cases, a
comma-separated list of one or more actions. For example, the following code creates a
FilePermission object representing read access to the file named abc in the /tmp directory:

perm = new java.io.FilePermission("/tmp/abc", "read");

Here, the target name is "/tmp/abc" and the action string is "read".

Important:

The previous statement creates a permission object. A permission object represents,
but does not grant access to, a system resource. Permission objects are constructed
and assigned ("granted") to code based on the policy in effect. When a permission
object is assigned to some code, that code is granted the permission to access the
system resource specified in the permission object, in the specified manner. A
permission object may also be constructed by the current security manager when
making access decisions. In this case, the (target) permission object is created based
on the requested access, and checked against the permission objects granted to and
held by the code making the request.

The policy for a Java application environment is represented by a Policy object. In the
"JavaPolicy" Policy implementation, the policy can be specified within one or more policy
configuration files. The policy file(s) specify what permissions are allowed for code from
specified code sources. The following is a sample policy file entry that grants code from the /
home/sysadmin directory read access to the file /tmp/abc:

grant codeBase "file:/home/sysadmin/" {
 permission java.io.FilePermission "/tmp/abc", "read";
};

To know more about policy file locations and granting permissions in policy files, see Default
Policy Implementation and Policy File Syntax.

Technically, whenever a resource access is attempted, all code traversed by the execution
thread up to that point must have permission for that resource access, unless some code on
the thread has been marked as "privileged." See Appendix A: API for Privileged Blocks.

Permission Descriptions and Risks
The following is a list of all built-in JDK permission types. The class summary for each
permission type discusses the risks of granting each permission.

• java.awt.AWTPermission
• java.io.FilePermission
• java.io.SerializablePermission
• java.lang.RuntimePermission
• java.lang.management.ManagementPermission
• java.lang.reflect.ReflectPermission
• java.net.NetPermission

Chapter 1
Permissions in the JDK

1-74

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/AWTPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/FilePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/SerializablePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/RuntimePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ManagementPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/reflect/ReflectPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/NetPermission.html

• java.net.URLPermission
• java.net.SocketPermission
• java.nio.file.LinkPermission
• java.security.AllPermission
• java.security.SecurityPermission
• java.security.UnresolvedPermission
• java.sql.SQLPermission
• java.util.logging.LoggingPermission
• java.util.PropertyPermission
• javax.management.MBeanPermission
• javax.management.MBeanServerPermission
• javax.management.MBeanTrustPermission
• javax.management.remote.SubjectDelegationPermission
• javax.net.ssl.SSLPermission
• javax.security.auth.AuthPermission
• javax.security.auth.PrivateCredentialPermission
• javax.security.auth.kerberos.DelegationPermission
• javax.security.auth.kerberos.ServicePermission
• javax.smartcardio.CardPermission
• javax.sound.sampled.AudioPermission

Note:

See Appendix A: FilePermission Path Name Canonicalization Disabled By Default for
important information about a change in how FilePermission path names are
canonicalized.

Methods and the Permissions They Require
The following table is a list of methods that require permissions, which SecurityManager
method they call, and which permission is checked by the default implementation of that
SecurityManager method.

Note:

This list is not complete; other methods exist that require permissions. See the Java
SE and JDK API Specification for additional information on methods that throw
SecurityException and the permissions that are required.

Chapter 1
Permissions in the JDK

1-75

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/SocketPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/LinkPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AllPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecurityPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/UnresolvedPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/SQLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/LoggingPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanServerPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanTrustPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/remote/SubjectDelegationPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/AuthPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/PrivateCredentialPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/DelegationPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/ServicePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.smartcardio/javax/smartcardio/CardPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/sound/sampled/AudioPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

In the default SecurityManager method implementations, a call to a method in the Method
column can only be successful if the permission specified in the corresponding entry in the
SecurityManager Method column is allowed by the policy currently in effect. For example,
consider the following table row:

Method SecurityManager Method Called Permission

java.awt.Toolkit
 public final EventQueue
 getSystemEventQueue()

checkPermission java.awt.AWTPermission
"accessEventQueue";

This table row specifies that a call to the getSystemEventQueue method in the
java.awt.Toolkit class results in a call to the checkPermission SecurityManager
method, which can only be successful if the following permission is granted to code on the call
stack:

java.awt.AWTPermission "accessEventQueue";

The table rows have the following format, where the runtime value of foo replaces the string
{foo} in the permission name.

Method SecurityManager Method Called Permission

some.package.class
 public static void
someMethod(String foo);

checkXXX SomePermission "{foo}";

As an example, here is one table entry:

Method SecurityManager Method
Called

Permission

java.io.FileInputStream

FileInputStream(String
name)

checkRead(String) java.io.FilePermission
"{name}", "read";

If the FileInputStream method (in this case, a constructor) is called with "/test/
MyTestFile" as the name argument, as in

FileInputStream("/test/MyTestFile");

then in order for the call to succeed, the following permission must be set in the current policy,
allowing read access to the file "/test/MyTestFile":

java.io.FilePermission "/test/MyTestFile", "read";

Chapter 1
Permissions in the JDK

1-76

More specifically, the permission must either be explicitly set, as in this example, or implied by
another permission, such as the following:

java.io.FilePermission "/test/*", "read";

which allows read access to any files in the "/test" directory.

In some cases, a term in braces is not exactly the same as the name of a specific method
argument but is meant to represent the relevant value. Here is an example:

Method SecurityManager Method Called Permission

java.net.DatagramSocket public
synchronized void
receive(DatagramPacket p);

checkAccept({host},
{port})

java.net.SocketPermission
"{host}:{port}", "accept";

Here, the appropriate host and port values are calculated by the receive method and passed
to checkAccept.

In most cases, just the name of the SecurityManager method called is listed. Where the
method is one of multiple methods of the same name, the argument types are also listed, for
example for checkRead(String) and checkRead(FileDescriptor). In other cases where
arguments may be relevant, they are also listed.

The following table is ordered by package name; the methods in classes in the java.awt
package are listed first, followed by methods in classes in the java.beans package, and so on:

Table 1-4 Methods and the Permissions

Method SecurityManager Method Permission

java.awt.Graphics2d
 public abstract void
 setComposite(Composite
comp)

checkPermission java.awt.AWTPermission
"readDisplayPixels" if this
Graphics2D context is drawing to a
Component on the display screen and
the Composite is a custom object
rather than an instance of the
AlphaComposite class. Note: The
setComposite method is actually
abstract and thus can't invoke security
checks. Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPermission method with a
java.awt.AWTPermission("re
adDisplayPixels") permission
under the conditions noted.

java.awt.Robot
 public Robot()
 public
Robot(GraphicsDevice screen)

checkPermission java.awt.AWTPermission
"createRobot"

Chapter 1
Permissions in the JDK

1-77

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.awt.Toolkit
 public void
addAWTEventListener(
 AWTEventListener
listener,
 long eventMask)
 public void
removeAWTEventListener(
 AWTEventListener
listener)

checkPermission java.awt.AWTPermission
"listenToAllAWTEvents"

java.awt.Toolkit
 public abstract PrintJob
getPrintJob(
 Frame frame, String
jobtitle,
 Properties props)

checkPrintJobAccess java.lang.RuntimePermission
"queuePrintJob"
Note: The getPrintJob method is
actually abstract and thus can't invoke
security checks. Each actual
implementation of the method should
call the
java.lang.SecurityManager
checkPrintJobAccess method,
which is successful only if the
java.lang.RuntimePermission
"queuePrintJob" permission is
currently allowed.

java.awt.Toolkit
 public abstract Clipboard
 getSystemClipboard()

checkPermission java.awt.AWTPermission
"accessClipboard"
Note: The getSystemClipboard
method is actually abstract and thus
can't invoke security checks. Each
actual implementation of the method
should call the checkPermission
method, which is successful only if the
java.awt.AWTPermission
"accessClipboard" permission is
currently allowed.

java.awt.Toolkit
 public final EventQueue
 getSystemEventQueue()

checkPermission java.awt.AWTPermission
"accessEventQueue"

java.awt.Window Window()
checkPermission If java.awt.AWTPermission

"showWindowWithoutWarningBanner
" is set, the window will be displayed
without a banner warning that the
window was created by an applet. It it's
not set, such a banner will be displayed.

Chapter 1
Permissions in the JDK

1-78

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.beans.Beans
 public static void
setDesignTime(
 boolean isDesignTime)
 public static void
setGuiAvailable(
 boolean isGuiAvailable)

java.beans.Introspector
 public static synchronized
void

setBeanInfoSearchPath(String
path[])

java.beans.PropertyEditorMana
ger
 public static void
registerEditor(
 Class targetType,
 Class editorClass)
 public static synchronized
void

setEditorSearchPath(String
path[])

checkPropertiesAccess java.util.PropertyPermission
"*", "read,write"

java.io.File
 public boolean delete()
 public void deleteOnExit()

checkDelete(String) java.io.FilePermission
"{name}", "delete"

java.io.FileInputStream

FileInputStream(FileDescripto
r fdObj)

checkRead(FileDescriptor) java.lang.RuntimePermission
"readFileDescriptor"

Chapter 1
Permissions in the JDK

1-79

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.FileInputStream
 FileInputStream(String
name)
 FileInputStream(File file)

java.io.File
 public boolean exists()
 public boolean canRead()
 public boolean isFile()
 public boolean
isDirectory()
 public boolean isHidden()
 public long lastModified()
 public long length()
 public String[] list()
 public String[] list(
 FilenameFilter filter)
 public File[] listFiles()
 public File[] listFiles(
 FilenameFilter filter)
 public File[] listFiles(
 FileFilter filter)

java.io.RandomAccessFile
 RandomAccessFile(String
name, String mode)
 RandomAccessFile(File
file, String mode)

(where mode is "r" in both
RandomAccessFile constructurs)

checkRead(String) java.io.FilePermission
"{name}", "read"

java.io.FileOutputStream

FileOutputStream(FileDescript
or fdObj)

checkWrite(FileDescriptor) java.lang.RuntimePermission
"writeFileDescriptor"

Chapter 1
Permissions in the JDK

1-80

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.FileOutputStream
 FileOutputStream(File file)
 FileOutputStream(String
name)
 FileOutputStream(
 String name,
 boolean append)

java.io.File
 public boolean canWrite()
 public boolean
createNewFile()
 public static File
createTempFile(
 String prefix, String
suffix)
 public static File
createTempFile(
 String prefix,
 String suffix,
 File directory)
 public boolean mkdir()
 public boolean mkdirs()
 public boolean
renameTo(File dest)
 public boolean
setLastModified(long time)
 public boolean
setReadOnly()

checkWrite(String) java.io.FilePermission
"{name}", "write"

java.io.ObjectInputStream
 protected final boolean

enableResolveObject(boolean
enable);

java.io.ObjectOutputStream
 protected final boolean

enableReplaceObject(boolean
enable)

checkPermission java.io.SerializablePermission
"enableSubstitution"

Chapter 1
Permissions in the JDK

1-81

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.io.ObjectInputStream
 protected
ObjectInputStream()

java.io.ObjectOutputStream
 protected
ObjectOutputStream()

checkPermission java.io.SerializablePermission
"enableSubclassImplementation"

java.io.RandomAccessFile
 RandomAccessFile(String
name, String mode)

(where mode is "rw")

checkRead(String) and
checkWrite(String)

java.io.FilePermission
"{name}", "read,write"

java.lang.Class
 public static Class
forName(
 String name,
 boolean initialize,
 ClassLoader loader)

checkPermission If loader is null, and the caller's class
loader is not null, then
java.lang.RuntimePermissio
n("getClassLoader")

java.lang.Class
 public ClassLoader
getClassLoader()

checkPermission If the caller's class loader is null, or is
the same as or an ancestor of the class
loader for the class whose class loader
is being requested, no permission is
needed. Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required.

Chapter 1
Permissions in the JDK

1-82

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Class
 public Class[]
getDeclaredClasses()
 public Field[]
getDeclaredFields()
 public Method[]
getDeclaredMethods()
 public Constructor[]
 getDeclaredConstructors()
 public Field
getDeclaredField(
 String name)
 public Method
getDeclaredMethod(...)
 public Constructor

getDeclaredConstructor(...)

checkMemberAccess(this,
Member.DECLARED) and, if this
class is in a package,
checkPackageAccess({pkgNam
e})

Default checkMemberAccess does
not require any permissions if "this"
class's class loader is the same as that
of the caller. Otherwise, it requires
java.lang.RuntimePermission
"accessDeclaredMembers". If this
class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is also required.

java.lang.Class
 public Class[] getClasses()
 public Field[] getFields()
 public Method[]
getMethods()
 public Constructor[]
getConstructors()
 public Field
getField(String name)
 public Method
getMethod(...)
 public Constructor
getConstructor(...)

checkMemberAccess(this,
Member.PUBLIC) and, if class is in a
package,
checkPackageAccess({pkgNam
e})

Default checkMemberAccess does
not require any permissions when the
access type is Member.PUBLIC. If
this class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is required.

java.lang.Class
 public ProtectionDomain
 getProtectionDomain()

checkPermission java.lang.RuntimePermission
"getProtectionDomain"

java.lang.ClassLoader
 ClassLoader()
 ClassLoader(ClassLoader
parent)

checkCreateClassLoader java.lang.RuntimePermission
"createClassLoader"

Chapter 1
Permissions in the JDK

1-83

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.ClassLoader
 public static ClassLoader
 getSystemClassLoader()
 public ClassLoader
getParent()

checkPermission If the caller's class loader is null, or is
the same as or an ancestor of the class
loader for the class whose class loader
is being requested, no permission is
needed. Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required.

java.lang.Runtime
 public Process exec(String
command)
 public Process exec(
 String command,
 String envp[])
 public Process exec(String
cmdarray[])
 public Process exec(
 String cmdarray[],
 String envp[])

checkExec java.io.FilePermission
"{command}", "execute"

java.lang.Runtime
 public void
addShutdownHook(Thread hook)
 public boolean
removeShutdownHook(Thread
hook)

checkPermission java.lang.RuntimePermission
"shutdownHooks"

java.lang.Runtime
 public void load(String
lib)
 public void
loadLibrary(String lib)

java.lang.System
 public static void
load(String filename)
 public static void
loadLibrary(
 String libname)

checkLink({libName}) where
{libName} is the lib, filename or
libname argument

java.lang.RuntimePermission
"loadLibrary.{libName}"

java.lang.SecurityManager
methods

checkPermission See Table 1-5.

Chapter 1
Permissions in the JDK

1-84

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.System
 public static Properties
 getProperties()
 public static void
 setProperties(Properties
props)

checkPropertiesAccess java.util.PropertyPermission
"*", "read,write"

java.lang.System
 public static String
 getProperty(String key)
 public static String
 getProperty(String key,
String def)

checkPropertyAccess java.util.PropertyPermission
"{key}", "read"

java.lang.System
 public static void
setIn(InputStream in)
 public static void
setOut(PrintStream out)
 public static void
setErr(PrintStream err)

checkPermission java.lang.RuntimePermission
"setIO"

java.lang.System
 public static String
 setProperty(String key,
String value)

checkPermission java.util.PropertyPermission
"{key}", "write"

java.lang.System
 public static synchronized
void

setSecurityManager(SecurityMa
nager s)

checkPermission java.lang.RuntimePermission
"setSecurityManager"

java.lang.Thread
 public ClassLoader
getContextClassLoader()

checkPermission If the caller's class loader is null, or is
the same as or an ancestor of the
context class loader for the thread
whose context class loader is being
requested, no permission is needed.
Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required.

Chapter 1
Permissions in the JDK

1-85

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Thread
 public void
setContextClassLoader(
 ClassLoader cl)

checkPermission java.lang.RuntimePermission
"setContextClassLoader"

java.lang.Thread
 public final void
checkAccess()
 public void interrupt()
 public final void suspend()
 public final void resume()
 public final void
setPriority(
 int newPriority)
 public final void setName(
 String name)
 public final void
setDaemon(
 boolean on)

checkAccess(this) java.lang.RuntimePermission
"modifyThread"

java.lang.Thread
 public static int
 enumerate(Thread
tarray[])

checkAccess({threadGroup}) java.lang.RuntimePermission
"modifyThreadGroup"

java.lang.Thread
 public final void stop()

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a thread other
than itself.

java.lang.RuntimePermission
"modifyThread". .
Also java.lang.RuntimePermission
"stopThread" if the current thread is
trying to stop a thread other than itself.

java.lang.Thread
 public final synchronized
void
 stop(Throwable obj)

checkAccess(this). Also
checkPermission if the current
thread is trying to stop a thread other
than itself or obj is not an instance of
ThreadDeath.

java.lang.RuntimePermission
"modifyThread".
Also java.lang.RuntimePermission
"stopThread" if the current thread is
trying to stop a thread other than itself
or obj is not an instance of
ThreadDeath.

Chapter 1
Permissions in the JDK

1-86

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.Thread
 Thread()
 Thread(Runnable target)
 Thread(String name)
 Thread(Runnable target,
String name)

java.lang.ThreadGroup
 ThreadGroup(String name)
 ThreadGroup(
 ThreadGroup parent,
 String name)

checkAccess({parentThreadG
roup})

java.lang.RuntimePermission
"modifyThreadGroup"

java.lang.Thread
 Thread(ThreadGroup
group, ...)

java.lang.ThreadGroup
 public final void
checkAccess()
 public int
enumerate(Thread list[])
 public int enumerate(
 Thread list[],
 boolean recurse)
 public int
enumerate(ThreadGroup list[])
 public int enumerate(
 ThreadGroup list[],
 boolean recurse)
 public final ThreadGroup
getParent()
 public final void
setDaemon(
 boolean daemon)
 public final void
setMaxPriority(int pri)
 public final void suspend()
 public final void resume()
 public final void destroy()

checkAccess(this) for
ThreadGroup methods, or
checkAccess(group) for Thread
methods

java.lang.RuntimePermission
"modifyThreadGroup"

Chapter 1
Permissions in the JDK

1-87

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.lang.ThreadGroup
 public final void
interrupt()

checkAccess(this) Requires
java.lang.RuntimePermission
"modifyThreadGroup". Also requires
java.lang.RuntimePermission
"modifyThread", since the
java.lang.Thread
interrupt() method is called for
each thread in the thread group and in
all of its subgroups. See the Thread
interrupt() method.

java.lang.ThreadGroup
 public final void stop()

checkAccess(this) Requires
java.lang.RuntimePermission
"modifyThreadGroup". Also requires
java.lang.RuntimePermission
"modifyThread" and possibly
java.lang.RuntimePermission
"stopThread", since the
java.lang.Thread stop()
method is called for each thread in the
thread group and in all of its subgroups.
See the Thread stop() method.

java.lang.reflect.AccessibleO
bject
 public static void
setAccessible(...)
 public void
setAccessible(...)

checkPermission java.lang.reflect.ReflectPermis
sion "suppressAccessChecks"

java.net.Authenticator
 public static
PasswordAuthentication

requestPasswordAuthenticatio
n(
 InetAddress addr,
 int port,
 String protocol,
 String prompt,
 String scheme)

checkPermission java.net.NetPermission
"requestPasswordAuthentication"

java.net.Authenticator
 public static void
 setDefault(Authenticator
a)

checkPermission java.net.NetPermission
"setDefaultAuthenticator"

Chapter 1
Permissions in the JDK

1-88

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#interrupt()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#interrupt()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#stop()

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.MulticastSocket
 public void
 joinGroup(InetAddress
mcastaddr)
 public void
 leaveGroup(InetAddress
mcastaddr)

checkMulticast(InetAddress
)

java.net.SocketPermission(mcas
taddr.getHostAddress(),
"accept,connect")

java.net.DatagramSocket
 public void
send(DatagramPacket p)

checkMulticast(p.getAddres
s()) or
checkConnect(p.getAddres
s().getHostAddress(),
p.getPort())

if
(p.getAddress().isMulticastAd
dress()) {
 java.net.SocketPermission(

(p.getAddress()).getHostAddre
ss(),
 "accept,connect")
} else {
 port = p.getPort();
 host =
p.getAddress().getHostAddres
s();
 if (port == -1)

java.net.SocketPermission
"{host}","resolve";
 else

java.net.SocketPermission
"{host}:{port}","connect";
}

Chapter 1
Permissions in the JDK

1-89

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.MulticastSocket
 public synchronized void
 send(DatagramPacket p,
byte ttl)

checkMulticast(p.getAddres
s(), ttl) or
checkConnect(p.getAddres
s().getHostAddress(),
p.getPort())

if
(p.getAddress().isMulticastAd
dress()) {
 java.net.SocketPermission(

(p.getAddress()).getHostAddre
ss(),
 "accept,connect")
} else {
 port = p.getPort();
 host =
p.getAddress().getHostAddres
s();
 if (port == -1)

java.net.SocketPermission
"{host}","resolve";
 else

java.net.SocketPermission
"{host}:{port}","connect"
}

java.net.InetAddress
 public String getHostName()
 public static InetAddress[]
 getAllByName(String host)
 public static InetAddress
getLocalHost()

java.net.DatagramSocket
 public InetAddress
getLocalAddress()

checkConnect({host}, -1) java.net.SocketPermission
"{host}", "resolve"

java.net.ServerSocket
 ServerSocket(...)

java.net.DatagramSocket
 DatagramSocket(...)

java.net.MulticastSocket
 MulticastSocket(...)

checkListen({port}) java.net.SocketPermission
"localhost:{port}","listen";

Chapter 1
Permissions in the JDK

1-90

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.ServerSocket
 public Socket accept()
 protected final void
implAccept(Socket s)

checkAccept({host},
{port})

java.net.SocketPermission
"{host}:{port}", "accept"

Chapter 1
Permissions in the JDK

1-91

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.net.ServerSocket
 public static synchronized
void
 setSocketFactory(...)

java.net.Socket
 public static synchronized
void
 setSocketImplFactory(...)

java.net.URL
 public static synchronized
void

setURLStreamHandlerFactory(..
.)

java.net.URLConnection
 public static synchronized
void

setContentHandlerFactory(...)
 public static void

setFileNameMap(FileNameMap
map)

java.net.HttpURLConnection
 public static void

setFollowRedirects(boolean
set)

java.rmi.activation.Activatio
nGroup
 public static synchronized
 ActivationGroup
createGroup(...)
 public static synchronized
void

setSystem(ActivationSystem
system)

java.rmi.server.RMISocketFact
ory
 public synchronized static

checkSetFactory java.lang.RuntimePermission
"setFactory"

Chapter 1
Permissions in the JDK

1-92

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

void
 setSocketFactory(...)

java.net.Socket
 Socket(...)

checkConnect({host},
{port})

java.net.SocketPermission
"{host}:{port}", "connect"

java.net.DatagramSocket
 public synchronized void
 receive(DatagramPacket p)

checkAccept({host},
{port})

java.net.SocketPermission
"{host}:{port}", "accept"

java.net.URL URL(...)
checkPermission java.net.NetPermission

"specifyStreamHandler"

java.net.URLClassLoader
 URLClassLoader(...)

checkCreateClassLoader java.lang.RuntimePermission
"createClassLoader"

java.security.AccessControlCo
ntext
 public
AccessControlContext(
 AccessControlContext acc,
 DomainCombiner combiner)
 public DomainCombiner
getDomainCombiner()

checkPermission java.security.SecurityPermissio
n "createAccessControlContext"

java.security.Identity
 public void
addCertificate(...)

checkSecurityAccess("addId
entityCertificate")

java.security.SecurityPermissio
n "addIdentityCertificate"

java.security.Identity
 public void
removeCertificate(...)

checkSecurityAccess("remov
eIdentityCertificate")

java.security.SecurityPermissio
n "removeIdentityCertificate"

java.security.Identity
 public void setInfo(String
info)

checkSecurityAccess("setId
entityInfo")

java.security.SecurityPermissio
n "setIdentityInfo"

Chapter 1
Permissions in the JDK

1-93

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Identity
 public void
setPublicKey(PublicKey key)

checkSecurityAccess("setId
entityPublicKey")

java.security.SecurityPermissio
n "setIdentityPublicKey"

java.security.Identity
 public String toString(...)

checkSecurityAccess("print
Identity")

java.security.SecurityPermissio
n "printIdentity"

java.security.IdentityScope
 protected static void
setSystemScope()

checkSecurityAccess("setSy
stemScope")

java.security.SecurityPermissio
n "setSystemScope"

java.security.Permission
 public void
checkGuard(Object object)

checkPermission(this) This Permission object is the
permission checked.

java.security.Policy
 public static Policy
getPolicy()

checkPermission java.security.SecurityPermissio
n "getPolicy"

java.security.Policy
 public static void
 setPolicy(Policy policy)

checkPermission java.security.SecurityPermissio
n "setPolicy"

java.security.Policy
 public static Policy
 getInstance(
 String type,
 SpiParameter params)
 getInstance(
 String type,
 SpiParameter params,
 String provider)
 getInstance(
 String type,
 SpiParameter params,
 Provider provider)

checkPermission java.security.SecurityPermissio
n "createPolicy.{type}"

Chapter 1
Permissions in the JDK

1-94

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Provider
 public synchronized void
clear()

checkSecurityAccess("clear
ProviderProperties."+
{name})

java.security.SecurityPermissio
n "clearProviderProperties.
{name}" where name is the provider
name.

java.security.Provider
 public synchronized Object
 put(Object key, Object
value)

checkSecurityAccess("putPr
oviderProperty."+{name})

java.security.SecurityPermissio
n "putProviderProperty.{name}"
where name is the provider name.

java.security.Provider
 public synchronized Object
 remove(Object key)

checkSecurityAccess("remov
eProviderProperty."+
{name})

java.security.SecurityPermissio
n "removeProviderProperty.
{name}" where name is the provider
name.

java.security.SecureClassLoad
er
 SecureClassLoader(...)

checkCreateClassLoader java.lang.RuntimePermission
"createClassLoader"

java.security.Security
 public static void
getProperty(String key)

checkPermission java.security.SecurityPermissio
n "getProperty.{key}"

java.security.Security
 public static int
 addProvider(Provider
provider)
 public static int
 insertProviderAt(
 Provider provider,
 int position);

checkSecurityAccess("inser
tProvider."+provider.getNa
me())

java.security.SecurityPermissio
n "insertProvider.{name}"

java.security.Security
 public static void
 removeProvider(String
name)

checkSecurityAccess("remov
eProvider."+name)

java.security.SecurityPermissio
n "removeProvider.{name}"

Chapter 1
Permissions in the JDK

1-95

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

java.security.Security
 public static void
 setProperty(String key,
String datum)

checkSecurityAccess("setPr
operty."+key)

java.security.SecurityPermissio
n "setProperty.{key}"

java.security.Signer
 public PrivateKey
getPrivateKey()

checkSecurityAccess("getSi
gnerPrivateKey")

java.security.SecurityPermissio
n "getSignerPrivateKey"

java.security.Signer
 public final void
 setKeyPair(KeyPair pair)

checkSecurityAccess("setSi
gnerKeypair")

java.security.SecurityPermissio
n "setSignerKeypair"

java.sql.DriverManager
 public static synchronized
void
 setLogWriter(PrintWriter
out)

checkPermission java.sql.SQLPermission "setLog"

java.sql.DriverManager
 public static synchronized
void
 setLogStream(PrintWriter
out)

checkPermission java.sql.SQLPermission "setLog"

java.util.Locale
 public static synchronized
void
 setDefault(Locale
newLocale)

checkPermission java.util.PropertyPermission
"user.language","write"

java.util.zip.ZipFile
 ZipFile(String name)

checkRead java.io.FilePermission
"{name}","read"

Chapter 1
Permissions in the JDK

1-96

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.Subject
 public static Subject
getSubject(
 final
AccessControlContext acc)

checkPermission javax.security.auth.AuthPermiss
ion "getSubject"

javax.security.auth.Subject
 public void setReadOnly()

checkPermission javax.security.auth.AuthPermiss
ion "setReadOnly"

javax.security.auth.Subject
 public static Object doAs(
 final Subject subject,
 final PrivilegedAction
action)

checkPermission javax.security.auth.AuthPermiss
ion "doAs"

javax.security.auth.Subject
 public static Object doAs(
 final Subject subject,
 final
PrivilegedExceptionAction
action)
 throws

java.security.PrivilegedActio
nException

checkPermission javax.security.auth.AuthPermiss
ion "doAs"

javax.security.auth.Subject
 public static Object
doAsPrivileged(
 final Subject subject,
 final PrivilegedAction
action,
 final
AccessControlContext acc)

checkPermission javax.security.auth.AuthPermiss
ion "doAsPrivileged"

Chapter 1
Permissions in the JDK

1-97

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.Subject
 public static Object
doAsPrivileged(
 final Subject subject,
 final
PrivilegedExceptionAction
action,
 final
AccessControlContext acc)
 throws

java.security.PrivilegedActio
nException

checkPermission javax.security.auth.AuthPermiss
ion "doAsPrivileged"

javax.security.auth.SubjectDo
mainCombiner
 public Subject getSubject()

checkPermission javax.security.auth.AuthPermiss
ion
"getSubjectFromDomainCombiner"

javax.security.auth.SubjectDo
mainCombiner
 public Subject getSubject()

checkPermission javax.security.auth.AuthPermiss
ion
"getSubjectFromDomainCombiner"

javax.security.auth.login.Log
inContext
 public LoginContext(String
name)
 throws LoginException

checkPermission javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

javax.security.auth.login.Log
inContext
 public LoginContext(
 String name,
 Subject subject)
 throws LoginException

checkPermission javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

Chapter 1
Permissions in the JDK

1-98

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.login.Log
inContext
 public LoginContext(
 String name,
 CallbackHandler
callbackHandler)
 throws LoginException

checkPermission javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

javax.security.auth.login.Log
inContext
 public LoginContext(
 String name,
 Subject subject,
 CallbackHandler
callbackHandler)
 throws LoginException

checkPermission javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

javax.security.auth.login.Con
figuration
 public static Configuration
 getConfiguration()

checkPermission javax.security.auth.AuthPermiss
ion "getLoginConfiguration"

javax.security.auth.login.Con
figuration
 public static void
setConfiguration(
 Configuration
configuration)

checkPermission javax.security.auth.AuthPermiss
ion "setLoginConfiguration"

javax.security.auth.login.Con
figuration
 public static void
refresh()

checkPermission javax.security.auth.AuthPermiss
ion "refreshLoginConfiguration"

Chapter 1
Permissions in the JDK

1-99

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission

javax.security.auth.login.Con
figuration
 public static Configuration
 getInstance(
 String type,
 SpiParameter params)
 getInstance(
 String type,
 SpiParameter params,
 String provider)
 getInstance(String type,
 SpiParameter params,
 Provider provider)

checkPermission javax.security.auth.AuthPermiss
ion "createLoginConfiguration.
{type}"

java.lang.SecurityManager Method Permission Checks
The following table shows which permissions are checked by the default implementations of
the java.lang.SecurityManager methods.

Each of the specified check methods calls the SecurityManager checkPermission method with
the specified permission, except for the checkConnect and checkRead methods that take a
context argument. Those methods expect the context to be an AccessControlContext and
they call the context's checkPermission method with the specified permission.

Table 1-5 java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkAccept(String host, int
port);

java.net.SocketPermission "{host}:{port}",
"accept";

public void checkAccess(Thread t); java.lang.RuntimePermission "modifyThread";

public void checkAccess(ThreadGroup g); java.lang.RuntimePermission
"modifyThreadGroup";

Chapter 1
Permissions in the JDK

1-100

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkAwtEventQueueAccess();

Note:

This method is deprecated; use
instead public void
checkPermission(Perm
ission perm);

java.awt.AWTPermission "accessEventQueue";

public void checkConnect(String host, int
port);

if (port == -1)
 java.net.SocketPermission
"{host}","resolve";
else
 java.net.SocketPermission "{host}:
{port}","connect";

public void checkConnect(
 String host,
 int port,
 Object context);

if (port == -1)
 java.net.SocketPermission
"{host}","resolve";
else
 java.net.SocketPermission "{host}:
{port}","connect";

public void checkCreateClassLoader(); java.lang.RuntimePermission
"createClassLoader";

public void checkDelete(String file); java.io.FilePermission "{file}", "delete";

public void checkExec(String cmd);
if cmd is an absolute path:

 java.io.FilePermission "{cmd}", "execute";

else

 java.io.FilePermission "<<ALL_FILES>>",
"execute";

Chapter 1
Permissions in the JDK

1-101

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkExit(int status); java.lang.RuntimePermission "exitVM.
{status}";

public void checkLink(String lib); java.lang.RuntimePermission "loadLibrary.
{lib}";

public void checkListen(int port); java.net.SocketPermission "localhost:
{port}","listen";

public void checkMemberAccess(Class clazz,
int which);

Note:

This method is deprecated; use
instead public void
checkPermission(Perm
ission perm);

if (which != Member.PUBLIC) {
 if (currentClassLoader() !=
clazz.getClassLoader()) {
 checkPermission(
 new java.lang.RuntimePermission(
 "accessDeclaredMembers"));
 }
}

public void checkMulticast(InetAddress
maddr);

java.net.SocketPermission(
 maddr.getHostAddress(),"accept,connect");

public void checkMulticast(InetAddress
maddr, byte ttl);

Note:

This method is deprecated; use
instead public void
checkPermission(Perm
ission perm);

java.net.SocketPermission(
 maddr.getHostAddress(),"accept,connect");

public void checkPackageAccess(String pkg); java.lang.RuntimePermission
"accessClassInPackage.{pkg}";

Chapter 1
Permissions in the JDK

1-102

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkPackageDefinition(String
pkg);

java.lang.RuntimePermission
"defineClassInPackage.{pkg}";

public void checkPrintJobAccess(); java.lang.RuntimePermission "queuePrintJob";

public void checkPropertiesAccess(); java.util.PropertyPermission "*",
"read,write";

public void checkPropertyAccess(String key); java.util.PropertyPermission "{key}",
"read,write";

public void checkRead(FileDescriptor fd); java.lang.RuntimePermission
"readFileDescriptor";

public void checkRead(String file); java.io.FilePermission "{file}", "read";

public void checkRead(String file, Object
context);

java.io.FilePermission "{file}", "read";

public void checkSecurityAccess(String
target);

java.security.SecurityPermission "{target}";

public void checkSetFactory(); java.lang.RuntimePermission "setFactory";

Chapter 1
Permissions in the JDK

1-103

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkSystemClipboardAccess();

Note:

This method is deprecated; use
instead public void
checkPermission(Perm
ission perm);

java.awt.AWTPermission "accessClipboard";

public boolean checkTopLevelWindow(Object
window);

Note:

This method is deprecated; use
instead public void
checkPermission(Perm
ission perm);

java.awt.AWTPermission
"showWindowWithoutWarningBanner";

public void checkWrite(FileDescriptor fd); java.lang.RuntimePermission
"writeFileDescriptor";

public void checkWrite(String file); java.io.FilePermission "{file}", "write";

public SecurityManager(); java.lang.RuntimePermission
"createSecurityManager";

JDK Supported Permissions
The following permissions are not standard but the JDK supports them; you may need to grant
them in policy files.

• jdk.net.NetworkPermission "setOption.SO_FLOW_SLA";
• com.sun.tools.attach.AttachPermission "attachVirtualMachine";
• com.sun.jdi.JDIPermission "virtualMachineManager";
• com.sun.security.jgss.InquireSecContextPermission "*";

Chapter 1
Permissions in the JDK

1-104

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.net/jdk/net/NetworkPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.attach/com/sun/tools/attach/AttachPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/com/sun/jdi/JDIPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/InquireSecContextPermission.html

• jdk.jfr.FlightRecorderPermission "accessFlightRecorder", "registerEvent";

Default Policy Implementation and Policy File Syntax
The policy for a Java programming language application environment (specifying which
permissions are available for code from various sources, and executing as various principals)
is represented by a Policy object. More specifically, it is represented by a Policy subclass
providing an implementation of the abstract methods in the Policy class (which is in the
java.security package).

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

The source location for the policy information utilized by the Policy object is up to the Policy
implementation. The Policy reference implementation obtains its information from static policy
configuration files.

The rest of this document pertains to the Policy reference implementation and the syntax that
must be used in policy files it reads:

• Default Policy Implementation

• Default Policy File Locations

• Modifying the Policy Implementation

• Policy File Syntax

• Policy File Examples

• Property Expansion in Policy Files

• Windows Systems, File Paths, and Property Expansion

• General Expansion in Policy Files

Default Policy Implementation
In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration file(s) specify what permissions are allowed for code from
a specified code source, and executed by a specified principal. Each configuration file must be
encoded in UTF-8.

There is by default a single system-wide policy file, and a single (optional) user policy file. By
default, permissions required by JDK modules that are loaded by the platform class loader or
its ancestors are always granted.

The Policy reference implementation is initialized the first time its getPermissions method is
called, or whenever its refresh method is called. Initialization involves parsing the policy
configuration file(s) (see Policy File Syntax), and then populating the Policy object.

Default Policy File Locations
There is by default a single system-wide policy file, and a single (optional) user policy file.
When the Policy is initialized, the system policy is loaded in first, and then the user policy is

Chapter 1
Permissions in the JDK

1-105

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jfr/jdk/jfr/FlightRecorderPermission.html
https://openjdk.java.net/jeps/411

added to it. If neither policy is present, a built-in policy is used. This built-in policy is the same
as the java.policy file installed with the JDK.

System Policy File Locations

By default, the system policy file is <java-home>/conf/security/java.policy.

The system policy file is meant to grant system-wide code permissions. The java.policy file
installed with the JDK allows anyone to listen on dynamic ports, and allows any code to read
certain "standard" properties that are not security-sensitive, such as the os.name and
file.separator properties.

User Policy File Location

By default, the user policy file is <user-home>/.java.policy.

Policy File Location and Format

Policy file locations are specified in the security properties file <java-home>/conf/
security/java.security.

The policy file locations are specified as the values of properties whose names are of the
following form:

policy.url.n

Here, n is a number. You specify each such property value in a line of the following form:

policy.url.n=URL

Here, URL is a URL specification. For example, the default system and user policy files are
defined in the security properties file as:

policy.url.1=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

(See Property Expansion in Policy Files for information about specifying property values via a
special syntax, such as specifying the java.home property value via ${java.home}.)

You can actually specify a number of URLs (including ones of the form "http://"), and all the
designated policy files will get loaded. You can also comment out or change the second one to
disable reading the default user policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not find a URL.
Thus if you have policy.url.1 and policy.url.3, and policy.url.3 will never be read.

Specifying an Additional Policy File at Runtime

It is also possible to specify an additional or a different policy file when invoking execution of an
application. This can be done via the -Djava.security.policy command line argument, which
sets the value of the java.security.policy property. For example, if you use following
command, where someURL is a URL specifying the location of a policy file, then the specified

Chapter 1
Permissions in the JDK

1-106

policy file will be loaded in addition to all the policy files that are specified in the security
properties file.

java -Djava.security.manager -Djava.security.policy=someURL SomeApp

The URL can be any regular URL or simply the name of a policy file in the current directory, as
in:

java -Djava.security.manager -Djava.security.policy=mypolicy SomeApp

The -Djava.security.manager option ensures that the default security manager is installed,
and thus the application is subject to policy checks. It is not required if the application SomeApp
installs a security manager.

If you use the following command (note the double equals) then just the specified policy file will
be used; all the ones indicated in the security properties file will be ignored.

java -Djava.security.manager -Djava.security.policy==someURL SomeApp

Note:

The policy file value of the -Djava.security.policy option is ignored if the
policy.allowSystemProperty property in the security properties file is set to false.
The default is true.

Modifying the Policy Implementation
The Policy reference implementation can be modified by editing the security properties file,
which is the java.security file in the conf/security directory of the JDK.

An alternative policy class can be given to replace the Policy reference implementation class,
as long as the former is a subclass of the abstract Policy class and implements the
getPermissions method (and other methods as necessary).

One of the types of properties you can set in java.security is of the following form:

 policy.provider=PolicyClassName

PolicyClassName must specify the fully qualified name of the desired Policy implementation
class.

The default security properties file entry for this property is the following:

 policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

 policy.provider=com.mycom.MyPolicy

Chapter 1
Permissions in the JDK

1-107

Policy File Syntax
The policy configuration file(s) for a JDK installation specifies what permissions (which types of
system resource accesses) are granted to code from a specified code source, and executed as
a specified principal.

For an applet (or an application running under a security manager) to be allowed to perform
secured actions (such as reading or writing a file), the applet (or application) must be granted
permission for that particular action. In the Policy reference implementation, that permission
must be granted by a grant entry in a policy configuration file. The only exception is that code
always automatically has permission to read files from its same (URL) location, and
subdirectories of that location; it does not need explicit permission to do so.

A policy configuration file essentially contains a list of entries. It may contain a "keystore" entry,
and contains zero or more "grant" entries.

Keystore Entry

A keystore is a database of private keys and their associated digital certificates such as X.509
certificate chains authenticating the corresponding public keys. The keytool utility is used to
create and administer keystores. The keystore specified in a policy configuration file is used to
look up the public keys of the signers specified in the grant entries of the file. A keystore entry
must appear in a policy configuration file if any grant entries specify signer aliases, or if any
grant entries specify principal aliases.

At this time, there can be only one keystore/keystorePasswordURL entry in the policy file
(other entries following the first one are ignored). This entry can appear anywhere outside the
file's grant entries. It has the following syntax:

keystore "some_keystore_url", "keystore_type", "keystore_provider";
keystorePasswordURL "some_password_url";

Here,

some_keystore_url
Specifies the URL location of the keystore.

some_password_url
Specifies the URL location of the keystore password.

keystore_type
Specifies the keystore type.

keystore_provider
Specifies the keystore provider.

Chapter 1
Permissions in the JDK

1-108

Note:

• The input stream from some_keystore_url is passed to the KeyStore.load
method.

• If NONE is specified as the URL, then a null stream is passed to the
KeyStore.load method. NONE should be specified in the URL if the KeyStore
is not file-based. For example, if it resides on a hardware token device.

• The URL is relative to the policy file location. If the policy file is specified in the
security properties file as:

 policy.url.1=http://foo.example.com/fum/some.policy

and that policy file has an entry:

 keystore ".keystore";

then the keystore will be loaded from:

 http://foo.example.com/fum/.keystore

• The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and the
algorithms used to protect private keys in the keystore and the integrity of the keystore itself.
The default type is "PKCS12". Thus, if the keystore type is "PKCS12", it does not need to be
specified in the keystore entry.

Grant Entries

Code being executed is always considered to come from a particular "code source"
(represented by an object of type CodeSource). The code source includes not only the location
(URL) where the code originated from, but also a reference to the certificate(s) containing the
public key(s) corresponding to the private key(s) used to sign the code. Certificates in a code
source are referenced by symbolic alias names from the user's keystore. Code is also
considered to be executed as a particular principal (represented by an object of type
Principal), or group of principals.

Each grant entry includes one or more "permission entries" preceded by optional codeBase,
signedBy, and principal name/value pairs that specify which code you want to grant the
permissions. The basic format of a grant entry is the following:

 grant signedBy "signer_names", codeBase "URL",
 principal principal_class_name "principal_name",
 principal principal_class_name "principal_name",
 ... {

 permission permission_class_name "target_name", "action",
 signedBy "signer_names";
 permission permission_class_name "target_name", "action",
 signedBy "signer_names";

Chapter 1
Permissions in the JDK

1-109

 ...
 };

All non-italicized items must appear as-is (although case doesn't matter and some are
optional). Italicized items represent variable values.

A grant entry must begin with the word grant.

The SignedBy, Principal, and CodeBase Fields
The signedBy, codeBase, and principal values are optional, and the order of these fields does
not matter.

signedBy Value

A signedBy value indicates the alias for a certificate stored in the keystore. The public key
within that certificate is used to verify the digital signature on the code; you grant the
permission(s) to code signed by the private key corresponding to the public key in the keystore
entry specified by the alias.

The signedBy value can be a comma-separated list of multiple aliases. An example is
"Adam,Eve,Charles", which means "signed by Adam and Eve and Charles"; the relationship is
AND, not OR. To be more exact, a statement like "Code signed by Adam" means "Code in a
class file contained in a JAR which is signed using the private key corresponding to the public
key certificate in the keystore whose entry is aliased by Adam".

The signedBy field is optional in that, if it is omitted, it signifies "any signer". It doesn't matter
whether the code is signed or not or by whom.

principal Value

A principal value specifies a class_name/principal_name pair which must be present within the
executing thread's principal set. The principal set is associated with the executing code by way
of a Subject.

The principal_class_name may be set to the wildcard value, *, which allows it to match any
Principal class. In addition, the principal_name may also be set to the wildcard value, *,
allowing it to match any Principal name. When setting the principal_class_name or
principal_name to *, do not surround the * with quotes. Also, if you specify a wildcard principal
class, you must also specify a wildcard principal name.

The principal field is optional in that, if it is omitted, it signifies "any principals".

Keystore Alias Replacement

If the principal class_name/principal_name pair is specified as a single quoted string, then it is
treated as a keystore alias. The keystore is consulted and queried (via the alias) for an X509
Certificate. If one is found, the principal class_name is automatically treated as
javax.security.auth.x500.X500Principal, and the principal_name is automatically treated
as the subject distinguished name from the certificate. If an X509 Certificate mapping is not
found, the entire grant entry is ignored.

codeBase Value

A codeBase value indicates the code source location; you grant the permission(s) to code from
that location. An empty codeBase entry signifies "any code"; it doesn't matter where the code
originates from.

Chapter 1
Permissions in the JDK

1-110

Note:

A codeBase value is a URL and thus should always utilize slashes (never
backslashes) as the directory separator, even when the code source is actually on a
Windows system. Thus, if the source location for code on a Windows system is
actually C:\somepath\api\, then the policy codeBase entry should look like:

grant codeBase "file:/C:/somepath/api/" {
 ...
};

The exact meaning of a codeBase value depends on the characters at the end. A codeBase with
a trailing "/" matches all class files (not JAR files) in the specified directory. A codeBase with a
trailing "/*" matches all files (both class and JAR files) contained in that directory. A codeBase
with a trailing "/-" matches all files (both class and JAR files) in the directory and recursively
all files in subdirectories contained in that directory. The following table illustrates the different
cases:

Table 1-6 How Codebase URLs in Downloaded Code Match Those in Policy Files

Codebase URL of Downloaded Code Codebase URL in Policy File Match?

www.example.com/usr/ann/ www.example.com/usr/ann Yes

www.example.com/usr/ann/ www.example.com/usr/ann/ Yes

www.example.com/usr/ann/ www.example.com/usr/ann/* Yes

www.example.com/usr/ann/ www.example.com/usr/ann/- Yes

www.example.com/usr/ann/appl.jar www.example.com/usr/ann/ No

www.example.com/usr/ann/appl.jar www.example.com/usr/ann/- Yes

www.example.com/usr/ann/appl.jar www.example.com/usr/ann/* Yes

www.example.com/usr/ann/appl.jar www.example.com/usr/- Yes

www.example.com/usr/ann/appl.jar www.example.com/usr/* No

www.example.com/usr/ann/ www.example.com/usr/- Yes

www.example.com/usr/ann/ www.example.com/usr/* No

If you are using a modular runtime image (see the jlink tool), you can grant permissions to
the application and library modules in the image by specifying a jrt URL as the codeBase
value in a policy file. See JEP 220: Modular Run-Time Images for more information about jrt
URLs.

The following example grants permission to read the foo property to the module
com.greetings:

grant codeBase "jrt:/com.greetings" {
 permission java.util.PropertyPermission "foo", "read";
};

Chapter 1
Permissions in the JDK

1-111

https://openjdk.java.net/jeps/220

The Permission Entries
A permission entry must begin with the word permission. The word permission_class_name
in the template in the previous section would actually be a specific permission type, such as
java.io.FilePermission or java.lang.RuntimePermission.

The "action" is required for many permission types, such as java.io.FilePermission (where it
specifies what type of file access is permitted). It is not required for categories such as
java.lang.RuntimePermission where it is not necessary, you either have the permission
specified by the "target_name" value following the permission_class_name or you don't.

The signedBy name/value pair for a permission entry is optional. If present, it indicates a
signed permission. That is, the permission class itself must be signed by the given alias(es) in
order for the permission to be granted. For example, suppose you have the following grant
entry:

 grant {
 permission Foo "foobar", signedBy "FooSoft";
 };

Then this permission of type Foo is granted if the Foo.class permission was placed in a JAR
file and the JAR file was signed by the private key corresponding to the public key in the
certificate specified by the "FooSoft" alias, or if Foo.class is a system class, since system
classes are not subject to policy restrictions.

Items that appear in a permission entry must appear in the specified order (permission,
permission_class_name, "target_name", "action", and signedBy "signer_names"). An entry is
terminated with a semicolon.

Case is unimportant for the identifiers (permission, signedBy, codeBase, etc.) but is significant
for the permission_class_name or for any string that is passed in as a value.

Note:

See Appendix A: FilePermission Path Name Canonicalization Disabled By Default for
important information about a change in how FilePermission path names are
canonicalized.

File Path Specifications on Windows Systems

When you are specifying a java.io.FilePermission, the "target_name" is a file path. On
Windows systems, whenever you directly specify a file path in a string (but not in a codebase
URL), you need to include two backslashes for each actual single backslash in the path, as in

 grant {
 permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";
 };

The reason this is necessary is because the strings are processed by a tokenizer
(java.io.StreamTokenizer), which allows "\" to be used as an escape string (for example, "\n"
to indicate a new line) and which thus requires two backslashes to indicate a single backslash.

Chapter 1
Permissions in the JDK

1-112

After the tokenizer has processed the previous file path string, converting double backslashes
to single backslashes, the end result is

 "C:\users\cathy\foo.bat"

Policy File Examples

The following policy configuration file contains two entries:

 // If the code is signed by "Duke", grant it read/write access to all
 // files in /tmp:
 grant signedBy "Duke" {
 permission java.io.FilePermission "/tmp/*", "read,write";
 };

 // Grant everyone the following permission:
 grant {
 permission java.util.PropertyPermission "java.vendor", "read";
 };

The following policy configuration file specifies that only code that satisfies the following
conditions can call methods in the Security class to add or remove providers or to set
Security Properties:

• The code was loaded from a signed JAR file that is in the "/home/sysadmin/" directory on
the local file system.

• The signature can be verified using the public key referenced by the alias name "sysadmin"
in the keystore.

 grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*" {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 permission java.security.SecurityPermission "Security.setProperty.*";
 };

Either component of the policy entry (or both) may be missing.

The following is a policy configuration file where codeBase is missing:

 grant signedBy "sysadmin" {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

If this policy is in effect, then code that comes in a JAR file signed by "sysadmin" can add/
remove providers, regardless of where the JAR file originated from.

The following is a policy configuration file without a signer:

 grant codeBase "file:/home/sysadmin/-" {
 permission java.security.SecurityPermission "Security.insertProvider.*";

Chapter 1
Permissions in the JDK

1-113

 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

In this case, code that comes from anywhere in the "home/sysadmin/" directory on the local
file system can add/remove providers. The code does not need to be signed.

The following is a policy configuration file where neither codeBase nor signedBy is included:

 grant {
 permission java.security.SecurityPermission "Security.insertProvider.*";
 permission java.security.SecurityPermission "Security.removeProvider.*";
 };

Here, with both code source components missing, any code (regardless of where it originated
from, or whether or not it is signed, or who signed it) can add/remove providers.

The following represents a principal-based entry:

 grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/home/Alice", "read, write";
 };

This permits any code executing as the X500Principal, "cn=Alice", permission to read and
write to "/home/Alice”.

The following represents a principal-based entry with a wildcard value:

 grant principal javax.security.auth.x500.X500Principal * {
 permission java.io.FilePermission "/tmp", "read, write";
 };

This permits any code executing as an X500Principal (regardless of the distinguished name),
permission to read and write to "/tmp”.

The following example shows a grant statement with both codesource and principal
information:

 grant codebase "http://www.games.example.com",
 signedBy "Duke",
 principal javax.security.auth.x500.X500Principal "cn=Alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
 };

This allows code downloaded from "www.games.example.com", signed by "Duke", and executed
by "cn=Alice", permission to read and write into the "/tmp/games" directory.

The following example shows a grant statement with KeyStore alias replacement:

 keystore "http://foo.example.com/blah/.keystore";

 grant principal "alice" {
 permission java.io.FilePermission "/tmp/games", "read, write";
 };

Chapter 1
Permissions in the JDK

1-114

"alice" will be replaced by the following:

 javax.security.auth.x500.X500Principal "cn=Alice"

This assumes that X.509 certificate associated with the keystore alias, alice, has a subject
distinguished name of "cn=Alice". This allows code executed by the X500Principal "cn=Alice"
permission to read and write into the "/tmp/games" directory.

Property Expansion in Policy Files
Property expansion is possible in policy files and in the security properties file.

Property expansion is similar to expanding variables in a shell. That is, when a string like

${some.property}

appears in a policy file, or in the security properties file, it will be expanded to the value of the
system property. For example,

permission java.io.FilePermission "${user.home}", "read";

will expand "${user.home}" to use the value of the "user.home" system property. If that
property's value is "/home/cathy", then the previous example is equivalent to

permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special notation of
"${/}", which is a shortcut for ${file.separator}". This allows things like

permission java.io.FilePermission "${user.home}${/}*", "read";

If the value of the "user.home " property is /home/cathy, and you are on Linux or macOS, the
previous example gets converted to:

permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand the "user.home" value is C:\users\cathy and you are on a Windows
system, the previous example gets converted to:

permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:${my.libraries}/api/"

Chapter 1
Permissions in the JDK

1-115

then any file separator characters will be automatically converted to / characters. For example,
suppose the value of my.libraries is C:\Users\me\lib. Thus on a Windows system, the
previous example would get converted to

grant codeBase "file:C:/Users/me/lib/api/"

Thus you don't need to use ${/} in codebase strings (and you shouldn't). Property expansion
takes place anywhere a double quoted string is allowed in the policy file. This includes the
"signer_names", "URL", "target_name", and "action" fields. Whether or not property expansion
is allowed is controlled by the value of the "policy.expandProperties" property in the security
properties file. If the value of this property is true (the default), expansion is allowed.

Note:

You can't use nested properties; they will not work. For example,

"${user.${foo}}"

doesn't work, even if the "foo" property is set to "home". The reason is the property
parser doesn't recognize nested properties; it simply looks for the first "${", and then
keeps looking until it finds the first "}" and tries to interpret the result (in this case, "$
{user.$foo}") as a property, but fails if there is no such property.

Note:

If a property can't be expanded in a grant entry, permission entry, or keystore entry,
that entry is ignored. For example, if the system property "foo" is not defined and you
have:

grant codeBase "${foo}" {
 permission ...;
 permission ...;
};

then all the permissions in this grant entry are ignored. If you have

grant {
 permission Foo "${foo}";
 permission Bar "barTarget";
};

then only the "permission Foo..." entry is ignored. And finally, if you have

keystore "${foo}";

then the keystore entry is ignored.

Chapter 1
Permissions in the JDK

1-116

Windows Systems, File Paths, and Property Expansion
The file path specifications on Windows systems should include two backslashes for each
actual single backslash.

As mentioned in File Path Specifications on Windows Systems, on Windows systems, when
you directly specify a file path in a string (but not in a codebase URL), you need to include two
backslashes for each actual single backslash in the path, as in

 grant {
 permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";
 };

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer), which
allows "\" to be used as an escape string (e.g., "\n" to indicate a new line) and which thus
requires two backslashes to indicate a single backslash. After the tokenizer has processed the
previous file path string, converting double backslashes to single backslashes, the end result is

 "C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed the string.
Thus if you have the string

 "${user.home}\\foo.bat"

then first the tokenizer processes the string, converting the double backslashes to a single
backslash, and the result is

 "${user.home}\foo.bat"

Then the ${user.home} property is expanded and the end result is

 "C:\users\cathy\foo.bat"

assuming the "user.home" value is C:\users\cathy. Of course, for platform independence, it
would be better if the string was initially specified without any explicit slashes, i.e., using the $
{/} property instead, as in

 "${user.home}${/}foo.bat"

General Expansion in Policy Files

Generalized forms of expansion are also supported in policy files. For example, permission
names may contain a string of the following form:

${{protocol:protocol_data}}

Chapter 1
Permissions in the JDK

1-117

If such a string occurs in a permission name, then the value in protocol determines the exact
type of expansion that should occur, and protocol_data is used to help perform the expansion.
protocol_data may be empty, in which case the previous string should simply take the form:

${{protocol}}

There are two protocols supported in the default policy file implementation:

1. ${{self}}
The protocol, self, denotes a replacement of the entire string, ${{self}}, with one or
more principal class/name pairs. The exact replacement performed depends upon the
contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will be
ignored (permissions containing ${{self}} in their target names are only valid in the
context of a principal-based grant clause). For example, BarPermission will always be
ignored in the following grant clause:

grant codebase "www.example.com", signedby "duke" {
 permission BarPermission "... ${{self}} ...";
};

If the grant clause contains principal information, ${{self}} will be replaced with that
same principal information. For example, ${{self}} in BarPermission will be replaced with
javax.security.auth.x500.X500Principal "cn=Duke" in the following grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" {
 permission BarPermission "... ${{self}} ...";
};

If there is a comma-separated list of principals in the grant clause, then ${{self}} will be
replaced by the same comma-separated list or principals. In the case where both the
principal class and name are wildcarded in the grant clause, ${{self}} is replaced with all
the principals associated with the Subject in the current AccessControlContext.

The following example describes a scenario involving both self and Keystore Alias
Replacement together:

keystore "http://foo.example.com/blah/.keystore";

grant principal "duke" {
 permission BarPermission "... ${{self}} ...";
};

In the previous example, "duke" will first be expanded into
javax.security.auth.x500.X500Principal "cn=Duke" assuming the X.509 certificate
associated with the KeyStore alias, "duke", has a subject distinguished name of "cn=Duke".
Next, ${{self}} will be replaced with the same principal information that was just
expanded in the grant clause: javax.security.auth.x500.X500Principal "cn=Duke".

2. ${{alias:alias_name}}
The protocol, alias, denotes a java.security.KeyStore alias substitution. The
KeyStore used is the one specified in the Keystore Entry. alias_name represents an alias

Chapter 1
Permissions in the JDK

1-118

into the KeyStore. ${{alias:alias_name}} is replaced with
javax.security.auth.x500.X500Principal "DN", where DN represents the subject
distinguished name of the certificate belonging to alias_name. For example:

keystore "http://foo.example.com/blah/.keystore";

grant codebase "www.example.com" {
 permission BarPermission "... ${{alias:duke}} ...";
};

In the previous example the X.509 certificate associated with the alias, duke, is retrieved
from the KeyStore, foo.example.com/blah/.keystore. Assuming duke's certificate specifies
"o=dukeOrg, cn=duke" as the subject distinguished name, then ${{alias:duke}} is
replaced with javax.security.auth.x500.X500Principal "o=dukeOrg, cn=duke".

The permission entry is ignored under the following error conditions:

• The keystore entry is unspecified

• The alias_name is not provided

• The certificate for alias_name can not be retrieved

• The certificate retrieved is not an X.509 certificate

Appendix A: FilePermission Path Name Canonicalization Disabled By
Default

A canonical path is a path that doesn't contain any links or shortcuts. Performing path name
canonicalization in a FilePermission object can negatively affect performance.

Before JDK 9, path names were canonicalized when two FilePermission objects were
compared. This allowed a program to access a file using a different name than the name that
was granted to a FilePermission object in a policy file, as long as the object pointed to the
same file. Because the canonicalization had to access the underlying file system, it could be
quite slow.

In JDK 9, path name canonicalization is disabled by default. This means two FilePermission
objects aren’t equal to each other if one uses an absolute path and the other uses a relative
path, or one uses a symbolic link and the other uses a target, or one uses a Windows long
name and the other uses a DOS-style 8.3 name. This is true even if they all point to the same
file in the file system.

Therefore, if a path name is granted to a FilePermission object in a policy file, then the
program should also access that file using the same path name style. For example, if the path
name in the policy file is using a symbolic link, then the program should also use that symbolic
link. Accessing the file with the target path name will fail the permission check.

Compatibility Layer

A compatibility layer has been added to ensure that granting a FilePermission object for a
relative path will permit applications to access the file with an absolute path (and conversely).
This works for the default Policy provider and the Limited doPrivileged calls.

For example, a FilePermission object on a file with a relative path name of "a" no longer
implies a FilePermission object on the same file with an absolute path name as "/pwd/a"

Chapter 1
Permissions in the JDK

1-119

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)

("pwd" is the current working directory). Granting code a FilePermission object to read "a"
allows that code to also read "/pwd/a" when a Security Manager is enabled.

The compatibility layer doesn’t cover translations between symbolic links and targets, or
Windows long names and DOS-style 8.3 names, or any other different name forms that can be
canonicalized to the same name.

Customizing Path Name Canonicalization

The system properties in Table 1-7 can be used to customize the FilePermission path name
canonicalization. See How to Specify a java.lang.System Property.

Table 1-7 System Properties to Customize Path Name Canonicalization

System Property Default Value Description

jdk.io.permissionsUseCanonicalP
ath

false The system property can be used to
enable or disable path name
canonicalization in the
FilePermission object.

• To disable FilePermission path
name canonicalization, set
jdk.io.permissionsUseCanoni
calPath=false.

• To enable FilePermission path
name canonicalization, set
jdk.io.permissionsUseCanoni
calPath=true.

jdk.security.filePermCompat false The system property can be used to
extend the compatibility layer to support
third-party Policy implementations.

• To disable the system property, set
jdk.security.filePermCompat
=false.

The FilePermission for a relative
path will permit applications to
access the file with an absolute
path for the default Policy provider
and the Limited doPrivileged
method.

• To extend the compatibility layer to
support third-party Policy
implementations, set
jdk.security.filePermCompat
=true.

The FilePermission for a relative
path will permit applications to
access the file with an absolute
path for the default Policy provider,
the Limited doPrivileged
method, and for third-party Policy
implementations.

Chapter 1
Permissions in the JDK

1-120

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)

Troubleshooting Security
To monitor security access, you can set the java.security.debug system property, which
determines what trace messages are printed during execution. To view security properties,
security providers, and TLS-related settings, specify the -XshowSettings:security option in
the java command.

Topics

• The java.security.debug System Property

• Printing Thread and Timestamp Information

• The java -XshowSettings:security Option

The java.security.debug System Property
To see a list of all debugging options, use the help option as follows. MyApp is any Java
application. The java command prints the debugging options and then exits before running
MyApp.

java -Djava.security.debug=help MyApp

Note:

• To use more than one option, separate options with a comma.

• JSSE also provides dynamic debug tracing support for SSL/TLS/DTLS
troubleshooting. See Debugging Utilities.

The following table lists java.security.debug options and links to further information about
each option:

Table 1-8 java.security.debug Options

Option Description Further Information

all Turn on all the debugging options None

Chapter 1
Troubleshooting Security

1-121

Table 1-8 (Cont.) java.security.debug Options

Option Description Further Information

access Print all results from the
AccessController.checkPermissio
n method.

You can use the following options with
the access option:

• stack: Include stack trace

• domain: Dump all domains in
context

• failure: Before throwing
exception, dump stack and domain
that do not have permission

You can use the following options with
the stack and domain options:

• permission=<classname>: Only
dump output if specified permission
is being checked

• codebase=<URL>: Only dump
output if specified codebase is being
checked

Permissions in the JDK

certpath Turns on debugging for the PKIX
CertPathValidator and
CertPathBuilder implementations.
Use the ocsp option with the certpath
option for OCSP protocol tracing. A
hexadecimal dump of the OCSP request
and response bytes is displayed.

You can use the following options with
the certpath option:

• ocsp: Dump OCSP protocol
exchanges

• verbose: Print additional debugging
information

PKI Programmer's Guide Overview

combiner SubjectDomainCombiner debugging Permissions in the JDK

configfile JAAS (Java Authentication and
Authorization Service) configuration file
loading

Java Authentication and Authorization
Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

configparser JAAS configuration file parsing Java Authentication and Authorization
Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

Chapter 1
Troubleshooting Security

1-122

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission(java.security.Permission)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission(java.security.Permission)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathValidator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/SubjectDomainCombiner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

Table 1-8 (Cont.) java.security.debug Options

Option Description Further Information

gssloginconfig Java GSS (Generic Security Services)
login configuration file debugging

Java Generic Security Services: (Java
GSS) and Kerberos

JAAS and Java GSS-API Tutorial

javax.security.auth.login.Confi
guration: A Configuration object is
responsible for specifying which
javax.net.ssl.SSLEngine should be
used for a particular application, and in
what order the LoginModules should
be invoked.

Appendix B: JAAS Login Configuration
File

Advanced Security Programming in Java
SE Authentication, Secure
Communication and Single Sign-On

jar JAR file verification Verifying Signed JAR Files from The
Java Tutorials

Note:

Use the
System
property
jdk.jar.
maxSigna
tureFile
Size to
specify the
maximum
size, in
bytes, of
signature
files in a
signed
JAR. Its
default
value is
16000000
(16 MB).

jca JCA engine class debugging Engine Classes and Algorithms

keystore Keystore debugging Keystores

KeyStore
logincontext LoginContext results Java Authentication and Authorization

Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

Chapter 1
Troubleshooting Security

1-123

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
http://docs.oracle.com/javase/tutorial/deployment/jar/verify.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginContext.html

Table 1-8 (Cont.) java.security.debug Options

Option Description Further Information

pcsc Java Smart Card I/O and SunPCSC
provider debugging

The SunPCSC Provider and the
javax.smartcardio package

pkcs11 PKCS11 session manager debugging PKCS#11 Reference Guide

pkcs11keystore PKCS11 KeyStore debugging PKCS#11 Reference Guide

pkcs12 PKCS12 KeyStore debugging None

policy Loading and granting permissions with
policy file

Set up the Policy File to Grant the
Required Permissions (Controlling
Applications) from The Java Tutorials

Default Policy Implementation and Policy
File Syntax

properties java.security configuration file
debugging

None

provider Security provider debugging
The following options can be used with
the provider option:

engine=<engines> : The output is
displayed only for a specified list of JCA
engines.

The supported values for <engines> are:
• Cipher
• KeyAgreement
• KeyGenerator
• KeyPairGenerator
• KeyStore
• Mac
• MessageDigest
• SecureRandom
• Signature

Java Cryptography Architecture (JCA)
Reference Guide

scl Permissions that SecureClassLoader
assigns

Permissions in the JDK

securerandom SecureRandom debugging The SecureRandom Class

sunpkcs11 SunPKCS11 provider debugging PKCS#11 Reference Guide

ts Timestamping debugging None

x509 X.509 certificate debugging X.509 Certificates and Certificate
Revocation Lists (CRLs)

Printing Thread and Timestamp Information
You can append the following strings to the value specified in the java.security.debug
system property to print additional information:

• +thread: Print thread and caller information

• +timestamp: Print timestamp information

Chapter 1
Troubleshooting Security

1-124

http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecureClassLoader.html

For example, to add thread, caller, and timestamp information to all debuging output, set the
java.security.debug system property on the command line as follows:

java -Djava.security.debug=all+thread+timestamp MyApp

The java -XshowSettings:security Option
You can specify the option -XshowSettings:security option in the java command to view
security properties, security providers, and TLS-related settings. The option shows third-party
security provider details if they are included in the application class path or module path and
such providers are configured in the java.security file.

In addition, you can specify -XshowSettings:security:<subcategory> where <subcategory>
is one of the following:

• all: show all security settings

• properties: show security properties

• providers: show static security provider settings

• tls: show TLS-related security settings

Chapter 1
Troubleshooting Security

1-125

2
Java Cryptography Architecture (JCA)
Reference Guide

The Java Cryptography Architecture (JCA) is a major piece of the platform, and contains a
"provider" architecture and a set of APIs for digital signatures, message digests (hashes),
certificates and certificate validation, encryption (symmetric/asymmetric block/stream ciphers),
key generation and management, and secure random number generation, to name a few.

Introduction to Java Cryptography Architecture
The Java platform strongly emphasizes security, including language safety, cryptography,
public key infrastructure, authentication, secure communication, and access control.

The JCA is a major piece of the platform, and contains a "provider" architecture and a set of
APIs for digital signatures, message digests (hashes), certificates and certificate validation,
encryption (symmetric/asymmetric block/stream ciphers), key generation and management,
and secure random number generation, to name a few. These APIs allow developers to easily
integrate security into their application code. The architecture was designed around the
following principles:

• Implementation independence: Applications do not need to implement security
algorithms. Rather, they can request security services from the Java platform. Security
services are implemented in providers (see Cryptographic Service Providers), which are
plugged into the Java platform via a standard interface. An application may rely on multiple
independent providers for security functionality.

• Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not bound
to a specific application.

• Algorithm extensibility: The Java platform includes a number of built-in providers that
implement a basic set of security services that are widely used today. However, some
applications may rely on emerging standards not yet implemented, or on proprietary
services. The Java platform supports the installation of custom providers that implement
such services.

Other cryptographic communication libraries available in the JDK use the JCA provider
architecture, but are described elsewhere. The JSSE components provides access to Secure
Socket Layer (SSL), Transport Layer Security (TLS), and Datagram Transport Layer Security
(DTLS) implementations; see Java Secure Socket Extension (JSSE) Reference Guide. You
can use Java Generic Security Services (JGSS) (via Kerberos) APIs, and Simple
Authentication and Security Layer (SASL) to securely exchange messages between
communicating applications; see Introduction to JAAS and Java GSS-API Tutorials and Java
SASL API Programming and Deployment Guide.

Notes on Terminology

• Prior to JDK 1.4, the JCE was an unbundled product, and as such, the JCA and JCE were
regularly referred to as separate, distinct components. As JCE is now bundled in the JDK,
the distinction is becoming less apparent. Since the JCE uses the same architecture as the
JCA, the JCE should be more properly thought of as a part of the JCA.

2-1

• The JCA within the JDK includes two software components:

– The framework that defines and supports cryptographic services for which providers
supply implementations. This framework includes packages such as java.security,
javax.crypto, javax.crypto.spec, and javax.crypto.interfaces.

– The actual providers such as Sun, SunRsaSign, SunJCE, which contain the actual
cryptographic implementations.

Whenever a specific JCA provider is mentioned, it will be referred to explicitly by the
provider's name.

WARNING:

The JCA makes it easy to incorporate security features into your application.
However, this document does not cover the theory of security/cryptography beyond
an elementary introduction to concepts necessary to discuss the APIs. This
document also does not cover the strengths/weaknesses of specific algorithms, not
does it cover protocol design. Cryptography is an advanced topic and one should
consult a solid, preferably recent, reference in order to make best use of these tools.
You should always understand what you are doing and why: DO NOT simply copy
random code and expect it to fully solve your usage scenario. Many applications
have been deployed that contain significant security or performance problems
because the wrong tool or algorithm was selected.

JCA Design Principles
The JCA was designed around these principles:

• Implementation independence and interoperability

• Algorithm independence and extensibility

Implementation independence and algorithm independence are complementary; you can use
cryptographic services, such as digital signatures and message digests, without worrying about
the implementation details or even the algorithms that form the basis for these concepts. While
complete algorithm-independence is not possible, the JCA provides standardized, algorithm-
specific APIs. When implementation-independence is not desirable, the JCA lets developers
indicate a specific implementation.

Algorithm independence is achieved by defining types of cryptographic "engines" (services),
and defining classes that provide the functionality of these cryptographic engines. These
classes are called engine classes, and examples are the MessageDigest, Signature,
KeyFactory, KeyPairGenerator, and Cipher classes.

Implementation independence is achieved using a "provider"-based architecture. The term
Cryptographic Service Provider (CSP), which is used interchangeably with the term "provider,"
(see Cryptographic Service Providers) refers to a package or set of packages that implement
one or more cryptographic services, such as digital signature algorithms, message digest
algorithms, and key conversion services. A program may simply request a particular type of
object (such as a Signature object) implementing a particular service (such as the DSA
signature algorithm) and get an implementation from one of the installed providers. If desired, a
program may instead request an implementation from a specific provider. Providers may be
updated transparently to the application, for example when faster or more secure versions are
available.

Chapter 2
Introduction to Java Cryptography Architecture

2-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyPairGenerator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html

Implementation interoperability means that various implementations can work with each other,
use each other's keys, or verify each other's signatures. This would mean, for example, that for
the same algorithms, a key generated by one provider would be usable by another, and a
signature generated by one provider would be verifiable by another.

Algorithm extensibility means that new algorithms that fit in one of the supported engine
classes can be added easily.

Provider Architecture
Providers contain a package (or a set of packages) that supply concrete implementations for
the advertised cryptographic algorithms.

Cryptographic Service Providers
java.security.Provider is the base class for all security providers. Each CSP contains an
instance of this class which contains the provider's name and lists all of the security services/
algorithms it implements. When an instance of a particular algorithm is needed, the JCA
framework consults the provider's database, and if a suitable match is found, the instance is
created.

Providers contain a package (or a set of packages) that supply concrete implementations for
the advertised cryptographic algorithms. Each JDK installation has one or more providers
installed and configured by default. Additional providers may be added statically or
dynamically. Clients may configure their runtime environment to specify the provider preference
order. The preference order is the order in which providers are searched for requested
services when no specific provider is requested.

To use the JCA, an application simply requests a particular type of object (such as a
MessageDigest) and a particular algorithm or service (such as the "SHA-256" algorithm), and
gets an implementation from one of the installed providers. For example, the following
statement requests a SHA-256 message digest from an installed provider:

md = MessageDigest.getInstance("SHA-256");

Alternatively, the program can request the objects from a specific provider. Each provider has a
name used to refer to it. For example, the following statement requests a SHA-256 message
digest from the provider named ProviderC:

md = MessageDigest.getInstance("SHA-256", "ProviderC");

The following figures illustrates requesting an SHA-256 message digest implementation. They
show three different providers that implement various message digest algorithms (SHA-256,
SHA-384, and SHA-512). The providers are ordered by preference from left to right (1-3). In
Figure 2-1, an application requests a SHA-256 algorithm implementation without specifying a
provider name. The providers are searched in preference order and the implementation from
the first provider supplying that particular algorithm, ProviderB, is returned. In Figure 2-2, the
application requests the SHA-256 algorithm implementation from a specific provider,
ProviderC. This time, the implementation from ProviderC is returned, even though a provider
with a higher preference order, ProviderB, also supplies an SHA-256 implementation.

Chapter 2
Introduction to Java Cryptography Architecture

2-3

Figure 2-1 Request SHA-256 Message Digest Implementation Without Specifying
Provider

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”)

SHA-256 MessageDigest
from ProviderB

Figure 2-2 Request SHA-256 Message Digest with ProviderC

Application

1. ProviderA
 MessageDigest
 SHA-384
 SHA-512

2. ProviderB
 MessageDigest
 SHA-256
 SHA-384

3. ProviderC
 MessageDigest
 SHA-256
 SHA-512

Provider Framework

MessageDigest.getInstance
(”SHA-256”, “ProviderC”)

SHA-256 MessageDigest
from ProviderC

Cryptographic implementations in the JDK are distributed via several different providers (Sun,
SunJSSE, SunJCE, SunRsaSign) primarily for historical reasons, but to a lesser extent by the type
of functionality and algorithms they provide. Other Java runtime environments may not

Chapter 2
Introduction to Java Cryptography Architecture

2-4

necessarily contain these providers, so applications should not request a provider-specific
implementation unless it is known that a particular provider will be available.

The JCA offers a set of APIs that allow users to query which providers are installed and what
services they support.

This architecture also makes it easy for end-users to add additional providers. Many third party
provider implementations are already available. See The Provider Class for more information
on how providers are written, installed, and registered.

How Providers Are Actually Implemented
Algorithm independence is achieved by defining a generic high-level Application Programming
Interface (API) that all applications use to access a service type. Implementation independence
is achieved by having all provider implementations conform to well-defined interfaces.
Instances of engine classes are thus "backed" by implementation classes which have the
same method signatures. Application calls are routed through the engine class and are
delivered to the underlying backing implementation. The implementation handles the request
and returns the proper results.

The application API methods in each engine class are routed to the provider's implementations
through classes that implement the corresponding Service Provider Interface (SPI). That is, for
each engine class, there is a corresponding abstract SPI class which defines the methods that
each cryptographic service provider's algorithm must implement. The name of each SPI class
is the same as that of the corresponding engine class, followed by Spi. For example, the
Signature engine class provides access to the functionality of a digital signature algorithm.
The actual provider implementation is supplied in a subclass of SignatureSpi. Applications call
the engine class' API methods, which in turn call the SPI methods in the actual implementation.

Each SPI class is abstract. To supply the implementation of a particular type of service for a
specific algorithm, a provider must subclass the corresponding SPI class and provide
implementations for all the abstract methods.

For each engine class in the API, implementation instances are requested and instantiated by
calling the getInstance() factory method in the engine class. A factory method is a static
method that returns an instance of a class. The engine classes use the framework provider
selection mechanism described previously to obtain the actual backing implementation (SPI),
and then creates the actual engine object. Each instance of the engine class encapsulates (as
a private field) the instance of the corresponding SPI class, known as the SPI object. All API
methods of an API object are declared final and their implementations invoke the
corresponding SPI methods of the encapsulated SPI object.

To make this clearer, review Example 2-1 and Figure 2-3:

Example 2-1 Sample Code for Getting an Instance of an Engine Class

Cipher c = Cipher.getInstance("AES");
c.init(ENCRYPT_MODE, key);

Chapter 2
Introduction to Java Cryptography Architecture

2-5

Figure 2-3 Application Retrieves “AES” Cipher Instance

Here an application wants an "AES" javax.crypto.Cipher instance, and doesn't care which
provider is used. The application calls the getInstance() factory methods of the Cipher
engine class, which in turn asks the JCA framework to find the first provider instance that
supports "AES". The framework consults each installed provider, and obtains the provider's
instance of the Provider class. (Recall that the Provider class is a database of available
algorithms.) The framework searches each provider, finally finding a suitable entry in CSP3.
This database entry points to the implementation class com.foo.AESCipher which extends
CipherSpi, and is thus suitable for use by the Cipher engine class. An instance of
com.foo.AESCipher is created, and is encapsulated in a newly-created instance of
javax.crypto.Cipher, which is returned to the application. When the application now does the
init() operation on the Cipher instance, the Cipher engine class routes the request into the
corresponding engineInit() backing method in the com.foo.AESCipher class.

Java Security Standard Algorithm Names lists the Standard Names defined for the Java
environment. Other third-party providers may define their own implementations of these
services, or even additional services.

Keystores
A database called a "keystore" can be used to manage a repository of keys and certificates.
Keystores are available to applications that need data for authentication, encryption, or signing
purposes.

Applications can access a keystore via an implementation of the KeyStore class, which is in
the java.security package. As of JDK 9, the default and recommended keystore type
(format) is "pkcs12", which is based on the RSA PKCS12 Personal Information Exchange
Syntax Standard. Previously, the default keystore type was "jks", which is a proprietary format.
Other keystore formats are available, such as "jceks", which is an alternate proprietary
keystore format, and "pkcs11", which is based on the RSA PKCS11 Standard and supports
access to cryptographic tokens such as hardware security modules and smartcards.

Chapter 2
Introduction to Java Cryptography Architecture

2-6

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Applications can choose different keystore implementations from different providers, using the
same provider mechanism described previously. See Key Management.

Engine Classes and Algorithms
An engine class provides the interface to a specific type of cryptographic service, independent
of a particular cryptographic algorithm or provider.

The engine classes provide one of the following:

• cryptographic operations (for example, encryption, digital signatures, and message
digests),

• generators or converters of cryptographic material (keys and algorithm parameters), or

• objects (keystores or certificates) that encapsulate the cryptographic data and can be used
at higher layers of abstraction.

The following engine classes are available:

• SecureRandom: Used to generate random or pseudo-random numbers.

• MessageDigest: Used to calculate the message digest (hash) of specified data.

• Signature: Initialized with keys, these are used to sign data and verify digital signatures.

• Cipher: Initialized with keys, these used for encrypting/decrypting data. There are various
types of algorithms: symmetric bulk encryption (for example, AES), asymmetric encryption
(for example, RSA), and password-based encryption (for example, PBE).

• Mac: Like MessageDigests, Message Authentication Codes (MACs) also generate hash
values, but are first initialized with keys to protect the integrity of messages.

• KEM: Used by two parties to derive a shared secret key from a private/public key pair.

• KeyFactory: Used to convert existing opaque cryptographic keys of type Key into key
specifications (transparent representations of the underlying key material) and the other
way around.

• SecretKeyFactory: Used to convert existing opaque cryptographic keys of type SecretKey
into key specifications (transparent representations of the underlying key material) and the
other way around. SecretKeyFactorys are specialized KeyFactorys that create secret
(symmetric) keys only.

• KeyPairGenerator: Used to generate a new pair of public and private keys suitable for use
with a specified algorithm.

• KeyGenerator: Used to generate new secret keys for use with a specified algorithm.

• KeyAgreement: Used by two or more parties to agree upon and establish a specific key to
use for a particular cryptographic operation.

• AlgorithmParameters: Used to store the parameters for a particular algorithm, including
parameter encoding and decoding.

• AlgorithmParameterGenerator: Used to generate a set of AlgorithmParameters
suitable for a specified algorithm.

• KeyStore: Used to create and manage a keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate chain associated with them, which
authenticates the corresponding public key. A keystore also contains certificates from
trusted entities.

Chapter 2
Introduction to Java Cryptography Architecture

2-7

• CertificateFactory: Used to create public key certificates and Certificate Revocation
Lists (CRLs).

• CertPathBuilder: Used to build certificate chains (also known as certification paths).

• CertPathValidator: Used to validate certificate chains.

• CertStore: Used to retrieve Certificates and CRLs from a repository.

Note:

A generator creates objects with brand-new contents, whereas a factory creates
objects from existing material (for example, an encoding).

Core Classes and Interfaces
The following are the core classes and interfaces provided in the JCA.

• Provider and Security
• SecureRandom, MessageDigest, Signature, Cipher, Mac, KEM, KeyFactory,

SecretKeyFactory, KeyPairGenerator, KeyGenerator, KeyAgreement,
AlgorithmParameter, AlgorithmParameterGenerator, KeyStore, and CertificateFactory
engine classes

• Key interfaces and classes, KeyPair
• AlgorithmParameterSpec Interface, AlgorithmParameters,

AlgorithmParameterGenerator, and algorithm parameter specification interfaces and
classes in the java.security.spec and javax.crypto.spec packages.

• KeySpec Interface, EncodedKeySpec, PKCS8EncodedKeySpec, and X509EncodedKeySpec.

• SecretKeyFactory, KeyFactory, KeyPairGenerator, KeyGenerator, KeyAgreement, and
KeyStore.

Note:

See CertPathBuilder, CertPathValidator, and CertStore engine classes in the
Java PKI Programmer's Guide.

The guide will cover the most useful high-level classes first (Provider, Security,
SecureRandom, MessageDigest, Signature, Cipher, Mac, and KEM), then delve into the
various support classes. For now, it is sufficient to simply say that Keys (public, private, and
secret) are generated and represented by the various JCA classes, and are used by the high-
level classes as part of their operation.

This section shows the signatures of the main methods in each class and interface. Examples
for some of these classes (MessageDigest, Signature, KeyPairGenerator,
SecureRandom, KeyFactory, and key specification classes) are supplied in the
corresponding Code Examples sections.

The complete reference documentation for the relevant Security API packages can be found in
the package summaries:

Chapter 2
Core Classes and Interfaces

2-8

• java.security
• javax.crypto
• java.security.cert
• java.security.spec
• javax.crypto.spec
• java.security.interfaces
• javax.crypto.interfaces

The Provider Class
The term "Cryptographic Service Provider" (used interchangeably with "provider" in this
document) refers to a package or set of packages that supply a concrete implementation of a
subset of the JDK Security API cryptography features. The Provider class is the interface to
such a package or set of packages. It has methods for accessing the provider name, version
number, and other information. Please note that in addition to registering implementations of
cryptographic services, the Provider class can also be used to register implementations of
other security services that might get defined as part of the JDK Security API or one of its
extensions.

To supply implementations of cryptographic services, an entity (e.g., a development group)
writes the implementation code and creates a subclass of the Provider class. The constructor
of the Provider subclass sets the values of various properties; the JDK Security API uses
these values to look up the services that the provider implements. In other words, the subclass
specifies the names of the classes implementing the services.

Figure 2-4 Provider Class

ProviderC

provider.java

public class fooJCA extends Provider {

 .

 .

 put(”MessageDigest.SHA-256”.“com.foo.SHA256”);

 .

}

com.foo.SHA256.java

package com.foo;

public class SHA256 extends MessageDigestSpi {

 .

 .

}

There are several types of services that can be implemented by provider packages; See
Engine Classes and Algorithms.

The different implementations may have different characteristics. Some may be software-
based, while others may be hardware-based. Some may be platform-independent, while others
may be platform-specific. Some provider source code may be available for review and
evaluation, while some may not. The JCA lets both end-users and developers decide what
their needs are.

Chapter 2
Core Classes and Interfaces

2-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/package-summary.html

You can find information about how end-users install the cryptography implementations that fit
their needs, and how developers request the implementations that fit theirs.

Note:

To implement a provider, see Steps to Implement and Integrate a Provider.

How Provider Implementations Are Requested and Supplied
For each engine class (see Engine Classes and Algorithms) in the API, a implementation
instance is requested and instantiated by calling one of the getInstance methods on the
engine class, specifying the name of the desired algorithm and, optionally, the name of the
provider (or the Provider class) whose implementation is desired.

static EngineClassName getInstance(String algorithm)
 throws NoSuchAlgorithmException

static EngineClassName getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException

static EngineClassName getInstance(String algorithm, Provider provider)
 throws NoSuchAlgorithmException

where

EngineClassName

is the desired engine type (for example, Signature, MessageDigest, or Cipher). For
example:

 Signature sig = Signature.getInstance("SHA256withRSA");
 KeyAgreement ka = KeyAgreement.getInstance("DH");

return an instance of the "SHA256withRSA" Signature and "DH" KeyAgreement objects,
respectively.

Java Security Standard Algorithm Names contains the list of names that have been
standardized for use with the Java environment. Some providers may choose to also include
alias names that also refer to the same algorithm. For example, the "SHA256" algorithm might
be referred to as "SHA-256". Applications should use standard names instead of an alias, as
not all providers may alias algorithm names in the same way.

Note:

The algorithm name is not case-sensitive. For example, all the following calls are
equivalent:

Signature.getInstance("SHA256withRSA")
Signature.getInstance("sha256withrsa")
Signature.getInstance("Sha256WithRsa")

Chapter 2
Core Classes and Interfaces

2-10

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

If no provider is specified, getInstance searches the registered providers for an
implementation of the requested cryptographic service associated with the named algorithm. In
any given Java Virtual Machine (JVM), providers are installed in a given preference order, the
order in which the provider list is searched if a specific provider is not requested. (See
Installing Providers.) For example, suppose there are two providers installed in a JVM,
PROVIDER_1 and PROVIDER_2. Assume that:

• PROVIDER_1 implements SHA256withRSA and AES. PROVIDER_1 has preference order 1
(the highest priority).

• PROVIDER_2 implements SHA256withRSA, SHA256withDSA, and RC5. PROVIDER_2 has
preference order 2.

Now let's look at three scenarios:

1. We are looking for an SHA256withRSA implementation: Both providers supply such an
implementation. The PROVIDER_1 implementation is returned since PROVIDER_1 has the
highest priority and is searched first.

2. We are looking for an SHA256withDSA implementation: PROVIDER_1 is first searched for it.
No implementation is found, so PROVIDER_2 is searched. Because an implementation is
found, it is returned.

3. We are looking for a SHA256withECDSA implementation: Because no installed provider
implements it, a NoSuchAlgorithmException is thrown.

The getInstance methods that include a provider argument are for developers who want to
specify which provider they want an algorithm from. A federal agency, for example, will want to
use a provider implementation that has received federal certification. Let’s assume that
PROVIDER_1 has not received such certification while PROVIDER_2 has received it.

A federal agency program would then have the following call, specifying PROVIDER_2 since it
has the certified implementation:

Signature s = Signature.getInstance("SHA256withRSA", "PROVIDER_2");

In this case, if PROVIDER_2 was not installed, a NoSuchProviderException would be thrown,
even if another installed provider implements the algorithm requested.

A program also has the option of getting a list of all the installed providers (using the
getProviders method in The Security Class class) and choosing one from the list.

Note:

General purpose applications SHOULD NOT request cryptographic services from
specific providers. Otherwise, applications are tied to specific providers which may
not be available on other Java implementations. They also might not be able to take
advantage of available optimized providers (for example hardware accelerators via
PKCS11 or native OS implementations such as Microsoft's MSCAPI) that have a
higher preference order than the specific requested provider.

Installing Providers
In order to be used, a cryptographic provider must first be installed, then registered either
statically or dynamically. There are a variety of Sun providers shipped with this release (SUN,

Chapter 2
Core Classes and Interfaces

2-11

SunJCE, SunJSSE, SunRsaSign, etc.) that are already installed and registered. The following
sections describe how to install and register additional providers.

All JDK providers are already installed and registered. However, if you require any third-party
providers, see Step 8: Prepare for Testing from Steps to Implement and Integrate a Provider
for information about how to add providers to the class or module path, register providers
(statically or dynamically), and add any required permissions.

Provider Class Methods
Each Provider class instance has a (currently case-sensitive) name, a version number, and a
string description of the provider and its services.

You can query the Provider instance for this information by calling the following methods:

public String getName()
public double getVersion()
public String getInfo()

The Security Class
The Security class manages installed providers and security-wide properties. It only
contains static methods and is never instantiated. The methods for adding or removing
providers, and for setting Security properties, can only be executed by a trusted program.
Currently, a "trusted program" one of the following:

• A local application not running under a security manager

• An applet or application with permission to execute the specified method

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

The determination that code is considered trusted to perform an attempted action (such as
adding a provider) requires that the applet is granted the proper permission(s) for that
particular action. The policy configuration file(s) for a JDK installation specify what permissions
(which types of system resource accesses) are allowed by code from specified code sources.
See Default Policy Implementation and Policy File Syntax and Java SE Platform Security
Architecture.)

Code being executed is always considered to come from a particular "code source". The code
source includes not only the location (URL) where the code originated from, but also a
reference to any public key(s) corresponding to the private key(s) that may have been used to
sign the code. Public keys in a code source are referenced by (symbolic) alias names from the
user's .

In a policy configuration file, a code source is represented by two components: a code base
(URL), and an alias name (preceded by signedBy), where the alias name identifies the
keystore entry containing the public key that must be used to verify the code's signature.

Chapter 2
Core Classes and Interfaces

2-12

https://openjdk.java.net/jeps/411

Each "grant" statement in such a file grants a specified code source a set of permissions,
specifying which actions are allowed.

Here is a sample policy configuration file:

grant codeBase "file:/home/sysadmin/", signedBy "sysadmin" {
 permission java.security.SecurityPermission "insertProvider";
 permission java.security.SecurityPermission "removeProvider";
 permission java.security.SecurityPermission "putProviderProperty.*";
};

This configuration file specifies that code loaded from a signed JAR file in the /home/
sysadmin/ directory on the local file system can add or remove providers or set provider
properties. (Note that the signature of the JAR file can be verified using the public key
referenced by the alias name sysadmin in the user's keystore.).

Either component of the code source (or both) may be missing. Here's an example of a
configuration file where the codeBase is omitted:

grant signedBy "sysadmin" {
 permission java.security.SecurityPermission "insertProvider.*";
 permission java.security.SecurityPermission "removeProvider.*";
};

If this policy is in effect, code that comes in a JAR File signed by /home/sysadmin/ directory on
the local filesystem can add or remove providers. The code does not need to be signed.

An example where neither codeBase nor signedBy is included is:

grant {
 permission java.security.SecurityPermission "insertProvider.*";
 permission java.security.SecurityPermission "removeProvider.*";
};

Here, with both code source components missing, any code (regardless of where it originates,
or whether or not it is signed, or who signed it) can add/remove providers. Obviously, this is
definitely not recommended, as this grant could open a security hole. Untrusted code could
install a Provider, thus affecting later code that is depending on a properly functioning
implementation. (For example, a rogue Cipher object might capture and store the sensitive
information it receives.)

Managing Providers
The following tables summarize the methods in the Security class you can use to query which
Providers are installed, as well as to install or remove providers at runtime.

Querying Providers

Method Description

static Provider[] getProviders() Returns an array containing all the installed
providers (technically, the Provider subclass for
each package provider). The order of the
Providers in the array is their preference order.

Chapter 2
Core Classes and Interfaces

2-13

Method Description

static Provider getProvider (String
providerName)

Returns the Provider named providerName. It
returns null if the Provider is not found.

Adding Providers

Method Description

static int addProvider(Provider
provider)

Adds a Provider to the end of the list of installed
Providers. It returns the preference position in
which the Provider was added, or -1 if the
Provider was not added because it was already
installed.

static int insertProviderAt (Provider
provider, int position)

Adds a new Provider at a specified position. If the
given provider is installed at the requested position,
the provider formerly at that position and all
providers with a position greater than position
are shifted up one position (towards the end of the
list). This method returns the preference position in
which the Provider was added, or -1 if the
Provider was not added because it was already
installed.

Removing Providers

Method Description

static void removeProvider(String name) Removes the Provider with the specified name. It
returns silently if the provider is not installed. When
the specified provider is removed, all providers
located at a position greater than where the
specified provider was are shifted down one
position (towards the head of the list of installed
providers).

Note:

If you want to change the preference position of a provider, you must first remove it,
and then insert it back in at the new preference position.

Security Properties
The Security class maintains a list of system-wide Security Properties. These properties are
similar to the System properties, but are security-related. These properties can be set statically
(through the <java-home>/conf/security/java.security file) or dynamically (using an
API). See Step 8.1: Configure the Provider from Steps to Implement and Integrate a Provider.
for an example of registering a provider statically with the security.provider.n Security
Property. If you want to set properties dynamically, trusted programs can use the following
methods:

static String getProperty(String key)
static void setProperty(String key, String datum)

Chapter 2
Core Classes and Interfaces

2-14

Note:

The list of security providers is established during VM startup; therefore, the methods
described previously must be used to alter the provider list.

The SecureRandom Class
The SecureRandom class is an engine class (see Engine Classes and Algorithms) that
provides cryptographically strong random numbers, either by accessing a pseudo-random
number generator (PRNG), a deterministic algorithm that produces a pseudo-random
sequence from an initial seed value, or by reading a native source of randomness (for
example, /dev/random or a true random number generator). One example of a PRNG is the
Deterministic Random Bits Generator (DRBG) as specified in NIST SP 800-90Ar1. Other
implementations may produce true random numbers, and yet others may use a combination of
both techniques. A cryptographically strong random number minimally complies with the
statistical random number generator tests specified in FIPS 140-2, Security Requirements for
Cryptographic Modules, section 4.9.1.

All Java SE implementations must indicate the strongest (most random) implementation of
SecureRandom that they provide in the securerandom.strongAlgorithms property of the
java.security.Security class. This implementation can be used when a particularly strong
random value is required.

The securerandom.drbg.config property is used to specify the DRBG SecureRandom
configuration and implementations in the SUN provider. The securerandom.drbg.config is a
property of the java.security.Security class. Other DRBG implementations can also use the
securerandom.drbg.config property.

Figure 2-5 SecureRandom class

Seed
(optional)

Data

SecureRandom

(DRGB)
setseed()

nextInt()
nextBytes()

Creating a SecureRandom Object
There are several ways to obtain an instance of SecureRandom:

• All Java SE implementations provide a default SecureRandom using the no-argument
constructor: new SecureRandom(). This constructor traverses the list of registered security
providers, starting with the most preferred provider, then returns a new SecureRandom
object from the first provider that supports a SecureRandom random number generator
(RNG) algorithm. If none of the providers support a RNG algorithm, then it returns a
SecureRandom object that uses SHA1PRNG from the SUN provider.

• To get a specific implementation of SecureRandom, use one of the How Provider
Implementations Are Requested and Supplied.

• Use the getInstanceStrong() method to obtain a strong SecureRandom implementation as
defined by the securerandom.strongAlgorithms property of the java.security.Security
class. This property lists platform implementations that are suitable for generating
important values.

Chapter 2
Core Classes and Interfaces

2-15

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/2/final

Seeding or Re-Seeding the SecureRandom Object
The SecureRandom object is initialized with a random seed unless the call to
getInstance() is followed by a call to one of the following setSeed methods.

 void setSeed(byte[] seed)
 void setSeed(long seed)

You must call setSeed before the first nextBytes call to prevent any environmental
randomness.

The randomness of the bits produced by the SecureRandom object depends on the
randomness of the seed bits

At any time a SecureRandom object may be re-seeded using one of the setSeed or reseed
methods. The given seed for setSeed supplements, rather than replaces, the existing seed;
therefore, repeated calls are guaranteed never to reduce randomness.

Using a SecureRandom Object
To get random bytes, a caller simply passes an array of any length, which is then filled with
random bytes:

 void nextBytes(byte[] bytes)

Generating Seed Bytes
If desired, it is possible to invoke the generateSeed method to generate a given number of
seed bytes (to seed other random number generators, for example):

byte[] generateSeed(int numBytes)

The MessageDigest Class
The MessageDigest class is an engine class (see Engine Classes and Algorithms) designed to
provide the functionality of cryptographically secure message digests such as SHA-256 or
SHA-512. A cryptographically secure message digest takes arbitrary-sized input (a byte array),
and generates a fixed-size output, called a digest or hash.

Figure 2-6 MessageDigest Class

Data Digest/Hash

Message Digest

(SHA-256)
update() digest()

For example, the SHA-256 algorithm produces a 32-byte digest, and SHA-512's is 64 bytes.

A digest has two properties:

Chapter 2
Core Classes and Interfaces

2-16

• It should be computationally infeasible to find two messages that hash to the same value.

• The digest should not reveal anything about the input that was used to generate it.

Message digests are used to produce unique and reliable identifiers of data. They are
sometimes called "checksums" or the "digital fingerprints" of the data. Changes to just one bit
of the message should produce a different digest value.

Message digests have many uses and can determine when data has been modified,
intentionally or not. When selecting a digest algorithm, one should always consult a recent
reference to determine its status and appropriateness for the task at hand.

Creating a MessageDigest Object
Procedure to create a MessageDigest object.

• To compute a digest, create a message digest instance. The MessageDigest objects are
obtained by using one of the getInstance() methods in the MessageDigest class. See
How Provider Implementations Are Requested and Supplied.

The factory method returns an initialized message digest object. It thus does not need
further initialization.

Updating a Message Digest Object
Procedure to update the Message Digest object.

• To calculate the digest of some data, you have to supply the data to the initialized message
digest object. It can be provided all at once, or in chunks. Pieces can be fed to the
message digest by calling one of the update methods:

void update(byte input)
void update(byte[] input)
void update(byte[] input, int offset, int len)

Computing the Digest
Procedure to compute the digest using different types of digest() methods.

The data chunks have to be supplied by calls to update method. See Updating a Message
Digest Object.

• The digest is computed using a call to one of the digest methods:

byte[] digest()
byte[] digest(byte[] input)
int digest(byte[] buf, int offset, int len)

1. The byte[] digest() method return the computed digest.

2. The byte[] digest(byte[] input) method does a final update(input) with the input
byte array before calling digest(), which returns the digest byte array.

3. The int digest(byte[] buf, int offset, int len) method stores the computed
digest in the provided buffer buf, starting at offset. len is the number of bytes in buf

Chapter 2
Core Classes and Interfaces

2-17

allotted for the digest, the method returns the number of bytes actually stored in buf. If
there is not enough room in the buffer, the method will throw an exception.

See Computing a MessageDigest Object.

The Signature Class
The Signature class is an engine class (see Engine Classes and Algorithms) designed to
provide the functionality of a cryptographic digital signature algorithm such as SHA256withDSA
or SHA512withRSA. A cryptographically secure signature algorithm takes arbitrary-sized input
and a private key and generates a relatively short (often fixed-size) string of bytes, called the
signature, with the following properties:

• Only the owner of a private/public key pair is able to create a signature. It should be
computationally infeasible for anyone having only the public key and a number of
signatures to recover the private key.

• Given the public key corresponding to the private key used to generate the signature, it
should be possible to verify the authenticity and integrity of the input.

Figure 2-7 Signature Class

Signature
Bytes

Signature
(SHA256withRSA)

Sign

Signature
(SHA256withRSA)

Verify

Data update() sign() verify()

update()

Generated by a Key Pair Generator

Private Key / Public Key

Yes/No

A Signature object is initialized for signing with a Private Key and is given the data to be
signed. The resulting signature bytes are typically kept with the signed data. When verification
is needed, another Signature object is created and initialized for verification and given the
corresponding Public Key. The data and the signature bytes are fed to the signature object,
and if the data and signature match, the Signature object reports success.

Even though a signature seems similar to a message digest, they have very different purposes
in the type of protection they provide. In fact, algorithms such as "SHA256WithRSA" use the
message digest "SHA256" to initially "compress" the large data sets into a more manageable
form, then sign the resulting 32 byte message digest with the "RSA" algorithm.

For an example for signing and verifying data, see Generating and Verifying a Signature Using
Generated Keys.

Signature Object States
Signature objects are modal objects. This means that a Signature object is always in a given
state, where it may only do one type of operation.

States are represented as final integer constants defined in their respective classes.

The three states a Signature object may have are:

Chapter 2
Core Classes and Interfaces

2-18

• UNINITIALIZED
• SIGN
• VERIFY
When it is first created, a Signature object is in the UNINITIALIZED state. The Signature class
defines two initialization methods, initSign and initVerify, which change the state to SIGN
and VERIFY , respectively.

Creating a Signature Object
The first step for signing or verifying a signature is to create a Signature instance.

Signature objects are obtained by using one of the Signature getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Initializing a Signature Object
A Signature object must be initialized before it is used. The initialization method depends on
whether the object is going to be used for signing or for verification.

If it is going to be used for signing, the object must first be initialized with the private key of the
entity whose signature is going to be generated. This initialization is done by calling the
method:

final void initSign(PrivateKey privateKey)

This method puts the Signature object in the SIGN state. If instead the Signature object is
going to be used for verification, it must first be initialized with the public key of the entity
whose signature is going to be verified. This initialization is done by calling either of these
methods:

 final void initVerify(PublicKey publicKey)

 final void initVerify(Certificate certificate)

This method puts the Signature object in the VERIFY state.

Signing with a Signature Object
If the Signature object has been initialized for signing (if it is in the SIGN state), the data to be
signed can then be supplied to the object. This is done by making one or more calls to one of
the update methods:

final void update(byte b)
final void update(byte[] data)
final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be signed has been supplied
to the Signature object.

Chapter 2
Core Classes and Interfaces

2-19

To generate the signature, simply call one of the sign methods:

final byte[] sign()
final int sign(byte[] outbuf, int offset, int len)

The first method returns the signature result in a byte array. The second stores the signature
result in the provided buffer outbuf, starting at offset. len is the number of bytes in outbuf
allotted for the signature. The method returns the number of bytes actually stored.

Signature encoding is algorithm specific. See Java Security Standard Algorithm Names to
know more about the use of ASN.1 encoding in the Java Cryptography Architecture.

A call to a sign method resets the signature object to the state it was in when previously
initialized for signing via a call to initSign. That is, the object is reset and available to
generate another signature with the same private key, if desired, via new calls to update and
sign.

Alternatively, a new call can be made to initSign specifying a different private key, or to
initVerify (to initialize the Signature object to verify a signature).

Verifying with a Signature Object
If the Signature object has been initialized for verification (if it is in the VERIFY state), it can
then verify if an alleged signature is in fact the authentic signature of the data associated with
it. To start the process, the data to be verified (as opposed to the signature itself) is supplied to
the object. The data is passed to the object by calling one of the update methods:

final void update(byte b)
final void update(byte[] data)
final void update(byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be verified has been
supplied to the Signature object. The signature can now be verified by calling one of the
verify methods:

final boolean verify(byte[] signature)

final boolean verify(byte[] signature, int offset, int length)

The argument must be a byte array containing the signature. This byte array would hold the
signature bytes which were returned by a previous call to one of the sign methods.

The verify method returns a boolean indicating whether or not the encoded signature is the
authentic signature of the data supplied to the update method(s).

A call to the verify method resets the signature object to its state when it was initialized for
verification via a call to initVerify. That is, the object is reset and available to verify another
signature from the identity whose public key was specified in the call to initVerify.

Chapter 2
Core Classes and Interfaces

2-20

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Alternatively, a new call can be made to initVerify specifying a different public key (to
initialize the Signature object for verifying a signature from a different entity), or to initSign
(to initialize the Signature object for generating a signature).

The Cipher Class
The Cipher class provides the functionality of a cryptographic cipher used for encryption and
decryption. Encryption is the process of taking data (called cleartext) and a key, and producing
data (ciphertext) meaningless to a third-party who does not know the key. Decryption is the
inverse process: that of taking ciphertext and a key and producing cleartext.

Figure 2-8 The Cipher Class

Symmetric Versus Asymmetric Cryptography

There are two major types of encryption: symmetric (also known as secret key), and
asymmetric (or public key cryptography). In symmetric cryptography, the same secret key to
both encrypt and decrypt the data. Keeping the key private is critical to keeping the data
confidential. On the other hand, asymmetric cryptography uses a public/private key pair to
encrypt data. Data encrypted with one key is decrypted with the other. A user first generates a
public/private key pair, and then publishes the public key in a trusted database that anyone can
access. A user who wishes to communicate securely with that user encrypts the data using the
retrieved public key. Only the holder of the private key will be able to decrypt. Keeping the
private key confidential is critical to this scheme.

Asymmetric algorithms (such as RSA) are generally much slower than symmetric ones. These
algorithms are not designed for efficiently protecting large amounts of data. In practice,
asymmetric algorithms are used to exchange smaller secret keys which are used to initialize
symmetric algorithms.

Stream versus Block Ciphers

There are two major types of ciphers: block and stream. Block ciphers process entire blocks at
a time, usually many bytes in length. If there is not enough data to make a complete input
block, the data must be padded: that is, before encryption, dummy bytes must be added to
make a multiple of the cipher's block size. These bytes are then stripped off during the
decryption phase. The padding can either be done by the application, or by initializing a cipher
to use a padding type such as "PKCS5PADDING". In contrast, stream ciphers process
incoming data one small unit (typically a byte or even a bit) at a time. This allows for ciphers to
process an arbitrary amount of data without padding.

Modes Of Operation

When encrypting using a simple block cipher, two identical blocks of plaintext will always
produce an identical block of cipher text. Cryptanalysts trying to break the ciphertext will have
an easier job if they note blocks of repeating text. A cipher mode of operation makes the

Chapter 2
Core Classes and Interfaces

2-21

ciphertext less predictable with output block alterations based on block position or the values of
other ciphertext blocks. The first block will need an initial value, and this value is called the
initialization vector (IV). Since the IV simply alters the data before any encryption, the IV should
be random but does not necessarily need to be kept secret. There are a variety of modes, such
as CBC (Cipher Block Chaining), CFB (Cipher Feedback Mode), and OFB (Output Feedback
Mode). ECB (Electronic Codebook Mode) is a mode in which there is no influence from block
position or other ciphertext blocks. Because ECB ciphertexts are the same if they use the
same plaintext/key, this mode is not typically suitable for cryptographic applications and should
not be used.

Some algorithms such as AES and RSA allow for keys of different lengths, but others are fixed,
such as 3DES. Encryption using a longer key generally implies a stronger resistance to
message recovery. As usual, there is a trade off between security and time, so choose the key
length appropriately.

Most algorithms use binary keys. Most humans do not have the ability to remember long
sequences of binary numbers, even when represented in hexadecimal. Character passwords
are much easier to recall. Because character passwords are generally chosen from a small
number of characters (for example, [a-zA-Z0-9]), protocols such as "Password-Based
Encryption" (PBE) have been defined which take character passwords and generate strong
binary keys. In order to make the task of getting from password to key very time-consuming for
an attacker (via so-called "rainbow table attacks" or "precomputed dictionary attacks" where
common dictionary word->value mappings are precomputed), most PBE implementations will
mix in a random number, known as a salt, to reduce the usefulness of precomputed tables.

Newer cipher modes such as Authenticated Encryption with Associated Data (AEAD) (for
example, Galois/Counter Mode (GCM)) encrypt data and authenticate the resulting message
simultaneously. Additional Associated Data (AAD) can be used during the calculation of the
resulting AEAD tag (MAC), but this AAD data is not output as ciphertext. (For example, some
data might not need to be kept confidential, but should figure into the tag calculation to detect
modifications.) The Cipher.updateAAD() methods can be used to include AAD in the tag
calculations.

Using an AES Cipher with GCM Mode

The AES cipher with GCM is an AEAD cipher which has different usage patterns than the non-
AEAD ciphers. Apart from the regular data, it also takes AAD which is optional for encryption/
decryption but AAD must be supplied before data for encryption/decryption. In addition, in
order to use GCM securely, callers should not re-use key and IV combinations for encryption.
This means that the Cipher object should be explicitly re-initialized with a different set of
parameters every time for each encryption operation.

Example 2-2 Sample Code for Using an AES Cipher with GCM Mode

SecretKey myKey = ...
byte[] myAAD = ...
byte[] plainText = ...
int myTLen = ...
byte[] myIv = ...

GCMParameterSpec myParams = new GCMParameterSpec(myTLen, myIv);
Cipher c = Cipher.getInstance("AES/GCM/NoPadding");
c.init(Cipher.ENCRYPT_MODE, myKey, myParams);

// AAD is optional, if present, it must be supplied before any update/doFinal
calls.
c.updateAAD(myAAD); // if AAD is non-null

Chapter 2
Core Classes and Interfaces

2-22

byte[] cipherText = new byte[c.getOutputSize(plainText.length)];

// conclusion of encryption operation
int actualOutputLen = c.doFinal(plainText, 0, plainText.length, cipherText);

// To decrypt, same AAD and GCM parameters must be supplied
c.init(Cipher.DECRYPT_MODE, myKey, myParams);
c.updateAAD(myAAD);
byte[] recoveredText = c.doFinal(cipherText, 0, actualOutputLen);

// MUST CHANGE IV VALUE if the same key were to be used again for encryption
byte[] newIv = ...;
myParams = new GCMParameterSpec(myTLen, newIv);

Creating a Cipher Object

Cipher objects are obtained by using one of the Cipher getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied. Here, the
algorithm name is slightly different than with other engine classes, in that it specifies not just an
algorithm name, but a "transformation". A transformation is a string that describes the
operation (or set of operations) to be performed on the given input to produce some output. A
transformation always includes the name of a cryptographic algorithm (for example, AES), and
may be followed by a mode and padding scheme.

A transformation is of the form:

• "algorithm/mode/padding" or

• "algorithm"

For example, the following are valid transformations:

"AES/CBC/PKCS5Padding"
"AES"

If just a transformation name is specified, the system will determine if there is an
implementation of the requested transformation available in the environment, and if there is
more than one, returns if there is a preferred one.

If both a transformation name and a package provider are specified, the system will determine
if there is an implementation of the requested transformation in the package requested, and
throw an exception if there is not.

It is recommended to use a transformation that fully specifies the algorithm, mode, and
padding. By not doing so, the provider will use a default. For example, the SunJCE and
SunPKCS11 providers use ECB as the default mode, and PKCS5Padding as the default
padding for many symmetric ciphers.

This means that in the case of the SunJCE provider:

Cipher c1 = Cipher.getInstance("AES/ECB/PKCS5Padding");

and

Cipher c1 = Cipher.getInstance("AES");

Chapter 2
Core Classes and Interfaces

2-23

are equivalent statements.

Note:

ECB mode is the easiest block cipher mode to use and is the default cipher mode.
ECB works well for single blocks of data and can be parallelized but generally should
not be used for encrypting multiple data blocks due to characteristics of the mode.
This could result in trivial and full disclosure of confidential data. While this mode is
available for use, it should only be used with an understanding of the cryptographic
risks involved.

Using modes such as CFB and OFB, block ciphers can encrypt data in units smaller than the
cipher's actual block size. When requesting such a mode, you may optionally specify the
number of bits to be processed at a time by appending this number to the mode name as
shown in the "AES/CFB8/NoPadding" and "AES/OFB32/PKCS5Padding" transformations. If no
such number is specified, a provider-specific default is used. (For example, the SunJCE provider
uses a default of 256 bits for AES.) Thus, block ciphers can be turned into byte-oriented
stream ciphers by using an 8 bit mode such as CFB8 or OFB8.

Java Security Standard Algorithm Names contains a list of standard names that can be used to
specify the algorithm name, mode, and padding scheme components of a transformation.

The objects returned by factory methods are uninitialized, and must be initialized before they
become usable.

Initializing a Cipher Object

A Cipher object obtained through getInstance must be initialized for one of four modes,
which are defined as final integer constants in the Cipher class. The modes can be referenced
by their symbolic names:

ENCRYPT_MODE
Encryption of data.

DECRYPT_MODE
Decryption of data.

WRAP_MODE
Wrapping a java.security.Key into bytes so that the key can be securely transported.

UNWRAP_MODE
Unwrapping of a previously wrapped key into a java.security.Key object.

Each of the Cipher initialization methods takes an operational mode parameter (opmode), and
initializes the Cipher object for that mode. Other parameters include the key (key) or
certificate containing the key (certificate), algorithm parameters (params), and a source of
randomness (random).

To initialize a Cipher object, call one of the following init methods:

public void init(int opmode, Key key);

public void init(int opmode, Certificate certificate);

public void init(int opmode, Key key, SecureRandom random);

Chapter 2
Core Classes and Interfaces

2-24

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

public void init(int opmode, Certificate certificate,
 SecureRandom random);

public void init(int opmode, Key key,
 AlgorithmParameterSpec params);

public void init(int opmode, Key key,
 AlgorithmParameterSpec params, SecureRandom random);

public void init(int opmode, Key key,
 AlgorithmParameters params);

public void init(int opmode, Key key,
 AlgorithmParameters params, SecureRandom random);

If a Cipher object that requires parameters (for example, an initialization vector) is initialized
for encryption, and no parameters are supplied to the init method, the underlying cipher
implementation is supposed to supply the required parameters itself, either by generating
random parameters or by using a default, provider-specific set of parameters.

However, if a Cipher object that requires parameters is initialized for decryption, and no
parameters are supplied to the init method, an InvalidKeyException or
InvalidAlgorithmParameterException exception will be raised, depending on the init
method that has been used.

See Managing Algorithm Parameters.

The same parameters that were used for encryption must be used for decryption.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other
words, initializing a Cipher is equivalent to creating a new instance of that Cipher, and
initializing it. For example, if a Cipher is first initialized for decryption with a given key, and
then initialized for encryption, it will lose any state acquired while in decryption mode.

Encrypting and Decrypting Data

Data can be encrypted or decrypted in one step (single-part operation) or in multiple steps
(multiple-part operation). A multiple-part operation is useful if you do not know in advance how
long the data is going to be, or if the data is too long to be stored in memory all at once.

To encrypt or decrypt data in a single step, call one of the doFinal methods:

public byte[] doFinal(byte[] input);

public byte[] doFinal(byte[] input, int inputOffset, int inputLen);

public int doFinal(byte[] input, int inputOffset,
 int inputLen, byte[] output);

public int doFinal(byte[] input, int inputOffset,
 int inputLen, byte[] output, int outputOffset)

Chapter 2
Core Classes and Interfaces

2-25

To encrypt or decrypt data in multiple steps, call one of the update methods:

public byte[] update(byte[] input);

public byte[] update(byte[] input, int inputOffset, int inputLen);

public int update(byte[] input, int inputOffset, int inputLen,
 byte[] output);

public int update(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset)

A multiple-part operation must be terminated by one of the these doFinal methods (if there is
still some input data left for the last step), or by one of the following doFinal methods (if there
is no input data left for the last step):

public byte[] doFinal();

public int doFinal(byte[] output, int outputOffset);

All the doFinal methods take care of any necessary padding (or unpadding), if padding (or
unpadding) has been requested as part of the specified transformation.

A call to doFinal resets the Cipher object to the state it was in when initialized via a call to
init. That is, the Cipher object is reset and available to encrypt or decrypt (depending on the
operation mode that was specified in the call to init) more data.

Wrapping and Unwrapping Keys

Wrapping a key enables secure transfer of the key from one place to another.

The wrap and unwrap methods make it more convenient to write code since they work with
key objects directly. These methods also enable the possibility of secure transfer of hardware-
based keys.

To wrap a Key, first initialize the Cipher object for WRAP_MODE, and then call the following:

public final byte[] wrap(Key key);

If you are supplying the wrapped key bytes (the result of calling wrap) to someone else who will
unwrap them, be sure to also send additional information the recipient will need in order to do
the unwrap:

• The name of the key algorithm.

• The type of the wrapped key (one of Cipher.SECRET_KEY, Cipher.PRIVATE_KEY, or
Cipher.PUBLIC_KEY).

The key algorithm name can be determined by calling the getAlgorithm method from the Key
interface:

public String getAlgorithm();

Chapter 2
Core Classes and Interfaces

2-26

To unwrap the bytes returned by a previous call to wrap, first initialize a Cipher object for
UNWRAP_MODE, then call the following:

public final Key unwrap(byte[] wrappedKey,
 String wrappedKeyAlgorithm,
 int wrappedKeyType));

Here, wrappedKey is the bytes returned from the previous call to wrap, wrappedKeyAlgorithm is
the algorithm associated with the wrapped key, and wrappedKeyType is the type of the wrapped
key. This must be one of Cipher.SECRET_KEY, Cipher.PRIVATE_KEY, or Cipher.PUBLIC_KEY.

Managing Algorithm Parameters

The parameters being used by the underlying Cipher implementation, which were either
explicitly passed to the init method by the application or generated by the underlying
implementation itself, can be retrieved from the Cipher object by calling its getParameters
method, which returns the parameters as a java.security.AlgorithmParameters object (or
null if no parameters are being used). If the parameter is an initialization vector (IV), it can
also be retrieved by calling the getIV method.

In the following example, a Cipher object implementing password-based encryption (PBE) is
initialized with just a key and no parameters. However, the selected algorithm for password-
based encryption requires two parameters - a salt and an iteration count. Those will be
generated by the underlying algorithm implementation itself. The application can retrieve the
generated parameters from the Cipher object, see Example 2-3.

The same parameters that were used for encryption must be used for decryption. They can be
instantiated from their encoding and used to initialize the corresponding Cipher object for
decryption, see Example 2-4.

If you did not specify any parameters when you initialized a Cipher object, and you are not
sure whether or not the underlying implementation uses any parameters, you can find out by
simply calling the getParameters method of your Cipher object and checking the value
returned. A return value of null indicates that no parameters were used.

The following cipher algorithms implemented by the SunJCE provider use parameters:

• AES, DES-EDE, and Blowfish, when used in feedback (i.e., CBC, CFB, OFB, or PCBC)
mode, use an initialization vector (IV). The javax.crypto.spec.IvParameterSpec class
can be used to initialize a Cipher object with a given IV. In addition, CTR and GCM
modes require an IV.

• PBE Cipher algorithms use a set of parameters, comprising a salt and an iteration count.
The javax.crypto.spec.PBEParameterSpec class can be used to initialize a Cipher
object implementing a PBE algorithm (for example: PBEWithHmacSHA256AndAES_256)
with a given salt and iteration count.

Note that you do not have to worry about storing or transferring any algorithm parameters for
use by the decryption operation if you use the SealedObject class. This class attaches the
parameters used for sealing (encryption) to the encrypted object contents, and uses the same
parameters for unsealing (decryption).

Chapter 2
Core Classes and Interfaces

2-27

Example 2-3 Sample Code for Retrieving Parameters from the Cipher Object

The application can retrieve the generated parameters for encryption from the Cipher object
as follows:

// get cipher object for password-based encryption
Cipher c = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

// initialize cipher for encryption, without supplying
// any parameters. Here, "myKey" is assumed to refer
// to an already-generated key.
c.init(Cipher.ENCRYPT_MODE, myKey);

// encrypt some data and store away ciphertext
// for later decryption
byte[] cipherText = c.doFinal("This is just an example".getBytes());

// retrieve parameters generated by underlying cipher
// implementation
AlgorithmParameters algParams = c.getParameters();

// get parameter encoding and store it away
byte[] encodedAlgParams = algParams.getEncoded();

Example 2-4 Sample Code for Initializing the Cipher Object for Decryption

The same parameters that were used for encryption must be used for decryption. They can be
instantiated from their encoding and used to initialize the corresponding Cipher object for
decryption as follows:

// get parameter object for password-based encryption
AlgorithmParameters algParams;
algParams = AlgorithmParameters.getInstance("PBEWithHmacSHA256AndAES_256");

// initialize with parameter encoding from the previous example
algParams.init(encodedAlgParams);

// get cipher object for password-based encryption
Cipher c = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

// initialize cipher for decryption, using one of the
// init() methods that takes an AlgorithmParameters
// object, and pass it the algParams object from the previous example
c.init(Cipher.DECRYPT_MODE, myKey, algParams);

Cipher Output Considerations

Some of the update and doFinal methods of Cipher allow the caller to specify the output
buffer into which to encrypt or decrypt the data. In these cases, it is important to pass a buffer
that is large enough to hold the result of the encryption or decryption operation.

The following method in Cipher can be used to determine how big the output buffer should
be:

public int getOutputSize(int inputLen)

Chapter 2
Core Classes and Interfaces

2-28

Other Cipher-based Classes
There are some helper classes which internally use Ciphers to provide easy access to
common cipher uses.

Topics

The Cipher Stream Classes

The SealedObject Class

The Cipher Stream Classes
The CipherInputStream and CipherOutputStream classes are Cipher stream classes.

The CipherInputStream Class

This class is a FilterInputStream that encrypts or decrypts the data passing through it. It is
composed of an InputStream. CipherInputStream represents a secure input stream into
which a Cipher object has been interposed. The read methods of CipherInputStream
return data that are read from the underlying InputStream but have additionally been
processed by the embedded Cipher object. The Cipher object must be fully initialized before
being used by a CipherInputStream.

For example, if the embedded Cipher has been initialized for decryption, the
CipherInputStream will attempt to decrypt the data it reads from the underlying
InputStream before returning them to the application.

This class adheres strictly to the semantics, especially the failure semantics, of its ancestor
classes java.io.FilterInputStream and java.io.InputStream. This class has exactly those
methods specified in its ancestor classes, and overrides them all, so that the data are
additionally processed by the embedded cipher. Moreover, this class catches all exceptions
that are not thrown by its ancestor classes. In particular, the skip(long) method skips only
data that has been processed by the Cipher.

It is crucial for a programmer using this class not to use methods that are not defined or
overridden in this class (such as a new method or constructor that is later added to one of the
super classes), because the design and implementation of those methods are unlikely to have
considered security impact with regard to CipherInputStream. See Example 2-5 for its
usage, suppose cipher1 has been initialized for encryption. The program reads and encrypts
the content from the file /tmp/a.txt and then stores the result (the encrypted bytes) in /tmp/
b.txt.

Example 2-6 demonstrates how to easily connect several instances of CipherInputStream and
FileInputStream. In this example, assume that cipher1 and cipher2 have been initialized for
encryption and decryption (with corresponding keys), respectively. The program copies the
content from file /tmp/a.txt to /tmp/b.txt, except that the content is first encrypted and then
decrypted back when it is read from /tmp/a.txt. Of course since this program simply encrypts
text and decrypts it back right away, it's actually not very useful except as a simple way of
illustrating chaining of CipherInputStreams.

Note that the read methods of the CipherInputStream will block until data is returned from the
underlying cipher. If a block cipher is used, a full block of cipher text will have to be obtained
from the underlying InputStream.

Chapter 2
Core Classes and Interfaces

2-29

Example 2-5 Sample Code for Using CipherInputStream and FileInputStream

The following code demonstrates how to use a CipherInputStream containing that cipher and
a FileInputStream in order to encrypt input stream data:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 CipherInputStream cis = new CipherInputStream(fis, cipher1);
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {
 byte[] b = new byte[8];
 int i = cis.read(b);
 while (i != -1) {
 fos.write(b, 0, i);
 i = cis.read(b);
 }
}

Example 2-6 Sample Code for Connecting CipherInputStream and FileInputStream

The following example demonstrates how to easily connect several instances of
CipherInputStream and FileInputStream. In this example, assume that cipher1 and
cipher2 have been initialized for encryption and decryption (with corresponding keys),
respectively:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 CipherInputStream cis1 = new CipherInputStream(fis, cipher1);
 CipherInputStream cis2 = new CipherInputStream(cis1, cipher2);
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {
 byte[] b = new byte[8];
 int i = cis2.read(b);
 while (i != -1) {
 fos.write(b, 0, i);
 i = cis2.read(b);
 }
}

The CipherOutputStream Class

This class is a FilterOutputStream that encrypts or decrypts the data passing through it. It is
composed of an OutputStream, or one of its subclasses, and a Cipher.
CipherOutputStream represents a secure output stream into which a Cipher object has
been interposed. The write methods of CipherOutputStream first process the data with the
embedded Cipher object before writing them out to the underlying OutputStream. The
Cipher object must be fully initialized before being used by a CipherOutputStream.

For example, if the embedded Cipher has been initialized for encryption, the
CipherOutputStream will encrypt its data, before writing them out to the underlying output
stream.

This class adheres strictly to the semantics, especially the failure semantics, of its ancestor
classes java.io.OutputStream and java.io.FilterOutputStream. This class has exactly
those methods specified in its ancestor classes, and overrides them all, so that all data are
additionally processed by the embedded cipher. Moreover, this class catches all exceptions
that are not thrown by its ancestor classes.

It is crucial for a programmer using this class not to use methods that are not defined or
overridden in this class (such as a new method or constructor that is later added to one of the

Chapter 2
Core Classes and Interfaces

2-30

super classes), because the design and implementation of those methods are unlikely to have
considered security impact with regard to CipherOutputStream.

See Example 2-7 , for its usage, suppose cipher1 has been initialized for encryption. The
program reads the content from the file /tmp/a.txt, then encrypts and stores the result (the
encrypted bytes) in /tmp/b.txt.

Example 2-7 demonstrates how to easily connect several instances of CipherOutputStream
and FileOutputStream. In this example, assume that cipher1 and cipher2 have been
initialized for decryption and encryption (with corresponding keys), respectively. The program
copies the content from file /tmp/a.txt to /tmp/b.txt, except that the content is first
encrypted and then decrypted back before it is written to /tmp/b.txt.

One thing to keep in mind when using block cipher algorithms is that a full block of plaintext
data must be given to the CipherOutputStream before the data will be encrypted and sent to
the underlying output stream.

There is one other important difference between the flush and close methods of this class,
which becomes even more relevant if the encapsulated Cipher object implements a block
cipher algorithm with padding turned on:

• flush flushes the underlying OutputStream by forcing any buffered output bytes that
have already been processed by the encapsulated Cipher object to be written out. Any
bytes buffered by the encapsulated Cipher object and waiting to be processed by it will
not be written out.

• close closes the underlying OutputStream and releases any system resources
associated with it. It invokes the doFinal method of the encapsulated Cipher object,
causing any bytes buffered by it to be processed and written out to the underlying stream
by calling its flush method.

Example 2-7 Sample Code for Using CipherOutputStream and FileOutputStream

CipherOutputStreamFileOutputStream

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
 CipherOutputStream cos = new CipherOutputStream(fos, cipher1)) {
 byte[] b = new byte[8];
 int i = fis.read(b);
 while (i != -1) {
 cos.write(b, 0, i);
 i = fis.read(b);
 }
 cos.flush();
}

Example 2-8 Sample Code for Connecting CipherOutputStream and FileOutputStream

CipherOutputStreamFileOutputStreamcipher1cipher2

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
 FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
 CipherOutputStream cos1 = new CipherOutputStream(fos, cipher1);
 CipherOutputStream cos2 = new CipherOutputStream(cos1, cipher2)) {
 byte[] b = new byte[8];
 int i = fis.read(b);
 while (i != -1) {

Chapter 2
Core Classes and Interfaces

2-31

 cos2.write(b, 0, i);
 i = fis.read(b);
 }
 cos2.flush();
}

The SealedObject Class
This class enables a programmer to create an object and protect its confidentiality with a
cryptographic algorithm.

Given any object that implements the java.io.Serializable interface, one can create a
SealedObject that encapsulates the original object, in serialized format (i.e., a "deep copy"),
and seals (encrypts) its serialized contents, using a cryptographic algorithm such as AES, to
protect its confidentiality. The encrypted content can later be decrypted (with the corresponding
algorithm using the correct decryption key) and de-serialized, yielding the original object.

A typical usage is illustrated in the following code segment: In order to seal an object, you
create a SealedObject from the object to be sealed and a fully initialized Cipher object that will
encrypt the serialized object contents. In this example, the String "This is a secret" is sealed
using the AES algorithm. Note that any algorithm parameters that may be used in the sealing
operation are stored inside of SealedObject:

 // create Cipher object
 // NOTE: sKey is assumed to refer to an already-generated
 // secret AES key.
 Cipher c = Cipher.getInstance("AES");
 c.init(Cipher.ENCRYPT_MODE, sKey);

 // do the sealing
 SealedObject so = new SealedObject("This is a secret", c);

The original object that was sealed can be recovered in two different ways:

• by using a Cipher object that has been initialized with the exact same algorithm, key,
padding scheme, etc., that were used to seal the object:

 c.init(Cipher.DECRYPT_MODE, sKey);
 try {
 String s = (String)so.getObject(c);
 } catch (Exception e) {
 // do something
 };

This approach has the advantage that the party who unseals the sealed object does not
require knowledge of the decryption key. For example, after one party has initialized the
cipher object with the required decryption key, it could hand over the cipher object to
another party who then unseals the sealed object.

Chapter 2
Core Classes and Interfaces

2-32

• by using the appropriate decryption key (since AES is a symmetric encryption algorithm,
we use the same key for sealing and unsealing):

 try {
 String s = (String)so.getObject(sKey);
 } catch (Exception e) {
 // do something
 };

In this approach, the getObject method creates a cipher object for the appropriate
decryption algorithm and initializes it with the given decryption key and the algorithm
parameters (if any) that were stored in the sealed object. This approach has the advantage
that the party who unseals the object does not need to keep track of the parameters (e.g.,
the IV) that were used to seal the object.

The Mac Class
Similar to a MessageDigest, a Message Authentication Code (MAC) provides a way to check
the integrity of information transmitted over or stored in an unreliable medium, but includes a
secret key in the calculation.

Only someone with the proper key will be able to verify the received message. Typically,
message authentication codes are used between two parties that share a secret key in order to
validate information transmitted between these parties.

Figure 2-9 The Mac Class

Data
update()

doFinal()

MAC
(HmacSHA256)

Shared Secret
Key

If data was the
same, hash is
the same

Signed
Digest Hash

Data
update()

doFinal()

MAC
(HmacSHA256)

Signed
Digest Hash

A MAC mechanism that is based on cryptographic hash functions is referred to as HMAC.
HMAC can be used with any cryptographic hash function, e.g., SHA-256, in combination with a
secret shared key.

The Mac class provides the functionality of a Message Authentication Code (MAC). See HMAC-
SHA256 Example.

Creating a Mac Object

Mac objects are obtained by using one of the Mac getInstance() static factory methods.
See How Provider Implementations Are Requested and Supplied.

Initializing a Mac Object

A Mac object is always initialized with a (secret) key and may optionally be initialized with a set
of parameters, depending on the underlying MAC algorithm.

Chapter 2
Core Classes and Interfaces

2-33

To initialize a Mac object, call one of its init methods:

 public void init(Key key);

 public void init(Key key, AlgorithmParameterSpec params);

You can initialize your Mac object with any (secret-)key object that implements the
javax.crypto.SecretKey interface. This could be an object returned by
javax.crypto.KeyGenerator.generateKey(), or one that is the result of a key
agreement protocol, as returned by javax.crypto.KeyAgreement.generateSecret(),
or an instance of javax.crypto.spec.SecretKeySpec.

With some MAC algorithms, the (secret-)key algorithm associated with the (secret-)key object
used to initialize the Mac object does not matter (this is the case with the HMAC-MD5 and
HMAC-SHA1 implementations of the SunJCE provider). With others, however, the (secret-)key
algorithm does matter, and an InvalidKeyException is thrown if a (secret-)key object with an
inappropriate (secret-)key algorithm is used.

Computing a MAC

A MAC can be computed in one step (single-part operation) or in multiple steps (multiple-part
operation). A multiple-part operation is useful if you do not know in advance how long the data
is going to be, or if the data is too long to be stored in memory all at once.

To compute the MAC of some data in a single step, call the following doFinal method:

 public byte[] doFinal(byte[] input);

To compute the MAC of some data in multiple steps, call one of the update methods:

 public void update(byte input);

 public void update(byte[] input);

 public void update(byte[] input, int inputOffset, int inputLen);

A multiple-part operation must be terminated by the doFinal method (if there is still some input
data left for the last step), or by one of the following doFinal methods (if there is no input data
left for the last step):

 public byte[] doFinal();

 public void doFinal(byte[] output, int outOffset);

The KEM Class

The KEM class is an engine class (see Engine Classes and Algorithms) that provides the
functionality of a Key Encapsulation Mechanism (KEM).

You can use the KEM to secure symmetric keys using asymmetric or public key cryptography
between two parties. The sender calls the encapsulate method to generate a secret key and
a key encapsulation message, and the receiver calls the decapsulate method to recover the
same secret key from the key encapsulation message.

Chapter 2
Core Classes and Interfaces

2-34

Preparation

The receiver needs to create a key pair using a KeyPairGenerator. The public key is
published and made avaiable to the sender, and the private key is kept in secret.

Creating KEM Objects

Each party needs to create a KEM object. KEM objects are created by using one of the KEM
getInstance() static factory methods. See How Provider Implementations Are Requested
and Supplied.

Creating an Encapsulator and a Decapsulator

On the sender side, call one of the newEncapsulator methods of the KEM object to create an
encapsulator. The receiver's public key is used in the process. On the receiver side, call
one of the newDecapsulator methods of the KEM object to create a decapsulator. The
receiver's private key is used in the process.

Encapsulation and Decapsulation

The sender calls one of the encapsulate methods in the newly created
KEM.Encapsulator object, which returns a KEM.Encapsulated object. The secret key
inside the KEM.Encapsulated object is kept in secret, and the key encapsulation message
inside it is sent to the receiver.

The receiver passes the key encapsulation message from the sender to one of the
decapsulate methods in the newly created KEM.Decapsulator object, which returns a
SecretKey object. This secret key is identical to the secret key on the sender's side.

The sender can use the key for future secure communications with the receiver.

See Encapsulating and Decapsulating Keys for a code example.

Key Interfaces
The java.security.Key interface is the top-level interface for all opaque keys. It defines the
functionality shared by all opaque key objects.

To this point, we have focused the high-level uses of the JCA without getting lost in the details
of what keys are and how they are generated/represented. It is now time to turn our attention
to keys.

An opaque key representation is one in which you have no direct access to the key material
that constitutes a key. In other words: "opaque" gives you limited access to the key--just the
three methods defined by the Key interface: getAlgorithm, getFormat, and getEncoded.

This is in contrast to a transparent representation, in which you can access each key material
value individually, through one of the get methods defined in the corresponding KeySpec
interface (see The KeySpec Interface).

All opaque keys have three characteristics:

An Algorithm
The key algorithm for that key. The key algorithm is usually an encryption or asymmetric
operation algorithm (such as AES, DSA or RSA), which will work with those algorithms and with

Chapter 2
Core Classes and Interfaces

2-35

related algorithms (such as SHA256withRSA). The name of the algorithm of a key is obtained
using this method:

String getAlgorithm()

An Encoded Form
The external encoded form for the key used when a standard representation of the key is
needed outside the Java Virtual Machine, as when transmitting the key to some other party.
The key is encoded according to a standard format (such as X.509 or PKCS8), and is returned
using the method:

byte[] getEncoded()

A Format
The name of the format of the encoded key. It is returned by the method:

String getFormat()

Keys are generally obtained through key generators such as the KeyGenerator class and the
KeyPairGenerator class, certificates, key specifications (see the The KeySpec Interface)
using a KeyFactory, or a Keystore implementation accessing a keystore database used to
manage keys. It is possible to parse encoded keys, in an algorithm-dependent manner, using a
KeyFactory.

It is also possible to parse certificates, using a CertificateFactory.

Here is a list of interfaces which extend the Key interface in the java.security.interfaces
and javax.crypto.interfaces packages:

• SecretKey
– PBEKey

• PrivateKey
– DHPrivateKey
– DSAPrivateKey
– ECPrivateKey
– RSAMultiPrimePrivateCrtKey
– RSAPrivateCrtKey
– RSAPrivateKey

• PublicKey
– DHPublicKey
– DSAPublicKey
– ECPublicKey
– RSAPublicKey

Chapter 2
Core Classes and Interfaces

2-36

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/SecretKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/PBEKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/ECPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAMultiPrimePrivateCrtKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPrivateCrtKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/DHPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/DSAPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/ECPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPublicKey.html

The PublicKey and PrivateKey Interfaces

The PublicKey and PrivateKey interfaces (which both extend the Key interface) are
methodless interfaces, used for type-safety and type-identification.

The KeyPair Class
The KeyPair class is a simple holder for a key pair (a public key and a private key).

It has two public methods, one for returning the private key, and the other for returning the
public key:

PrivateKey getPrivate()
PublicKey getPublic()

Key Specification Interfaces and Classes
Key objects and key specifications (KeySpecs) are two different representations of key data.
Ciphers use Key objects to initialize their encryption algorithms, but keys may need to be
converted into a more portable format for transmission or storage.

A transparent representation of keys means that you can access each key material value
individually, through one of the get methods defined in the corresponding specification class.
For example, DSAPrivateKeySpec defines getX, getP, getQ, and getG methods, to access the
private key x, and the DSA algorithm parameters used to calculate the key: the prime p, the
sub-prime q, and the base g. If the key is stored on a hardware device, its specification may
contain information that helps identify the key on the device.

This representation is contrasted with an opaque representation, as defined by the Key
Interfaces interface, in which you have no direct access to the key material fields. In other
words, an "opaque" representation gives you limited access to the key—just the three methods
defined by the Key interface: getAlgorithm, getFormat, and getEncoded.

A key may be specified in an algorithm-specific way, or in an algorithm-independent encoding
format (such as ASN.1). For example, a DSA private key may be specified by its components
x, p, q, and g (see DSAPrivateKeySpec), or it may be specified using its DER encoding (see
PKCS8EncodedKeySpec).

The KeyFactory and SecretKeyFactory classes can be used to convert between opaque
and transparent key representations (that is, between Keys and KeySpecs, assuming that the
operation is possible. (For example, private keys on smart cards might not be able leave the
card. Such Keys are not convertible.)

In the following sections, we discuss the key specification interfaces and classes in the
java.security.spec package.

The KeySpec Interface
This interface contains no methods or constants. Its only purpose is to group and provide type
safety for all key specifications. All key specifications must implement this interface.

Chapter 2
Core Classes and Interfaces

2-37

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html

The KeySpec Subinterfaces
Like the Key interface, there are a similar set of KeySpec interfaces.

• SecretKeySpec
• EncodedKeySpec

– PKCS8EncodedKeySpec
– X509EncodedKeySpec

• DESKeySpec
• DESedeKeySpec
• PBEKeySpec
• DHPrivateKeySpec
• DSAPrivateKeySpec
• ECPrivateKeySpec
• RSAPrivateKeySpec

– RSAMultiPrimePrivateCrtKeySpec
– RSAPrivateCrtKeySpec

• DHPublicKeySpec
• DSAPublicKeySpec
• ECPublicKeySpec
• RSAPublicKeySpec

The EncodedKeySpec Class
This abstract class (which implements the The KeySpec Interface interface) represents a
public or private key in encoded format. Its getEncoded method returns the encoded key:

abstract byte[] getEncoded();

and its getFormat method returns the name of the encoding format:

abstract String getFormat();

See the next sections for the concrete implementations PKCS8EncodedKeySpec and
X509EncodedKeySpec.

The PKCS8EncodedKeySpec Class
This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a private
key, according to the format specified in the PKCS8 standard.

Chapter 2
Core Classes and Interfaces

2-38

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/SecretKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/X509EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DESKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DESedeKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/PBEKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAMultiPrimePrivateCrtKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPrivateCrtKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPublicKeySpec.html

Its getEncoded method returns the key bytes, encoded according to the PKCS8 standard. Its
getFormat method returns the string "PKCS#8".

The X509EncodedKeySpec Class
This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a public
key, according to the format specified in the X.509 standard.

Its getEncoded method returns the key bytes, encoded according to the X.509 standard. Its
getFormat method returns the string "X.509".

Generators and Factories
Newcomers to Java and the JCA APIs in particular sometimes do not grasp the distinction
between generators and factories.

Figure 2-10 Generators and Factories

Generators are used to generate brand new objects. Generators can be initialized in either
an algorithm-dependent or algorithm-independent way. For example, to create a Diffie-Hellman
(DH) keypair, an application could specify the necessary P and G values, or the generator
could simply be initialized with the appropriate key length, and the generator will select
appropriate P and G values. In both cases, the generator will produce brand new keys based
on the parameters.

On the other hand, factories are used to convert data from one existing object type to
another. For example, an application might have available the components of a DH private
key and can package them as a The KeySpec Interface, but needs to convert them into a
PrivateKey object that can be used by a KeyAgreement object, or vice-versa. Or they might
have the byte array of a certificate, but need to use a CertificateFactory to convert it into a
X509Certificate object. Applications use factory objects to do the conversion.

The KeyFactory Class
The KeyFactory class is an Engine Classes and Algorithms designed to perform conversions
between opaque cryptographic Key Interfaces and Key Specification Interfaces and Classes
(transparent representations of the underlying key material).

Chapter 2
Core Classes and Interfaces

2-39

Figure 2-11 KeyFactory Class

Key factories are bi-directional. They allow you to build an opaque key object from a given key
specification (key material), or to retrieve the underlying key material of a key object in a
suitable format.

Multiple compatible key specifications can exist for the same key. For example, a DSA public
key may be specified by its components y, p, q, and g (see
java.security.spec.DSAPublicKeySpec), or it may be specified using its DER encoding
according to the X.509 standard (see The X509EncodedKeySpec Class).

A key factory can be used to translate between compatible key specifications. Key parsing can
be achieved through translation between compatible key specifications, e.g., when you
translate from X509EncodedKeySpec to DSAPublicKeySpec, you basically parse the encoded key
into its components. For an example, see the end of the Generating/Verifying Signatures Using
Key Specifications and KeyFactory section.

Creating a KeyFactory Object

KeyFactory objects are obtained by using one of the KeyFactorygetInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Converting Between a Key Specification and a Key Object

If you have a key specification for a public key, you can obtain an opaque PublicKey object
from the specification by using the generatePublic method:

PublicKey generatePublic(KeySpec keySpec)

Similarly, if you have a key specification for a private key, you can obtain an opaque
PrivateKey object from the specification by using the generatePrivate method:

PrivateKey generatePrivate(KeySpec keySpec)

Converting Between a Key Object and a Key Specification

If you have a Key object, you can get a corresponding key specification object by calling the
getKeySpec method:

KeySpec getKeySpec(Key key, Class keySpec)

Chapter 2
Core Classes and Interfaces

2-40

keySpec identifies the specification class in which the key material should be returned. It could,
for example, be DSAPublicKeySpec.class , to indicate that the key material should be returned
in an instance of the DSAPublicKeySpec class. See Generating/Verifying Signatures Using Key
Specifications and KeyFactory.

The SecretKeyFactory Class
The SecretKeyFactory class represents a factory for secret keys. Unlike the KeyFactory
class (see The KeyFactory Class), a javax.crypto.SecretKeyFactory object operates only on
secret (symmetric) keys, whereas a java.security.KeyFactory object processes the public
and private key components of a key pair.

Figure 2-12 SecretKeyFactory Class

Key Spec Secret Key

Secret Key Factory
(AES)

generateSecret()

Secret Key Key Spec

Secret Key Factory
(AES)

getKeySpec()

Key factories are used to convert Key Interfaces (opaque cryptographic keys of type
java.security.Key) into Key Specification Interfaces and Classes (transparent
representations of the underlying key material in a suitable format), and vice versa.

Objects of type java.security.Key, of which java.security.PublicKey,
java.security.PrivateKey, and javax.crypto.SecretKey are subclasses, are opaque key
objects, because you cannot tell how they are implemented. The underlying implementation is
provider-dependent, and may be software or hardware based. Key factories allow providers to
supply their own implementations of cryptographic keys.

For example, if you have a key specification for a Diffie-Hellman public key, consisting of the
public value y, the prime modulus p, and the base g, and you feed the same specification to
Diffie-Hellman key factories from different providers, the resulting PublicKey objects will most
likely have different underlying implementations.

A provider should document the key specifications supported by its secret key factory. For
example, the SecretKeyFactory for DES keys supplied by the SunJCE provider supports
DESKeySpec as a transparent representation of DES keys, the SecretKeyFactory for DES-EDE
keys supports DESedeKeySpec as a transparent representation of DES-EDE keys, and the
SecretKeyFactory for PBE supports PBEKeySpec as a transparent representation of the
underlying password.

The following is an example of how to use a SecretKeyFactory to convert secret key data into
a SecretKey object, which can be used for a subsequent Cipher operation:

 // Note the following bytes are not realistic secret key data
 // bytes but are simply supplied as an illustration of using data
 // bytes (key material) you already have to build a DESedeKeySpec.

 byte[] desEdeKeyData = getKeyData();
 DESedeKeySpec desEdeKeySpec = new DESedeKeySpec(desEdeKeyData);

Chapter 2
Core Classes and Interfaces

2-41

 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DESede");
 SecretKey secretKey = keyFactory.generateSecret(desEdeKeySpec);

In this case, the underlying implementation of SecretKey is based on the provider of
KeyFactory.

An alternative, provider-independent way of creating a functionally equivalent SecretKey object
from the same key material is to use the javax.crypto.spec.SecretKeySpec class, which
implements the javax.crypto.SecretKey interface:

 byte[] aesKeyData = getKeyData();
 SecretKeySpec secretKey = new SecretKeySpec(aesKeyData, "AES");

Creating a SecretKeyFactory Object

SecretKeyFactory objects are obtained by using one of the SecretKeyFactory
getInstance() static factory methods. See How Provider Implementations Are Requested
and Supplied.

Converting Between a Key Specification and a Secret Key Object

If you have a key specification for a secret key, you can obtain an opaque SecretKey object
from the specification by using the generateSecret method:

SecretKey generateSecret(KeySpec keySpec)

Converting Between a Secret Key Object and a Key Specification

If you have a SecretKey object, you can get a corresponding key specification object by
calling the getKeySpec method:

KeySpec getKeySpec(Key key, Class keySpec)

keySpec identifies the specification class in which the key material should be returned. It
could, for example, be DESKeySpec.class, to indicate that the key material should be returned
in an instance of the DESKeySpec class.

The KeyPairGenerator Class
The KeyPairGenerator class is an engine class (see Engine Classes and Algorithms) used to
generate pairs of public and private keys.

Chapter 2
Core Classes and Interfaces

2-42

Figure 2-13 KeyPairGenerator Class

There are two ways to generate a key pair: in an algorithm-independent manner, and in an
algorithm-specific manner. The only difference between the two is the initialization of the
object.

See Generating a Pair of Keys for examples of calls to the methods of KeyPairGenerator.

Creating a KeyPairGenerator

All key pair generation starts with a KeyPairGenerator. KeyPairGenerator objects are
obtained by using one of the KeyPairGenerator getInstance() static factory methods. See
How Provider Implementations Are Requested and Supplied.

Initializing a KeyPairGenerator

A key pair generator for a particular algorithm creates a public/private key pair that can be
used with this algorithm. It also associates algorithm-specific parameters with each of the
generated keys.

A key pair generator needs to be initialized before it can generate keys. In most cases,
algorithm-independent initialization is sufficient. But in other cases, algorithm-specific
initialization can be used.

Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of randomness. The
keysize is interpreted differently for different algorithms. For example, in the case of the DSA
algorithm, the keysize corresponds to the length of the modulus. (See Java Security Standard
Algorithm Names for information about the keysizes for specific algorithms.)

An initialize method takes two universally shared types of arguments:

void initialize(int keysize, SecureRandom random)

Another initialize method takes only a keysize argument; it uses a system-provided source
of randomness:

void initialize(int keysize)

Since no other parameters are specified when you call these algorithm-independent
initialize methods, it is up to the provider what to do about the algorithm-specific
parameters (if any) to be associated with each of the keys.

Chapter 2
Core Classes and Interfaces

2-43

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

If the algorithm is a "DSA" algorithm, and the modulus size (keysize) is 512, 768, 1024, 2048,
or 3072, then the SUN provider uses a set of precomputed values for the p, q, and g
parameters. If the modulus size is not one of these values, the SUN provider creates a new set
of parameters. Other providers might have precomputed parameter sets for more than just the
three modulus sizes mentioned previously. Still others might not have a list of precomputed
parameters at all and instead always create new parameter sets.

Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists (such as "community
parameters" in DSA), there are two initialize methods that have an The
AlgorithmParameterSpec Interface argument. One also has a SecureRandom argument, while
the source of randomness is system-provided for the other:

void initialize(AlgorithmParameterSpec params,
 SecureRandom random)

void initialize(AlgorithmParameterSpec params)

See Generating a Pair of Keys.

Generating a Key Pair

The procedure for generating a key pair is always the same, regardless of initialization (and of
the algorithm). You always call the following method from KeyPairGenerator:

KeyPair generateKeyPair()

Multiple calls to generateKeyPair will yield different key pairs.

The KeyGenerator Class
A key generator is used to generate secret keys for symmetric algorithms.

Figure 2-14 The KeyGenerator Class

Creating a KeyGenerator
KeyGenerator objects are obtained by using one of the KeyGenerator getInstance() static
factory methods. See How Provider Implementations Are Requested and Supplied.

Initializing a KeyGenerator Object

A key generator for a particular symmetric-key algorithm creates a symmetric key that can be
used with that algorithm. It also associates algorithm-specific parameters (if any) with the
generated key.

Chapter 2
Core Classes and Interfaces

2-44

There are two ways to generate a key: in an algorithm-independent manner, and in an
algorithm-specific manner. The only difference between the two is the initialization of the
object:

• Algorithm-Independent Initialization
All key generators share the concepts of a keysize and a source of randomness. There is
an init method that takes these two universally shared types of arguments. There is also
one that takes just a keysize argument, and uses a system-provided source of
randomness, and one that takes just a source of randomness:

 public void init(SecureRandom random);

 public void init(int keysize);

 public void init(int keysize, SecureRandom random);

Since no other parameters are specified when you call these algorithm-independent init
methods, it is up to the provider what to do about the algorithm-specific parameters (if any)
to be associated with the generated key.

• Algorithm-Specific Initialization
For situations where a set of algorithm-specific parameters already exists, there are two
init methods that have an AlgorithmParameterSpec argument. One also has a
SecureRandom argument, while the source of randomness is system-provided for the other:

 public void init(AlgorithmParameterSpec params);

 public void init(AlgorithmParameterSpec params, SecureRandom random);

In case the client does not explicitly initialize the KeyGenerator (via a call to an init method),
each provider must supply (and document) a default initialization.

Creating a Key

The following method generates a secret key:

 public SecretKey generateKey();

The KeyAgreement Class
Key agreement is a protocol by which 2 or more parties can establish the same cryptographic
keys, without having to exchange any secret information.

Chapter 2
Core Classes and Interfaces

2-45

Figure 2-15 The KeyAgreement Class

Each party initializes their key agreement object with their private key, and then enters the
public keys for each party that will participate in the communication. In most cases, there are
just two parties, but algorithms such as Diffie-Hellman allow for multiple parties (3 or more) to
participate. When all the public keys have been entered, each KeyAgreement object will
generate (agree upon) the same key.

The KeyAgreement class provides the functionality of a key agreement protocol. The keys
involved in establishing a shared secret are created by one of the key generators
(KeyPairGenerator or KeyGenerator), a KeyFactory, or as a result from an intermediate phase
of the key agreement protocol.

Creating a KeyAgreement Object

Each party involved in the key agreement has to create a KeyAgreement object. KeyAgreement
objects are obtained by using one of the KeyAgreement getInstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Initializing a KeyAgreement Object

You initialize a KeyAgreement object with your private information. In the case of Diffie-
Hellman, you initialize it with your Diffie-Hellman private key. Additional initialization information
may contain a source of randomness and/or a set of algorithm parameters. Note that if the
requested key agreement algorithm requires the specification of algorithm parameters, and
only a key, but no parameters are provided to initialize the KeyAgreement object, the key must
contain the required algorithm parameters. (For example, the Diffie-Hellman algorithm uses a
prime modulus p and a base generator g as its parameters.)

To initialize a KeyAgreement object, call one of its init methods:

 public void init(Key key);

 public void init(Key key, SecureRandom random);

 public void init(Key key, AlgorithmParameterSpec params);

 public void init(Key key, AlgorithmParameterSpec params,
 SecureRandom random);

Chapter 2
Core Classes and Interfaces

2-46

Executing a KeyAgreement Phase

Every key agreement protocol consists of a number of phases that need to be executed by
each party involved in the key agreement.

To execute the next phase in the key agreement, call the doPhase method:

 public Key doPhase(Key key, boolean lastPhase);

The key parameter contains the key to be processed by that phase. In most cases, this is the
public key of one of the other parties involved in the key agreement, or an intermediate key
that was generated by a previous phase. doPhase may return an intermediate key that you may
have to send to the other parties of this key agreement, so they can process it in a subsequent
phase.

The lastPhase parameter specifies whether or not the phase to be executed is the last one in
the key agreement: A value of FALSE indicates that this is not the last phase of the key
agreement (there are more phases to follow), and a value of TRUE indicates that this is the last
phase of the key agreement and the key agreement is completed, i.e., generateSecret can be
called next.

In the example of Diffie-Hellman Key Exchange between Two Parties , you call doPhase once,
with lastPhase set to TRUE. In the example of Diffie-Hellman between three parties, you call
doPhase twice: the first time with lastPhase set to FALSE, the 2nd time with lastPhase set to
TRUE.

Generating the Shared Secret

After each party has executed all the required key agreement phases, it can compute the
shared secret by calling one of the generateSecret methods:

 public byte[] generateSecret();

 public int generateSecret(byte[] sharedSecret, int offset);

 public SecretKey generateSecret(String algorithm);

Key Management
A database called a "keystore" can be used to manage a repository of keys and certificates. (A
certificate is a digitally signed statement from one entity, saying that the public key of some
other entity has a particular value.)

Keystore Location

The user keystore is by default stored in a file named .keystore in the user's home directory,
as determined by the user.home system property whose default value depends on the
operating system:

• Linux and macOS: /home/username/
• Windows: C:\Users\username\

Chapter 2
Core Classes and Interfaces

2-47

Of course, keystore files can be located as desired. In some environments, it may make sense
for multiple keystores to exist. For example, one keystore might hold a user's private keys, and
another might hold certificates used to establish trust relationships.

In addition to the user's keystore, the JDK also maintains a system-wide keystore which is
used to store trusted certificates from a variety of Certificate Authorities (CA's). These CA
certificates can be used to help make trust decisions. For example, in SSL/TLS/DTLS when
the SunJSSE provider is presented with certificates from a remote peer, the default
trustmanager will consult one of the following files to determine if the connection is to be
trusted:

• Linux and macOS: <java-home>/lib/security/cacerts
• Windows: <java-home>\lib\security\cacerts
Instead of using the system-wide cacerts keystore, applications can set up and use their own
keystores, or even use the user keystore described previously.

Keystore Implementation

The KeyStore class supplies well-defined interfaces to access and modify the information in a
keystore. It is possible for there to be multiple different concrete implementations, where each
implementation is that for a particular type of keystore.

Currently, there are two command-line tools that make use of KeyStore: keytool and
jarsigner. It is also used by the Policy reference implementation when it processes policy
files specifying the permissions (allowed accesses to system resources) to be granted to code
from various sources. Since KeyStore is publicly available, JDK users can write additional
security applications that use it.

Applications can choose different types of keystore implementations from different providers,
using the getInstance factory method in the KeyStore class. A keystore type defines the
storage and data format of the keystore information, and the algorithms used to protect private
keys in the keystore and the integrity of the keystore itself. Keystore implementations of
different types are not compatible.

The default keystore implementation is "pkcs12". This is a cross-platform keystore based on
the RSA PKCS12 Personal Information Exchange Syntax Standard. This standard is primarily
meant for storing or transporting a user's private keys, certificates, and miscellaneous secrets.
Arbitrary attributes can be associated with individual entries in a PKCS12 keystore.

keystore.type=pkcs12

To have tools and other applications use a different default keystore implementation, you can
change that line to specify a different type.

Some applications, such as keytool, also let you override the default keystore type (via the -
storetype command-line parameter).

Note:

Keystore type designations are case-insensitive. For example, "jks" would be
considered the same as "JKS".

PKCS12 is the default and recommened keystore type. However, there are three other types of
keystores that come with the JDK implementation.

Chapter 2
Core Classes and Interfaces

2-48

1. "jceks" is an alternate proprietary keystore format to "jks" that uses Password-Based
Encryption with Triple-DES.
The "jceks" implementation can parse and convert a "jks" keystore file to the "jceks"
format. You may upgrade your keystore of type "jks" to a keystore of type "jceks" by
changing the password of a private-key entry in your keystore and specifying "-storetype
jceks" as the keystore type. To apply the cryptographically strong(er) key protection
supplied to a private key named "signkey" in your default keystore, use the following
command, which will prompt you for the old and new key passwords:

keytool -keypass -alias signkey -storetype jceks

See keytool in Java Development Kit Tool Specifications .

2. "jks" is another option. It implements the keystore as a file, utilizing a proprietary keystore
type (format). It protects each private key with its own individual password, and also
protects the integrity of the entire keystore with a (possibly different) password.

3. "dks" is a domain keystore. It is a collection of keystores presented as a single logical
keystore. The keystores that comprise a given domain are specified by configuration data
whose syntax is described in DomainLoadStoreParameter.

Keystore implementations are provider-based. If you want to write your own KeyStore
implementations, see How to Implement a Provider in the Java Cryptography Architecture.

The KeyStore Class
The KeyStore class supplies well-defined interfaces to access and modify the information in a
keystore.

The KeyStore class is an Engine Classes and Algorithms.

Figure 2-16 KeyStore Class

PKCS12

Alias Type Data

Brad Private Key/Certificate ...

Deb Secret Key ...

Milton Trusted Certificate ...

Duke Trusted Certificate ...

File

store()

load()

This class represents an in-memory collection of keys and certificates. KeyStore manages two
types of entries:

• Key Entry: This type of keystore entry holds very sensitive cryptographic key information,
which must be protected from unauthorized access. Typically, a key stored in this type of

Chapter 2
Core Classes and Interfaces

2-49

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/DomainLoadStoreParameter.html

entry is a secret key, or a private key accompanied by the certificate chain authenticating
the corresponding public key.

Private keys and certificate chains are used by a given entity for self-authentication using
digital signatures. For example, software distribution organizations digitally sign JAR files
as part of releasing and/or licensing software.

• Trusted Certificate Entry: This type of entry contains a single public key certificate
belonging to another party. It is called a trusted certificate because the keystore owner
trusts that the public key in the certificate indeed belongs to the identity identified by the
subject (owner) of the certificate.

This type of entry can be used to authenticate other parties.

Each entry in a keystore is identified by an "alias" string. In the case of private keys and their
associated certificate chains, these strings distinguish among the different ways in which the
entity may authenticate itself. For example, the entity may authenticate itself using different
certificate authorities, or using different public key algorithms.

Whether keystores are persistent, and the mechanisms used by the keystore if it is persistent,
are not specified here. This convention allows use of a variety of techniques for protecting
sensitive (e.g., private or secret) keys. Smart cards or other integrated cryptographic engines
(SafeKeyper) are one option, and simpler mechanisms such as files may also be used (in a
variety of formats).

The following describes the main KeyStore methods.

Creating a KeyStore Object

KeyStore objects are obtained by using one of the KeyStore getInstance() method. See How
Provider Implementations Are Requested and Supplied.

Loading a Particular Keystore into Memory

Before a KeyStore object can be used, the actual keystore data must be loaded into memory
via the load method:

final void load(InputStream stream, char[] password)

The optional password is used to check the integrity of the keystore data. If no password is
supplied, no integrity check is performed.

To create an empty keystore, you pass null as the InputStream argument to the load
method.

A DKS keystore is loaded by passing a DomainLoadStoreParameter to the alternative load
method:

final void load(KeyStore.LoadStoreParameter param)

Getting a List of the Keystore Aliases

All keystore entries are accessed via unique aliases. The aliases method returns an
enumeration of the alias names in the keystore:

final Enumeration aliases()

Chapter 2
Core Classes and Interfaces

2-50

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/DomainLoadStoreParameter.html

Determining Keystore Entry Types

As stated in the KeyStore class, there are two different types of entries in a keystore. The
following methods determine whether the entry specified by the given alias is a key/certificate
or a trusted certificate entry, respectively:

final boolean isKeyEntry(String alias)
final boolean isCertificateEntry(String alias)

Adding/Setting/Deleting Keystore Entries

The setCertificateEntry method assigns a certificate to a specified alias:

final void setCertificateEntry(String alias, Certificate cert)

If alias doesn't exist, a trusted certificate entry with that alias is created. If alias exists and
identifies a trusted certificate entry, the certificate associated with it is replaced by cert.

The setKeyEntry methods add (if alias doesn't yet exist) or set key entries:

final void setKeyEntry(String alias,
 Key key,
 char[] password,
 Certificate[] chain)

final void setKeyEntry(String alias,
 byte[] key,
 Certificate[] chain)

In the method with key as a byte array, it is the bytes for a key in protected format. For
example, in the keystore implementation supplied by the SUN provider, the key byte array is
expected to contain a protected private key, encoded as an EncryptedPrivateKeyInfo as
defined in the PKCS8 standard. In the other method, the password is the password used to
protect the key.

The deleteEntry method deletes an entry:

final void deleteEntry(String alias)

PKCS #12 keystores support entries containing arbitrary attributes. Use the PKCS12Attribute
class to create the attributes. When creating the new keystore entry use a constructor method
that accepts attributes. Finally, use the following method to add the entry to the keystore:

final void setEntry(String alias, Entry entry,
 ProtectionParameter protParam)

Getting Information from the Keystore

The getKey method returns the key associated with the given alias. The key is recovered using
the given password:

final Key getKey(String alias, char[] password)

Chapter 2
Core Classes and Interfaces

2-51

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PKCS12Attribute.html

The following methods return the certificate, or certificate chain, respectively, associated with
the given alias:

final Certificate getCertificate(String alias)
final Certificate[] getCertificateChain(String alias)

You can determine the name (alias) of the first entry whose certificate matches a given
certificate via the following:

final String getCertificateAlias(Certificate cert)

PKCS #12 keystores support entries containing arbitrary attributes. Use the following method
to retrieve an entry that may contain attributes:

final Entry getEntry(String alias, ProtectionParameter protParam)

and then use the KeyStore.Entry.getAttributes method to extract such attributes and use
the methods of the KeyStore.Entry.Attribute interface to examine them.

Saving the KeyStore

The in-memory keystore can be saved via the store method:

final void store(OutputStream stream, char[] password)

The password is used to calculate an integrity checksum of the keystore data, which is
appended to the keystore data.

A DKS keystore is stored by passing a DomainLoadStoreParameter to the alternative store
method:

final void store(KeyStore.LoadStoreParameter param)

Algorithm Parameters Classes
Like Keys and Keyspecs, an algorithm's initialization parameters are represented by either
AlgorithmParameters or AlgorithmParameterSpecs.

Depending on the use situation, algorithms can use the parameters directly, or the parameters
might need to be converted into a more portable format for transmission or storage.

A transparent representation of a set of parameters (through AlgorithmParameterSpec) means
that you can access each parameter value in the set individually. You can access these values
through one of the get methods defined in the corresponding specification class (for example,
DSAParameterSpec defines getP, getQ, and getG methods, to access p, q, and g, respectively).

In contrast, the AlgorithmParameters class supplies an opaque representation, in which
you have no direct access to the parameter fields. You can only get the name of the algorithm
associated with the parameter set (through getAlgorithm) and some kind of encoding for the
parameter set (through getEncoded).

Chapter 2
Core Classes and Interfaces

2-52

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.Entry.html#getAttributes()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.Entry.Attribute.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/DomainLoadStoreParameter.html

The AlgorithmParameterSpec Interface
AlgorithmParameterSpec is an interface to a transparent specification of cryptographic
parameters. This interface contains no methods or constants. Its only purpose is to group (and
provide type safety for) all parameter specifications. All parameter specifications must
implement this interface.

The following are the algorithm parameter specification interfaces and classes in the
java.security.spec and javax.crypto.spec packages:

• DHParameterSpec
• DHGenParameterSpec
• DSAParameterSpec
• ECGenParameterSpec
• ECParameterSpec
• GCMParameterSpec
• IvParameterSpec
• MGF1ParameterSpec
• OAEPParameterSpec
• OAEPParameterSpec
• PSSParameterSpec
• RC2ParameterSpec
• RC5ParameterSpec
• RSAKeyGenParameterSpec

The AlgorithmParameters Class

The AlgorithmParameters class is an engine class that provides an opaque representation of
cryptographic parameters. You can initialize the AlgorithmParameters class using a specific
AlgorithmParameterSpec object, or by encoding the parameters in a recognized format. You
can retrieve the resulting specification with the getParameterSpec method.

Creating an AlgorithmParameters Object

AlgorithmParameters objects are obtained by using one of the AlgorithmParameters
getInstance() static factory methods. For more information, see How Provider
Implementations Are Requested and Supplied.

Initializing an AlgorithmParameters Object

Once an AlgorithmParameters object is instantiated, it must be initialized via a call to init,
using an appropriate parameter specification or parameter encoding:

void init(AlgorithmParameterSpec paramSpec)
void init(byte[] params)
void init(byte[] params, String format)

Chapter 2
Core Classes and Interfaces

2-53

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHGenParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECGenParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/GCMParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/IvParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/MGF1ParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/OAEPParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/OAEPParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PSSParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/RC2ParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/RC5ParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAKeyGenParameterSpec.html

In these init methods, params is an array containing the encoded parameters, and format is
the name of the decoding format. In the init method with a params argument but no format
argument, the primary decoding format for parameters is used. The primary decoding format is
ASN.1, if an ASN.1 specification for the parameters exists.

Obtaining the Encoded Parameters

A byte encoding of the parameters represented in an AlgorithmParameters object may be
obtained via a call to getEncoded:

byte[] getEncoded()

This method returns the parameters in their primary encoding format. The primary encoding
format for parameters is ASN.1, if an ASN.1 specification for this type of parameters exists.

If you want the parameters returned in a specified encoding format, use

byte[] getEncoded(String format)

If format is null, the primary encoding format for parameters is used, as in the other
getEncoded method.

Converting an AlgorithmParameters Object to a Transparent Specification

A transparent parameter specification for the algorithm parameters may be obtained from an
AlgorithmParameters object via a call to getParameterSpec:

AlgorithmParameterSpec getParameterSpec(Class paramSpec)

paramSpec identifies the specification class in which the parameters should be returned. The
specification class could be, for example, DSAParameterSpec.class to indicate that the
parameters should be returned in an instance of the DSAParameterSpec class. (This class is in
the java.security.spec package.)

The AlgorithmParameterGenerator Class
The AlgorithmParameterGenerator class is an Engine Classes and Algorithms used to
generate a set of brand-new parameters suitable for a certain algorithm (the algorithm is
specified when an AlgorithmParameterGenerator instance is created). This object is used
when you do not have an existing set of algorithm parameters, and want to generate one from
scratch.

Creating an AlgorithmParameterGenerator Object

AlgorithmParameterGenerator objects are obtained by using one of the
AlgorithmParameterGenerator getInstance() static factory methods. See How Provider
Implementations Are Requested and Supplied.

Initializing an AlgorithmParameterGenerator Object

The AlgorithmParameterGenerator object can be initialized in two different ways: an
algorithm-independent manner or an algorithm-specific manner.

Chapter 2
Core Classes and Interfaces

2-54

The algorithm-independent approach uses the fact that all parameter generators share the
concept of a "size" and a source of randomness. The measure of size is universally shared by
all algorithm parameters, though it is interpreted differently for different algorithms. For
example, in the case of parameters for the DSA algorithm, "size" corresponds to the size of the
prime modulus, in bits. (See Java Security Standard Algorithm Names to know more about the
sizes for specific algorithms.) When using this approach, algorithm-specific parameter
generation values--if any--default to some standard values. One init method that takes these
two universally shared types of arguments:

void init(int size, SecureRandom random);

Another init method takes only a size argument and uses a system-provided source of
randomness:

void init(int size)

A third approach initializes a parameter generator object using algorithm-specific semantics,
which are represented by a set of algorithm-specific parameter generation values supplied in
an AlgorithmParameterSpec object:

void init(AlgorithmParameterSpec genParamSpec,
 SecureRandom random)

void init(AlgorithmParameterSpec genParamSpec)

To generate Diffie-Hellman system parameters, for example, the parameter generation values
usually consist of the size of the prime modulus and the size of the random exponent, both
specified in number of bits.

Generating Algorithm Parameters

Once you have created and initialized an AlgorithmParameterGenerator object, you can use
the generateParameters method to generate the algorithm parameters:

AlgorithmParameters generateParameters()

The CertificateFactory Class
The CertificateFactory class defines the functionality of a certificate factory, which is used to
generate certificate and certificate revocation list (CRL) objects from their encoding.

The CertificateFactory class is an Engine Classes and Algorithms.

A certificate factory for X.509 must return certificates that are an instance of
java.security.cert.X509Certificate, and CRLs that are an instance of
java.security.cert.X509CRL.

Creating a CertificateFactory Object

CertificateFactory objects are obtained by using one of the getInstance() static factory
methods. For more information, see How Provider Implementations Are Requested and
Supplied.

Chapter 2
Core Classes and Interfaces

2-55

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Generating Certificate Objects

To generate a certificate object and initialize it with the data read from an input stream, use the
generateCertificate method:

final Certificate generateCertificate(InputStream inStream)

To return a (possibly empty) collection view of the certificates read from a given input stream,
use the generateCertificates method:

final Collection generateCertificates(InputStream inStream)

Generating CRL Objects

To generate a certificate revocation list (CRL) object and initialize it with the data read from an
input stream, use the generateCRL method:

final CRL generateCRL(InputStream inStream)

To return a (possibly empty) collection view of the CRLs read from a given input stream, use
the generateCRLs method:

final Collection generateCRLs(InputStream inStream)

Generating CertPath Objects

The certificate path builder and validator for PKIX is defined by the Internet X.509 Public Key
Infrastructure Certificate and CRL Profile, RFC 5280.

A certificate store implementation for retrieving certificates and CRLs from Collection and
LDAP directories, using the PKIX LDAP V2 Schema is also available from the IETF as RFC
2587.

To generate a CertPath object and initialize it with data read from an input stream, use one of
the following generateCertPath methods (with or without specifying the encoding to be used
for the data):

final CertPath generateCertPath(InputStream inStream)

final CertPath generateCertPath(InputStream inStream,
 String encoding)

To generate a CertPath object and initialize it with a list of certificates, use the following
method:

final CertPath generateCertPath(List certificates)

Chapter 2
Core Classes and Interfaces

2-56

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2587.txt
http://www.ietf.org/rfc/rfc2587.txt

To retrieve a list of the CertPath encoding supported by this certificate factory, you can call the
getCertPathEncodings method:

final Iterator getCertPathEncodings()

The default encoding will be listed first.

Standard Names
The Standard Names document contains information about the algorithm specifications.

Java Security Standard Algorithm Names describes the standard names for algorithms,
certificate and keystore types that the JDK Security API requires and uses. It also contains
more information about the algorithm specifications. Specific provider information can be found
in JDK Providers Documentation.

Cryptographic implementations in the JDK are distributed through several different providers
primarily for historical reasons (Sun, SunJSSE, SunJCE, SunRsaSign). Note these providers may
not be available on all JDK implementations, and therefore, truly portable applications should
call getInstance() without specifying specific providers. Applications specifying a particular
provider may not be able to take advantage of native providers tuned for an underlying
operating environment (such as PKCS or Microsoft's CAPI).

The SunPKCS11 provider itself does not contain any cryptographic algorithms, but instead,
directs requests into an underlying PKCS11 implementation. Consult the PKCS#11 Reference
Guide and the underlying PKCS11 implementation to determine if a desired algorithm will be
available through the PKCS11 provider. Likewise, on Windows systems, the SunMSCAPI
provider does not provide any cryptographic functionality, but instead routes requests to the
underlying operating system for handling.

How the JCA Might Be Used in a SSL/TLS Implementation
With an understanding of the JCA classes, consider how these classes might be combined to
implement an advanced network protocol like SSL/TLS.

The SSL/TLS Overview section in the TLS and DTLS Protocols describes at a high level how
the protocols work. As asymmetric (public key) cipher operations are much slower than
symmetric operations (secret key), public key cryptography is used to establish secret keys
which are then used to protect the actual application data. Vastly simplified, the SSL/TLS
handshake involves exchanging initialization data, performing some public key operations to
arrive at a secret key, and then using that key to encrypt further traffic.

Note:

The details presented here simply show how some of these classes might be
employed. This section will not present sufficient information for building a SSL/TLS
implementation. For more information, see Java Secure Socket Extension (JSSE)
Reference Guide and RFC 5246: The Transport Layer Security (TLS) Protocol,
Version 1.2.

Assume that this SSL/TLS implementation will be made available as a JSSE provider. A
concrete implementation of the Provider class is first written that will eventually be registered

Chapter 2
Standard Names

2-57

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

in the Security class' list of providers. This provider mainly provides a mapping from algorithm
names to actual implementation classes. (that is: "SSLContext.TLS"->"com.foo.TLSImpl")
When an application requests an "TLS" instance (via SSLContext.getInstance("TLS")), the
provider's list is consulted for the requested algorithm, and an appropriate instance is created.

Before discussing details of the actual handshake, a quick review of some of the JSSE's
architecture is needed. The heart of the JSSE architecture is the SSLContext. The context
eventually creates end objects (SSLSocket and SSLEngine) which actually implement the
SSL/TLS protocol. SSLContexts are initialized with two callback classes, KeyManager and
TrustManager, which allow applications to first select authentication material to send and
second to verify credentials sent by a peer.

A JSSE KeyManager is responsible for choosing which credentials to present to a peer. Many
algorithms are possible, but a common strategy is to maintain a RSA or DSA public/private key
pair along with a X509Certificate in a KeyStore backed by a disk file. When a KeyStore
object is initialized and loaded from the file, the file's raw bytes are converted into PublicKey
and PrivateKey objects using a KeyFactory, and a certificate chain's bytes are converted
using a CertificateFactory. When a credential is needed, the KeyManager simply consults
this KeyStore object and determines which credentials to present.

A KeyStore's contents might have originally been created using a utility such as keytool.
keytool creates a RSA or DSA KeyPairGenerator and initializes it with an appropriate
keysize. This generator is then used to create a KeyPair which keytool would store along with
the newly-created certificate in the KeyStore, which is eventually written to disk.

A JSSE TrustManager is responsible for verifying the credentials received from a peer. There
are many ways to verify credentials: one of them is to create a CertPath object, and let the
JDK's built-in Public Key Infrastructure (PKI) framework handle the validation. Internally, the
CertPath implementation might create a Signature object, and use that to verify that the each
of the signatures in the certificate chain.

With this basic understanding of the architecture, we can look at some of the steps in the
SSL/TLS handshake. The client begins by sending a ClientHello message to the server. The
server selects a ciphersuite to use, and sends that back in a ServerHello message, and begins
creating JCA objects based on the suite selection. We'll use server-only authentication in the
following examples.

Chapter 2
How the JCA Might Be Used in a SSL/TLS Implementation

2-58

Figure 2-17 SSL/TLS Messages

SSL
Server

ClientHello

Certificate (Optional)
ClientKeyExchange
CertificateVerify (Optional)
ChangeCipherSpec
Finished

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

ChangeCipherSpec

Finished

Encrypted Data

SSL
Client

Close Messages

Server-only authentication is described in the following examples. The examples are vastly
simplified, but gives an idea of how the JSSE classes might be combined to create a higher
level protocol:

Example 2-9 SSL/TLS Server Uses a RSA-based ciphersuite Such as
TLS_RSA_WITH_AES_128_CBC_SHA

KeyManagerTrustManagerSecureRandomCipherPublicKeyPrivateKeyCipher
Example 2-10 Choose an Ephemeral Diffie-Hellman Key Agreement Algorithm Along
with the DSA Signature Algorithm such as TLS_DHE_DSS_WITH_AES_128_CBC_SHA

KeyPairGeneratorKeyFactoryDHPublicKeySpecKeyAgreementPrivateKeyServerKeyExchangeK
eyFactoryKeyAgreement
Once the actual encryption keys have been established, the secret key is used to initialize a
symmetric Cipher object, and this cipher is used to protect all data in transit. To help determine
if the data has been modified, a MessageDigest is created and receives a copy of the data
destined for the network. When the packet is complete, the digest (hash) is appended to data,
and the entire packet is encrypted by the Cipher. If a block cipher such as AES is used, the
data must be padded to make a complete block. On the remote side, the steps are simply
reversed.

Cryptographic Strength Configuration
You can configure the cryptographic strength of the Java Cryptography Extension (JCE)
architecture using jurisdiction policy files (see Jurisdiction Policy File Format) and the security
properties file.

Prior to Oracle Java JDK 9, the default cryptographic strength allowed by Oracle
implementations was “strong but limited” (for example AES keys limited to 128 bits). To remove
this restriction, administrators could download and install a separate “unlimited strength”
Jurisdiction Policy Files bundle. The Jurisdiction Policy File mechanism was reworked for JDK
9. It now allows for much more flexible configuration. The Oracle JDK now ships with a default

Chapter 2
Cryptographic Strength Configuration

2-59

value of “unlimited” rather than “limited”. As always, administrators and users must still
continue to follow all import/export guidelines for their geographical locations. The active
cryptographic strength is now determined using a Security Property (typically set in the
java.security properties file), in combination with the jurisdiction policy files found in the
configuration directory.

All the necessary JCE policy files to provide either unlimited cryptographic strength or strong
but limited cryptographic strength are bundled with the JDK.

Cryptographic Strength Settings

Each directory under <java_home>/conf/security/policy represents a set of policy
configurations defined by the jurisdiction policy files that they contain. You activate a particular
cryptographic strength setting represented by the policy files in a directory by setting the
crypto.policy Security Property (configured in the file <java_home>/conf/security/
java.security) to point to that directory.

Note:

Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the changes
are properly reflected.

The JDK comes bundled with two such directories, limited and unlimited, each containing a
number of policy files. By default, the crypto.policy Security Property is set to:

crypto.policy = unlimited

The overall value is the intersection of the files contained within the directory. These policy files
settings are VM-wide, and affect all applications running on this VM. If you want to override
cryptographic strength at the application level, see How to Make Applications Exempt from
Cryptographic Restrictions.

Unlimited Directory Contents

The unlimited directory contains the following policy files:

• <java_home>/conf/security/unlimited/default_US_export.policy

// Default US Export policy file.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Note:

As there are no current restrictions on export of cryptography from the United
States, the default_US_export.policy file is set with no restrictions.

Chapter 2
Cryptographic Strength Configuration

2-60

• <java_home>/conf/security/unlimited/default_local.policy

// Country specific policy file for countries with no limits on crypto
strength.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Note:

Depending on the country, there may be local restrictions, but as this policy file is
located in the unlimited directory, there are no restrictions listed here.

To select unlimited cryptographic strength as defined in these two files set crypto.policy =
unlimited in the file <java_home>/conf/security/java.security.

Limited Directory Contents

The limited directory currently contains the following policy files:

• <java_home>/conf/security/limited/default_US_export.policy

// Default US Export policy file.
grant {
// There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

Note:

Even though this is in the limited directory, as there are no current restrictions
on export of cryptography from the United States, the
default_US_export.policy file is set with no restrictions.

• <java_home>/conf/security/limited/default_local.policy

// Some countries have import limits on crypto strength. This policy file
// is worldwide importable.

grant {
 permission javax.crypto.CryptoPermission "DES", 64;
 permission javax.crypto.CryptoPermission "DESede", *;
 permission javax.crypto.CryptoPermission "RC2", 128,
 "javax.crypto.spec.RC2ParameterSpec",
128;
 permission javax.crypto.CryptoPermission "RC4", 128;
 permission javax.crypto.CryptoPermission "RC5", 128,
 "javax.crypto.spec.RC5ParameterSpec", *, 12, *;
 permission javax.crypto.CryptoPermission "RSA", *;

Chapter 2
Cryptographic Strength Configuration

2-61

 permission javax.crypto.CryptoPermission *, 128;
};

Note:

This local policy file shows the default restrictions. It should be allowed by any
country, including those that have import restrictions, but please obtain legal
guidance.

• <java_home>/conf/security/limited/exempt_local.policy

// Some countries have import limits on crypto strength, but may allow for
// these exemptions if the exemption mechanism is used.

grant {
 // There is no restriction to any algorithms if KeyRecovery is
enforced.
 permission javax.crypto.CryptoPermission *, "KeyRecovery";

 // There is no restriction to any algorithms if KeyEscrow is enforced.
 permission javax.crypto.CryptoPermission *, "KeyEscrow";

 // There is no restriction to any algorithms if KeyWeakening is
enforced.
 permission javax.crypto.CryptoPermission *, "KeyWeakening";
};

Note:

Countries that have import restrictions should use “limited”, but these restrictions
could be relaxed if the exemption mechanism can be employed. See How to
Make Applications Exempt from Cryptographic Restrictions. Please obtain legal
guidance for your situation.

Custom Cryptographic Strength Settings

To set up restrictions to cryptographic strength that are different than the settings in the policy
files in the limited or unlimited directory, you can create a new directory, parallel with
limited and unlimited, and place your policy files there. For example, you may create a
directory called custom. In this custom directory you include the files default_*export.policy
and/or exempt_*local.policy.

To select cryptographic strength as defined in the files in the custom directory, set
crypto.policy = custom in the file <java_home>/conf/security/java.security.

Jurisdiction Policy File Format
JCA represents its jurisdiction policy files as Java-style policy files with corresponding
permission statements. As described in Cryptographic Strength Configuration, a Java policy
file specifies what permissions are allowed for code from specified code sources. A permission
represents access to a system resource. In the case of JCA, the "resources" are cryptography

Chapter 2
Jurisdiction Policy File Format

2-62

algorithms, and code sources do not need to be specified, because the cryptographic
restrictions apply to all code.

A jurisdiction policy file consists of a very basic "grant entry" containing one or more
"permission entries."

grant {
 <permission entries>;
};

The format of a permission entry in a jurisdiction policy file is:

permission <crypto permission class name>
 [<alg_name>
 [
 [, <exemption mechanism name>]
 [, <maxKeySize>
 [, <AlgorithmParameterSpec class name>,
 <parameters for constructing an AlgorithmParameterSpec
object>
]
]
]
];

A sample jurisdiction policy file that includes restricting the AES algorithm to maximum key
sizes of 128 bits is:

 grant {
 permission javax.crypto.CryptoPermission "AES", 128;
 // ...
 };

A permission entry must begin with the word permission. Items that appear in a permission
entry must appear in the specified order. An entry is terminated with a semicolon. Case is
unimportant for the identifiers (grant, permission) but is significant for the <crypto
permission class name> or for any string that is passed in as a value. An asterisk (*) can be
used as a wildcard for any permission entry option. For example, an asterisk for an <alg_name>
option means "all algorithms."

The following table describes a permission entry's options:

Chapter 2
Jurisdiction Policy File Format

2-63

Table 2-1 Permission Entry Options

Option Description

<crypto permission class name> Specific permission class name, such as
javax.crypto.CryptoPermission. Required.

A crypto permission class reflects the ability of an
application to use certain algorithms with certain
key sizes in certain environments. There are two
crypto permission classes: CryptoPermission
and CryptoAllPermission. The special
CryptoAllPermission class implies all
cryptography-related permissions, that is, it
specifies that there are no cryptography-related
restrictions.

<alg_name> Quoted string specifying the standard name of a
cryptography algorithm, such as "AES" or "RSA".
Optional.

<exemption mechanism name> Quoted string indicating an exemption mechanism
which, if enforced, enables a reduction in
cryptographic restrictions. Optional.

Exemption mechanism names that can be used
include "KeyRecovery" "KeyEscrow", and
"KeyWeakening".

<maxKeySize> Integer specifying the maximum key size (in bits)
allowed for the specified algorithm. Optional.

<AlgorithmParameterSpec class name> Class name that specifies the strength of the
algorithm. Optional.

For some algorithms, it may not be sufficient to
specify the algorithm strength in terms of just a key
size. For example, in the case of the "RC5"
algorithm, the number of rounds must also be
considered. For algorithms whose strength needs
to be expressed as more than a key size, use this
option to specify the AlgorithmParameterSpec
class name that does this (such as
javax.crypto.spec.RC5ParameterSpec for the
"RC5" algorithm).

<parameters for constructing an
AlgorithmParameterSpec object>

List of parameters for constructing the specified
AlgorithmParameterSpec object. Required if
<AlgorithmParameterSpec class name> has
been specified and requires parameters.

How to Make Applications Exempt from Cryptographic
Restrictions

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-64

NOT_SUPPORTED:

This section should be ignored by most application developers. It is only for people
whose applications may be exported to those few countries whose governments
mandate cryptographic restrictions, if it is desired that such applications have fewer
cryptographic restrictions than those mandated.

By default, an application can use cryptographic algorithms of any strength. However, due to
import control restrictions by the governments of a few countries, you may have to limit those
algorithms' strength. The JCA framework includes an ability to enforce restrictions regarding
the maximum strengths of cryptographic algorithms available to applications in different
jurisdiction contexts (locations). You specify these restrictions in jurisdiction policy files. For
more information about jurisdiction policy files and how to create and configure them, see
Cryptographic Strength Configuration.

It is possible that the governments of some or all such countries may allow certain applications
to become exempt from some or all cryptographic restrictions. For example, they may consider
certain types of applications as "special" and thus exempt. Or they may exempt any application
that utilizes an "exemption mechanism," such as key recovery. Applications deemed to be
exempt could get access to stronger cryptography than that allowed for non-exempt
applications in such countries.

In order for an application to be recognized as "exempt" at runtime, it must meet the following
conditions:

• It must have a permission policy file bundled with it in a JAR file. The permission policy file
specifies what cryptography-related permissions the application has, and under what
conditions (if any).

• The JAR file containing the application and the permission policy file must have been
signed using a code-signing certificate issued after the application was accepted as
exempt.

The following are sample steps required in order to make an application exempt from some
cryptographic restrictions. This is a basic outline that includes information about what is
required by JCA in order to recognize and treat applications as being exempt. You will need to
know the exemption requirements of the particular country or countries in which you would like
your application to be able to be run but whose governments require cryptographic restrictions.
You will also need to know the requirements of a JCA framework vendor that has a process in
place for handling exempt applications. Consult such a vendor for further information.

Note:

The SunJCE provider does not supply an implementation of the
ExemptionMechanismSpi class

1. Write and Compile Your Application Code

2. Create a Permission Policy File Granting Appropriate Cryptographic Permissions

3. Prepare for Testing

a. Apply for Government Approval From the Government Mandating Restrictions.

b. Get a Code-Signing Certificate

c. Bundle the Application and Permission Policy File into a JAR file

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-65

d. Step 7.1: Get a Code-Signing Certificate

e. Set Up Your Environment Like That of a User in a Restricted Country

f. (only for applications using exemption mechanisms) Install a Provider Implementing
the Exemption Mechanism Specified by the entry in the Permission Policy File

4. Test Your Application

5. Apply for U.S. Government Export Approval If Required

6. Deploy Your Application

Special Code Requirements for Applications that Use Exemption Mechanisms

When an application has a permission policy file associated with it (in the same JAR file) and
that permission policy file specifies an exemption mechanism, then when the Cipher
getInstance method is called to instantiate a Cipher, the JCA code searches the installed
providers for one that implements the specified exemption mechanism. If it finds such a
provider, JCA instantiates an ExemptionMechanism API object associated with the provider's
implementation, and then associates the ExemptionMechanism object with the Cipher returned
by getInstance.

After instantiating a Cipher, and prior to initializing it (via a call to the Cipher init method), your
code must call the following Cipher method:

 public ExemptionMechanism getExemptionMechanism()

This call returns the ExemptionMechanism object associated with the Cipher. You must then
initialize the exemption mechanism implementation by calling the following method on the
returned ExemptionMechanism:

 public final void init(Key key)

The argument you supply should be the same as the argument of the same types that you will
subsequently supply to a Cipher init method.

Once you have initialized the ExemptionMechanism, you can proceed as usual to initialize and
use the Cipher.

Permission Policy Files

In order for an application to be recognized at runtime as being "exempt" from some or all
cryptographic restrictions, it must have a permission policy file bundled with it in a JAR file. The
permission policy file specifies what cryptography-related permissions the application has, and
under what conditions (if any).

The format of a permission entry in a permission policy file that accompanies an exempt
application is the same as the format for a jurisdiction policy file downloaded with the JDK,
which is:

permission <crypto permission class name>
 [<alg_name>
 [
 [, <exemption mechanism name>]
 [, <maxKeySize>
 [, <AlgorithmParameterSpec class name>,
 <parameters for constructing an AlgorithmParameterSpec

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-66

object>
]
]
]
];

See Jurisdiction Policy File Format.

Permission Policy Files for Exempt Applications

Some applications may be allowed to be completely unrestricted. Thus, the permission policy
file that accompanies such an application usually just needs to contain the following:

grant {
 // There are no restrictions to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

If an application just uses a single algorithm (or several specific algorithms), then the
permission policy file could simply mention that algorithm (or algorithms) explicitly, rather than
granting CryptoAllPermission.

For example, if an application just uses the Blowfish algorithm, the permission policy file
doesn't have to grant CryptoAllPermission to all algorithms. It could just specify that there
is no cryptographic restriction if the Blowfish algorithm is used. In order to do this, the
permission policy file would look like the following:

grant {
 permission javax.crypto.CryptoPermission "Blowfish";
};

Permission Policy Files for Applications Exempt Due to Exemption Mechanisms

If an application is considered "exempt" if an exemption mechanism is enforced, then the
permission policy file that accompanies the application must specify one or more exemption
mechanisms. At run time, the application will be considered exempt if any of those exemption
mechanisms is enforced. Each exemption mechanism must be specified in a permission entry
that looks like the following:

 // No algorithm restrictions if specified
 // exemption mechanism is enforced.
 permission javax.crypto.CryptoPermission *,
 "<ExemptionMechanismName>";

where <ExemptionMechanismName> specifies the name of an exemption mechanism. The list of
possible exemption mechanism names includes:

• KeyRecovery
• KeyEscrow
• KeyWeakening

Chapter 2
How to Make Applications Exempt from Cryptographic Restrictions

2-67

As an example, suppose your application is exempt if either key recovery or key escrow is
enforced. Then your permission policy file should contain the following:

grant {
 // No algorithm restrictions if KeyRecovery is enforced.
 permission javax.crypto.CryptoPermission *, "KeyRecovery";

 // No algorithm restrictions if KeyEscrow is enforced.
 permission javax.crypto.CryptoPermission *, "KeyEscrow";
};

Note:

Permission entries that specify exemption mechanisms should not also specify
maximum key sizes. The allowed key sizes are actually determined from the installed
exempt jurisdiction policy files, as described in the next section.

How Bundled Permission Policy Files Affect Cryptographic Permissions

At runtime, when an application instantiates a Cipher (via a call to its getInstance method)
and that application has an associated permission policy file, JCA checks to see whether the
permission policy file has an entry that applies to the algorithm specified in the getInstance
call. If it does, and the entry grants CryptoAllPermission or does not specify that an
exemption mechanism must be enforced, it means there is no cryptographic restriction for this
particular algorithm.

If the permission policy file has an entry that applies to the algorithm specified in the
getInstance call and the entry does specify that an exemption mechanism must be enforced,
then the exempt jurisdiction policy file(s) are examined. If the exempt permissions include an
entry for the relevant algorithm and exemption mechanism, and that entry is implied by the
permissions in the permission policy file bundled with the application, and if there is an
implementation of the specified exemption mechanism available from one of the registered
providers, then the maximum key size and algorithm parameter values for the Cipher are
determined from the exempt permission entry.

If there is no exempt permission entry implied by the relevant entry in the permission policy file
bundled with the application, or if there is no implementation of the specified exemption
mechanism available from any of the registered providers, then the application is only allowed
the standard default cryptographic permissions.

Packaging Your Application
You can package an application in three different kinds of modules:

• Named or explicit module: A module that appears on the module path and contains module
configuration information in the module-info.class file.

• Automatic module: A module that appears on the module path, but does not contain
module configuration information in a module-info.class file (essentially a "regular"
JAR file).

• Unnamed module: A module that appears on the class path. It may or may not have a
module-info.class file; this file is ignored.

Chapter 2
Packaging Your Application

2-68

It is recommended that you package your applications in named modules as they provide
better performance, stronger encapsulation, and simpler configuration. They also offer greater
flexibility; you can use them with non-modular JDKs or even as unnamed modules by
specifying them in a modular JDK's class path.

For more information about modules, see The State of the Module System and JEP 261:
Module System

Additional JCA Code Samples
These examples illustrate use of several JCA mechanisms. See also Sample Programs for
Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

Topics

Computing a MessageDigest Object

Generating a Pair of Keys

Generating and Verifying a Signature Using Generated Keys

Generating/Verifying Signatures Using Key Specifications and KeyFactory

Determining If Two Keys Are Equal

Reading Base64-Encoded Certificates

Parsing a Certificate Reply

Using Encryption

Using Password-Based Encryption

Computing a MessageDigest Object
These steps describe the procedure to compute a MessageDigest object.

1. Create the MessageDigest object, as in the following example:

MessageDigest sha = MessageDigest.getInstance("SHA-256");

This call assigns a properly initialized message digest object to the sha variable. The
implementation implements the Secure Hash Algorithm (SHA-256), as defined in the
National Institute for Standards and Technology's (NIST) FIPS 180-4 document.

2. Suppose we have three byte arrays, i1, i2 and i3, which form the total input whose
message digest we want to compute. This digest (or "hash") could be calculated via the
following calls:

sha.update(i1);
sha.update(i2);
sha.update(i3);
byte[] hash = sha.digest();

Chapter 2
Additional JCA Code Samples

2-69

http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
https://csrc.nist.gov/publications/detail/fips/180/4/final

3. Optional: An equivalent alternative series of calls would be:

sha.update(i1);
sha.update(i2);
byte[] hash = sha.digest(i3);

After the message digest has been calculated, the message digest object is automatically
reset and ready to receive new data and calculate its digest. All former state (i.e., the data
supplied to update calls) is lost.

Example 2-11 Hash Implementations Through Cloning

Some hash implementations may support intermediate hashes through cloning. Suppose we
want to calculate separate hashes for:

• i1
• i1 and i2
• i1, i2, and i3
The following is one way to calculate these hashes; however, this code works only if the
SHA-256 implementation is cloneable:

/* compute the hash for i1 */
sha.update(i1);
byte[] i1Hash = sha.clone().digest();

/* compute the hash for i1 and i2 */
sha.update(i2);
byte[] i12Hash = sha.clone().digest();

/* compute the hash for i1, i2 and i3 */
sha.update(i3);
byte[] i123hash = sha.digest();

Example 2-12 Determine if the Hash Implementation is Cloneable or not Cloneable

MessageDigest

try {
 // try and clone it
 /* compute the hash for i1 */
 sha.update(i1);
 byte[] i1Hash = sha.clone().digest();
 // ...
 byte[] i123hash = sha.digest();
} catch (CloneNotSupportedException cnse) {
 // do something else, such as the code in the section
 // "Compute Intermediate Digests if the Hash Implementation is not
Cloneable"
}

Chapter 2
Additional JCA Code Samples

2-70

Example 2-13 Compute Intermediate Digests if the Hash Implementation is not
Cloneable

MessageDigest md1 = MessageDigest.getInstance("SHA-256");
MessageDigest md2 = MessageDigest.getInstance("SHA-256");
MessageDigest md3 = MessageDigest.getInstance("SHA-256");

byte[] i1Hash = md1.digest(i1);

md2.update(i1);
byte[] i12Hash = md2.digest(i2);

md3.update(i1);
md3.update(i2);
byte[] i123Hash = md3.digest(i3);

Generating a Pair of Keys
In this example we will generate a public-private key pair for the algorithm named "DSA"
(Digital Signature Algorithm), and use this keypair in future examples. We will generate keys
with a 2048-bit modulus. We don't care which provider supplies the algorithm implementation.

Creating the Key Pair Generator

The first step is to get a key pair generator object for generating keys for the DSA algorithm:

 KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");

Initializing the Key Pair Generator

The next step is to initialize the key pair generator. In most cases, algorithm-independent
initialization is sufficient, but in some cases, algorithm-specific initialization is used.

Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of randomness. The
KeyPairGenerator class initialization methods at a minimum needs a keysize. If the source of
randomness is not explicitly provided, a SecureRandom implementation of the highest-priority
installed provider will be used. Thus to generate keys with a keysize of 2048, simply call:

 keyGen.initialize(2048);

The following code illustrates how to use a specific, additionally seeded SecureRandom object:

 SecureRandom random = SecureRandom.getInstance("DRBG", "SUN");
 random.setSeed(userSeed);
 keyGen.initialize(2048, random);

Since no other parameters are specified when you call these algorithm-independent
initialize method, it is up to the provider what to do about the algorithm-specific
parameters (if any) to be associated with each of the keys. The provider may use precomputed
parameter values or may generate new values.

Chapter 2
Additional JCA Code Samples

2-71

Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists (such as "community
parameters" in DSA), there are two initialize methods that have an
AlgorithmParameterSpec argument. Suppose your key pair generator is for the "DSA"
algorithm, and you have a set of DSA-specific parameters, p, q, and g, that you would like to
use to generate your key pair. You could execute the following code to initialize your key pair
generator (recall that DSAParameterSpec is an AlgorithmParameterSpec):

 DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);
 keyGen.initialize(dsaSpec);

Generating the Pair of Keys

The final step is actually generating the key pair. No matter which type of initialization was
used (algorithm-independent or algorithm-specific), the same code is used to generate the
KeyPair:

 KeyPair pair = keyGen.generateKeyPair();

Generating and Verifying a Signature Using Generated Keys
Examples of generating and verifying a signature using generated keys.

The following signature generation and verification examples use the KeyPair generated in the
Generating a Pair of Keys .

Generating a Signature

We first create a Signature Class object:

 Signature dsa = Signature.getInstance("SHA256withDSA");

Next, using the key pair generated in the key pair example, we initialize the object with the
private key, then sign a byte array called data.

 /* Initializing the object with a private key */
 PrivateKey priv = pair.getPrivate();
 dsa.initSign(priv);

 /* Update and sign the data */
 dsa.update(data);
 byte[] sig = dsa.sign();

Verifying a Signature

Verifying the signature is straightforward. (Note that here we also use the key pair generated in
the key pair example.)

 /* Initializing the object with the public key */

Chapter 2
Additional JCA Code Samples

2-72

 PublicKey pub = pair.getPublic();
 dsa.initVerify(pub);

 /* Update and verify the data */
 dsa.update(data);
 boolean verifies = dsa.verify(sig);
 System.out.println("signature verifies: " + verifies);

Generating/Verifying Signatures Using Key Specifications and KeyFactory
Suppose that, rather than having a public/private key pair (as, for example, was generated in
the section Generating a Pair of Keys), you simply have the components of your DSA private
key: x (the private key), p (the prime), q (the sub-prime), and g (the base).

Furthermore, suppose you want to use your private key to digitally sign some data, which is in
a byte array named someData. You would do the following steps, which also illustrate creating a
key specification and using a key factory to obtain a PrivateKey from the key specification
(initSign requires a PrivateKey):

 DSAPrivateKeySpec dsaPrivKeySpec = new DSAPrivateKeySpec(x, p, q, g);

 KeyFactory keyFactory = KeyFactory.getInstance("DSA");
 PrivateKey privKey = keyFactory.generatePrivate(dsaPrivKeySpec);

 Signature sig = Signature.getInstance("SHA256withDSA");
 sig.initSign(privKey);
 sig.update(someData);
 byte[] signature = sig.sign();

Suppose Alice wants to use the data you signed. In order for her to do so, and to verify your
signature, you need to send her three things:

1. The data

2. The signature

3. The public key corresponding to the private key you used to sign the data

You can store the someData bytes in one file, and the signature bytes in another, and send
those to Alice.

For the public key, assume, as in the previous signing example, you have the components of
the DSA public key corresponding to the DSA private key used to sign the data. Then you can
create a DSAPublicKeySpec from those components:

 DSAPublicKeySpec dsaPubKeySpec = new DSAPublicKeySpec(y, p, q, g);

You still need to extract the key bytes so that you can put them in a file. To do so, you can first
call the generatePublic method on the DSA key factory already created in the previous
example:

 PublicKey pubKey = keyFactory.generatePublic(dsaPubKeySpec);

Chapter 2
Additional JCA Code Samples

2-73

Then you can extract the (encoded) key bytes via the following:

 byte[] encKey = pubKey.getEncoded();

You can now store these bytes in a file, and send it to Alice along with the files containing the
data and the signature.

Now, assume Alice has received these files, and she copied the data bytes from the data file to
a byte array named data, the signature bytes from the signature file to a byte array named
signature, and the encoded public key bytes from the public key file to a byte array named
encodedPubKey.

Alice can now execute the following code to verify the signature. The code also illustrates how
to use a key factory in order to instantiate a DSA public key from its encoding (initVerify
requires a PublicKey).

 X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encodedPubKey);

 KeyFactory keyFactory = KeyFactory.getInstance("DSA");
 PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

 Signature sig = Signature.getInstance("SHA256withDSA");
 sig.initVerify(pubKey);
 sig.update(data);
 sig.verify(signature);

Note:

In the previous example, Alice needed to generate a PublicKey from the encoded
key bits, since initVerify requires a PublicKey . Once she has a PublicKey, she
could also use the KeyFactorygetKeySpec method to convert it to a
DSAPublicKeySpec so that she can access the components, if desired, as in:

 DSAPublicKeySpec dsaPubKeySpec =
 (DSAPublicKeySpec)keyFactory.getKeySpec(pubKey,
DSAPublicKeySpec.class);

Now she can access the DSA public key components y, p, q, and g through the corresponding
"get" methods on the DSAPublicKeySpec class (getY, getP, getQ, and getG).

Generating Random Numbers
The following code sample illustrates generating random numbers configured with different
security strengths using a DRBG implementation of the SecureRandom class:

 SecureRandom drbg;
 byte[] buffer = new byte[32];

Chapter 2
Additional JCA Code Samples

2-74

 // Any DRBG can be provided
 drbg = SecureRandom.getInstance("DRBG");
 drbg.nextBytes(buffer);

 SecureRandomParameters params = drbg.getParameters();
 if (params instanceof DrbgParameters.Instantiation) {
 DrbgParameters.Instantiation ins = (DrbgParameters.Instantiation)
params;
 if (ins.getCapability().supportsReseeding()) {
 drbg.reseed();
 }
 }

 // The following call requests a weak DRBG instance. It is only
 // guaranteed to support 112 bits of security strength.
 drbg = SecureRandom.getInstance("DRBG",
 DrbgParameters.instantiation(112, NONE, null));

 // Both the next two calls will likely fail, because drbg could be
 // instantiated with a smaller strength with no prediction resistance
 // support.
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(256, false, "more".getBytes()));
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(112, true, "more".getBytes()));

 // The following call requests a strong DRBG instance, with a
 // personalization string. If it successfully returns an instance,
 // that instance is guaranteed to support 256 bits of security strength
 // with prediction resistance available.
 drbg = SecureRandom.getInstance("DRBG", DrbgParameters.instantiation(
 256, PR_AND_RESEED, "hello".getBytes()));

 // Prediction resistance is not requested in this single call,
 // but an additional input is used.
 drbg.nextBytes(buffer,
 DrbgParameters.nextBytes(-1, false, "more".getBytes()));

 // Same for this call.
 drbg.reseed(DrbgParameters.reseed(false, "extra".getBytes()));

Determining If Two Keys Are Equal
Example code for determining if two keys are equal.

In many cases you would like to know if two keys are equal; however, the default method
java.lang.Object.equals may not give the desired result. The most provider-independent
approach is to compare the encoded keys. If this comparison isn't appropriate (for example,
when comparing an RSAPrivateKey and an RSAPrivateCrtKey), you should compare each
component.

The following code demonstrates this idea:

 static boolean keysEqual(Key key1, Key key2) {

Chapter 2
Additional JCA Code Samples

2-75

 if (key1.equals(key2)) {
 return true;
 }

 if (Arrays.equals(key1.getEncoded(), key2.getEncoded())) {
 return true;
 }

 // More code for different types of keys here.
 // For example, the following code can check if
 // an RSAPrivateKey and an RSAPrivateCrtKey are equal:
 // if ((key1 instanceof RSAPrivateKey) &&
 // (key2 instanceof RSAPrivateKey)) {
 // if ((key1.getModulus().equals(key2.getModulus())) &&
 // (key1.getPrivateExponent().equals(
 // key2.getPrivateExponent()))) {
 // return true;
 // }
 // }

 return false;
 }

Reading Base64-Encoded Certificates
The following example reads a file with Base64-encoded certificates, which are each bounded
at the beginning by

-----BEGIN CERTIFICATE-----

and at the end by

-----END CERTIFICATE-----

We convert the FileInputStream (which does not support mark and reset) to a
ByteArrayInputStream (which supports those methods), so that each call to
generateCertificate consumes only one certificate, and the read position of the input stream
is positioned to the next certificate in the file:

 try (FileInputStream fis = new FileInputStream(filename);
 BufferedInputStream bis = new BufferedInputStream(fis)) {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 while (bis.available() > 0) {
 Certificate cert = cf.generateCertificate(bis);
 System.out.println(cert.toString());
 }
 }

Chapter 2
Additional JCA Code Samples

2-76

Parsing a Certificate Reply
The following example parses a PKCS7-formatted certificate reply stored in a file and extracts
all the certificates from it:

 try (FileInputStream fis = new FileInputStream(filename)) {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 Collection<? extends Certificate> c = cf.generateCertificates(fis);
 for (Certificate cert : c) {
 System.out.println(cert);
 }

 // Alternatively, use this aggregate operation instead of a for-loop:
 // c.stream().forEach(e -> System.out.println(e));
 }

Using Encryption
This section takes the user through the process of generating a key, creating and initializing a
cipher object, encrypting a file, and then decrypting it. Throughout this example, we use the
Advanced Encryption Standard (AES).

Generating a Key

To create an AES key, we have to instantiate a KeyGenerator for AES. We do not specify a
provider, because we do not care about a particular AES key generation implementation. Since
we do not initialize the KeyGenerator, a system-provided source of randomness and a
default keysize will be used to create the AES key:

KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey aesKey = keygen.generateKey();

After the key has been generated, the same KeyGenerator object can be re-used to create
further keys.

Creating a Cipher

The next step is to create a Cipher instance. To do this, we use one of the getInstance
factory methods of the Cipher class. We must specify the name of the requested
transformation, which includes the following components, separated by slashes (/):

• the algorithm name

• the mode (optional)

• the padding scheme (optional)

In this example, we create an AES cipher in Cipher Block Chaining mode, with PKCS5-style
padding. We do not specify a provider, because we do not care about a particular
implementation of the requested transformation.

Chapter 2
Additional JCA Code Samples

2-77

The standard algorithm name for AES is "AES", the standard name for the Cipher Block
Chaining mode is "CBC", and the standard name for PKCS5-style padding is
"PKCS5Padding":

Cipher aesCipher;

// Create the cipher
aesCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

We use the aesKey generated previously to initialize the Cipher object for encryption:

// Initialize the cipher for encryption
aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);

// Our cleartext
byte[] cleartext = "This is just an example".getBytes();

// Encrypt the cleartext
byte[] ciphertext = aesCipher.doFinal(cleartext);

// Retrieve the parameters used during encryption to properly
// initialize the cipher for decryption
AlgorithmParameters params = aesCipher.getParameters();

// Initialize the same cipher for decryption
aesCipher.init(Cipher.DECRYPT_MODE, aesKey, params);

// Decrypt the ciphertext
byte[] cleartext1 = aesCipher.doFinal(ciphertext);

cleartext and cleartext1 are identical.

Using Password-Based Encryption
In this example, we prompt the user for a password from which we derive an encryption key.

It would seem logical to collect and store the password in an object of type java.lang.String.
However, here's the caveat: Objects of type String are immutable, i.e., there are no methods
defined that allow you to change (overwrite) or zero out the contents of a String after usage.
This feature makes String objects unsuitable for storing security sensitive information such as
user passwords. You should always collect and store security sensitive information in a char
array instead. For that reason, the javax.crypto.spec.PBEKeySpec class takes (and returns) a
password as a char array.

In order to use Password-Based Encryption (PBE) as defined in PKCS5, we have to specify a
salt and an iteration count. The same salt and iteration count that are used for encryption must
be used for decryption. Newer PBE algorithms use an iteration count of at least 1000.

 PBEKeySpec pbeKeySpec;
 PBEParameterSpec pbeParamSpec;
 SecretKeyFactory keyFac;

 // Salt
 byte[] salt = new SecureRandom().nextBytes(salt);

Chapter 2
Additional JCA Code Samples

2-78

 // Iteration count
 int count = 1000;

 // Create PBE parameter set
 pbeParamSpec = new PBEParameterSpec(salt, count);

 // Prompt user for encryption password.
 // Collect user password as char array, and convert
 // it into a SecretKey object, using a PBE key
 // factory.
 char[] password = System.console.readPassword("Enter encryption password:
");
 pbeKeySpec = new PBEKeySpec(password);
 keyFac = SecretKeyFactory.getInstance("PBEWithHmacSHA256AndAES_256");
 SecretKey pbeKey = keyFac.generateSecret(pbeKeySpec);

 // Create PBE Cipher
 Cipher pbeCipher = Cipher.getInstance("PBEWithHmacSHA256AndAES_256");

 // Initialize PBE Cipher with key and parameters
 pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParamSpec);

 // Our cleartext
 byte[] cleartext = "This is another example".getBytes();

 // Encrypt the cleartext
 byte[] ciphertext = pbeCipher.doFinal(cleartext);

Encapsulating and Decapsulating Keys

See The KEM Class for more information about key encapsulation and decapsulation.

 // Receiver side
 var kpg = KeyPairGenerator.getInstance("X25519");
 var kp = kpg.generateKeyPair();

 // Sender side
 var kem1 = KEM.getInstance("DHKEM");
 var sender = kem1.newEncapsulator(kp.getPublic());
 var encapsulated = sender.encapsulate();
 var k1 = encapsulated.key();

 // Receiver side
 var kem2 = KEM.getInstance("DHKEM");
 var receiver = kem2.newDecapsulator(kp.getPrivate());
 var k2 = receiver.decapsulate(encapsulated.encapsulation());

 assert Arrays.equals(k1.getEncoded(), k2.getEncoded());

Chapter 2
Additional JCA Code Samples

2-79

Sample Programs for Diffie-Hellman Key Exchange, AES/GCM,
and HMAC-SHA256

The following are sample programs for Diffie-Hellman key exchange, AES/GCM, and HMAC-
SHA256.

Topics

Diffie-Hellman Key Exchange between Two Parties

Diffie-Hellman Key Exchange between Three Parties

AES/GCM Example

HMAC-SHA256 Example

Diffie-Hellman Key Exchange between Two Parties
The program runs the Diffie-Hellman key agreement protocol between two parties.

import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.security.interfaces.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import javax.crypto.interfaces.*;
import com.sun.crypto.provider.SunJCE;

public class DHKeyAgreement2 {
 private DHKeyAgreement2() {}
 public static void main(String argv[]) throws Exception {

 /*
 * Alice creates her own DH key pair with 2048-bit key size
 */
 System.out.println("ALICE: Generate DH keypair ...");
 KeyPairGenerator aliceKpairGen = KeyPairGenerator.getInstance("DH");
 aliceKpairGen.initialize(2048);
 KeyPair aliceKpair = aliceKpairGen.generateKeyPair();

 // Alice creates and initializes her DH KeyAgreement object
 System.out.println("ALICE: Initialization ...");
 KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");
 aliceKeyAgree.init(aliceKpair.getPrivate());

 // Alice encodes her public key, and sends it over to Bob.
 byte[] alicePubKeyEnc = aliceKpair.getPublic().getEncoded();

 /*
 * Let's turn over to Bob. Bob has received Alice's public key
 * in encoded format.
 * He instantiates a DH public key from the encoded key material.

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-80

 */
 KeyFactory bobKeyFac = KeyFactory.getInstance("DH");
 X509EncodedKeySpec x509KeySpec = new
X509EncodedKeySpec(alicePubKeyEnc);

 PublicKey alicePubKey = bobKeyFac.generatePublic(x509KeySpec);

 /*
 * Bob gets the DH parameters associated with Alice's public key.
 * He must use the same parameters when he generates his own key
 * pair.
 */
 DHParameterSpec dhParamFromAlicePubKey =
((DHPublicKey)alicePubKey).getParams();

 // Bob creates his own DH key pair
 System.out.println("BOB: Generate DH keypair ...");
 KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
 bobKpairGen.initialize(dhParamFromAlicePubKey);
 KeyPair bobKpair = bobKpairGen.generateKeyPair();

 // Bob creates and initializes his DH KeyAgreement object
 System.out.println("BOB: Initialization ...");
 KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
 bobKeyAgree.init(bobKpair.getPrivate());

 // Bob encodes his public key, and sends it over to Alice.
 byte[] bobPubKeyEnc = bobKpair.getPublic().getEncoded();

 /*
 * Alice uses Bob's public key for the first (and only) phase
 * of her version of the DH
 * protocol.
 * Before she can do so, she has to instantiate a DH public key
 * from Bob's encoded key material.
 */
 KeyFactory aliceKeyFac = KeyFactory.getInstance("DH");
 x509KeySpec = new X509EncodedKeySpec(bobPubKeyEnc);
 PublicKey bobPubKey = aliceKeyFac.generatePublic(x509KeySpec);
 System.out.println("ALICE: Execute PHASE1 ...");
 aliceKeyAgree.doPhase(bobPubKey, true);

 /*
 * Bob uses Alice's public key for the first (and only) phase
 * of his version of the DH
 * protocol.
 */
 System.out.println("BOB: Execute PHASE1 ...");
 bobKeyAgree.doPhase(alicePubKey, true);

 /*
 * At this stage, both Alice and Bob have completed the DH key
 * agreement protocol.
 * Both generate the (same) shared secret.
 */
 try {

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-81

 byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
 int aliceLen = aliceSharedSecret.length;
 byte[] bobSharedSecret = new byte[aliceLen];
 int bobLen;
 } catch (ShortBufferException e) {
 System.out.println(e.getMessage());
 } // provide output buffer of required size
 bobLen = bobKeyAgree.generateSecret(bobSharedSecret, 0);
 System.out.println("Alice secret: " +
 toHexString(aliceSharedSecret));
 System.out.println("Bob secret: " +
 toHexString(bobSharedSecret));
 if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
 throw new Exception("Shared secrets differ");
 System.out.println("Shared secrets are the same");

 /*
 * Now let's create a SecretKey object using the shared secret
 * and use it for encryption. First, we generate SecretKeys for the
 * "AES" algorithm (based on the raw shared secret data) and
 * Then we use AES in CBC mode, which requires an initialization
 * vector (IV) parameter. Note that you have to use the same IV
 * for encryption and decryption: If you use a different IV for
 * decryption than you used for encryption, decryption will fail.
 *
 * If you do not specify an IV when you initialize the Cipher
 * object for encryption, the underlying implementation will generate
 * a random one, which you have to retrieve using the
 * javax.crypto.Cipher.getParameters() method, which returns an
 * instance of java.security.AlgorithmParameters. You need to transfer
 * the contents of that object (e.g., in encoded format, obtained via
 * the AlgorithmParameters.getEncoded() method) to the party who will
 * do the decryption. When initializing the Cipher for decryption,
 * the (reinstantiated) AlgorithmParameters object must be explicitly
 * passed to the Cipher.init() method.
 */
 System.out.println("Use shared secret as SecretKey object ...");
 SecretKeySpec bobAesKey = new SecretKeySpec(bobSharedSecret, 0, 16,
"AES");
 SecretKeySpec aliceAesKey = new SecretKeySpec(aliceSharedSecret, 0,
16, "AES");

 /*
 * Bob encrypts, using AES in CBC mode
 */
 Cipher bobCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
 bobCipher.init(Cipher.ENCRYPT_MODE, bobAesKey);
 byte[] cleartext = "This is just an example".getBytes();
 byte[] ciphertext = bobCipher.doFinal(cleartext);

 // Retrieve the parameter that was used, and transfer it to Alice in
 // encoded format
 byte[] encodedParams = bobCipher.getParameters().getEncoded();

 /*
 * Alice decrypts, using AES in CBC mode

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-82

 */

 // Instantiate AlgorithmParameters object from parameter encoding
 // obtained from Bob
 AlgorithmParameters aesParams =
AlgorithmParameters.getInstance("AES");
 aesParams.init(encodedParams);
 Cipher aliceCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
 aliceCipher.init(Cipher.DECRYPT_MODE, aliceAesKey, aesParams);
 byte[] recovered = aliceCipher.doFinal(ciphertext);
 if (!java.util.Arrays.equals(cleartext, recovered))
 throw new Exception("AES in CBC mode recovered text is " +
 "different from cleartext");
 System.out.println("AES in CBC mode recovered text is "
 "same as cleartext");
 }

 /*
 * Converts a byte to hex digit and writes to the supplied buffer
 */
 private static void byte2hex(byte b, StringBuffer buf) {
 char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
 '9', 'A', 'B', 'C', 'D', 'E', 'F' };
 int high = ((b & 0xf0) >> 4);
 int low = (b & 0x0f);
 buf.append(hexChars[high]);
 buf.append(hexChars[low]);
 }

 /*
 * Converts a byte array to hex string
 */
 private static String toHexString(byte[] block) {
 StringBuffer buf = new StringBuffer();
 int len = block.length;
 for (int i = 0; i < len; i++) {
 byte2hex(block[i], buf);
 if (i < len-1) {
 buf.append(":");
 }
 }
 return buf.toString();
 }
}

Diffie-Hellman Key Exchange between Three Parties
The program runs the Diffie-Hellman key agreement protocol between 3 parties.

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import javax.crypto.interfaces.*;
 /*

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-83

 * This program executes the Diffie-Hellman key agreement protocol between
 * 3 parties: Alice, Bob, and Carol using a shared 2048-bit DH parameter.
 */
 public class DHKeyAgreement3 {
 private DHKeyAgreement3() {}
 public static void main(String argv[]) throws Exception {
 // Alice creates her own DH key pair with 2048-bit key size
 System.out.println("ALICE: Generate DH keypair ...");
 KeyPairGenerator aliceKpairGen =
KeyPairGenerator.getInstance("DH");
 aliceKpairGen.initialize(2048);
 KeyPair aliceKpair = aliceKpairGen.generateKeyPair();
 // This DH parameters can also be constructed by creating a
 // DHParameterSpec object using agreed-upon values
 DHParameterSpec dhParamShared =
((DHPublicKey)aliceKpair.getPublic()).getParams();
 // Bob creates his own DH key pair using the same params
 System.out.println("BOB: Generate DH keypair ...");
 KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
 bobKpairGen.initialize(dhParamShared);
 KeyPair bobKpair = bobKpairGen.generateKeyPair();
 // Carol creates her own DH key pair using the same params
 System.out.println("CAROL: Generate DH keypair ...");
 KeyPairGenerator carolKpairGen =
KeyPairGenerator.getInstance("DH");
 carolKpairGen.initialize(dhParamShared);
 KeyPair carolKpair = carolKpairGen.generateKeyPair();
 // Alice initialize
 System.out.println("ALICE: Initialize ...");
 KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");
 aliceKeyAgree.init(aliceKpair.getPrivate());
 // Bob initialize
 System.out.println("BOB: Initialize ...");
 KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
 bobKeyAgree.init(bobKpair.getPrivate());
 // Carol initialize
 System.out.println("CAROL: Initialize ...");
 KeyAgreement carolKeyAgree = KeyAgreement.getInstance("DH");
 carolKeyAgree.init(carolKpair.getPrivate());
 // Alice uses Carol's public key
 Key ac = aliceKeyAgree.doPhase(carolKpair.getPublic(), false);
 // Bob uses Alice's public key
 Key ba = bobKeyAgree.doPhase(aliceKpair.getPublic(), false);
 // Carol uses Bob's public key
 Key cb = carolKeyAgree.doPhase(bobKpair.getPublic(), false);
 // Alice uses Carol's result, cb
 aliceKeyAgree.doPhase(cb, true);
 // Bob uses Alice's result, ac
 bobKeyAgree.doPhase(ac, true);
 // Carol uses Bob's result, ba
 carolKeyAgree.doPhase(ba, true);
 // Alice, Bob and Carol compute their secrets
 byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
 System.out.println("Alice secret: " +
toHexString(aliceSharedSecret));
 byte[] bobSharedSecret = bobKeyAgree.generateSecret();

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-84

 System.out.println("Bob secret: " + toHexString(bobSharedSecret));
 byte[] carolSharedSecret = carolKeyAgree.generateSecret();
 System.out.println("Carol secret: " +
toHexString(carolSharedSecret));
 // Compare Alice and Bob
 if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
 throw new Exception("Alice and Bob differ");
 System.out.println("Alice and Bob are the same");
 // Compare Bob and Carol
 if (!java.util.Arrays.equals(bobSharedSecret, carolSharedSecret))
 throw new Exception("Bob and Carol differ");
 System.out.println("Bob and Carol are the same");
 }
 /*
 * Converts a byte to hex digit and writes to the supplied buffer
 */
 private static void byte2hex(byte b, StringBuffer buf) {
 char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
 '9', 'A', 'B', 'C', 'D', 'E', 'F' };
 int high = ((b & 0xf0) >> 4);
 int low = (b & 0x0f);
 buf.append(hexChars[high]);
 buf.append(hexChars[low]);
 }
 /*
 * Converts a byte array to hex string
 */
 private static String toHexString(byte[] block) {
 StringBuffer buf = new StringBuffer();
 int len = block.length;
 for (int i = 0; i < len; i++) {
 byte2hex(block[i], buf);
 if (i < len-1) {
 buf.append(":");
 }
 }
 return buf.toString();
 }
 }

AES/GCM Example
The following is a sample program to demonstrate AES/GCM usage to encrypt/decrypt data.

import java.security.AlgorithmParameters;
import java.util.Arrays;
import javax.crypto.*;

public class AESGCMTest {

 public static void main(String[] args) throws Exception {
 // Slightly longer than 1 AES block (128 bits) to show PADDING
 // is "handled" by GCM.
 byte[] data = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-85

 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10};

 // Create a 128-bit AES key.
 KeyGenerator kg = KeyGenerator.getInstance("AES");
 kg.init(128);
 SecretKey key = kg.generateKey();

 // Obtain a AES/GCM cipher to do the enciphering. Must obtain
 // and use the Parameters for successful decryption.
 Cipher encCipher = Cipher.getInstance("AES/GCM/NOPADDING");
 encCipher.init(Cipher.ENCRYPT_MODE, key);
 byte[] enc = encCipher.doFinal(data);
 AlgorithmParameters ap = encCipher.getParameters();

 // Obtain a similar cipher, and use the parameters.
 Cipher decCipher = Cipher.getInstance("AES/GCM/NOPADDING");
 decCipher.init(Cipher.DECRYPT_MODE, key, ap);
 byte[] dec = decCipher.doFinal(enc);

 if (Arrays.compare(data, dec) != 0) {
 throw new Exception("Original data != decrypted data");
 }
 }
}

HMAC-SHA256 Example
The following is a sample program that demonstrates how to generate a secret-key object for
HMAC-SHA256, and initialize a HMAC-SHA256 object with it.

Example 2-14 Generate a Secret-key Object for HMAC-SHA256

import java.security.*;
import javax.crypto.*;

 /**
 * This program demonstrates how to generate a secret-key object for
 * HMACSHA256, and initialize an HMACSHA256 object with it.
 */

 public class initMac {

 public static void main(String[] args) throws Exception {

 // Generate secret key for HmacSHA256
 KeyGenerator kg = KeyGenerator.getInstance("HmacSHA256");
 SecretKey sk = kg.generateKey();

 // Get instance of Mac object implementing HmacSHA256, and
 // initialize it with the secret key, sk
 Mac mac = Mac.getInstance("HmacSHA256");
 mac.init(sk);
 byte[] result = mac.doFinal("Hi There".getBytes());

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-86

 }
 }

Chapter 2
Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256

2-87

3
How to Implement a Provider in the Java
Cryptography Architecture

This document describes what you need to do in order to integrate your provider into Java SE
so that algorithms and other services can be found when Java Security API clients request
them.

Who Should Read This Document
Programmers who only need to use the Java Security APIs (see Core Classes and Interfaces
in Java Cryptography Architecture (JCA) Reference Guide) to access existing cryptography
algorithms and other services do not need to read this document.

This document is intended for experienced programmers wishing to create their own provider
packages supplying cryptographic service implementations. It documents what you need to do
in order to integrate your provider into Java so that your algorithms and other services can be
found when Java Security API clients request them.

Notes on Terminology
Throughout this document, the terms JCA by itself refers to the JCA framework. Whenever this
document notes a specific JCA provider, it will be referred to explicitly by the provider name.

• Prior to JDK 1.4, the JCE was an unbundled product, and as such, the JCA and JCE were
regularly referred to as separate, distinct components. As JCE is now bundled in JDK, the
distinction is becoming less apparent. Since the JCE uses the same architecture as the
JCA, the JCE should be more properly thought of as a subset of the JCA.

• The JCA within the JDK includes two software components:

– the framework that defines and supports cryptographic services for which providers
supply implementations. This framework includes packages such as java.security,
javax.crypto, javax.crypto.spec, and javax.crypto.interfaces.

– the actual providers such as Sun, SunRsaSign, SunJCE, which contain the actual
cryptographic implementations.

• The JCE framework consists of the javax.crypto.* packages and the SunJCE provider.

Introduction to Implementing Providers
The Java platform defines a set of APIs spanning major security areas, including cryptography,
public key infrastructure, authentication, secure communication, and access control. These
APIs allow developers to easily integrate security into their application code. They were
designed around the following principles:

• Implementation independence: Applications do not need to implement security
themselves. Rather, they can request security services from the Java platform. Security
services are implemented in providers, which are plugged into the Java platform via a

3-1

standard interface. An application may rely on multiple independent providers for security
functionality.

• Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not bound
to a specific application.

• Algorithm extensibility: The Java platform includes a number of built-in providers that
implement a basic set of security services that are widely used today. However, some
applications may rely on emerging standards not yet implemented, or on proprietary
services. The Java platform supports the installation of custom providers that implement
such services.

A Cryptographic Service Provider (provider) refers to a package (or a set of packages) that
supply a concrete implementation of a subset of the cryptography aspects of the JDK Security
API.

The java.security.Provider class encapsulates the notion of a security provider in the
Java platform. It specifies the provider's name and lists the security services it implements.
Multiple providers may be configured at the same time, and are listed in order of preference.
When a security service is requested, the highest priority provider that implements that service
is selected. See Security Providers, which illustrates how a provider selects a requested
security service.

Engine Classes and Corresponding Service Provider Interface
Classes

An engine class defines a cryptographic service in an abstract fashion (without a concrete
implementation). A cryptographic service is always associated with a particular algorithm or
type.

A cryptographic service either provides cryptographic operations (like those for digital
signatures or message digests, ciphers or key agreement protocols); generates or supplies the
cryptographic material (keys or parameters) required for cryptographic operations; or
generates data objects (keystores or certificates) that encapsulate cryptographic keys (which
can be used in a cryptographic operation) in a secure fashion.

The Java Cryptography Architecture encompasses the classes comprising the Security
package that relate to cryptography, including engine classes. Users of the API request and
utilize instances of the engine classes to carry out corresponding operations. The JDK defines
the following engine classes:

• AlgorithmParameterGenerator - used to generate a set of parameters suitable for a
specified algorithm.

• AlgorithmParameters - used to manage the parameters for a particular algorithm,
including parameter encoding and decoding.

• CertificateFactory - used to create public key certificates and Certificate Revocation
Lists (CRLs).

• CertPathBuilder - used to create public key certificates and Certificate Revocation Lists
(CRLs).

• CertPathValidator - used to validate certificate chains.

• CertStore - used to retrieve Certificates and CRLs from a repository.

• Cipher - used to encrypt or decrypt some specified data. It provides access to the
functionality of an encryption algorithm (such as AES).

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-2

• ExemptionMechanism - used to provide the functionality of an exemption mechanism such
as key recovery, key weakening, key escrow, or any other (custom) exemption
mechanism. Applications that use an exemption mechanism may be granted stronger
encryption capabilities than those which don't. However, please note that cryptographic
restrictions are no longer required for most countries, and thus exemption mechanisms
may only be useful in those few countries whose governments mandate restrictions.

• KEM - used to provide the functionality of a Key Encapsulation Mechanism (KEM). A KEM
can be used to secure symmetric keys using asymmetric or public key cryptography
between two parties. The sender calls the encapsulate method to generate a secret key
and a key encapsulation message, and the receiver calls the decapsulate method to
recover the same secret key from the key encapsulation message.

• KeyAgreement - used to execute a key agreement (key exchange) protocol between two or
more parties. It provides access to the functionality of a key agreement protocol (such as
Diffie-Hellman)

• KeyFactory - used to convert opaque cryptographic keys of type Key into key specifications
(transparent representations of the underlying key material), and vice versa. A DSA
KeyFactory class supplies a DSA private or public key (from its encoding or transparent
specification) in a format usable by the initSign or initVerify methods, respectively,
of a DSA Signature object.

• KeyGenerator - used to generate a secret (symmetric) key suitable for a specified
algorithm.

• KeyPairGenerator - used to generate a pair of public and private keys suitable for a
specified algorithm.

• KeyStore - used to create and manage a keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate chain associated with them, which
authenticates the corresponding public key. A keystore also contains certificates from
trusted entities.

• Mac: used to compute the message authentication code of some specified data.

• MessageDigest - used to calculate the message digest (hash) of specified data.

• SecretKeyFactory - used to convert opaque cryptographic keys of type SecretKey into key
specifications (transparent representations of the underlying key material), and vice versa.

• SecureRandom - used to generate random or pseudo-random numbers.

• Signature - used to sign data and verify digital signatures. It provides access to the
functionality of a digital signature algorithm.

Note:

A generator creates objects with brand-new contents, whereas a factory creates
objects from existing material (for example, an encoding).

An engine class provides the interface to the functionality of a specific type of cryptographic
service (independent of a particular cryptographic algorithm). It defines Application
Programming Interface (API) methods that allow applications to access the specific type of
cryptographic service it provides. The actual implementations (from one or more providers) are
those for specific algorithms. For example, the Signature engine class provides access to the
functionality of a digital signature algorithm. The actual implementation supplied in a
SignatureSpi subclass (see next paragraph) would be that for a specific kind of signature
algorithm, such as SHA256withDSA or SHA512withRSA.

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-3

The application interfaces supplied by an engine class are implemented in terms of a Service
Provider Interface (SPI). That is, for each engine class, there is a corresponding abstract SPI
class, which defines the Service Provider Interface methods that cryptographic service
providers must implement.

Figure 3-1 Engine Classes

An instance of an engine class, the "API object", encapsulates (as a private field) an instance
of the corresponding SPI class, the "SPI object". All API methods of an API object are declared
"final", and their implementations invoke the corresponding SPI methods of the encapsulated
SPI object. An instance of an engine class (and of its corresponding SPI class) is created by a
call to the getInstance factory method of the engine class.

The name of each SPI class is the same as that of the corresponding engine class, followed by
"Spi". For example, the SPI class corresponding to the Signature engine class is the
SignatureSpi class.

Each SPI class is abstract. To supply the implementation of a particular type of service and for
a specific algorithm, a provider must subclass the corresponding SPI class and provide
implementations for all the abstract methods.

Another example of an engine class is the MessageDigest class, which provides access to a
message digest algorithm. Its implementations, in MessageDigestSpi subclasses, may be
those of various message digest algorithms such as SHA-256 or SHA-384.

As a final example, the KeyFactory engine class supports the conversion from opaque keys to
transparent key specifications, and vice versa. See Key Specification Interfaces and Classes
Required by Key Factories. The actual implementation supplied in a KeyFactorySpi subclass
would be that for a specific type of keys, such as DSA public and private keys.

Chapter 3
Engine Classes and Corresponding Service Provider Interface Classes

3-4

Steps to Implement and Integrate a Provider
Follow these steps to implement a provider and integrate it into the JCA framework:

• Step 1: Write your Service Implementation Code

• Step 2: Give your Provider a Name

• Step 3: Write Your Master Class, a Subclass of Provider

• Step 4: Create a Module Declaration for Your Provider

• Step 5: Compile Your Code

• Step 6: Place Your Provider in a JAR File

• Step 7: Sign Your JAR File, If Necessary

• Step 8: Prepare for Testing

• Step 9: Write and Compile Your Test Programs

• Step 10: Run Your Test Programs

• Step 11: Apply for U.S. Government Export Approval If Required

• Step 12: Document Your Provider and Its Supported Services

• Step 13: Make Your Class Files and Documentation Available to Clients

Step 1: Write your Service Implementation Code
The first thing you need to do is to write the code that provides algorithm-specific
implementations of the cryptographic services you want to support. Your provider may supply
implementations of cryptographic services already available in one or more of the security
components of the JDK.

For cryptographic services not defined in JCA (for example, signatures and message digests),
see Engine Classes and Algorithms.

For each cryptographic service you wish to implement, create a subclass of the appropriate
SPI class. JCA defines the following engine classes:

• AlgorithmParameterGeneratorSpi
• AlgorithmParametersSpi
• CertificateFactorySpi
• CipherSpi
• ExemptionMechanismSpi
• KEMSpi
• KeyAgreementSpi
• KeyFactorySpi
• KeyGeneratorSpi
• KeyPairGeneratorSpi
• KeyStoreSpi
• MacSpi

Chapter 3
Steps to Implement and Integrate a Provider

3-5

• MessageDigestSpi
• SecretKeyFactorySpi
• SecureRandomSpi
• SignatureSpi
To know more about the JCA and other cryptographic classes, see Engine Classes and
Corresponding Service Provider Interface Classes.

In the subclass, you need to:

1. Supply implementations for the abstract methods, whose names usually begin with engine.
See Further Implementation Details and Requirements.

2. Depending on how you write your provider and register its algorithms (using either String
objects or the Provider.Service class), the provider either:

• Ensure that there is a public constructor without any arguments. Here's why: When
one of your services is requested, Java Security looks up the subclass implementing
that service, as specified by a property in your "master class" (see Step 3: Write Your
Master Class, a Subclass of Provider). Java Security then creates the Class object
associated with your subclass, and creates an instance of your subclass by calling the
newInstance method on that Class object. newInstance requires your subclass to
have a public constructor without any parameters. (A default constructor without
arguments will automatically be generated if your subclass doesn't have any
constructors. But if your subclass defines any constructors, you must explicitly define a
public constructor without arguments.)

• Override the newInstance() method in the registered Provider.Service. This is
the preferred mechanism in JDK 9 and later.

Step 1.1: Consider Additional JCA Provider Requirements and Recommendations for
Encryption Implementations

When instantiating a provider's implementation (class) of a Cipher, KeyAgreement,
KeyGenerator, MAC, or SecretKey factory, the framework will determine the provider's codebase
(JAR file) and verify its signature. In this way, JCA authenticates the provider and ensures that
only providers signed by a trusted entity can be plugged into the JCA. Thus, one requirement
for encryption providers is that they must be signed, as described in later steps.

In order for provider classes to become unusable if instantiated by an application directly,
bypassing JCA, providers should implement the following:

• All SPI implementation classes in a provider package should be declared final (so that
they cannot be subclassed), and their (SPI) implementation methods should be declared
protected.

• All crypto-related helper classes in a provider package should have package-private
scope, so that they cannot be accessed from outside the provider package.

For providers that may be exported outside the U.S., CipherSpi implementations must include
an implementation of the engineGetKeySize method which, given a Key, returns the key size. If
there are restrictions on available cryptographic strength specified in jurisdiction policy files,
each Cipher initialization method calls engineGetKeySize and then compares the result with
the maximum allowable key size for the particular location and circumstances of the application
being run. If the key size is too large, the initialization method throws an exception.

Additional optional features that providers may implement are:

Chapter 3
Steps to Implement and Integrate a Provider

3-6

• Optional: The engineWrap and engineUnwrap methods of CipherSpi. Wrapping a key
enables secure transfer of the key from one place to another. See the wrap method for
more information about wrapping and unwrapping keys.

• Optional: One or more exemption mechanisms. An exemption mechanism is something
such as key recovery, key escrow, or key weakening which, if implemented and enforced,
may enable reduced cryptographic restrictions for an application that uses it. To know more
about the requirements for apps that utilize exemption mechanisms, see How to Make
Applications Exempt from Cryptographic Restrictions.

Step 2: Give your Provider a Name
Decide on a unique name for your provider. This is the name to be used by client applications
to refer to your provider, and it must not conflict with any other provider names.

Step 3: Write Your Master Class, a Subclass of Provider
Create a subclass of the java.security.Provider class. This is essentially a lookup table that
advertises the algorithms that your provider implements.

You can use the following coding styles to subclass the Provider class:

• Create a provider that registers its services with String objects to store algorithm names
and their associated implementation class name. These are stored in the
Hashtable<Object,Object> superclass of java.security.Provider.

• Create a provider that uses the Provider.Service class, which uses a different method
to store algorithm names and create new objects. The Provider.Service class enables
you customize how the JCA framework requests services from your provider, such as how
the framework creates new instances of your provider's services. This coding style is
recommended, especially when using modules.

A provider can use either style, or even use both styles at the same time. Regardless of which
style you choose, your subclass should be final.

Step 3.1: Create a Provider That Uses String Objects to Register Its Services

The following is an example of a provider that uses String objects to store implemented
algorithm names:

package p;
public final class MyProvider extends Provider {
 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");
 // com.my.crypto.provider.MyCipher extends CipherSPI
 put("Cipher.MyCipher", "com.my.crypto.provider.MyCipher");
 }
}

To create a provider with this coding style, do the following:

Chapter 3
Steps to Implement and Integrate a Provider

3-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html#wrap(java.security.Key)

• Call super, specifying the provider name (see Step 2: Give your Provider a Name) version
number, and a string of information about the provider and algorithms it supports.

 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");

• Set the values of various properties that are required for the Java Security API to look up
the cryptographic services implemented by the provider.

For each service implemented by the provider, there must be a property whose name is
the type of service followed by a period and the name of the algorithm to which the service
applies. The property value must specify the fully qualified name of the class implementing
the service.

For example, this following statement sets a property named Cipher.MyCypher whose
value is com.my.crypto.provider.MyCipher, a class that extends CipherSPI:

 put("Cipher.MyCipher", "com.my.crypto.provider.MyCipher");

The following list shows the various types of JCA services, where the actual algorithm
name is substituted for algName:

– AlgorithmParameterGenerator.algName
– AlgorithmParameters.algName
– CertificateFactory.algName
– Cipher.algName

Note:

algName may actually represent a transformation, and may be composed of
an algorithm name, a particular mode, and a padding scheme. See Java
Security Standard Algorithm Names.

– ExemptionMechanism.algName:

Note:

algName refers to the name of the exemption mechanism, which can be one
of the following: KeyRecovery, KeyEscrow, or KeyWeakening. Case does not
matter.

– KEM.algName
– KeyAgreement.algName
– KeyFactory.algName
– KeyGenerator.algName
– KeyPairGenerator.algName
– KeyStore.algName
– Mac.algName

Chapter 3
Steps to Implement and Integrate a Provider

3-8

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

– MessageDigest.algName
– SecretKeyFactory.algName
– SecureRandom.algName
– Signature.algName
In all of these except ExemptionMechanism and Cipher, algName is the "standard" name of
the algorithm, certificate type, or keystore type. See Java Security Standard Algorithm
Names for the standard names that should be used.

The value of each property must be the fully qualified name of the class implementing the
specified algorithm, certificate type, or keystore type. That is, it must be the package name
followed by the class name, where the two are separated by a period.

As an example, the default provider named SUN implements the Digital Signature
Algorithm (whose standard name is SHA256withDSA) in a class named DSA in the
sun.security.provider package. Its subclass of Provider (which is the Sun class in the
sun.security.provider package) sets the Signature.SHA256withDSA property to have
the value sun.security.provider.DSA via the following:

 put("Signature.SHA256withDSA", "sun.security.provider.DSA");

The following list shows more properties that can be defined for the various types of
services, where the actual algorithm name is substituted for algName, certificate type for
certType, keystore type for storeType, and attribute name for attrName:

– AlgorithmParameterGenerator.algName attrName
– AlgorithmParameters.algName attrName
– CertificateFactory.certType attrName
– Cipher.algName attrName
– ExemptionMechanism.algName attrName
– KEM.algName attrName
– KeyAgreement.algName attrName
– KeyFactory.algName attrName
– KeyGenerator.algName attrName
– KeyPairGenerator.algName attrName
– KeyStore.storeType attrName
– Mac.algName attrName
– MessageDigest.algName attrName
– SecretKeyFactory.algName attrName
– SecureRandom.algName attrName
– Signature.algName attrName
In each of these, attrName is the "standard" name of the algorithm, certificate type,
keystore type, or attribute. (See Java Security Standard Algorithm Names for the standard
names that should be used.)

Chapter 3
Steps to Implement and Integrate a Provider

3-9

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

For a property in this format, the value of the property must be the value for the
corresponding attribute. (See Java Security Standard Algorithm Names for the definition of
each standard attribute.)

For further master class property setting examples, see the JDK source code for the
sun.security.provider.Sun and com.sun.crypto.provider.SunJCE classes.
They show how the Sun and SunJCE providers set properties.

As an example, the default provider named SUN implements the SHA256withDSA Digital
Signature Algorithm in software. The class sun.security.provider.Sun calls the
method SunEntries.putEntries, which sets the properties for the SUN provider,
including setting the property Signature.SHA256withDSA ImplementedIn to have the value
Software:

 put("Signature.SHA256withDSA ImplementedIn", "Software");

Note:

For examples of this coding style, see the source code for
sun.security.provider.Sun and
sun.security.provider.SunEntries classes.

Step 3.2: Create a Provider That Uses Provider.Service

The following is an example of a provider that uses a Provider.Service class:

package p;

public final class MyProvider extends Provider {

 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it supports");
 putService(new ProviderService(this, "Cipher", "MyCipher",
"p.MyCipher"));
 }

 private static final class ProviderService extends Provider.Service {
 ProviderService(Provider p, String type, String algo, String cn) {
 super(p, type, algo, cn, null, null);
 }

 @Override
 public Object newInstance(Object ctrParamObj)
 throws NoSuchAlgorithmException {
 String type = getType();
 String algo = getAlgorithm();
 try {
 if (type.equals("Cipher")) {
 if (algo.equals("MyCipher")) {
 return new MyCipher();
 }
 }

Chapter 3
Steps to Implement and Integrate a Provider

3-10

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

 } catch (Exception ex) {
 throw new NoSuchAlgorithmException(
 "Error constructing " + type + " for "
 + algo + " using MyProvider", ex);
 }
 throw new ProviderException("No impl for " + algo + " " + type);
 }
 }
}

To create a provider with this coding style, do the following:

• For each algorithm your provider supports, call putService with an instance of
Provider.Service; the arguments of the Provider.Service constructor represent a
supported algorithm.

The following statement adds a service named MyCipher of type Cipher; the name of the
class implementing this service is p.MyCipher. The argument of putService is a subclass
of Provider.Service:

 putService(new ProviderService(this, "Cipher", "MyCipher",
"p.MyCipher"));

This example uses a subclass of Provider.Service named ProviderService (rather
than Provider.Service itself) as it customizes how the JCA framework instantiates
services. If you don't need to customize the behavior of Provider.Service, then you
can call the Provider.Service constructor directly:

public final class MyProvider extends Provider {
 public MyProvider() {
 super("MyProvider", "1.0",
 "Some info about my provider and which algorithms it
supports");
 putService(new Provider.Service(
 this, "Cipher", "MyCipher", "p.MyCipher", null, null));
 }
}

Note that this example is essentially the same as the example described in Step 3.1:
Create a Provider That Uses String Objects to Register Its Services.

• Override any method in Provider.Service, such as newInstance, to customize how
the JCA framework handles the services in your provider.

The example at the beginning of this section overrides the method
Provider.Service.newInstance. The method returns an instance of MyCipher only if
the requested service is MyCipher. If not, it throws a NoSuchAlgorithmException and a
ProviderException.

For more information about other methods you can override, see The Provider.Service
Class.

Chapter 3
Steps to Implement and Integrate a Provider

3-11

Note:

For examples of this coding style, see the JDK source code contained in the
sun.security.mscapi package.

Step 3.3: Specify Additional Information for Cipher Implementations
As mentioned previously, in the case of a Cipher property, algName may actually represent a
transformation. A transformation is a string that describes the operation (or set of operations)
to be performed by a Cipher object on some given input. A transformation always includes the
name of a cryptographic algorithm (e.g., AES), and may be followed by a mode and a padding
scheme.

A transformation is of the form:

• algorithm/mode/padding, or

• algorithm

(In the latter case, provider-specific default values for the mode and padding scheme are
used). For example, the following is a valid transformation:

 Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

When requesting a block cipher in stream cipher mode (for example; AES in CFB or OFB mode),
a client may optionally specify the number of bits to be processed at a time, by appending this
number to the mode name as shown in the following sample transformations:

 Cipher c1 = Cipher.getInstance("AES/CFB8/NoPadding");
 Cipher c2 = Cipher.getInstance("AES/OFB32/PKCS5Padding");

If a number does not follow a stream cipher mode, a provider-specific default is used. (For
example, the SunJCE provider uses a default of 128 bits.)

A provider may supply a separate class for each combination of algorithm/mode/padding.
Alternatively, a provider may decide to provide more generic classes representing sub-
transformations corresponding to algorithm or algorithm/mode or algorithm//padding (note the
double slashes); in this case the requested mode and/or padding are set automatically by the
getInstance methods of Cipher, which invoke the engineSetMode and engineSetPadding
methods of the provider's subclass of CipherSpi.

That is, a Cipher property in a provider master class may have one of the formats shown in the
following table:

Table 3-1 Cipher Property Format

Cipher Property Format Description

Cipher.algName A provider's subclass of CipherSpi implements algName
with pluggable mode and padding

Cipher.algName/mode A provider's subclass of CipherSpi implements algName in
the specified mode, with pluggable padding

Cipher.algName//padding A provider's subclass of CipherSpi implements algName
with the specified padding, with pluggable mode

Chapter 3
Steps to Implement and Integrate a Provider

3-12

Table 3-1 (Cont.) Cipher Property Format

Cipher Property Format Description

Cipher.algName/mode/padding A provider's subclass of CipherSpi implements algName
with the specified mode and padding

(See Java Security Standard Algorithm Names for the standard algorithm names, modes, and
padding schemes that should be used.)

For example, a provider may supply a subclass of CipherSpi that implements AES/ECB/
PKCS5Padding, one that implements AES/CBC/PKCS5Padding, one that implements
AES/CFB/PKCS5Padding, and yet another one that implements AES/OFB/PKCS5Padding.
That provider would have the following Cipher properties in its master class:

• Cipher.AES/ECB/PKCS5Padding
• Cipher.AES/CBC/PKCS5Padding
• Cipher.AES/CFB/PKCS5Padding
• Cipher.AES/OFB/PKCS5Padding
Another provider may implement a class for each of these modes (for example, one class for
ECB, one for CBC, one for CFB, and one for OFB), one class for PKCS5Padding, and a
generic AES class that subclasses from CipherSpi. That provider would have the following
Cipher properties in its master class:

• Cipher.AES
• Cipher.AES SupportedModes

– Example: "ECB|CBC|CFB|OFB"
• Cipher.AES SupportedPaddings

– Example: "NOPADDING|PKCS5Padding"
The getInstance factory method of the Cipher engine class follows these rules in order to
instantiate a provider's implementation of CipherSpi for a transformation of the form
"algorithm":

1. Check if the provider has registered a subclass of CipherSpi for the specified "algorithm".

• If the answer is YES, instantiate this class, for whose mode and padding scheme
default values (as supplied by the provider) are used.

• If the answer is NO, throw a NoSuchAlgorithmException exception.

2. The getInstance factory method of the Cipher engine class follows these rules in order to
instantiate a provider's implementation of CipherSpi for a transformation of the form
"algorithm/mode/padding":

a. Check if the provider has registered a subclass of CipherSpi for the specified
"algorithm/mode/padding" transformation.

• If the answer is YES, instantiate it.

• If the answer is NO, go to the next step.

b. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm/mode".

Chapter 3
Steps to Implement and Integrate a Provider

3-13

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

• If the answer is YES, instantiate it, and call engineSetPadding(padding) on the
new instance.

• If the answer is NO, go to the next step.

c. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm//padding" (note the double slashes)

• If the answer is YES, instantiate it, and call engineSetMode(mode) on the new
instance.

• If the answer is NO, go to the next step.

d. Check if the provider has registered a subclass of CipherSpi for the sub-
transformation "algorithm".

• If the answer is YES, instantiate it, and call engineSetMode(mode) and
engineSetPadding(padding) on the new instance.

• If the answer is NO, throw a NoSuchAlgorithmException exception.

Step 4: Create a Module Declaration for Your Provider
This step is optional but recommended; it enables you to package your provider in a named
module. A modular JDK can then locate your provider in the module path as opposed to the
class path. The module system can more thoroughly check for dependencies in modules in the
module path. Note that you can use named modules in a non-modular JDK; the module
declaration will be ignored. Also, you can still package your providers in unnamed or automatic
modules.

Create a module declaration for your provider and save it in a file named module-
info.java. This module declaration includes the following:

• The name of your module.

• Any module upon which your provider depends.

• A provides directive if your module provides a service implementation.

The following example module declaration defines a module named com.foo.MyProvider.
p.MyProvider is the fully qualified class name of a service implementation. Suppose that, in
this example, p.MyProvider uses API in the package javax.security.auth.kerberos,
which is in the module java.security.jgss. Thus, the directive requires
java.security.jgss appears in the module declaration.

module com.foo.MyProvider {
 provides java.security.Provider with p.MyProvider;
 requires java.security.jgss;
 }

You can package a provider in three different kinds of modules:

• Named or explicit module: A module that appears on the module path and contains module
configuration information in the module-info.class file.

The JCA framework can use the ServiceLoader class (which simplifies provider
configuration) to search for providers in explicit modules without any additional changes to
the module. See Step 8.1: Configure the Provider and Step 10: Run Your Test Programs.

Chapter 3
Steps to Implement and Integrate a Provider

3-14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html

• Automatic module: A module that appears on the module path, but does not contain
module configuration information in a module-info.class file (essentially a "regular"
JAR file).

• Unnamed module: A module that appears on the class path. It may or may not have a
module-info.class file; this file is ignored.

It is recommended that you package your providers in named modules as they provide better
performance, stronger encapsulation, simpler configuration and greater flexibility.

You have a lot of flexibility when it comes to packaging and configuring your providers.
However, this impacts how you start applications that use them. For example, you might have
to specify additional --add-exports or --add-modules options. Named modules, in general,
require fewer of these additional options. In addition named modules offer more flexibility. You
can use them with non-modular JDKs or even as unnamed modules by specifying them in a
modular JDK's class path. For more information about modules, see The State of the Module
System and JEP 261: Module System.

Step 5: Compile Your Code
After you have created your implementation code (Step 1: Write your Service Implementation
Code), given your provider a name (Step 2: Give your Provider a Name), created the master
class (Step 3: Write Your Master Class, a Subclass of Provider), and created a module
declaration (Step 4: Create a Module Declaration for Your Provider), use the Java compiler to
compile your files.

Step 6: Place Your Provider in a JAR File

Add the File java.security.Provider to Use the ServiceLoader Class to Search for
Providers

If your provider is packaged in an automatic or unnamed module (you did not create a module
declaration as described in Step 4: Create a Module Declaration for Your Provider) and you
want the use the java.util.ServiceLoader to search for your providers, then add the file
META-INF/services/java.security.Provider to the JAR file and ensure that the file
contains the fully qualified class name of your provider implementation.

The security provider loading mechanism uses the ServiceLoader class to search for
providers before consulting the class path.

For example, if the fully qualified class name of your provider is p.Provider and all the
compiled code of your provider is in the directory classes, then create a file named
classes/META-INF/services/java.security.Provider that contains the following
line:

p.MyProvider

Run the jar Command to Create a JAR File

The following command creates a JAR file named MyProvider.jar. All the compiled code
for the module JAR file is in the directory classes. In addition, the module descriptor,
module-info.class, is in the directory classes:

jar --create --file MyProvider.jar --module-version 1.0 -C classes

Chapter 3
Steps to Implement and Integrate a Provider

3-15

http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/projects/jigsaw/spec/sotms/
http://openjdk.java.net/jeps/261
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html

Note:

The module-info.class file and the --module-version option are optional.
However, the module-info.class file is required if you want to create a modular
JAR file. (A modular JAR file is a regular JAR file that has a module-info.class
file in its top-level directory.)

See jar in Java Development Kit Tool Specifications.

Step 7: Sign Your JAR File, If Necessary

If your provider is supplying encryption algorithms through the Cipher, KEM, KeyAgreement,
KeyGenerator, Mac, or SecretKeyFactory classes, you must sign your JAR file so that
the JCA can authenticate the code at run time; see Step 1.1: Consider Additional JCA Provider
Requirements and Recommendations for Encryption Implementations. If you are not providing
an implementation of this type, then you can skip this step.

Step 7.1: Get a Code-Signing Certificate
The next step is to request a code-signing certificate so that you can use it to sign your
provider prior to testing. The certificate will be good for both testing and production. It will be
valid for 5 years.

The following are the steps you should use to get a code-signing certificate. See keytool in the
Java Development Kit Tool Specifications.

1. Use keytool to generate a 2048-bit RSA keypair:

keytool -genkeypair -alias <alias> \
 -keyalg RSA -keysize 2048 \
 -dname "cn=<Company Name>, \
 ou=Java Software Code Signing, \
 o=Oracle Corporation" \
 -keystore <keystore file name> \
 -storepass <keystore password>

This generates a 2048-bit RSA keypair (a public key and an associated private key) and
stores it in an entry in the specified keystore. The public key is stored in a self-signed
certificate. The keystore entry can subsequently be accessed using the specified alias.

Note:

It's recommended that you create a keypair that uses RSA or DSA with 2048 or
more bits.

The option values in angle brackets (< and >) represent the actual values that must be
supplied. For example, <alias> must be replaced with whatever alias name you wish to be
used to refer to the newly-generated keystore entry in the future, and <keystore file
name> must be replaced with the name of the keystore to be used.

Chapter 3
Steps to Implement and Integrate a Provider

3-16

Tip:

Do not surround actual values with angle brackets. For example, if you want your
alias to be myTestAlias, specify the -alias option as follows:

 -alias myTestAlias

If you specify a keystore that doesn't yet exist, it will be created.

Note:

If command lines you type are not allowed to be as long as the keytool -
genkeypair command you want to execute (for example, if you are typing to a
Microsoft Windows DOS prompt), you can create and execute a plain-text batch
file containing the command. That is, create a new text file that contains nothing
but the full keytool -genkeypair command. (Remember to type it all on one
line.) Save the file with a .bat extension. Then in your DOS window, type the file
name (with its path, if necessary). This will cause the command in the batch file
to be executed.

2. Use keytool to generate a Certificate Signing Request (CSR):

 keytool -certreq -alias <alias> \
 -file <csr file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

Here, <alias> is the alias for the RSA keypair entry created in the previous step. This
command generates a CSR, using the PKCS#10 format. It stores the CSR in the file
whose name is specified in <csr file name>.

3. Request a JCE code signing certificate by sending your CSR, your contact information,
and other required documentation to the JCA Code Signing Certification Authority. See
JCA Code Signing Certification Authority for more information.

4. Once the JCE Code Signing Certification Authority receives your request, they will validate
it and perform a background check. If this check passes, then they will create and sign a
JCE code-signing certificate valid for 5 years. You will receive an email message
containing two text certificates: the code-signing certificate and the JCE CA certificate,
which authenticates the code-signing certificate's public key.

5. Import the certificates you received from the JCA Code Signing Certification Authority into
your keystore with the keytool command.

First import the CA's certificate as a "trusted certificate":

 keytool -import -alias <alias for the CA cert> \
 -file <CA cert file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

Chapter 3
Steps to Implement and Integrate a Provider

3-17

http://www.oracle.com/technetwork/java/javase/tech/getcodesigningcertificate-361306.html#jcacodesigning

Then import the code-signing certificate:

 keytool -import -alias <alias> \
 -file <code-signing cert file name> \
 -keystore <keystore file name> \
 -storepass <keystore password>

<alias> is the same alias as that which you created in Step 1 where you generated a RSA
keypair. This command replaces the self-signed certificate in the keystore entry specified
by <alias> with the one signed by the JCA Code Signing Certification Authority.

Now that you have in your keystore a certificate from an entity trusted by JCA (the JCA Code
Signing Certification Authority), you can place your provider code in a JAR file (Step 6: Place
Your Provider in a JAR File) and then use that certificate to sign the JAR file (Step 7.2: Sign
Your Provider).

Step 7.2: Sign Your Provider
Sign the JAR file created in Step 6: Place Your Provider in a JAR File with the code-signing
certificate obtained in Step 7.1: Get a Code-Signing Certificate. See jarsigner in Java
Development Kit Tool Specifications.

jarsigner -keystore <keystore file name> \
 -storepass <keystore password> \
 <JAR file name> <alias>

Here, <alias> is the alias into the keystore for the entry containing the code-signing certificate
received from the JCA Code Signing Certification Authority (the same alias as that specified in
the commands in Step 7.1: Get a Code-Signing Certificate).

You can test verification of the signature via the following:

jarsigner -verify <JAR file name>

The text jar verified will be displayed if the verification was successful.

Chapter 3
Steps to Implement and Integrate a Provider

3-18

Note:

• You can also use the jdk.security.jarsigner API to sign JAR files.

• If you include a signed JCE provider with your application and also want the JAR
file signed for implementing other code-signing policies, you need to apply
multiple signatures to the JCE provider JAR using the appropriate certificates/
keys. The JCE signature is for acceptance of the provider JAR by the JCA
framework, the other signature(s) can be used for making policy decisions. See
jarsigner in Java Development Kit Tool Specifications for applying multiple
signatures to a JAR file.

• You cannot package signed providers in JMOD files.

• Only providers that supply instances of Cipher, KEM, KeyAgreement,
KeyGenerator, Mac, or SecretKeyFactory must be signed. If your provider
only supplies other instances, such as SecureRandom, MessageDigest,
Signature, and KeyStore, then the provider does not need to be signed.

• You can link a provider in a custom runtime image with the jlink command as
long as it doesn't have a Cipher, KEM, KeyAgreement, KeyGenerator, or
Mac implementation.

Step 8: Prepare for Testing
The next steps describe how to install and configure your new provider so that it is available
via the JCA.

Step 8.1: Configure the Provider
Register your provider so that the JCA framework can find your provider, either with the
ServiceLoader class or in the class path or module path.

1. Open the java.security file in an editor:

• Linux or macOS: <java-home>/conf/security/java.security
• Windows: <java-home>\conf\security\java.security

2. In the java.security file, find the section where standard providers such as SUN,
SunRsaSign, and SunJCE are configured as static providers; it looks like the following:

security.provider.1=SUN
security.provider.2=SunRsaSign
security.provider.3=SunEC
security.provider.4=SunJSSE
security.provider.5=SunJCE
security.provider.6=SunJGSS
security.provider.7=SunSASL
security.provider.8=XMLDSig
security.provider.9=SunPCSC
security.provider.10=JdkLDAP
security.provider.11=JdkSASL
security.provider.12=SunMSCAPI
security.provider.13=SunPKCS11

Chapter 3
Steps to Implement and Integrate a Provider

3-19

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

Each line in this section has the following form:

security.provider.n=provName|className

This declares a provider, and specifies its preference order n. The preference order is the
order in which providers are searched for requested algorithms when no specific provider
is requested. The order is 1-based; 1 is the most preferred, followed by 2, and so on.

provName is the provider's name and className is the fully qualified class name of the
provider. You can use either of these two names.

3. Register your provider by adding to the java.security file a line with the form
security.provider.n=provName|className.

If you configured your provider so that the ServiceLoader class can search for it
(because you packaged the provider in a named module as described in Step 4: Create a
Module Declaration for Your Provider or added a java.security.Provider file as
described in Add the File java.security.Provider to Use the ServiceLoader Class to Search
for Providers), then specify just the provider's name.

If you have not configured your provider so that ServiceLoader class can search for it,
which means that the JCA framework will search for it in the class path or module path,
then specify the fully qualified class name of your provider.

For example, the highlighted line registers the provider MyProvider (whose fully qualified
class name is p.MyProvider and has been configured so that the ServiceLoader class
can search for it) as the 14th preferred provider:

...
security.provider.11=JdkSASL
security.provider.12=SunMSCAPI
security.provider.13=SunPKCS11
security.provider.14=MyProvider

If you are not sure if the ServiceLoader mechanism will be used, or if you'll be deploying
on a non-modular system, then you can also register the provider again, this time using the
full class name:

security.provider.15=p.MyProvider

Note:

Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the
changes are properly reflected.

Alternatively, you can register providers dynamically. To do so, a program (such as your test
program, to be written in Step 9: Write and Compile Your Test Programs) call either the
addProvider or insertProviderAt method in the Security class:

ServiceLoader<Provider> sl = ServiceLoader.load(java.security.Provider.class);
for (Provider p : sl) {
 System.out.println(p);
 if (p.getName().equals("MyProvider")) {

Chapter 3
Steps to Implement and Integrate a Provider

3-20

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html

 Security.addProvider(p);
 }
}

Grant the program, which calls the addProvider or insertProviderAt method, one of the
following permissions:

java.security.SecurityPermission "addProvider.<provider name>"

java.security.SecurityPermission "insertProvider.<provider name>"

For example, if the provider name is MyJCE, your program is in the myapplication.jar file in
the /localWork directory, and your program calls the addProvider method, then the
following is a sample policy file that contains a grant statement that grants that permission:

 grant codeBase "file:/localWork/myapplicaton.jar" {
 permission java.security.SecurityPermission
 "insertProvider.MyJCE";
 };

Step 8.2: Set Provider Permissions

Permissions must be granted for when applications are run while a security manager is
installed. A security manager may be installed for an application either through code in the
application itself or through a command-line argument.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

1. Your provider may need the following permissions granted to it in the client environment:

• java.lang.RuntimePermission to get class protection domains. The provider may
need to get its own protection domain in the process of doing self-integrity checking.

• java.security.SecurityPermission to set provider properties.

2. To ensure your provider works when a security manager is installed, you need to test such
an installation and execution environment. In addition, prior to testing your need to grant
appropriate permissions to your provider and to any other providers it uses.

For example, the following is a sample statement granting permissions to a provider whose
name is MyJCE and whose code is in myjce_provider.jar. Such a statement could
appear in a policy file. In this example, the myjce_provider.jar file is assumed to be in
the /localWork directory.

 grant codeBase "file:/localWork/myjce_provider.jar" {
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.security.SecurityPermission

Chapter 3
Steps to Implement and Integrate a Provider

3-21

https://openjdk.java.net/jeps/411

 "putProviderProperty.MyJCE";
 };

Step 9: Write and Compile Your Test Programs
Write and compile one or more test programs that test your provider's incorporation into the
Security API as well as the correctness of its algorithm(s). Create any supporting files needed,
such as those for test data to be encrypted.

1. The first tests your program should perform are ones to ensure that your provider is found,
and that its name, version number, and additional information is as expected.

To do so, you could write code like the following, substituting your provider name for MyPro:

Provider p = Security.getProvider("MyPro");
System.out.println("MyPro provider name is " + p.getName());
System.out.println("MyPro provider version # is " + p.getVersion());
System.out.println("MyPro provider info is " + p.getInfo());

2. You should ensure that your services are found.

For instance, if you implemented the AES encryption algorithm, you could check to ensure
it's found when requested by using the following code (again substituting your provider
name for "MyPro"):

Cipher c = Cipher.getInstance("AES", "MyPro");
System.out.println("My Cipher algorithm name is " + c.getAlgorithm());

3. Optional: If you don't specify a provider name in the call to getInstance, all registered
providers will be searched, in preference order (see Step 8.1: Configure the Provider), until
one implementing the algorithm is found.

4. Optional: If your provider implements an exemption mechanism, you should write a test
application that uses the exemption mechanism. Such an application also needs to be
signed and have a "permission policy file" bundled with it.

See How to Make Applications Exempt from Cryptographic Restrictions for complete
information on creating and testing such an application.

Step 10: Run Your Test Programs
When you run your test applications, the required java command options will vary depending
on factors such as whether you packaged your provider as a named, automatic, or unnamed
module and if you configured it so that the ServiceLoader class can search for it.

If you packaged your provider as a named module and have configured it so that the
ServiceLoader class can search for it (by registering it with its name in the java.security
as described in Step 8.1: Configure the Provider), then run your test program with the following
command:

java --module-path "jars" <other java options>

The directory jars contains your provider.

You may require more options depending on your provider code style (see Step 3.1: Create a
Provider That Uses String Objects to Register Its Services and Step 3.2: Create a Provider

Chapter 3
Steps to Implement and Integrate a Provider

3-22

That Uses Provider.Service), if you packaged your provider in a different kind of module, or if
you have not configured it for the ServiceLoader class. The following table describes these
options.

For the java commands, the name of the provider is MyProvider, its fully qualified class name
is p.MyProvider, and it is packaged in the file com.foo.MyProvider.jar, which is in the
directory jars.

Table 3-2 Expected Java Runtime Options for Various Provider Implementation Styles

Module
Type

Provider Code Style Configured
for
ServiceLoad
er Class?

Provider Name
Used in
java.security
File

java Command

Unname
d

String objects or
Provider.Servic
e

No Fully qualified
class name

java -cp "jars/com.foo.MyProvider.jar"
<other java options>

Unname
d

String objects or
Provider.Servic
e

Yes Fully qualified
class name or
provider name

java -cp "jars/com.foo.MyProvider.jar"
<other java options>

Automat
ic

String objects or
Provider.Servic
e

No Fully qualified
class name

java --module–path "jars/
com.foo.MyProvider.jar" --add–
modules=com.foo.MyProvider <other java
options>

Automat
ic

String objects or
Provider.Servic
e

Yes Fully qualified
class name or
provider name

java --module–path "jars/
com.foo.MyProvider.jar" <other java
options>

Named String objects or
Provider.Servic
e

No Fully qualified
class name

java --module–path "jars" --add–
modules=com.foo.MyProvider --add–
exports=com.foo.MyProvider/p=java.base
<other java options>
You can remove the --add-exports option if you add
exports p in the module declaration.

Named String objects Yes Fully qualified
class name

java --module–path "jars" --add–
exports=com.foo.MyProvider/p=java.base
<other java options>
You can remove the --add-exports option if you add
exports p in the module declaration.

Named String objects Yes Provider name java --module–path "jars" --add–
exports=com.foo.MyProvider/p=java.base
<other java options>
You can remove the --add-exports option if you add
exports p in the module declaration.

Named Provider.Servic
e

Yes Fully qualified
class name

java --module–path "jars" --add–
exports=com.foo.MyProvider/
p=java.base<other java options>
You can remove the --add-exports option if you add
exports p in the module declaration.

Named Provider.Servic
e

Yes Provider name java --module–path "jars" <other java
options>

Chapter 3
Steps to Implement and Integrate a Provider

3-23

Once you have determined the proper java options for your test programs, run them. Debug
your code and continue testing as needed. If the Java runtime cannot seem to find one of your
algorithms, review the previous steps and ensure that they are all completed.

Be sure to include testing of your programs using different installation options (for example,
configured to use the ServiceLoader class or to be found in the class path or module path)
and execution environments (with or without a security manager running).

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

1. Optional: If you find during testing that your code needs modification, make the changes
and recompile Step 5: Compile Your Code.

2. Place the updated provider code in a JAR file (Step 6: Place Your Provider in a JAR File).

3. Sign the JAR file (Step 7: Sign Your JAR File, If Necessary).

4. Re-configure the provider (Step 8.1: Configure the Provider).

5. Optional: If needed, fix or add to the permissions (Step 8.2: Set Provider Permissions).

6. Run your programs.

7. Optional: If required, repeat steps 1 to 6.

Step 11: Apply for U.S. Government Export Approval If Required
All U.S. vendors whose providers may be exported outside the U.S. should apply to the Bureau
of Industry and Security in the U.S. Department of Commerce for export approval.

Please consult your export counsel for more information.

Note:

If your provider calls Cipher.getInstance() and the returned Cipher object needs to
perform strong cryptography regardless of what cryptographic strength is allowed by
the user's downloaded jurisdiction policy files, you should include a copy of the
cryptoPerms permission policy file which you intend to bundle in the JAR file for your
provider and which specifies an appropriate permission for the required cryptographic
strength. The necessity for this file is just like the requirement that applications
"exempt" from cryptographic restrictions must include a cryptoPerms permission
policy file in their JAR file. See How to Make Applications Exempt from Cryptographic
Restrictions.

Here are two URLs that may be useful:

• US Department of Commerce

• Bureau of Industry and Security

Chapter 3
Steps to Implement and Integrate a Provider

3-24

https://openjdk.java.net/jeps/411
https://www.commerce.gov/
https://www.bis.doc.gov/

Step 12: Document Your Provider and Its Supported Services

The next step is to write documentation for your clients. At the minimum, you need to specify:

• The name programs should use to refer to your provider.

Note:

As of this writing, provider name searches are case-sensitive. That is, if your
master class specifies your provider name as "CryptoX" but a user requests
"CRYPTOx", your provider will not be found. This behavior may change in the
future, but for now be sure to warn your clients to use the exact case you specify.

• The types of algorithms and other services implemented by your provider.

• Instructions for installing the provider, similar to those provided in Step 8.1: Configure the
Provider, except that the information and examples should be specific to your provider.

• The permissions your provider will require if a security manager is run, as described in
Step 8.2: Set Provider Permissions.

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the Security
Manager. See JEP 411 for discussion and alternatives.

In addition, your documentation should specify anything else of interest to clients, such as any
default algorithm parameters.

Step 12.1: Indicate Whether Your Implementation is Cloneable for Message Digests
and MACs

For each Message Digest and MAC algorithm, indicate whether or not your implementation is
cloneable. This is not technically necessary, but it may save clients some time and coding by
telling them whether or not intermediate Message Digests or MACs may be possible through
cloning.

Clients who do not know whether or not a MessageDigest or Mac implementation is cloneable
can find out by attempting to clone the object and catching the potential exception, as
illustrated by the following example:

 try {
 // try and clone it
 /* compute the MAC for i1 */
 mac.update(i1);
 byte[] i1Mac = mac.clone().doFinal();

 /* compute the MAC for i1 and i2 */
 mac.update(i2);
 byte[] i12Mac = mac.clone().doFinal();

Chapter 3
Steps to Implement and Integrate a Provider

3-25

https://openjdk.java.net/jeps/411

 /* compute the MAC for i1, i2 and i3 */
 mac.update(i3);
 byte[] i123Mac = mac.doFinal();
 } catch (CloneNotSupportedException cnse) {
 // have to use an approach not involving cloning
 }

Where,

mac
Indicates the MAC object they received when they requested one via a call to
Mac.getInstance

i1, i2 and i3
Indicates input byte arrays, and they want to calculate separate hashes for:

• i1
• i1 and i2
• i1, i2, and i3

Key Pair Generators

For a key pair generator algorithm, in case the client does not explicitly initialize the key pair
generator (via a call to an initialize method), each provider must supply and document a
default initialization.

For example, the Diffie-Hellman key pair generator supplied by the SunJCE provider uses a
default prime modulus size (keysize) of 2048 bits.

Key Factories

A provider should document all the key specifications supported by its (secret-)key factory.

Algorithm Parameter Generators

In case the client does not explicitly initialize the algorithm parameter generator (via a call to an
init method in the AlgorithmParameterGenerator engine class), each provider must supply
and document a default initialization.

For example, the SunJCE provider uses a default prime modulus size (keysize) of 2048 bits
for the generation of Diffie-Hellman parameters, and the Sun provider uses a default modulus
prime size of 2048 bits for the generation of DSA parameters.

Signature Algorithms

If you implement a signature algorithm, you should document the format in which the signature
(generated by one of the sign methods) is encoded.

For example, the SHA256withDSA signature algorithm supplied by the "SUN" provider
encodes the signature as a standard ASN.1 SEQUENCE of two integers, r and s.

Random Number Generation (SecureRandom) Algorithms

For a random number generation algorithm, provide information regarding how "random" the
numbers generated are, and the quality of the seed when the random number generator is
self-seeding. Also note what happens when a SecureRandom object (and its encapsulated
SecureRandomSpi implementation object) is deserialized: If subsequent calls to the nextBytes

Chapter 3
Steps to Implement and Integrate a Provider

3-26

method (which invokes the engineNextBytes method of the encapsulated SecureRandomSpi
object) of the restored object yield the exact same (random) bytes as the original object would,
then let users know that if this behavior is undesirable, they should seed the restored random
object by calling its setSeed method.

Certificate Factories

A provider should document what types of certificates (and their version numbers, if relevant),
can be created by the factory.

Keystores

A provider should document any relevant information regarding the keystore implementation,
such as its underlying data format.

Step 13: Make Your Class Files and Documentation Available to Clients
After writing, configuring, testing, installing and documenting your provider software, make
documentation available to your customers.

Further Implementation Details and Requirements
This section provides additional information about alias names, service interdependencies,
algorithm parameter generators and algorithm parameters.

Alias Names
In the JDK, the aliasing scheme enables clients to use aliases when referring to algorithms or
types, rather than the standard names.

For many cryptographic algorithms and types, there is a single official "standard name" defined
in the Java Security Standard Algorithm Names.

For example, "SHA-256" is the standard name for the SHA-256 Message Digest algorithm
defined in FIPS PUB 180-4: Secure Hash Standard (SHS). DiffieHellman is the standard for
the Diffie-Hellman key agreement algorithm defined in PKCS#3.

In the JDK, there is an aliasing scheme that enables clients to use aliases when referring to
algorithms or types, rather than their standard names.

For example, the "SUN" provider's master class (Sun.java) defines the alias "SHA1/DSA" for
the algorithm whose standard name is "SHA1withDSA". Thus, the following statements are
equivalent:

Signature sig = Signature.getInstance("SHA1withDSA", "SUN");
Signature sig = Signature.getInstance("SHA1/DSA", "SUN");

Aliases can be defined in your "master class" (see Step 3: Write Your Master Class, a
Subclass of Provider). To define an alias, create a property named

Alg.Alias.engineClassName.aliasName

where engineClassName is the name of an engine class (e.g., Signature), and aliasName is
your alias name. The value of the property must be the standard algorithm (or type) name for
the algorithm (or type) being aliased.

Chapter 3
Further Implementation Details and Requirements

3-27

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://csrc.nist.gov/pubs/fips/180-4/upd1/final

As an example, the "SUN" provider defines the alias "SHA1/DSA" for the signature algorithm
whose standard name is "SHA1withDSA" by setting a property named
Alg.Alias.Signature.SHA1/DSA to have the value SHA1withDSA via the following:

put("Alg.Alias.Signature.SHA1/DSA", "SHA1withDSA");

Note:

The aliases defined by one provider are available only to that provider and not to any
other providers. Thus, aliases defined by the SunJCE provider are available only to
the SunJCE provider.

Service Interdependencies
Some algorithms require the use of other types of algorithms. For example, a PBE algorithm
usually needs to use a message digest algorithm in order to transform a password into a key.

If you are implementing one type of algorithm that requires another, you can do one of the
following:

• Provide your own implementations for both.

• Let your implementation of one algorithm use an instance of the other type of algorithm, as
supplied by the default Sun provider that is included with every Java SE Platform
installation. For example, if you are implementing a PBE algorithm that requires a message
digest algorithm, you can obtain an instance of a class implementing the SHA-256
message digest algorithm by calling:

MessageDigest.getInstance("SHA-256", "SUN")

• Let your implementation of one algorithm use an instance of the other type of algorithm, as
supplied by another specific provider. This is only appropriate if you are sure that all clients
who will use your provider will also have the other provider installed.

• Let your implementation of one algorithm use an instance of the other type of algorithm, as
supplied by another (unspecified) provider. That is, you can request an algorithm by name,
but without specifying any particular provider, as in:

MessageDigest.getInstance("SHA-256")

This is only appropriate if you are sure that there will be at least one implementation of the
requested algorithm (in this case, SHA-256) installed on each Java platform where your
provider will be used.

Here are some common types of algorithm interdependencies:

Signature and Message Digest Algorithms

A signature algorithm often requires use of a message digest algorithm. For example, the
SHA256withDSA signature algorithm requires the SHA-256 message digest algorithm.

Signature and (Pseudo-)Random Number Generation Algorithms

A signature algorithm often requires use of a (pseudo-)random number generation algorithm.
For example, such an algorithm is required in order to generate a DSA signature.

Chapter 3
Further Implementation Details and Requirements

3-28

Key Pair Generation and Message Digest Algorithms

A key pair generation algorithm often requires use of a message digest algorithm. For
example, DSA keys are generated using the SHA-256 message digest algorithm.

Algorithm Parameter Generation and Message Digest Algorithms

An algorithm parameter generator often requires use of a message digest algorithm. For
example, DSA parameters are generated using the SHA-256 message digest algorithm.

Keystores and Message Digest Algorithms

A keystore implementation will often utilize a message digest algorithm to compute keyed
hashes (where the key is a user-provided password) to check the integrity of a keystore and
make sure that the keystore has not been tampered with.

Key Pair Generation Algorithms and Algorithm Parameter Generators

A key pair generation algorithm sometimes needs to generate a new set of algorithm
parameters. It can either generate the parameters directly, or use an algorithm parameter
generator.

Key Pair Generation, Algorithm Parameter Generation, and (Pseudo-)Random Number
Generation Algorithms

A key pair generation algorithm may require a source of randomness in order to generate a
new key pair and possibly a new set of parameters associated with the keys. That source of
randomness is represented by a SecureRandom object. The implementation of the key pair
generation algorithm may generate the key parameters itself, or may use an algorithm
parameter generator to generate them, in which case it may or may not initialize the algorithm
parameter generator with a source of randomness.

Algorithm Parameter Generators and Algorithm Parameters

An algorithm parameter generator's engineGenerateParameters method must return an
AlgorithmParameters instance.

Signature and Key Pair Generation Algorithms or Key Factories

If you are implementing a signature algorithm, your implementation's engineInitSign and
engineInitVerify methods will require passed-in keys that are valid for the underlying
algorithm (e.g., DSA keys for the DSS algorithm). You can do one of the following:

• Also create your own classes implementing appropriate interfaces (e.g. classes
implementing the DSAPrivateKey and DSAPublicKey interfaces from the package
java.security.interfaces), and create your own key pair generator and/or key
factory returning keys of those types. Require the keys passed to engineInitSign and
engineInitVerify to be the types of keys you have implemented, that is, keys
generated from your key pair generator or key factory. Or you can,

• Accept keys from other key pair generators or other key factories, as long as they are
instances of appropriate interfaces that enable your signature implementation to obtain the
information it needs (such as the private and public keys and the key parameters). For
example, the engineInitSign method for a DSS Signature class could accept any
private keys that are instances of java.security.interfaces.DSAPrivateKey.

Chapter 3
Further Implementation Details and Requirements

3-29

Keystores and Key and Certificate Factories

A keystore implementation will often utilize a key factory to parse the keys stored in the
keystore, and a certificate factory to parse the certificates stored in the keystore.

Default Initialization
In case the client does not explicitly initialize a key pair generator or an algorithm parameter
generator, each provider of such a service must supply (and document) a default initialization.

SUNJDK Providers Documentation

Default Key Pair Generator Parameter Requirements
If you implement a key pair generator, your implementation should supply default parameters
that are used when clients don't specify parameters.

The documentation you supply (Step 12: Document Your Provider and Its Supported Services)
should state what the default parameters are.

For example, the DSA key pair generator in the SUN provider supplies a set of precomputed p,
q, and g default values for the generation of key pairs in all supported keysizes.

The following example obtains the p, q, and g values for the DSA key pair generator of the
preferred provider (as specified in the java.security file) as well as the provider's name
and the default keysize:

 static void printDSA() throws Exception {
 KeyPairGenerator kpgen = KeyPairGenerator.getInstance("DSA");
 Provider prov = kpgen.getProvider();
 System.out.println("Current provider: " + prov.getName());

 KeyPair kp = kpgen.genKeyPair();
 DSAPublicKey pubKey = (DSAPublicKey) kp.getPublic();

 DSAParams params = pubKey.getParams();
 BigInteger p = params.getP();
 BigInteger q = params.getQ();
 BigInteger g = params.getG();

 System.out.println("Bit length of p: " + p.bitLength());
 System.out.printf("p: %x\n", p);
 System.out.printf("q: %x\n", q);
 System.out.printf("g: %x\n", g);
 }

This example prints output similar to the following (line breaks and spaces have been added
for clarity):

Current provider: SUN
Bit length of p: 2048
p: 8f7935d9 b9aae9bf abed887a cf4951b6 f32ec59e 3baf3718 e8eac496 1f3efd36
 06e74351 a9c41833 39b809e7 c2ae1c53 9ba7475b 85d011ad b8b47987 75498469
 5cac0e8f 14b33608 28a22ffa 27110a3d 62a99345 3409a0fe 696c4658 f84bdd20
 819c3709 a01057b1 95adcd00 233dba54 84b6291f 9d648ef8 83448677 979cec04

Chapter 3
Further Implementation Details and Requirements

3-30

 b434a6ac 2e75e998 5de23db0 292fc111 8c9ffa9d 8181e733 8db792b7 30d7b9e3
 49592f68 09987215 3915ea3d 6b8b4653 c633458f 803b32a4 c2e0f272 90256e4e
 3f8a3b08 38a1c450 e4e18c1a 29a37ddf 5ea143de 4b66ff04 903ed5cf 1623e158
 d487c608 e97f211c d81dca23 cb6e3807 65f822e3 42be484c 05763939 601cd667
q: baf696a6 8578f7df dee7fa67 c977c785 ef32b233 bae580c0 bcd5695d
g: 16a65c58 20485070 4e7502a3 9757040d 34da3a34 78c154d4 e4a5c02d 242ee04f
 96e61e4b d0904abd ac8f37ee b1e09f31 82d23c90 43cb642f 88004160 edf9ca09
 b32076a7 9c32a627 f2473e91 879ba2c4 e744bd20 81544cb5 5b802c36 8d1fa83e
 d489e94e 0fa0688e 32428a5c 78c478c6 8d0527b7 1c9a3abb 0b0be12c 44689639
 e7d3ce74 db101a65 aa2b87f6 4c6826db 3ec72f4b 5599834b b4edb02f 7c90e9a4
 96d3a55d 535bebfc 45d4f619 f63f3ded bb873925 c2f224e0 7731296d a887ec1e
 4748f87e fb5fdeb7 5484316b 2232dee5 53ddaf02 112b0d1f 02da3097 3224fe27
 aeda8b9d 4b2922d9 ba8be39e d9e103a6 3c52810b c688b7e2 ed4316e1 ef17dbde

The Provider.Service Class
Provider.Service class offers an alternative way for providers to advertise their services and
supports additional features.

Since its introduction, security providers have published their service information via
appropriately formatted key-value String pairs they put in their Hashtable entries. While this
mechanism is simple and convenient, it limits the amount customization possible. As a result,
JDK 5.0 introduced a second option, the Provider.Service class. It offers an alternative way
for providers to advertise their services and supports additional features. Note that this addition
is fully compatible with the older method of using String valued Hashtable entries. A provider
on JDK 5.0 can choose either method as it prefers, or even use both at the same time.

A Provider.Service object encapsulates all information about a service. This is the provider
that offers the service, its type (e.g. MessageDigest or Signature), the algorithm name, and the
name of the class that implements the service. Optionally, it also includes a list of alternate
algorithm names for this service (aliases) and attributes, which are a map of (name, value)
String pairs. In addition, it defines the methods newInstance() and supportsParameter().
They have default implementations, but can be overridden by providers if needed, as may be
the case with providers that interface with hardware security tokens.

The newInstance() method is used by the security framework when it needs to construct new
implementation instances. The default implementation uses reflection to invoke the standard
constructor for the respective type of service. For all standard services except CertStore, this
is the no-args constructor. The constructorParameter to newInstance() must be null in
theses cases. For services of type CertStore, the constructor that takes a
CertStoreParameters object is invoked, and constructorParameter must be a non-null
instance of CertStoreParameters. A security provider can override the newInstance()
method to implement instantiation as appropriate for that implementation. It could use direct
invocation or call a constructor that passes additional information specific to the Provider
instance or token. For example, if multiple Smartcard readers are present on the system, it
might pass information about which reader the newly created service is to be associated with.
However, despite customization all implementations must follow the conventions about
constructorParameter described previously.

The supportsParameter() tests whether the Service can use the specified parameter. It
returns false if this service cannot use the parameter. It returns true if this service can use the
parameter, if a fast test is infeasible, or if the status is unknown. It is used by the security
framework with some types of services to quickly exclude non-matching implementations from
consideration. It is currently only defined for the following standard services: Signature,
Cipher, Mac, and KeyAgreement. The parameter must be an instance of Key in these cases. For

Chapter 3
Further Implementation Details and Requirements

3-31

example, for Signature services, the framework tests whether the service can use the supplied
Key before instantiating the service. The default implementation examines the attributes
SupportedKeyFormats and SupportedKeyClasses. Again, a provider may override this methods
to implement additional tests.

The SupportedKeyFormats attribute is a list of the supported formats for encoded keys (as
returned by key.getFormat()) separated by the "|" (pipe) character. For example, X.509|
PKCS#8. The SupportedKeyClasses attribute is a list of the names of classes of interfaces
separated by the "|" character. A key object is considered to be acceptable if it is assignable to
at least one of those classes or interfaces named. In other words, if the class of the key object
is a subclass of one of the listed classes (or the class itself) or if it implements the listed
interface. An example value is "java.security.interfaces.RSAPrivateKey|
java.security.interfaces.RSAPublicKey" .

Four methods have been added to the Provider class for adding and looking up Services. As
mentioned earlier, the implementation of those methods and also of the existing Properties
methods have been specifically designed to ensure compatibility with existing Provider
subclasses. This is achieved as follows:

If legacy Properties methods are used to add entries, the Provider class makes sure that the
property strings are parsed into equivalent Service objects prior to lookup via getService().
Similarly, if the putService() method is used, equivalent property strings are placed into the
provider's hashtable at the same time. If a provider implementation overrides any of the
methods in the Provider class, it has to ensure that its implementation does not interfere with
this conversion. To avoid problems, we recommend that implementations do not override any
of the methods in the Provider class.

Signature Formats
The signature algorithm should specify the format in which the signature is encoded.

If you implement a signature algorithm, the documentation you supply (Step 12: Document
Your Provider and Its Supported Services) should specify the format in which the signature
(generated by one of the sign methods) is encoded.

For example, the SHA1withDSA signature algorithm supplied by the Sun provider encodes the
signature as a standard ASN.1 sequence of two ASN.1 INTEGER values: r and s, in that order:

SEQUENCE ::= {
 r INTEGER,
 s INTEGER }

DSA Interfaces and their Required Implementations
The Java Security API contains interfaces (in the java.security.interfaces package)
for the convenience of programmers implementing DSA services.

The Java Security API contains the following interfaces:

• DSAKey
• DSAKeyPairGenerator
• DSAParams
• DSAPrivateKey

Chapter 3
Further Implementation Details and Requirements

3-32

• DSAPublicKey
The following sections discuss requirements for implementations of these interfaces.

DSAKeyPairGenerator

The interface DSAKeyPairGenerator is obsolete. It used to be needed to enable clients to
provide DSA-specific parameters to be used rather than the default parameters your
implementation supplies. However, it's no longer necessary. The
KeyPairGenerator.initialize method that takes an AlgorithmParameterSpec
parameter enables clients to indicate algorithm-specific parameters.

DSAParams Implementation

If you are implementing a DSA key pair generator, you need a class implementing DSAParams
for holding and returning the p, q, and g parameters.

A DSAParams implementation is also required if you implement the DSAPrivateKey and
DSAPublicKey interfaces. DSAPublicKey and DSAPrivateKey both extend the DSAKey
interface, which contains a getParams method that must return a DSAParams object.

Note:

There is a DSAParams implementation built into the JDK: the
java.security.spec.DSAParameterSpec class.

DSAPrivateKey and DSAPublicKey Implementations

If you implement a DSA key pair generator or key factory, you need to create classes
implementing the DSAPrivateKey and DSAPublicKey interfaces.

If you implement a DSA key pair generator, your generateKeyPair method (in your
KeyPairGeneratorSpi subclass) will return instances of your implementations of those
interfaces.

If you implement a DSA key factory, your engineGeneratePrivate method (in your
KeyFactorySpi subclass) will return an instance of your DSAPrivateKey implementation,
and your engineGeneratePublic method will return an instance of your DSAPublicKey
implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-
in key to be an instance of a DSAPrivateKey or DSAPublicKey implementation. The
getParams method provided by the interface implementations is useful for obtaining and
extracting the parameters from the keys and then using the parameters, for example as
parameters to the DSAParameterSpec constructor called to create a parameter specification
from parameter values that could be used to initialize a KeyPairGenerator object for DSA.

If you implement a DSA signature algorithm, your engineInitSign method (in your
SignatureSpi subclass) will expect to be passed a DSAPrivateKey and your
engineInitVerify method will expect to be passed a DSAPublicKey.

Please note: The DSAPublicKey and DSAPrivateKey interfaces define a very generic,
provider-independent interface to DSA public and private keys, respectively. The
engineGetKeySpec and engineTranslateKey methods (in your KeyFactorySpi
subclass) could additionally check if the passed-in key is actually an instance of their provider's
own implementation of DSAPrivateKey or DSAPublicKey, for example, to take advantage

Chapter 3
Further Implementation Details and Requirements

3-33

of provider-specific implementation details. The same is true for the DSA signature algorithm
engineInitSign and engineInitVerify methods (in your SignatureSpi subclass).

To see what methods need to be implemented by classes that implement the DSAPublicKey
and DSAPrivateKey interfaces, first note the following interface signatures:

In the java.security.interfaces package:

public interface DSAPrivateKey extends DSAKey, PrivateKey
public interface DSAPublicKey extends DSAKey, PublicKey
public interface DSAKey

In the java.security package:

public interface PrivateKey extends Key
public interface PublicKey extends Key
public interface Key extends Serializable

To implement the DSAPrivateKey and DSAPublicKey interfaces, you must implement the
methods they define as well as those defined by interfaces they extend, directly or indirectly.

Thus, for private keys, you need to supply a class that implements:

• The getX method from the DSAPrivateKey interface.

• The getParams method from the DSAKey interface because DSAPrivateKey extends
DSAKey.

Note:

The getParams method returns a DSAParams object, so you must also have a
DSAParams implementation.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface
because DSAPrivateKey extends java.security.PrivateKey, and PrivateKey
extends Key.

Similarly, for public DSA keys, you need to supply a class that implements:

• The getY method from the DSAPublicKey interface.

• The getParams method from the DSAKey interface because DSAPublicKey extends
DSAKey.

Note:

The getParams method returns a DSAParams object, so you must also have a
DSAParams implementation.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface
because DSAPublicKey extends java.security.PublicKey, and PublicKey
extends Key.

Chapter 3
Further Implementation Details and Requirements

3-34

RSA Interfaces and their Required Implementations
The Java Security API contains the interfaces (in the java.security.interfaces package) for
the convenience of programmers implementing RSA services.

• RSAPrivateKey
• RSAPrivateCrtKey
• RSAPublicKey
The following sections discuss requirements for implementations of these interfaces.

RSAPrivateKey, RSAPrivateCrtKey, and RSAPublicKey Implementations

If you implement an RSA key pair generator or key factory, you need to create classes
implementing the RSAPublicKey (and/or RSAPrivateCrtKey) and RSAPublicKey
interfaces. (RSAPrivateCrtKey is the interface to an RSA private key, using the Chinese
Remainder Theorem (CRT) representation.)

If you implement an RSA key pair generator, your generateKeyPair method (in your
KeyPairGeneratorSpi subclass) will return instances of your implementations of those
interfaces.

If you implement an RSA key factory, your engineGeneratePrivate method (in your
KeyFactorySpi subclass) will return an instance of your RSAPrivateKey (or RSAPrivateCrtKey)
implementation, and your engineGeneratePublic method will return an instance of your
RSAPublicKey implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-in key
to be an instance of an RSAPrivateKey, RSAPrivateCrtKey, or RSAPublicKey implementation.

If you implement an RSA signature algorithm, your engineInitSign method (in your
SignatureSpi subclass) will expect to be passed either an RSAPrivateKey or an
RSAPrivateCrtKey, and your engineInitVerify method will expect to be passed an
RSAPublicKey.

Please note: The RSAPublicKey, RSAPrivateKey, and RSAPrivateCrtKey interfaces define a
very generic, provider-independent interface to RSA public and private keys. The
engineGetKeySpec and engineTranslateKey methods (in your KeyFactorySpi subclass) could
additionally check if the passed-in key is actually an instance of their provider's own
implementation of RSAPrivateKey, RSAPrivateCrtKey, or RSAPublicKey, for example, to take
advantage of provider-specific implementation details. The same is true for the RSA signature
algorithm engineInitSign and engineInitVerify methods (in your SignatureSpi subclass).

To see what methods need to be implemented by classes that implement the RSAPublicKey,
RSAPrivateKey, and RSAPrivateCrtKey interfaces, first note the following interface signatures:

In the java.security.interfaces package:

public interface RSAPrivateKey extends PrivateKey
public interface RSAPrivateCrtKey extends RSAPrivateKey
public interface RSAPublicKey extends PublicKey

Chapter 3
Further Implementation Details and Requirements

3-35

In the java.security package:

public interface PrivateKey extends Key
public interface PublicKey extends Key
public interface Key extends Serializable

To implement the RSAPrivateKey, RSAPrivateCrtKey, and RSAPublicKey interfaces, you must
implement the methods they define as well as those defined by interfaces they extend, directly
or indirectly.

Thus, for RSA private keys, you need to supply a class that implements:

• The getModulus and getPrivateExponent methods from the RSAPrivateKey interface.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface because
RSAPrivateKey extends java.security.PrivateKey, and PrivateKey extends Key.

Similarly, for RSA private keys using the Chinese Remainder Theorem (CRT) representation,
you need to supply a class that implements:

• All the methods listed previously for RSA private keys because RSAPrivateCrtKey extends
java.security.interfaces.RSAPrivateKey.

• The getPublicExponent, getPrimeP, getPrimeQ, getPrimeExponentP, getPrimeExponentQ,
and getCrtCoefficient methods from the RSAPrivateKey interface.

For public RSA keys, you need to supply a class that implements:

• The getModulus and getPublicExponent methods from the RSAPublicKey interface.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface because
RSAPublicKey extends java.security.PublicKey, and PublicKey extends Key.

JCA contains a number of AlgorithmParameterSpec implementations for the most frequently
used cipher and key agreement algorithm parameters. If you are operating on algorithm
parameters that should be for a different type of algorithm not provided by JCA, you will need
to supply your own AlgorithmParameterSpec implementation appropriate for that type of
algorithm.

Diffie-Hellman Interfaces and their Required Implementations
JCA contains interfaces (in the javax.crypto.interfaces package) for the convenience of
programmers implementing Diffie-Hellman services.

• DHPublicKey
• DHKey
• DHPrivateKey
The following sections discuss requirements for implementations of these interfaces.

DHPrivateKey and DHPublicKey Implementations

If you implement a Diffie-Hellman key pair generator or key factory, you need to create classes
implementing the DHPrivateKey and DHPublicKey interfaces.

If you implement a Diffie-Hellman key pair generator, your generateKeyPair method (in your
KeyPairGeneratorSpi subclass) will return instances of your implementations of those
interfaces.

Chapter 3
Further Implementation Details and Requirements

3-36

If you implement a Diffie-Hellman key factory, your engineGeneratePrivate method (in your
KeyFactorySpi subclass) will return an instance of your DHPrivateKey implementation, and
your engineGeneratePublic method will return an instance of your DHPublicKey
implementation.

Also, your engineGetKeySpec and engineTranslateKey methods will expect the passed-in key
to be an instance of a DHPrivateKey or DHPublicKey implementation. The getParams method
provided by the interface implementations is useful for obtaining and extracting the parameters
from the keys. You can then use the parameters, for example, as parameters to the
DHParameterSpec constructor called to create a parameter specification from parameter values
used to initialize a KeyPairGenerator object for Diffie-Hellman.

If you implement the Diffie-Hellman key agreement algorithm, your engineInit method (in your
KeyAgreementSpi subclass) will expect to be passed a DHPrivateKey and your engineDoPhase
method will expect to be passed a DHPublicKey.

Note:

The DHPublicKey and DHPrivateKey interfaces define a very generic, provider-
independent interface to Diffie-Hellman public and private keys, respectively. The
engineGetKeySpec and engineTranslateKey methods (in your KeyFactorySpi
subclass) could additionally check if the passed-in key is actually an instance of their
provider's own implementation of DHPrivateKey or DHPublicKey, for example, to take
advantage of provider-specific implementation details. The same is true for the Diffie-
Hellman algorithm engineInit and engineDoPhase methods (in your
KeyAgreementSpi subclass).

To see what methods need to be implemented by classes that implement the DHPublicKey and
DHPrivateKey interfaces, first note the following interface signatures:

In the javax.crypto.interfaces package:

public interface DHPrivateKey extends DHKey, PrivateKey
public interface DHPublicKey extends DHKey, jPublicKey
public interface DHKey

In the java.security package:

public interface PrivateKey extends Key
public interface PublicKey extends Key
public interface Key extends Serializable

To implement the DHPrivateKey and DHPublicKey interfaces, you must implement the methods
they define as well as those defined by interfaces they extend, directly or indirectly.

Thus, for private keys, you need to supply a class that implements:

• The getX method from the DHPrivateKey interface.

• The getParams method from the DHKey interface because DHPrivateKey extends DHKey.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface because
DHPrivateKey extends java.security.PrivateKey, and PrivateKey extends Key.

Chapter 3
Further Implementation Details and Requirements

3-37

Similarly, for public Diffie-Hellman keys, you need to supply a class that implements:

• The getY method from the DHPublicKey interface.

• The getParams method from the DHKey interface because DHPublicKey extends DHKey.

• The getAlgorithm, getEncoded, and getFormat methods from the Key interface because
DHPublicKey extends java.security.PublicKey, and PublicKey extends Key.

Interfaces for Other Algorithm Types
As noted previously, the Java Security API contains interfaces for the convenience of
programmers implementing services like DSA, RSA and ECC. If there are services without API
support, you need to define your own APIs.

If you are implementing a key pair generator for a different algorithm, you should create an
interface with one or more initialize methods that clients can call when they want to provide
algorithm-specific parameters to be used rather than the default parameters your
implementation supplies. Your subclass of KeyPairGeneratorSpi should implement this
interface.

For algorithms without direct API support, it is recommended that you create similar interfaces
and provide implementation classes. Your public key interface should extend the PublicKey
interface. Similarly, your private key interface should extend the PrivateKey interface.

Algorithm Parameter Specification Interfaces and Classes
An algorithm parameter specification is a transparent representation of the sets of parameters
used with an algorithm.

A transparent representation of parameters means that you can access each value individually,
through one of the get methods defined in the corresponding specification class (e.g.,
DSAParameterSpec defines getP, getQ, and getG methods, to access the p, q, and g
parameters, respectively).

This is contrasted with an opaque representation, as supplied by the AlgorithmParameters
engine class, in which you have no direct access to the key material values; you can only get
the name of the algorithm associated with the parameter set (via getAlgorithm) and some kind
of encoding for the parameter set (via getEncoded).

If you supply an AlgorithmParametersSpi, AlgorithmParameterGeneratorSpi, or
KeyPairGeneratorSpi implementation, you must utilize the AlgorithmParameterSpec interface,
since each of those classes contain methods that take an AlgorithmParameterSpec parameter.
Such methods need to determine which actual implementation of that interface has been
passed in, and act accordingly.

JCA contains a number of AlgorithmParameterSpec implementations for the most frequently
used signature, cipher and key agreement algorithm parameters. If you are operating on
algorithm parameters that should be for a different type of algorithm not provided by JCA, you
will need to supply your own AlgorithmParameterSpec implementation appropriate for that
type of algorithm.

Java defines the following algorithm parameter specification interfaces and classes in the
java.security.spec and javax.crypto.spec packages:

Chapter 3
Further Implementation Details and Requirements

3-38

The AlgorithmParameterSpec Interface

AlgorithmParameterSpec is an interface to a transparent specification of cryptographic
parameters.

This interface contains no methods or constants. Its only purpose is to group (and provide type
safety for) all parameter specifications. All parameter specifications must implement this
interface.

The DSAParameterSpec Class

This class (which implements the AlgorithmParameterSpec and DSAParams interfaces)
specifies the set of parameters used with the DSA algorithm. It has the following methods:

 public BigInteger getP()

 public BigInteger getQ()

 public BigInteger getG()

These methods return the DSA algorithm parameters: the prime p, the sub-prime q, and the
base g.

Many types of DSA services will find this class useful - for example, it is utilized by the DSA
signature, key pair generator, algorithm parameter generator, and algorithm parameters
classes implemented by the Sun provider. As a specific example, an algorithm parameters
implementation must include an implementation for the getParameterSpec method, which
returns an AlgorithmParameterSpec. The DSA algorithm parameters implementation supplied
by Sun returns an instance of the DSAParameterSpec class.

The IvParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the initialization
vector (IV) used with a cipher in feedback mode.

Table 3-3 Method in IvParameterSpec

Method Description

byte[] getIV() Returns the initialization vector (IV).

The OAEPParameterSpec Class

This class specifies the set of parameters used with OAEP Padding, as defined in the PKCS
#1 standard.

Table 3-4 Methods in OAEPParameterSpec

Method Description

String getDigestAlgorithm() Returns the message digest algorithm name.

String getMGFAlgorithm() Returns the mask generation function algorithm
name.

Chapter 3
Further Implementation Details and Requirements

3-39

Table 3-4 (Cont.) Methods in OAEPParameterSpec

Method Description

AlgorithmParameterSpec
getMGFParameters()

Returns the parameters for the mask generation
function.

PSource getPSource() Returns the source of encoding input P.

The PBEParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with a password-based encryption (PBE) algorithm.

Table 3-5 Methods in PBEParameterSpec

Method Description

int getIterationCount() Returns the iteration count.

byte[] getSalt() Returns the salt.

The RC2ParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the RC2 algorithm.

Table 3-6 Methods in RC2ParameterSpec

Method Description

boolean equals(Object obj) Tests for equality between the specified object and
this object.

int getEffectiveKeyBits() Returns the effective key size in bits.

byte[] getIV() Returns the IV or null if this parameter set does not
contain an IV.

int hashCode() Calculates a hash code value for the object.

The RC5ParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the RC5 algorithm.

Table 3-7 Methods in RC5ParameterSpec

Method Description

boolean equals(Object obj) Tests for equality between the specified object and
this object.

byte[] getIV() Returns the IV or null if this parameter set does not
contain an IV.

int getRounds() Returns the number of rounds.

int getVersion() Returns the version.

int getWordSize() Returns the word size in bits.

int hashCode() Calculates a hash code value for the object.

Chapter 3
Further Implementation Details and Requirements

3-40

The DHParameterSpec Class

This class (which implements the AlgorithmParameterSpec interface) specifies the set of
parameters used with the Diffie-Hellman algorithm.

Table 3-8 Methods in DHParameterSpec

Method Description

BigInteger getG() Returns the base generator g.

int getL() Returns the size in bits, l, of the random exponent
(private value).

BigInteger getP() Returns the prime modulus p.

Many types of Diffie-Hellman services will find this class useful; for example, it is used by the
Diffie-Hellman key agreement, key pair generator, algorithm parameter generator, and
algorithm parameters classes implemented by the "SunJCE" provider. As a specific example,
an algorithm parameters implementation must include an implementation for the
getParameterSpec method, which returns an AlgorithmParameterSpec. The Diffie-Hellman
algorithm parameters implementation supplied by "SunJCE" returns an instance of the
DHParameterSpec class.

Key Specification Interfaces and Classes Required by Key Factories
A key factory provides bi-directional conversions between opaque keys (of type Key) and key
specifications. If you implement a key factory, you thus need to understand and utilize key
specifications. In some cases, you also need to implement your own key specifications.

Key specifications are transparent representations of the key material that constitutes a key. If
the key is stored on a hardware device, its specification may contain information that helps
identify the key on the device.

A transparent representation of keys means that you can access each key material value
individually, through one of the get methods defined in the corresponding specification class.
For example, java.security.spec.DSAPrivateKeySpec defines getX, getP, getQ, and getG
methods, to access the private key x, and the DSA algorithm parameters used to calculate the
key: the prime p, the sub-prime q, and the base g.

This is contrasted with an opaque representation, as defined by the Key interface, in which you
have no direct access to the parameter fields. In other words, an "opaque" representation
gives you limited access to the key - just the three methods defined by the Key interface:
getAlgorithm, getFormat, and getEncoded.

A key may be specified in an algorithm-specific way, or in an algorithm-independent encoding
format (such as ASN.1). For example, a DSA private key may be specified by its components
x, p, q, and g (see DSAPrivateKeySpec), or it may be specified using its DER encoding (see
PKCS8EncodedKeySpec).

Java defines the following key specification interfaces and classes in the java.security.spec
and javax.crypto.spec packages:

The KeySpec Interface

This interface contains no methods or constants. Its only purpose is to group (and provide type
safety for) all key specifications. All key specifications must implement this interface.

Chapter 3
Further Implementation Details and Requirements

3-41

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html

Java supplies several classes implementing the KeySpec interface:

• DSAPrivateKeySpec
• DSAPublicKeySpec
• RSAPrivateKeySpec
• RSAPublicKeySpec
• EncodedKeySpec
• PKCS8EncodedKeySpec
• X509EncodedKeySpec
If your provider uses key types (e.g., Your_PublicKey_type and Your_PrivateKey_type) for
which the JDK does not already provide corresponding KeySpec classes, there are two
possible scenarios, one of which requires that you implement your own key specifications:

1. If your users will never have to access specific key material values of your key type, you
will not have to provide any KeySpec classes for your key type.

In this scenario, your users will always create Your_PublicKey_type and
Your_PrivateKey_type keys through the appropriate KeyPairGenerator supplied by your
provider for that key type. If they want to store the generated keys for later usage, they
retrieve the keys' encodings (using the getEncoded method of the Key interface). When
they want to create an Your_PublicKey_type or Your_PrivateKey_type key from the
encoding (e.g., in order to initialize a Signature object for signing or verification), they
create an instance of X509EncodedKeySpec or PKCS8EncodedKeySpec from the encoding,
and feed it to the appropriate KeyFactory supplied by your provider for that algorithm,
whose generatePublic and generatePrivate methods will return the requested
PublicKey (an instance of Your_PublicKey_type) or PrivateKey (an instance of
Your_PrivateKey_type) object, respectively.

2. If you anticipate a need for users to access specific key material values of your key type, or
to construct a key of your key type from key material and associated parameter values,
rather than from its encoding (as in the previous case), you have to specify new KeySpec
classes (classes that implement the KeySpec interface) with the appropriate constructor
methods and get methods for returning key material fields and associated parameter
values for your key type. You will specify those classes in a similar manner as is done by
the DSAPrivateKeySpec and DSAPublicKeySpec classes. You need to ship those classes
along with your provider classes, for example, as part of your provider JAR file.

The DSAPrivateKeySpec Class

This class (which implements the KeySpec Interface) specifies a DSA private key with its
associated parameters. It has the following methods:

Table 3-9 Methods in DSAPrivateKeySpec

Method in DSAPrivateKeySpec Description

public BigInteger getX() Returns the private key x.

public BigInteger getP() Returns the prime p.

public BigInteger getQ() Returns the sub-prime q.

public BigInteger getG() Returns the base g.

Chapter 3
Further Implementation Details and Requirements

3-42

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/X509EncodedKeySpec.html

These methods return the private key x, and the DSA algorithm parameters used to calculate
the key: the prime p, the sub-prime q, and the base g.

The DSAPublicKeySpec Class

This class (which implements the KeySpec Interface) specifies a DSA public key with its
associated parameters. It has the following methods:

Table 3-10 Methods in DSAPublicKeySpec

Method in DSAPublicKeySpec Description

public BigInteger getY() returns the public key y.

public BigInteger getP() Returns the prime p.

public BigInteger getQ() Returns the sub-prime q.

public BigInteger getG() Returns the base g.

The RSAPrivateKeySpec Class

This class (which implements the KeySpec Interface) specifies an RSA private key. It has the
following methods:

Table 3-11 Methods in RSAPrivateKeySpec

Method in RSAPrivateKeySpec Description

public BigInteger getModulus() Returns the modulus.

public BigInteger getPrivateExponent() Returns the private exponent.

These methods return the RSA modulus n and private exponent d values that constitute the
RSA private key.

The RSAPrivateCrtKeySpec Class

This class (which extends the RSAPrivateKeySpec class) specifies an RSA private key, as
defined in the PKCS#1 standard, using the Chinese Remainder Theorem (CRT) information
values. It has the following methods (in addition to the methods inherited from its superclass
RSAPrivateKeySpec):

Table 3-12 Methods in RSAPrivateCrtKeySpec

Method in RSAPrivateCrtKeySpec Description

public BigInteger getPublicExponent() Returns the public exponent.

public BigInteger getPrimeP() Returns the prime P.

public BigInteger getPrimeQ() Returns the prime Q.

public BigInteger getPrimeExponentP() Returns the primeExponentP.

public BigInteger getPrimeExponentQ() Returns the primeExponentQ.

public BigInteger getCrtCoefficient() Returns the crtCoefficient.

These methods return the public exponent e and the CRT information integers: the prime factor
p of the modulus n, the prime factor q of n, the exponent d mod (p-1), the exponent d mod
(q-1), and the Chinese Remainder Theorem coefficient (inverse of q) mod p.

Chapter 3
Further Implementation Details and Requirements

3-43

An RSA private key logically consists of only the modulus and the private exponent. The
presence of the CRT values is intended for efficiency.

The RSAPublicKeySpec Class

This class (which implements the KeySpec Interface) specifies an RSA public key. It has the
following methods:

Table 3-13 Methods in RSAPublicKeySpec

Method in RSAPublicKeySpec Description

public BigInteger getModulus() Returns the modulus.

public BigInteger getPublicExponent() Returns the public exponent.

The EncodedKeySpec Class

This abstract class (which implements the KeySpec Interface) represents a public or private key
in encoded format.

Table 3-14 Methods in EncodedKeySpec

Method in EncodedKeySpec Description

public abstract byte[] getEncoded() Returns the encoded key.

public abstract String getFormat() Returns the name of the encoding format.

The JDK supplies two classes implementing the EncodedKeySpec interface:
PKCS8EncodedKeySpec and X509EncodedKeySpec. If desired, you can supply your own
EncodedKeySpec implementations for those or other types of key encodings.

The PKCS8EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a private
key, according to the format specified in the PKCS #8 standard.

Its getEncoded method returns the key bytes, encoded according to the PKCS #8 standard. Its
getFormat method returns the string "PKCS#8".

The X509EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a public or
private key, according to the format specified in the X.509 standard.

Its getEncoded method returns the key bytes, encoded according to the X.509 standard. Its
getFormat method returns the string "X.509".DHPrivateKeySpec, DHPublicKeySpec,
DESKeySpec, DESedeKeySpec, PBEKeySpec, and SecretKeySpec.

The DHPrivateKeySpec Class

This class (which implements the KeySpec interface) specifies a Diffie-Hellman private key with
its associated parameters.

Chapter 3
Further Implementation Details and Requirements

3-44

Table 3-15 Methods in DHPrviateKeySpec

Method in DHPrivateKeySpec Description

BigInteger getG() Returns the base generator g.

BigInteger getP() Returns the prime modulus p.

BigInteger getX() Returns the private value x.

The DHPublicKeySpec Class

Table 3-16 Methods in DHPublicKeySpec

Method in DHPublicKeySpec Description

BigInteger getG() Returns the base generator g.

BigInteger getP() Returns the prime modulus p.

BigInteger getY() Returns the public value y.

The DESKeySpec Class

This class (which implements the KeySpec interface) specifies a DES key.

Table 3-17 Methods in DESKeySpec

Method in DESKeySpec Description

byte[] getKey() Returns the DES key bytes.

static boolean isParityAdjusted(byte[]
key, int offset)

Checks if the given DES key material is parity-
adjusted.

static boolean isWeak(byte[] key, int
offset)

Checks if the given DES key material is weak or
semi-weak.

The DESedeKeySpec Class

This class (which implements the KeySpec interface) specifies a DES-EDE (Triple DES) key.

Table 3-18 Methods in DESedeKeySpec

Method in DESedeKeySpec Description

byte[] getKey() Returns the DES-EDE key.

static boolean isParityAdjusted(byte[]
key, int offset)

Checks if the given DES-EDE key is parity-
adjusted.

The PBEKeySpec Class

This class implements the KeySpec interface. A user-chosen password can be used with
password-based encryption (PBE); the password can be viewed as a type of raw key material.
An encryption mechanism that uses this class can derive a cryptographic key from the raw key
material.

Chapter 3
Further Implementation Details and Requirements

3-45

Table 3-19 Methods in PBEKeySpec

Method in PBEKeySpec Description

void clearPassword Clears the internal copy of the password.

int getIterationCount Returns the iteration count or 0 if not specified.

int getKeyLength Returns the to-be-derived key length or 0 if not
specified.

char[] getPassword Returns a copy of the password.

byte[] getSalt Returns a copy of the salt or null if not specified.

The SecretKeySpec Class

This class implements the KeySpec interface. Since it also implements the SecretKey interface,
it can be used to construct a SecretKey object in a provider-independent fashion, i.e., without
having to go through a provider-based SecretKeyFactory.

Table 3-20 Methods in SecretKeySpec

Method in SecretKeySpec Description

boolean equals (Object obj) Indicates whether some other object is "equal to"
this one.

String getAlgorithm() Returns the name of the algorithm associated with
this secret key.

byte[] getEncoded() Returns the key material of this secret key.

String getFormat() Returns the name of the encoding format for this
secret key.

int hashCode() Calculates a hash code value for the object.

Secret-Key Generation
If you provide a secret-key generator (subclass of javax.crypto.KeyGeneratorSpi) for a
particular secret-key algorithm, you may return the generated secret-key object.

The generated secret-key object (which must be an instance of javax.crypto.SecretKey, see
engineGenerateKey) can be returned in one of the following ways:

• You implement a class whose instances represent secret-keys of the algorithm associated
with your key generator. Your key generator implementation returns instances of that class.
This approach is useful if the keys generated by your key generator have provider-specific
properties.

• Your key generator returns an instance of SecretKeySpec, which already implements the
javax.crypto.SecretKey interface. You pass the (raw) key bytes and the name of the
secret-key algorithm associated with your key generator to the SecretKeySpec constructor.
This approach is useful if the underlying (raw) key bytes can be represented as a byte
array and have no key-parameters associated with them.

Adding New Object Identifiers
The following information applies to providers who supply an algorithm that is not listed as one
of the standard algorithms in Java Security Standard Algorithm Names.

Chapter 3
Further Implementation Details and Requirements

3-46

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/KeyGeneratorSpi.html#engineGenerateKey()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/SecretKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Mapping from OID to Name

Sometimes the JCA needs to instantiate a cryptographic algorithm implementation from an
algorithm identifier (for example, as encoded in a certificate), which by definition includes the
object identifier (OID) of the algorithm. For example, in order to verify the signature on an
X.509 certificate, the JCA determines the signature algorithm from the signature algorithm
identifier that is encoded in the certificate, instantiates a Signature object for that algorithm,
and initializes the Signature object for verification.

For the JCA to find your algorithm, you should provide the object identifier of your algorithm as
an alias entry for your algorithm in the provider master file.

 put("Alg.Alias.<engine_type>.1.2.3.4.5.6.7.8",
 "<algorithm_alias_name>");

Note that if your algorithm is known under more than one object identifier, you need to create
an alias entry for each object identifier under which it is known.

An example of where the JCA needs to perform this type of mapping is when your algorithm
("Foo") is a signature algorithm and users run the keytool command and specify your
(signature) algorithm alias.

 % keytool -genkeypair -sigalg 1.2.3.4.5.6.7.8 -keyalg foo

In this case, your provider master file should contain the following entries:

 put("Signature.Foo", "com.xyz.MyFooSignatureImpl");
 put("Alg.Alias.Signature.1.2.3.4.5.6.7.8", "Foo");
 put("KeyPairGenerator.Foo", "com.xyz.MyFooKeyPairGeneratorImpl");

Other examples of where this type of mapping is performed are (1) when your algorithm is a
keytype algorithm and your program parses a certificate (using the X.509 implementation of
the SUN provider) and extracts the public key from the certificate in order to initialize a
Signature object for verification, and (2) when keytool users try to access a private key of your
keytype (for example, to perform a digital signature) after having generated the corresponding
keypair. In these cases, your provider master file should contain the following entries:

 put("KeyFactory.Foo", "com.xyz.MyFooKeyFactoryImpl");
 put("Alg.Alias.KeyFactory.1.2.3.4.5.6.7.8", "Foo");

Mapping from Name to OID

If the JCA needs to perform the inverse mapping (that is, from your algorithm name to its
associated OID), you need to provide an alias entry of the following form for one of the OIDs
under which your algorithm should be known:

 put("Alg.Alias.Signature.OID.1.2.3.4.5.6.7.8", "MySigAlg");

If your algorithm is known under more than one object identifier, prefix the preferred one with
"OID."

An example of where the JCA needs to perform this kind of mapping is when users run
keytool in any mode that takes a -sigalg option. For example, when the -genkeypair and -

Chapter 3
Further Implementation Details and Requirements

3-47

certreq commands are invoked, the user can specify your (signature) algorithm with the -
sigalg option.

Ensuring Exportability
A key feature of JCA is the exportability of the JCA framework and of the provider cryptography
implementations if certain conditions are met.

By default, an application can use cryptographic algorithms of any strength. However, due to
import regulations in some countries, you may have to limit those algorithms' strength. You do
this with jurisdiction policy files; see Cryptographic Strength Configuration. The JCA framework
will enforce the restrictions specified in the installed jurisdiction policy files.

As noted elsewhere, you can write just one version of your provider software, implementing
cryptography of maximum strength. It is up to JCA, not your provider, to enforce any
jurisdiction policy file-mandated restrictions regarding the cryptographic algorithms and
maximum cryptographic strengths available to applets/applications in different locations.

The conditions that must be met by your provider in order to enable it to be plugged into JCA
are the following:

• The provider code should be written in such a way that provider classes become unusable
if instantiated by an application directly, bypassing JCA. See Step 1: Write your Service
Implementation Code in Steps to Implement and Integrate a Provider.

• The provider package must be signed by an entity trusted by the JCA framework. (See
Step 7.1: Get a Code-Signing Certificate through Step 7.2: Sign Your Provider.) U.S.
vendors whose providers may be exported outside the U.S. first need to apply for U.S.
government export approval. (See Step 11: Apply for U.S. Government Export Approval If
Required.)

Sample Code for MyProvider
The following is the complete source code for an example provider, MyProvider. It's a portable
provider; you can specify it in a class or module path. It consists of two modules:

• com.example.MyProvider: Contains an example provider that demonstrate how to write a
provider with the Provider.Service mechanism. You must compile, package, and sign
the provider, then specify it in your class or module path as described in Steps to
Implement and Integrate a Provider.

• com.example.MyApp: Contains a sample application that uses the MyProvider provider. It
finds and loads this provider with the ServiceLoader mechanism, and then registers it
dynamically with the Security.addProvider() method.

This example consists of the following files:

• src/com.example.MyProvider/module-info.java

• src/com.example.MyProvider/com/example/MyProvider/MyProvider.java

• src/com.example.MyProvider/com/example/MyProvider/MyCipher.java

• src/com.example.MyProvider/META-INF/services/java.security.Provider

• src/com.example.MyApp/module-info.java

• src/com.example.MyApp/com/example/MyApp/MyApp.java

• RunTest.sh

Chapter 3
Sample Code for MyProvider

3-48

src/com.example.MyProvider/module-info.java

See Step 4: Create a Module Declaration for Your Provider for information about the module
declaration, which is specified in module-info.java.

module com.example.MyProvider {
 provides java.security.Provider with com.example.MyProvider.MyProvider;
}

src/com.example.MyProvider/com/example/MyProvider/MyProvider.java

The MyProvider class is an example of a provider that uses the Provider.Service class.
See Step 3.2: Create a Provider That Uses Provider.Service.

package com.example.MyProvider;

import java.security.*;
import java.util.*;

/**
 * Test JCE provider.
 *
 * Registers services using Provider.Service and overrides newInstance().
 */
public final class MyProvider extends Provider {

 public MyProvider() {
 super("MyProvider", "1.0", "My JCE provider");

 final Provider p = this;

 AccessController.doPrivileged((PrivilegedAction<Void>) () -> {
 putService(new ProviderService(p, "Cipher",
 "MyCipher", "com.example.MyProvider.MyCipher"));
 return null;
 });
 }

 private static final class ProviderService extends Provider.Service {

 ProviderService(Provider p, String type, String algo, String cn) {
 super(p, type, algo, cn, null, null);
 }

 ProviderService(Provider p, String type, String algo, String cn,
 String[] aliases, HashMap<String, String> attrs) {
 super(p, type, algo, cn,
 (aliases == null ? null : Arrays.asList(aliases)), attrs);
 }

 @Override
 public Object newInstance(Object ctrParamObj)
 throws NoSuchAlgorithmException {

 String type = getType();

Chapter 3
Sample Code for MyProvider

3-49

 if (ctrParamObj != null) {
 throw new InvalidParameterException(
 "constructorParameter not used with " + type
 + " engines");
 }
 String algo = getAlgorithm();
 try {
 if (type.equals("Cipher")) {
 if (algo.equals("MyCipher")) {
 return new MyCipher();
 }
 }
 } catch (Exception ex) {
 throw new NoSuchAlgorithmException(
 "Error constructing " + type + " for "
 + algo + " using SunMSCAPI", ex);
 }
 throw new ProviderException("No impl for " + algo
 + " " + type);
 }
 }

 @Override
 public String toString() {
 return "MyProvider [getName()=" + getName()
 + ", getVersionStr()=" + getVersionStr() + ", getInfo()="
 + getInfo() + "]";
 }
}

src/com.example.MyProvider/com/example/MyProvider/MyCipher.java

The MyCipher class extends the CipherSPI, which is a Server Provider Interface (SPI).
Each cryptographic service that a provider implements has a subclass of the appropriate SPI.
See Step 1: Write your Service Implementation Code.

Note:

This code is only a stub provider that demonstrates how to write a provider; it's
missing the actual cryptographic algorithm implementation. The MyCipher class
would contain an actual cryptographic algorithm implementation if MyProvider were a
real security provider.

package com.example.MyProvider;

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;

/**
 * Implementation represents a test Cipher.
 *
 * All are stubs.

Chapter 3
Sample Code for MyProvider

3-50

 */
public class MyCipher extends CipherSpi {

 @Override
 protected byte[] engineDoFinal(byte[] input, int inputOffset, int
inputLen)
 throws IllegalBlockSizeException, BadPaddingException {
 return null;
 }

 @Override
 protected int engineDoFinal(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset) throws ShortBufferException,
 IllegalBlockSizeException, BadPaddingException {
 return 0;
 }

 @Override
 protected int engineGetBlockSize() {
 return 0;
 }

 @Override
 protected byte[] engineGetIV() {
 return null;
 }

 @Override
 protected int engineGetOutputSize(int inputLen) {
 return 0;
 }

 @Override
 protected AlgorithmParameters engineGetParameters() {
 return null;
 }

 @Override
 protected void engineInit(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException {
 }

 @Override
 protected void engineInit(int opmode, Key key,
 AlgorithmParameterSpec params, SecureRandom random)
 throws InvalidKeyException, InvalidAlgorithmParameterException {
 }

 @Override
 protected void engineInit(int opmode, Key key, AlgorithmParameters params,
 SecureRandom random) throws InvalidKeyException,
 InvalidAlgorithmParameterException {
 }

 @Override
 protected void engineSetMode(String mode) throws NoSuchAlgorithmException

Chapter 3
Sample Code for MyProvider

3-51

{
 }

 @Override
 protected void engineSetPadding(String padding)
 throws NoSuchPaddingException {
 }

 @Override
 protected int engineGetKeySize(Key key)
 throws InvalidKeyException {
 return 0;
 }

 @Override
 protected byte[] engineUpdate(byte[] input, int inputOffset, int
inputLen) {
 return null;
 }

 @Override
 protected int engineUpdate(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset) throws ShortBufferException {
 return 0;
 }
}

src/com.example.MyProvider/META-INF/services/java.security.Provider

The java.security.Provider file enables automatic or unnamed modules to use the
ServiceLoader class to search for your providers. See Step 6: Place Your Provider in a JAR
File.

com.example.MyProvider.MyProvider

src/com.example.MyApp/module-info.java

This file contains a uses directive, which specifies a service that the module requires. This
directive helps the module system locate providers and ensure that they run reliably. This is the
complement to the provides directive in the MyProvider module definition.

module com.example.MyApp {
 uses java.security.Provider;
}

src/com.example.MyApp/com/example/MyApp/MyApp.java

package com.example.MyApp;

import java.util.*;
import java.security.*;
import javax.crypto.*;

/**

Chapter 3
Sample Code for MyProvider

3-52

 * A simple JCE test client to access a simple test Provider/Cipher
 * implementation in a signed modular jar.
 */
public class MyApp {

 private static final String PROVIDER = "MyProvider";
 private static final String CIPHER = "MyCipher";

 public static void main(String[] args) throws Exception {

 /*
 * Registers MyProvider dynamically.
 *
 * Could do statically by editing the java.security file.
 * Use the first form if using ServiceLoader ("uses" or
 * META-INF/service), the second if using the traditional class
 * lookup method. Both if provider could be deployed to either.
 *
 * security.provider.14=MyProvider
 * security.provider.15=com.example.MyProvider.MyProvider
 */
 ServiceLoader<Provider> sl =
 ServiceLoader.load(java.security.Provider.class);
 for (Provider p : sl) {
 if (p.getName().equals(PROVIDER)) {
 System.out.println("Registering the Provider");
 Security.addProvider(p);
 }
 }

 /*
 * Get a MyCipher from MyProvider and initialize it.
 */
 Cipher cipher = Cipher.getInstance(CIPHER, PROVIDER);
 cipher.init(Cipher.ENCRYPT_MODE, (Key) null);

 /*
 * What Provider did we get?
 */
 Provider p = cipher.getProvider();
 Class c = p.getClass();
 Module m = c.getModule();
 System.out.println(p.getName() + ": version "
 + p.getVersionStr() + "\n"
 + p.getInfo() + "\n "
 + ((m.getName() == null) ? "<UNNAMED>" : m.getName())
 + "/" + c.getName());
 }
}

RunTest.sh

#!/bin/sh

#

Chapter 3
Sample Code for MyProvider

3-53

A simple example to show how a JCE provider could be developed in a
modular JDK, for deployment as either Named/Unnamed modules.
#

#
Edit as appropriate
#
JDK_DIR=d:/java/jdk9
KEYSTORE=YourKeyStore
STOREPASS=YourStorePass
SIGNER=YourAlias

echo "-----------"
echo "Clean/Init"
echo "-----------"
rm -rf mods jars
mkdir mods jars

echo "--------------------"
echo "Compiling MyProvider"
echo "--------------------"
${JDK_DIR}/bin/javac.exe \
 --module-source-path src \
 -d mods \
 $(find src/com.example.MyProvider -name '*.java' -print)

echo "------------------------------------"
echo "Packaging com.example.MyProvider.jar"
echo "------------------------------------"
${JDK_DIR}/bin/jar.exe --create \
 --file jars/com.example.MyProvider.jar \
 --verbose \
 --module-version=1.0 \
 -C mods/com.example.MyProvider . \
 -C src/com.example.MyProvider META-INF/services

echo "----------------------------------"
echo "Signing com.example.MyProvider.jar"
echo "----------------------------------"
${JDK_DIR}/bin/jarsigner.exe \
 -keystore ${KEYSTORE} \
 -storepass ${STOREPASS} \
 jars/com.example.MyProvider.jar ${SIGNER}

echo "---------------"
echo "Compiling MyApp"
echo "---------------"
${JDK_DIR}/bin/javac.exe \
 --module-source-path src \
 -d mods \
 $(find src/com.example.MyApp -name '*.java' -print)

echo "-------------------------------"
echo "Packaging com.example.MyApp.jar"
echo "-------------------------------"
${JDK_DIR}/bin/jar.exe --create \

Chapter 3
Sample Code for MyProvider

3-54

 --file jars/com.example.MyApp.jar \
 --verbose \
 --module-version=1.0 \
 -C mods/com.example.MyApp .

echo "------------------------"
echo "Test1 "
echo "Named Provider/Named App"
echo "------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars' \
 -m com.example.MyApp/com.example.MyApp.MyApp

echo "--------------------------"
echo "Test2 "
echo "Named Provider/Unnamed App"
echo "--------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars/com.example.MyProvider.jar' \
 --class-path 'jars/com.example.MyApp.jar' \
 com.example.MyApp.MyApp

echo "--------------------------"
echo "Test3 "
echo "Unnamed Provider/Named App"
echo "--------------------------"
${JDK_DIR}/bin/java.exe \
 --module-path 'jars/com.example.MyApp.jar' \
 --class-path 'jars/com.example.MyProvider.jar' \
 -m com.example.MyApp/com.example.MyApp.MyApp

echo "----------------------------"
echo "Test4 "
echo "Unnamed Provider/Unnamed App"
echo "----------------------------"
${JDK_DIR}/bin/java.exe \
 --class-path \
 'jars/com.example.MyProvider.jar;jars/com.example.MyApp.jar' \
 com.example.MyApp.MyApp

Chapter 3
Sample Code for MyProvider

3-55

4
JDK Providers Documentation

This document contains the technical details of the providers that are included in the JDK. It is
assumed that readers have a strong understanding of the Java Cryptography Architecture and
Provider Architecture.

Note:

The Java Security Standard Algorithm Names contains more information about the
standard names used in this document.

Topics

Introduction to JDK Providers

Import Limits on Cryptographic Algorithms

Cipher Transformations

SecureRandom Implementations

The SunPKCS11 Provider

The SUN Provider

The SunRsaSign Provider

The SunJSSE Provider

The SunJCE Provider

The SunJGSS Provider

The SunSASL Provider

The XMLDSig Provider

The SunPCSC Provider

The SunMSCAPI Provider

The SunEC Provider

The Apple Provider

The JdkLDAP Provider

The JdkSASL Provider

Introduction to JDK Providers
The Java platform defines a set of APIs spanning major security areas, including cryptography,
public key infrastructure, authentication, secure communication, and access control. These
APIs enable developers to easily integrate security mechanisms into their application code.

4-1

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

The Java Cryptography Architecture (JCA) and its Provider Architecture are core concepts of
the Java Development Kit (JDK). It is assumed that readers have a solid understanding of this
architecture.

Reminder: Cryptographic implementations in the JDK are distributed through several different
providers ("SUN", "SunJSSE", "SunJCE", "SunRsaSign") for both historical reasons and by the
types of services provided. General purpose applications SHOULD NOT request cryptographic
services from specific providers. That is:

getInstance("...", "SunJCE"); // not recommended

versus

getInstance("..."); // recommended

Otherwise, applications are tied to specific providers that may not be available on other Java
implementations. They also might not be able to take advantage of available optimized
providers (for example, hardware accelerators via PKCS11 or native OS implementations such
as Microsoft's MSCAPI) that have a higher preference order than the specific requested
provider.

The following table lists the modules and the supported Java Cryptographic Service Providers:

Table 4-1 Modules and the Java Cryptographic Service Providers

Module Provider(s)

java.base SUN, SunRsaSign, SunJSSE, SunJCE, Apple

java.naming JdkLDAP

java.security.jgss SunJGSS

java.security.sasl SunSASL

java.smartcardio SunPCSC

java.xml.crypto XMLDSig

jdk.crypto.cryptoki SunPKCS11

jdk.crypto.ec SunEC

jdk.crypto.mscapi SunMSCAPI

jdk.security.jgss JdkSASL

Import Limits on Cryptographic Algorithms
By default, an application can use cryptographic algorithms of any strength. However, due to
import regulations in some locations, you may have to limit the strength of those algorithms.
The JDK provides two different sets of jurisdiction policy files in the directory <java-home>/
conf/security/policy that determine the strength of cryptographic algorithms.
Information about jurisdiction policy files and how to activate them is available in Cryptographic
Strength Configuration.

Consult your export/import control counsel or attorney to determine the exact requirements for
your location.

Chapter 4
Import Limits on Cryptographic Algorithms

4-2

For the "limited" configuration, the following table lists the maximum key sizes allowed by the
"limited" set of jurisdiction policy files:

Table 4-2 Maximum Keysize of Cryptographic Algorithms

Algorithm Maximum Keysize

DES 64

DESede *

RC2 128

RC4 128

RC5 128

RSA *

all others 128

Cipher Transformations
The javax.crypto.Cipher.getInstance(String transformation) factory method generates
Cipher objects using transformations of the form algorithm/mode/padding. If the mode/
padding are omitted, the SunJCE and SunPKCS11 providers use ECB as the default mode
and PKCS5Padding as the default padding for many symmetric ciphers.

It is recommended to use transformations that fully specify the algorithm, mode, and padding
instead of relying on the defaults. The defaults are provider specific and can vary among
providers.

Note:

ECB mode is the easiest block cipher mode to use and is the default cipher mode.
ECB works well for single blocks of data and can be parallelized but generally should
not be used for encrypting multiple data blocks due to characteristics of the mode.
This could result in trivial and full disclosure of confidential data. While this mode is
available for use, it should only be used with an understanding of the cryptographic
risks involved.

SecureRandom Implementations
The following table lists the default preference order of the available SecureRandom
implementations.

Table 4-3 Default SecureRandom Implementations

OS Algorithm Name Provider Name

Linux 1. NativePRNG1 SUN

2. DRBG SUN

3. SHA1PRNG 1 SUN

4. NativePRNGBlocking SUN

5. NativePRNGNonBlocking SUN

macOS 1. NativePRNG1 SUN

Chapter 4
Cipher Transformations

4-3

Table 4-3 (Cont.) Default SecureRandom Implementations

OS Algorithm Name Provider Name

2. DRBG SUN

3. SHA1PRNG1 SUN

4. NativePRNGBlocking SUN

5. NativePRNGNonBlocking SUN

Windows 1. DRBG SUN

2. SHA1PRNG SUN

3. Windows-PRNG2 SunMSCAPI

1 On Linux and macOS, if the entropy gathering device in java.security is set to file:/dev/urandom or
file:/dev/random, then NativePRNG is preferred to SHA1PRNG. Otherwise, SHA1PRNG is preferred.

2 There is currently no NativePRNG on Windows. Access to the equivalent functionality is via the SunMSCAPI
provider.

The SunPKCS11 Provider
The Cryptographic Token Interface Standard (PKCS#11) provides native programming
interfaces to cryptographic mechanisms, such as hardware cryptographic accelerators and
Smart Cards. When properly configured, the SunPKCS11 provider enables applications to use
the standard JCA/JCE APIs to access native PKCS#11 libraries. The SunPKCS11 provider
itself does not contain cryptographic functionality, it is simply a conduit between the Java
environment and the native PKCS11 providers. The PKCS#11 Reference Guide has a much
more detailed treatment of this provider.

The SUN Provider
Algorithms

The following algorithms are available in the SUN provider:

Table 4-4 Algorithms in SUN provider

Engine Algorithm Names

AlgorithmParameterGenerator DSA

AlgorithmParameters DSA

CertificateFactory X.509

CertPathBuilder PKIX

CertPathValidator PKIX

CertStore Collection

Configuration JavaLoginConfig

KeyFactory DSA

KeyPairGenerator DSA

KeyStore PKCS121

JKS

DKS

CaseExactJKS

Chapter 4
The SunPKCS11 Provider

4-4

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

Table 4-4 (Cont.) Algorithms in SUN provider

Engine Algorithm Names

MessageDigest MD2

MD5

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SHA-512/224

SHA-512/256

SHA3-224

SHA3-256

SHA3-384

SHA3-512

Policy JavaPolicy

SecureRandom DRBG

(The following mechanisms and algorithms are
supported: Hash_DRBG and HMAC_DRBG with
SHA-224, SHA-512/224, SHA-256, SHA-512/256,
SHA-384 and SHA-512. CTR_DRBG (both use
derivation function and not use) with AES-128,
AES-192 and AES-256. Prediction resistance and
reseeding supported for each combination, and
security strength can be requested from 112 up to
the highest strength one supports.)

SHA1PRNG

(Initial seeding is currently done via a combination
of system attributes and the java.security
entropy gathering device.)

NativePRNG

(nextBytes() uses /dev/urandom,
generateSeed() uses /dev/random)

NativePRNGBlocking

(nextBytes() and generateSeed() use /dev/
random)

NativePRNGNonBlocking

(nextBytes() and generateSeed() use /dev/
urandom)

Chapter 4
The SUN Provider

4-5

Table 4-4 (Cont.) Algorithms in SUN provider

Engine Algorithm Names

Signature NONEwithDSA

SHA1withDSA

SHA224withDSA

SHA256withDSA

SHA384withDSA

SHA512withDSA

NONEwithDSAinP1363Format

SHA1withDSAinP1363Format

SHA224withDSAinP1363Format

SHA256withDSAinP1363Format

SHA384withDSAinP1363Format

SHA512withDSAinP1363Format

SHA3-224withDSA

SHA3-256withDSA

SHA3-384withDSA

SHA3-512withDSA

SHA3-224withDSAinP1363Format

SHA3-256withDSAinP1363Format

SHA3-384withDSAinP1363Format

SHA3-512withDSAinP1363Format

Note:

For signature
generation, if the
security strength of
the digest algorithm is
weaker than the
security strength of
the key used to sign
the signature (for
example, using
(2048, 256)-bit DSA
keys with the
SHA1withDSA
signature), then the
operation will fail with
the error message:
"The security strength
of SHA1 digest
algorithm is not
sufficient for this key
size."

1 The PKCS12 KeyStore implementation does not support the KeyBag type.

Chapter 4
The SUN Provider

4-6

Object Identifiers Associated with SHA Message Digests and DSA Signatures

The following table lists object identifiers (OIDs) associated with SHA Message Digests:

Table 4-5 OIDs associated with SHA Message Digests

SHA Message Digest OID

SHA-224 2.16.840.1.101.3.4.2.4

SHA-256 2.16.840.1.101.3.4.2.1

SHA-384 2.16.840.1.101.3.4.2.2

SHA-512 2.16.840.1.101.3.4.2.3

SHA-512/224 2.16.840.1.101.3.4.2.5

SHA-512/256 2.16.840.1.101.3.4.2.6

SHA3-224 2.16.840.1.101.3.4.2.7

SHA3-256 2.16.840.1.101.3.4.2.8

SHA3-384 2.16.840.1.101.3.4.2.9

SHA3-512 2.16.840.1.101.3.4.2.10

The following table lists OIDs associated with DSA Signatures:

Table 4-6 OIDs associated with DSA Signatures

DSA Signature OID

SHA1withDSA 1.2.840.10040.4.3

1.3.14.3.2.13

1.3.14.3.2.27

SHA224withDSA 2.16.840.1.101.3.4.3.1

SHA256withDSA 2.16.840.1.101.3.4.3.2

SHA384withDSA 2.16.840.1.101.3.4.3.3

SHA512withDSA 2.16.840.1.101.3.4.3.4

SHA3-224withDSA 2.16.840.1.101.3.4.3.5

SHA3-256withDSA 2.16.840.1.101.3.4.3.6

SHA3-384withDSA 2.16.840.1.101.3.4.3.7

SHA3-512withDSA 2.16.840.1.101.3.4.3.8

Keysize Restrictions

The SUN provider uses the following default keysizes (in bits) and enforces the following
restrictions:

Table 4-7 KeyPairGenerator Algorithm Keysize Restrictions

Algorithm Name Default Keysize Restrictions/Comments

DSA 2048 Keysize must be a multiple of 64,
ranging from 512 to 1024, plus
2048 and 3072.

Chapter 4
The SUN Provider

4-7

Table 4-8 AlgorithmParameterGenerator Algorithm Keysize Restrictions

Algorithm Name Default Keysize Restrictions/Comments

DSA 2048 Keysize must be a multiple of 64,
ranging from 512 to 1024, plus
2048 and 3072.

CertificateFactory/CertPathBuilder/CertPathValidator/CertStore Implementations

See Appendix B: CertPath Implementation in SUN Provider in the Java PKI Programmer's
Guide for details of the SUN provider implementations for CertificateFactory,
CertPathBuilder, CertPathValidator, and CertStore.

The SunRsaSign Provider
Algorithms

The following algorithms are available in the SunRsaSign provider:

Table 4-9 SunRsaSign Provider Algorithm Names for Engine Classes

Engine Algorithm Names

AlgorithmParameters RSASSA-PSS

KeyFactory RSA

RSASSA-PSS

KeyPairGenerator RSA

RSASSA-PSS

Signature MD2withRSA

MD5withRSA

SHA1withRSA

SHA224withRSA

SHA256withRSA

SHA384withRSA

SHA512withRSA

SHA512/224withRSA

SHA512/256withRSA

SHA3-224withRSA

SHA3-256withRSA

SHA3-384withRSA

SHA3-512withRSA

RSASSA-PSS

Keysize Restrictions

The SunRsaSign provider uses the following default keysize (in bits) and enforces the following
restriction:

Chapter 4
The SunRsaSign Provider

4-8

Table 4-10 SunRsaSign Provider Keysize Restrictions

Alg. Name Default Keysize Restrictions/Comments

RSA and RSASSA-PSS 2048 Keysize must range between 512
and 16384 bits. If the key size
exceeds 3072, then the public
exponent length cannot exceed
64 bits.

The SunJSSE Provider
Algorithms

The following algorithms are available in the SunJSSE provider:

Table 4-11 Algorithms in SunJSSE Provider

Engine Algorithm Name(s)

KeyManagerFactory PKIX: A factory for X509ExtendedKeyManager
instances that manage X.509 certificate-based key
pairs for local side authentication according to the
rules defined by the IETF PKIX working group in
RFC 5280. This KeyManagerFactory currently
supports initialization using a KeyStore object or
javax.net.ssl.KeyStoreBuilderParameters.

SunX509: A factory for
X509ExtendedKeyManager instances that
manage X.509 certificate-based key pairs for local
side authentication, but with less strict checking of
certificate usage/validity and chain verification. This
KeyManagerFactory supports initialization using
a Keystore object, but does not currently support
initialization using the class
javax.net.ssl.ManagerFactoryParameters.

Note: The SunX509 factory is for backwards
compatibility with older releases, and should no
longer be used.

KeyStore PKCS12

Note: The SunJSSE provider is for backwards
compatibility with older releases, and should no
longer be used for KeyStore.

SSLContext SSL

SSLv3

TLS

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

DTLS

DTLSv1.0

DTLSv1.2

Chapter 4
The SunJSSE Provider

4-9

http://www.ietf.org/rfc/rfc5280.txt

Table 4-11 (Cont.) Algorithms in SunJSSE Provider

Engine Algorithm Name(s)

TrustManagerFactory PKIX: A factory for X509ExtendedTrustManager
instances that validate certificate chains according
to the rules defined by the IETF PKIX working
group in RFC 5280. This TrustManagerFactory
currently supports initialization using a KeyStore
object or
javax.net.ssl.CertPathTrustManagerParam
eters.

SunX509: A factory for
X509ExtendedTrustManager instances that
validate certificate chains, but with less strict
checking of certificate usage/validity and chain
verification. This TrustManagerFactory supports
initialization using a Keystore object, but does not
currently support initialization using the class
javax.net.ssl.ManagerFactoryParameters.

Note: The SunX509 factory is for backwards
compatibility with older releases, and should no
longer be used.

SunJSSE Provider Protocol Parameters

The SunJSSE provider supports the protocol parameters listed in Table 4-12.

Table 4-12 SunJSSE Provider Protocol Versions

Protocol Version Enabled by Default for Client Enabled by Default for Server

SSLv3 No No

TLSv11 Yes Yes

TLSv1.11 Yes Yes

TLSv1.2 Yes Yes

TLSv1.3 Yes Yes

SSLv2Hello No No

DTLSv1.0 Yes Yes

DTLSv1.2 Yes Yes

1 TLS 1.0 and 1.1 are versions of the TLS protocol that are no longer considered secure and have been superseded
by more secure and modern versions (TLS 1.2 and 1.3). These versions have now been disabled by default. If you
encounter issues, you can, at your own risk, re-enable the versions by removing TLSv1 or TLSv1.1 from the
jdk.tls.disabledAlgorithms Security Property in the java.security configuration file.

Chapter 4
The SunJSSE Provider

4-10

http://www.ietf.org/rfc/rfc5280.txt

Note:

The protocols available by default in a JDK release change as new protocols are
developed and old protocols are found to be less effective than previously thought.
The JDK uses two mechanisms to restrict the availability of these protocols:

• The jdk.tls.disabledAlgorithms Security Property: This disables categories of
protocols and cipher suites. For example, if this Security Property contains SSLv3,
then the SSLv3 protocol would be disabled. See Disabled and Restricted
Cryptographic Algorithms for information about this Security Property.

• Moving the protocol to the list of protocols not enabled by default as indicated in
Table 4-12.

The enabled protocol versions of an SSLContext implementation may differ from the default
values in the previous table depending on the algorithm and its mode (client or server). The
following tables list the enabled protocol versions for SSLContext implementations that differ
from the default:

Table 4-13 Enabled Protocol Versions for Specific SSLContext Implementations in
Client Mode

SSLCont
ext
Algorith
m

SSL/TLS/DTLS Protocol Version

SSLv2He
llo

SSLv3 TLSv1 TLSv1.1 TLSv1.2 TLSv1.3 DTLSv1.
0

DTLSv1.
2

SSLv3 No No Yes No No No N/A N/A

TLSv1 No No Yes No No No N/A N/A

TLSv1.1 No No Yes Yes No No N/A N/A

TLSv1.2 No No Yes Yes Yes No N/A N/A

TLSv1.3 No No Yes Yes Yes Yes N/A N/A

Default No No Yes Yes Yes Yes N/A N/A

TLS No No Yes Yes Yes Yes N/A N/A

SSL No No Yes Yes Yes Yes N/A N/A

DTLSv1.0 N/A N/A N/A N/A N/A N/A Yes No

DTLSv1.2 N/A N/A N/A N/A N/A N/A Yes Yes

DTLS N/A N/A N/A N/A N/A N/A Yes Yes

Table 4-14 Enabled Protocol Versions for Specific SSLContext Implementations in
Server Mode

SSLCont
ext
Algorith
m

SSL/TLS/DTLS Protocol Version

SSLv2He
llo

SSLv3 TLSv1 TLSv1.1 TLSv1.2 TLSv1.3 DTLSv1.
0

DTLSv1.
2

SSLv3 No No Yes Yes Yes Yes N/A N/A

TLSv1 No No Yes Yes Yes Yes N/A N/A

TLSv1.1 No No Yes Yes Yes Yes N/A N/A

TLSv1.2 No No Yes Yes Yes Yes N/A N/A

TLSv1.3 No No Yes Yes Yes Yes N/A N/A

Chapter 4
The SunJSSE Provider

4-11

Table 4-14 (Cont.) Enabled Protocol Versions for Specific SSLContext Implementations
in Server Mode

SSLCont
ext
Algorith
m

SSL/TLS/DTLS Protocol Version

SSLv2He
llo

SSLv3 TLSv1 TLSv1.1 TLSv1.2 TLSv1.3 DTLSv1.
0

DTLSv1.
2

Default No No Yes Yes Yes Yes N/A N/A

TLS No No Yes Yes Yes Yes N/A N/A

SSL No No Yes Yes Yes Yes N/A N/A

DTLSv1.0 N/A N/A N/A N/A N/A N/A Yes Yes

DTLSv1.2 N/A N/A N/A N/A N/A N/A Yes Yes

DTLS N/A N/A N/A N/A N/A N/A Yes Yes

SunJSSE Cipher Suites

The following are the currently implemented SunJSSE cipher suites for this JDK release,
sorted by order of preference. Not all of these cipher suites are available for use by default.
See JSSE Cipher Suite Names in Java Security Standard Algorithm Names to determine
which protocols that each cipher suite supports.

• TLS_AES_128_GCM_SHA256

• TLS_AES_256_GCM_SHA384

• TLS_CHACHA20_POLY1305_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

• TLS_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

• TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

• TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_RSA_WITH_AES_128_GCM_SHA256

• TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

• TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

Chapter 4
The SunJSSE Provider

4-12

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#jsse-cipher-suite-names

• TLS_RSA_WITH_AES_256_CBC_SHA256

• TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384

• TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

• TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

• TLS_RSA_WITH_AES_256_CBC_SHA

• TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

• TLS_ECDH_RSA_WITH_AES_256_CBC_SHA

• TLS_DHE_RSA_WITH_AES_256_CBC_SHA

• TLS_DHE_DSS_WITH_AES_256_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

• TLS_RSA_WITH_AES_128_CBC_SHA256

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

• TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

• TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

• TLS_RSA_WITH_AES_128_CBC_SHA

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

• TLS_DHE_RSA_WITH_AES_128_CBC_SHA

• TLS_DHE_DSS_WITH_AES_128_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

• SSL_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA

• SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_EMPTY_RENEGOTIATION_INFO_SCSV

• TLS_DH_anon_WITH_AES_256_GCM_SHA384

• TLS_DH_anon_WITH_AES_128_GCM_SHA256

• TLS_DH_anon_WITH_AES_256_CBC_SHA256

• TLS_ECDH_anon_WITH_AES_256_CBC_SHA

Chapter 4
The SunJSSE Provider

4-13

• TLS_DH_anon_WITH_AES_256_CBC_SHA

• TLS_DH_anon_WITH_AES_128_CBC_SHA256

• TLS_ECDH_anon_WITH_AES_128_CBC_SHA

• TLS_DH_anon_WITH_AES_128_CBC_SHA

• TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA

• SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

• TLS_ECDHE_RSA_WITH_RC4_128_SHA

• SSL_RSA_WITH_RC4_128_SHA

• TLS_ECDH_ECDSA_WITH_RC4_128_SHA

• TLS_ECDH_RSA_WITH_RC4_128_SHA

• SSL_RSA_WITH_RC4_128_MD5

• TLS_ECDH_anon_WITH_RC4_128_SHA

• SSL_DH_anon_WITH_RC4_128_MD5

• SSL_RSA_WITH_DES_CBC_SHA

• SSL_DHE_RSA_WITH_DES_CBC_SHA

• SSL_DHE_DSS_WITH_DES_CBC_SHA

• SSL_DH_anon_WITH_DES_CBC_SHA

• SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

• TLS_RSA_WITH_NULL_SHA256

• TLS_ECDHE_ECDSA_WITH_NULL_SHA

• TLS_ECDHE_RSA_WITH_NULL_SHA

• SSL_RSA_WITH_NULL_SHA

• TLS_ECDH_ECDSA_WITH_NULL_SHA

• TLS_ECDH_RSA_WITH_NULL_SHA

• TLS_ECDH_anon_WITH_NULL_SHA

• SSL_RSA_WITH_NULL_MD5

Chapter 4
The SunJSSE Provider

4-14

Note:

• The cipher suite order of preference may change in future releases.

• TLS_EMPTY_RENEGOTIATION_INFO_SCSV is a pseudo-cipher suite that
supports RFC 5746.

The cipher suites available by default in a JDK release change as new algorithms are
developed and old algorithms are found to be less effective than previously thought. Oracle
JDK uses two mechanisms to restrict the availability of these algorithms:

• The jdk.tls.disabledAlgorithms Security Property, which disables categories of cipher
suites. For example, if this Security Property contains RC4, then all RC4-based cipher
suites would be disabled.

• Moving the cipher suite to the list of suites not enabled by default.

See Disabled and Restricted Cryptographic Algorithms for information about the
jdk.tls.disabledAlgorithms Security Property.

Determining Current List of Protocols and Cipher Suites Available by Default

To obtain the current list of protocols and cipher suites that are available by default, run one of
the following commands:

keytool -showinfo -tls
java -XshowSettings:security:tls

Note that the list generated by these commands don't include suites that the
jdk.tls.disabledAlgorithms Security Property disabled.

Tighter Checking of EncryptedPreMasterSecret Version Numbers

Prior to the JDK 7 release, the SSL/TLS implementation did not check the version number in
PreMasterSecret, and the SSL/TLS client did not send the correct version number by default.
Unless the system property com.sun.net.ssl.rsaPreMasterSecretFix is set to true, the TLS
client sends the active negotiated version, but not the expected maximum version supported
by the client.

For compatibility, this behavior is preserved for SSL version 3.0 and TLS version 1.0. However,
for TLS version 1.1 or later, the implementation tightens checking the PreMasterSecret version
numbers as required by RFC 5246. Clients always send the correct version number, and
servers check the version number strictly. The system property,
com.sun.net.ssl.rsaPreMasterSecretFix, is not used in TLS 1.1 or later.

The SunJCE Provider
As described briefly in The SUN Provider, US export regulations at the time restricted the type
of cryptographic functionality that could be available in the JDK. A separate API and reference
implementation was developed that allowed applications to encrypt/decrypt date. The Java
Cryptographic Extension (JCE) was released as a separate ”Optional Package” (also briefly
known as a “Standard Extension”), and was available for JDK 1.2x and 1.3x. During the
development of JDK 1.4, regulations were relaxed enough that JCE (and SunJSSE) could be
bundled as part of the JDK.

Chapter 4
The SunJCE Provider

4-15

http://www.ietf.org/rfc/rfc5246.txt

The following algorithms are available in the SunJCE provider:

Table 4-15 The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

AlgorithmParameterGenerator DiffieHellman

AlgorithmParameters AES

Blowfish

ChaCha20-Poly1305

DES

DESede

DiffieHellman

GCM

OAEP

PBE

PBES2

PBEWithHmacSHA1AndAES_128

PBEWithHmacSHA224AndAES_128

PBEWithHmacSHA256AndAES_128

PBEWithHmacSHA384AndAES_128

PBEWithHmacSHA512AndAES_128

PBEWithHmacSHA1AndAES_256

PBEWithHmacSHA224AndAES_256

PBEWithHmacSHA256AndAES_256

PBEWithHmacSHA384AndAES_256

PBEWithHmacSHA512AndAES_256

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithSHA1AndDESede

PBEWithSHA1AndRC2_40

PBEWithSHA1AndRC2_128

PBEWithSHA1AndRC4_40

PBEWithSHA1AndRC4_128

RC2

Cipher See Table 4-16

KeyAgreement DiffieHellman

KeyFactory DiffieHellman

Chapter 4
The SunJCE Provider

4-16

Table 4-15 (Cont.) The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

KeyGenerator AES

ARCFOUR

Blowfish

ChaCha20

DES

DESede

HmacMD5

HmacSHA1

HmacSHA224

HmacSHA256

HmacSHA384

HmacSHA512

HmacSHA512/224

HmacSHA512/256

HmacSHA3-224

HmacSHA3-256

HmacSHA3-384

HmacSHA3-512

RC2

KeyPairGenerator DiffieHellman

KeyStore JCEKS

Chapter 4
The SunJCE Provider

4-17

Table 4-15 (Cont.) The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

Mac HmacMD5

HmacSHA1

HmacSHA224

HmacSHA256

HmacSHA384

HmacSHA512

HmacSHA512/224

HmacSHA512/256

HmacSHA3-224

HmacSHA3-256

HmacSHA3-384

HmacSHA3-512

HmacPBESHA1

HmacPBESHA224

HmacPBESHA256

HmacPBESHA384

HmacPBESHA512

HmacPBESHA512/224

HmacPBESHA512/256

PBEWithHmacSHA1

PBEWithHmacSHA224

PBEWithHmacSHA256

PBEWithHmacSHA384

PBEWithHmacSHA512

Chapter 4
The SunJCE Provider

4-18

Table 4-15 (Cont.) The SunJCE Provider Algorithm Names for Engine Classes

Engine Algorithm Names

SecretKeyFactory DES

DESede

PBEWithMD5AndDES

PBEWithMD5AndTripleDES

PBEWithSHA1AndDESede

PBEWithSHA1AndRC2_40

PBEWithSHA1AndRC2_128

PBEWithSHA1AndRC4_40

PBEWithSHA1AndRC4_128

PBKDF2WithHmacSHA1

PBKDF2WithHmacSHA224

PBKDF2WithHmacSHA256

PBKDF2WithHmacSHA384

PBKDF2WithHmacSHA512

PBEWithHmacSHA1AndAES_128

PBEWithHmacSHA224AndAES_128

PBEWithHmacSHA256AndAES_128

PBEWithHmacSHA384AndAES_128

PBEWithHmacSHA512AndAES_128

PBEWithHmacSHA1AndAES_256

PBEWithHmacSHA224AndAES_256

PBEWithHmacSHA256AndAES_256

PBEWithHmacSHA384AndAES_256

PBEWithHmacSHA512AndAES_256

The following table lists cipher transformations available in the SunJCE provider.

Table 4-16 The SunJCE Provider Cipher Transformations

Algorithm Names Modes Paddings

AES ECB, CBC, PCBC, CFB1,
CFB8..CFB128, OFB1, OFB8..OFB128

NoPadding, PKCS5Padding,
ISO10126Padding2

AES CTR, CTS, GCM NoPadding

AES_128, AES_192, AES_256 ECB, CBC, OFB, CFB, GCM NoPadding

AESWrap ECB NoPadding

AESWrap_128 ECB NoPadding

AESWrap_192 ECB NoPadding

AESWrap_256 ECB NoPadding

ARCFOUR ECB NoPadding

Blowfish, DES, DESede, RC2 ECB, CBC, PCBC, CTR, CTS, CFB1,
CFB8..CFB64, OFB1, OFB8..OFB64

NoPadding, PKCS5Padding,
ISO10126Padding

ChaCha20 None NoPadding

ChaCha20-Poly1305 None NoPadding

DESedeWrap CBC NoPadding

Chapter 4
The SunJCE Provider

4-19

Table 4-16 (Cont.) The SunJCE Provider Cipher Transformations

Algorithm Names Modes Paddings

PBEWithMD5AndDES,
PBEWithMD5AndTripleDES3,
PBEWithSHA1AndDESede,
PBEWithSHA1AndRC2_40,
PBEWithSHA1AndRC2_128,
PBEWithSHA1AndRC4_40,
PBEWithSHA1AndRC4_128,
PBEWithHmacSHA1AndAES_128,
PBEWithHmacSHA224AndAES_128,
PBEWithHmacSHA256AndAES_128,
PBEWithHmacSHA384AndAES_128,
PBEWithHmacSHA512AndAES_128,
PBEWithHmacSHA1AndAES_256,
PBEWithHmacSHA224AndAES_256,
PBEWithHmacSHA256AndAES_256,
PBEWithHmacSHA384AndAES_256,
PBEWithHmacSHA512AndAES_256

CBC PKCS5Padding

RSA ECB NoPadding, PKCS1Padding,
OAEPPadding,
OAEPWithMD5AndMGF1Padding,
OAEPWithSHA‑1AndMGF1Padding,
OAEPWithSHA‑1AndMGF1Padding,
OAEPWithSHA‑224AndMGF1Padding,
OAEPWithSHA‑256AndMGF1Padding,
OAEPWithSHA‑384AndMGF1Padding,
OAEPWithSHA‑512AndMGF1Padding,
OAEPWithSHA‑512/224AndMGF1Paddi
ng,
OAEPWithSHA‑512/256AndMGF1Paddi
ng

1 CFB/OFB with no specified value defaults to the block size of the algorithm. (i.e. AES is 128; Blowfish, DES, DESede, and RC2 are 64.)
2 Though the standard doesn't specify or require the padding bytes to be random, the Java SE ISO10126Padding implementation pads with

random bytes (until the last byte, which provides the length of padding, as specified).
3 PBEWithMD5AndTripleDES is a proprietary algorithm that has not been standardized.

Keysize Restrictions

The SunJCE provider uses the following default key sizes (in bits) and enforces the following
restrictions:

KeyGenerator

Table 4-17 The SunJCE Provider Key Size Restrictions

Algorithm Name Default Key size Restrictions/Comments

AES 256 if permitted by the
cryptographic policy (see Import
Limits on Cryptographic
Algorithms), 128 otherwise

Key size must be equal to 128,
192, or 256.

ARCFOUR (RC4) 128 Key size must range between 40
and 1024 (inclusive).

Chapter 4
The SunJCE Provider

4-20

Table 4-17 (Cont.) The SunJCE Provider Key Size Restrictions

Algorithm Name Default Key size Restrictions/Comments

Blowfish 128 Key size must be a multiple of 8,
ranging from 32 to 448
(inclusive).

ChaCha20 256 Key size must be equal to 256.

DES 56 Key size must be equal to 56.

DESede (Triple DES) 168 Key size must be equal to 112 or
168.

A key size of 112 will generate a
Triple DES key with 2
intermediate keys, and a key size
of 168 will generate a Triple DES
key with 3 intermediate keys.

Due to the "Meet-In-The-Middle"
problem, even though 112 or 168
bits of key material are used, the
effective key size is 80 or 112
bits respectively.

HmacMD5 512 No key size restriction.

HmacSHA1 512 No key size restriction.

HmacSHA224 224 No key size restriction.

HmacSHA256 256 No key size restriction.

HmacSHA384 384 No key size restriction.

HmacSHA512 512 No key size restriction.

RC2 128 Key size must range between 40
and 1024 (inclusive).

Note:

The various Password-Based Encryption (PBE) algorithms use various algorithms to
generate key data, and ultimately depends on the targeted Cipher algorithm. For
example, PBEWithMD5AndDES will always generate 56–bit keys.

Table 4-18 KeyPairGenerator

Algorithm Name Default Key size Restrictions/Comments

Diffie-Hellman (DH) 3072 Key size must be a multiple of 64,
ranging from 512 to 1024, plus
1536, 2048, 3072, 4096, 6144,
8192.

Chapter 4
The SunJCE Provider

4-21

Table 4-19 AlgorithmParameterGenerator

Algorithm Name Default Key size Restrictions/Comments

Diffie-Hellman (DH) 3072 Key size must be a multiple of 64,
ranging from 512 to 1024, plus
2048 and 3072.

The SunJGSS Provider

Algorithms

The following algorithms are available in the SunJGSS provider:

Table 4-20 SunJGSS Provider Algorithm Names

OID Name

1.2.840.113554.1.2.2 Kerberos v5

1.3.6.1.5.5.2 SPNEGO

The SunSASL Provider
Algorithms

The following algorithms are available in the SunSASL provider:

Table 4-21 SunSASL Provider Algorithm Names for Engine Classes

Engine Algorithm Names

SaslClient CRAM-MD5

DIGEST-MD5

EXTERNAL

NTLM

PLAIN

SaslServer CRAM-MD5

DIGEST-MD5

NTLM

The XMLDSig Provider
Algorithms

The following algorithms are available in the XMLDSig provider:

Chapter 4
The SunJGSS Provider

4-22

Table 4-22 XMLDSig Provider Algorithm Names for Engine Classes

Engine Algorithm Names

KeyInfoFactory DOM

TransformService • http://www.w3.org/TR/2001/REC-xml-c14n-20010315
– CanonicalizationMethod.INCLUSIVE

• http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
– CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS

• http://www.w3.org/2001/10/xml-exc-c14n#
– CanonicalizationMethod.EXCLUSIVE

• http://www.w3.org/2001/10/xml-exc-c14n#WithComments
– CanonicalizationMethod.EXCLUSIVE_WITH_COMMENTS

• http://www.w3.org/2000/09/xmldsig#base64
– Transform.BASE64

• http://www.w3.org/2000/09/xmldsig#enveloped-signature
– Transform.ENVELOPED

• http://www.w3.org/TR/1999/REC-xpath-19991116
– Transform.XPATH

• http://www.w3.org/2002/06/xmldsig-filter2
– Transform.XPATH2

• http://www.w3.org/TR/1999/REC-xslt-19991116
– Transform.XSLT

XMLSignatureFactory DOM

The SunPCSC Provider
The SunPCSC provider enables applications to use the Java Smart Card I/O API to interact
with the PC/SC Smart Card stack of the underlying operating system. Consult your operating
system documentation for details.

On Linux, SunPCSC accesses the PC/SC stack via the libpcsclite.so library. It looks for this
library in the directories /usr/$LIBISA and /usr/local/$LIBISA, where $LIBISA is expanded
to lib64 on 64-bit Linux. The system property sun.security.smartcardio.library may also
be set to the full filename of an alternate libpcsclite.so implementation. On Windows,
SunPCSC always calls into winscard.dll and no Java-level configuration is necessary or
possible.

If PC/SC is available on the host platform, the SunPCSC implementation can be obtained via
TerminalFactory.getDefault() and TerminalFactory.getInstance("PC/SC"). If PC/SC is
not available or not correctly configured, a getInstance() call will fail with a
NoSuchAlgorithmException and getDefault() will return a JDK built-in implementation that
does not support any terminals.

Algorithms

The following algorithms are available in the SunPCSC provider:

Table 4-23 The SunPCSC Provider Algorithm Names for Engine Classes

Engine Algorithm Names

TerminalFactory PC/SC

Chapter 4
The SunPCSC Provider

4-23

https://docs.oracle.com/en/java/javase/11/docs/api/java.smartcardio/javax/smartcardio/package-summary.html

The SunMSCAPI Provider
The SunMSCAPI provider enables applications to use the standard JCA/JCE APIs to access the
native cryptographic libraries, certificates stores and key containers on Windows. The
SunMSCAPI provider itself does not contain cryptographic functionality, it is simply a conduit
between the Java environment and the native cryptographic services on Windows.

Algorithms

The following algorithms are available in the SunMSCAPI provider:

Table 4-24 The SunMSCAPI Algorithm Names for Engine Classes

Engine Algorithm Names

Cipher RSA RSA/ECB/PKCS1Padding only

KeyPairGenerator RSA

KeyStore Windows-MY-CURRENTUSER (also known as
Windows-MY): The keystore type that identifies
the native Microsoft Windows MY keystore. It
contains the user's personal certificates and
associated private keys that are only accessible to
the current user account.

Windows-ROOT-CURRENTUSER (also known as
Windows-ROOT): The keystore type that identifies
the native Microsoft Windows ROOT keystore. It
contains the certificates of Root certificate
authorities and other self-signed trusted certificates
that are only accessible to the current user
account.

Windows-MY-LOCALMACHINE: The keystore
type that identifies the native Microsoft Windows
MY keystore. It contains certificates and associated
private keys that are accessible to all accounts on
the system.

Windows-ROOT-LOCALMACHINE: The keystore
type that identifies the native Microsoft Windows
ROOT keystore. It contains the certificates of Root
certificate authorities and other self-signed trusted
certificates that are accessible to all accounts on
the system.

SecureRandom Windows-PRNG : The name of the native pseudo-
random number generation (PRNG) algorithm.

Chapter 4
The SunMSCAPI Provider

4-24

Table 4-24 (Cont.) The SunMSCAPI Algorithm Names for Engine Classes

Engine Algorithm Names

Signature MD5withRSA

MD2withRSA

NONEwithRSA

SHA1withRSA

SHA256withRSA

SHA384withRSA

SHA512withRSA

RSASSA-PSS

SHA1withECDSA

SHA224withECDSA

SHA256withECDSA

SHA384withECDSA

SHA512withECDSA

Keysize Restrictions

The SunMSCAPI provider uses the following default keysizes (in bits) and enforce the
following restrictions:

KeyGenerator

Table 4-25 The SunMSCAPI Provider Keysize Restrictions

Alg. Name Default Keysize Restrictions/Comments

RSA 2048 Keysize ranges from 512 bits to
16,384 bits (depending on the
underlying Microsoft Windows
cryptographic service provider).

The SunEC Provider
The SunEC provider implements Elliptical Curve Cryptography (ECC). Compared to traditional
cryptosystems such as RSA, ECC offers equivalent security with smaller key sizes, which
results in faster computations, lower power consumption, and memory and bandwidth savings.
Applications can use the standard JCA/JCE APIs to access ECC functionality without the
dependency on external ECC libraries (through SunPKCS11).

Algorithms

The following algorithms are available in the SunEC provider:

Table 4-26 The SunEC Provider Names for Engine Classes

Engine Algorithm Name(s)

AlgorithmParameters EC

KeyAgreement ECDH, X25519, X448, XDH

Chapter 4
The SunEC Provider

4-25

Table 4-26 (Cont.) The SunEC Provider Names for Engine Classes

Engine Algorithm Name(s)

KeyFactory EC

Ed25519

Ed448

EdDSA

X25519

X448

XDH

KeyPairGenerator EC

Ed25519

Ed448

EdDSA

X25519

X448

XDH

Signature Ed25519

Ed448

EdDSA

NONEwithECDSA

SHA1withECDSA

SHA224withECDSA

SHA256withECDSA

SHA384withECDSA

SHA512withECDSA

NONEwithECDSAinP1363Format

SHA1withECDSAinP1363Format

SHA224withECDSAinP1363Format

SHA256withECDSAinP1363Format

SHA384withECDSAinP1363Format

SHA512withECDSAinP1363Format

SHA3-224withECDSA

SHA3-256withECDSA

SHA3-384withECDSA

SHA3-512withECDSA

SHA3-224withECDSAinP1363Format

SHA3-256withECDSAinP1363Format

SHA3-384withECDSAinP1363Format

SHA3-512withECDSAinP1363Format

Chapter 4
The SunEC Provider

4-26

Note:

• The EdDSA algorithm can be initialized with either Ed25519 or Ed448
parameters and keys. If you initialize the EdDSA algorithm without any
parameters or keys, then by default it uses Ed25519 parameters and keys.

– All EdDSA variants — pure, prehashed, and context — are supported.

• The XDH algorithm can be initialized with either X25519 or X448 parameters and
keys.

Keysize Restrictions

The SunEC provider uses the following default keysizes (in bits) and enforces the following
restrictions:

Table 4-27 The SunEC Provider Keysize Restrictions

KeyPairGenerator Algorithm
Name

Default Keysize Restrictions/Comments

EC 256 Keysize must be 256, 384, or 521

Ed25519 255 Keysize must be 255

Ed448 448 Keysize must be 448

EdDSA 255 Keysize must be 255 or 448

X25519 255 Keysize must be 255

X448 448 Keysize must be 448

XDH 255 Keysize must be 255 or 448

Supported Elliptic Curve Names

The SunEC provider includes implementations of various elliptic curves for use with the EC,
Elliptic-Curve Diffie-Hellman (ECDH), and Elliptic Curve Digital Signature Algorithm (ECDSA)
algorithms. Some of these curves have been implemented using modern formulas and
techniques that are valuable for preventing side-channel attacks. The others are legacy curves
that might be more vulnerable to attacks and should not be used. The following tables list the
curves that fall into each of these categories.

In the following tables, the first column, Curve Name, lists the name that SunEC implements.
The second column, Object Identifier, specifies the EC name's object identifier. The third
column, Additional Names/Aliases, specifies any additional names or aliases for that curve. (A
value of N/A means that there are no additional names.) All strings that appear in one row refer
to the same curve. For example, the strings secp256r1, 1.2.840.10045.3.1.7, NIST P-256,
and X9.62 prime256v1 refer to the same curve. You can use the curve names to create
parameter specifications for EC parameter generation with the ECGenParameterSpec class
or the NamedParameterSpec class.

Recommended Curves

The following table lists the elliptic curves that are provided by the SunEC provider and are
implemented using modern formulas and techniques.

Chapter 4
The SunEC Provider

4-27

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECGenParameterSpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/NamedParameterSpec.html

Table 4-28 Recommended Curves Provided by the SunEC Provider

Curve Name Object Identifier Additional Names/Aliases

Ed25519 1.3.101.112 N/A

Ed448 1.3.101.113 N/A

secp256r1 1.2.840.10045.3.1.7 NIST P-256, X9.62 prime256v1

secp384r1 1.3.132.0.34 NIST P-384

secp521r1 1.3.132.0.35 NIST P-521

X25519 1.3.101.110 N/A

X448 1.3.101.111 N/A

Object Identifiers Associated with ECDSA Signatures

The following table lists object identifiers (OIDs) associated with ECDSA Signatures:

Table 4-29 OIDs associated with ECDSA Signatures

ECDSA Signature OID

SHA1withECDSA 1.2.840.10045.4.1

SHA224withECDSA 1.2.840.10045.4.3.1

SHA256withECDSA 1.2.840.10045.4.3.2

SHA384withECDSA 1.2.840.10045.4.3.3

SHA512withECDSA 1.2.840.10045.4.3.4

SHA3-224withECDSA 2.16.840.1.101.3.4.3.9

SHA3-256withECDSA 2.16.840.1.101.3.4.3.10

SHA3-384withECDSA 2.16.840.1.101.3.4.3.11

SHA3-512withECDSA 2.16.840.1.101.3.4.3.12

The Apple Provider
The Apple provider implements a java.security.KeyStore that provides access to the
macOS Keychain.

Algorithms

The following algorithms are available in the Apple provider:

Table 4-30 The Apple Provider Algorithm Name for Engine Classes

Engine Algorithm Name(s)

KeyStore KeychainStore

Chapter 4
The Apple Provider

4-28

The JdkLDAP Provider
The JdkLDAP provider replaces the LDAP CertStore implementation in the SUN provider.

Algorithms

The following algorithms are available in the JdkLDAP provider:

Table 4-31 The JdkLDAP Provider Algorithm Names for Engine Classes

Engine Algorithm Names

CertStore LDAP

The JdkSASL Provider
Algorithms

The following algorithms are available in the JdkSASL provider:

Table 4-32 The JdkSASL Provider Algorithm Names for Engine Classes

Engine Algorithm Names

SaslClient GSSAPI

SaslServer GSSAPI

Chapter 4
The JdkLDAP Provider

4-29

5
PKCS#11 Reference Guide

The Java platform defines a set of programming interfaces for performing cryptographic
operations. These interfaces are collectively known as the Java Cryptography Architecture
(JCA) and the Java Cryptography Extension (JCE). See Java Cryptography Architecture (JCA)
Reference Guide.

The cryptographic interfaces are provider-based. Specifically, applications talk to Application
Programming Interfaces (APIs), and the actual cryptographic operations are performed in
configured providers which adhere to a set of Service Provider Interfaces (SPIs). This
architecture supports different provider implementations. Some providers may perform
cryptographic operations in software; others may perform the operations on a hardware token
(for example, on a smartcard device or on a hardware cryptographic accelerator).

The Cryptographic Token Interface Standard, PKCS#11, is produced by RSA Security and
defines native programming interfaces to cryptographic tokens, such as hardware
cryptographic accelerators and smartcards. Existing applications that use the JCA and JCE
APIs can access native PKCS#11 tokens with the PKCS#11 provider. No modifications to the
application are required. The only requirement is to properly configure the provider.

Although an application can make use of most PKCS#11 features using existing APIs, some
applications might need more flexibility and capabilities. For example, an application might
want to deal with smartcards being removed and inserted dynamically more easily. Or, a
PKCS#11 token might require authentication for some non-key-related operations and
therefore, the application must be able to log into the token without using keystore. The JCA
gives applications greater flexibility in dealing with different providers.

This document describes how native PKCS#11 tokens can be configured into the Java platform
for use by Java applications. It also describes how the JCA makes it easier for applications to
deal with different types of providers, including PKCS#11 providers.

SunPKCS11 Provider
The SunPKCS11 provider, in contrast to most other providers, does not implement
cryptographic algorithms itself. Instead, it acts as a bridge between the Java JCA and JCE
APIs and the native PKCS#11 cryptographic API, translating the calls and conventions
between the two.

This means that Java applications calling standard JCA and JCE APIs can, without
modification, take advantage of algorithms offered by the underlying PKCS#11
implementations, such as, for example,

• Cryptographic smartcards,

• Hardware cryptographic accelerators, and

• High performance software implementations.

5-1

Note:

Java SE only facilitates accessing native PKCS#11 implementations, it does not itself
include a native PKCS#11 implementation. However, cryptographic devices such as
Smartcards and hardware accelerators often come with software that includes a
PKCS#11 implementation, which you need to install and configure according to
manufacturer's instructions.

SunPKCS11 Requirements
The SunPKCS11 provider requires an implementation of PKCS#11 v2.20 or later to be installed
on the system. This implementation must take the form of a shared-object library (.so on
Linux) or dynamic-link library (.dll on Windows or .dylib on macOS). Consult your vendor
documentation to find out if your cryptographic device includes such a PKCS#11
implementation, how to configure it, and what the name of the library file is.

The SunPKCS11 provider supports a number of algorithms, provided that the underlying
PKCS#11 implementation offers them. The algorithms and their corresponding PKCS#11
mechanisms are listed in the table in SunPKCS11 Provider Supported Algorithms.

SunPKCS11 Configuration
The SunPKCS11 provider is in the module jdk.crypto.cryptoki. To use the provider, you
must first install it statically or programmatically.

To install the provider statically, add the provider to the Java security properties file (java-
home/conf/security/java.security).

Note:

Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the changes
are properly reflected.

For example, here's a fragment of the java.security file that installs the SunPKCS11 provider
with the configuration file /opt/bar/cfg/pkcs11.cfg.

configuration for security providers 1-12 omitted
security.provider.13=SunPKCS11 /opt/bar/cfg/pkcs11.cfg

To install the provider dynamically, create an instance of the provider with the appropriate
configuration filename and then install it. Here is an example.

 String configName = "/opt/bar/cfg/pkcs11.cfg";
 Provider p = Security.getProvider("SunPKCS11");
 p = p.configure(configName);
 Security.addProvider(p);

Chapter 5
SunPKCS11 Requirements

5-2

Note:

Save the returned Provider object from the configure method, then add that
object, as demonstrated in this example:

 p = p.configure(configName);
 Security.addProvider(p);

Don't add the provider from which you called the configure method:

 p.configure(configName);
 Security.addProvider(p);

If this provider cannot be configured in-place, then a new provider is created and
returned. Therefore, always use the provider returned from the configure method.

To use more than one slot per PKCS#11 implementation, or to use more than one PKCS#11
implementation, simply repeat the installation for each with the appropriate configuration file.
This will result in a SunPKCS11 provider instance for each slot of each PKCS#11
implementation.

The configuration file is a text file that contains entries in the following format:

attribute=value
The valid values for attribute and value are described in the table in this section:

The two mandatory attributes are name and library.
Here is a sample configuration file:

name = FooAccelerator
library = /opt/foo/lib/libpkcs11.so

Comments are denoted by lines starting with the # (number) symbol.

Table 5-1 Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

allowSingleThreadedModules Boolean value, default: true If true, allows modules that only
support single threaded access.
Single threaded modules cannot
be used safely from multiple
PKCS#11 consumers in the same
process, for example, when using
Network Security Services (NSS)
with SunPKCS11.

attributes See Attributes Configuration Specifies additional PKCS#11
attributes that should be set when
creating PKCS#11 key objects.
This makes it possible to
accommodate tokens that require
particular attributes.

Chapter 5
SunPKCS11 Configuration

5-3

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

cleaner.longInterval Integer in milliseconds, default
60000. The value must be
greater than 1000 ms.

Specifies how often, in
milliseconds. the cleaner thread
should check for native
references during non-busy
periods, that is, the frequency
that the cleaner thread checks
the queue for native references.

No

te:

The
clea
ner
thre
ad
will
swit
ch
to
the
cle
ane
r.s
hor
tIn
ter
val
freq
uen
cy if
nati
ve
PK
CS1
1
refe
renc
es
for
clea
ning
are
dete
cted
.

Chapter 5
SunPKCS11 Configuration

5-4

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

cleaner.shortInterval Integer in milliseconds, default:
2000. The value must be greater
than 1000 ms.

Specifies how often, in
milliseconds, native reference
clearing should be performed
during busy periods, that is, the
frequency that the cleaner thread
processes no-longer-needed
native references in the queue to
free up native memory.

No

te:

The
clea
ner
thre
ad
will
swit
ch
to
the
cle
ane
r.l
ong
Int
erv
al
freq
uen
cy
afte
r
200
faile
d
tries
,
that
is,
whe
n no
refe
renc
es
are
foun
d in
the
que
ue.

Chapter 5
SunPKCS11 Configuration

5-5

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

description Description of this provider
instance

Specifies the string that the
provider instance's
Provider.getInfo() method
returns. If no string is specified,
then a default description is
returned.

Chapter 5
SunPKCS11 Configuration

5-6

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

destroyTokenAfterLogout Boolean value, default: false If true, then when
java.security.AuthProv
ider.logout() is called from
the SunPKCS11 provider
instance, the underlying token
object will be destroyed and
resources will be freed. This
essentially renders the
SunPKCS11 provider instance
unusable after logout() calls.

No

te:

You
sho
uld
not
add
a
Sun
PK
CS1
1
prov
ider
with
this
attri
bute
set
to
tr
ue
to
the
syst
em
prov
ider
list
bec
aus
e
the
prov
ider
obje
ct is
not
use
able

Chapter 5
SunPKCS11 Configuration

5-7

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

afte
r
lo
go
u
t(
) is
call
ed.

disabledMechanisms Brace enclosed, whitespace-
separated list of PKCS#11
mechanisms to disable

Specifies the list of PKCS#11
mechanisms that this provider
instance should ignore. The
provider ignores any mechanism
listed, even if they are supported
by the token and the SunPKCS11
provider. Specify the strings
SecureRandom and KeyStore to
disable those services.
At most, you can specify one of
enabledMechanisms or
disabledMechanisms. If you
specify neither, then the
mechanisms enabled are those
that are supported by both the
SunPKCS11 provider (see
SunPKCS11 Provider Supported
Algorithms) and the PKCS#11
token.

Chapter 5
SunPKCS11 Configuration

5-8

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

enabledMechanisms Brace enclosed, whitespace-
separated list of PKCS#11
mechanisms to enable

Specifies the list PKCS#11
mechanisms that this provider
instance should use, provided
that they are supported by both
the SunPKCS11 provider and
PKCS#11 token. All other
mechanisms are ignored. Each
entry in the list is the name of a
PKCS#11 mechanism. Here is an
example that lists two PKCS#11
mechanisms.

enabledMechanisms = {
 CKM_RSA_PKCS

CKM_RSA_PKCS_KEY_PAIR_GE
N
}

At most, you can specify one of
enabledMechanisms or
disabledMechanisms. If you
specify neither, then the
mechanisms enabled are those
that are supported by both the
SunPKCS11 provider (see
SunPKCS11 Provider Supported
Algorithms) and the PKCS#11
token.

explicitCancel Boolean value, default: true If true, indicates that you must
explicitly cancel operations.

functionList Name of C function that returns
the PKCS#11 function list,
default: C_GetFunctionList

This option primarily exists for the
deprecated
Secmod.Module.getProvi
der() method.

handleStartupErrors Possible values: ignoreAll,
ignoreMissingLibrart, or
halt; default: halt

Describes how to handle errors
during startup.

insertionCheckInterval Integer in milliseconds, default
2000. The value must be greater
than 100 ms.

Specifies how often to test for
token insertion, in milliseconds, if
no token is present.

keyStoreCompatibilityMode Boolean value, default: true If true, indicates that
P11Keystore is more tolerant of
input parameters.

Chapter 5
SunPKCS11 Configuration

5-9

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

library Pathname of PKCS#11
implementation

Specifies the the full pathname
(including extension) of the
PKCS#11 implementation; the
format of the pathname is
platform dependent. For
example, /opt/foo/lib/
libpkcs11.so might be the
pathname of a PKCS#11
implementation on Linux while
C:\foo\mypkcs11.dll
might be the pathname on
Windows or /opt/
local/lib/
libpkcs11.dylib on
macOS.

Note:

• To configure Mozilla Network
Security Services (NSS) as
the PKCS#11
implementation, then set this
attribute to the full pathname
of the NSS softokn3 library.

• Depending on your platform,
you may have to set the
environment variable
LD_LIBRARY_PATH (Linux),
PATH (Windows), or
DYLD_LIBRARY_PATH
(macOS) to include the
enclosing directory to enable
the operating system to
locate the dependent
libraries.

name Name suffix of this provider
instance

Specifies the string, which is
concatenated with the prefix
SunPKCS11- to produce this
provider instance's name (that is,
the string returned by its
Provider.getName() method).
For example, if the name attribute
is "FooAccelerator", then the
provider instance's name will be
"SunPKCS11-
FooAccelerator".

nssArgs Quoted string Specifies a special initialization
argument string for the NSS soft
token. This is used when using
the NSS soft token directly
without secmod mode.

nssDbMode See Table 5-2 See Table 5-2

nssLibraryDirectory See Table 5-2 See Table 5-2

nssModule See Table 5-2 See Table 5-2

Chapter 5
SunPKCS11 Configuration

5-10

Table 5-1 (Cont.) Attributes in the PKCS#11 Provider Configuration File

Attribute Value Description

nssNetscapeDbWorkaround See Table 5-2 See Table 5-2

nssOptimizeSpace See Table 5-2 See Table 5-2

nssSecmodDirectory See Table 5-2 See Table 5-2

nssUseSecmod See Table 5-2 See Table 5-2

omitInitialize Boolean value, default: false If true, then omit the call to the
C_Initialize() function.
Use only if the PKCS#11
implementation has been
initialized earlier with a
C_Initialize() call.

showInfo Boolean value, default: false If true, then display provider
information during start up.
Provider information includes the
provider's name and supported
PKCS#11 mechanisms.

slot Slot ID Specifies the ID of the slot that
this provider instance is to be
associated with. For example, you
would use 1 for the slot with the
id 1 under PKCS#11. At most
one of slot or slotListIndex
may be specified. If neither is
specified, the default is a
slotListIndex of 0.

slotListIndex Slot index Specifies the slot index that this
provider instance is to be
associated with. It is the index
into the list of all slots returned by
the PKCS#11 function
C_GetSlotList. For example, 0
indicates the first slot in the list.
At most one of slot or
slotListIndex may be
specified. If neither is specified,
the default is a slotListIndex
of 0.

useEcX963Encoding Boolean value, default: false Indicates that the X9.63 encoding
for EC points is used (true) or
that the encoding is wrapped in
an ASN.1 OctetString (false).

Attributes Configuration

The attributes option allows you to specify additional PKCS#11 attributes that should be set
when creating PKCS#11 key objects. By default, the SunPKCS11 provider only specifies
mandatory PKCS#11 attributes when creating objects. For example, for RSA public keys it
specifies the key type and algorithm (CKA_CLASS and CKA_KEY_TYPE) and the key values
for RSA public keys (CKA_MODULUS and CKA_PUBLIC_EXPONENT). The PKCS#11 library
you are using will assign implementation specific default values to the other attributes of an
RSA public key, for example that the key can be used to encrypt and verify messages
(CKA_ENCRYPT and CKA_VERIFY = true).

Chapter 5
SunPKCS11 Configuration

5-11

The attributes option can be used if you do not like the default values your PKCS#11
implementation assigns or if your PKCS#11 implementation does not support defaults and
requires a value to be specified explicitly. Note that specifying attributes that your PKCS#11
implementation does not support or that are invalid for the type of key in question may cause
the operation to fail at runtime.

The option can be specified zero or more times. The options are processed in the order
specified in the configuration file. The attributes option has the format:

attributes(operation, keytype, keyalgorithm) = {
 name1 = value1
 [...]
}

Valid values for operation are:

• generate, for keys generated via a KeyPairGenerator or KeyGenerator
• import, for keys created via a KeyFactory or SecretKeyFactory. This also applies to

Java software keys automatically converted to PKCS#11 key objects when they are
passed to the initialization method of a cryptographic operation, for example
Signature.initSign().

• *, for keys created using either a generate or a create operation.

Valid values for keytype are CKO_PUBLIC_KEY, CKO_PRIVATE_KEY, and CKO_SECRET_KEY, for
public, private, and secret keys, respectively, and * to match any type of key.

Valid values for keyalgorithm are one of the CKK_xxx constants from the PKCS#11
specification, or * to match keys of any algorithm. See SunPKCS11 Provider Supported
Algorithms.

The attribute names and values are specified as a list of one or more name-value pairs. name
must be a CKA_xxx constant from the PKCS#11 specification, for example CKA_SENSITIVE.
value can be one of the following:

• A boolean value, true or false
• An integer, in decimal form (default) or in hexadecimal form if it begins with 0x.

• null, indicating that this attribute should not be specified when creating objects.

If the attributes option is specified multiple times, the entries are processed in the order
specified with the attributes aggregated and later attributes overriding earlier ones. For
example, consider the following configuration file excerpt:

attributes(*,CKO_PRIVATE_KEY,*) = {
 CKA_SIGN = true
}

attributes(*,CKO_PRIVATE_KEY,CKK_DH) = {
 CKA_SIGN = null
}

attributes(*,CKO_PRIVATE_KEY,CKK_RSA) = {
 CKA_DECRYPT = true
}

Chapter 5
SunPKCS11 Configuration

5-12

The first entry says to specify CKA_SIGN = true for all private keys. The second option
overrides that with null for Diffie-Hellman private keys, so the CKA_SIGN attribute will not
specified for them at all. Finally, the third option says to also specify CKA_DECRYPT = true for
RSA private keys. That means RSA private keys will have both CKA_SIGN = true and
CKA_DECRYPT = true set.

There is also a special form of the attributes option. You can write attributes =
compatibility in the configuration file. That is a shortcut for a whole set of attribute
statements. They are designed to provider maximum compatibility with existing Java
applications, which may expect, for example, all key components to be accessible and secret
keys to be usable for both encryption and decryption. The compatibility attributes line can be
used together with other attributes lines, in which case the same aggregation and overriding
rules apply as described earlier.

Accessing Network Security Services (NSS)
Network Security Services (NSS) is a set of open source security libraries whose crypto APIs
are based on PKCS#11 but it includes special features that are outside of the PKCS#11
standard. The SunPKCS11 provider includes code to interact with these NSS specific features,
including several NSS specific configuration directives.

For best results, we recommend that you use the latest version of NSS available. It should be
at least version 3.12.

The SunPKCS11 provider uses NSS specific code when any of the nss configuration directives
described in Table 5-2 are used. In that case, the regular configuration commands library,
slot, and slotListIndex cannot be used.

Table 5-2 NSS Attributes and Values

Attribute Value Description

nssDbMode One of readWrite, readOnly,
and noDb, default: readWrite

This directives determines how
the NSS database is accessed. In
read-write mode, full access is
possible but only one process at
a time should be accessing the
databases. Read-only mode
disallows modifications to the
files.
The noDb mode allows NSS to
be used without database files
purely as a cryptographic
provider. It is not possible to
create persistent keys using the
PKCS11 KeyStore.

Chapter 5
Accessing Network Security Services (NSS)

5-13

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

Table 5-2 (Cont.) NSS Attributes and Values

Attribute Value Description

nssLibraryDirectory Directory containing the NSS and
Netscape Portable Runtime
(NSPR) libraries (which includes
libnss3.so)

This is the full path name of the
directory containing the NSS and
NSPR libraries. It must be
specified unless NSS has already
been loaded and initialized by
another component running in the
same process as the Java VM.

If this value is set, then
nssUseSecmod is set to true.

Note: Depending on your
platform, you may have to set the
environment variable
LD_LIBRARY_PATH (Linux), PATH
(Windows), or
DYLD_LIBRARY_PATH (macOS)
to include this directory to enable
the operating system to locate the
dependent libraries.

nssModule One of keystore, crypto, fips,
and trustanchors

NSS makes its functionality
available using several different
libraries and slots. This directive
determines which of these
modules is accessed by this
instance of SunPKCS11.

The crypto module is the default
in noDb mode. It supports crypto
operations without login but no
persistent keys.

The fips module is the default if
the NSS secmod.db has been
set to FIPS-140 compliant mode.
In this mode, NSS restricts the
available algorithms and the
PKCS#11 attributes with which
keys can be created.

The keystore module is the
default in other configurations. It
supports persistent keys using
the PKCS11 KeyStore, which are
stored in the NSS DB files. This
module requires login.

The trustanchors module
enables access to NSS trust
anchor certificates via the
PKCS11 KeyStore, if secmod.db
has been configured to include
the trust anchor library.

If this value is set, then
nssUseSecmod is set to true.

Chapter 5
Accessing Network Security Services (NSS)

5-14

Table 5-2 (Cont.) NSS Attributes and Values

Attribute Value Description

nssNetscapeDbWorkaround Boolean value, default: true If true, then the P11KeyStore
specifies the CKA_NETSCAPE_DB
attribute when creating private
keys. This setting is only valid if
nssUseSecmod is true

nssOptimizeSpace Boolean value, default: false Indicates that NSS favors
performance (if false) or
memory footprint (if true).

nssSecmodDirectory The full path name of the
directory containing the NSS
configuration and key information
(secmod.db, key3.db, and
cert8.db)

This directive must be specified
unless NSS has already been
initialized by another component
(see nssLibraryDirectory) or
NSS is used without database
files (see nssDbMode, noDb
mode).

If this value is set, then
nssUseSecmod is set to true.

nssUseSecmod Boolean value If true, then NSS secmod mode is
used. It's implicitly set to true if
nssLibraryDirectory,
nssSecmodDirectory, or
nssModule is specified.

Example 5-1 SunPKCS11 Configuration Files for NSS

NSS as a pure cryptography provider

name = NSScrypto
nssLibraryDirectory = /opt/tests/nss/lib
nssDbMode = noDb
attributes = compatibility

NSS as a FIPS 140 compliant crypto token

name = NSSfips
nssLibraryDirectory = /opt/tests/nss/lib
nssSecmodDirectory = /opt/tests/nss/fipsdb
nssModule = fips

Troubleshooting PKCS#11
There could be issues with PKCS#11 which requires debugging. To show debug info about
Library, Slots, Token, and Mechanism, add showInfo=true in the SunPKCS11 provider
configuration file, which you specified statically or dynamically as described in SunPKCS11
Configuration.

For additional debugging info, users can start or restart the Java processes with one of the
following options:

Chapter 5
Troubleshooting PKCS#11

5-15

• For general SunPKCS11 provider debugging info:

-Djava.security.debug=sunpkcs11
• For PKCS#11 keystore specific debugging info:

-Djava.security.debug=pkcs11keystore

Disabling PKCS#11 Providers and/or Individual PKCS#11
Mechanisms

As part of the troubleshooting process, it could be helpful to temporarily disable a PKCS#11
provider or the specific mechanism of a given provider.

Please note that disabling a PKCS#11 provider, is only a temporary measure. By disabling the
PKCS#11 provider, the provider is no longer available which can cause applications to break or
have a performance impact. Once the issue has been identified, only that specific mechanism
should remain disabled.

Disabling PKCS#11 Providers

Follow these steps to disable a PKCS#11 provider for all Java processes run with a particular
Java installation:

1. Ensure that you have installed the PKCS#11 provider as described in SunPKCS11
Configuration. These steps assume the following:

• The name of your PKCS#11 provider is MyOwn.

• The name of your configuration file is java-home/conf/security/myown.cfg and
contains the following:

name = MyOwn
description = A PKCS11 provider accessing a specific PKCS11 binary
implementation
library = Pathname of MyOwn PKCS11 implementation

• You modified the Java security properties file (java-home/conf/security/
java.security) as follows:

#
List of providers and their preference orders:
#
security.provider.1=SUN
security.provider.2=SunRsaSign
security.provider.3=SunPKCS11 myOwn.cfg
security.provider.4=SunEC
security.provider.5=SunJSSE
...

2. To disable the MyOwn PKCS#11 provider statically for this Java installation, edit the Java
security properties file and comment out the line that registers your provider, then
renumber the preference order of the providers that follow it:

#
List of providers and their preference orders:
#

Chapter 5
Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms

5-16

security.provider.1=SUN
security.provider.2=SunRsaSign
#security.provider.3=SunPKCS11 myOwn.cfg
security.provider.3=SunEC
security.provider.4=SunJSSE
...

3. To disable the MyOwn PKCS#11 provider dynamically for this Java installation, call the
following in your application:

 Security.removeProvider("SunPKCS11-MyOwn");

Disabling Specific Mechanisms

When an issue occurs in one of the mechanisms of PKCS#11, it can be resolved by disabling
only that particular mechanism, rather than the entire PKCS#11 provider (do not forget to re-
enable the PKCS#11 provider if it was disabled earlier).

Note:

To disable the PKCS#11 SecureRandom implementation only, add SecureRandom
to the list of disabled mechanisms in the SunPKCS11 provider configuration file,
which you specified statically or dynamically as described in SunPKCS11
Configuration:

disabledMechanisms = {
 SecureRandom
}

Application Developers
Java applications can use the existing JCA and JCE APIs to access PKCS#11 tokens through
the SunPKCS11 provider.

Token Login
You can login to the keystore using a Personal Identification Number and perform PKCS#11
operations.

Certain PKCS#11 operations, such as accessing private keys, require a login using a Personal
Identification Number, or PIN, before the operations can proceed. The most common type of
operations that require login are those that deal with keys on the token. In a Java application,
such operations often involve first loading the keystore. When accessing the PKCS#11 token
as a keystore via the java.security.KeyStore class, you can supply the PIN in the password
input parameter to the load method. The PIN will then be used by the SunPKCS11 provider for
logging into the token. Here is an example.

 char[] pin = ...;
 KeyStore ks = KeyStore.getInstance("PKCS11");
 ks.load(null, pin);

Chapter 5
Application Developers

5-17

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.html#load(java.io.InputStream,char%5B%5D)

This is fine for an application that treats PKCS#11 tokens as static keystores. For an
application that wants to accommodate PKCS#11 tokens more dynamically, such as
smartcards being inserted and removed, you can use the new KeyStore.Builder class. Here
is an example of how to initialize the builder for a PKCS#11 keystore with a callback handler.

 KeyStore.CallbackHandlerProtection chp =
 new KeyStore.CallbackHandlerProtection(new MyGuiCallbackHandler());
 KeyStore.Builder builder =
 KeyStore.Builder.newInstance("PKCS11", null, chp);

For the SunPKCS11 provider, the callback handler must be able to satisfy a
PasswordCallback, which is used to prompt the user for the PIN. Whenever the application
needs access to the keystore, it uses the builder as follows.

 KeyStore ks = builder.getKeyStore();
 Key key = ks.getKey(alias, null);

The builder will prompt for a password as needed using the previously configured callback
handler. The builder will prompt for a password only for the initial access. If the user of the
application continues using the same Smartcard, the user will not be prompted again. If the
user removes and inserts a different smartcard, the builder will prompt for a password for the
new card.

Depending on the PKCS#11 token, there may be non-key-related operations that also require
token login. Applications that use such operations can use the
java.security.AuthProvider class. The AuthProvider class extends from
java.security.Provider and defines methods to perform login and logout operations on a
provider, as well as to set a callback handler for the provider to use.

For the SunPKCS11 provider, the callback handler must be able to satisfy a
PasswordCallback, which is used to prompt the user for the PIN.

Here is an example of how an application might use an AuthProvider to log into the token.
(Note that you must configure the SunPKCS11 provider before using it.)

 Provider p = Security.getProvider("SunPKCS11");
 AuthProvider aprov = (AuthProvider)p.configure(<provider configuration
file>);
 aprov.login(subject, new MyGuiCallbackHandler());

Token Keys
Java Key objects may or may not contain actual key material.

• A software Key object does contain the actual key material and allows access to that
material.

• An unextractable key on a secure token (such as a smartcard) is represented by a Java
Key object that does not contain the actual key material. The Key object only contains a
reference to the actual key.

Applications and providers must use the correct interfaces to represent these different types of
Key objects. Software Key objects (or any Key object that has access to the actual key
material) should implement the interfaces in the java.security.interfaces and
javax.crypto.interfaces packages (such as DSAPrivateKey). Key objects representing

Chapter 5
Application Developers

5-18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AuthProvider.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/package-summary.html

unextractable token keys should only implement the relevant generic interfaces in the
java.security and javax.crypto packages (PrivateKey, PublicKey, or SecretKey).
Identification of the algorithm of a key should be performed using the Key.getAlgorithm()
method.

Note that a Key object for an unextractable token key can only be used by the provider
associated with that token.

Delayed Provider Selection
Java cryptography getInstance() methods, such as Cipher.getInstance("AES"), return the
implementation from the first provider that implemented the requested algorithm. However, the
JDK delays the selection of the provider until the relevant initialization method is called. The
initialization method accepts a Key object and can determine at that point which provider can
accept the specified Key object. This ensures that the selected provider can use the specified
Key object. (If an application attempts to use a Key object for an unextractable token key with a
provider that only accepts software key objects, then the provider throws an
InvalidKeyException. This is an issue for the Cipher, KeyAgreement, Mac, and Signature
classes.) The following represents the affected initialization methods.

• Cipher.init(..., Key key, ...)
• KeyAgreement.init(Key key, ...)
• Mac.init(Key key, ...)
• Signature.initSign(PrivateKey privateKey)

Note:

Once the provider is selected, for example, after the first initialization call, the JDK
won't switch to a different provider for subsequent initialization calls. To reselect a
provider based on a specific Key object, call getInstance() to get a new instance,
and then call this instance's initialization method with the Key object instead of
reusing the older, already-initialized instance.

Although this delayed provider selection is hidden from the application, it does affect the
behavior of the getProvider() method for Cipher, KeyAgreement, Mac, and Signature. If
getProvider() is called before the initialization operation has occurred (and therefore before
provider selection has occurred), then the first provider that supports the requested algorithm is
returned. This may not be the same provider as the one selected after the initialization method
is called. If getProvider() is called after the initialization operation has occurred, then the
actual selected provider is returned. It is recommended that applications only call
getProvider() after they have called the relevant initialization method.

In addition to getProvider(), the following additional methods are similarly affected.

• Cipher.getBlockSize
• Cipher.getExcemptionMechanism
• Cipher.getIV
• Cipher.getOutputSize
• Cipher.getParameters

Chapter 5
Application Developers

5-19

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/KeyAgreement.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Mac.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Signature.html

• Mac.getMacLength
• Signature.getParameters
• Signature.setParameter

JAAS KeyStoreLoginModule

The JDK comes with a JAAS keystore login module, KeyStoreLoginModule, that allows an
application to authenticate using its identity in a specified keystore. After authentication, the
application would acquire its principal and credentials information (certificate and private key)
from the keystore. By using this login module and configuring it to use a PKCS#11 token as a
keystore, the application can acquire this information from a PKCS#11 token.

Use the following options to configure the KeyStoreLoginModule to use a PKCS#11 token as
the keystore.

• keyStoreURL="NONE"
• keyStoreType="PKCS11"
• keyStorePasswordURL=some_pin_url
where

some_pin_url
The location of the PIN. If the keyStorePasswordURL option is omitted, then the login module
will get the PIN via the application's callback handler, supplying it with a PasswordCallback .
Here is an example of a configuration file that uses a PKCS#11 token as a keystore.

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 keyStorePasswordURL="file:/home/joe/scpin";
};

If more than one SunPKCS11 provider has been configured dynamically or in the
java.security security properties file, you can use the keyStoreProvider option to target a
specific provider instance. The argument to this option is the name of the provider. For the
SunPKCS11 provider, the provider name is of the form SunPKCS11-TokenName, where
TokenName is the name suffix that the provider instance has been configured with, as detailed in
Table 5-1. For example, the following configuration file names the PKCS#11 provider instance
with name suffix SmartCard.

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 keyStorePasswordURL="file:/home/joe/scpin"
 keyStoreProvider="SunPKCS11-SmartCard";
};

Some PKCS#11 tokens support login via a protected authentication path. For example, a
smartcard may have a dedicated PIN-pad to enter the pin. Biometric devices will also have
their own means to obtain authentication information. If the PKCS#11 token has a protected

Chapter 5
Application Developers

5-20

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/KeyStoreLoginModule.html

authentication path, then use the protected=true option and omit the keyStorePasswordURL
option. Here is an example of a configuration file for such a token.

other {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreURL="NONE"
 keyStoreType="PKCS11"
 protected=true;
};

Tokens as JSSE Keystore and Trust Stores

To use PKCS#11 tokens as JSSE keystores or trust stores, the JSSE application can use the
APIs described in Token Login to instantiate a KeyStore that is backed by a PKCS#11 token
and pass it to its key manager and trust manager. The JSSE application will then have access
to the keys on the token.

JSSE also supports configuring the use of keystores and trust stores via system properties, as
described in the Java Secure Socket Extension (JSSE) Reference Guide. To use a PKCS#11
token as a keystore or trust store, set the javax.net.ssl.keyStoreType and
javax.net.ssl.trustStoreType system properties, respectively, to "PKCS11", and set the
javax.net.ssl.keyStore and javax.net.ssl.trustStore system properties, respectively, to
NONE. To specify the use of a specific provider instance, use the
javax.net.ssl.keyStoreProvider and javax.net.ssl.trustStoreProvider system
properties (for example, "SunPKCS11-SmartCard").

Using keytool and jarsigner with PKCS#11 Tokens
If the SunPKCS11 provider has been configured in the java.security security properties file
(located in the $JAVA_HOME/conf/security directory of the Java runtime), then keytool and
jarsigner can be used to operate on the PKCS#11 token by specifying the following options.

• -keystore NONE
• -storetype PKCS11
Here an example of a command to list the contents of the configured PKCS#11 token.

keytool -keystore NONE -storetype PKCS11 -list

The PIN can be specified using the -storepass option. If none has been specified, then
keytool and jarsigner will prompt for the token PIN. If the token has a protected
authentication path (such as a dedicated PIN-pad or a biometric reader), then the -protected
option must be specified, and no password options can be specified.

If more than one SunPKCS11 provider has been configured in the java.security security
properties file, you can use the -providerName option to target a specific provider instance.
The argument to this option is the name of the provider.

• -providerName providerName
For the SunPKCS11 provider, providerName is of the form SunPKCS11-TokenName where:

Chapter 5
Using keytool and jarsigner with PKCS#11 Tokens

5-21

TokenName
The name suffix that the provider instance has been configured with, as detailed in Table 5-1.
For example, the following command lists the contents of the PKCS#11 keystore provider
instance with name suffix SmartCard.

keytool -keystore NONE -storetype PKCS11 \
 -providerName SunPKCS11-SmartCard \
 -list

If the SunPKCS11 provider has not been configured in the java.security security properties
file, you can use the following options to instruct keytool and jarsigner to install the provider
dynamically.

• -providerClass sun.security.pkcs11.SunPKCS11
• -providerArg ConfigFilePath

ConfigFilePath
The path to the token configuration file. Here is an example of a command to list a PKCS#11
keystore when the SunPKCS11 provider has not been configured in the java.security file.

keytool -keystore NONE -storetype PKCS11 \
 -providerClass sun.security.pkcs11.SunPKCS11 \
 -providerArg /foo/bar/token.config \
 -list

Note:

Sometimes the hardware token is too small to store the certificates. You can use the
jarsigner tool's -certchain option to load them from an external file.

Signing JAR File with jdk.security.jarsigner API and PKCS#11 Token

To sign a JAR file with the jdk.security.jarsigner API and a PKCS#11 token as a
keystore, follow these steps:

1. Access the PKCS#11 token's keystore as described in Token Login:

 char[] pin = ...;
 KeyStore ks = KeyStore.getInstance("PKCS11");
 ks.load(null, pin);
 KeyStore ks = builder.getKeyStore();
 Key key = ks.getKey(alias, null);

2. Create a JarSigner object with the
JarSigner.Builder(Keystore.PrivateKeyEntry) constructor:

 JarSigner mySigner = JarSigner.Builder(key).build();

3. Sign the JAR file:

 try (ZipFile in = new ZipFile(inputFile);
 FileOutputStream out = new FileOutputStream(outputFile)) {

Chapter 5
Using keytool and jarsigner with PKCS#11 Tokens

5-22

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

 mySigner.sign(in, out);
 }

Keystore Entry Syntax in Policy File
The keystore entry in the default policy implementation has the following syntax, which
accommodates a PIN and multiple PKCS#11 provider instances:

keystore "some_keystore_url", "keystore_type", "keystore_provider";
keystorePasswordURL "some_password_url";

Where

keystore_provider
The keystore provider name (for example, "SunPKCS11-SmartCard").

some_password_url
A URL pointing to the location of the token PIN. Both keystore_provider and the
keystorePasswordURL line are optional. If keystore_provider has not been specified, then the
first configured provider that supports the specified keystore type is used. If the
keystorePasswordURL line has not been specified, then no password is used.

See Default Policy Implementation and Policy File Syntax.

Example 5-2 Keystore Policy Entry for a PKCS#11 Token

The following is an example keystore policy entry for a PKCS#11 token:

keystore "NONE", "PKCS11", "SunPKCS11-SmartCard";
keystorePasswordURL "file:/foo/bar/passwordFile";

Provider Developers
The java.security.Provider class enables provider developers to more easily support
PKCS#11 tokens and cryptographic services through provider services and parameter support.

See Example Provider for an example of a simple provider designed to demonstrate provider
services and parameter support.

Provider Services
For each service implemented by the provider, there must be a property whose name is the
type of service (Cipher, Signature, etc), followed by a period and the name of the algorithm to
which the service applies. The property value must specify the fully qualified name of the class
implementing the service. Here is an example of a provider setting
KeyAgreement.DiffieHellman property to have the value
com.sun.crypto.provider.DHKeyAgreement.

put("KeyAgreement.DiffieHellman", "com.sun.crypto.provider.DHKeyAgreement")

The public static nested class Provider.Service encapsulates the properties of a provider
service (including its type, attributes, algorithm name, and algorithm aliases). Providers can

Chapter 5
Keystore Entry Syntax in Policy File

5-23

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Provider.Service.html

instantiate Provider.Service objects and register them by calling the Provider.putService()
method. This is equivalent to creating a Property entry and calling the Provider.put()
method. Note that legacy Property entries registered via Provider.put are still supported.

Here is an example of a provider creating a Service object with the KeyAgreement type, for the
DiffieHellman algorithm, implemented by the class
com.sun.crypto.provider.DHKeyAgreement.

Service s = new Service(this, "KeyAgreement", "DiffieHellman",
 "com.sun.crypto.provider.DHKeyAgreement", null, null);
putService(s);

Using Provider.Service objects instead of legacy Property entries has a couple of major
benefits. One benefit is that it allows the provider to have greater flexibility when Instantiating
Engine Classes. Another benefit is that it allows the provider to test Parameter Support. These
features are discussed in detail next.

Instantiating Engine Classes

By default, the Java Cryptography framework looks up the provider property for a particular
service and directly instantiates the engine class registered for that property. A provider can to
override this behavior and instantiate the engine class for the requested service itself.

To override the default behavior, the provider overrides the Provider.Service.newInstance()
method to add its custom behavior. For example, the provider might call a custom constructor,
or might perform initialization using information not accessible outside the provider (or that are
only known by the provider).

Parameter Support

The Java Cryptography framework may attempt a fast check to determine whether a provider's
service implementation can use an application-specified parameter. To perform this fast check,
the framework calls Provider.Service.supportsParameter().

The framework relies on this fast test during delayed provider selection (see Delayed Provider
Selection). When an application invokes an initialization method and passes it a Key object, the
framework asks an underlying provider whether it supports the object by calling its
Service.supportsParameter() method. If supportsParameter() returns false, the framework
can immediately remove that provider from consideration. If supportsParameter() returns
true, the framework passes the Key object to that provider's initialization engine class
implementation. A provider that requires software Key objects should override this method to
return false when it is passed non-software keys. Likewise, a provider for a PKCS#11 token
that contains unextractable keys should only return true for Key objects that it created, and
which therefore correspond to the keys on its respective token.

Note:

The default implementation of supportsParameter() returns true. This allows
existing providers to work without modification. However, because of this lenient
default implementation, the framework must be prepared to catch exceptions thrown
by providers that reject the Key object inside their initialization engine class
implementations. The framework treats these cases the same as when
supportsParameter() returns false.

Chapter 5
Provider Developers

5-24

Parameter Support
The Java Cryptography framework may attempt a fast check to determine whether a provider's
service implementation can use an application-specified parameter. To perform this fast check,
the framework calls Provider.Service.supportsParameter().

The framework relies on this fast test during delayed provider selection (see Delayed Provider
Selection). When an application invokes an initialization method and passes it a Key object, the
framework asks an underlying provider whether it supports the object by calling its
Service.supportsParameter() method. If supportsParameter() returns false, the framework
can immediately remove that provider from consideration. If supportsParameter() returns
true, the framework passes the Key object to that provider's initialization engine class
implementation. A provider that requires software Key objects should override this method to
return false when it is passed non-software keys. Likewise, a provider for a PKCS#11 token
that contains unextractable keys should only return true for Key objects that it created, and
which therefore correspond to the keys on its respective token.

Note:

The default implementation of supportsParameter() returns true. This allows
existing providers to work without modification. However, because of this lenient
default implementation, the framework must be prepared to catch exceptions thrown
by providers that reject the Key object inside their initialization engine class
implementations. The framework treats these cases the same as when
supportsParameter() returns false.

SunPKCS11 Provider Supported Algorithms
Table 5-3 lists the Java algorithms supported by the SunPKCS11 provider and corresponding
PKCS#11 mechanisms needed to support them. When multiple mechanisms are listed, they
are given in the order of preference and any one of them is sufficient.

Note:

SunPKCS11 can be instructed to ignore mechanisms by using the
disabledMechanisms and enabledMechanisms configuration directives (see
SunPKCS11 Configuration).

For Elliptic Curve mechanisms, the SunPKCS11 provider will only use keys that use the
namedCurve choice as encoding for the parameters and only allow the uncompressed point
format. The SunPKCS11 provider assumes that a token supports all standard named domain
parameters.

Note:

For Elliptic Curve (EC) names, the SunPKCS11 provider supports any EC name that
the SunEC provider supports as long as the token supports it; see Supported Elliptic
Curve Names in The SunEC Provider.

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-25

See PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 3.0
for more details about the PKCS#11 mechanisms in the following table.

Table 5-3 Java Algorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

Cipher.AES_128/CBC/NoPadding CKM_AES_CBC

Cipher.AES_128/ECB/NoPadding CKM_AES_ECB

Cipher.AES_128/GCM/NoPadding CKM_AES_GCM

Cipher.AES_192/CBC/NoPadding CKM_AES_CBC

Cipher.AES_192/ECB/NoPadding CKM_AES_ECB

Cipher.AES_192/GCM/NoPadding CKM_AES_GCM

Cipher.AES_256/CBC/NoPadding CKM_AES_CBC

Cipher.AES_256/ECB/NoPadding CKM_AES_ECB

Cipher.AES_256/GCM/NoPadding CKM_AES_GCM

Cipher.AES/CBC/NoPadding CKM_AES_CBC

Cipher.AES/CBC/PKCS5Padding CKM_AES_CBC_PAD, CKM_AES_CBC

Cipher.AES/CTR/NoPadding CKM_AES_CTR

Cipher.AES/ECB/NoPadding CKM_AES_ECB

Cipher.AES/ECB/PKCS5Padding CKM_AES_ECB

Cipher.AES/GCM/NoPadding CKM_AES_GCM

Cipher.ARCFOUR CKM_RC4

Cipher.Blowfish/CBC/NoPadding CKM_BLOWFISH_CBC

Cipher.Blowfish/CBC/PKCS5Padding CKM_BLOWFISH_CBC

Cipher.ChaCha20-Poly1305 CKM_CHACHA20_POLY1305

Cipher.DES/CBC/NoPadding CKM_DES_CBC

Cipher.DES/CBC/PKCS5Padding CKM_DES_CBC_PAD, CKM_DES_CBC

Cipher.DES/ECB/NoPadding CKM_DES_ECB

Cipher.DES/ECB/PKCS5Padding CKM_DES_ECB

Cipher.DESede/CBC/NoPadding CKM_DES3_CBC

Cipher.DESede/CBC/PKCS5Padding CKM_DES3_CBC_PAD, CKM_DES3_CBC

Cipher.DESede/ECB/NoPadding CKM_DES3_ECB

Cipher.DESede/ECB/PKCS5Padding CKM_DES3_ECB

Cipher.RSA/ECB/NoPadding CKM_RSA_X_509

Cipher.RSA/ECB/PKCS1Padding CKM_RSA_PKCS

KeyAgreement.DiffieHellman CKM_DH_PKCS_DERIVE

KeyAgreement.ECDH CKM_ECDH1_DERIVE

KeyFactory.DiffieHellman Any supported Diffie-Hellman mechanism

KeyFactory.DSA Any supported DSA mechanism

KeyFactory.EC Any supported EC mechanism

KeyFactory.RSA Any supported RSA mechanism

KeyGenerator.AES CKM_AES_KEY_GEN

KeyGenerator.ARCFOUR CKM_RC4_KEY_GEN

KeyGenerator.Blowfish CKM_BLOWFISH_KEY_GEN

KeyGenerator.ChaCha20 CKM_CHACHA20_KEY_GEN

KeyGenerator.DES CKM_DES_KEY_GEN

KeyGenerator.DESede CKM_DES3_KEY_GEN

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-26

https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html

Table 5-3 (Cont.) Java Algorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

KeyGenerator.HmacMD5 CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA1 CKM_SHA_1_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA224 CKM_SHA224_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA256 CKM_SHA256_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA3-224 CKM_SHA3_224_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA3-256 CKM_SHA3_256_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA3-384 CKM_SHA3_384_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA3-512 CKM_SHA3_512_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA384 CKM_SHA384_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA512 CKM_SHA512_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA512/224 CKM_SHA512_224_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyGenerator.HmacSHA512/256 CKM_SHA512_256_KEY_GEN,
CKM_GENERIC_SECRET_KEY_GEN

KeyPairGenerator.DiffieHellman CKM_DH_PKCS_KEY_PAIR_GEN

KeyPairGenerator.DSA CKM_DSA_KEY_PAIR_GEN

KeyPairGenerator.EC CKM_EC_KEY_PAIR_GEN

KeyPairGenerator.RSA CKM_RSA_PKCS_KEY_PAIR_GEN

KeyStore.PKCS11 Always available

Mac.HmacMD5 CKM_MD5_HMAC

Mac.HmacSHA1 CKM_SHA_1_HMAC

Mac.HmacSHA224 CKM_SHA224_HMAC

Mac.HmacSHA256 CKM_SHA256_HMAC

Mac.HmacSHA3-224 CKM_SHA3_224_HMAC

Mac.HmacSHA3-256 CKM_SHA3_256_HMAC

Mac.HmacSHA3-384 CKM_SHA3_384_HMAC

Mac.HmacSHA3-512 CKM_SHA3_512_HMAC

Mac.HmacSHA384 CKM_SHA384_HMAC

Mac.HmacSHA512 CKM_SHA512_HMAC

Mac.HmacSHA512/224 CKM_SHA512_224_HMAC

Mac.HmacSHA512/256 CKM_SHA512_256_HMAC

MessageDigest.MD2 CKM_MD2

MessageDigest.MD5 CKM_MD5

MessageDigest.SHA-224 CKM_SHA224

MessageDigest.SHA-256 CKM_SHA256

MessageDigest.SHA-384 CKM_SHA384

MessageDigest.SHA-512 CKM_SHA512

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-27

Table 5-3 (Cont.) Java Algorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

MessageDigest.SHA-512/224 CKM_SHA512_224

MessageDigest.SHA-512/256 CKM_SHA512_256

MessageDigest.SHA1 CKM_SHA_1

MessageDigest.SHA3-224 CKM_SHA3_224

MessageDigest.SHA3-256 CKM_SHA3_256

MessageDigest.SHA3-384 CKM_SHA3_384

MessageDigest.SHA3-512 CKM_SHA3_512

SecretKeyFactory.AES CKM_AES_CBC

SecretKeyFactory.ARCFOUR CKM_RC4

SecretKeyFactory.Blowfish CKM_BLOWFISH_CBC

SecretKeyFactory.ChaCha20 CKM_CHACHA20_POLY1305

SecretKeyFactory.DES CKM_DES_CBC

SecretKeyFactory.DESede CKM_DES3_CBC

SecureRandom.PKCS11 CK_TOKEN_INFO has the CKF_RNG bit set

Signature.MD2withRSA CKM_MD2_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.MD5withRSA CKM_MD5_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.NONEwithDSA CKM_DSA

Signature.NONEwithECDSA CKM_ECDSA

Signature.RSASSA-PSS CKM_RSA_PKCS_PSS

Signature.SHA1withDSA CKM_DSA_SHA1, CKM_DSA

Signature.SHA1withECDSA CKM_ECDSA_SHA1, CKM_ECDSA

Signature.SHA1withRSA CKM_SHA1_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA1withRSASSA-PSS CKM_SHA1_RSA_PKCS_PSS

Signature.SHA224withDSA CKM_DSA_SHA224

Signature.SHA224withDSAinP1363Format CKM_DSA_SHA224

Signature.SHA224withECDSA CKM_ECDSA_SHA224, CKM_ECDSA

Signature.SHA224withECDSAinP1363Format CKM_ECDSA_SHA224, CKM_ECDSA

Signature.SHA224withRSA CKM_SHA224_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA224withRSASSA-PSS CKM_SHA224_RSA_PKCS_PSS

Signature.SHA256withDSA CKM_DSA_SHA256

Signature.SHA256withDSAinP1363Format CKM_DSA_SHA256

Signature.SHA256withECDSA CKM_ECDSA_SHA256, CKM_ECDSA

Signature.SHA256withECDSAinP1363Format CKM_ECDSA_SHA256, CKM_ECDSA

Signature.SHA256withRSA CKM_SHA256_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA256withRSASSA-PSS CKM_SHA256_RSA_PKCS_PSS

Signature.SHA3-224withDSA CKM_DSA_SHA3_224

Signature.SHA3-224withDSAinP1363Format CKM_DSA_SHA3_224

Signature.SHA3-224withECDSA CKM_ECDSA_SHA3_224, CKM_ECDSA

Signature.SHA3-224withECDSAinP1363Format CKM_ECDSA_SHA3_224, CKM_ECDSA

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-28

Table 5-3 (Cont.) Java Algorithms Supported by the SunPKCS11 Provider

Java Algorithm PKCS#11 Mechanisms

Signature.SHA3-224withRSA CKM_SHA3_224_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA3-224withRSASSA-PSS CKM_SHA3_224_RSA_PKCS_PSS

Signature.SHA3-256withDSA CKM_DSA_SHA3_256

Signature.SHA3-256withDSAinP1363Format CKM_DSA_SHA3_256

Signature.SHA3-256withECDSA CKM_ECDSA_SHA3_256, CKM_ECDSA

Signature.SHA3-256withECDSAinP1363Format CKM_ECDSA_SHA3_256, CKM_ECDSA

Signature.SHA3-256withRSA CKM_SHA3_256_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA3-256withRSASSA-PSS CKM_SHA3_256_RSA_PKCS_PSS

Signature.SHA3-384withDSA CKM_DSA_SHA3_384

Signature.SHA3-384withDSAinP1363Format CKM_DSA_SHA3_384

Signature.SHA3-384withECDSA CKM_ECDSA_SHA3_384, CKM_ECDSA

Signature.SHA3-384withECDSAinP1363Format CKM_ECDSA_SHA3_384, CKM_ECDSA

Signature.SHA3-384withRSA CKM_SHA3_384_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA3-384withRSASSA-PSS CKM_SHA3_384_RSA_PKCS_PSS

Signature.SHA3-512withDSA CKM_DSA_SHA3_512

Signature.SHA3-512withDSAinP1363Format CKM_DSA_SHA3_512

Signature.SHA3-512withECDSA CKM_ECDSA_SHA3_512, CKM_ECDSA

Signature.SHA3-512withECDSAinP1363Format CKM_ECDSA_SHA3_512, CKM_ECDSA

Signature.SHA3-512withRSA CKM_SHA3_512_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA3-512withRSASSA-PSS CKM_SHA3_512_RSA_PKCS_PSS

Signature.SHA384withDSA CKM_DSA_SHA384

Signature.SHA384withDSAinP1363Format CKM_DSA_SHA384

Signature.SHA384withECDSA CKM_ECDSA_SHA384, CKM_ECDSA

Signature.SHA384withECDSAinP1363Format CKM_ECDSA_SHA384, CKM_ECDSA

Signature.SHA384withRSA CKM_SHA384_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA384withRSASSA-PSS CKM_SHA384_RSA_PKCS_PSS

Signature.SHA512withDSA CKM_DSA_SHA512

Signature.SHA512withDSAinP1363Format CKM_DSA_SHA512

Signature.SHA512withECDSA CKM_ECDSA_SHA512, CKM_ECDSA

Signature.SHA512withECDSAinP1363Format CKM_ECDSA_SHA512, CKM_ECDSA

Signature.SHA512withRSA CKM_SHA512_RSA_PKCS, CKM_RSA_PKCS,
CKM_RSA_X_509

Signature.SHA512withRSASSA-PSS CKM_SHA512_RSA_PKCS_PSS

Chapter 5
SunPKCS11 Provider Supported Algorithms

5-29

SunPKCS11 Provider KeyStore Requirements
The following describes the requirements placed by the SunPKCS11 provider's KeyStore
implementation on the underlying native PKCS#11 library.

Note:

Changes may be made in future releases to maximize interoperability with as many
existing PKCS#11 libraries as possible.

Read-Only Access

To map existing objects stored on a PKCS#11 token to KeyStore entries, the SunPKCS11
provider's KeyStore implementation performs the following operations.

1. A search for all private key objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_PRIVATE_KEY

2. A search for all certificate objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_CERTIFICATE

3. Each private key object is matched with its corresponding certificate by retrieving their
respective CKA_ID attributes. A matching pair must share the same unique CKA_ID.
For each matching pair, the certificate chain is built by following the issuer->subject path.
From the end entity certificate, a call for C_FindObjects[Init|Final] is made with a
search template that includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_CERTIFICATE

• CKA_SUBJECT = [DN of certificate issuer]

This search is continued until either no certificate for the issuer is found, or until a self-
signed certificate is found. If more than one certificate is found the first one is used.

Once a private key and certificate have been matched (and its certificate chain built), the
information is stored in a private key entry with the CKA_LABEL value from end entity
certificate as the KeyStore alias.

If the end entity certificate has no CKA_LABEL, then the alias is derived from the CKA_ID.
If the CKA_ID can be determined to consist exclusively of printable characters, then a
String alias is created by decoding the CKA_ID bytes using the UTF-8 charset. Otherwise,
a hex String alias is created from the CKA_ID bytes ("0xFFFF...", for example).

If multiple certificates share the same CKA_LABEL, then the alias is derived from the
CKA_LABEL plus the end entity certificate issuer and serial number ("MyCert/
CN=foobar/1234", for example).

4. Each certificate not part of a private key entry (as the end entity certificate) is checked
whether it is trusted. If the CKA_TRUSTED attribute is true, then a KeyStore trusted
certificate entry is created with the CKA_LABEL value as the KeyStore alias. If the

Chapter 5
SunPKCS11 Provider KeyStore Requirements

5-30

certificate has no CKA_LABEL, or if multiple certificates share the same CKA_LABEL, then
the alias is derived as described previously.
If the CKA_TRUSTED attribute is not supported then no trusted certificate entries are
created.

5. Any private key or certificate object not part of a private key entry or trusted certificate
entry is ignored.

6. A search for all secret key objects on the token is performed by calling
C_FindObjects[Init|Final]. The search template includes the following attributes:

• CKA_TOKEN = true

• CKA_CLASS = CKO_SECRET_KEY

A KeyStore secret key entry is created for each secret key object, with the CKA_LABEL
value as the KeyStore alias. Each secret key object must have a unique CKA_LABEL.

Write Access

To create new KeyStore entries on a PKCS#11 token to KeyStore entries, the SunPKCS11
provider's KeyStore implementation performs the following operations.

1. When creating a KeyStore entry (during KeyStore.setEntry, for example), C_CreateObject
is called with CKA_TOKEN=true to create token objects for the respective entry contents.
Private key objects are stored with CKA_PRIVATE=true. The KeyStore alias (UTF8-
encoded) is set as the CKA_ID for both the private key and the corresponding end entity
certificate. The KeyStore alias is also set as the CKA_LABEL for the end entity certificate
object.

Each certificate in a private key entry's chain is also stored. The CKA_LABEL is not set for
CA certificates. If a CA certificate is already in the token, a duplicate is not stored.

Secret key objects are stored with CKA_PRIVATE=true. The KeyStore alias is set as the
CKA_LABEL.

2. If an attempt is made to convert a session object to a token object (for example, if
KeyStore.setEntry is called and the private key object in the specified entry is a session
object), then C_CopyObject is called with CKA_TOKEN=true.

3. If multiple certificates in the token are found to share the same CKA_LABEL, then the write
capabilities to the token are disabled.

4. Since the PKCS#11 specification does not allow regular applications to set
CKA_TRUSTED=true (only token initialization applications may do so), trusted certificate
entries can not be created.

Miscellaneous

In addition to the searches listed previously, the following searches may be used by the
SunPKCS11 provider's KeyStore implementation to perform internal functions. Specifically,
C_FindObjects[Init|Final] may be called with any of the following attribute templates:

• CKA_TOKEN true
 CKA_CLASS CKO_CERTIFICATE
 CKA_SUBJECT [subject DN]

• CKA_TOKEN true
 CKA_CLASS CKO_SECRET_KEY
 CKA_LABEL [label]

Chapter 5
SunPKCS11 Provider KeyStore Requirements

5-31

• CKA_TOKEN true
 CKA_CLASS CKO_CERTIFICATE or CKO_PRIVATE_KEY
 CKA_ID [cka_id]

Example Provider
The following is an example of a simple provider that demonstrates features of the Provider
class.

package com.foo;

import java.io.*;
import java.lang.reflect.*;
import java.security.*;
import javax.crypto.*;

/**
 * Example provider that demonstrates some Provider class features.
 *
 * . Implement multiple different algorithms in a single class.
 * Previously each algorithm needed to be implemented in a separate class
 * (e.g. one for SHA-256, one for SHA-384, etc.)
 *
 * . Multiple concurrent instances of the provider frontend class each
 * associated with a different backend.
 *
 * . It uses "unextractable" keys and lets the framework know which key
 * objects it can and cannot support
 *
 * Note that this is only a simple example provider designed to demonstrate
 * several of the new features. It is not explicitly designed for efficiency.
 */
public final class ExampleProvider extends Provider {

 // Reference to the crypto backend that implements all the algorithms.
 final CryptoBackend cryptoBackend;

 public ExampleProvider(String name, CryptoBackend cryptoBackend) {
 super(name, 1.0, "JCA/JCE provider for " + name);
 this.cryptoBackend = cryptoBackend;
 // register the algorithms we support (SHA-256, SHA-384, DESede, and
AES)
 putService(new MyService
 (this, "MessageDigest", "SHA-256",
"com.foo.ExampleProvider$MyMessageDigest"));
 putService(new MyService
 (this, "MessageDigest", "SHA-384",
"com.foo.ExampleProvider$MyMessageDigest"));
 putService(new MyCipherService
 (this, "Cipher", "DES", "com.foo.ExampleProvider$MyCipher"));
 putService(new MyCipherService
 (this, "Cipher", "AES", "com.foo.ExampleProvider$MyCipher"));
 }

Chapter 5
Example Provider

5-32

 // The API of our fictitious crypto backend.
 static abstract class CryptoBackend {
 abstract byte[] digest(String algorithm, byte[] data);
 abstract byte[] encrypt(String algorithm, KeyHandle key, byte[] data);
 abstract byte[] decrypt(String algorithm, KeyHandle key, byte[] data);
 abstract KeyHandle createKey(String algorithm, byte[] keyData);
 }

 // The shell of the representation the crypto backend uses for keys.
 private static final class KeyHandle {
 // fill in code
 }

 // We have our own ServiceDescription implementation that overrides
newInstance()
 // that calls the (Provider, String) constructor instead of the no-args
constructor.
 private static class MyService extends Service {

 private static final Class[] paramTypes = {Provider.class,
String.class};

 MyService(Provider provider, String type, String algorithm,
 String className) {
 super(provider, type, algorithm, className, null, null);
 }

 public Object newInstance(Object param) throws
NoSuchAlgorithmException {
 try {
 // Get the Class object for the implementation class.
 Class clazz;
 Provider provider = getProvider();
 ClassLoader loader = provider.getClass().getClassLoader();
 if (loader == null) {
 clazz = Class.forName(getClassName());
 } else {
 clazz = loader.loadClass(getClassName());
 }
 // Fetch the (Provider, String) constructor.
 Constructor cons = clazz.getConstructor(paramTypes);
 // Invoke constructor and return the SPI object.
 Object obj = cons.newInstance(new Object[] {provider,
getAlgorithm()});
 return obj;
 } catch (Exception e) {
 throw new NoSuchAlgorithmException("Could not instantiate
service", e);
 }
 }
 }

 // Custom ServiceDescription class for Cipher objects. See
supportsParameter().
 private static class MyCipherService extends MyService {
 MyCipherService(Provider provider, String type, String algorithm,

Chapter 5
Example Provider

5-33

 String className) {
 super(provider, type, algorithm, className);
 }
 // We override supportsParameter() to let the framework know which
 // keys we can support. We support instances of MySecretKey, if they
 // are stored in our provider backend, plus SecretKeys with a RAW
encoding.
 public boolean supportsParameter(Object obj) {
 if (obj instanceof SecretKey == false) {
 return false;
 }
 SecretKey key = (SecretKey)obj;
 if (key.getAlgorithm().equals(getAlgorithm()) == false) {
 return false;
 }
 if (key instanceof MySecretKey) {
 MySecretKey myKey = (MySecretKey)key;
 return myKey.provider == getProvider();
 } else {
 return "RAW".equals(key.getFormat());
 }
 }
 }

 // Our generic MessageDigest implementation. It implements all digest
 // algorithms in a single class. We only implement the bare minimum
 // of MessageDigestSpi methods.
 private static final class MyMessageDigest extends MessageDigestSpi {
 private final ExampleProvider provider;
 private final String algorithm;
 private ByteArrayOutputStream buffer;
 MyMessageDigest(Provider provider, String algorithm) {
 super();
 this.provider = (ExampleProvider)provider;
 this.algorithm = algorithm;
 engineReset();
 }
 protected void engineReset() {
 buffer = new ByteArrayOutputStream();
 }
 protected void engineUpdate(byte b) {
 buffer.write(b);
 }
 protected void engineUpdate(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 }
 protected byte[] engineDigest() {
 byte[] data = buffer.toByteArray();
 byte[] digest = provider.cryptoBackend.digest(algorithm, data);
 engineReset();
 return digest;
 }
 }

 // our generic Cipher implementation, only partially complete. It
implements

Chapter 5
Example Provider

5-34

 // all cipher algorithms in a single class. We implement only as many of
the
 // CipherSpi methods as required to show how it could work
 private static abstract class MyCipher extends CipherSpi {
 private final ExampleProvider provider;
 private final String algorithm;
 private int opmode;
 private MySecretKey myKey;
 private ByteArrayOutputStream buffer;
 MyCipher(Provider provider, String algorithm) {
 super();
 this.provider = (ExampleProvider)provider;
 this.algorithm = algorithm;
 }
 protected void engineInit(int opmode, Key key, SecureRandom random)
 throws InvalidKeyException {
 this.opmode = opmode;
 myKey = MySecretKey.getKey(provider, algorithm, key);
 if (myKey == null) {
 throw new InvalidKeyException();
 }
 buffer = new ByteArrayOutputStream();
 }
 protected byte[] engineUpdate(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 return new byte[0];
 }
 protected int engineUpdate(byte[] b, int ofs, int len, byte[] out,
int outOfs) {
 buffer.write(b, ofs, len);
 return 0;
 }
 protected byte[] engineDoFinal(byte[] b, int ofs, int len) {
 buffer.write(b, ofs, len);
 byte[] in = buffer.toByteArray();
 byte[] out;
 if (opmode == Cipher.ENCRYPT_MODE) {
 out = provider.cryptoBackend.encrypt(algorithm, myKey.handle,
in);
 } else {
 out = provider.cryptoBackend.decrypt(algorithm, myKey.handle,
in);
 }
 buffer = new ByteArrayOutputStream();
 return out;
 }
 // code for remaining CipherSpi methods goes here
 }

 // our SecretKey implementation. All our keys are stored in our crypto
 // backend, we only have an opaque handle available. There is no
 // encoded form of these keys.
 private static final class MySecretKey implements SecretKey {

 final String algorithm;
 final Provider provider;

Chapter 5
Example Provider

5-35

 final KeyHandle handle;

 MySecretKey(Provider provider, String algorithm, KeyHandle handle) {
 super();
 this.provider = provider;
 this.algorithm = algorithm;
 this.handle = handle;
 }
 public String getAlgorithm() {
 return algorithm;
 }
 public String getFormat() {
 return null; // this key has no encoded form
 }
 public byte[] getEncoded() {
 return null; // this key has no encoded form
 }
 // Convert the given key to a key of the specified provider, if
possible
 static MySecretKey getKey(ExampleProvider provider, String algorithm,
Key key) {
 if (key instanceof SecretKey == false) {
 return null;
 }
 // algorithm name must match
 if (!key.getAlgorithm().equals(algorithm)) {
 return null;
 }
 // if key is already an instance of MySecretKey and is stored
 // on this provider, return it right away
 if (key instanceof MySecretKey) {
 MySecretKey myKey = (MySecretKey)key;
 if (myKey.provider == provider) {
 return myKey;
 }
 }
 // otherwise, if the input key has a RAW encoding, convert it
 if (!"RAW".equals(key.getFormat())) {
 return null;
 }
 byte[] encoded = key.getEncoded();
 KeyHandle handle = provider.cryptoBackend.createKey(algorithm,
encoded);
 return new MySecretKey(provider, algorithm, handle);
 }
 }
}

Chapter 5
Example Provider

5-36

6
Java Authentication and Authorization Service
(JAAS)

Java Authentication and Authorization Service (JAAS) Reference Guide describes Java
Authentication and Authorization Service (JAAS), which enables you to authenticate users and
securely determine who is currently executing Java code, and authorize users to ensure that
they have the access control rights, or permissions, required to do the actions performed.

JAAS Tutorials provides tutorials about Java Authentication and Authorization Service (JAAS)
authentication and authorization.

Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide shows
you how to implement the LoginModule interface, which you plug into an application to
provide a particular type of authentication.

Java Authentication and Authorization Service (JAAS) Reference
Guide

JAAS can be used for two purposes:

• for authentication of users, to reliably and securely determine who is currently executing
Java code, regardless of whether the code is running as an application, an applet, a bean,
or a servlet; and

• for authorization of users to ensure they have the access control rights (permissions)
required to do the actions performed.

JAAS implements a Java version of the standard Pluggable Authentication Module (PAM)
framework.

Traditionally Java has provided codesource-based access controls (access controls based on
where the code originated from and who signed the code). It lacked, however, the ability to
additionally enforce access controls based on who runs the code. JAAS provides a framework
that augments the Java security architecture with such support.

JAAS authentication is performed in a pluggable fashion. This permits applications to remain
independent from underlying authentication technologies. New or updated authentication
technologies can be plugged under an application without requiring modifications to the
application itself. Applications enable the authentication process by instantiating a
LoginContext object, which in turn references a Configuration to determine the
authentication technology or technologies, or LoginModule(s), to be used in performing the
authentication. Typical LoginModules may prompt for and verify a user name and password.
Others may read and verify a voice or fingerprint sample.

Once the user or service executing the code has been authenticated, the JAAS authorization
component works in conjunction with the core Java SE access control model to protect access
to sensitive resources. Access control decisions are based both on the executing code's
CodeSource and on the user or service running the code, who is represented by a Subject
object. The Subject is updated by a LoginModule with relevant Principals and credentials if
authentication succeeds.

6-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

Who Should Read This Document
This document is intended for experienced developers who require the ability to design
applications constrained by a CodeSource-based and Subject-based security model. It is also
intended to be read by LoginModule developers (developers implementing an authentication
technology) prior to reading the Java Authentication and Authorization Service (JAAS):
LoginModule Developer's Guide.

You may wish to first read JAAS Authentication Tutorial and JAAS Authorization Tutorial to get
an overview of how to use JAAS and to see sample code in action, and then return to this
document for further information.

Related Documentation
This document assumes you have already read the following:

• Java SE Platform Security Architecture

• Java SE Security Tutorial

A supplement to this guide is the JAAS LoginModule Developer's Guide, intended for
experienced programmers who require the ability to write a LoginModule implementing an
authentication technology.

The following tutorials for JAAS authentication and authorization can be run by everyone:

• JAAS Authentication Tutorial

• JAAS Authorization Tutorial

Similar tutorials for JAAS authentication and authorization, but which demonstrate the use of a
Kerberos LoginModule and thus which require a Kerberos installation, can be found at

• JAAS Authentication

• JAAS Authorization

These two tutorials are a part of Introduction to JAAS and Java GSS-API Tutorials that utilize
Kerberos as the underlying technology for authentication and secure communication.

Core Classes and Interfaces
The JAAS-related core classes and interfaces can be broken into three categories: Common,
Authentication, and Authorization.

Common Classes
Common classes are those shared by both the JAAS authentication and authorization
components.

The key JAAS class is javax.security.auth.Subject, which represents a grouping of related
information for a single entity such as a person. It encompasses the entity's Principals, public
credentials, and private credentials.

Note that the java.security.Principal interface is used to represent a Principal. Also note
that a credential, as defined by JAAS, may be any Object.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-2

http://docs.oracle.com/javase/tutorial/security/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html

Subject
To authorize access to resources, applications first need to authenticate the source of the
request. The JAAS framework defines the term subject to represent the source of a request. A
subject may be any entity, such as a person or a service. Once the subject is authenticated, a
javax.security.auth.Subject is populated with associated identities, or Principals. A
Subject may have many Principals. For example, a person may have a name Principal
("John Doe") and a SSN Principal ("123-45-6789"), which distinguish it from other subjects.

A Subject may also own security-related attributes, which are referred to as credentials; see
the section Credentials. Sensitive credentials that require special protection, such as private
cryptographic keys, are stored within a private credential Set. Credentials intended to be
shared, such as public key certificates, are stored within a public credential Set. Different
permissions are required to access and modify the different credential Sets.

Subjects are created using these constructors:

 public Subject();

 public Subject(boolean readOnly, Set principals,
 Set pubCredentials, Set privCredentials);

The first constructor creates a Subject with empty (non-null) Sets of Principals and
credentials. The second constructor creates a Subject with the specified Sets of Principals
and credentials. It also has a boolean argument which can be used to make the Subject read-
only. In a read-only Subject, the Principal and credential Sets are immutable.

An application writer does not have to instantiate a Subject. If the application instantiates a
LoginContext and does not pass a Subject to the LoginContext constructor, the
LoginContext instantiates a new empty Subject. See the LoginContext section.

If a Subject was not instantiated to be in a read-only state, it can be set read-only by calling
the following method:

 public void setReadOnly();

A javax.security.auth.AuthPermission with target "setReadOnly" is required to invoke this
method. Once in a read-only state, any attempt to add or remove Principals or credentials will
result in an IllegalStateException being thrown. The following method may be called to test
a Subject's read-only state:

 public boolean isReadOnly();

To retrieve the Principals associated with a Subject, two methods are available:

 public Set getPrincipals();
 public Set getPrincipals(Class c);

The first method returns all Principals contained in the Subject, while the second method
only returns those Principals that are an instance of the specified Class c, or an instance of a
subclass of Class c. An empty set will be returned if the Subject does not have any associated
Principals.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html

To retrieve the public credentials associated with a Subject, these methods are available:

 public Set getPublicCredentials();
 public Set getPublicCredentials(Class c);

The behavior of these methods is similar to that for the getPrincipals methods, except in this
case the public credentials are being obtained.

To access private credentials associated with a Subject, the following methods are available:

 public Set getPrivateCredentials();
 public Set getPrivateCredentials(Class c);

The behavior of these methods is similar to that for the getPrincipals and
getPublicCredentials methods.

To modify or operate upon a Subject's PrincipalSet, public credential Set, or private
credential Set, callers use the methods defined in the java.util.Set class. The following
example demonstrates this:

 Subject subject;
 Principal principal;
 Object credential;

 . . .

 // add a Principal and credential to the Subject
 subject.getPrincipals().add(principal);
 subject.getPublicCredentials().add(credential);

Note: An AuthPermission with target "modifyPrincipals", "modifyPublicCredentials", or
"modifyPrivateCredentials" is required to modify the respective Sets. Also note that only the
sets returned via the getPrincipals(), getPublicCredentials(), and
getPrivateCredentials() methods with no arguments are backed by the Subject's
respective internal sets. Therefore any modification to the returned set affects the internal sets
as well. The sets returned via the getPrincipals(Class c), getPublicCredentials(Class
c), and getPrivateCredentials(Class c) methods are not backed by the Subject's
respective internal sets. A new set is created and returned for each such method invocation.
Modifications to these sets will not affect the Subject's internal sets.

In order to iterate through a Set of private credentials, you need a
javax.security.auth.PrivateCredentialPermission to access each credential. See the
PrivateCredentialPermission API documentation for further information.

A Subject may be associated with an AccessControlContext (see the doAs and
doAsPrivileged method descriptions in the following sections). The following method returns
the Subject associated with the specified AccessControlContext, or null if no Subject is
associated with the specified AccessControlContext.

 public static Subject getSubject(final AccessControlContext acc);

An AuthPermission with target "getSubject" is required to call Subject.getSubject.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/PrivateCredentialPermission.html

The Subject class also includes the following methods inherited from java.lang.Object.

 public boolean equals(Object o);
 public String toString();
 public int hashCode();

The doAs methods for performing an action as a particular Subject

The following static methods may be called to perform an action as a particular Subject:

 public static Object
 doAs(final Subject subject,
 final java.security.PrivilegedAction action);

 public static Object
 doAs(final Subject subject,
 final java.security.PrivilegedExceptionAction action)
 throws java.security.PrivilegedActionException;

Both methods first associate the specified subject with the current Thread's
AccessControlContext, and then execute the action. This achieves the effect of having the
action run as the subject. The first method can throw runtime exceptions but normal
execution has it returning an Object from the run method of its action argument. The second
method behaves similarly except that it can throw a checked exception from its
PrivilegedExceptionAction run method. An AuthPermission with target "doAs" is required
to call the doAs methods.

Subject.doAs Example

Here is an example utilizing the first doAs method. Assume that someone named "Bob" has
been authenticated by a LoginContext (see the LoginContext) and as a result a Subject was
populated with a Principal of class com.ibm.security.Principal, and that Principal has
the name "BOB". Also assume that a SecurityManager has been installed, and that the
following exists in the access control policy (see Policy for more details on the policy file).

 // grant "BOB" permission to read the file "foo.txt"
 grant Principal com.ibm.security.Principal "BOB" {
 permission java.io.FilePermission "foo.txt", "read";
 };

Here is the sample application code:

 class ExampleAction implements java.security.PrivilegedAction {
 public Object run() {
 java.io.File f = new java.io.File("foo.txt");

 // the following call invokes a security check
 if (f.exists()) {
 System.out.println("File foo.txt exists");
 }
 return null;
 }
 }

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-5

 public class Example1 {
 public static void main(String[] args) {

 // Authenticate the subject, "BOB".
 // This process is described in the
 // LoginContext class.

 Subject bob;
 // Set bob to the Subject created during the
 // authentication process

 // perform "ExampleAction" as "BOB"
 Subject.doAs(bob, new ExampleAction());
 }
 }

During execution, ExampleAction will encounter a security check when it makes a call to
f.exists(). However, since ExampleAction is running as "BOB", and the policy in this
example grants the necessary FilePermission to "BOB", the ExampleAction will pass the
security check. If the grant statement in the policy is altered (adding an incorrect CodeBase or
changing the Principal to "MOE", for example), then a SecurityException will be thrown.

The doAsPrivileged methods

The following methods also perform an action as a particular Subject.

 public static Object doAsPrivileged(
 final Subject subject,
 final java.security.PrivilegedAction action,
 final java.security.AccessControlContext acc);

 public static Object doAsPrivileged(
 final Subject subject,
 final java.security.PrivilegedExceptionAction action,
 final java.security.AccessControlContext acc)
 throws java.security.PrivilegedActionException;

An AuthPermission with target "doAsPrivileged" is required to call the doAsPrivileged
methods.

doAs versus doAsPrivileged

The doAsPrivileged methods behave exactly the same as the doAs methods, except that
instead of associating the provided Subject with the current Thread's AccessControlContext,
they use the provided AccessControlContext. In this way, actions can be restricted by
AccessControlContexts different from the current one.

An AccessControlContext contains information about all the code executed since the
AccessControlContext was instantiated, including the code location and the permissions the
code is granted by the policy. In order for an access control check to succeed, the policy must
grant each code item referenced by the AccessControlContext the required permissions.

If the AccessControlContext provided to doAsPrivileged is null, then the action is not
restricted by a separate AccessControlContext. One example where this may be useful is in a

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-6

server environment. A server may authenticate multiple incoming requests and perform a
separate doAs operation for each request. To start each doAs action "fresh," and without the
restrictions of the current server AccessControlContext, the server can call doAsPrivileged
and pass in a nullAccessControlContext.

Principals
As mentioned previously, once a Subject is authenticated, it is populated with associated
identities, or Principals. A Subject may have many Principals. For example, a person
may have a name Principal ("John Doe") and an SSN Principal ("123-45-6789"), which
distinguish it from other Subjects. A Principal must implement the
java.security.Principal and java.io.Serializable interfaces. See Subject for
information about ways to update the Principals associated with a Subject.

Credentials
In addition to associated Principals, a Subject may own security-related attributes, which are
referred to as credentials. A credential may contain information used to authenticate the
subject to new services. Such credentials include passwords, Kerberos tickets, and public key
certificates. Credentials might also contain data that simply enables the subject to perform
certain activities. Cryptographic keys, for example, represent credentials that enable the
subject to sign or encrypt data. Public and private credential classes are not part of the core
JAAS class library. Any class, therefore, can represent a credential.

Public and private credential classes are not part of the core JAAS class library. Developers,
however, may elect to have their credential classes implement two interfaces related to
credentials: Refreshable and Destroyable.

Refreshable

The javax.security.auth.Refreshable interface provides the capability for a credential to
refresh itself. For example, a credential with a particular time-restricted lifespan may implement
this interface to allow callers to refresh the time period for which it is valid. The interface has
two abstract methods:

 boolean isCurrent();

This method determines whether the credential is current or valid.

 void refresh() throws RefreshFailedException;

This method updates or extends the validity of the credential. The method implementation
should perform an

AuthPermission("refreshCredential")
security check to ensure the caller has permission to refresh the credential.

Destroyable

The javax.security.auth.Destroyable interface provides the capability of destroying the
contents within a credential. The interface has two abstract methods:

 boolean isDestroyed();

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Serializable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Refreshable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Destroyable.html

Determines whether the credential has been destroyed.

 void destroy() throws DestroyFailedException;

Destroys and clears the information associated with this credential. Subsequent calls to certain
methods on this credential will result in an IllegalStateException being thrown. The method
implementation should perform an AuthPermission("destroyCredential") security check to
ensure the caller has permission to destroy the credential.

Authentication Classes and Interfaces
Authentication represents the process by which the identity of a subject is verified, and must be
performed in a secure fashion; otherwise a perpetrator may impersonate others to gain access
to a system. Authentication typically involves the subject demonstrating some form of evidence
to prove its identity. Such evidence may be information only the subject would likely know or
have (such as a password or fingerprint), or it may be information only the subject could
produce (such as signed data using a private key).

To authenticate a subject (user or service), the following steps are performed:

1. An application instantiates a LoginContext.

2. The LoginContext consults a Configuration to load all of the LoginModules configured for
that application.

3. The application invokes the LoginContext's login method.

4. The login method invokes all of the loaded LoginModules. Each LoginModule attempts to
authenticate the subject. Upon success, LoginModules associate relevant Principals and
credentials with a Subject object that represents the subject being authenticated.

5. The LoginContext returns the authentication status to the application.

6. If authentication succeeded, the application retrieves the Subject from the LoginContext.

The following sections describe the authentication classes.

LoginContext
The javax.security.auth.login.LoginContext class provides the basic methods used to
authenticate subjects, and provides a way to develop an application independent of the
underlying authentication technology. The LoginContext consults a Configuration to
determine the authentication services, or LoginModule(s), configured for a particular
application. Therefore, different LoginModules can be plugged in under an application without
requiring any modifications to the application itself.

LoginContext offers four constructors from which to choose:

 public LoginContext(String name) throws LoginException;

 public LoginContext(String name, Subject subject) throws LoginException;

 public LoginContext(String name, CallbackHandler callbackHandler)
 throws LoginException

 public LoginContext(String name, Subject subject,
 CallbackHandler callbackHandler) throws LoginException

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html

All of the constructors share a common parameter: name. This argument is used by the
LoginContext as an index into the login Configuration to determine which LoginModules are
configured for the application instantiating the LoginContext. Constructors that do not take a
Subject as an input parameter instantiate a new Subject. Null inputs are disallowed for all
constructors. Callers require an AuthPermission with target "createLoginContext.<name>" to
instantiate a LoginContext. Here, <name> refers to the name of the login configuration entry
that the application references in the name parameter for the LoginContext instantiation.

See CallbackHandler for information on what a CallbackHandler is and when you may need
one.

Actual authentication occurs with a call to the following method:

 public void login() throws LoginException;

When login is invoked, all of the configured LoginModules are invoked to perform the
authentication. If the authentication succeeded, the Subject (which may now hold Principals,
public credentials, and private credentials) can be retrieved by using the following method:

 public Subject getSubject();

To logout a Subject and remove its authenticated Principals and credentials, the following
method is provided:

 public void logout() throws LoginException;

The following code sample demonstrates the calls necessary to authenticate and logout a
Subject:

 // let the LoginContext instantiate a new Subject
 LoginContext lc = new LoginContext("entryFoo");
 try {
 // authenticate the Subject
 lc.login();
 System.out.println("authentication successful");

 // get the authenticated Subject
 Subject subject = lc.getSubject();

 ...

 // all finished -- logout
 lc.logout();
 } catch (LoginException le) {
 System.err.println("authentication unsuccessful: " +
 le.getMessage());
 }

LoginModule
The LoginModule interface gives developers the ability to implement different kinds of
authentication technologies that can be plugged in under an application. For example, one type

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html

of LoginModule may perform a user name/password-based form of authentication. Other
LoginModules may interface to hardware devices such as smart cards or biometric devices.

Note: If you are an application writer, you do not need to understand the workings of
LoginModules. All you have to know is how to write your application and specify configuration
information (such as in a login configuration file) such that the application will be able to utilize
the LoginModule specified by the configuration to authenticate the user.

If, on the other hand, you are a programmer who wishes to write a LoginModule implementing
an authentication technology, see the Java Authentication and Authorization Service (JAAS):
LoginModule Developer's Guide for detailed step-by-step instructions.

CallbackHandler
In some cases a LoginModule must communicate with the user to obtain authentication
information. LoginModules use a javax.security.auth.callback.CallbackHandler
for this purpose. Applications implement the CallbackHandler interface and pass it to the
LoginContext, which forwards it directly to the underlying LoginModules. A LoginModule uses
the CallbackHandler both to gather input from users (such as a password or smart card pin
number) or to supply information to users (such as status information). By allowing the
application to specify the CallbackHandler, underlying LoginModules can remain independent
of the different ways applications interact with users. For example, the implementation of a
CallbackHandler for a GUI application might display a window to solicit input from a user. On
the other hand, the implementation of a CallbackHandler for a non-GUI tool might simply
prompt the user for input directly from the command line.

CallbackHandler
is an interface with one method to implement:

 void handle(Callback[] callbacks)
 throws java.io.IOException, UnsupportedCallbackException;

The LoginModule passes the CallbackHandler handle method an array of appropriate
Callbacks, for example a NameCallback for the user name and a PasswordCallback for
the password, and the CallbackHandler performs the requested user interaction and sets
appropriate values in the Callbacks. For example, to process a NameCallback, the
CallbackHandler may prompt for a name, retrieve the value from the user, and call the
NameCallback's setName method to store the name.

The CallbackHandler documentation has a lengthy example not included in this document that
readers may want to examine.

Callback
The javax.security.auth.callback package contains the Callback interface as well as
several implementations. LoginModules may pass an array of Callbacks directly to the handle
method of a CallbackHandler.

Please consult the various Callback APIs for more information on their use.

Authorization Classes
To make JAAS authorization take place, granting access control permissions based not just on
what code is running but also on who is running it, the following is required:

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/package-summary.html

• The user must be authenticated, as described in the LoginContext section.

• The Subject that is the result of authentication must be associated with an access control
context, as described in the Subject section.

• Principal-based entries must be configured in the security policy.

The following sections describe the Policy abstract class and the authorization-specific
classes AuthPermission and PrivateCredentialPermission.

Policy
The java.security.Policy class is an abstract class for representing the system-wide
access control policy. The Policy API supports Principal-based queries.

As a default, the JDK provides a file-based subclass implementation, which was upgraded to
support Principal-based grant entries in policy files.

Policy files and the structure of entries within them are described in Default Policy
Implementation and Policy File Syntax.

AuthPermission
The javax.security.auth.AuthPermission class encapsulates the basic permissions
required for JAAS. An AuthPermission contains a name (also referred to as a "target name")
but no actions list; you either have the named permission or you don't.

In addition to its inherited methods (from the java.security.Permission class), an
AuthPermission has two public constructors:

 public AuthPermission(String name);
 public AuthPermission(String name, String actions);

The first constructor creates a new AuthPermission with the specified name. The second
constructor also creates a new AuthPermission object with the specified name, but has an
additional actions argument which is currently unused and should be null. This constructor
exists solely for the Policy object to instantiate new Permission objects. For most other code,
the first constructor is appropriate.

Currently the AuthPermission object is used to guard access to the Policy, Subject,
LoginContext, and Configuration objects. Refer to the AuthPermission JavaDoc API
documentation for the list of valid names that are supported.

PrivateCredentialPermission
The javax.security.auth.PrivateCredentialPermission class protects access to a
Subject's private credentials and provides one public constructor:

 public PrivateCredentialPermission(String name, String actions);

JAAS Tutorials and Sample Programs
The JAAS Authentication and JAAS Authorization tutorials contain the following samples:

• SampleAcn.java is a sample application demonstrating JAAS authentication.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-11

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Policy.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/AuthPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Permission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/AuthPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/PrivateCredentialPermission.html

• SampleAzn.java is a sample application used by the authorization tutorial. It
demonstrates both authentication and authorization.

• The Login Configuration File for the JAAS Authentication Tutorial describes
sample_jaas.config, which is a sample login configuration file used by both tutorials.

• sampleacn.policy is a sample policy file granting permissions required by the code for
the authentication tutorial.

• sampleazn.policy is a sample policy file granting permissions required by the code for
the authorization tutorial.

• SampleLoginModule.java is the class specified by the tutorials' login configuration file
(sample_jaas.config) as the class implementing the desired underlying authentication.
SampleLoginModule's user authentication consists of simply verifying that the name and
password specified by the user have specific values.

• SamplePrincipal.java is a sample class implementing the Principal interface. It is
used by SampleLoginModule.

See the tutorials for detailed information about the applications, the policy files, and the login
configuration file.

Application writers do not need to understand the code for SampleLoginModule.java or
SamplePrincipal.java, as explained in the tutorials. Programmers who wish to write
LoginModules can learn how to do so by reading the Java Authentication and Authorization
Service (JAAS): LoginModule Developer's Guide.

Appendix A: JAAS Settings in the java.security Security Properties File
A number of JAAS-related settings can be configured in the java.security master Security
Properties file, which is located in the conf/security directory of the JDK.

JAAS adds two new security properties to java.security:

• login.configuration.provider
• login.config.url.n
The following pre-existing properties are also relevant for JAAS users:

• policy.provider
• policy.url.n
The following example demonstrates how to configure these properties. In this example, we
leave the values provided in the default java.security file for the policy.provider,
policy.url.n, and login.configuration.provider Security Properties. The default
java.security file also lists a value for the login.config.url.n Security Property, but it is
commented out. In the following example, it is not commented.

...

#
Class to instantiate as the javax.security.auth.login.Configuration
provider.
#
login.configuration.provider=sun.security.provider.ConfigFile

#

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-12

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

Default login configuration file
#
#login.config.url.1=file:${user.home}/.java.login.config

#
Class to instantiate as the system Policy. This is the name of the class
that will be used as the Policy object. The system class loader is used to
locate this class.
#
policy.provider=sun.security.provider.PolicyFile

The default is to have a single system-wide policy file,
and a policy file in the user's home directory.
#
policy.url.1=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

...

Note:

Modifications made to this file may be overwritten by subsequent JDK updates.
However, an alternate java.security properties file may be specified from the
command line via the system property java.security.properties=<URL>. This
properties file appends to the system properties file. If both properties files specify
values for the same key, the value from command-line properties file is selected, as it
is the last one loaded.

Also, specifying java.security.properties==<URL> (using two equals signs), then
that properties file will completely override the system properties file.

To disable the ability to specify an additional properties file from the command line,
set the key security.overridePropertiesFile to false in the system properties
file. It is set to true by default.

Login Configuration Provider
The default JAAS login configuration implementation provided by Oracle gets its configuration
information from files and expects the information to be provided in a specific format shown in
the tutorials.

The default JAAS login configuration implementation can be replaced by specifying the
alternative provider class implementation in the login.configuration.provider property.

For example:

 login.configuration.provider=com.foo.Config

If the Security property login.configuration.provider is not found, or is left unspecified,
then it is set to the default value:

 login.configuration.provider=com.sun.security.auth.login.ConfigFile

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-13

Note that there is no means to dynamically set the login configuration provider from the
command line.

Login Configuration URLs
If you are using a login configuration implementation that expects the configuration information
to be specified in files (as does the default implementation from Oracle), the location of the
login configuration file(s) can be statically set by specifying their respective URLs in the
login.config.url.n property. 'n' is a consecutively numbered integer starting with 1. If
multiple configuration files are specified (if n >= 2), they will be read and unioned into one
single configuration.

For example:

 login.config.url.1=file:C:/config/.java.login.config
 login.config.url.2=file:C:/users/foo/.foo.login.config

If the location of the configuration files is not set in the java.security properties file, and also
is not specified dynamically from the command line (via the -
Djava.security.auth.login.config option), JAAS attempts to load a default configuration
from

file:${user.home}/.java.login.config

Policy Provider
The default policy implementation can be replaced by specifying the alternative provider class
implementation in the policy.provider property.

For example:

policy.provider=com.foo.Policy

If the Security property policy.provider is not found, or is left unspecified, then the Policy is
set to the default value:

policy.provider=sun.security.provider.PolicyFile

Note that there is no means to dynamically set the policy provider from the command line.

Policy File URLs
The location of the access control policy files can be statically set by specifying their respective
URLs in the auth.policy.url.n property. n is a consecutively numbered integer starting with
1. If multiple policies are specified (if n >= 2), they will be read and unioned into one single
policy.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-14

For example:

policy.url.1=file:C:/policy/.java.policy
policy.url.2=file:C:/users/foo/.foo.policy

If the location of the policy file(s) is not set in the java.security properties file, and is not
specified dynamically from the command line (via the -Djava.security.policy option), the
access control policy defaults to the same policy as that of the system policy file installed with
the JDK. That policy file

• grants all permissions to standard extensions

• allows anyone to listen on un-privileged ports

• allows any code to read certain "standard" properties that are not security-sensitive, such
as the os.name and file.separator properties.

Appendix B: JAAS Login Configuration File
JAAS authentication is performed in a pluggable fashion, so Java applications can remain
independent from underlying authentication technologies. Configuration information such as
the desired authentication technology is specified at runtime. The source of the configuration
information (for example, a file or a database) is up to the current
javax.security.auth.login.Configuration implementation. The default
Configuration implementation, ConfigFile, gets its configuration information from login
configuration files. For details about the default login Configuration implementation provided
with JAAS, see the com.sun.security.auth.login.ConfigFile class.

Login Configuration File Structure and Contents
A login configuration file consists of one or more entries, each specifying which underlying
authentication technology should be used for a particular application or applications. The
structure of each entry is the following:

<name used by application to refer to this entry> {
 <LoginModule> <flag> <LoginModule options>;
 <optional additional LoginModules, flags and options>;
};

Thus, each login configuration file entry consists of a name followed by one or more
LoginModule-specific entries, where each LoginModule-specific entry is terminated by a
semicolon and the entire group of LoginModule-specific entries is enclosed in braces. Each
configuration file entry is terminated by a semicolon.

Example 6-1 Login Configuration File for JAAS Authentication Tutorial

As an example, the login configuration file used for the JAAS Authentication Tutorial tutorial
contains just one entry, which is

Sample {
 sample.module.SampleLoginModule required debug=true;
};

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-15

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/ConfigFile.html

Here, the entry is named Sample and that is the name that the JAAS Authentication tutorial
application (SampleAcn.java) uses to refer to this entry. The entry specifies that the
LoginModule to be used to do the user authentication is the SampleLoginModule in the
sample.module package and that this SampleLoginModule is required to "succeed" in order for
authentication to be considered successful. The SampleLoginModule succeeds only if the name
and password supplied by the user are the ones it expects (testUser and testPassword,
respectively).

The name for an entry in a login configuration file is the name that applications use to refer to
the entry when they instantiate a LoginContext, as described in JAAS Authentication
Tutorial in the JAAS authentication tutorial. The name can be whatever name the application
developer wishes to use. Here, the term "application" refers to whatever code does the JAAS
login.

The specified LoginModules are used to control the authentication process. Authentication
proceeds down the list in the exact order specified, as described in the Configuration class.

The subparts of each LoginModule-specific entry are the following:

• LoginModule: This specifies a class implementing the desired authentication technology.
Specifically, the class must be a subclass of the LoginModule class, which is in the
javax.security.auth.spi package. A typical LoginModule may prompt for and verify a
user name and password, as is done by the SampleLoginModule (in the sample.module
package) used for these tutorials. Any vendor can provide a LoginModule implementation
that you can use. Some implementations are supplied with the JDK from Oracle. You can
view the reference documentation for the various LoginModules, all in the
com.sun.security.auth package:

– JndiLoginModule
– KeyStoreLoginModule
– Krb5LoginModule
– NTLoginModule
– UnixLoginModule

• flag: The flag value indicates whether success of the preceding LoginModule is
required, requisite, sufficient, or optional. If there is just one LoginModule-specific
entry, as there is in our tutorials, then the flag for it should be "required". The options are
described in more detail in the Configuration class.

• LoginModule options: If the specified LoginModule implementation has options that
can be set, you specify any desired option values here. This is a space-separated list of
values which are passed directly to the underlying LoginModule. Options are defined by
the LoginModule itself, and control the behavior within it. For example, a LoginModule
may define options to support debugging/testing capabilities.

The correct way to specify options in the configuration file is by using a name-value
pairing, for example debug=true, where the option name (in this case, debug) and value (in
this case, true) should be separated by an equals symbol.

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-16

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/JndiLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/KeyStoreLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/NTLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/UnixLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html

Example 6-2 Login Configuration File Demonstrating required, sufficient, requisite,
and optional Flags

The following is a sample login configuration file that demonstrates the required, sufficient,
requisite, and optional flags. See the Configuration class for more information about these
flags.

Login1 {
 sample.SampleLoginModule required debug=true;
 };

 Login2 {
 sample.SampleLoginModule required;
 com.sun.security.auth.module.NTLoginModule sufficient;
 com.foo.SmartCard requisite debug=true;
 com.foo.Kerberos optional debug=true;
 };

The application Login1 only has one configured LoginModule, SampleLoginModule. Therefore,
an attempt by Login1 to authenticate a subject (user or service) will be successful if and only if
the SampleLoginModule succeeds.

The authentication logic for the application Login2 is easier to explain with the following table:

Table 6-1 Login2 Authentication Status

Module
Class

Flag Authentic
ation
Attempt 1

Authentic
ation
Attempt 2

Authentic
ation
Attempt 3

Authentic
ation
Attempt 4

Authentic
ation
Attempt 5

Authentic
ation
Attempt 6

Authentic
ation
Attempt 7

Authentic
ation
Attempt 8

SampleLo
ginModul
e

required pass pass pass pass fail fail fail fail

NTLoginM
odule

sufficient pass fail fail fail pass fail fail fail

SmartCard requisite * pass pass fail * pass pass fail

Kerberos optional * pass fail * * pass fail *

Overall
Authenticat
ion

not
applicable

pass pass pass fail fail fail fail fail

* = trivial value due to control returning to the application because a previous requisite module
failed or a previous sufficient module succeeded.

Where to Specify Which Login Configuration File Should Be Used
The configuration file to be used can be specified in one of two ways:

1. On the command line.

You can use a -Djava.security.auth.login.config interpreter command line argument
to specify the login configuration file that should be used. We use this approach for all the
tutorials. For example, we run our SampleAcn application in the JAAS Authentication

Chapter 6
Java Authentication and Authorization Service (JAAS) Reference Guide

6-17

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html

Tutorial using the following command, which specifies that the configuration file is the
sample_jaas.config file in the current directory:

java -Djava.security.auth.login.config==sample_jaas.config sample.SampleAcn

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

2. In the Java Security Properties file.

An alternate approach to specifying the location of the login configuration file is to indicate
its URL as the value of a login.config.url.n property in the security properties file. The
Security Properties file is the java.security file located in the conf/security directory of
the JDK.

Here, n indicates a consecutively-numbered integer starting with 1. Thus, if desired, you
can specify more than one login configuration file by indicating one file's URL for the
login.config.url.1 property, a second file's URL for the login.config.url.2 property,
and so on. If more than one login configuration file is specified (that is, if n > 1), then the
files are read and concatenated into a single configuration.

Here is an example of what would need to be added to the security properties file in order
to indicate the sample_jaas.config login configuration file used by this tutorial. This
example assumes the file is in the C:\AcnTest directory on Windows:

login.config.url.1=file:C:/AcnTest/sample_jaas.config

(Note that URLs always use forward slashes, regardless of what operating system the user
is running.)

JAAS Tutorials
This page links to two tutorials demonstrating various aspects of the use of JAAS (Java
Authentication and Authorization Service):

• JAAS Authentication Tutorial: Explains how an application can authenticate users using
JAAS.

• JAAS Authorization Tutorial: Explains how to enforce user-based access controls using
JAAS.

The authentication technology used for these tutorials is very basic, just ensuring that the user
specifies a particular name and password. Thus, these tutorials can be run by everyone.

JAAS Authentication Tutorial
JAAS can be used for two purposes:

• for authentication of users, to reliably and securely determine who is currently executing
Java code, regardless of whether the code is running as an application, an applet, a bean,
or a servlet; and

Chapter 6
JAAS Tutorials

6-18

• for authorization of users to ensure they have the access control rights (permissions)
required to do the actions performed.

This section provides a basic tutorial for the authentication component. The authorization
component will be described in the JAAS Authorization Tutorial.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to
remain independent from underlying authentication technologies. New or updated technologies
can be plugged in without requiring modifications to the application itself. An implementation
for a particular authentication technology to be used is determined at runtime. The
implementation is specified in a login configuration file. The authentication technology used for
this tutorial is very basic, just ensuring that the user specifies a particular name and password.

The rest of this tutorial consists of the following sections:

1. The Authentication Tutorial Code

2. The Login Configuration

3. Running the Code

4. Running the Code with a Security Manager

If you want to first see the tutorial code in action, you can skip directly to Running the Code
and then go back to the other sections to learn about coding and configuration file details.

The Authentication Tutorial Code
The code for this tutorial consists of three files:

• SampleAcn.java contains the sample application class (SampleAcn) and another class
used to handle user input (MyCallbackHandler). The code in this file is the only code
you need to understand for this tutorial. Your application will only indirectly use the
other source files.

• SampleLoginModule.java is the class specified by the tutorial's login configuration file,
sample_jass.config, described in The Login Configuration File for the JAAS
Authentication Tutorial as the class implementing the desired underlying authentication.
SampleLoginModule's user authentication consists of simply verifying that the name and
password specified by the user have specific values.

• SamplePrincipal.java is a sample class implementing the
java.security.Principal interface. It is used by SampleLoginModule.

SampleAcn.java
Our authentication tutorial application code is contained in a single source file,
SampleAcn.java. That file contains two classes:

• The SampleAcn Class

• The MyCallbackHandler Class

The SampleAcn Class

The main method of the SampleAcn class performs the authentication and then reports whether
or not authentication succeeded.

The code for authenticating the user is very simple, consisting of just two steps:

1. Instantiating a LoginContext

Chapter 6
JAAS Tutorials

6-19

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

2. Calling the LoginContext's login Method

First the basic code is shown, followed by The Complete SampleAcn Class Code, complete
with the import statement it requires and error handling.

Instantiating a LoginContext
In order to authenticate a user, you first need a javax.security.auth.login.LoginContext.
Here is the basic way to instantiate a LoginContext:

import javax.security.auth.login.*;
. . .
LoginContext lc =
 new LoginContext(<config file entry name>,
 <CallbackHandler to be used for user interaction>);

and here is the specific way our tutorial code does the instantiation:

import javax.security.auth.login.*;
. . .
LoginContext lc =
 new LoginContext("Sample",
 new MyCallbackHandler());

The arguments are the following:

1. The name of an entry in the JAAS login configuration file
This is the name for the LoginContext to use to look up an entry for this application in
the JAAS login configuration file, described in The Login Configuration. Such an entry
specifies the class(es) that implement the desired underlying authentication
technology(ies). The class(es) must implement the LoginModule interface, which is in the
javax.security.auth.spi package.

In our sample code, we use the SampleLoginModule supplied with this tutorial. The
SampleLoginModule performs authentication by ensuring that the user types a particular
name and password.

The entry in the login configuration file we use for this tutorial, sample_jass.config
(see The Login Configuration File for the JAAS Authentication Tutorial), has the name
"Sample", so that is the name we specify as the first argument to the LoginContext
constructor.

2. A CallbackHandler instance
When a LoginModule needs to communicate with the user, for example to ask for a user
name and password, it does not do so directly. That is because there are various ways of
communicating with a user, and it is desirable for LoginModules to remain independent
of the different types of user interaction. Rather, the LoginModule invokes a
javax.security.auth.callback.CallbackHandler to perform the user interaction
and obtain the requested information, such as the user name and password.

An instance of the particular CallbackHandler to be used is specified as the second
argument to the LoginContext constructor. The LoginContext forwards that instance
to the underlying LoginModule (in our case SampleLoginModule). An application typically
provides its own CallbackHandler implementation. A simple CallbackHandler,
TextCallbackHandler, is provided in the com.sun.security.auth.callback package
to output information to and read input from the command line. However, we instead

Chapter 6
JAAS Tutorials

6-20

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html

demonstrate the more typical case of an application providing its own CallbackHandler
implementation, described in The MyCallbackHandler Class.

Calling the LoginContext's login Method
Once we have a LoginContext lc, we can call its login method to carry out the
authentication process:

lc.login();

The LoginContext instantiates a new empty javax.security.auth.Subject object
(which represents the user or service being authenticated; see Subject). The LoginContext
constructs the configured LoginModule (in our case SampleLoginModule) and initializes it with
this new Subject and MyCallbackHandler.

The LoginContext's login method then calls methods in the SampleLoginModule to perform
the login and authentication. The SampleLoginModule will utilize the MyCallbackHandler to
obtain the user name and password. Then the SampleLoginModule will check that the name
and password are the ones it expects.

If authentication is successful, the SampleLoginModule populates the Subject with a
Principal representing the user. The Principal the SampleLoginModule places in the
Subject is an instance of SamplePrincipal, which is a sample class implementing the
java.security.Principal interface.

The calling application can subsequently retrieve the authenticated Subject by calling the
LoginContext's getSubject method, although doing so is not necessary for this tutorial.

The Complete SampleAcn Class Code
Now that you have seen the basic code required to authenticate the user, we can put it all
together into the full class in SampleAcn.java, which includes relevant import statements
and error handling:

SampleAcn.java

package sample;

import java.io.*;
import java.util.*;
import javax.security.auth.login.*;
import javax.security.auth.*;
import javax.security.auth.callback.*;

/**
 * This Sample application attempts to authenticate a user
 * and reports whether or not the authentication was successful.
 */
public class SampleAcn {

 /**
 * Attempt to authenticate the user.
 *
 * @param args input arguments for this application. These are ignored.
 */
 public static void main(String[] args) {

 // Obtain a LoginContext, needed for authentication. Tell it

Chapter 6
JAAS Tutorials

6-21

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

 // to use the LoginModule implementation specified by the
 // entry named "Sample" in the JAAS login configuration
 // file and to also use the specified CallbackHandler.
 LoginContext lc = null;
 try {
 lc = new LoginContext("Sample", new MyCallbackHandler());
 } catch (LoginException le) {
 System.err.println("Cannot create LoginContext. "
 + le.getMessage());
 System.exit(-1);
 } catch (SecurityException se) {
 System.err.println("Cannot create LoginContext. "
 + se.getMessage());
 System.exit(-1);
 }

 // the user has 3 attempts to authenticate successfully
 int i;
 for (i = 0; i < 3; i++) {
 try {

 // attempt authentication
 lc.login();

 // if we return with no exception, authentication succeeded
 break;

 } catch (LoginException le) {

 System.err.println("Authentication failed:");
 System.err.println(" " + le.getMessage());
 try {
 Thread.currentThread().sleep(3000);
 } catch (Exception e) {
 // ignore
 }

 }
 }

 // did they fail three times?
 if (i == 3) {
 System.out.println("Sorry");
 System.exit(-1);
 }

 System.out.println("Authentication succeeded!");

 }
}

/**
 * The application implements the CallbackHandler.
 *
 * <p> This application is text-based. Therefore it displays information

Chapter 6
JAAS Tutorials

6-22

 * to the user using the OutputStreams System.out and System.err,
 * and gathers input from the user using the InputStream System.in.
 */
class MyCallbackHandler implements CallbackHandler {

 /**
 * Invoke an array of Callbacks.
 *
 * <p>
 *
 * @param callbacks an array of <code>Callback</code> objects which
contain
 * the information requested by an underlying security
 * service to be retrieved or displayed.
 *
 * @exception java.io.IOException if an input or output error occurs. <p>
 *
 * @exception UnsupportedCallbackException if the implementation of this
 * method does not support one or more of the Callbacks
 * specified in the <code>callbacks</code> parameter.
 */
 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof TextOutputCallback) {

 // display the message according to the specified type
 TextOutputCallback toc = (TextOutputCallback)callbacks[i];
 switch (toc.getMessageType()) {
 case TextOutputCallback.INFORMATION:
 System.out.println(toc.getMessage());
 break;
 case TextOutputCallback.ERROR:
 System.out.println("ERROR: " + toc.getMessage());
 break;
 case TextOutputCallback.WARNING:
 System.out.println("WARNING: " + toc.getMessage());
 break;
 default:
 throw new IOException("Unsupported message type: " +
 toc.getMessageType());
 }

 } else if (callbacks[i] instanceof NameCallback) {

 // prompt the user for a username
 NameCallback nc = (NameCallback)callbacks[i];

 System.err.print(nc.getPrompt());
 System.err.flush();
 nc.setName((new BufferedReader
 (new InputStreamReader(System.in))).readLine());

 } else if (callbacks[i] instanceof PasswordCallback) {

Chapter 6
JAAS Tutorials

6-23

 // prompt the user for sensitive information
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.err.print(pc.getPrompt());
 System.err.flush();
 pc.setPassword(System.console().readPassword());

 } else {
 throw new UnsupportedCallbackException
 (callbacks[i], "Unrecognized Callback");
 }
 }
 }
}

The MyCallbackHandler Class

In some cases a LoginModule must communicate with the user to obtain authentication
information. LoginModules use a javax.security.auth.callback.CallbackHandler for this
purpose. An application can either use one of the sample implementations provided in the
com.sun.security.auth.callback package or, more typically, write a CallbackHandler
implementation. The application passes the CallbackHandler as an argument to the
LoginContext instantiation. The LoginContext forwards the CallbackHandler directly
to the underlying LoginModules.

The tutorial sample code supplies its own CallbackHandler implementation, the
MyCallbackHandler class in page 6-19.

CallbackHandler is an interface with one method to implement:

 void handle(Callback[] callbacks)
 throws java.io.IOException, UnsupportedCallbackException;

The LoginModule passes the CallbackHandler handle method an array of appropriate
javax.security.auth.callback.Callbacks, for example a NameCallback for the
user name and a PasswordCallback for the password, and the CallbackHandler
performs the requested user interaction and sets appropriate values in the Callbacks.

The MyCallbackHandler handle method is structured as follows:

public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof TextOutputCallback) {

 // display a message according to a specified type
 . . .

 } else if (callbacks[i] instanceof NameCallback) {

 // prompt the user for a username
 . . .

 } else if (callbacks[i] instanceof PasswordCallback) {

Chapter 6
JAAS Tutorials

6-24

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/Callback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html

 // prompt the user for a password
 . . .

 } else {
 throw new UnsupportedCallbackException
 (callbacks[i], "Unrecognized Callback");
 }
 }
}

A CallbackHandler handle method is passed an array of Callback instances, each of a
particular type (NameCallback, PasswordCallback, etc.). It must handle each Callback,
performing user interaction in a way that is appropriate for the executing application.

MyCallbackHandler handles three types of Callbacks: NameCallback to prompt the user for a
user name, PasswordCallback to prompt for a password, and TextOutputCallback to
report any error, warning, or other messages the SampleLoginModule wishes to send to the
user.

The handle method handles a TextOutputCallback by extracting the message to be
reported and then printing it to System.out, optionally preceded by additional wording that
depends on the message type. The message to be reported is determined by calling the
TextOutputCallback's getMessage method and the type by calling its getMessageType
method. Here is the code for handling a TextOutputCallback:

if (callbacks[i] instanceof TextOutputCallback) {

 // display the message according to the specified type
 TextOutputCallback toc = (TextOutputCallback)callbacks[i];
 switch (toc.getMessageType()) {
 case TextOutputCallback.INFORMATION:
 System.out.println(toc.getMessage());
 break;
 case TextOutputCallback.ERROR:
 System.out.println("ERROR: " + toc.getMessage());
 break;
 case TextOutputCallback.WARNING:
 System.out.println("WARNING: " + toc.getMessage());
 break;
 default:
 throw new IOException("Unsupported message type: " +
 toc.getMessageType());
 }

The handle method handles a NameCallback by prompting the user for a user name. It does
this by printing the prompt to System.err. It then sets the name for use by the
SampleLoginModule by calling the NameCallback's setName method, passing it the name
typed by the user:

} else if (callbacks[i] instanceof NameCallback) {

 // prompt the user for a username
 NameCallback nc = (NameCallback)callbacks[i];

 System.err.print(nc.getPrompt());

Chapter 6
JAAS Tutorials

6-25

 System.err.flush();
 nc.setName((new BufferedReader
 (new InputStreamReader(System.in))).readLine());

Similarly, the handle method handles a PasswordCallback by printing a prompt to
System.err to prompt the user for a password. It then sets the password for use by the
SampleLoginModule by calling the PasswordCallback's setPassword method, passing it the
password typed by the user:

} else if (callbacks[i] instanceof PasswordCallback) {

 // prompt the user for sensitive information
 PasswordCallback pc = (PasswordCallback)callbacks[i];

 System.err.print(pc.getPrompt());
 System.err.flush();
 pc.setPassword(System.console().readPassword());

SampleLoginModule.java and SamplePrincipal.java
SampleLoginModule.java implements the LoginModule interface. SampleLoginModule is
the class specified by the tutorial's login configuration file (see The Login Configuration File for
the JAAS Authentication Tutorial) as the class implementing the desired underlying
authentication. SampleLoginModule's user authentication consists of simply verifying that the
name and password specified by the user have specific values. This SampleLoginModule is
specified by the tutorial's login configuration file as the LoginModule to use because (1) It
performs a basic type of authentication suitable for any environment and thus is appropriate for
a tutorial for all users, and (2) It provides an example LoginModule implementation for
experienced programmers who require the ability to write a LoginModule implementing an
authentication technology.

SamplePrincipal.java is a sample class implementing the java.security.Principal
interface. If authentication is successful, the SampleLoginModule populates a Subject with a
SamplePrincipal representing the user.

Important: If you are an application writer, you do not need to know how to write a
LoginModule or a Principal implementation. You do not need to examine the
SampleLoginModule or SamplePrincipal code. All you have to know is how to write your
application and specify configuration information (such as in a login configuration file) such that
the application will be able to utilize the LoginModule specified by the configuration to
authenticate the user. You need to determine which LoginModule(s) you want to use and
read the LoginModule's documentation to learn about what options you can specify values
for (in the configuration) to control the LoginModule's behavior.

Any vendor can provide a LoginModule implementation that you can use. Some
implementations are supplied with the JDK from Oracle, as listed in Appendix B: JAAS Login
Configuration File.

Information for programmers who want to write a LoginModule can be found in Java
Authentication and Authorization Service (JAAS): LoginModule Developer's Guide.

SampleLoginModule.java

package sample.module;

Chapter 6
JAAS Tutorials

6-26

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html

import java.util.*;
import java.io.IOException;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import sample.principal.SamplePrincipal;

/**
 * <p> This sample LoginModule authenticates users with a password.
 *
 * <p> This LoginModule only recognizes one user: testUser
 * <p> testUser's password is: testPassword
 *
 * <p> If testUser successfully authenticates itself,
 * a <code>SamplePrincipal</code> with the testUser's user name
 * is added to the Subject.
 *
 * <p> This LoginModule recognizes the debug option.
 * If set to true in the login Configuration,
 * debug messages will be output to the output stream, System.out.
 *
 */
public class SampleLoginModule implements LoginModule {

 // initial state
 private Subject subject;
 private CallbackHandler callbackHandler;
 private Map sharedState;
 private Map options;

 // configurable option
 private boolean debug = false;

 // the authentication status
 private boolean succeeded = false;
 private boolean commitSucceeded = false;

 // username and password
 private String username;
 private char[] password;

 // testUser's SamplePrincipal
 private SamplePrincipal userPrincipal;

 /**
 * Initialize this <code>LoginModule</code>.
 *
 * @param subject the <code>Subject</code> to be authenticated. <p>
 *
 * @param callbackHandler a <code>CallbackHandler</code> for communicating
 * with the end user (prompting for user names and
 * passwords, for example). <p>
 *
 * @param sharedState shared <code>LoginModule</code> state. <p>
 *

Chapter 6
JAAS Tutorials

6-27

 * @param options options specified in the login
 * <code>Configuration</code> for this particular
 * <code>LoginModule</code>.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map<java.lang.String, ?> sharedState,
 Map<java.lang.String, ?> options) {

 this.subject = subject;
 this.callbackHandler = callbackHandler;
 this.sharedState = sharedState;
 this.options = options;

 // initialize any configured options
 debug = "true".equalsIgnoreCase((String)options.get("debug"));
 }

 /**
 * Authenticate the user by prompting for a user name and password.
 *
 * @return true in all cases since this <code>LoginModule</code>
 * should not be ignored.
 *
 * @exception FailedLoginException if the authentication fails. <p>
 *
 * @exception LoginException if this <code>LoginModule</code>
 * is unable to perform the authentication.
 */
 public boolean login() throws LoginException {

 // prompt for a user name and password
 if (callbackHandler == null)
 throw new LoginException("Error: no CallbackHandler available " +
 "to garner authentication information from the user");

 Callback[] callbacks = new Callback[2];
 callbacks[0] = new NameCallback("user name: ");
 callbacks[1] = new PasswordCallback("password: ", false);

 try {
 callbackHandler.handle(callbacks);
 username = ((NameCallback)callbacks[0]).getName();
 char[] tmpPassword =
((PasswordCallback)callbacks[1]).getPassword();
 if (tmpPassword == null) {
 // treat a NULL password as an empty password
 tmpPassword = new char[0];
 }
 password = new char[tmpPassword.length];
 System.arraycopy(tmpPassword, 0,
 password, 0, tmpPassword.length);
 ((PasswordCallback)callbacks[1]).clearPassword();

 } catch (java.io.IOException ioe) {
 throw new LoginException(ioe.toString());

Chapter 6
JAAS Tutorials

6-28

 } catch (UnsupportedCallbackException uce) {
 throw new LoginException("Error: " + uce.getCallback().toString()
+
 " not available to garner authentication information " +
 "from the user");
 }

 // print debugging information
 if (debug) {
 System.out.println("\t\t[SampleLoginModule] " +
 "user entered user name: " +
 username);
 System.out.print("\t\t[SampleLoginModule] " +
 "user entered password: ");
 for (int i = 0; i < password.length; i++)
 System.out.print(password[i]);
 System.out.println();
 }

 // verify the username/password
 boolean usernameCorrect = false;
 boolean passwordCorrect = false;
 if (username.equals("testUser"))
 usernameCorrect = true;
 if (usernameCorrect &&
 password.length == 12 &&
 password[0] == 't' &&
 password[1] == 'e' &&
 password[2] == 's' &&
 password[3] == 't' &&
 password[4] == 'P' &&
 password[5] == 'a' &&
 password[6] == 's' &&
 password[7] == 's' &&
 password[8] == 'w' &&
 password[9] == 'o' &&
 password[10] == 'r' &&
 password[11] == 'd') {

 // authentication succeeded!!!
 passwordCorrect = true;
 if (debug)
 System.out.println("\t\t[SampleLoginModule] " +
 "authentication succeeded");
 succeeded = true;
 return true;
 } else {

 // authentication failed -- clean out state
 if (debug)
 System.out.println("\t\t[SampleLoginModule] " +
 "authentication failed");
 succeeded = false;
 username = null;
 for (int i = 0; i < password.length; i++)
 password[i] = ' ';

Chapter 6
JAAS Tutorials

6-29

 password = null;
 if (!usernameCorrect) {
 throw new FailedLoginException("User Name Incorrect");
 } else {
 throw new FailedLoginException("Password Incorrect");
 }
 }
 }

 /**
 * This method is called if the LoginContext's
 * overall authentication succeeded
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * succeeded).
 *
 * If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> method), then this method associates a
 * <code>SamplePrincipal</code>
 * with the <code>Subject</code> located in the
 * <code>LoginModule</code>. If this LoginModule's own
 * authentication attempted failed, then this method removes
 * any state that was originally saved.
 *
 * @exception LoginException if the commit fails.
 *
 * @return true if this LoginModule's own login and commit
 * attempts succeeded, or false otherwise.
 */
 public boolean commit() throws LoginException {
 if (succeeded == false) {
 return false;
 } else {
 // add a Principal (authenticated identity)
 // to the Subject

 // assume the user we authenticated is the SamplePrincipal
 userPrincipal = new SamplePrincipal(username);
 if (!subject.getPrincipals().contains(userPrincipal))
 subject.getPrincipals().add(userPrincipal);

 if (debug) {
 System.out.println("\t\t[SampleLoginModule] " +
 "added SamplePrincipal to Subject");
 }

 // in any case, clean out state
 username = null;
 for (int i = 0; i < password.length; i++)
 password[i] = ' ';
 password = null;

 commitSucceeded = true;
 return true;
 }
 }

Chapter 6
JAAS Tutorials

6-30

 /**
 * This method is called if the LoginContext's
 * overall authentication failed.
 * (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules
 * did not succeed).
 *
 * If this LoginModule's own authentication attempt
 * succeeded (checked by retrieving the private state saved by the
 * <code>login</code> and <code>commit</code> methods),
 * then this method cleans up any state that was originally saved.
 *
 * @exception LoginException if the abort fails.
 *
 * @return false if this LoginModule's own login and/or commit attempts
 * failed, and true otherwise.
 */
 public boolean abort() throws LoginException {
 if (succeeded == false) {
 return false;
 } else if (succeeded == true && commitSucceeded == false) {
 // login succeeded but overall authentication failed
 succeeded = false;
 username = null;
 if (password != null) {
 for (int i = 0; i < password.length; i++)
 password[i] = ' ';
 password = null;
 }
 userPrincipal = null;
 } else {
 // overall authentication succeeded and commit succeeded,
 // but someone else's commit failed
 logout();
 }
 return true;
 }

 /**
 * Logout the user.
 *
 * This method removes the <code>SamplePrincipal</code>
 * that was added by the <code>commit</code> method.
 *
 * @exception LoginException if the logout fails.
 *
 * @return true in all cases since this <code>LoginModule</code>
 * should not be ignored.
 */
 public boolean logout() throws LoginException {

 subject.getPrincipals().remove(userPrincipal);
 succeeded = false;
 succeeded = commitSucceeded;
 username = null;
 if (password != null) {

Chapter 6
JAAS Tutorials

6-31

 for (int i = 0; i < password.length; i++)
 password[i] = ' ';
 password = null;
 }
 userPrincipal = null;
 return true;
 }
}

SamplePrincipal.java

package sample.principal;

import java.security.Principal;

/**
 * This class implements the <code>Principal</code> interface
 * and represents a Sample user.
 *
 * Principals such as this <code>SamplePrincipal</code>
 * may be associated with a particular <code>Subject</code>
 * to augment that <code>Subject</code> with an additional
 * identity. Refer to the <code>Subject</code> class for more information
 * on how to achieve this. Authorization decisions can then be based upon
 * the Principals associated with a <code>Subject</code>.
 *
 * @see java.security.Principal
 * @see javax.security.auth.Subject
 */
public class SamplePrincipal implements Principal, java.io.Serializable {

 /**
 * @serial
 */
 private String name;

 /**
 * Create a SamplePrincipal with a Sample username.
 *
 * @param name the Sample username for this user.
 *
 * @exception NullPointerException if the <code>name</code>
 * is <code>null</code>.
 */
 public SamplePrincipal(String name) {
 if (name == null)
 throw new NullPointerException("illegal null input");

 this.name = name;
 }

 /**
 * Return the Sample username for this <code>SamplePrincipal</code>.
 *
 * @return the Sample username for this <code>SamplePrincipal</code>

Chapter 6
JAAS Tutorials

6-32

 */
 public String getName() {
 return name;
 }

 /**
 * Return a string representation of this <code>SamplePrincipal</code>.
 *
 * @return a string representation of this <code>SamplePrincipal</code>.
 */
 public String toString() {
 return("SamplePrincipal: " + name);
 }

 /**
 * Compares the specified Object with this <code>SamplePrincipal</code>
 * for equality. Returns true if the given object is also a
 * <code>SamplePrincipal</code> and the two SamplePrincipals
 * have the same username.
 *
 * @param o Object to be compared for equality with this
 * <code>SamplePrincipal</code>.
 *
 * @return true if the specified Object is equal equal to this
 * <code>SamplePrincipal</code>.
 */
 public boolean equals(Object o) {
 if (o == null)
 return false;

 if (this == o)
 return true;

 if (!(o instanceof SamplePrincipal))
 return false;
 SamplePrincipal that = (SamplePrincipal)o;

 if (this.getName().equals(that.getName()))
 return true;
 return false;
 }

 /**
 * Return a hash code for this <code>SamplePrincipal</code>.
 *
 * @return a hash code for this <code>SamplePrincipal</code>.
 */
 public int hashCode() {
 return name.hashCode();
 }
}

Chapter 6
JAAS Tutorials

6-33

The Login Configuration
JAAS authentication is performed in a pluggable fashion, so applications can remain
independent from underlying authentication technologies. A system administrator determines
the authentication technologies, or LoginModules, to be used for each application and
configures them in a login Configuration. The source of the configuration information (for
example, a file or a database) is up to the current
javax.security.auth.login.Configuration implementation. The default
Configuration implementation from Oracle reads configuration information from configuration
files, as described in the ConfigFile class.

See Appendix B: JAAS Login Configuration File for information as to what a login configuration
file is, what it contains, and how to specify which login configuration file should be used.

The Login Configuration File for the JAAS Authentication Tutorial
As noted, the login configuration file we use for this tutorial, sample_jass.config, contains
just one entry, which is

Sample {
 sample.module.SampleLoginModule required debug=true;
};

This entry is named "Sample" and that is the name that our tutorial application, SampleAcn,
uses to refer to this entry. The entry specifies that the LoginModule to be used to do the user
authentication is the SampleLoginModule in the sample.module package and that this
SampleLoginModule is required to "succeed" in order for authentication to be considered
successful. The SampleLoginModule succeeds only if the name and password supplied by the
user are the one it expects ("testUser" and "testPassword", respectively).

The SampleLoginModule also defines a "debug" option that can be set to true as shown. If this
option is set to true, SampleLoginModule outputs extra information about the progress of
authentication. A LoginModule can define as many options as it wants. The LoginModule
documentation should specify the possible option names and values you can set in your
configuration file.

Running the Code
To execute our JAAS authentication tutorial code, all you have to do is

1. Place the following file into a directory:

• sample_jass.config login configuration file (see The Login Configuration File for
the JAAS Authentication Tutorial)

2. Create a subdirectory named sample of that top-level directory, and place the following
into it (note the SampleAcn and MyCallbackHandler classes, both in SampleAcn.java,
are in a package named sample):

• SampleAcn.java application source file

3. Create a subdirectory of the sample directory and name it module. Place the following
into it (note the SampleLoginModule class is in a package named sample.module):

• SampleLoginModule.java source file

Chapter 6
JAAS Tutorials

6-34

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/ConfigFile.html

4. Create another subdirectory of the sample directory and name it principal. Place the
following into it (note the SamplePrincipal class is in a package named
sample.principal):

• SamplePrincipal.java source file

5. While in the top-level directory, compile SampleAcn.java, SampleLoginModule.java, and
SamplePrincipal.java:

javac sample/SampleAcn.java sample/module/SampleLoginModule.java sample/
principal/SamplePrincipal.java
(Type all that on one line.)

6. Execute the SampleAcn application, specifying

• by -Djava.security.auth.login.config==sample_jaas.config that the login
configuration file to be used is sample_jaas.config.

The following is the full command:

java -Djava.security.auth.login.config==sample_jaas.config sample.SampleAcn

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

You will be prompted for your user name and password, and the SampleLoginModule specified
in the login configuration file will check to ensure these are correct. The SampleLoginModule
expects testUser for the user name and testPassword for the password.

You will see some messages output by SampleLoginModule as a result of the debug option
being set to true in the login configuration file. Then, if your login is successful, you will see the
following message output by SampleAcn:

Authentication succeeded!

If the login is not successful (for example, if you misspell the password), you will see

Authentication failed:

followed by a reason for the failure. For example, if you mistype the password, you may see a
message like the following:

Authentication failed:
 Password Incorrect

SampleAcn gives you three chances to successfully log in.

Chapter 6
JAAS Tutorials

6-35

Running the Code with a Security Manager
When a Java program is run with a security manager installed, the program is not allowed to
access resources or otherwise perform security-sensitive operations unless it is explicitly
granted permission to do so by the security policy in effect. (See Permissions in the JDK.) The
permission must be granted by an entry in a policy file (see Default Policy Implementation and
Policy File Syntax.)

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Most browsers install a security manager, so applets typically run under the scrutiny of a
security manager. Applications, on the other hand, do not, since a security manager is not
automatically installed when an application is running. Thus an application, like our SampleAcn
application, by default has full access to resources.

To run an application with a security manager, simply invoke the interpreter with a -
Djava.security.manager argument included on the command line.

If you try invoking SampleAcn with a security manager but without specifying any policy file, you
will get the following (unless you have a default policy setup elsewhere that grants the required
permissions or grants AllPermission):

% java -Djava.security.manager \
 -Djava.security.auth.login.config==sample_jaas.config sample.SampleAcn
Exception in thread "main" java.security.AccessControlException:
 access denied (
 javax.security.auth.AuthPermission createLoginContext.Sample)

As you can see, you get an AccessControlException, because we haven't created and
used a policy file granting our code the permission that is required in order to be allowed to
create a LoginContext.

Here are the complete steps required in order to be able to run our SampleAcn application with
a security manager installed. You can skip the first five steps if you have already done them, as
described in Running the Code.

1. Place the following file into a directory:

• sample_jass.config login configuration file (see The Login Configuration File for
the JAAS Authentication Tutorial)

2. Create a subdirectory named sample of that top-level directory, and place the following
into it (note the SampleAcn and MyCallbackHandler classes, both in SampleAcn.java,
are in a package named sample):

• SampleAcn.java application source file

3. Create a subdirectory of the sample directory and name it module. Place the following
into it (note the SampleLoginModule class is in a package named sample.module):

• SampleLoginModule.java source file

Chapter 6
JAAS Tutorials

6-36

https://openjdk.java.net/jeps/411

4. Create another subdirectory of the sample directory and name it principal. Place the
following into it (note the SamplePrincipal class is in a package named
sample.principal):

• SamplePrincipal.java source file

5. While in the top-level directory, compile SampleAcn.java, SampleLoginModule.java, and
SamplePrincipal.java:

javac sample/SampleAcn.java sample/module/SampleLoginModule.java sample/
principal/SamplePrincipal.java
(Type all that on one line.)

6. Create a JAR file containing SampleAcn.class and MyCallbackHandler.class:

jar -cvf SampleAcn.jar sample/SampleAcn.class sample/MyCallbackHandler.class
(Type all that on one line.) This command creates a JAR file, SampleAcn.jar, and places
the SampleAcn.class and MyCallbackHandler.class files inside it.

7. Create a JAR file containing SampleLoginModule.class and SamplePrincipal.class:

jar -cvf SampleLM.jar sample/module/SampleLoginModule.class sample/principal/
SamplePrincipal.class

8. Create a policy file granting the required permissions.

The permission that is needed by code attempting to instantiate a LoginContext is a
javax.security.auth.AuthPermission with target createLoginContext.<entry name>.
Here, <entry name> refers to the name of the login configuration file entry that the
application references in its instantiation of LoginContext. The name used by our
SampleAcn application's LoginContext instantiation is Sample, as you can see in the
code:

LoginContext lc =
 new LoginContext("Sample",
 new MyCallbackHandler());

Thus, the permission that needs to be granted to SampleAcn.jar is

permission javax.security.auth.AuthPermission
 "createLoginContext.Sample";

The SampleLM.jar file also needs to be granted a permission. The documentation for a
LoginModule should tell you what permissions it needs to be granted. In the case of
SampleLoginModule, it needs a javax.security.auth.AuthPermission with target
modifyPrincipals in order to populate a Subject with a Principal:

permission javax.security.auth.AuthPermission
 "modifyPrincipals";

Copy the policy file sampleacn.policy to the same directory as that in which you stored
SampleAcn.java, etc. The policy file contains the following grant statement to grant
SampleAcn.jar (in the current directory) its required permission:

grant codebase "file:./SampleAcn.jar" {
 permission javax.security.auth.AuthPermission

Chapter 6
JAAS Tutorials

6-37

"createLoginContext.Sample";
};

The policy file also contains the following grant statement to grant SampleLM.jar (also in
the current directory) its required permission:

grant codebase "file:./SampleLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
};

Note: Policy files and the structure of entries within them are described in Default Policy
Implementation and Policy File Syntax. Permissions are described in Permissions in the
JDK.

Execute the SampleAcn application, specifying

a. by an appropriate -classpath clause that classes should be searched for in the
SampleAcn.jar and SampleLM.jar JAR files,

b. by -Djava.security.manager that a security manager should be installed,

c. by -Djava.security.policy==sampleacn.policy that the policy file to be used is
sampleacn.policy, and

d. by -Djava.security.auth.login.config==sample_jaas.config that the login
configuration file to be used is sample_jaas.config.

Note:

Use the double equals sign (==) with the java.security.policy property with
care as it overrides the built-in JDK policy file, which grants a set of default
permissions that are designed to provide a secure, out-of-the-box configuration
for the JDK. Overriding this policy may result in unexpected behavior (JDK code
may not be granted the right permissions) and should only be done by
experienced users.

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

The following are the full commands to use for Windows, Linux, and macOS. The only
difference is that on Windows systems you use semicolons to separate class path items,
while you use colons for that purpose on Linux and macOS.

Here is the full command for Windows:

java -classpath SampleAcn.jar;SampleLM.jar
 -Djava.security.manager
 -Djava.security.policy==sampleacn.policy
 -Djava.security.auth.login.config==sample_jaas.config
 sample.SampleAcn

Chapter 6
JAAS Tutorials

6-38

Here is the full command for Linux and macOS:

java -classpath SampleAcn.jar:SampleLM.jar
 -Djava.security.manager
 -Djava.security.policy==sampleacn.policy
 -Djava.security.auth.login.config==sample_jaas.config
 sample.SampleAcn

Type all that on one line. Multiple lines are used here for legibility. If the command is too
long for your system, you may need to place it in a .bat file (for Windows) or a .sh file (for
Linux and macOS) and then run that file to execute the command.

Since the specified policy file contains an entry granting the code the required permissions,
execution should proceed without any exceptions indicating a required permission was not
granted. You will be prompted for a user name and password (use testUser and
testPassword), and the SampleLoginModule specified in the login configuration file will
check the name and password. If your login is successful, you will see the message
Authentication succeeded! and if not, you will see Authentication failed: followed by
a reason for the failure.

sampleacn.policy

/* grant the sample LoginModule permissions */
grant codebase "file:./SampleLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
};

grant codebase "file:./SampleAcn.jar" {
 permission javax.security.auth.AuthPermission "createLoginContext.Sample";
};

JAAS Authorization Tutorial
This tutorial expands the program and policy file developed in the JAAS Authentication Tutorial
tutorial to demonstrate the JAAS authorization component, which ensures the authenticated
caller has the access control rights (permissions) required to do subsequent security-sensitive
operations. Since the authorization component requires that the user authentication first be
completed, please read the JAAS Authentication Tutorial tutorial first if you have not already
done so.

The rest of this tutorial consists of the following sections:

• What is JAAS Authorization?

• How is JAAS Authorization Performed?

– How Do You Make Principal-Based Policy File Statements?

– How Do You Associate a Subject with an Access Control Context?

• The Authorization Tutorial Code

• The Login Configuration File for the JAAS Authorization Tutorial

• The Policy File

• Running the Authorization Tutorial Code

Chapter 6
JAAS Tutorials

6-39

If you want to first see the tutorial code in action, you can skip directly to Running the
Authorization Tutorial Code and then go back to the other sections to learn more.

What is JAAS Authorization?
JAAS authorization extends the existing Java security architecture that uses a security policy
(see Default Policy Implementation and Policy File Syntax) to specify what access rights are
granted to executing code. That architecture is code-centric. That is, the permissions are
granted based on code characteristics: where the code is coming from and whether it is
digitally signed and if so by whom. We saw an example of this in the sampleacn.policy file
used in the JAAS Authentication Tutorial tutorial. That file contains the following:

grant codebase "file:./SampleAcn.jar" {

 permission javax.security.auth.AuthPermission
 "createLoginContext.Sample";
};

This grants the code in the SampleAcn.jar file, located in the current directory, the specified
permission. (No signer is specified, so it doesn't matter whether the code is signed or not.)

JAAS authorization augments the existing code-centric access controls with new user-centric
access controls. Permissions can be granted based not just on what code is running but also
on who is running it.

When an application uses JAAS authentication to authenticate the user (or other entity such as
a service), a Subject is created as a result. The purpose of the Subject is to represent the
authenticated user. A Subject is comprised of a set of Principals, where each Principal
represents an identity for that user. For example, a Subject could have a name Principal
("Susan Smith") and a Social Security Number Principal ("987-65-4321"), thereby
distinguishing this Subject from other Subjects.

Permissions can be granted in the policy to specific Principals. After the user has been
authenticated, the application can associate the Subject with the current access control
context. For each subsequent security-checked operation (a local file access, for example), the
Java runtime will automatically determine whether the policy grants the required permission
only to a specific Principal and if so, the operation will be allowed only if the Subject
associated with the access control context contains the designated Principal.

How is JAAS Authorization Performed?
To make JAAS authorization take place, the following is required:

• The user must be authenticated, as described in the JAAS Authentication Tutorial tutorial.

• Principal-based entries must be configured in the security policy; see How Do You
Make Principal-Based Policy File Statements?

• The Subject that is the result of authentication must be associated with the current
access control context; see How Do You Associate a Subject with an Access Control
Context?.

How Do You Make Principal-Based Policy File Statements?
Policy file grant statements (see Default Policy Implementation and Policy File Syntax can
now optionally include one or more Principal fields. Inclusion of a Principal field indicates

Chapter 6
JAAS Tutorials

6-40

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

that the user or other entity represented by the specified Principal, executing the specified
code, has the designated permissions.

Thus, the basic format of a grant statement is now

grant <signer(s) field>, <codeBase URL>
 <Principal field(s)> {
 permission perm_class_name "target_name", "action";

 permission perm_class_name "target_name", "action";
 };

where each of the signer, codeBase and Principal fields is optional and the order between
the fields doesn't matter.

A Principal field looks like the following:

Principal Principal_class "principal_name"

That is, it is the word Principal (where case doesn't matter) followed by the (fully qualified)
name of a Principal class and a principal name.

A Principal class is a class that implements the java.security.Principal interface. All
Principal objects have an associated name that can be obtained by calling their getName
method. The format used for the name is dependent on each Principal implementation.

The type of Principal placed in the Subject created by the basic authentication mechanism
used by this tutorial is SamplePrincipal, so that is what should be used as the
Principal_class part of our grant statement's Principal designation. User names for
SamplePrincipals are of the form name, and the only user name accepted for this tutorial is
testUser, so the principal_name designation to use in the grant statement is testUser.

It is possible to include more than one Principal field in a grant statement. If multiple
Principal fields are specified, then the permissions in that grant statement are granted only if
the Subject associated with the current access control context contains all of those
Principals.

To grant the same set of permissions to different Principals, create multiple grant statements
where each lists the permissions and contains a single Principal field designating one of the
Principals.

The policy file for this tutorial includes one grant statement with a Principal field:

grant codebase "file:./SampleAction.jar",
 Principal sample.principal.SamplePrincipal "testUser" {

 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

This specifies that the indicated permissions are granted to the specified Principal executing
the code in SampleAction.jar. (Note: the SamplePrincipal class is in the sample.principal
package.)

Chapter 6
JAAS Tutorials

6-41

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

How Do You Associate a Subject with an Access Control Context?
To create and associate a Subject with the current access control context, you need the
following:

• The user must first be authenticated, as described in JAAS Authentication Tutorial.

• The static doAs method from the Subject class must be called, passing it an
authenticated Subject and a java.security.PrivilegedAction or
java.security.PrivilegedExceptionAction. (See Appendix A: API for Privileged
Blocks in Permissions in the JDK for a comparison of PrivilegedAction and
PrivilegedExceptionAction.) The doAs method associates the provided Subject with the
current access control context and then invokes the run method from the action. The run
method implementation contains all the code to be executed as the specified Subject. The
action thus executes as the specified Subject.
The static doAsPrivileged method from the Subject class may be called instead of the
doAs method, as will be done for this tutorial. In addition to the parameters passed to doAs,
doAsPrivileged requires a third parameter: an AccessControlContext. Unlike doAs, which
associates the provided Subject with the current access control context, doAsPrivileged
associates the Subject with the provided access control context or with an empty access
control context if the parameter passed in is null, as is the case for this tutorial. See doAs
vs. doAsPrivileged in the JAAS Reference Guide for a comparison of those methods.

The Authorization Tutorial Code
The code for this tutorial consists of four files:

• SampleAzn.java is exactly the same as the SampleAcn.java application file from the
JAAS Authentication Tutorial tutorial except for the additional code needed to call
Subject.doAsPrivileged.

• SampleAction.java contains the SampleAction class. This class implements
PrivilegedAction and has a run method that contains all the code we want to be
executed with Principal-based authorization checks.

• SampleLoginModule.java is the class specified by the tutorial's login configuration file
(see The Login Configuration File for the JAAS Authorization Tutorial) as the class
implementing the desired underlying authentication. SampleLoginModule's user
authentication consists of simply verifying that the name and password specified by the
user have specific values. This class was also used by the JAAS Authentication Tutorial
tutorial and will not be discussed further here.

• SamplePrincipal.java is a sample class implementing the
java.security.Principal interface. It is used by SampleLoginModule. This class was
also used by the JAAS Authentication tutorial and will not be discussed further here.

The SampleLoginModule.java and SamplePrincipal.java files were also used in the JAAS
Authentication Tutorial tutorial, so they are not described further here. The following sections
describe the other source files

SampleAzn.java
Like SampleAcn, the SampleAzn class instantiates a LoginContext lc and calls its login
method to perform the authentication. If successful, the authenticated Subject (which

Chapter 6
JAAS Tutorials

6-42

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedAction.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedExceptionAction.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

includes a SamplePrincipal representing the user) is obtained by calling the
LoginContext's getSubject method:

Subject mySubject = lc.getSubject();

After providing the user some information about the Subject, such as which Principals it
has, the main method then calls Subject.doAsPrivileged, passing it the authenticated
Subject mySubject, a PrivilegedAction (SampleAction) and a null
AccessControlContext, as described in the following.

The SampleAction class is instantiated via the following:

PrivilegedAction action = new SampleAction();

The call to Subject.doAsPrivileged is performed via:

Subject.doAsPrivileged(mySubject, action, null);

The doAsPrivileged method invokes execution of the run method in the PrivilegedAction
action (SampleAction) to initiate execution of the rest of the code, which is considered to be
executed on behalf of the Subject mySubject.

Passing null as the AccessControlContext (third) argument to doAsPrivileged indicates
that mySubject should be associated with a new empty AccessControlContext. The result
is that security checks occurring during execution of SampleAction will only require
permissions for the SampleAction code itself (or other code it invokes), running as mySubject.
Note that the caller of doAsPrivileged (and the callers on the execution stack at the time
doAsPrivileged was called) do not require any permissions while the action executes.

SampleAzn.java

package sample;

import java.io.*;
import java.util.*;
import java.security.Principal;
import java.security.PrivilegedAction;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import com.sun.security.auth.*;

/**
 * This Sample application attempts to authenticate a user
 * and executes a SampleAction as that user.
 *
 * If the user successfully authenticates itself,
 * the username and number of Credentials is displayed.
 */
public class SampleAzn {

 /**
 * Attempt to authenticate the user.

Chapter 6
JAAS Tutorials

6-43

 *
 * @param args input arguments for this application. These are ignored.
 */
 public static void main(String[] args) {

 // Obtain a LoginContext, needed for authentication. Tell it
 // to use the LoginModule implementation specified by the
 // entry named "Sample" in the JAAS login configuration
 // file and to also use the specified CallbackHandler.
 LoginContext lc = null;
 try {
 lc = new LoginContext("Sample", new MyCallbackHandler());
 } catch (LoginException le) {
 System.err.println("Cannot create LoginContext. "
 + le.getMessage());
 System.exit(-1);
 } catch (SecurityException se) {
 System.err.println("Cannot create LoginContext. "
 + se.getMessage());
 System.exit(-1);
 }

 // the user has 3 attempts to authenticate successfully
 int i;
 for (i = 0; i < 3; i++) {
 try {

 // attempt authentication
 lc.login();

 // if we return with no exception, authentication succeeded
 break;

 } catch (LoginException le) {

 System.err.println("Authentication failed:");
 System.err.println(" " + le.getMessage());
 try {
 Thread.currentThread().sleep(3000);
 } catch (Exception e) {
 // ignore
 }

 }
 }

 // did they fail three times?
 if (i == 3) {
 System.out.println("Sorry");
 System.exit(-1);
 }

 System.out.println("Authentication succeeded!");

 Subject mySubject = lc.getSubject();

Chapter 6
JAAS Tutorials

6-44

 // let's see what Principals we have
 Iterator principalIterator = mySubject.getPrincipals().iterator();
 System.out.println("Authenticated user has the following
Principals:");
 while (principalIterator.hasNext()) {
 Principal p = (Principal)principalIterator.next();
 System.out.println("\t" + p.toString());
 }

 System.out.println("User has " +
 mySubject.getPublicCredentials().size() +
 " Public Credential(s)");

 // now try to execute the SampleAction as the authenticated Subject
 PrivilegedAction action = new SampleAction();
 Subject.doAsPrivileged(mySubject, action, null);

 System.exit(0);
 }
}

/**
 * A CallbackHandler implemented by the application.
 *
 * This application is text-based. Therefore it displays information
 * to the user using the OutputStreams System.out and System.err,
 * and gathers input from the user using the InputStream System.in.
 */
class MyCallbackHandler implements CallbackHandler {

 /**
 * Invoke an array of Callbacks.
 *
 * @param callbacks an array of <code>Callback</code> objects which
contain
 * the information requested by an underlying security
 * service to be retrieved or displayed.
 *
 * @exception java.io.IOException if an input or output error occurs. <p>
 *
 * @exception UnsupportedCallbackException if the implementation of this
 * method does not support one or more of the Callbacks
 * specified in the <code>callbacks</code> parameter.
 */
 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof TextOutputCallback) {

 // display the message according to the specified type
 TextOutputCallback toc = (TextOutputCallback)callbacks[i];
 switch (toc.getMessageType()) {
 case TextOutputCallback.INFORMATION:
 System.out.println(toc.getMessage());
 break;

Chapter 6
JAAS Tutorials

6-45

 case TextOutputCallback.ERROR:
 System.out.println("ERROR: " + toc.getMessage());
 break;
 case TextOutputCallback.WARNING:
 System.out.println("WARNING: " + toc.getMessage());
 break;
 default:
 throw new IOException("Unsupported message type: " +
 toc.getMessageType());
 }

 } else if (callbacks[i] instanceof NameCallback) {

 // prompt the user for a username
 NameCallback nc = (NameCallback)callbacks[i];

 System.err.print(nc.getPrompt());
 System.err.flush();
 nc.setName((new BufferedReader
 (new InputStreamReader(System.in))).readLine());

 } else if (callbacks[i] instanceof PasswordCallback) {

 // prompt the user for sensitive information
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.err.print(pc.getPrompt());
 System.err.flush();
 pc.setPassword(System.console().readPassword());

 } else {
 throw new UnsupportedCallbackException
 (callbacks[i], "Unrecognized Callback");
 }
 }
 }
}

SampleAction.java
SampleAction.java contains the SampleAction class. This class implements
java.security.PrivilegedAction and has a run method that contains all the code we want to
be executed as the Subject mySubject. For this tutorial, we will perform three operations, each
of which cannot be done unless code has been granted required permissions. We will:

• Read and print the value of the java.home system property,

• Read and print the value of the user.home system property, and

• Determine whether or not a file named foo.txt exists in the current directory.

Here is the code:

SampleAction.java

package sample;

import java.io.File;

Chapter 6
JAAS Tutorials

6-46

import java.security.PrivilegedAction;

/**
 * This is a Sample PrivilegedAction implementation, designed to be
 * used with the Sample application.
 *
 */
public class SampleAction implements PrivilegedAction {

 /**
 * This Sample PrivilegedAction performs the following operations:
 *
 * Access the System property, <i>java.home</i>
 * Access the System property, <i>user.home</i>
 * Access the file, <i>foo.txt</i>
 *
 *
 * @return <code>null</code> in all cases.
 *
 * @exception SecurityException if the caller does not have permission
 * to perform the operations listed previously.
 */
 public Object run() {
 System.out.println("\nYour java.home property: "
 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property: "
 +System.getProperty("user.home"));

 File f = new File("foo.txt");
 System.out.print("\nfoo.txt does ");
 if (!f.exists())
 System.out.print("not ");
 System.out.println("exist in the current working directory.");
 return null;
 }
}

The Login Configuration File for the JAAS Authorization Tutorial
The login configuration file used for this tutorial can be exactly the same as that used by the
JAAS Authentication Tutorial tutorial. Thus we can use the sample_jaas.config file, which
contains just one entry:

Sample {
 sample.module.SampleLoginModule required debug=true;
};

This entry is named Sample and that is the name that both our tutorial applications SampleAcn
and SampleAzn use to refer to it. The entry specifies that the LoginModule to be used to do
the user authentication is the SampleLoginModule in the sample.module package and that this
SampleLoginModule is required to "succeed" in order for authentication to be considered
successful. The SampleLoginModule succeeds only if the name and password supplied by the
user are the one it expects (testUser and testPassword, respectively).

Chapter 6
JAAS Tutorials

6-47

The SampleLoginModule also defines a debug option that can be set to true as shown. If
this option is set to true, SampleLoginModule outputs extra information about the progress
of authentication.

The Policy File
The application for this authorization tutorial consists of two classes, SampleAzn and
SampleAction. The code in each class contains some security-sensitive operations and thus
relevant permissions are required in a policy file in order for the operations to be executed.

The LoginModule used by this tutorial, SampleLoginModule, also contains an operation
requiring a permission.

The following sections describe the permissions required by each of these classes, followed by
the full policy file.

Permissions Required by SampleAzn
The main method of the SampleAzn class does two operations for which permissions are
required. It

• creates a LoginContext, and

• calls the doAsPrivileged static method of the Subject class.

The LoginContext creation is exactly the same as was done in the authentication tutorial,
and it thus needs the same javax.security.auth.AuthPermission permission with target
"createLoginContext.Sample".

In order to call the doAsPrivileged method of the Subject class, you need to have a
javax.security.auth.AuthPermission with target "doAsPrivileged".

Assuming the SampleAzn class is placed in a JAR file named SampleAzn.jar, these
permissions can be granted to the SampleAzn code via the following grant statement in the
policy file:

grant codebase "file:./SampleAzn.jar" {
 permission javax.security.auth.AuthPermission
 "createLoginContext.Sample";
 permission javax.security.auth.AuthPermission "doAsPrivileged";
};

Permissions Required by SampleAction
The SampleAction code does three operations for which permissions are required. It

• reads the value of the java.home system property.

• reads the value of the user.home system property.

• checks to see whether or not a file named foo.txt exists in the current directory.

The permissions required for these operations are the following:

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "user.home", "read";
permission java.io.FilePermission "foo.txt", "read";

Chapter 6
JAAS Tutorials

6-48

We need to grant these permissions to the code in SampleAction.class, which we will place in
a JAR file named SampleAction.jar. However, for this particular grant statement we want to
grant the permissions not just to the code but to a specific user executing the code, to
demonstrate how to restrict access to a particular user.

Thus, as explained in How Do You Make Principal-Based Policy File Statements?, our grant
statement looks like the following:

grant codebase "file:./SampleAction.jar", Principal
sample.principal.SamplePrincipal "testUser" {
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

Permissions Required by SampleLoginModule
The SampleLoginModule code does one operation for which permissions are required. It needs
a javax.security.auth.AuthPermission with target "modifyPrincipals" in order to populate
a Subject with a Principal. The grant statement is the following:

grant codebase "file:./SampleLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
};

The Full Policy File
The full policy file is sampleazn.policy:

sampleazn.policy

/* grant the sample LoginModule permissions */

grant codebase "file:./SampleAction.jar", Principal
sample.principal.SamplePrincipal "testUser" {
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

grant codebase "file:./SampleLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
};

grant codebase "file:./SampleAcn.jar" {
 permission javax.security.auth.AuthPermission "createLoginContext.Sample";
};

Running the Authorization Tutorial Code
To execute our JAAS authorization tutorial code, all you have to do is

1. Place the following files into a directory:

Chapter 6
JAAS Tutorials

6-49

• sample_jaas.config login configuration file (see The Login Configuration File for
the JAAS Authorization Tutorial)

• sampleazn.policy policy file

2. Create a subdirectory named sample of that top-level directory, and place the following
into it (note the SampleAzn and SampleAction classes are in a package named sample):

• SampleAzn.java source file

• SampleAction.java source file

3. Create a subdirectory of the sample directory and name it module. Place the following
into it (note the SampleLoginModule class is in a package named sample.module):

• SampleLoginModule.java source file

4. Create another subdirectory of the sample directory and name it principal. Place the
following into it (note the SamplePrincipal class is in a package named
sample.principal):

• SamplePrincipal.java source file

5. While in the top-level directory, compile all the source files:

javac sample/SampleAction.java sample/SampleAzn.java sample/module/
SampleLoginModule.java sample/principal/SamplePrincipal.java
(Type all that on one line.)

6. Create a JAR file named SampleAzn.jar containing SampleAzn.class and
MyCallbackHandler.class (Note the sources for both these classes are in
SampleAzn.java):

jar -cvf SampleAzn.jar sample/SampleAzn.class sample/MyCallbackHandler.class
(Type all that on one line.)

7. Create a JAR file named SampleAction.jar containing SampleAction.class:

jar -cvf SampleAction.jar sample/SampleAction.class
8. Create a JAR file containing SampleLoginModule.class and SamplePrincipal.class:

jar -cvf SampleLM.jar sample/module/SampleLoginModule.class sample/principal/
SamplePrincipal.class

9. Execute the SampleAzn application, specifying

a. An appropriate -classpath clause that classes should be searched for in the
SampleAzn.jar, SampleAction.jar, and SampleLM.jar JAR files,

b. -Djava.security.manager that a security manager should be installed

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the
Security Manager. See JEP 411 for discussion and alternatives.

c. -Djava.security.policy==sampleazn.policy that the policy file to be used is
sampleazn.policy, and

Chapter 6
JAAS Tutorials

6-50

https://openjdk.java.net/jeps/411

d. -Djava.security.auth.login.config==sample_jaas.config that the login
configuration file to be used is sample_jaas.config.

Note:

Use the double equals sign (==) with the java.security.policy property with
care as it overrides the built-in JDK policy file, which grants a set of default
permissions that are designed to provide a secure, out-of-the-box configuration
for the JDK. Overriding this policy may result in unexpected behavior (JDK code
may not be granted the right permissions) and should only be done by
experienced users.

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

The following are the full commands to use for Windows, Linux, and macOS. The only
difference is that on Windows you use semicolons to separate class path items, while you
use colons for that purpose on Linux and macOS.

Here is the full command for Windows:

java -classpath SampleAzn.jar;SampleAction.jar;SampleLM.jar
 -Djava.security.manager
 -Djava.security.policy==sampleazn.policy
 -Djava.security.auth.login.config==sample_jaas.config sample.SampleAzn

Here is the full command for Linux and macOS:

java -classpath SampleAzn.jar:SampleAction.jar:SampleLM.jar
 -Djava.security.manager
 -Djava.security.policy==sampleazn.policy
 -Djava.security.auth.login.config==sample_jaas.config sample.SampleAzn

Type the full command on one line. Multiple lines are used here for legibility. If the
command is too long for your system, you may need to place it in a .bat file (for
Windows) or a .sh file (for Linux and macOS) and then run that file to execute the
command.

You will be prompted for a user name and password (use testUser and testPassword),
and the SampleLoginModule specified in the login configuration file will check the name and
password. If your login is successful, you will see the message Authentication
succeeded! and if not, you will see Authentication failed: followed by a reason for the
failure.

Once authentication is successfully completed, the rest of the program (in SampleAction)
will be executed on behalf of you, the user, requiring you to have been granted appropriate
permissions. The sampleazn.policy policy file grants you the required permissions, so you
will see a display of the values of your java.home and user.home system properties and a
statement as to whether or not you have a file named foo.txt in the current directory.

Chapter 6
JAAS Tutorials

6-51

Java Authentication and Authorization Service (JAAS):
LoginModule Developer's Guide

JAAS provides subject-based authorization on authenticated identities. This document focuses
on the authentication aspect of JAAS, specifically the LoginModule interface.

Who Should Read This Document

This document is intended for experienced programmers who require the ability to write a
LoginModule implementing an authentication technology.

Related Documentation

This document assumes you have already read the following:

• Java Authentication and Authorization Service (JAAS) Reference Guide

It also discusses various classes and interfaces in the JAAS API. See the JavaDoc API
documentation for the JAAS API specification for more detailed information:

• javax.security.auth
• javax.security.auth.callback
• javax.security.auth.kerberos
• javax.security.auth.login
• javax.security.auth.spi
• javax.security.auth.x500
The following packages contain supported LoginModule examples:

• com.sun.security.auth
• com.sun.security.auth.callback
• com.sun.security.auth.login
• com.sun.security.auth.module
The following tutorials for JAAS authentication and authorization can be run by everyone:

• JAAS Authentication Tutorial

• JAAS Authorization Tutorial

Similar tutorials for JAAS authentication and authorization, but which demonstrate the use of a
Kerberos LoginModule and thus which require a Kerberos installation, can be found at

• JAAS Authentication Tutorial

• JAAS Authorization Tutorial

These two tutorials are a part of Introduction to JAAS and Java GSS-API Tutorials that utilize
Kerberos as the underlying technology for authentication and secure communication.

Introduction to LoginModule

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-52

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/x500/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/package-summary.html

Authentication technology providers must implement the LoginModule interface.
LoginModules are plugged in under applications to provide a particular type of authentication.

While applications write to the LoginContext Application Programming Interface (API),
authentication technology providers implement the LoginModule interface. A Configuration
specifies the LoginModule(s) to be used with a particular login application. Different
LoginModules can be plugged in under the application without requiring any modifications to
the application itself.

The LoginContext is responsible for reading the Configuration and instantiating the specified
LoginModules. Each LoginModule is initialized with a Subject, a CallbackHandler, shared
LoginModule state, and LoginModule-specific options.

The Subject represents the user or service currently being authenticated and is updated by a
LoginModule with relevant Principals and credentials if authentication succeeds.
LoginModules use the CallbackHandler to communicate with users (to prompt for user names
and passwords, for example), as described in the login method description. Note that the
CallbackHandler may be null. A LoginModule that requires a CallbackHandler to authenticate
the Subject may throw a LoginException if it was initialized with a null CallbackHandler.
LoginModules optionally use the shared state to share information or data among themselves.

The LoginModule-specific options represent the options configured for this LoginModule in
the login Configuration. The options are defined by the LoginModule itself and control the
behavior within it. For example, a LoginModule may define options to support debugging/
testing capabilities. Options are defined using a key-value syntax, such as debug=true. The
LoginModule stores the options as a Map so that the values may be retrieved using the key.
Note that there is no limit to the number of options a LoginModule chooses to define.

The calling application sees the authentication process as a single operation invoked via a call
to the LoginContext's login method. However, the authentication process within each
LoginModule proceeds in two distinct phases. In the first phase of authentication, the
LoginContext's login method invokes the login method of each LoginModule specified in the
Configuration. The login method for a LoginModule performs the actual authentication
(prompting for and verifying a password for example) and saves its authentication status as
private state information. Once finished, the LoginModule's login method returns true (if it
succeeded) or false (if it should be ignored), or it throws a LoginException to specify a failure.
In the failure case, the LoginModule must not retry the authentication or introduce delays. The
responsibility of such tasks belongs to the application. If the application attempts to retry the
authentication, each LoginModule's login method will be called again.

In the second phase, if the LoginContext's overall authentication succeeded (calls to the
relevant required, requisite, sufficient and optional LoginModules' login methods succeeded),
then the commit method for each LoginModule gets invoked. (For an explanation of the
LoginModule flags required, requisite, sufficient and optional, please consult the
Configuration documentation and Appendix B: JAAS Login Configuration File in the JAAS
Reference Guide.) The commit method for a LoginModule checks its privately saved state to
see if its own authentication succeeded. If the overall LoginContext authentication succeeded
and the LoginModule's own authentication succeeded, then the commit method associates the
relevant Principals (authenticated identities) and credentials (authentication data such as
cryptographic keys) with the Subject.

If the LoginContext's overall authentication failed (the relevant REQUIRED, REQUISITE,
SUFFICIENT and OPTIONAL LoginModules' login methods did not succeed), then the abort
method for each LoginModule gets invoked. In this case, the LoginModule removes/destroys
any authentication state originally saved.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-53

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginException.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html

Logging out a Subject involves only one phase. The LoginContext invokes the LoginModule's
logout method. The logout method for the LoginModule then performs the logout procedures,
such as removing Principals or credentials from the Subject, or logging session information.

Steps to Implement a LoginModule
The following are the steps required to implement and test a LoginModule:

Step 1: Understand the Authentication Technology
First, understand the authentication technology to be implemented by your new LoginModule
provider and determine its requirements.

1. Determine whether or not your LoginModule will require some form of user interaction
(retrieving a user name and password, for example). If so, you will need to become familiar
with the CallbackHandler interface and the javax.security.auth.callback
package.

In that package you will find several possible Callback implementations to use.
(Alternatively, you can create your own Callback implementations.) The LoginModule will
invoke the CallbackHandler specified by the application itself and passed to the
LoginModule's initialize method. The LoginModule passes the CallbackHandler an
array of appropriate Callbacks. See LoginModule.login Method in Step 3: Implement the
LoginModule Interface.

Note:

It is possible for LoginModule implementations not to have any end-user
interactions. Such LoginModules would not need to access the callback
package.

2. Determine what configuration options you want to make available to the user, who
specifies configuration information in whatever form the current Configuration
implementation expects (for example, in files). For each option, decide the option name
and possible values.

For example, if a LoginModule may be configured to consult a particular authentication
server host, decide on the option's key name ("auth_server", for example), as well as the
possible server hostnames valid for that option ("server_one.example.com" and
"server_two.example.com", for example).

Step 2: Name the LoginModule Implementation
Decide on the proper package and class name for your LoginModule.

For example, a LoginModule developed by IBM might be called com.ibm.auth.Module where
com.ibm.auth is the package name and Module is the name of the LoginModule class
implementation.

Step 3: Implement the LoginModule Interface
The LoginModule interface specifies five abstract methods that you must implement:

• initialize

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-54

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html#initialize(javax.security.auth.Subject,javax.security.auth.callback.CallbackHandler,java.util.Map,java.util.Map)

• login
• commit
• abort
• logout
In addition to these methods, a LoginModule implementation must provide a public
constructor with no arguments. This allows for its proper instantiation by a LoginContext.
Note that if no constructor is provided in your LoginModule implementation, a default no-
argument constructor is automatically inherited from the Object class.

Note:

If you don't implement the LoginModule interface, then a LoginException will be
thrown when you try to use your login module.

LoginModule.initialize Method

 public void initialize(
 Subject subject,
 CallbackHandler handler,
 Map<java.lang.String, ?> sharedState,
 Map<java.lang.String, ?> options);

The initialize method is called to initialize the LoginModule with the relevant authentication
and state information.

This method is called by a LoginContext immediately after this LoginModule has been
instantiated, and prior to any calls to its other public methods. The method implementation
should store away the provided arguments for future use.

The initialize method may additionally peruse the provided sharedState to determine what
additional authentication state it was provided by other LoginModules, and may also traverse
through the provided options to determine what configuration options were specified to affect
the LoginModule's behavior. It may save option values in variables for future use.

The following is a list of options commonly supported by LoginModules. Note that the
following is simply a guideline. Modules are free to support a subset (or none) of the following
options.

• tryFirstPass - If true, the first LoginModule in the stack saves the password entered,
and subsequent LoginModules also try to use it. If authentication fails, the
LoginModules prompt for a new password and retry the authentication.

• useFirstPass - If true, the first LoginModule in the stack saves the password entered,
and subsequent LoginModules also try to use it. LoginModules do not prompt for a
new password if authentication fails (authentication simply fails).

• tryMappedPass - If true, the first LoginModule in the stack saves the password entered,
and subsequent LoginModules attempt to map it into their service-specific password. If
authentication fails, the LoginModules prompt for a new password and retry the
authentication.

• useMappedPass - If true, the first LoginModule in the stack saves the password entered,
and subsequent LoginModules attempt to map it into their service-specific password.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-55

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html#login()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html#commit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html#abort()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html#logout()

LoginModules do not prompt for a new password if authentication fails (authentication
simply fails).

• moduleBanner - If true, then when invoking the CallbackHandler, the LoginModule
provides a TextOutputCallback as the first Callback, which describes the
LoginModule performing the authentication.

• debug - If true, instructs a LoginModule to output debugging information.

The initialize method may freely ignore state or options it does not understand, although it
would be wise to log such an event if it does occur.

Note that the LoginContext invoking this LoginModule (and the other configured
LoginModules, as well), all share the same references to the provided Subject and
sharedState. Modifications to the Subject and sharedState will, therefore, be seen by all.

LoginModule.login Method

 boolean login() throws LoginException;

The login method is called to authenticate a Subject. This is phase 1 of authentication.

This method implementation should perform the actual authentication. For example, it may
cause prompting for a user name and password, and then attempt to verify the password
against a password database. Another example implementation may inform the user to insert
their finger into a fingerprint reader, and then match the input fingerprint against a fingerprint
database.

If your LoginModule requires some form of user interaction (retrieving a user name and
password, for example), it should not do so directly. That is because there are various ways of
communicating with a user, and it is desirable for LoginModules to remain independent of the
different types of user interaction. Rather, the LoginModule's login method should invoke the
handle method of the CallbackHandler interface passed to the initialize method to
perform the user interaction and set appropriate results, such as the user name and password.
The LoginModule passes the CallbackHandler an array of appropriate Callbacks, for example
a NameCallback for the user name and a PasswordCallback for the password, and the
CallbackHandler performs the requested user interaction and sets appropriate values in the
Callbacks. For example, to process a NameCallback, the CallbackHandler may prompt for a
name, retrieve the value from the user, and call the NameCallback's setName method to store
the name.

The authentication process may also involve communication over a network. For example, if
this method implementation performs the equivalent of a kinit in Kerberos, then it would need
to contact the KDC. If a password database entry itself resides in a remote naming service,
then that naming service needs to be contacted, perhaps via the Java Naming and Directory
Interface (JNDI). Implementations might also interact with an underlying operating system. For
example, if a user has already logged into an operating system like Linux, macOS, or
Windows, this method might simply import the underlying operating system's identity
information.

The login method should

1. Determine whether or not this LoginModule should be ignored. One example of when it
should be ignored is when a user attempts to authenticate under an identity irrelevant to
this LoginModule (if a user attempts to authenticate as root using NIS, for example). If this
LoginModule should be ignored, login should return false. Otherwise, it should do the
following:

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-56

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html

2. Call the CallbackHandler handle method if user interaction is required.

3. Perform the authentication.

4. Store the authentication result (success or failure).

5. If authentication succeeded, save any relevant state information that may be needed by
the commit method.

6. Return true if authentication succeeds, or throw a LoginException such as
FailedLoginException if authentication fails.

Note that the login method implementation should not associate any new Principal or
credential information with the saved Subject object. This method merely performs the
authentication, and then stores away the authentication result and corresponding
authentication state. This result and state will later be accessed by the commit or abort
method. Note that the result and state should typically not be saved in the sharedState Map, as
they are not intended to be shared with other LoginModules.

An example of where this method might find it useful to store state information in the
sharedState Map is when LoginModules are configured to share passwords. In this case, the
entered password would be saved as shared state. By sharing passwords, the user only enters
the password once, and can still be authenticated to multiple LoginModules. The standard
conventions for saving and retrieving names and passwords from the sharedState Map are the
following:

• javax.security.auth.login.name - Use this as the shared state map key for saving/
retrieving a name. The value should be a String.

• javax.security.auth.login.password - Use this as the shared state map key for saving/
retrieving a password. The value should be a char array.

If authentication fails, the login method should not retry the authentication. This is the
responsibility of the application. Multiple LoginContext login method calls by an application
are preferred over multiple login attempts from within LoginModule.login().

LoginModule.commit Method

 boolean commit() throws LoginException;

The commit method is called to commit the authentication process. This is phase 2 of
authentication when phase 1 succeeds. It is called if the LoginContext's overall authentication
succeeded (that is, if the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
LoginModules succeeded.)

This method should access the authentication result and corresponding authentication state
saved by the login method.

If the authentication result denotes that the login method failed, then this commit method
should remove/destroy any corresponding state that was originally saved.

If the saved result instead denotes that this LoginModule's login method succeeded, then the
corresponding state information should be accessed to build any relevant Principal and
credential information. Such Principals and credentials should then be added to the Subject
stored away by the initialize method.

After adding Principals and credentials, dispensable state fields should be destroyed
expeditiously. Likely fields to destroy would be user names and passwords stored during the
authentication process.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-57

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginException.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/FailedLoginException.html

The commit method should save private state indicating whether the commit succeeded or
failed.

The following chart depicts what a LoginModule's commit method should return. The different
boxes represent the different situations that may occur. For example, the top-left corner box
depicts what the commit method should return if both the previous call to login succeeded and
the commit method itself succeeded.

Table 6-2 LoginModule.commit Method Return Values

 Login Status COMMIT: SUCCESS COMMIT: FAILURE

LOGIN: SUCCESS return TRUE throw EXCEPTION

LOGIN: FAILURE return FALSE return FALSE

LoginModule.abort Method

 boolean abort() throws LoginException;

The abort method is called to abort the authentication process. This is phase 2 of
authentication when phase 1 fails. It is called if the LoginContext's overall authentication
failed.

This method first accesses this LoginModule's authentication result and corresponding
authentication state saved by the login (and possibly commit) methods, and then clears out
and destroys the information. Sample state to destroy would be user names and passwords.

If this LoginModule's authentication attempt failed, then there shouldn't be any private state to
clean up.

The following charts depict what a LoginModule's abort method should return. This first chart
assumes that the previous call to login succeeded. For instance, the abort method should
return TRUE if both the previous call to login and commit succeeded, and the abort method
itself also succeeded.

Table 6-3 LoginModule.abort Method Return Values: Login Succeeded

 Login Status ABORT: SUCCESS ABORT: FAILURE

COMMIT: SUCCESS return TRUE throw EXCEPTION

COMMIT: FAILURE return TRUE throw EXCEPTION

The second chart depicts what a LoginModule's abort method should return, assuming that
the previous call to login failed. For instance, the abort method should return FALSE if the
previous call to login failed, the previous call to commit succeeded, and the abort method
itself also succeeded.

Table 6-4 LoginModule.abort Method Return Values: Login Failed

 Login Status ABORT: SUCCESS ABORT: FAILURE

COMMIT: SUCCESS return FALSE return FALSE

COMMIT: FAILURE return FALSE return FALSE

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-58

LoginModule.logout Method

 boolean logout() throws LoginException;

The logout method is called to log out a Subject.

This method removes Principals, and removes/destroys credentials associated with the
Subject during the commit operation. This method should not touch those Principals or
credentials previously existing in the Subject, or those added by other LoginModules.

If the Subject has been marked read-only (the Subject's isReadOnly method returns true),
then this method should only destroy credentials associated with the Subject during the
commit operation (removing the credentials is not possible). If the Subject has been marked as
read-only and the credentials associated with the Subject during the commit operation are not
destroyable (they do not implement the Destroyable interface), then this method may throw a
LoginException.

The logout method should return true if logout succeeds, or otherwise throw a
LoginException.

Step 4: Choose or Write a Sample Application
Either choose an existing sample application for your testing, or write a new one.

See Java Authentication and Authorization Service (JAAS) Reference Guide for information
about application requirements and a sample application you can use for your testing.

Step 5: Compile the LoginModule and Application
Compile your new LoginModule and the application you will use for testing.

Step 6: Prepare for Testing

Step 6a: Place Your LoginModule and Application Code in JAR Files

Place your LoginModule and application code in separate JAR files, in preparation for
referencing the JAR files in the policy in Step 6b: Set LoginModule and Application JAR File
Permissions. Here is a sample command for creating a JAR file:

jar cvf <JAR file name> <list of classes, separated by spaces>

This command creates a JAR file with the specified name containing the specified classes.

For more information on the jar tool, see jar.

Step 6b: Set LoginModule and Application JAR File Permissions

If your LoginModule and/or application performs security-sensitive tasks that will trigger
security checks (making network connections, reading or writing files on a local disk, etc.), it
will need to be granted the required permissions if it is run while a security manager is
installed; see Permissions in the JDK.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-59

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Since LoginModules usually associate Principals and credentials with an authenticated
Subject, some types of permissions a LoginModule will typically require are
AuthPermissions with target names "modifyPrincipals", "modifyPublicCredentials", and
"modifyPrivateCredentials".

The following is a sample statement granting permissions to a LoginModule whose code is in
MyLM.jar. Such a statement could appear in a policy file. In this example, the MyLM.jar file is
assumed to be in the /localWork directory.

grant codeBase "file:/localWork/MyLM.jar" {
 permission javax.security.auth.AuthPermission "modifyPrincipals";
 permission javax.security.auth.AuthPermission "modifyPublicCredentials";
 permission javax.security.auth.AuthPermission "modifyPrivateCredentials";
};

Note:

Since a LoginModule is always invoked within an AccessController.doPrivileged
call, it should not have to call doPrivileged itself. If it does, it may inadvertently open
up a security hole. For example, a LoginModule that invokes the application-provided
CallbackHandler inside a doPrivileged call opens up a security hole by permitting
the application's CallbackHandler to gain access to resources it would otherwise not
have been able to access.

Step 6c: Create a Configuration Referencing the LoginModule

Because JAAS supports a pluggable authentication architecture, your new LoginModule can
be used without requiring modifications to existing applications. Only the login Configuration
needs to be updated in order to indicate use of a new LoginModule.

The default Configuration implementation from Oracle reads configuration information from
configuration files, as described in ConfigFile.

Create a configuration file to be used for testing. For example, to configure the previously-
mentioned hypothetical IBM LoginModule for an application, the configuration file might look
like this:

 AppName {
 com.ibm.auth.Module REQUIRED debug=true;
 };

where AppName should be whatever name the application uses to refer to this entry in the login
configuration file. The application specifies this name as the first argument to the LoginContext
constructor.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-60

https://openjdk.java.net/jeps/411
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/AuthPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/ConfigFile.html

Step 7: Test Use of the LoginModule
Test your application and its use of the LoginModule. When you run the application, specify the
login configuration file to be used. For example, suppose your application is named MyApp, it is
located in MyApp.jar, and your configuration file is test.conf.

You could run the application and specify the configuration file via the following:

java -classpath MyApp.jar
 -Djava.security.auth.login.config=test.conf MyApp

Type all that on one line. Multiple lines are used here for legibility.

To specify a policy file named my.policy and run the application with a security manager
installed, do the following:

java -classpath MyApp.jar -Djava.security.manager
 -Djava.security.policy=my.policy
 -Djava.security.auth.login.config=test.conf MyApp

Again, type all that on one line.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

You may want to configure the LoginModule with a debug option to help ensure that it is
working correctly.

Debug your code and continue testing as needed. If you have problems, review the previous
steps and ensure they are all completed.

Be sure to vary user input and the LoginModule options specified in the configuration file.

Be sure to also include testing using different installation options (e.g., placing the LoginModule
on the class path or module path) and execution environments (with or without a security
manager running). In particular, in order to ensure your LoginModule works when a security
manager is installed and the LoginModule, you need to test such an installation and execution
environment, after granting required permissions, as described in Step 6b: Set LoginModule
and Application JAR File Permissions.

1. If you find during testing that your LoginModule or application needs modifications, make
the modifications, recompile (Step 5: Compile the LoginModule and Application).

2. Place the updated code in a JAR file (Step 6a: Place Your LoginModule and Application
Code in JAR Files).

3. If needed fix or add to the permissions (Step 6b: Set LoginModule and Application JAR File
Permissions).

4. If needed modify the login configuration file (Step 6c: Create a Configuration Referencing
the LoginModule).

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-61

https://openjdk.java.net/jeps/411

5. Re-run the application and repeat these steps as needed.

Step 8: Document Your LoginModule Implementation
Write documentation for clients of your LoginModule.

Example documentation you may want to include is:

• A README or User Guide describing

1. The authentication process employed by your LoginModule implementation.

2. Information on how to install the LoginModule.

3. Configuration options accepted by the LoginModule. For each option, specify the
option name and possible values (or types of values), as well as the behavior the
option controls.

4. The permissions required by your LoginModule when it is run with a security manager.

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the
Security Manager. See JEP 411 for discussion and alternatives.

• An example Configuration file that references your new LoginModule.

• An example policy file granting your LoginModule the required permissions.

• API documentation. Putting JavaDoc comments into your source code as you write it will
make the JavaDoc API documentation easy to generate.

Step 9: Make LoginModule JAR File and Documents Available
Make your LoginModule JAR file and documentation available to clients.

Chapter 6
Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

6-62

https://openjdk.java.net/jeps/411

7
Java Generic Security Services (Java GSS-
API)

Java Generic Security Services (Java GSS-API) is used for securely exchanging messages
between communicating applications.

Introduction to JAAS and Java GSS-API Tutorials is a series of tutorials demonstrating various
aspects of the use of Java Authentication and Authorization Service (JAAS) and Java GSS-
API.

Single Sign-on Using Kerberos in Java discusses how to use Single Sign-On based on the
Kerberos V5 protocol.

Advanced Security Programming in Java SE Authentication, Secure Communication and
Single Sign-On shows you how to use the Java SE GSS APIs to build applications that
authenticate their users, communicate securely with other applications and services, and
configure your applications in a Kerberos environment to achieve Single Sign-On.

The Kerberos 5 GSS-API Mechanism describes and lists security features regarding Java
Generic Security Services (Java GSS) for Kerberos 5.

Introduction to JAAS and Java GSS-API Tutorials
This page links to a series of tutorials demonstrating various aspects of the use of JAAS (Java
Authentication and Authorization Service) and Java GSS-API.

JAAS can be used for two purposes:

• for authentication of users, to reliably and securely determine who is currently executing
Java code, and

• for authorization of users to ensure they have the access control rights (permissions)
required to do security-sensitive operations.

Java GSS-API is used for securely exchanging messages between communicating
applications. The Java GSS-API contains the Java bindings for the Generic Security Services
Application Program Interface (GSS-API) defined in RFC 5653. GSS-API offers application
programmers uniform access to security services atop a variety of underlying security
mechanisms, including Kerberos.

Note: JSSE is another API that can be used for secure communication. For the differences
between the two, see When to Use Java GSS-API Versus JSSE.

The reason both JAAS and Java GSS-API tutorials are presented together is because JAAS
authentication is typically performed prior to secure communication using Java GSS-API. Thus
JAAS and Java GSS-API are related and often used together. However, it is possible for
applications to use JAAS without Java GSS-API, and it is also possible to use Java GSS-API
without JAAS. Furthermore, JAAS itself can be used simply for authentication or for both
authentication and authorization.

The following tutorials provide working examples for all of the scenarios described previously.

7-1

https://tools.ietf.org/html/rfc5653

1. Use of Java GSS-API for Secure Message Exchanges Without JAAS Programming

Demonstrates the use of the Java GSS-API for secure message exchanges between a
client application and a server application.

2. JAAS Authentication

Explains how an application can authenticate users using JAAS.

3. JAAS Authorization

Explains how to enforce user-based access controls using JAAS.

4. Use of JAAS Login Utility

Describes a utility program that authenticates a user using JAAS and executes any
application as that user. The appropriate user-based access controls are enforced while
the application executes. This utility, as a convenience, essentially performs the operations
described in the JAAS Authentication and JAAS Authorization tutorials on your behalf.
Therefore it is possible to skip directly to this tutorial if you do not need to know how to
perform JAAS authentication and authorization directly.

5. Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges

The most comprehensive tutorial. The Login utility is used to authenticate a service user
and to start up a server application as that user. The Login utility is also used to
authenticate a client user and to start up a client application as that user. Finally the client
and server applications, on behalf of their authenticated client and service users, exchange
secure messages using the Java GSS-API.

6. More Things You Can Do with Java GSS-API and JAAS

Shows additional operations the server application in the previous tutorial can perform
once communication has been established with the client application.

All applications in all tutorials in this series utilize Kerberos Version 5 as the underlying
technology for authentication and secure communication. See Kerberos Requirements. The
term "Kerberos" used throughout the tutorials is meant to refer to Kerberos Version 5.

When to Use Java GSS-API Versus JSSE
Java GSS-API and JSSE provide you with the same basic set of security features:

1. Client-server authentication

2. Encryption and integrity protection of transmitted data

However, there are some key differences between the two. This document lists some of them
to help you decide which might be more appropriate in your environment:

1. Kerberos Single Sign-On Support

GSS-API contains support for Kerberos as a mandatory security mechanism. This means
that if your desktop has Kerberos support, you can write Java GSS-API based applications
that never prompt the user for a password.

Addition of Kerberos Cipher Suites to Transport Layer Security (TLS) (RFC 2712) defined
Kerberos Cipher Suites for TLS, but the document is out-of-date and does not support
modern encryption types like AES.

2. Communications API

JSSE supports a socket-based API. JSSE sockets extend the socket classes found in
java.net and JSSE socket factories extend the socket factories found in javax.net. Thus,
if your application is written such that its security needs to be configured via a socket

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-2

https://tools.ietf.org/html/rfc2712

factory, then JSSE might be more appropriate for you. JSSE sockets need to use some
reliable transport. Typically, implementations use TCP.

Java GSS-API, on the other hand, is a token-based API that relies on the application to do
the communication. This means that the application can use TCP sockets, UDP
datagrams, or any other channel that will allow it to transport Java GSS-API generated
tokens. If your application has varying communication protocol needs, then Java GSS-API
might be more appropriate for you. Java GSS-API can read and write its tokens using input
and output streams. However, you will need to set up the streams yourself.

3. Credential Delegation

Java GSS-API allows the client to delegate its credentials to the server when using
Kerberos. If your application will be deployed in a multi-tier environment where
intermediaries need to impersonate clients when talking to backend layers, Java GSS-API
might be more appropriate for you.

4. Selective Encryption

Because Java GSS-API is token-based, you can choose to selectively encrypt certain
messages but not all. If your application needs to intersperse plaintext and ciphertext
messages, Java GSS-API might be more appropriate for you.

5. Protocol Requirements

JSSE provides implementations of the TLS protocol including TLS version 1.3 and TLS
version 1.2. Java GSS-API provides an implementation of the GSS-API framework defined
in Generic Security Service API Version 2: Java Bindings Update (RFC 5653), as well as
an implementation of the Kerberos Version 5 mechanism defined in The Kerberos Version
5 GSS-API Mechanism (RFC 1964). (On Microsoft Windows platforms, this may be known
as SSPI with Kerberos.) Some servers such as HTTPS servers will require you to use TLS,
in which case JSSE will be appropriate for you. Other servers such as LDAP servers using
SASL might need GSS-API with Kerberos, in which case Java GSS-API will be appropriate
for you.

Use of Java GSS-API for Secure Message Exchanges Without JAAS
Programming

This tutorial presents two sample applications demonstrating the use of the Java GSS-API for
secure exchanges of messages between communicating applications, in this case a client
application and a server application.

Java GSS-API uses what is called a "security mechanism" to provide these services. The
GSS-API implementation contains support for the Kerberos V5 mechanism in addition to any
other vendor-specific choices. The Kerberos V5 mechanism is used for this tutorial.

In order to perform authentication between the client and server and to establish cryptographic
keys for secure communication, a GSS-API mechanism needs access to certain credentials for
the local entity on each side of the connection. In our case, the credential used on the client
side consists of a Kerberos ticket, and on the server side, it consists of a long-term Kerberos
secret key. Kerberos tickets can optionally include the host address and IPv4 and IPv6 host
addresses are both supported. Java GSS-API requires that the mechanism obtain these
credentials from the Subject associated with the thread's access control context.

To populate a Subject with such credentials, client and server applications typically will first
perform JAAS authentication using a Kerberos LoginModule. The JAAS Authentication
tutorial demonstrates how to do this. The JAAS Authorization tutorial then demonstrates how to
associate the authenticated Subject with the thread's access control context. A utility has also

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-3

https://tools.ietf.org/html/rfc5653
https://tools.ietf.org/html/rfc1964
https://tools.ietf.org/html/rfc1964

been written as a convenience to automatically perform those operations on your behalf. The
Use of JAAS Login Utility tutorial demonstrates how to use the Login utility.

For this tutorial, we will not have the client and server perform JAAS authentication, nor will we
have them use the Login utility. Instead, we will rely on setting the system property
javax.security.auth.useSubjectCredsOnly to false, which allows us to relax the restriction
of requiring a GSS mechanism to obtain necessary credentials from an existing Subject, set up
by JAAS. See The useSubjectCredsOnly System Property.

Note:

This is a simplified introductory tutorial. For example, it doesn't include any policy
files.

There is another tutorial, Use of JAAS Login Utility and Java GSS-API for Secure Message
Exchanges, that is just like the tutorial you are reading except that it utilizes the Login utility,
policy files, and a more complex login configuration file. A login configuration file (see Appendix
B: JAAS Login Configuration File), required whenever JAAS authentication is done, specifies
the desired authentication module.

As with all tutorials in this series, the underlying technology used to support authentication and
secure communication for the applications in this tutorial is Kerberos V5. See Kerberos
Requirements.

• Overview of the Client and Server Applications

• The SampleClient and SampleServer Code

• Kerberos User and Service Principal Names

• The Login Configuration File

• The useSubjectCredsOnly System Property

• Running the SampleClient and SampleServer Programs

If you want to first see the tutorial code in action, you can skip directly to Running the
SampleClient and SampleServer Programs and then go back to the other sections to learn
more.

Overview of the Client and Server Applications
The applications for this tutorial are named SampleClient and SampleServer.

Here is a summary of execution of the SampleClient and SampleServer applications:

1. Run the SampleServer application. SampleServer
a. Reads its argument, the port number that it should listen on for client connections.

b. Creates a ServerSocket for listening for client connections on that port.

c. Listens for a connection.

2. Run the SampleClient application (possibly on a different machine). SampleClient
a. Reads its arguments: (1) The name of the Kerberos principal that represents

SampleServer (see Kerberos User and Service Principal Names), (2) the name of the
host (machine) on which SampleServer is running, and (3) the port number on which
SampleServer listens for client connections.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-4

b. Attempts a socket connection with the SampleServer, using the host and port it was
passed as arguments.

3. The socket connection is accepted by SampleServer and both applications initialize a
DataInputStream and a DataOutputStream from the socket input and output
streams, to be used for future data exchanges.

4. SampleClient and SampleServer each instantiate a GSSContext and follow a protocol for
establishing a shared context that will enable subsequent secure data exchanges.

5. SampleClient and SampleServer can now securely exchange messages.

6. When SampleClient and SampleServer are done exchanging messages, they perform
clean-up operations.

The actual code and further details are presented in the following sections.

The SampleClient and SampleServer Code
The entire code for both the SampleClient.java and SampleServer.java programs
resides in their main methods and can be broken down into the following subparts:

1. Obtaining the Command-Line Arguments

2. Establishing a Socket Connection for Message Exchanges

3. Establishing a Security Context

4. Exchanging Messages Securely

5. Clean Up

Note:

The Java GSS-API classes utilized by these programs (GSSManager, GSSContext,
GSSName, GSSCredential, MessageProp, and Oid) are found in the
org.ietf.jgss package.

Obtaining the Command-Line Arguments
The first thing both our client and server main methods do is read the command-line
arguments.

Arguments Read by SampleClient

SampleClient expects three arguments:

1. A service principal name – The name of the Kerberos principal that represents
SampleServer (see Kerberos User and Service Principal Names).

2. A host name – The machine on which SampleServer is running.

3. A port number – The port number of the port on which SampleServer listens for
connections.

Here is the code for reading the command-line arguments:

if (args.length < 3) {
 System.out.println("Usage: java <options> Login SampleClient "

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/org/ietf/jgss/package-summary.html

 + " <servicePrincipal> <hostName> <port>");
 System.exit(-1);
}

String server = args[0];
String hostName = args[1];
int port = Integer.parseInt(args[2]);

Argument Read by SampleServer

SampleServer expects just one argument:

• A local port number – The port number used by SampleServer for listening for connections
with clients. This number should be the same as the port number specified when running
the SampleClient program.

Here is the code for reading the command-line argument:

if (args.length != 1) {
 System.out.println(
 "Usage: java <options> Login SampleServer <localPort>");
 System.exit(-1);
}

int localPort = Integer.parseInt(args[0]);

Establishing a Socket Connection for Message Exchanges
Java GSS-API provides methods for creating and interpreting tokens (opaque byte data). The
tokens contain messages to be securely exchanged between two peers, but the method of
actual token transfer is up to the peers. For our SampleClient and SampleServer applications,
we establish a socket connection between the client and server and exchange data using the
socket input and output streams.

SampleClient Code for Socket Connection

SampleClient was passed as arguments the name of the host machine SampleServer is
running on, as well as the port number on which SampleServer will be listening for connections,
so SampleClient has all it needs to establish a socket connection with SampleServer. It uses
the following code to set up the connection and initialize a DataInputStream and a
DataOutputStream for future data exchanges:

Socket socket = new Socket(hostName, port);

DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

System.out.println("Connected to server "
 + socket.getInetAddress());

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-6

SampleServer Code for Socket Connection

The SampleServer application was passed as an argument the port number to be used for
listening for connections from clients. It creates a ServerSocket for listening on that port:

ServerSocket ss = new ServerSocket(localPort);

The ServerSocket can then wait for and accept a connection from a client, and then initialize a
DataInputStream and a DataOutputStream for future data exchanges with the client :

Socket socket = ss.accept();

DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

System.out.println("Got connection from client "
 + socket.getInetAddress());

The accept method waits until a client (in our case, SampleClient) requests a connection on
the host and port of the SampleServer, which SampleClient does via

Socket socket = new Socket(hostName, port);

When the connection is requested and established, the accept method returns a new Socket
object bound to a new port. The server can communicate with the client over this new socket
and continue to listen for other client connection requests on the ServerSocket bound to the
original port. Thus, a server program typically has a loop which can handle multiple connection
requests.

The basic loop structure for our SampleServer is the following:

while (true) {

 Socket socket = ss.accept();

 <Establish input and output streams for the connection>;
 <Establish a context with the client>;
 <Exchange messages with the client>;
 <Clean up>;
}

Client connections are queued at the original port, so with this program structure used by
SampleServer, the interaction with the first client making a connection has to complete before
the next connection can be accepted. The server could actually service multiple clients
simultaneously through the use of threads – one thread per client connection, as in

while (true) {
 <accept a connection>;
 <create a thread to handle the client>;
}

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-7

Establishing a Security Context
Before two applications can use Java GSS-API to securely exchange messages between
them, they must establish a joint security context using their credentials. (Note: In the case of
SampleClient, the credentials were established when the Login utility authenticated the user
on whose behalf the SampleClient was run, and similarly for SampleServer.) The security
context encapsulates shared state information that might include, for example, cryptographic
keys. One use of such keys might be to encrypt messages to be exchanged, if encryption is
requested.

As part of the security context establishment, the context initiator (in our case, SampleClient)
is authenticated to the acceptor (SampleServer), and may require that the acceptor also be
authenticated back to the initiator, in which case we say that "mutual authentication" took
place.

Both applications create and use a GSSContext object to establish and maintain the shared
information that makes up the security context.

The instantiation of the context object is done differently by the context initiator and the context
acceptor. After the initiator instantiates a GSSContext, it may choose to set various context
options that will determine the characteristics of the desired security context, for example,
specifying whether or not mutual authentication should take place. After all the desired
characteristics have been set, the initiator calls the initSecContext method, which produces a
token required by the acceptor's acceptSecContext method.

While Java GSS-API methods exist for preparing tokens to be exchanged between
applications, it is the responsibility of the applications to actually transfer the tokens between
them. So after the initiator has received a token from its call to initSecContext, it sends that
token to the acceptor. The acceptor calls acceptSecContext, passing it the token. The
acceptSecContext method may in turn return a token. If it does, the acceptor should send that
token to the initiator, which should then call initSecContext again and pass it this token. Each
time initSecContext or acceptSecContext returns a token, the application that called the
method should send the token to its peer and that peer should pass the token to its appropriate
method (acceptSecContext or initSecContext). This continues until the context is fully
established (which is the case when the context's isEstablished method returns true).

The context establishment code for our sample applications is described in the following:

• Context Establishment by SampleClient

• Context Establishment by SampleServer

Context Establishment by SampleClient

In our client/server scenario, SampleClient is the context initiator. Here are the basic steps it
takes to establish a security context:

1. SampleClient GSSContext Instantiation

2. SampleClient Setting of Desired Options

3. SampleClient Context Establishment Loop: Loops while the context is not yet established,
each time calling initSecContext, sending any returned token to SampleServer, and
receiving a token (if any) from SampleServer.

SampleClient GSSContext Instantiation
A GSSContext is created by instantiating a GSSContext and then calling one of its
createContext methods. The GSSManager class serves as a factory for other important GSS

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-8

API classes. It can create instances of classes implementing the GSSContext,
GSSCredential, and GSSName interfaces.

SampleClient obtains an instance of the default GSSManager subclass by calling the
GSSManager static method getInstance:

GSSManager manager = GSSManager.getInstance();

The default GSSManager subclass is one whose create* methods (createContext, etc.)
return classes whose implementations support Kerberos as the underlying technology.

The GSSManager factory method for creating a context on the initiator's side has the following
signature:

GSSContext createContext(GSSName peer, Oid mech,
 GSSCredential myCred, int lifetime);

The following sections describe the arguments, followed by the complete call to
createContext.

The GSSName peer Argument
The peer in our client/server paradigm is the server. For the peer argument, we need a
GSSName for the service principal representing the server. (See Kerberos User and Service
Principal Names.) A String for the service principal name is passed as the first argument to
SampleClient, which places the argument into its local String variable named server. The
GSSManager manager is used to instantiate a GSSName by calling one of its createName
methods. SampleClient calls the createName method with the following signature:

GSSName createName(String nameStr, Oid nameType);

SampleClient passes the server String for the nameStr argument.

The second argument is an Oid. An Oid represents a Universal Object Identifier. Oids are
hierarchically globally-interpretable identifiers used within the GSS-API framework to identify
mechanisms and name types. The structure and encoding of Oids is defined in the
ISOIEC-8824 and ISOIEC-8825 standards. The Oid passed to the createName method is
specifically a name type Oid (not a mechanism Oid).

In GSS-API, string names are often mapped from a mechanism-independent format into a
mechanism-specific format. Usually, an Oid specifies what name format the string is in so that
the mechanism knows how to do this mapping. Passing in a null Oid indicates that the name
is already in a native format that the mechanism uses. This is the case for the server String; it
is in the appropriate format for a Kerberos Version 5 name. Thus, SampleClient passes a null
for the Oid. Here is the call:

GSSName serverName = manager.createName(server, null);

The Oid mech Argument
The second argument to the GSSManager createContext method is an Oid representing the
mechanism to be used for the authentication between the client and the server during context
establishment and for subsequent secure communication between them.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-9

Our tutorial will use Kerberos V5 as the security mechanism. The Oid for the Kerberos V5
mechanism is defined in RFC 1964 as "1.2.840.113554.1.2.2" so we create such an Oid:

Oid krb5Oid = new Oid("1.2.840.113554.1.2.2");

SampleClient passes krb5Oid as the second argument to createContext.

The GSSCredential myCred Argument
The third argument to the GSSManager createContext method is a GSSCredential
representing the caller's credentials. If you pass null for this argument, as SampleClient
does, the default credentials are used.

The int lifetime Argument
The final argument to the GSSManager createContext method is an int specifying the
desired lifetime, in seconds, for the context that is created. SampleClient passes
GSSContext.DEFAULT_LIFETIME to request a default lifetime.

The Complete createContext Call
Now that we have all the required arguments, here is the call SampleClient makes to create a
GSSContext:

GSSContext context =
 manager.createContext(serverName,
 krb5Oid,
 null,
 GSSContext.DEFAULT_LIFETIME);

SampleClient Setting of Desired Options
After instantiating a context, and prior to actually establishing the context with the context
acceptor, the context initiator may choose to set various options that determine the desired
security context characteristics. Each such option is set by calling a request method on the
instantiated context. Most request methods take a boolean argument for indicating whether or
not the feature is requested. It is not always possible for a request to be satisfied, so whether
or not it was can be determined after context establishment by calling one of the get methods.

SampleClient requests the following:

1. Mutual authentication. The context initiator is always authenticated to the acceptor. If the
initiator requests mutual authentication, then the acceptor is also authenticated to the
initiator.

2. Confidentiality. Requesting confidentiality means that you request the enabling of
encryption for the context method named wrap. Encryption is actually used only if the
MessageProp object passed to the wrap method requests privacy.

3. Integrity. This requests integrity for the wrap and getMIC methods. When integrity is
requested, a cryptographic tag known as a Message Integrity Code (MIC) will be
generated when calling those methods. When getMIC is called, the generated MIC
appears in the returned token. When wrap is called, the MIC is packaged together with the
message (the original message or the result of encrypting the message, depending on
whether confidentiality was applied) all as part of one token. You can subsequently verify
the MIC against the message to ensure that the message has not been modified in transit.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-10

http://www.ietf.org/rfc/rfc1964.txt

The SampleClient code for making these requests on the GSSException context is the
following:

context.requestMutualAuth(true); // Mutual authentication
context.requestConf(true); // Will use encryption later
context.requestInteg(true); // Will use integrity later

After the context is established, the client must explicitly check the context states by calling the
accesor methods, like getMutualAuthState, getConfState, or getIntegState, and
destroy the security context if any of them do not match the desired state.

Note:

When using the default GSSManager implementation and the Kerberos mechanism,
these requests will always be granted.

SampleClient Context Establishment Loop
After SampleClient has instantiated a GSSContext and specified the desired context options,
it can actually establish the security context with SampleServer. To do so, SampleClient has a
loop. Each loop iteration

1. Calls the context's initSecContext method. If this is the first call, the method is passed a
null token. Otherwise, it is passed the token most recently sent to SampleClient by
SampleServer (a token generated by a SampleServer call to acceptSecContext).

2. Sends the token returned by initSecContext (if any) to SampleServer. The first call to
initSecContext always produces a token. The last call might not return a token.

3. Checks to see if the context is established. If not, SampleClient receives another token
from SampleServer and then starts the next loop iteration.

The tokens returned by initSecContext or received from SampleServer are placed in a byte
array. Tokens should be treated by SampleClient and SampleServer as opaque data to be
passed between them and interpreted by Java GSS-API methods.

The initSecContext arguments are a byte array containing a token, the starting offset into that
array of where the token begins, and the token length. For the first call, SampleClient passes a
null token, since no token has yet been received from SampleServer.

To exchange tokens with SampleServer, SampleClient uses the DataInputStream inStream
and DataOutputStream outStream it previously set up using the input and output streams
for the socket connection made with SampleServer. Note that whenever a token is written, the
number of bytes in the token is written first, followed by the token itself. The reasons are
discussed in the introduction to the The SampleClient and SampleServer Message Exchanges
section.

Here is the SampleClient context establishment loop, followed by code displaying information
about who the client and server are and whether or not mutual authentication actually took
place:

byte[] token = new byte[0];

while (!context.isEstablished()) {

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-11

 // token is ignored on the first call
 token = context.initSecContext(token, 0, token.length);

 // Send a token to the server if one was generated by
 // initSecContext
 if (token != null) {
 System.out.println("Will send token of size "
 + token.length + " from initSecContext.");
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }

 // If the client is done with context establishment
 // then there will be no more tokens to read in this loop
 if (!context.isEstablished()) {
 token = new byte[inStream.readInt()];
 System.out.println("Will read input token of size "
 + token.length
 + " for processing by initSecContext");
 inStream.readFully(token);
 }
}

System.out.println("Context Established! ");
System.out.println("Client is " + context.getSrcName());
System.out.println("Server is " + context.getTargName());
if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

Context Establishment by SampleServer

In our client/server scenario, SampleServer is the context acceptor. Here are the basic steps it
takes to establish a security context:

1. SampleServer GSSContext Instantiation

2. SampleClient Context Establishment Loop: Loops while the context is not yet established,
each time receiving a token from SampleClient, calling acceptSecContext and passing it
the token, and sending any returned token to SampleClient.

SampleServer GSSContext Instantiation
As described in SampleClient GSSContext Instantiation, a GSSContext is created by
instantiating a GSSManager and then calling one of its createContext methods.

Like SampleClient, SampleServer obtains an instance of the default GSSManager subclass by
calling the GSSManager static method getInstance:

GSSManager manager = GSSManager.getInstance();

The GSSManager factory method for creating a context on the acceptor's side has the
following signature:

GSSContext createContext(GSSCredential myCred);

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-12

If you pass null for the GSSCredential argument, as SampleServer does, the default
credentials are used. The context is instantiated via the following:

GSSContext context = manager.createContext((GSSCredential)null);

SampleServer Context Establishment Loop
After SampleServer has instantiated a GSSContext, it can establish the security context with
SampleClient. To do so, SampleServer has a loop that continues until the context is
established. Each loop iteration does the following:

1. Receives a token from SampleClient. This token is the result of a SampleClient
initSecContext call.

2. Calls the context's acceptSecContext method, passing it the token just received.

3. If acceptSecContext returns a token, then SampleServer sends this token to SampleClient
and then starts the next loop iteration if the context is not yet established.

The tokens returned by acceptSecContext or received from SampleClient are placed in a byte
array.

The acceptSecContext arguments are a byte array containing a token, the starting offset into
that array of where the token begins, and the token length.

To exchange tokens with SampleClient, SampleServer uses the DataInputStream inStream
and DataOutputStream outStream it previously set up using the input and output streams for
the socket connection made with SampleClient.

Here is the SampleServer context establishment loop:

byte[] token = null;

while (!context.isEstablished()) {

 token = new byte[inStream.readInt()];
 System.out.println("Will read input token of size "
 + token.length
 + " for processing by acceptSecContext");
 inStream.readFully(token);

 token = context.acceptSecContext(token, 0, token.length);

 // Send a token to the peer if one was generated by
 // acceptSecContext
 if (token != null) {
 System.out.println("Will send token of size "
 + token.length
 + " from acceptSecContext.");
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }
}

System.out.print("Context Established! ");
System.out.println("Client is " + context.getSrcName());
System.out.println("Server is " + context.getTargName());

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-13

if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

Exchanging Messages Securely
Once a security context has been established between SampleClient and SampleServer, they
can use the context to securely exchange messages.

• GSSContext Methods for Message Exchange

• The SampleClient and SampleServer Message Exchanges

GSSContext Methods for Message Exchange

Two types of methods exist for preparing messages for secure exchange: wrap and getMIC.
There are actually two wrap methods (and two getMIC methods), where the differences
between the two are the indication of where the input message is (a byte array or an input
stream) and where the output should go (to a byte array return value or to an output stream).

The following sections describe these methods for preparing messages for exchange and the
corresponding methods for interpretation by the peer of the resulting tokens.

wrap
The wrap method is the primary method for message exchanges.

The signature for the wrap method called by SampleClient is the following:

byte[] wrap (byte[] inBuf, int offset, interface len,
 MessageProp msgProp)

You pass wrap a message (in inBuf), the offset into inBuf where the message begins
(offset), and the length of the message (len). You also pass a MessageProp, which is used
to indicate the desired QOP (Quality-of-Protection) and to specify whether or not privacy
(encryption) is desired. A QOP value selects the cryptographic integrity and encryption (if
requested) algorithm(s) to be used. The algorithms corresponding to various QOP values are
specified by the provider of the underlying mechanism. For example, the values for Kerberos
V5 are defined in RFC 1964 in section 4.2. It is common to specify 0 as the QOP value to
request the default QOP.

The wrap method returns a token containing the message and a cryptographic Message
Integrity Code (MIC) over it. The message placed in the token will be encrypted if the
MessageProp indicates privacy is desired. You do not need to know the format of the returned
token; it should be treated as opaque data. You send the returned token to your peer
application, which calls the unwrap method to "unwrap" the token to get the original message
and to verify its integrity.

getMIC
If you simply want to get a token containing a cryptographic Message Integrity Code (MIC) for
a supplied message, you call getMIC. A sample reason you might want to do this is to confirm
with your peer that you both have the same data, by just transporting a MIC for that data
without incurring the cost of transporting the data itself to each other.

The signature for the getMIC method called by SampleServer is the following:

byte[] getMIC (byte[] inMsg, int offset, int len,
 MessageProp msgProp)

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-14

http://www.ietf.org/rfc/rfc1964.txt

You pass getMIC a message (in inMsg), the offset into inMsg where the message begins
(offset), and the length of the message (len). You also pass a MessageProp, which is used
to indicate the desired QOP (Quality-of-Protection). It is common to specify 0 as the QOP
value to request the default QOP.

If you have a token created by getMIC and the message used to calculate the MIC (or a
message purported to be the message on which the MIC was calculated), you can call the
verifyMIC method to verify the MIC for the message. If the verification is successful (that is, if
a GSSException is not thrown), it proves that the message is exactly the same as it was
when the MIC was calculated. A peer receiving a message from an application typically
expects a MIC as well, so that they can verify the MIC and be assured the message has not
been modified or corrupted in transit. Note: If you know ahead of time that you will want the
MIC as well as the message then it is more convenient to use the wrap and unwrap methods.
But there could be situations where the message and the MIC are received separately.

The signature for the verifyMIC corresponding to the getMIC shown previously is the following:

void verifyMIC (byte[] inToken, int tokOffset, int tokLen,
 byte[] inMsg, int msgOffset, int msgLen,
 MessageProp msgProp);

This verifies the MIC contained in the inToken (of length tokLen, starting at offset tokOffset)
over the message contained in inMsg (of length msgLen, starting at offset msgOffset). The
MessageProp is used by the underlying mechanism to return information to the caller, such as
the QOP indicating the strength of protection that was applied to the message.

The SampleClient and SampleServer Message Exchanges

The message exchanges between SampleClient and SampleServer are the "standard" steps
used for verifying a GSS-API client and server. A group at MIT has written a GSS-API client
and a GSS-API server that have become fairly popular test programs for checking
interoperability between different implementations of the GSS-API library. (These GSS-API
sample applications can be downloaded as a part of the Kerberos distribution available from
MIT at http://web.mit.edu/kerberos.) This client and server from MIT follow the protocol that
once the context is established, the client sends a message across and it expects back the
MIC on that message. If you implement a GSS-API library, it is common practice to test it by
running either the client or server using your library implementation against a corresponding
peer server or client that uses another GSS-API library implementation. If both library
implementations conform to the standards, then the two peers will be able to communicate
successfully.

One implication of testing your client or server against ones written in C (like the MIT ones) is
the way tokens must be exchanged. C implementations of GSS-API do not include stream-
based methods. In the absence of stream-based methods on your peer, when you write a
token you must first write the number of bytes and then write the token. Similarly, when you are
reading a token, you first read the number of bytes and then read the token. This is what
SampleClient and SampleServer do.

Here is the summary of the SampleClient and SampleServer message exchanges:

1. SampleClient calls wrap to encrypt and calculate a MIC for a message.

2. SampleClient sends the token returned from wrap to SampleServer.

3. SampleServer calls unwrap to obtain the original message and verify its integrity.

4. SampleServer calls getMIC to calculate a MIC on the decrypted message.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-15

http://web.mit.edu/kerberos/

5. SampleServer sends the token returned by getMIC (which contains the MIC) to
SampleClient.

6. SampleClient calls verifyMIC to verify that the MIC sent by SampleServer is a valid MIC
for the original message.

SampleClient Code to Encrypt the Message and Send It
The SampleClient code for encrypting a message, calculating a MIC for it, and sending the
result to SampleServer is the following:

byte[] messageBytes = "Hello There!\0".getBytes();

/*
 * The first MessageProp argument is 0 to request
 * the default Quality-of-Protection.
 * The second argument is true to request
 * privacy (encryption of the message).
 */
MessageProp prop = new MessageProp(0, true);

/*
 * Encrypt the data and send it across. Integrity protection
 * is always applied, irrespective of encryption.
 */
token = context.wrap(messageBytes, 0, messageBytes.length,
 prop);
System.out.println("Will send wrap token of size "
 + token.length);
outStream.writeInt(token.length);
outStream.write(token);
outStream.flush();

SampleServer Code to Unwrap Token, Calculate MIC, and Send It
The following SampleServer code reads the wrapped token sent by SampleClient and
"unwraps" it to obtain the original message and have its integrity verified. The unwrapping in
this case includes decryption since the message was encrypted.

Note:

Here, the integrity check is expected to succeed. But note that in general if an
integrity check fails, it signifies that the message was changed in transit. If the unwrap
method encounters an integrity check failure, it throws a GSSException with major
error code GSSException.BAD_MIC.

/*
 * Create a MessageProp which unwrap will use to return
 * information such as the Quality-of-Protection that was
 * applied to the wrapped token, whether or not it was
 * encrypted, etc. Since the initial MessageProp values
 * are ignored, it doesn't matter what they are set to.
 */
MessageProp prop = new MessageProp(0, false);

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-16

/*
 * Read the token. This uses the same token byte array
 * as that used during context establishment.
 */
token = new byte[inStream.readInt()];
System.out.println("Will read token of size "
 + token.length);
inStream.readFully(token);

byte[] bytes = context.unwrap(token, 0, token.length, prop);
String str = new String(bytes);
System.out.println("Received data \""
 + str + "\" of length " + str.length());
System.out.println("Encryption applied: "
 + prop.getPrivacy());

Next, SampleServer generates a MIC for the decrypted message and sends it to
SampleClient. This is not really necessary but simply illustrates generating a MIC on the
decrypted message, which should be exactly the same as the original message SampleClient
wrapped and sent to SampleServer. When SampleServer generates this and sends it to
SampleClient, and SampleClient verifies it, this proves to SampleClient that the decrypted
message SampleServer has is in fact exactly the same as the original message from
SampleClient.

/*
 * First reset the QOP of the MessageProp to 0
 * to ensure the default Quality-of-Protection
 * is applied.
 */
prop.setQOP(0);

token = context.getMIC(bytes, 0, bytes.length, prop);

System.out.println("Will send MIC token of size "
 + token.length);
outStream.writeInt(token.length);
outStream.write(token);
outStream.flush();

SampleClient Code to Verify the MIC
The following SampleClient code reads the MIC calculated by SampleServer on the decrypted
message and then verifies that the MIC is a MIC for the original message, proving that the
decrypted message SampleServer has is the same as the original message:

token = new byte[inStream.readInt()];
System.out.println("Will read token of size " + token.length);
inStream.readFully(token);

/*
 * Recall messageBytes is the byte array containing
 * the original message and prop is the MessageProp
 * already instantiated by SampleClient.
 */
context.verifyMIC(token, 0, token.length,

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-17

 messageBytes, 0, messageBytes.length,
 prop);

System.out.println("Verified received MIC for message.");

Clean Up
When SampleClient and SampleServer have finished exchanging messages, they need to
perform cleanup operations. Both contain the following code to

• close the socket connection and

• release system resources and cryptographic information stored in the context object and
then invalidate the context.

socket.close();
context.dispose();

Kerberos User and Service Principal Names
Since the underlying authentication and secure communication technology used by this tutorial
is Kerberos V5, we use Kerberos-style principal names wherever a user or service is called for
(see Principals).

For example, when you run SampleClient you are asked to provide your user name. Your
Kerberos-style user name is simply the user name you were assigned for Kerberos
authentication. It consists of a base user name (like mjones) followed by an "@" and your realm
(like mjones@KRBNT-OPERATIONS.EXAMPLE.COM).

A server program like SampleServer is typically considered to offer a "service" and to be run on
behalf of a particular "service principal." A service principal name for SampleServer is needed
in several places:

• When you run SampleServer, and SampleClient attempts a connection to it, the underlying
Kerberos mechanism will attempt to authenticate to the Kerberos KDC. It prompts you to
log in. You should log in as the appropriate service principal.

• When you run SampleClient, one of the arguments is the service principal name. This is
needed so SampleClient can initiate establishment of a security context with the
appropriate service.

Throughout this document, and in the accompanying login configuration file,
service_principal@your_realm, is used as a placeholder to be replaced by the actual name
to be used in your environment. Any Kerberos principal can actually be used for the service
principal name. So for the purposes of trying out this tutorial, you could use your user
name as both the client user name and the service principal name.

In a production environment, system administrators typically like servers to be run as specific
principals only and may assign a particular name to be used. Often the Kerberos-style service
principal name assigned is of the form

service_name/machine_name@realm;

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-18

For example, an nfs service run on a machine named raven in the realm named KRBNT-
OPERATIONS.EXAMPLE.COM could have the service principal name

nfs/raven@KRBNT-OPERATIONS.EXAMPLE.COM

Such multi-component names are not required, however. Single-component names, just like
those of user principals, can be used. For example, an installation might use the same ftp
service principal ftp@realm for all ftp servers in that realm, while another installation might
have different ftp principals for different ftp servers, such as ftp/host1@realm and ftp/
host2@realm on machines host1 and host2, respectively.

When the Realm Is Required in Principal Names
If the realm of a user or service principal name is the default realm (see Kerberos
Requirements), you can leave off the realm when you are logging into Kerberos (that is, when
you are prompted for your user name). Thus, for example, if your user name is mjones@KRBNT-
OPERATIONS.EXAMPLE.COM, and you run SampleClient, when it requests your user name you
could just specify mjones, leaving off the realm. The name is interpreted in the context of being
a Kerberos principal name and the default realm is appended, as needed.

You can also leave off the realm if a principal name will be converted to a GSSName by a
GSSManager createName method. For example, when you run SampleClient, one of the
arguments is the server service principal name. You can specify the name without including the
realm, because SampleClient passes the name to such a createName method, which appends
the default realm as needed.

It is recommended that you always include realms when principal names are used in login
configuration files and policy files, because the behavior of the parsers for such files may be
implementation-dependent; they may or may not append the default realm before such names
are utilized and subsequent actions may fail if there is no realm in the name.

The Login Configuration File
For this tutorial, we are letting the underlying Kerberos mechanism obtain credentials of the
users running SampleClient and SampleServer, rather than invoking JAAS methods directly
(as in the JAAS Authentication and JAAS Authorization tutorials) or indirectly (for example, via
the Login utility described in the Use of JAAS Login Utility tutorial and in the Use of JAAS Login
Utility and Java GSS-API for Secure Message Exchanges tutorial).

The default Kerberos mechanism implementation supplied by Oracle actually prompts for a
Kerberos name and password and authenticates the specified user (or service) to the Kerberos
KDC. The mechanism relies on JAAS to perform this authentication.

JAAS supports a pluggable authentication framework, meaning that any type of authentication
module can be plugged under a calling application. A login configuration specifies the login
module to be used for a particular application. The default JAAS implementation from Oracle
requires that the login configuration information be specified in a file. (Note: Some other
vendors might not have file-based implementations.) See Appendix B: JAAS Login
Configuration File for information as to what a login configuration file is, what it contains, and
how to specify which login configuration file should be used.

For this tutorial, the Kerberos login module com.sun.security.auth.module.Krb5LoginModule
is specified in the configuration file. This login module prompts for a Kerberos name and
password and attempts to authenticate to the Kerberos KDC.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-19

Both SampleClient and SampleServer can use the same login configuration file, if that file
contains two entries, one entry for the client side and one for the server side.

The bcsLogin.conf login configuration file used for this tutorial is the following:

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required;
};

com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true
};

Entries with these two names (com.sun.security.jgss.initiate and
com.sun.security.jgss.accept) are used by Oracle implementations of GSS-API
mechanisms when they need new credentials. Since the mechanism used in this tutorial is the
Kerberos V5 mechanism, a Kerberos login module will need to be invoked in order to obtain
these credentials. Thus we list Krb5LoginModule as a required module in these entries. The
com.sun.security.jgss.initiate entry specifies the configuration for the client side and the
com.sun.security.jgss.accept entry for the server side.

The Krb5LoginModule succeeds only if the attempt to log in to the Kerberos KDC as a
specified entity is successful. When running SampleClient or SampleServer, the user will be
prompted for a name and password.

The SampleServer entry storeKey=true indicates that a secret key should be calculated from
the password provided during login and it should be stored in the private credentials of the
Subject created as a result of login. This key is subsequently utilized during mutual
authentication when establishing a security context between SampleClient and SampleServer.

The Krb5LoginModule JavaDoc API documentation describes the configuration options that
the Krb5LoginModule class supports.

The useSubjectCredsOnly System Property
For this tutorial, we set the system property javax.security.auth.useSubjectCredsOnly to
false, which allows us to relax the usual restriction of requiring a GSS mechanism to obtain
necessary credentials from an existing Subject, set up by JAAS. When this restriction is
relaxed, it allows the mechanism to obtain credentials from some vendor-specific location. For
example, some vendors might choose to use the operating system's cache if one exists, while
others might choose to read from a protected file on disk.

When this restriction is relaxed, Oracle's Kerberos mechanism still looks for the credentials in
the Subject associated with the thread's access control context, but if it doesn't find any there,
it performs JAAS authentication using a Kerberos module to obtain new ones. The Kerberos
module prompts you for a Kerberos principal name and password. Note that Kerberos
mechanism implementations from other vendors may behave differently when this property is
set to false. Consult their documentation to determine their implementation's behavior.

Running the SampleClient and SampleServer Programs
To execute the SampleClient and SampleServer programs, do the following:

• Prepare SampleServer for Execution

• Prepare SampleClient for Execution

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-20

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html

• Execute SampleServer

• Execute SampleClient

Prepare SampleServer for Execution
To prepare SampleServer for execution, do the following:

1. Copy the following files into a directory accessible by the machine on which you will run
SampleServer:

• The SampleServer.java source file.

• The bcsLogin.conf login configuration file.

2. Compile SampleServer.java:

javac SampleServer.java

Prepare SampleClient for Execution
To prepare SampleClient for execution, do the following:

1. Copy the following files into a directory accessible by the machine on which you will run
SampleClient:

• The SampleClient.java source file.

• The bcsLogin.conf login configuration file.

2. Compile SampleClient.java:

javac SampleClient.java

Execute SampleServer
It is important to execute SampleServer before SampleClient because SampleClient will try to
make a socket connection to SampleServer and that will fail if SampleServer is not yet running
and accepting socket connections.

To execute SampleServer, be sure to run it on the machine it is expected to be run on. This
machine name (host name) is specified as an argument to SampleClient. The service principal
name appears in several places, including the login configuration file and the policy files.

Go to the directory in which you have prepared SampleServer for execution. Execute
SampleServer, specifying

• by -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified.

For example, if your realm is KRBNT-OPERATIONS.EXAMPLE.COM you'd put -
Djava.security.krb5.realm=KRBNT-OPERATIONS.EXAMPLE.COM.

• by -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified.

For example, if your KDC is samplekdc.example.comyou'd put -
Djava.security.krb5.kdc=samplekdc.example.com.

• by -Djavax.security.auth.useSubjectCredsOnly=false that the underlying mechanism
can decide how to get credentials. See The useSubjectCredsOnly System Property.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-21

• by -Djava.security.auth.login.config=bcsLogin.conf that the login configuration file
to be used is bcsLogin.conf.

The only argument required by SampleServer is one specifying the port number to be used for
listening for client connections. Choose a high port number unlikely to be used for anything
else. An example would be something like 4444.

The following is the full command to use for Windows, Linux, and macOS.

Note:

Important: In this command, you must replace <port_number> with an
appropriate port number, <your_realm> with your Kerberos realm, and
<your_kdc> with your Kerberos KDC.

The java.security.krb5.kdc system property interprets the ":" symbol as a
separation character for multiple KDCs. If the KDC is not listening on the default port
(88), you must provide the default realm and its KDC(s) in a krb5.conf file, then set
the system property java.security.krb5.kdc.conf with the name of this file:

-Djava.security.krb5.conf=<your_krb5.conf_file>

Here is the command:

java -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djavax.security.auth.useSubjectCredsOnly=false
 -Djava.security.auth.login.config=bcsLogin.conf
 SampleServer <port_number>

The full command should appear on one line (or, on Linux or macOS, on multiple lines where
each line but the last is terminated with " \" indicating that there is more to come). Multiple lines
are used here just for legibility. Since this command is very long, you may need to place it in
a .bat file (for Windows) or a .sh file (for Linux or macOS) and then run that file to execute the
command.

The SampleServer code will listen for socket connections on the specified port. When
prompted, type the Kerberos name and password for the service principal. The underlying
Kerberos authentication mechanism specified in the login configuration file will log the service
principal into Kerberos.

For login troubleshooting suggestions, see Troubleshooting.

Execute SampleClient
To execute SampleClient, first go to the directory in which you have prepared SampleClient
for execution. Execute SampleClient, specifying

• by -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified.

• by -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-22

• by -Djavax.security.auth.useSubjectCredsOnly=false that the underlying mechanism
can decide how to get credentials.

• by -Djava.security.auth.login.config=bcsLogin.conf that the login configuration file
to be used is bcsLogin.conf.

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

The SampleClient arguments are (1) the Kerberos name of the service principal that
represents SampleServer (see Kerberos User and Service Principal Names, (2) the name of
the host (machine) on which SampleServer is running, and (3) the port number on which
SampleServer is listening for client connections.

The following is the full command to use for Windows, Linux, and macOS:

Note:

Important: In this command, you must replace <service_principal>, <host>,
<port_number>, <your_realm>, and <your_kdc> with appropriate values (and note
that the port number must be the same as the port number passed as an argument to
SampleServer). These values need not be placed in quotes.

Here is the command:

java -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djavax.security.auth.useSubjectCredsOnly=false
 -Djava.security.auth.login.config=bcsLogin.conf
 SampleClient <service_principal> <host> <port_number>

Type the full command on one line. Multiple lines are used here for legibility. As with the
command for executing SampleServer, if the command is too long to type directly into your
command window, place it in a .bat file (Windows) or a .sh file (Linux and macOS) and then
execute that file.

When prompted, type your Kerberos user name and password. The underlying Kerberos
authentication mechanism specified in the login configuration file will log you into Kerberos.
The SampleClient code requests a socket connection with SampleServer. Once SampleServer
accepts the connection, SampleClient and SampleServer establish a shared context and then
exchange messages as described in this tutorial.

For login troubleshooting suggestions, see Troubleshooting.

JAAS Authentication
JAAS can be used for two purposes:

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-23

• for authentication of users, to reliably and securely determine who is currently executing
Java code, regardless of whether the code is running as an application, an applet, a bean,
or a servlet; and

• for authorization of users to ensure they have the access control rights (permissions)
required to do the actions performed.

This section provides a basic tutorial for the authentication component. The authorization
component will be described in the JAAS Authorization tutorial.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to
remain independent from underlying authentication technologies. New or updated technologies
can be plugged in without requiring modifications to the application itself. An implementation
for a particular authentication technology to be used is determined at runtime. The
implementation is specified in a login configuration file. The authentication technology used for
this tutorial is Kerberos. (See Kerberos Requirements.)

The rest of this tutorial consists of the following sections:

1. The Authentication Tutorial Code

2. The Login Configuration

3. Running the Code

4. Running the Code with a Security Manager

If you want to first see the tutorial code in action, you can skip directly to Running the Code
and then go back to the other sections to learn about coding and configuration file details.

The Authentication Tutorial Code
Our authentication tutorial code is contained in a single source file, JaasAcn.java. This file's
main method performs the authentication and then reports whether or not authentication
succeeded.

The code for authenticating the user is very simple, consisting of just two steps:

1. Instantiating a LoginContext

2. Calling the LoginContext's login Method

Instantiating a LoginContext
In order to authenticate a user, you first need a javax.security.auth.login.LoginContext.
Here is the basic way to instantiate a LoginContext:

import javax.security.auth.login.*;
. . .
LoginContext lc =
 new LoginContext(<config file entry name>,
 <CallbackHandler to be used for user interaction>);

and here is the specific way our tutorial code does the instantiation:

import javax.security.auth.login.*;
import com.sun.security.auth.callback.TextCallbackHandler;
. . .
LoginContext lc =

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-24

 new LoginContext("JaasSample",
 new TextCallbackHandler());

The arguments are the following:

1. The name of an entry in the JAAS login configuration file
This is the name for the LoginContext to use to look up an entry for this application in
the JAAS login configuration file, described in The Login Configuration. Such an entry
specifies the class(es) that implement the desired underlying authentication
technology(ies). The class(es) must implement the LoginModule interface, which is in the
javax.security.auth.spi package.

In our sample code, we use the Krb5LoginModule in the com.sun.security.auth.module
package, which performs Kerberos authentication.

The entry in the login configuration file we use for this tutorial (see jaas.conf) has the
name "JaasSample", so that is the name we specify as the first argument to the
LoginContext constructor.

2. A CallbackHandler instance.
When a LoginModule needs to communicate with the user, for example to ask for a user
name and password, it does not do so directly. That is because there are various ways of
communicating with a user, and it is desirable for LoginModules to remain independent
of the different types of user interaction. Rather, the LoginModule invokes a
CallbackHandler to perform the user interaction and obtain the requested information,
such as the user name and password. (CallbackHandler is an interface in the
javax.security.auth.callback package.)

An instance of the particular CallbackHandler to be used is specified as the second
argument to the LoginContext constructor. The LoginContext forwards that instance
to the underlying LoginModule (in our case Krb5LoginModule). An application typically
provides its own CallbackHandler implementation. A simple CallbackHandler,
TextCallbackHandler, is provided in the com.sun.security.auth.callback package
to output information to and read input from the command line.

Calling the LoginContext's login Method
Once we have a LoginContext lc, we can call its login method to carry out the
authentication process:

lc.login();

The LoginContext instantiates a new empty javax.security.auth.Subject object (which
represents the user or service being authenticated; see Subject). The LoginContext
constructs the configured LoginModule (in our case Krb5LoginModule) and initializes it
with this new Subject and TextCallbackHandler.

The LoginContext's login method then calls methods in the Krb5LoginModule to perform
the login and authentication. The Krb5LoginModule will utilize the TextCallbackHandler
to obtain the user name and password. Then the Krb5LoginModule will use this information
to get the user credentials from the Kerberos KDC. See the Kerberos reference
documentation.

If authentication is successful, the Krb5LoginModule populates the Subject with (1) a
Kerberos Principal representing the user and (2) the user's credentials (TGT).

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-25

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
http://web.MIT.edu/kerberos/www/index.html
http://web.MIT.edu/kerberos/www/index.html

The calling application can subsequently retrieve the authenticated Subject by calling the
LoginContext's getSubject method, although doing so is not necessary for this tutorial.

The Login Configuration
JAAS authentication is performed in a pluggable fashion, so applications can remain
independent from underlying authentication technologies. A system administrator determines
the authentication technologies, or LoginModules, to be used for each application and
configures them in a login Configuration. The source of the configuration information (for
example, a file or a database) is up to the current
javax.security.auth.login.Configuration implementation. The default
Configuration implementation from Oracle reads configuration information from configuration
files, as described in com.sun.security.auth.login.ConfigFile.

See Appendix B: JAAS Login Configuration File for information as to what a login configuration
file is, what it contains, and how to specify which login configuration file should be used.

The Login Configuration File for This Tutorial
As noted, the login configuration file we use for this tutorial, jass.conf, contains just one entry,
which is

JaasSample {
 com.sun.security.auth.module.Krb5LoginModule required;
};

This entry is named JaasSample and that is the name that our tutorial application, JaasAcn,
uses to refer to this entry. The entry specifies that the LoginModule to be used to do the user
authentication is the Krb5LoginModule in the com.sun.security.auth.module package and
that this Krb5LoginModule is required to "succeed" in order for authentication to be
considered successful. The Krb5LoginModule succeeds only if the name and password
supplied by the user are successfully used to log the user into the Kerberos KDC.

See the Krb5LoginModule JavaDoc API documentation for information about all the possible
options that can be passed to Krb5LoginModule.

Running the Code
To execute our JAAS authentication tutorial code, all you have to do is

1. Place the JaasAcn.java application source file and the jaas.conf login configuration
file into a directory.

2. Compile JaasAcn.java:

javac JaasAcn.java

3. Execute the JaasAcn application, specifying

• by -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified.

For example, if your realm is KRBNT-OPERATIONS.EXAMPLE.COM you'd put -
Djava.security.krb5.realm=KRBNT-OPERATIONS.EXAMPLE.COM.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-26

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/ConfigFile.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html

• by -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one
specified.

For example, if your KDC is samplekdc.example.com you'd put -
Djava.security.krb5.kdc=samplekdc.example.com.

• by -Djava.security.auth.login.config=jaas.conf that the login configuration file to
be used is jaas.conf.

The following is the full command:

Note:

Be sure to replace <your_realm> with your Kerberos realm, and <your_kdc> with
your Kerberos KDC.

java -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.auth.login.config=jaas.conf JaasAcn

Type all that on one line. Multiple lines are used here for legibility.

You will be prompted for your Kerberos user name and password, and the underlying Kerberos
authentication mechanism specified in the login configuration file will log you into Kerberos. If
your login is successful, you will see the following message:

Authentication succeeded!

If the login is not successful (for example, if you misspell your password), you will see

Authentication failed:

followed by a reason for the failure. For example, if you mistype your user name, you may see
a message like the following (where the formatting is slightly modified here to increase
legibility):

Authentication failed:
 Kerberos Authentication Failed:
 javax.security.auth.login.LoginException:
 KrbException: Client not found in Kerberos database

For login troubleshooting suggestions, see Troubleshooting.

After fixing any problems, re-run the program to try again.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-27

Running the Code with a Security Manager

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

When a Java program is run with a security manager installed, the program is not allowed to
access resources or otherwise perform security-sensitive operations unless it is explicitly
granted permission (see Permissions in the JDK to do so by the security policy in effect. The
permission must be granted by an entry in a policy file (see Default Policy Implementation and
Policy File Syntax).

Most browsers install a security manager, so applets typically run under the scrutiny of a
security manager. Applications, on the other hand, do not, since a security manager is not
automatically installed when an application is running. Thus an application, like our JaasAcn
application, by default has full access to resources.

To run an application with a security manager, simply invoke the interpreter with a -
Djava.security.manager argument included on the command line.

If you try invoking JaasAcn with a security manager but without specifying any policy file, you
will get the following (unless you have a default policy setup elsewhere that grants the required
permissions or grants AllPermission):

% java -Djava.security.manager \
 -Djava.security.krb5.realm=<your_realm> \
 -Djava.security.krb5.kdc=<your_kdc> \
 -Djava.security.auth.login.config=jaas.conf JaasAcn
Exception in thread "main" java.security.AccessControlException:
 access denied (
 javax.security.auth.AuthPermission createLoginContext.JaasSample)

As you can see, you get an AccessControlException, because we haven't created and
used a policy file granting our code the permission that is required in order to be allowed to
create a LoginContext.

Here are the complete steps required in order to be able to run our JaasAcn application with a
security manager installed. You can skip the first two steps if you have already done them, as
described in Running the Code.

1. Place the JaasAcn.java application source file and the jaas.conf login configuration
file into a directory.

2. Compile JaasAcn.java:

javac JaasAcn.java

3. Create a JAR file containing JaasAcn.class:

jar -cvf JaasAcn.jar JaasAcn.class

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-28

https://openjdk.java.net/jeps/411

This command creates a JAR file, JaasAcn.jar, and places the JaasAcn.class file inside
it.

4. Create a policy file granting the code in the JAR file the required permission.
The permission that is needed by code attempting to instantiate a LoginContext is a
javax.security.auth.AuthPermission with target createLoginContext.<entry name>.
Here, <entry name> refers to the name of the login configuration file entry that the
application references in its instantiation of LoginContext. The name used by our
JaasAcn application's LoginContext instantiation is JaasSample, as you can see in the
code:

LoginContext lc =
 new LoginContext("JaasSample",
 new TextCallbackHandler());

Thus, the permission that needs to be granted to JaasAcn.jar is

permission javax.security.auth.AuthPermission
 "createLoginContext.JaasSample";

Copy the policy file jaasacn.policy to the same directory as that in which you stored
JaasAcn.java, etc. This is a text file containing the following grant statement to grant
JaasAcn.jar (in the current directory) the required permission:

grant codebase "file:./JaasAcn.jar" {
 permission javax.security.auth.AuthPermission
 "createLoginContext.JaasSample";
};

Note: Policy files and the structure of entries within them are described in Default Policy
Implementation and Policy File Syntax. Permissions are described in Permissions in the
JDK.

5. Execute the JaasAcn application, specifying

a. by an appropriate -classpath clause that classes should be searched for in the
JaasAcn.jar JAR file,

b. by -Djava.security.manager that a security manager should be installed,

c. by -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified. For example, if your realm is KRBNT-OPERATIONS.EXAMPLE.COMyou'd put -
Djava.security.krb5.realm=KRBNT-OPERATIONS.EXAMPLE.COM.

d. by -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one
specified. For example, if your KDC is samplekdc.example.comyou'd put -
Djava.security.krb5.kdc=samplekdc.example.com.

e. by -Djava.security.policy=jaasacn.policy that the policy file to be used is
jaasacn.policy, and

f. by -Djava.security.auth.login.config=jaas.conf that the login configuration file to
be used is jaas.conf.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-29

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

The following is the command:

Note:

Be sure to replace <your_realm> with your Kerberos realm, and <your_kdc>
with your Kerberos KDC.

java -classpath JaasAcn.jar -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=jaasacn.policy
 -Djava.security.auth.login.config=jaas.conf JaasAcn

Type all that on one line. Multiple lines are used here for legibility. If the command is too
long for your system, you may need to place it in a .bat file (for Windows) or a .sh file (for
Linux and macOS) then run that file to execute the command.

Since the specified policy file contains an entry granting the code the required permission,
JaasAcn will be allowed to instantiate a LoginContext and continue execution. You will
be prompted for your Kerberos user name and password, and the underlying Kerberos
authentication mechanism specified in the login configuration file will log you into Kerberos.
If your login is successful, you will see the message "Authentication succeeded!" and if not,
you will see "Authentication failed:" followed by a reason for the failure.

For login troubleshooting suggestions, see Troubleshooting.

JAAS Authorization

This tutorial expands the program and policy file developed in the JAAS Authentication tutorial
to demonstrate the JAAS authorization component, which ensures the authenticated caller has
the access control rights (permissions) required to do subsequent security-sensitive
operations. Since the authorization component requires that the user authentication first be
completed, please read the JAAS Authentication tutorial first if you have not already done so.

The rest of this tutorial consists of the following sections:

• What is JAAS Authorization?

• How Is JAAS Authorization Performed?

– How Do You Make Principal-Based Policy File Statements?

– How Do You Associate a Subject with an Access Control Context?

• The Authorization Tutorial Code

• The Login Configuration File

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-30

• The Policy File

• Running the Authorization Tutorial Code

If you want to first see the tutorial code in action, you can skip directly to Running the
Authorization Tutorial Code and then go back to the other sections to learn more.

What is JAAS Authorization?
JAAS authorization extends the existing Java security architecture that uses a security policy
(see Default Policy Implementation and Policy File Syntax) to specify what access rights are
granted to executing code. That architecture is code-centric. That is, the permissions are
granted based on code characteristics: where the code is coming from and whether it is
digitally signed and if so by whom. We saw an example of this in the jaasacn.policy file used
in the JAAS Authentication tutorial. That file contains the following:

grant codebase "file:./JaasAcn.jar" {
 permission javax.security.auth.AuthPermission
 "createLoginContext.JaasSample";
};

This grants the code in the JaasAcn.jar file, located in the current directory, the specified
permission. (No signer is specified, so it doesn't matter whether the code is signed or not.)

JAAS authorization augments the existing code-centric access controls with new user-centric
access controls. Permissions can be granted based not just on what code is running but also
on who is running it.

When an application uses JAAS authentication to authenticate the user (or other entity such as
a service), a Subject is created as a result. The purpose of the Subject is to represent the
authenticated user. A Subject is comprised of a set of Principals, where each Principal
represents an identity for that user. For example, a Subject could have a name Principal
("Susan Smith") and a Social Security Number Principal ("987-65-4321"), thereby
distinguishing this Subject from other Subjects.

Permissions can be granted in the policy to specific Principals. After the user has been
authenticated, the application can associate the Subject with the current access control
context. For each subsequent security-checked operation, (a local file access, for example),
the Java runtime will automatically determine whether the policy grants the required permission
only to a specific Principal and if so, the operation will be allowed only if the Subject
associated with the access control context contains the designated Principal.

How Is JAAS Authorization Performed?
To make JAAS authorization take place, the following is required:

• The user must be authenticated, as described in the JAAS Authentication tutorial.

• Principal-based entries must be configured in the security policy. See How Do You Make
Principal-Based Policy File Statements?

• The Subject that is the result of authentication must be associated with the current access
control context. See How Do You Associate a Subject with an Access Control Context?

How Do You Make Principal-Based Policy File Statements?
Policy file grant statements can now optionally include one or more Principal fields (see
Default Policy Implementation and Policy File Syntax). Inclusion of a Principal field indicates

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-31

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

that the user or other entity represented by the specified Principal, executing the specified
code, has the designated permissions.

Thus, the basic format of a grant statement is now

grant <signer(s) field>, <codeBase URL>
 <Principal field(s)> {
 permission perm_class_name "target_name", "action";

 permission perm_class_name "target_name", "action";
 };

where each of the signer, codeBase and Principal fields is optional and the order between the
fields doesn't matter.

A Principal field looks like the following:

Principal Principal_class "principal_name"

That is, it is the word "Principal" (where case doesn't matter) followed by the (fully qualified)
name of a Principal class and a principal name.

A Principal class is a class that implements the java.security.Principal interface.
All Principal objects have an associated name that can be obtained by calling their getName
method. The format used for the name is dependent on each Principal implementation.

The type of Principal placed in the Subject created by the Kerberos authentication
mechanism used by this tutorial is javax.security.auth.kerberos.KerberosPrincipal, so
that is what should be used as the Principal_class part of our grant statement's Principal
designation. User names for KerberosPrincipals are of the form name@realm. Thus, if the user
name is mjones and the realm is KRBNT-OPS.ABC.COM, the full principal_name designation to
use in the grant statement is mjones@KRBNT-OPS.ABC.COM.

It is possible to include more than one Principal field in a grant statement. If multiple Principal
fields are specified, then the permissions in that grant statement are granted only if the
Subject associated with the current access control context contains all of those Principals.

To grant the same set of permissions to different Principals, create multiple grant statements
where each lists the permissions and contains a single Principal field designating one of the
Principals.

The policy file for this tutorial includes one grant statement with a Principal field:

grant codebase "file:./SampleAction.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-32

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Principal.html

where you substitute your Kerberos user name (complete with "@" and realm) for
your_user_name@your_realm. This specifies that the indicated permissions are granted to the
specified principal executing the code in SampleAction.jar.

How Do You Associate a Subject with an Access Control Context?
To create and associate a Subject with an access control context, you need the following:

• The user must first be authenticated, as described in JAAS Authentication.

• The static doAs method from the Subject class must be called, passing it an
authenticated Subject and a java.security.PrivilegedAction or
java.security.PrivilegedExceptionAction. (See Appendix A: API for Privileged
Blocks for a comparison of PrivilegedAction and PrivilegedExceptionAction.)
The doAs method associates the provided Subject with the current access control context
and then invokes the run method from the action. The run method implementation
contains all the code to be executed as the specified Subject. The action thus executes
as the specified Subject.
The static doAsPrivileged method from the Subject class may be called instead of the
doAs method. In addition to the parameters passed to doAs, doAsPrivileged requires a
third parameter: an AccessControlContext. Unlike doAs, which associates the
provided Subject with the current access control context, doAsPrivileged associates the
Subject with the provided access control context. See doAs versus doAsPrivileged in the
JAAS Reference Guide for a comparison of those methods.

The Authorization Tutorial Code
The code for this tutorial consists of two files:

• JaasAzn.java is exactly the same as the JaasAcn.java from the JAAS Authentication
tutorial except for the additional code needed to call Subject.doAsPrivileged.

• SampleAction.java contains the SampleAction class. This class implements
PrivilegedAction and has a run method that contains all the code we want to be
executed with Principal-based authorization checks.

JaasAzn.java
JaasAzn.java is exactly the same as the JaasAcn.java code used in the previous tutorial
except with three statements added at the end of the main method, after the authentication is
done. These statements result in (1) association of a Subject representing the authenticated
user with the current access control context and (2) execution of the code in the run method of
SampleAction. Associating the Subject with the access control context enables security-
sensitive operations in the SampleAction run method (and any code it invokes directly or
indirectly) to be executed if a Principal representing the authenticated user is granted the
required permissions in the current policy.

Like JaasAcn.java, JaasAzn.java instantiates a LoginContext lc and calls its login method
to perform the authentication. If successful, the authenticated Subject (which includes a
Principal representing the user) is obtained by calling the LoginContext's getSubject
method:

Subject mySubject = lc.getSubject();

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-33

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedAction.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedExceptionAction.html

The main method then calls Subject.doAsPrivileged, passing it the authenticated Subject
mySubject, a PrivilegedAction (SampleAction) and a null AccessControlContext, as
described in the following.

The SampleAction class is instantiated via the following:

PrivilegedAction action = new SampleAction();

The call to Subject.doAsPrivileged is performed via:

Subject.doAsPrivileged(mySubject, action, null);

The doAsPrivileged method invokes execution of the run method in the PrivilegedAction
action (SampleAction) to initiate execution of the rest of the code, which is considered to be
executed on behalf of the Subject mySubject.

Passing null as the AccessControlContext (third) argument to doAsPrivileged indicates
that mySubject should be associated with a new empty AccessControlContext. The result
is that security checks occurring during execution of SampleAction will only require
permissions for the SampleAction code itself (or other code it invokes), running as mySubject.
Note that the caller of doAsPrivileged (and the callers on the execution stack at the time
doAsPrivileged was called) do not require any permissions while the action executes.

SampleAction.java
SampleAction.java contains the SampleAction class. This class implements
java.security.PrivilegedAction and has a run method that contains all the code we want to
be executed as the Subject mySubject. For this tutorial, we will perform three operations, each
of which cannot be done unless code has been granted required permissions. We will:

• Read and print the value of the java.home system property,

• Read and print the value of the user.home system property, and

• Determine whether or not a file named foo.txt exists in the current directory.

The Login Configuration File
The login configuration file used for this tutorial can be exactly the same as that used by the
JAAS Authentication tutorial. Thus we can use jaas.conf, which contains just one entry:

JaasSample {
 com.sun.security.auth.module.Krb5LoginModule required;
};

This entry is named "JaasSample" and that is the name that both our tutorial applications
JaasAcn and JaasAzn use to refer to it. The entry specifies that the LoginModule to be used
to do the user authentication is the Krb5LoginModule in the com.sun.security.auth.module
package and that this Krb5LoginModule is required to "succeed" in order for authentication
to be considered successful. The Krb5LoginModule succeeds only if the name and
password supplied by the user are successfully used to log the user into the Kerberos KDC.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-34

The Policy File
This authorization tutorial contains two classes, JaasAzn and SampleAction. The code in each
class contains some security-sensitive operations and thus relevant permissions are required
in a policy file in order for the operations to be executed.

Permissions Required by JaasAzn
The main method of the JaasAzn class does two operations for which permissions are
required. It

• creates a LoginContext, and

• calls the doAsPrivileged static method of the Subject class.

The LoginContext creation is exactly the same as was done in the authentication tutorial,
and it thus needs the same javax.security.auth.AuthPermission permission with target
createLoginContext.JaasSample.

In order to call the doAsPrivileged method of the Subject class, you need to have a
javax.security.auth.AuthPermission with target doAsPrivileged.

Assuming the JaasAzn class is placed in a JAR file named JaasAzn.jar, these permissions
can be granted to the JaasAzn code via the following grant statement in the policy file:

grant codebase "file:./JaasAzn.jar" {
 permission javax.security.auth.AuthPermission
 "createLoginContext.JaasSample";
 permission javax.security.auth.AuthPermission "doAsPrivileged";
};

Permissions Required by SampleAction
The SampleAction code does three operations for which permissions are required. It

• reads the value of the java.home system property.

• reads the value of the user.home system property.

• checks to see whether or not a file named foo.txt exists in the current directory.

The permissions required for these operations are the following:

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "user.home", "read";
permission java.io.FilePermission "foo.txt", "read";

We need to grant these permissions to the code in SampleAction.class, which we will place in
a JAR file named SampleAction.jar. However, for this particular grant statement we want to
grant the permissions not just to the code but to a specific user executing the code, to
demonstrate how to restrict access to a particular user.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-35

Thus, as explained in How Do You Make Principal-Based Policy File Statements?, our grant
statement looks like the following:

grant codebase "file:./SampleAction.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

You substitute your Kerberos user name (complete with "@" and realm) for
your_user_name@your_realm. For example, if your user name is mjones and your realm is
KRBNT-OPERATIONS.ABC.COM, you would use mjones@KRBNT-OPERATIONS.ABC.COM.

Running the Authorization Tutorial Code
To execute our JAAS authorization tutorial code, all you have to do is

1. Place the following files into a directory:

• The JaasAzn.java source file.

• The SampleAction.java source file.

• The jaas.conf login configuration file.

• The jaasazn.policy policy file.

2. Replace your_user_name@your_realm in jaasazn.policy with your user name and realm.

3. Compile SampleAction.java and JaasAzn.java:

javac SampleAction.java JaasAzn.java

4. Create a JAR file named JaasAzn.jar containing JaasAzn.class:

jar -cvf JaasAzn.jar JaasAzn.class

5. Create a JAR file named SampleAction.jar containing SampleAction.class:

jar -cvf SampleAction.jar SampleAction.class

6. Execute the JaasAzn application, specifying

a. An appropriate -classpath clause that classes should be searched for in the
JaasAzn.jar and SampleAction.jar JAR files

b. -Djava.security.manager that a security manager should be installed

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the
Security Manager. See JEP 411 for discussion and alternatives.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-36

https://openjdk.java.net/jeps/411

c. -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified

d. -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified.

e. -Djava.security.policy=jaasazn.policy that the policy file to be used is
jaasazn.policy

f. -Djava.security.auth.login.config=jaas.conf that the login configuration file to be
used is jaas.conf

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

The following are the full commands to use for Windows, Linux, and macOS. The only
difference is that on Windows you use semicolons to separate classpath items, while you
use colons for that purpose on gLinux, and macOS.

Note:

Be sure to replace <your_realm> with your Kerberos realm, and <your_kdc>
with your Kerberos KDC.

Here is the full command for Windows:

java -classpath JaasAzn.jar;SampleAction.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=jaasazn.policy
 -Djava.security.auth.login.config=jaas.conf JaasAzn

Here is the full command for Linux and macOS:

java -classpath JaasAzn.jar:SampleAction.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=jaasazn.policy
 -Djava.security.auth.login.config=jaas.conf JaasAzn

Type the full command on one line. Multiple lines are used here for legibility. If the
command is too long for your system, you may need to place it in a .bat file (for Windows)
or a .sh file (for Linux and macOS) and then run that file to execute the command.

You will be prompted for your Kerberos user name and password, and the underlying
Kerberos authentication mechanism specified in the login configuration file will log you into
Kerberos. If your login is successful, you will see the message "Authentication succeeded!"
and if not, you will see "Authentication Failed."

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-37

For login troubleshooting suggestions, see Troubleshooting.

Once authentication is successfully completed, the rest of the program (in SampleAction)
will be executed on behalf of you, the user, requiring you to have been granted appropriate
permissions. The jaasazn.policy policy file grants you the required permissions, so you
will see a display of the values of your java.home and user.home system properties and a
statement as to whether or not you have a file named foo.txt in the current directory.

Use of JAAS Login Utility
The previous two tutorials, JAAS Authentication and JAAS Authorization, show how you can
use the LoginContext and Subject classes to write a program to

• authenticate the user to verify his or her identity and

• associate an instance of a particular class representing the user (a Subject instance)
with an access control context in such a way that subsequent security-sensitive operations
will be allowed if the current policy grants the user the required permissions.

This tutorial describes a Login utility that performs these operations and then executes any
specified application as the authenticated user.

Use of the Login utility with a sample application is demonstrated in this tutorial. The next
tutorial, Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges, a client/
server application using the Java GSS-API, also uses the Login utility.

It is not necessary to read the previous two tutorials on JAAS authentication and authorization
prior to reading this one. However, you may want to refer to some sections in those tutorials to
obtain further details regarding certain topics, such as JAAS Authorization. You should also
read Appendix B: JAAS Login Configuration File for information as to what a login configuration
file is, since one is needed for this and all other tutorials in this series.

As with all tutorials in this series of tutorials, the underlying technology used to support
authentication is Kerberos. See Kerberos Requirements.

• What You Need to Know About the Login Utility

• Application and Other File Requirements

• The Sample Application Program

• The Login Configuration File

• The Policy File

• Running the Sample Program with the Login Utility

If you want to first see the tutorial code in action, you can skip directly to Running the Sample
Program with the Login Utility and then go back to the other sections to learn more.

What You Need to Know About the Login Utility
You do not need to understand the code contained in Login.java; you can just use it as is.
However, you need to understand some facts about what it does so that your program, policy
file, and login configuration file will properly work with it. The following is a summary of these
facts, followed by sections with further information and examples.

The Login class does the following:

• Assumes it is passed, as arguments, your application's top-level class name, followed by
any arguments your application may require.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-38

• Assumes that the class name of your top-level application class is also used as the name
of the entry to be looked up in your login configuration file.

• Specifies the TextCallbackHandler class (from the com.sun.security.auth.callback
package) as the class to be used when communicating with the user. This class can
prompt the user for a user name and password.

• Uses a LoginContext to authenticate the user. The LoginContext invokes the
appropriate authentication technology, or LoginModule, to perform the authentication.
LoginModules use a CallbackHandler (in our case, TextCallbackHandler) as
needed to communicate with the user.

• Allows the user three attempts to successfully log in.

• Creates an instance of the MyAction class (also in Login.java), passing it the application
arguments, if any.

• Invokes Subject.doAsPrivileged, passing it a Subject representing the user, the
MyAction instance, and a null AccessControlContext. The result is that the public
static main method from your application is invoked and your application code is
considered to be executed on behalf of the user.

Application and Other File Requirements
To utilize the Login utility to authenticate the user and execute your application, you may need
a small number of additions or modifications to your login configuration file and policy file, as
described in the following.

• Application Requirements

• Login Configuration File Requirements

• Policy File Requirements

Application Requirements
In order to utilize the Login utility, your application code does not need anything special. All you
need is for the entry point of your application to be the main method of a class you write, as
usual.

The way to invoke Login such that it will authenticate the user and then instantiate MyAction to
invoke your application is the following:

java <options> Login <AppName> <app arguments>

where <AppName> is your application's top-level class name and <app arguments> are any
arguments required by your application. See Running the Sample Program with the Login
Utility for the full command used for this tutorial.

Login Configuration File Requirements
Whenever a LoginContext is used to authenticate the user, you need a login configuration file
to specify the desired login module. See the The Login Configuration section in the JAAS
authentication tutorial for more information as to what a login configuration file is and what it
contains.

When you use the Login utility, the name for the login configuration file entry must be exactly
the same as your top-level application class name. See The Login Configuration File in this
tutorial for an example.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-39

Policy File Requirements
Whenever you run an application with a security manager, you need a policy indicating the
permissions granted to specific code, or to specific code being executed by a specific user (or
users). One way of specifying the policy is by grant statements in a policy file. See The Policy
File for more information.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

If you use the Login utility to invoke your application, then you will need to grant it various
permissions, as described in Permissions Required by the Login and MyAction Classes.

The Sample Application Program
The Sample.java application used for this tutorial performs the same actions as the
SampleAction.java application did in the previous (JAAS Authorization) tutorial. It does the
following:

• Reads and prints the value of the java.home system property,

• Reads and prints the value of the user.home system property, and

• Determines whether or not a file named foo.txt exists in the current directory.

The Login Configuration File
The sample.conf login configuration file for this tutorial contains a single entry, just like the
login configuration file for the previous (JAAS Authorization) tutorial. The entry contents are the
same since the class implementing the desired authentication technology in both cases is the
Krb5LoginModule in the com.sun.security.auth.module package.

The only difference is the name used for the entry. In the previous tutorial we used the name
"JaasSample", since that is the name used by the JaasAzn class to look up the entry. When
you use the Login utility with your application, it expects the name for your login configuration
file entry to be the same as the name of your top-level application class. That application class
for this tutorial is named "Sample" so that must also be the name of the login configuration file
entry. Thus the login configuration file looks like the following:

Sample {
 com.sun.security.auth.module.Krb5LoginModule required;
};

The "required" indicates that login using the Krb5LoginModule is required to "succeed" in
order for authentication to be considered successful. The Krb5LoginModule succeeds only if
the name and password supplied by the user are successfully used to log the user into the
Kerberos KDC.

See the Krb5LoginModule JavaDoc API documentation for information about all the possible
options that can be passed to Krb5LoginModule.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-40

https://openjdk.java.net/jeps/411
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html

The Policy File
The Login, MyAction, and Sample classes all perform some security-sensitive operations
and thus relevant permissions are required in a policy file, sample.policy, in order for the
operations to be executed.

Permissions Required by the Login and MyAction Classes
For this tutorial, you will create a Login.jar JAR file containing the Login.class and
MyAction.class files. You need to grant Login.jar various permissions, specifically the ones
required for invoking the security-sensitive methods the Login.jar classes call, as well as all
the permissions required by your application. Otherwise, access control checks will fail.

The simplest thing to do, and what we recommend, is to grant Login.jar AllPermission. For
this tutorial, the Login.jar file is assumed to be in the current directory and the policy file
includes the following:

grant codebase "file:./Login.jar" {
 permission java.security.AllPermission;
};

Permissions Required by Sample
(Note: This section is essentially a modified copy of the Permissions Required by
SampleAction section from the previous (JAAS Authorization) tutorial, since Sample and
SampleAction perform the same operations and thus require the same permissions.)

The Sample code does three operations for which permissions are required. It

• reads the value of the java.home system property.

• reads the value of the user.home system property.

• checks to see whether or not a file named foo.txt exists in the current directory.

The permissions required for these operations are the following:

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "user.home", "read";
permission java.io.FilePermission "foo.txt", "read";

We need to grant these permissions to the code in Sample.class, which we will place in a JAR
file named Sample.jar. However, our grant statement will grant the permissions not just to the
code but to a specific authenticated user executing the code. This illustrates how you can use
a Principal designation in a grant statement to restrict execution of security-sensitive
operations in code to a specific user rather than allowing the permissions to all users executing
the code.

Thus, as explained in JAAS Authorization, our grant statement looks like the following:

grant codebase "file:./Sample.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.util.PropertyPermission "java.home", "read";

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-41

 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

Note:

Important: You must substitute your Kerberos user name (complete with "@"
and realm) for your_user_name@your_realm.

For example, if your user name is mjones and your realm is KRBNT-
OPERATIONS.ABC.COM, you would use mjones@KRBNT-OPERATIONS.ABC.COM.

Running the Sample Program with the Login Utility
To execute the Sample application with the Login utility, do the following:

1. Place the following files into a directory:

• The Login.java source file.

• The Sample.java source file.

• The sample.conf login configuration file.

• The sample.policy policy file.

2. Replace your_user_name@your_realm in sample.policy with your user name and realm.

3. Compile Login.java and Sample.java:

javac Login.java Sample.java

Note that Login.java contains two classes and thus compiling Login.java creates
Login.class and MyAction.class.

4. Create a JAR file named Login.jar containing Login.class and MyAction.class:

jar -cvf Login.jar Login.class MyAction.class

5. Create a JAR file named Sample.jar containing Sample.class:

jar -cvf Sample.jar Sample.class

6. Execute the Login class, specifying

• An appropriate -classpath clause that classes should be searched for in the
Login.jar and Sample.jar JAR files

• -Djava.security.manager that a security manager should be installed

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-42

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the
Security Manager. See JEP 411 for discussion and alternatives.

• -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified

• -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified

• -Djava.security.policy=sample.policy that the policy file to be used is
sample.policy

• -Djava.security.auth.login.config=sample.conf that the login configuration file to
be used is sample.conf

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

You pass the name of your application (in this case, Sample) as an argument to Login. You
would then add as arguments any arguments required by your application, but in our case
Sample does not require any.

The following are the full commands to use for Windows, Linux, and macOS. The only
difference is that on Windows you use semicolons to separate classpath items, while you
use colons for that purpose on Linux and macOS. Be sure to replace <your_realm> with
your Kerberos realm, and <your_kdc> with your Kerberos KDC.

Here is the full command for Windows:

java -classpath Login.jar;Sample.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=sample.policy
 -Djava.security.auth.login.config=sample.conf Login Sample

Here is the full command for Linux and macOS:

java -classpath Login.jar:Sample.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=sample.policy
 -Djava.security.auth.login.config=sample.conf Login Sample

Type the full command on one line. Multiple lines are used here for legibility. If the
command is too long for your system, you may need to place it in a .bat file (for Windows)
or a .sh file (for Linux and macOS) and then run that file to execute the command.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-43

https://openjdk.java.net/jeps/411

You will be prompted for your Kerberos user name and password, and the underlying
Kerberos login module specified in the login configuration file will log you into Kerberos.
Once authentication is successfully completed, the Sample code will be executed on behalf
of you, the user. The sample.policy policy file grants you the required permissions, so you
will see a display of the values of your java.home and user.home system properties and a
statement as to whether or not you have a file named foo.txt in the current directory.

For login troubleshooting suggestions, see Troubleshooting.

Use of JAAS Login Utility and Java GSS-API for Secure Message
Exchanges

This tutorial presents two sample applications to demonstrate the use of the Java GSS-API.
This API permits secure exchanges of messages between communicating applications. Here
are the sample client and server applications you'll need for this tutorial:

• SampleClient.java
• SampleServer.java

Note:

• This tutorial uses the same client and server applications as the Use of Java
GSS-API for Secure Message Exchanges Without JAAS Programming tutorial. In
that tutorial, JAAS (Java Authentication and Authorization Service) programming
is not required. Instead, you let the underlying mechanism decide how to get
credentials.

This tutorial uses policy files and a more complex login configuration file. The programs are run
with a security manager; as a result, security-sensitive operations are not allowed unless the
required permissions were explicitly granted. This tutorial also demonstrates how JAAS
authorization adds user-centric access control that applies control based on who is running the
code – not just on what code is running.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

• Before You Start: Recommended Reading

• Overview of the Client and Server Applications

• Kerberos User and Service Principal Names

• The Login Configuration File

• The Policy Files

• Running the SampleClient and SampleServer Programs

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-44

https://openjdk.java.net/jeps/411

Before You Start: Recommended Reading
In this Java GSS-API tutorial, the first step is JAAS authentication. Previous tutorials
demonstrated the use of JAAS for user authentication and authorization, and presented
examples of policy files and of login configuration files (specifying the underlying authentication
technology to be used) that JAAS requires. Applications in the JAAS introductory tutorials,
JAAS Authentication and JAAS Authorization, made direct calls to JAAS methods. The Use of
JAAS Login Utility tutorial showed the use of a utility program that frees the application from
having to do this. The client and server applications in the current tutorial also use the same
utility program, so we recommend you read the login utility tutorial first.

As with all tutorials in this series, the underlying technology used to support authentication and
secure communication for the applications in this tutorial is Kerberos. See Kerberos
Requirements.

Overview of the Client and Server Applications
The applications for this tutorial are named SampleClient and SampleServer.

Each is invoked by executing the Login utility supplied with this tutorial and passing it as
arguments the name of the application (SampleClient or SampleServer), followed by the
arguments needed by the application. The Login utility uses a JAAS LoginContext to
authenticate the user using Kerberos. Finally, the Login utility invokes the main method of the
application class, in our case either SampleClient or SampleServer, and passes the
application its arguments.

Here is a summary of execution of the SampleClient and SampleServer applications:

1. Run the SampleServer application by running the Login utility and passing it as arguments
the name "SampleServer" followed by the arguments for the SampleServer program. The
Login utility prompts you for the password for the principal that SampleServer should run
as. (See Kerberos User and Service Principal Names.) After authentication is complete,
SampleServer is run it:

a. Reads its argument, the port number that it should listen on for client connections.

b. Creates a ServerSocket for listening for client connections on that port.

c. Listens for a connection.

2. Run the SampleClient application (possibly on a different machine), by running the Login
utility and passing it as arguments the name "SampleClient" followed by the arguments for
the SampleClient program. The Login utility prompts you for your Kerberos name and
password. After authentication is complete, SampleClient is run. It

a. Reads its arguments: (1) The name of the Kerberos principal that represents
SampleServer. (See Kerberos User and Service Principal Names.), (2) the name of the
host (machine) on which SampleServer is running, and (3) the port number on which
SampleServer listens for client connections.

b. Attempts a socket connection with the SampleServer, using the host and port it was
passed as arguments.

3. The socket connection is accepted by SampleServer and both applications initialize a
DataInputStream and a DataOutputStream from the socket input and output
streams, to be used for future data exchanges.

4. SampleClient and SampleServer each instantiate a GSSContext and establish a shared
context that will enable subsequent secure data exchanges.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-45

5. SampleClient and SampleServer can now securely exchange messages.

6. When SampleClient and SampleServer are done exchanging messages, they perform
clean-up operations.

Note:

Refer to the The SampleClient and SampleServer Code section of the Use of Java GSS-API
for Secure Message Exchanges Without JAAS Programming tutorial for a full discussion of the
code used in this tutorial.

Kerberos User and Service Principal Names
Since the underlying authentication and secure communication technology used by this tutorial
is Kerberos V5, we use Kerberos-style principal names wherever a user or service is called for
(see Principals).

For example, when you run SampleClient you are asked to provide your user name. Your
Kerberos-style user name is simply the user name you were assigned for Kerberos
authentication. It consists of a base user name (like mjones) followed by an "@" and your realm
(like mjones@KRBNT-OPERATIONS.EXAMPLE.COM).

A server program like SampleServer is typically considered to offer a "service" and to be run on
behalf of a particular "service principal." A service principal name for SampleServer is needed
in several places:

• When you run SampleServer you must log in as the appropriate service principal. The login
configuration file for this tutorial actually specifies the service principal name (as an option
to the Krb5LoginModule), so the JAAS authentication (done by the Login utility) just
asks you to specify the password for that service principal. If you specify the correct
password, the authentication is successful, a Subject is created containing a Principal
with the service principal name, and that Subject is associated with a new access control
context. The subsequently-executed code (the SampleServer code) is considered to be
executed on behalf of the specified principal.

• When you run SampleClient, one of the arguments is the service principal name. This is
needed so SampleClient can initiate establishment of a security context with the
appropriate service.

• The client and server policy files each require a ServicePermission with name equal to
the service principal name and action equal to "initiate" or "accept" (for initiating or
accepting establishment of a security context).

Throughout this document, and in the accompanying login configuration file and policy files,
service_principal@your_realm is used as a placeholder to be replaced by the actual name to
be used in your environment. Any Kerberos principal can actually be used for the service
principal name. So for the purposes of trying out this tutorial, you could use your user
name as both the client user name and the service principal name.

In a production environment, system administrators typically like servers to be run as specific
principals only and may assign a particular name to be used. Often the Kerberos-style service
principal name assigned is of the form

service_name/machine_name@realm;

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-46

For example, an nfs service run on a machine named "raven" in the realm named KRBNT-
OPERATIONS.EXAMPLE.COM could have the service principal name

nfs/raven@KRBNT-OPERATIONS.EXAMPLE.COM

Such multi-component names are not required, however. Single-component names, just like
those of user principals, can be used. For example, an installation might use the same ftp
service principal ftp@realm for all ftp servers in that realm, while another installation might
have different ftp principals for different ftp servers, such as ftp/host1@realm and ftp/
host2@realm on machines host1 and host2, respectively.

When the Realm is Required in Principal Names
If the realm of a user or service principal name is the default realm (see Kerberos
Requirements), you can leave off the realm when you are logging into Kerberos (that is, when
you are prompted for your user name). Thus, for example, if your user name is mjones@KRBNT-
OPERATIONS.EXAMPLE.COM, and you run SampleClient, when it requests your user name you
could just specify mjones, leaving off the realm. The name is interpreted in the context of being
a Kerberos principal name and the default realm is appended, as needed.

You can also leave off the realm if a principal name will be converted to a GSSName by a
GSSManager createName method. For example, when you run SampleClient, one of the
arguments is the server service principal name. You can specify the name without including the
realm, because SampleClient passes the name to such a createName method, which appends
the default realm as needed.

It is recommended that you always include realms when principal names are used in login
configuration files and policy files, because the behavior of the parsers for such files may be
implementation-dependent; they may or may not append the default realm before such names
are utilized and subsequent actions may fail if there is no realm in the name.

The Login Configuration File
Whenever JAAS is used, a login configuration is required to specify the desired authentication
technology. (See Appendix B: JAAS Login Configuration File for more information about what a
login configuration file is.) Both SampleClient and SampleServer can use the same login
configuration file, if that file contains two entries, one entry for the client side and one for the
server side.

The csLogin.conf login configuration file used for this tutorial is the following:

SampleClient {
 com.sun.security.auth.module.Krb5LoginModule required;
};

SampleServer {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true
 principal="service_principal@your_realm";
};

Note that the name for each entry matches the respective class names for our two top-level
applications, SampleClient and SampleServer. Recall that this is also the name that is passed
to the Login utility that performs JAAS operations for the application. That utility expects the
name of the entry to be looked up in your login configuration file to be the same as the name it
is passed.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-47

Both entries specify that Oracle's Kerberos V5 LoginModule must be used to successfully
authenticate the user. The Krb5LoginModule succeeds only if the attempt to log in to the
Kerberos KDC as a specified entity is successful. In the case of SampleClient, the user will be
prompted for their name and password. In the case of SampleServer, a name is already
supplied in this login configuration file (the specified principal) and the user running
SampleServer is just asked for the password for the entity specified by that name. They must
specify the correct password in order for authentication to succeed.

The SampleServer entry storeKey=true indicates that a secret key should be calculated from
the password provided during login and it should be stored in the private credentials of the
Subject created as a result of login. This key is subsequently utilized during mutual
authentication when establishing a security context between SampleClient and SampleServer.

The Krb5LoginModule has a principal option that can be used to specify that only the
specified principal (entity/user) should be logged in for the given program. Here, the
SampleClient entry does not specify a principal (although it could, if desired), so the user is
prompted for a user name and password and anyone with a valid user name and password
can run SampleClient. SampleServer, on the other hand, indicates a particular principal
because system administrators usually like servers to be run as specific principals only. In this
case, the user running SampleServer is prompted for that principal's password and must
supply the correct one in order for authentication to succeed.

Note that you must replace service_principal@your_realm with the name of the service
principal that represents SampleServer. (See Kerberos User and Service Principal Names.)

If the server has a keytab file containing secret keys, then use the following JAAS login entry:

SampleServer {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="service_principal@your_realm"
 storeKey=true useKeyTab=true keyTab=keytab.file.name
 isInitiator=false;
 };

Because the keytab file already provides the keys, you will not be prompted for a password. If
the keytab file contains keys for more than one service principal and the server is designed to
act as all these service principals, then you can set the principal entry to the following:

 principal=*

See the Krb5LoginModule JavaDoc API documentation for information about all the possible
options that can be passed to Krb5LoginModule.

The Policy Files
The policy file used when running SampleClient is client.policy, and the policy file used
when running SampleServer is server.policy. The following sections describe their
contents.

The Client Policy File

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-48

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/Krb5LoginModule.html

Permissions Required by the Login Utility Classes

A number of permissions are required by the classes in Login.java (Login and MyAction). As
recommended in Use of JAAS Login Utility on the use of the Login utility, we create a
Login.jar JAR file containing the Login.class and MyAction.class files and in the
client.policy policy file we grant Login.jar AllPermission:

grant codebase "file:./Login.jar" {
 permission java.security.AllPermission;
};

Permissions Required by SampleClient

The SampleClient code does two types of operations for which permissions are required. It

• opens a socket connection with the host machine running the SampleServer application.

• initiates establishment of a security context with SampleServer.

The permission required to open a socket connection is

permission java.net.SocketPermission "*", "connect";

You may replace the "*" with the hostname or IP address of the machine that SampleServer will
be running on.

The permission(s) required to initiate establishment of a security context will depend on the
underlying mechanism. This tutorial uses Kerberos as the underlying mechanism, and for that
two javax.security.auth.kerberos.ServicePermissions are required. A
ServicePermission contains a service principal name and an action (or list of actions). To
initiate establishment of a security context, you need two ServicePermissions with action
"initiate", whose names specify:

• the service principal name for the ticket granting service for your realm. Granting this
permission essentially allows the use of Kerberos as a client.

• the service principal name representing SampleServer. (See Kerberos User and Service
Principal Names.) Granting this permission allows you to interact with the service,
SampleServer, using Kerberos.

We want to grant the permissions to a specific authenticated user executing SampleClient, so
we specify both the SampleClient code location (in SampleClient.jar) and a Principal
designation indicating the user name and realm for the user (you, the person who will run
SampleClient). (See How Do You Make Principal-Based Policy File Statements? in JAAS
Authorization for information on policy file grant statements that include Principal
designations.)

Here is the basic form for the grant statement:

 grant CodeBase "file:./SampleClient.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.net.SocketPermission "*", "connect";

 permission javax.security.auth.kerberos.ServicePermission

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-49

 "krbtgt/your_realm@your_realm",
 "initiate";

 permission javax.security.auth.kerberos.ServicePermission
 "service_principal@your_realm",
 "initiate";
};

You must substitute your Kerberos user name (complete with "@" and realm) for
your_user_name@your_realm. For example, if your user name is mjones and your realm is
KRBNT-OPERATIONS.EXAMPLE.COM, you would use mjones@KRBNT-
OPERATIONS.EXAMPLE.COM.

You must also substitute your realm in krbtgt/your_realm@your_realm and the service
principal name for the service principal representing the server (see Kerberos User and
Service Principal Names for the service principal name for the service principal representing
the server for service_principal@your_realm. Suppose the former is krbtgt/KRBNT-
OPERATIONS.EXAMPLE.COM@KRBNT-OPERATIONS.EXAMPLE.COM and the latter is
sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM, and your user name
is as specified in the previous paragraph. Then the grant statement would be

grant CodeBase "file:./SampleClient.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "mjones@KRBNT-OPERATIONS.EXAMPLE.COM" {

 permission java.net.SocketPermission "*", "connect";

 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/KRBNT-OPERATIONS.EXAMPLE.COM@KRBNT-OPERATIONS.EXAMPLE.COM",
 "initiate";

 permission javax.security.auth.kerberos.ServicePermission
 "sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM",
 "initiate";
};

The Server Policy File

Permissions Required by the Login Utility Classes

The grant statement in the server policy file for the Login classes is exactly the same as the
one in the client policy file, as described in Permissions Required by the Login Utility Classes:

grant codebase "file:./Login.jar" {
 permission java.security.AllPermission;
};

Permissions Required by SampleServer

The SampleServer code does two types of operations for which permissions are required. It

• accepts socket connections.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-50

• accepts establishment of a security context, that is, it is the "acceptor" for security context
establishment.

The permission required to accept socket connections is

permission java.net.SocketPermission "*", "accept";

You may replace the "*" with the hostname or IP address of the machine that SampleClient will
be running on.

The permission required to accept establishment of a security context is

permission javax.security.auth.kerberos.ServicePermission
 "service_principal@your_realm",
 "accept";

where service_principal@your_realm is the Kerberos name of the service principal that
represents SampleServer (see Kerberos User and Service Principal Names).

We want to grant the permissions to a specific authenticated user executing SampleServer (the
service principal considered to represent SampleServer), so we specify both the SampleServer
code location (in SampleServer.jar) and a Principal designation indicating the service
principal. Suppose this name is sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM.
Then the grant statement would be

 grant CodeBase "file:./SampleServer.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM" {

 permission java.net.SocketPermission "*", "accept";

 permission javax.security.auth.kerberos.ServicePermission
 "sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM", "accept";
};

Running the SampleClient and SampleServer Programs
To execute the SampleClient and SampleServer programs, do the following:

• Prepare SampleServer for Execution

• Prepare SampleClient for Execution

• Execute SampleServer

• Execute SampleClient

Prepare SampleServer for Execution
To prepare SampleServer for execution, do the following:

1. Copy the following files into a directory accessible by the machine on which you will run
SampleServer:

• The Login.java source file.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-51

• The SampleServer.java source file.

• The csLogin.conf login configuration file.

• The server.policy policy file.

2. Replace service_principal@your_realm in csLogin.conf with the name of the service
principal representing SampleServer (see Kerberos User and Service Principal Names).

3. In both places it appears, replace service_principal@your_realm in server.policy with
the Kerberos name of the service principal that represents SampleServer. (The same
name as that used in the login configuration file.)

4. Compile Login.java and SampleServer.java:

javac Login.java SampleServer.java

Note that Login.java contains two classes and thus compiling Login.java creates
Login.class and MyAction.class.

5. Create a JAR file named Login.jar containing Login.class and MyAction.class:

jar -cvf Login.jar Login.class MyAction.class

6. Create a JAR file named SampleServer.jar containing SampleServer.class:

jar -cvf SampleServer.jar SampleServer.class

Prepare SampleClient for Execution
To prepare SampleClient for execution, do the following:

1. Copy the following files into a directory accessible by the machine on which you will run
SampleClient:

• The Login.java source file.

• The SampleClient.java source file.

• The csLogin.conf login configuration file.

• The client.policy policy file.

2. Replace parts of client.policy:

• replace your_user_name@your_realm with your user name and realm.

• replace your_realm in krbtgt/your_realm@your_realm with your realm.

• replace service_principal@your_realm with the Kerberos name of the service
principal that represents SampleServer (see Kerberos User and Service Principal
Names).

3. Compile Login.java and SampleClient.java:

javac Login.java SampleClient.java

4. Create a JAR file named Login.jar containing Login.class and MyAction.class:

jar -cvf Login.jar Login.class MyAction.class

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-52

5. Create a JAR file named SampleClient.jar containing SampleClient.class:

jar -cvf SampleClient.jar SampleClient.class

Execute SampleServer
It is important to execute SampleServer before SampleClient because SampleClient will try to
make a socket connection to SampleServer and that will fail if SampleServer is not yet running
and accepting socket connections.

To execute SampleServer, be sure to run it on the machine it is expected to be run on. This
machine name (host name) is specified as an argument to SampleClient. The service principal
name appears in several places, including the login configuration file and the policy files.

Go to the directory in which you have prepared SampleServer for execution. Execute the Login
class, specifying

• An appropriate -classpath clause that classes should be searched for in the Login.jar
and SampleServer.jar JAR files

• -Djava.security.manager that a security manager should be installed

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the Security
Manager. See JEP 411 for discussion and alternatives.

• -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified. For example, if your realm is KRBNT-OPERATIONS.EXAMPLE.COM you'd put -
Djava.security.krb5.realm=KRBNT-OPERATIONS.EXAMPLE.COM.

• -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified. For
example, if your KDC is samplekdc.example.com you'd put -
Djava.security.krb5.kdc=samplekdc.example.com.

• -Djava.security.policy=server.policy that the policy file to be used is server.policy
• -Djava.security.auth.login.config=csLogin.conf that the login configuration file to be

used is csLogin.conf

Note:

If you use a single equals sign (=) with the java.security.auth.login.config
system property (instead of a double equals sign (==)), then the configurations
specified by both this system property and the java.security file are used.

You pass the name of your application (in this case, SampleServer) as an argument to Login.
You then add as arguments any arguments required by your application, which in the case of
SampleServer is a single argument specifying the port number to be used for listening for client
connections. Choose a high port number unlikely to be used for anything else. An example
would be something like 4444.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-53

https://openjdk.java.net/jeps/411

The following are the full commands to use for Windows, Linux, and macOS. The only
difference is that Windows you use semicolons to separate class path items, while you use
colons for that purpose on Linux, and macOS.

Note:

In these commands, you must replace <port_number> with an appropriate port
number, <your_realm> with your Kerberos realm, and <your_kdc> with your Kerberos
KDC.

Here is the command for Windows:

java -classpath Login.jar;SampleServer.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=server.policy
 -Djava.security.auth.login.config=csLogin.conf
 Login SampleServer <port_number>

Here is the command for Linux, and macOS:

java -classpath Login.jar:SampleServer.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=server.policy
 -Djava.security.auth.login.config=csLogin.conf
 Login SampleServer <port_number>

Type the full command on one line. Multiple lines are used here for legibility. If the command is
too long for your system, you may need to place it in a .bat file (for Windows) or a .sh file (for
Linux and macOS) and then run that file to execute the command.

You will be prompted for the Kerberos password for the service principal. The underlying
Kerberos authentication mechanism specified in the login configuration file will log the service
principal into Kerberos. Once authentication is successfully completed, the SampleServer code
will be executed on behalf of the service principal. It will listen for socket connections on the
specified port.

For login troubleshooting suggestions, see Troubleshooting.

Execute SampleClient
To execute SampleClient, go to the directory in which you have prepared SampleClient for
execution. Then execute the Login class, specifying

• An appropriate -classpath clause that classes should be searched for in the Login.jar
and SampleClient.jar JAR files

• -Djava.security.manager that a security manager should be installed

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-54

WARNING:

The Security Manager and APIs related to it have been deprecated and are
subject to removal in a future release. There is no replacement for the Security
Manager. See JEP 411 for discussion and alternatives.

• -Djava.security.krb5.realm=<your_realm> that your Kerberos realm is the one
specified.

• -Djava.security.krb5.kdc=<your_kdc> that your Kerberos KDC is the one specified.

• -Djava.security.policy=client.policy that the policy file to be used is client.policy
• -Djava.security.auth.login.config=csLogin.conf that the login configuration file to be

used is csLogin.conf.

Pass to Login the name of your application (SampleClient) followed by the arguments required
by SampleClient. The SampleClient arguments are (1) the Kerberos name of the service
principal that represents SampleServer (see Kerberos User and Service Principal Names, (2)
the name of the host (machine) on which SampleServer is running, and (3) the port number on
which SampleServer is listening for client connections.

The following are the full commands to use for Windows, Linux, and macOS.

Note:

Important: In these commands, you must replace <service_principal>, <host>,
<port_number>, <your_realm>, and <your_kdc> with appropriate values (and note
that the port number must be the same as the port number passed as an argument to
SampleServer). These values need not be placed in quotes.

Here is the command for Windows:

java -classpath Login.jar;SampleClient.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=client.policy
 -Djava.security.auth.login.config=csLogin.conf
 Login SampleClient <service_principal> <host> <port_number>

Here is the command for Linux, and macOS:

java -classpath Login.jar:SampleClient.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_realm>
 -Djava.security.policy=client.policy
 -Djava.security.auth.login.config=csLogin.conf
 Login SampleClient <service_principal> <host> <port_number>

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-55

https://openjdk.java.net/jeps/411

Type the full command on one line. Multiple lines are used here for legibility. As with the
command for executing SampleServer, if the command is too long to type directly into your
command window, place it in a .bat file (Windows) or a .sh file (Linux and macOS) and then
execute that file.

When prompted, type your Kerberos user name and password. The underlying Kerberos
authentication mechanism specified in the login configuration file will log you into Kerberos.
Once authentication is successfully completed, the SampleClient code will be executed on
behalf of you. It will request a socket connection with SampleServer. Once SampleServer
accepts the connection, SampleClient and SampleServer establish a shared context and then
exchange messages as described in this tutorial.

For login troubleshooting suggestions, see Troubleshooting.

More Things You Can Do with Java GSS-API and JAAS
The previous tutorial, Use of JAAS Login Utility and Java GSS-API for Secure Message
Exchanges, demonstrated how two applications, in particular a client and a server, could use
the Java GSS-API to establish a secure context between them and then securely exchange
messages.

There are additional operations the context acceptor (the server in our client/server example)
can perform once the context has been established with the context initiator (the client).
Basically, the server can "impersonate" the client. The level of impersonation depends upon
whether or not the client has delegated credentials to the server.

• Executing Code on Behalf of the Client User

• Using Credentials Delegated from the Client

Executing Code on Behalf of the Client User
One possible type of client impersonation the server can do is causing code to be executed on
behalf of the same entity (user) the client code is executed on behalf of. Normally, a method
executed by a thread uses the access control settings for that thread itself. However, when
impersonating a client in this tutorial, the server uses the client's access control settings so that
the server has access to exactly those resources that the client itself has when it runs.

One major benefit of the approach used in this tutorial is that the JAAS authorization
component can be used for access control. Without the JAAS authorization component, the
server principal would need access to any resources accessed by the code executed on behalf
of the client user, and the server code would need to include access control logic to determine
whether the user was authorized to access such resources. By utilizing JAAS authorization,
providing principal-based access control, the access control is handled automatically.
Permissions for the security-sensitive operations in such code only need to be granted to that
user and not also to the server code. See the JAAS Authorization tutorial for more information
on JAAS authorization.

• Basic Approach

• Sample Code and Policy File

• Running the Sample Code

Basic Approach
How does the server "impersonate" the client to execute code on behalf of the user running the
client code? Essentially the same way the client code is set up to be run on behalf of that user.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-56

All the server code needs to know is the user's principal name, which it can obtain from the
context established with the client.

Recall that JAAS authentication of the user executing the client code results in creation of a
Subject containing a Principal with the user (principal) name. The Subject is subsequently
associated with a new access control context (via a Subject.doAsPrivileged call from the
Login utility) and the client code is considered to be executed on behalf of the user;
subsequent access control decisions are based on whether or not that particular user,
executing the client code, is granted the required permissions.

The server code is similarly handled, except in that case the Principal specified for
authentication is typically a "service principal", not a user principal. Again, a Subject
containing a Principal with the specified principal name is created,
Subject.doAsPrivileged is called, and the server code is considered to be executed on behalf
of the specified principal; subsequent access control decisions are based on whether or not
that particular principal, executing the server code, is granted the required permissions.

Once the client and server have established a mutual context, the context initiator's name (the
client's principal name) can be determined by the following:

GSSName clientGSSName = context.getSrcName();

The context acceptor (the server) can use this name to construct a Subject containing a
Principal that represents the same entity. For example, you can construct such a Subject
with Oracle's JDK via the following:

Subject client =
 com.sun.security.jgss.GSSUtil.createSubject(clientGSSName, null);

The createSubject method creates a new Subject from the GSSName and GSSCredential
specified as arguments. If the server code is just going to execute code on behalf of the user in
the local JVM, the user's credentials are not required – and in fact cannot even be obtained
unless the client has delegated credentials to the server, as discussed in Using Credentials
Delegated from the Client. Since the credentials are not needed here, we pass a null for the
GSSCredential argument.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-57

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/GSSUtil.html#createSubject(org.ietf.jgss.GSSName,org.ietf.jgss.GSSCredential)

Note:

Note: If you are not using Oracle's JDK, an alternative way to do this is to construct a
KerberosPrincipal instance as follows:

KerberosPrincipal principal =
 new KerberosPrincipal(clientGSSName.toString());

Then use this principal to construct a new Subject or populate this principal in the
principal set of an existing Subject.

The code that the server would like to execute on behalf of the user should be
initiated from the run method of a class that implements
java.security.PrivilegedAction (or
java.security.PrivilegedExceptionAction). That is, the code can either be in
such a run method or invoked from such a run method.

The server code can pass the Subject, along with an instance of the
PrivilegedAction (or PrivilegedExceptionAction), to
Subject.doAsPrivileged to execute the subsequent code, starting with the run
method in the PrivilegedAction, on behalf of the principal (user) in the specified
Subject.

For example, suppose the PrivilegedAction class is called ReadFileAction
and it takes as an argument a String with the principal name. You can create an
instance of this class by

String clientName = clientGSSName.toString();
PrivilegedAction readFile =
 new ReadFileAction(clientName);

The call to doAsPrivileged is then

Subject.doAsPrivileged(client, readFile, null);

Sample Code and Policy File
The following sample code and policy file illustrate the server impersonating the client in order
to execute code whose security-sensitive operations are only permitted to be done by the
specific user executing the client.

• SampleServerImp.java
• ReadFileAction.java
• serverimp.policy

SampleServerImp.java

The SampleServerImp.java file is exactly the same as the SampleServer.java file from
the previous (Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges)

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-58

tutorial, except that after exchanging messages with the client, it has the following code to
perform a ReadFileAction as the client user:

System.out.println("Impersonating client.");

/*
 * Extract the KerberosPrincipal from the client GSSName and
 * populate it in the principal set of a new Subject. Pass in a
 * null for credentials since credentials will not be needed.
 */
GSSName clientGSSName = context.getSrcName();
System.out.println("clientGSSName: " + clientGSSName);
Subject client =
 com.sun.security.jgss.GSSUtil.createSubject(clientGSSName,
 null);

/*
* Construct an action that will read a file meant only for the
* client
*/
String clientName = clientGSSName.toString();
PrivilegedAction readFile =
 new ReadFileAction(clientName);

/*
* Invoke the action via a doAsPrivileged. This allows the
* action to be executed as the client subject, and it also
* runs that code as privileged. This means that any permission
* checking that happens beyond this point applies only to
* the code being run as the client.
*/
Subject.doAsPrivileged(client, readFile, null);

ReadFileAction.java

The ReadFileAction.java file contains the ReadFileAction class. Its constructor takes as
an argument a String for the name of the client user. The client user name is used to
construct a file name for a file from which ReadFileAction will attempt to read. The file name
will be:

./data/<name>_info.txt

where <name> is the client user name without its corresponding realm. For example, if the full
user name is mjones@KRBNT-OPERATIONS.EXAMPLE.COM, then the file name is

./data/mjones_info.txt

Note:

On Window, the forward slashes will be backward slashes.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-59

The ReadFileAction run method reads the specified file and prints its contents.

serverimp.policy

ReadFileAction attempts to read a file, which is a security-checked operation. Since
ReadFileAction is considered to be executed as the client user (Principal), the
appropriate permission must be granted not only to the ReadFileAction code itself, but to
the client Principal as well.

Assuming the ReadFileAction class is placed in a JAR file named ReadFileAction.jar, and
the user principal name is mjones@KRBNT-OPERATIONS.EXAMPLE.COM, this permission can be
granted via the following in a policy file:

grant CodeBase "file:./ReadFileAction.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "mjones@KRBNT-OPERATIONS.EXAMPLE.COM" {

 permission java.io.FilePermission "data/mjones_info.txt",
 "read";
};

The serverimp.policy file is exactly the same as the server.policy file from the previous
(Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges) tutorial, except
that it grants the SampleServer code the javax.security.auth.AuthPermission
"doAsPrivileged" permission it needs in order to call the doAsPrivileged method, and it has
the following placeholder for granting the FilePermission shown previously:

grant CodeBase "file:./ReadFileAction.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.io.FilePermission "data/your_user_name_info.txt",
 "read";
};

You must substitute your Kerberos realm for your_realm, and your user name for
your_user_name in both your_user_name@your_realm and data/your_user_name_info.txt. If
you are working on Windows, you also replace the "/" in data/your_user_name_info.txt with
a "\".

Running the Sample Code
To run the sample code illustrating the server impersonating the client, do everything listed in
Running the SampleClient and SampleServer Programs in the previous tutorial, except for the
following:

• In the "Prepare SampleServer for Execution" step:

– Use SampleServerImp.java instead of SampleServer.java. Compile it and create
a JAR file named SampleServerImp.jar containing SampleServerImp.class via the
following:

javac SampleServerImp.java
jar -cvf SampleServerImp.jar SampleServerImp.class

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-60

– Use the serverimp.policy policy file instead of server.policy.

– Use the csImpLogin.conf login configuration file instead of cs.conf.

– Copy ReadFileAction.java to the same directory as the other files. Compile it and
place it in a JAR file via the following:

javac ReadFileAction.java
jar -cvf ReadFileAction.jar ReadFileAction.class

– In csImpLogin.conf, replace service_principal@your_realm with the Kerberos name
of the service principal that represents SampleServer (see Kerberos User and
Service Principal Names).

– In serverimp.policy, replace service_principal@your_realm in both places it
appears with the Kerberos name of the service principal that represents SampleServer.
(The same name as that used in the login configuration file.) In addition, substitute
your Kerberos realm for your_realm, and your user name for your_user_name in both
your_user_name@your_realm and data/your_user_name_info.txt. If you are running
on Windows, then replace the "/" in data/your_user_name_info.txt with a "\".

– Create a data subdirectory of your current directory and create a short text file of the
specified name in that directory. For example, if your user name is mjones, the file to
be placed in the data subdirectory should be named mjones_info.txt.

• In the "Execute SampleServer" step:

– Use the following commands instead of those specified in that section so that
SampleServerImp is executed, serverimp.policy and csImpLogin.conf are used, and
ReadFileAction.jar is included.

Note:

Important: In these commands, you must replace <port_number> with an
appropriate port number (a high port number such as 4444),
<your_realm> with your Kerberos realm, and <your_kdc> with your
Kerberos KDC.

Here is the command for Windows:

 java -classpath Login.jar;SampleServerImp.jar;ReadFileAction.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>
 -Djava.security.policy=serverimp.policy
 -Djava.security.auth.login.config=csImpLogin.conf
 Login SampleServerImp <port_number>

Here is the command for Linux and macOS:

 java -classpath Login.jar:SampleServerImp.jar:ReadFileAction.jar
 -Djava.security.manager
 -Djava.security.krb5.realm=<your_realm>
 -Djava.security.krb5.kdc=<your_kdc>

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-61

 -Djava.security.policy=serverimp.policy
 -Djava.security.auth.login.config=csImpLogin.conf
 Login SampleServerImp <port_number>

As usual, type the full command on one line. Multiple lines are used here for legibility. If
the command is too long for your system, you may need to place it in a .bat file (for
Windows) or a .sh file (for Linux and macOS) and then run that file to execute the
command.

As when running SampleServer, you will be prompted for the Kerberos password for
the service principal under which SampleServerImp is expected to be run. The
Kerberos login module specified in the login configuration file will log the service
principal into Kerberos. Once authentication is successfully completed, the
SampleServerImp code will be executed on behalf of the service principal. It will listen
for socket connections on the specified port.

After you follow the "Prepare SampleClient for Execution" and "Execute
SampleClient" instructions as usual and perform the user login, the client code will
request a socket connection with SampleServerImp. Once SampleServerImp accepts
the connection, SampleClient and SampleServerImp establish a shared context and
then exchange messages as described in the previous tutorial.

After the message exchange, SampleServerImp determines the principal name of the
user executing the client code, creates a new Subject containing a Principal with
that name, and calls Subject.doAsPrivileged to execute the code in ReadFileAction
on behalf of the specified user. ReadFileAction reads the file named
your_user_name_info.txt (where your_user_name represents the actual user name)
in the data subdirectory of the current directory, and prints out its contents.

For login troubleshooting suggestions, see Troubleshooting.

Using Credentials Delegated from the Client
The most complete type of client impersonation is possible if the client delegates its credentials
to the server.

Recall that prior to context establishment with the context acceptor (the server in our previous
tutorial), the context initiator (the client) sets various context options. If the initiator calls the
requestCredDeleg method on the context object with a true argument, as in

context.requestCredDeleg(true);

then this requests that the initiator's credentials be delegated to the acceptor during context
establishment.

Delegation of credentials from the initiator to the acceptor enables the acceptor to authenticate
itself as an agent or delegate of the initiator.

First, after context establishment, the acceptor must determine whether or not credential
delegation actually took place. It does so by calling the getCredDelegState method:

boolean delegated = context.getCredDelegState();

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-62

If credentials were delegated, the acceptor can obtain those credentials by calling the
getDelegCr method:

GSSCredential clientCr = context.getDelegCred();

The resulting GSSCredential object can then be used to initiate subsequent GSS-API
contexts as a "delegate" of the initiator. For example, the server could authenticate as the
client to a backend server that cares more about who the original client was than who the
intermediate server is.

Acting as the client, the server can establish a connection with the backend server, establish a
joint security context, and exchange messages in basically the same manner that the client
and server did.

One way it could be done is that when the server calls the createContext method of a
GSSManager, it could pass createContext the delegated credentials instead of passing a
null.

Alternatively, the server code could first call the com.sun.security.jgss.GSSUtil
createSubject method and pass it the delegated credentials. That method returns a Subject
containing those credentials as the default credentials. The server could then associate this
Subject with the current AccessControlContext, as described in How Do You Associate a
Subject with an Access Control Context? in the JAAS Authorization tutorial. Then, when the
server code calls the GSSManager createContext method, it can pass a null (indicating the
credentials for the "current" Subject should be used). In other words, the server would
effectively become the client. Subsequent connections to backend servers using GSS could be
made exactly as described in the previous tutorials. This approach is useful if you want the
code that will use the delegated credentials to be identical to the code that uses the default
local credentials.

Constrained Delegation

If constrained delegation is configured in a KDC server, then, on the server side, the
getCredDelegState() call might still return true and getDelegCred() would return
delegated credentials, depending on the KDC settings, even if the client has not called
requestCredDeleg(true).

Permission Required In Order to Delegate Credentials
In order to delegate credentials, the context initiator (SampleClient in our previous tutorial)
must have a javax.security.auth.kerberos.DelegationPermission. An example using
placeholders in italics for actual values is the following:

permission javax.security.auth.kerberos.DelegationPermission
 "\"service_principal@your_realm\"
 \"krbtgt/your_realm@your_realm\"";

Note that DelegationPermission has a single target in quotes that contains two items,
both of which are quoted. Each inner quote is escaped by a "\". Thus the first item is

"service_principal@your_realm"

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-63

and the second is

"krbtgt/your_realm@your_realm"

This basically gives the code executing on behalf of the client the permission to forward a
Kerberos ticket to the specified peer (service_principal), where the Kerberos ticket is meant
to avail service from krbtgt/your_realm@your_realm.

Substitute your realm for all places your_realm appears. Also substitute the service principal
name for the service principal representing the server for service_principal@your_realm.
(See Kerberos User and Service Principal Names in the previous tutorial.) Suppose your realm
is KRBNT-OPERATIONS.EXAMPLE.COM and the service principal is sample/
raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM. Then the permission could appear in a
policy file as

permission javax.security.auth.kerberos.DelegationPermission
 "\"sample/raven.example.com@KRBNT-OPERATIONS.EXAMPLE.COM\"
 \"krbtgt/KRBNT-OPERATIONS.EXAMPLE.COM@KRBNT-OPERATIONS.EXAMPLE.COM\"";

Kerberos Requirements
Kerberos Version 5 is used for both the authentication and secure communication aspects of
the client and server applications developed in this tutorial. The reader is assumed to already
be familiar with Kerberos. See the Kerberos reference documentation.

The JAAS framework, and the Kerberos mechanism required by the Java GSS-API methods,
are built into JDKs from all vendors. The Kerberos LoginModule required for the JAAS
authentication in this tutorial may not be available in all vendors' JDKs. We will be using the
LoginModule for Kerberos provided by Oracle's JDK.

In order to run the sample programs, you will need access to a Kerberos installation. As
described in the following sections, you may also need a krb5.conf Kerberos configuration file
and an indication as to where that file is located.

As with all Kerberos installations, a Kerberos Key Distribution Center (KDC) is required. It
needs to contain the user name and password you will use to be authenticated to Kerberos.

Note:

A KDC implementation is part of a Kerberos installation and not a part of the JDK.

As with most Kerberos installations, a Kerberos configuration file krb5.conf is consulted to
determine such things as the default realm and KDC. If you are using a Kerberos
implementation that does not include a krb5.conf file (such as one from Windows), you will
either need to create one or use system properties as described in Setting Properties to
Indicate the Default Realm and KDC.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-64

http://web.MIT.edu/kerberos/www/index.html

Setting Properties to Indicate the Default Realm and KDC
Typically, the default realm and the KDC for that realm are indicated in the Kerberos krb5.conf
configuration file. However, if you like, you can instead specify these values by setting the
following system properties to indicate the realm and KDC, respectively:

java.security.krb5.realm
java.security.krb5.kdc

If you set one of these properties you must set them both.

Also note that if you set these properties, then no cross-realm authentication is possible unless
a krb5.conf file is also provided from which the additional information required for cross-realm
authentication may be obtained.

If you set values for these properties, then they override the default realm and KDC values
specified in krb5.conf (if such a file is found). The krb5.conf file is still consulted if values for
items other than the default realm and KDC are needed. If no krb5.conf file is found, then the
default values used for these items are implementation-specific.

Locating the krb5.conf Configuration File
The essential Kerberos configuration information is the default realm and the default KDC. As
shown in Setting Properties to Indicate the Default Realm and KDC, if you set properties to
indicate these values, they are not obtained from a krb5.conf configuration file.

If these properties do not have values set, or if other Kerberos configuration information is
needed, an attempt is made to find the required information in a krb5.conf file. The algorithm
to locate the krb5.conf file is the following:

• If the system property java.security.krb5.conf is set, its value is assumed to specify the
path and file name.

• If that system property value is not set, then the configuration file is looked for in the
directory

– <java-home>\conf\security (Windows)

– <java-home>/conf/security (Linux, and macOS)

Here <java-home> refers to the directory where the JDK is installed.

• If the file is still not found, then an attempt is made to locate it as follows:

– C:\Windows\krb5.ini (Windows)

– /etc/krb5.conf (Linux)

– ~/Library/Preferences/edu.mit.Kerberos, /Library/Preferences/
edu.mit.Kerberos, or /etc/krb5.conf (macOS)

• If the file is still not found, and the configuration information being searched for is not the
default realm and KDC, then implementation-specific defaults are used. If, on the other
hand, the configuration information being searched for is the default realm and KDC
because they weren't specified in system properties, and the krb5.conf file is not found
either, then an exception is thrown.

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-65

• On Windows, if a krb5.conf file cannot be found or it does not contain settings for the
default realm and its KDC, then the environment variables USERDNSDOMAIN and
LOGONSERVER are used as the default realm and its KDC.

Naming Conventions for Realm Names and Hostnames
By convention, all Kerberos realm names are uppercase and all DNS hostname and domain
names are lowercase. On Windows, domains are also Kerberos realms; however, the realm
name is always the uppercase version of the domain name.

Hostnames are case insensitive and by convention they are all lowercase. They must resolve
to the same hostname on the client and server by their respective naming services.

However, in the Kerberos database hostnames are case sensitive. In all host-based Kerberos
service principals in the KDC, hostnames are case-sensitive. The hostnames used in the
Kerberos service principal names must exactly match the hostnames returned by the naming
service. For example, if the naming service returns a fully qualified lowercased DNS hostname,
such as raven.example.com, then the administrator must use the same fully qualified
lowercased DNS hostname when creating host-based principal names in the KDC: host/
raven.example.com.

Cross-Realm Authentication
In cross-realm authentication, a principal in one realm can authenticate to principals in another
realm.

In Kerberos, cross-realm authentication is implemented by sharing an encryption key between
two realms. The KDCs in two different realms share a special cross-realm secret; this secret is
used to prove identity when crossing the boundary between realms.

The key that is shared is the Ticket Granting Service principal's key. Here's a typical Ticket
Granting Service principal for a single realm:

ktbtgt/EXAMPLE.COM@EXAMPLE.COM

In cross realm authentication, two principals are created on each participating realm. For two
realms, ENG.EAST.EXAMPLE.COM and SALES.WEST.EXAMPLE.COM, these principals would be:

krbtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM
krbtgt/SALES.WEST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM

These principals, known as remote Ticket Granting Server principals, must be created on both
realms.

For a Windows KDC, the krbtgt account is created automatically when a Windows domain is
created. This account cannot be deleted and renamed.

Troubleshooting
The following are some problems that may occur when attempting a login, and suggestions for
solving them.

• Configurable Kerberos Settings: The Kerberos Key Distribution Center (KDC) name and
realm settings are provided in the Kerberos configuration file or via the system properties
java.security.krb5.kdc and java.security.krb5.realm. A boolean option

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-66

refreshKrb5Config can be specified in the entry for Krb5LoginModule in the JAAS
configuration file. If this option is set to true, then the configuration values will be refreshed
before the login method of the Krb5LoginModule is called.

Note:

When switching Kerberos configurations, it is REQUIRED that
refreshKrb5Config should be set to true. Failure to set this value can lead to
unexpected results.

• java.lang.SecurityException at
javax.security.auth.login.Configuration.getConfiguration

Cause: There was a problem processing the JAAS login configuration file, possibly due to
a syntax error in the file.

Solution: Check the configuration file carefully for errors. See Appendix B: JAAS Login
Configuration File for information about the syntax required in the login configuration file.

• javax.security.auth.login.LoginException: KrbException: Pre-authentication
information was invalid (24) - Preauthentication failed

Cause 1: The password entered is incorrect.

Solution 1: Verify the password.

Cause 2: If you are using the keytab to get the key (e.g., by setting the useKeyTab option to
true in the Krb5LoginModule entry in the JAAS login configuration file), then the key might
have changed since you updated the keytab.

Solution 2: Consult your Kerberos documentation to generate a new keytab and use that
keytab.

Cause 3: Clock skew - If the time on the KDC and on the client differ significantly (typically
5 minutes), this error can be returned.

Solution 3: Synchronize the clocks (or have a system administrator do so).Cause 4: The
Kerberos realm name is not all uppercase.

Solution 4: Make the Kerberos realm name all uppercase. Note: It is recommended to
have all uppercase realm names. See Naming Conventions for Realm Names and
Hostnames.

• GSSException: No valid credentials provided (Mechanism level: Attempt to obtain
new INITIATE credentials failed! (null)) . . . Caused by:
javax.security.auth.login.LoginException: Clock skew too great

Cause: Kerberos requires the time on the KDC and on the client to be loosely
synchronized. (The default is within 5 minutes.) If that's not the case, you will get this error.

Solution: Synchronize the clocks (or have a system administrator do so).

• javax.security.auth.login.LoginException: KrbException: Null realm name (601) -
default realm not specified

Cause: The default realm is not specified in the Kerberos configuration file krb5.conf (if
used), provided as a part of the user name, or specified via the
java.security.krb5.realm system property.

Solution: Verify that your Kerberos configuration file (if used) contains an entry specifying
the default realm, or directly specify it by setting the value of the

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-67

java.security.krb5.realm system property and/or including it in your user name when
authenticating using Kerberos.

• javax.security.auth.login.LoginException: java.net.SocketTimeoutException:
Receive timed out

Solution: Verify that the Kerberos KDC is up and running.

• GSSException: No valid credentials provided (Mechanism level: Failed to find any
Kerberos Ticket)

Cause: This may occur if no valid Kerberos credentials are obtained. In particular, this
occurs if you want the underlying mechanism to obtain credentials but you forgot to
indicate this by setting the javax.security.auth.useSubjectCredsOnly system property
value to false (for example via -Djavax.security.auth.useSubjectCredsOnly=false in
your execution command).

Solution: Be sure to set the javax.security.auth.useSubjectCredsOnly system property
value to false if you want the underlying mechanism to obtain credentials, rather than your
application or a wrapper program (such as the Login utility used by some of the tutorials)
performing authentication using JAAS.

• javax.security.auth.login.LoginException: Could not load configuration file
<krb5.conf> (No such file or directory)

Cause: The tutorials' sample execution commands specify the default Kerberos realm and
KDC by setting values for the java.security.krb5.realm and java.security.krb5.kdc
system properties. If you like, you can instead have a krb5.conf Kerberos configuration
file used. Such a file includes information about what the default realm and KDC are. To
use a krb5.conf file, you either set the system property java.security.krb5.conf
(instead of the realm and kdc properties) to specify the location of the file or you don't set
any of these properties and therefore an attempt is made to locate the krb5.conf file in a
default location. You will get the error "Could not load configuration file <krb5.conf> (No
such file or directory)" if the file could not be found.

Solution: Verify that the Kerberos configuration file krb5.conf is available and readable.
Check Kerberos Requirements for information about how to specify the location of the
krb5.conf file and where such a file is searched for by default if you don't explicitly indicate
the location.

• javax.security.auth.login.LoginException: KrbException: KDC has no support for
encryption type (14) - KDC has no support for encryption type

Cause 1: Your KDC does not support the encryption type requested.

Solution 1: Oracle’s implementation of Kerberos supports the following encryption types:
aes256-cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, des3-cbc-sha1, arcfour-hmac-
md5, des-cbc-crc, and des-cbc-md5.

Applications can select the desired encryption type by specifying following tags in the
Kerberos Configuration file krb5.conf:

[libdefaults]
default_tkt_enctypes = des-cbc-md5 des-cbc-crc des3-cbc-sha1
default_tgs_enctypes = des-cbc-md5 des-cbc-crc des3-cbc-sha1
permitted_enctypes = des-cbc-md5 des-cbc-crc des3-cbc-sha1

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-68

If not specified, then the default value is:

aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96 des3-cbc-sha1 arcfour-hmac-
md5

If allow_weak_crypto in krb5.conf is set to true, then des-cbc-crc and des-cbc-md5 are
also supported.

Cause 2: This exception is thrown when using native ticket cache on some Windows
platforms. Microsoft has added a new feature in which they no longer export the session
keys for Ticket-Granting Tickets (TGTs). As a result, the native TGT obtained on Windows
has an "empty" session key and null EType.

Solution 2: You need to update the Windows registry to disable this new feature. The
registry key allowtgtsessionkey should be added – and set correctly – to allow session
keys to be sent in the Kerberos Ticket-Granting Ticket. Usually, the following is the required
registry setting:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos\Parameters
Value Name: allowtgtsessionkey
Value Type: REG_DWORD
Value: 0x01 (default is 0)

By default, the value is 0; setting it to "0x01" allows a session key to be included in the
TGT.

• KDC reply did not match expectations

Cause: The KDC sent a response that cannot be understood by the client.

Solution: Verify that you have set correctly all the krb5.conf file configuration parameters
and consult your KDC vendor's guide.

Note:

A debugging mode can be enabled by setting the system property
sun.security.krb5.debug to "true". This setting allows you to follow the
program's execution of the Kerberos V5 protocol.

Source Code for JAAS and Java GSS-API Tutorials

SampleServer.java

import org.ietf.jgss.*;
import java.io.*;
import java.net.Socket;
import java.net.ServerSocket;

/**
 * A sample server application that uses JGSS to do mutual authentication
 * with a client using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the client.
 *

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-69

 * Every message exchanged with the client includes a 4-byte application-
 * level header that contains the big-endian integer value for the number
 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrap token to the server.
 * 3. server sends a mic token to the client for the application
 * message that was contained in the wrap token.
 */

public class SampleServer {

 public static void main(String[] args)
 throws IOException, GSSException {

 // Obtain the command-line arguments and parse the port number

 if (args.length != 1) {
 System.err.println("Usage: java <options> Login SampleServer
<localPort>");
 System.exit(-1);
 }

 int localPort = Integer.parseInt(args[0]);

 ServerSocket ss = new ServerSocket(localPort);

 GSSManager manager = GSSManager.getInstance();

 while (true) {

 System.out.println("Waiting for incoming connection...");

 Socket socket = ss.accept();
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Got connection from client "
 + socket.getInetAddress());

 /*
 * Create a GSSContext to receive the incoming request
 * from the client. Use null for the server credentials
 * passed in. This tells the underlying mechanism
 * to use whatever credentials it has available that
 * can be used to accept this connection.
 */
 GSSContext context = manager.createContext((GSSCredential)null);

 // Do the context eastablishment loop

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-70

 byte[] token = null;

 while (!context.isEstablished()) {

 token = new byte[inStream.readInt()];
 System.out.println("Will read input token of size "
 + token.length
 + " for processing by acceptSecContext");
 inStream.readFully(token);

 token = context.acceptSecContext(token, 0, token.length);

 // Send a token to the peer if one was generated by
 // acceptSecContext
 if (token != null) {
 System.out.println("Will send token of size "
 + token.length
 + " from acceptSecContext.");
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }
 }

 System.out.print("Context Established! ");
 System.out.println("Client is " + context.getSrcName());
 System.out.println("Server is " + context.getTargName());
 /*
 * If mutual authentication did not take place, then
 * only the client was authenticated to the
 * server. Otherwise, both client and server were
 * authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 /*
 * Create a MessageProp which unwrap will use to return
 * information such as the Quality-of-Protection that was
 * applied to the wrapped token, whether or not it was
 * encrypted, etc. Since the initial MessageProp values
 * are ignored, just set them to the defaults of 0 and false.
 */
 MessageProp prop = new MessageProp(0, false);

 /*
 * Read the token. This uses the same token byte array
 * as that used during context establishment.
 */
 token = new byte[inStream.readInt()];
 System.out.println("Will read token of size "
 + token.length);
 inStream.readFully(token);

 byte[] bytes = context.unwrap(token, 0, token.length, prop);

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-71

 String str = new String(bytes);
 System.out.println("Received data \""
 + str + "\" of length " + str.length());

 System.out.println("Confidentiality applied: "
 + prop.getPrivacy());

 /*
 * Now generate a MIC and send it to the client. This is
 * just for illustration purposes. The integrity of the
 * incoming wrapped message is guaranteed irrespective of
 * the confidentiality (encryption) that was used.
 */

 /*
 * First reset the QOP of the MessageProp to 0
 * to ensure the default Quality-of-Protection
 * is applied.
 */
 prop.setQOP(0);

 token = context.getMIC(bytes, 0, bytes.length, prop);

 System.out.println("Will send MIC token of size "
 + token.length);
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 System.out.println("Closing connection with client "
 + socket.getInetAddress());
 context.dispose();
 socket.close();
 }
 }
}

bcsLogin.conf

/**
 * Login Configuration for JAAS.
 */

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required;
};

com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true;
};

SampleClient.java

import org.ietf.jgss.*;
import java.net.Socket;

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-72

import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;

/**
 * A sample client application that uses JGSS to do mutual authentication
 * with a server using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the server.
 *
 * Every message sent to the server includes a 4-byte application-level
 * header that contains the big-endian integer value for the number
 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrap token to the server.
 * 3. server sends a MIC token to the client for the application
 * message that was contained in the wrap token.
 */

public class SampleClient {

 public static void main(String[] args)
 throws IOException, GSSException {

 // Obtain the command-line arguments and parse the port number

 if (args.length < 3) {
 System.err.println("Usage: java <options> Login SampleClient "
 + " <server> <hostName> <port>");
 System.exit(-1);
 }

 String server = args[0];
 String hostName = args[1];
 int port = Integer.parseInt(args[2]);

 Socket socket = new Socket(hostName, port);
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Connected to server "
 + socket.getInetAddress());

 /*
 * This Oid is used to represent the Kerberos version 5 GSS-API
 * mechanism. It is defined in RFC 1964. We will use this Oid
 * whenever we need to indicate to the GSS-API that it must
 * use Kerberos for some purpose.
 */
 Oid krb5Oid = new Oid("1.2.840.113554.1.2.2");

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-73

 GSSManager manager = GSSManager.getInstance();

 /*
 * Create a GSSName out of the server's name. The null
 * indicates that this application does not wish to make
 * any claims about the syntax of this name and that the
 * underlying mechanism should try to parse it as per whatever
 * default syntax it chooses.
 */
 GSSName serverName = manager.createName(server, null);

 /*
 * Create a GSSContext for mutual authentication with the
 * server.
 * - serverName is the GSSName that represents the server.
 * - krb5Oid is the Oid that represents the mechanism to
 * use. The client chooses the mechanism to use.
 * - null is passed in for client credentials
 * - DEFAULT_LIFETIME lets the mechanism decide how long the
 * context can remain valid.
 * Note: Passing in null for the credentials asks GSS-API to
 * use the default credentials. This means that the mechanism
 * will look among the credentials stored in the current Subject
 * to find the right kind of credentials that it needs.
 */
 GSSContext context = manager.createContext(serverName,
 krb5Oid,
 null,
 GSSContext.DEFAULT_LIFETIME);

 // Set the desired optional features on the context. The client
 // chooses these options.

 context.requestMutualAuth(true); // Mutual authentication
 context.requestConf(true); // Will use confidentiality later
 context.requestInteg(true); // Will use integrity later

 // Do the context eastablishment loop

 byte[] token = new byte[0];

 while (!context.isEstablished()) {

 // token is ignored on the first call
 token = context.initSecContext(token, 0, token.length);

 // Send a token to the server if one was generated by
 // initSecContext
 if (token != null) {
 System.out.println("Will send token of size "
 + token.length
 + " from initSecContext.");
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-74

 }

 // If the client is done with context establishment
 // then there will be no more tokens to read in this loop
 if (!context.isEstablished()) {
 token = new byte[inStream.readInt()];
 System.out.println("Will read input token of size "
 + token.length
 + " for processing by initSecContext");
 inStream.readFully(token);
 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client is " + context.getSrcName());
 System.out.println("Server is " + context.getTargName());

 /*
 * If mutual authentication did not take place, then only the
 * client was authenticated to the server. Otherwise, both
 * client and server were authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 byte[] messageBytes = "Hello There!\0".getBytes();

 /*
 * The first MessageProp argument is 0 to request
 * the default Quality-of-Protection.
 * The second argument is true to request
 * privacy (encryption of the message).
 */
 MessageProp prop = new MessageProp(0, true);

 /*
 * Encrypt the data and send it across. Integrity protection
 * is always applied, irrespective of confidentiality
 * (i.e., encryption).
 * You can use the same token (byte array) as that used when
 * establishing the context.
 */

 token = context.wrap(messageBytes, 0, messageBytes.length, prop);
 System.out.println("Will send wrap token of size " + token.length);
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 /*
 * Now we will allow the server to decrypt the message,
 * calculate a MIC on the decrypted message and send it back
 * to us for verification. This is unnecessary, but done here
 * for illustration.
 */

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-75

 token = new byte[inStream.readInt()];
 System.out.println("Will read token of size " + token.length);
 inStream.readFully(token);
 context.verifyMIC(token, 0, token.length,
 messageBytes, 0, messageBytes.length,
 prop);

 System.out.println("Verified received MIC for message.");

 System.out.println("Exiting...");
 context.dispose();
 socket.close();
 }
}

JaasAcn.java

import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import com.sun.security.auth.callback.TextCallbackHandler;

/**
 * This JaasAcn application attempts to authenticate a user
 * and reports whether or not the authentication was successful.
 */
public class JaasAcn {

 public static void main(String[] args) {

 // Obtain a LoginContext, needed for authentication. Tell it
 // to use the LoginModule implementation specified by the
 // entry named "JaasSample" in the JAAS login configuration
 // file and to also use the specified CallbackHandler.
 LoginContext lc = null;
 try {
 lc = new LoginContext("JaasSample", new TextCallbackHandler());
 } catch (LoginException le) {
 System.err.println("Cannot create LoginContext. "
 + le.getMessage());
 System.exit(-1);
 } catch (SecurityException se) {
 System.err.println("Cannot create LoginContext. "
 + se.getMessage());
 System.exit(-1);
 }

 try {

 // attempt authentication
 lc.login();

 } catch (LoginException le) {

 System.err.println("Authentication failed:");

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-76

 System.err.println(" " + le.getMessage());
 System.exit(-1);

 }

 System.out.println("Authentication succeeded!");

 }
}

jass.conf

/** Login Configuration for the JaasAcn and
 ** JaasAzn Applications
 **/

JaasSample {
 com.sun.security.auth.module.Krb5LoginModule required;
};

jassacn.policy

/** Java Access Control Policy for the JaasAcn Application **/

grant codebase "file:./JaasAcn.jar" {

 permission javax.security.auth.AuthPermission
"createLoginContext.JaasSample";
};

JaasAzn.java

import javax.security.auth.Subject;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import com.sun.security.auth.callback.TextCallbackHandler;
import java.security.PrivilegedAction;

/**
 * This JaasAzn application attempts to authenticate a user
 * and reports whether or not the authentication was successful.
 * If successful, it then sets up subsequent execution of
 * code in the run method of the SampleAction class such that
 * access control checks for security-sensitive operations will be
 * based on the user running the code.
 */
public class JaasAzn {

 public static void main(String[] args) {

 // Obtain a LoginContext, needed for authentication. Tell it
 // to use the LoginModule implementation specified by the
 // entry named "JaasSample" in the JAAS login configuration

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-77

 // file and to also use the specified CallbackHandler.
 LoginContext lc = null;
 try {
 lc = new LoginContext("JaasSample", new TextCallbackHandler());
 } catch (LoginException le) {
 System.err.println("Cannot create LoginContext. "
 + le.getMessage());
 System.exit(-1);
 } catch (SecurityException se) {
 System.err.println("Cannot create LoginContext. "
 + se.getMessage());
 System.exit(-1);
 }

 try {

 // attempt authentication
 lc.login();

 } catch (LoginException le) {

 System.err.println("Authentication failed:");
 System.err.println(" " + le.getMessage());
 System.exit(-1);

 }

 System.out.println("Authentication succeeded!");

 // now try to execute the SampleAction as the authenticated Subject
 Subject mySubject = lc.getSubject();
 PrivilegedAction action = new SampleAction();
 Subject.doAsPrivileged(mySubject, action, null);

 }
}

SampleAction.java

import java.io.File;
import java.security.PrivilegedAction;

/**
 * This is a sample PrivilegedAction implementation, designed to be
 * used with the JaasAzn class.
 */
public class SampleAction implements PrivilegedAction {

 /**
 * This sample PrivilegedAction performs the following operations:
 *
 * Access the System property <i>java.home</i>
 * Access the System property <i>user.home</i>
 * Access the file <i>foo.txt</i>
 *

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-78

 *
 * @return <code>null</code> in all cases.
 *
 * @exception SecurityException if the caller does not have permission
 * to perform any of these operations.
 */
 public Object run() {
 System.out.println("\nYour java.home property value is: "
 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property value is: "
 +System.getProperty("user.home"));

 File f = new File("foo.txt");
 System.out.print("\nfoo.txt does ");
 if (!f.exists())
 System.out.print("not ");
 System.out.println("exist in the current working directory.");
 return null;
 }
}

jassazn.policy

/** Java Access Control Policy for the JaasAzn Application **/

/** Code-Based Access Control Policy for JaasAzn **/

grant codebase "file:./JaasAzn.jar" {

 permission javax.security.auth.AuthPermission
 "createLoginContext.JaasSample";
 permission javax.security.auth.AuthPermission "doAsPrivileged";
};

/** User-Based Access Control Policy for the SampleAction class
 ** instantiated by JaasAzn
 **/

grant codebase "file:./SampleAction.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

Login.java

import java.io.*;
import java.lang.reflect.*;
import java.util.Arrays;

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-79

import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.Subject;
import com.sun.security.auth.callback.TextCallbackHandler;

/**
 * <p> This class authenticates a <code>Subject</code> and then
 * executes a specified application as that <code>Subject</code>.
 * To use this class, the java interpreter would typically be invoked as:
 *
 * <pre>
 * % java -Djava.security.manager \
 * Login \
 * <applicationclass> <applicationClass_args>
 * </pre>
 *
 * <p> <i>applicationClass</i> represents the application to be executed
 * as the authenticated <code>Subject</code>,
 * and <i>applicationClass_args</i> are passed as arguments to
 * <i>applicationClass</i>.
 *
 * <p> To perform the authentication, <code>Login</code> uses a
 * <code>LoginContext</code>. A <code>LoginContext</code> relies on a
 * <code>Configuration</code> to determine the modules that should be used
 * to perform the actual authentication. The location of the Configuration
 * is dependent upon each Configuration implementation.
 * The default Configuration implementation
 * (<code>com.sun.security.auth.login.ConfigFile</code>)
 * allows the Configuration location to be specified (among other ways)
 * via the <code>java.security.auth.login.config</code> system property.
 * Therefore, the <code>Login</code> class can also be invoked as:
 *
 * <pre>
 * % java -Djava.security.manager \
 * -Djava.security.auth.login.config=<configuration_url> \
 * Login \
 * <your_application_class> <your_application_class_args>
 * </pre>
 */

public class Login {

 /**
 * <p> Instantate a <code>LoginContext</code> using the
 * provided application classname as the index for the login
 * <code>Configuration</code>. Authenticate the <code>Subject</code>
 * (three retries are allowed) and invoke
 * <code>Subject.doAsPrivileged</code>
 * with the authenticated <code>Subject</code> and a
 * <code>PrivilegedExceptionAction</code>.
 * The <code>PrivilegedExceptionAction</code>
 * loads the provided application class, and then invokes
 * its public static <code>main</code> method, passing it
 * the application arguments.
 *
 * <p>

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-80

 *
 * @param args the arguments for <code>Login</code>. The first
 * argument must be the class name of the application to be
 * invoked once authentication has completed, and the
 * subsequent arguments are the arguments to be passed
 * to that application's public static <code>main</code> method.
 */
 public static void main(String[] args) {

 // check for the application's main class
 if (args == null || args.length == 0) {
 System.err.println("Invalid arguments: " +
 "Did not provide name of application class.");
 System.exit(-1);
 }

 LoginContext lc = null;
 try {
 lc = new LoginContext(args[0], new TextCallbackHandler());
 } catch (LoginException le) {
 System.err.println("Cannot create LoginContext. "
 + le.getMessage());
 System.exit(-1);
 } catch (SecurityException se) {
 System.err .println("Cannot create LoginContext. "
 + se.getMessage());
 System.exit(-1);
 }

 // the user has 3 attempts to authenticate successfully
 int i;
 for (i = 0; i < 3; i++) {
 try {

 // attempt authentication
 lc.login();

 // if we return with no exception, authentication succeeded
 break;

 } catch (AccountExpiredException aee) {

 System.err.println("Your account has expired. " +
 "Please notify your administrator.");
 System.exit(-1);

 } catch (CredentialExpiredException cee) {

 System.err.println("Your credentials have expired.");
 System.exit(-1);

 } catch (FailedLoginException fle) {

 System.err.println("Authentication Failed");
 try {
 Thread.currentThread().sleep(3000);

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-81

 } catch (Exception e) {
 // ignore
 }

 } catch (Exception e) {

 System.err.println("Unexpected Exception - unable to
continue");
 e.printStackTrace();
 System.exit(-1);
 }
 }

 // did they fail three times?
 if (i == 3) {
 System.err.println("Sorry");
 System.exit(-1);
 }

 // push the subject into the current ACC
 try {
 Subject.doAsPrivileged(lc.getSubject(),
 new MyAction(args),
 null);
 } catch (java.security.PrivilegedActionException pae) {
 pae.printStackTrace();
 System.exit(-1);
 }

 System.exit(0);
 }
}

class MyAction implements java.security.PrivilegedExceptionAction {

 String[] origArgs;

 public MyAction(String[] origArgs) {
 this.origArgs = (String[])origArgs.clone();
 }

 public Object run() throws Exception {

 // get the ContextClassLoader
 ClassLoader cl = Thread.currentThread().getContextClassLoader();

 try {
 // get the application class's main method
 Class c = Class.forName(origArgs[0], true, cl);
 Class[] PARAMS = { origArgs.getClass() };
 java.lang.reflect.Method mainMethod = c.getMethod("main", PARAMS);

 // invoke the main method with the remaining args
 String[] appArgs = new String[origArgs.length - 1];
 System.arraycopy(origArgs, 1, appArgs, 0, origArgs.length - 1);
 Object[] args = { appArgs };

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-82

 mainMethod.invoke(null /*ignored*/, args);
 } catch (Exception e) {
 throw new java.security.PrivilegedActionException(e);
 }

 // successful completion
 return null;
 }
}

Sample.java

import java.io.File;

public class Sample {

 /**
 * This sample class performs the following operations:
 *
 * Access the System property <i>java.home</i>
 * Access the System property <i>user.home</i>
 * Access the file <i>foo.txt</i>
 *
 *
 * @exception SecurityException if the caller does not have permission
 * to perform any of these operations.
 */
 public static void main (String[] args) throws SecurityException {

 // If there were any arguments to read, we'd do it here.

 System.out.println("\nYour java.home property value is: "
 +System.getProperty("java.home"));

 System.out.println("\nYour user.home property value is: "
 +System.getProperty("user.home"));

 File f = new File("foo.txt");
 System.out.print("\nfoo.txt does ");
 if (!f.exists())
 System.out.print("not ");
 System.out.println("exist in the current working directory.");
 }
}

sample.conf

/** Login Configuration for the Sample Application **/

Sample {
 com.sun.security.auth.module.Krb5LoginModule required;
};

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-83

sample.policy

/** Access Control Policy for the Sample Application **/

grant codebase "file:./Login.jar" {
 permission java.security.AllPermission;
};

grant codebase "file:./Sample.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "user.home", "read";
 permission java.io.FilePermission "foo.txt", "read";
};

csLogin.conf

/**
 * Login Configuration for JAAS.
 */

SampleClient {
 com.sun.security.auth.module.Krb5LoginModule required;
};

SampleServer {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true
principal="service_principal@your_realm";
};

client.policy

grant CodeBase "file:./Login.jar" {
 permission java.security.AllPermission;
};

grant CodeBase "file:./SampleClient.jar",
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.net.SocketPermission "*", "connect";

 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/your_realm@your_realm",
 "initiate";

 permission javax.security.auth.kerberos.ServicePermission
 "service_principal@your_realm",

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-84

 "initiate";
};

server.policy

grant CodeBase "file:./Login.jar" {
 permission java.security.AllPermission;
};

grant CodeBase "file:./SampleServer.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "service_principal@your_realm" {

 permission java.net.SocketPermission "*", "accept";

 permission javax.security.auth.kerberos.ServicePermission
 "service_principal@your_realm", "accept";
};

SampleServerImp.java

import org.ietf.jgss.*;
import java.io.*;
import java.net.Socket;
import java.net.ServerSocket;
import javax.security.auth.Subject;
import java.security.PrivilegedAction;

/**
 * A sample server application that uses JGSS to do mutual authentication
 * with a client using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the client.
 *
 * Every message exchanged with the client includes a 4-byte application-
 * level header that contains the big-endian integer value for the number
 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrap token to the server.
 * 3. server sends a mic token to the client for the application
 * message that was contained in the wrap token.
 */

public class SampleServerImp {

 public static void main(String[] args)
 throws IOException, GSSException {

 // Obtain the command-line arguments and parse the port number

 if (args.length != 1) {

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-85

 System.err.println("Usage: java <options> Login SampleServer
<localPort>");
 System.exit(-1);
 }

 int localPort = Integer.parseInt(args[0]);

 ServerSocket ss = new ServerSocket(localPort);

 GSSManager manager = GSSManager.getInstance();

 while (true) {

 System.out.println("Waiting for incoming connection...");

 Socket socket = ss.accept();
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Got connection from client "
 + socket.getInetAddress());

 /*
 * Create a GSSContext to receive the incoming request
 * from the client. Use null for the server credentials
 * passed in. This tells the underlying mechanism
 * to use whatever credentials it has available that
 * can be used to accept this connection.
 */
 GSSContext context = manager.createContext((GSSCredential)null);

 // Do the context eastablishment loop

 byte[] token = null;

 while (!context.isEstablished()) {

 token = new byte[inStream.readInt()];
 System.out.println("Will read input token of size "
 + token.length
 + " for processing by acceptSecContext");
 inStream.readFully(token);

 token = context.acceptSecContext(token, 0, token.length);

 // Send a token to the peer if one was generated by
 // acceptSecContext
 if (token != null) {
 System.out.println("Will send token of size "
 + token.length
 + " from acceptSecContext.");
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-86

 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client is " + context.getSrcName());
 System.out.println("Server is " + context.getTargName());
 /*
 * If mutual authentication did not take place, then
 * only the client was authenticated to the
 * server. Otherwise, both client and server were
 * authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 /*
 * Create a MessageProp which unwrap will use to return
 * information such as the Quality-of-Protection that was
 * applied to the wrapped token, whether or not it was
 * encrypted, etc. Since the initial MessageProp values
 * are ignored, just set them to the defaults of 0 and false.
 */
 MessageProp prop = new MessageProp(0, false);

 /*
 * Read the token. This uses the same token byte array
 * as that used during context establishment.
 */
 token = new byte[inStream.readInt()];
 System.out.println("Will read token of size "
 + token.length);
 inStream.readFully(token);

 byte[] bytes = context.unwrap(token, 0, token.length, prop);
 String str = new String(bytes);
 System.out.println("Received data \""
 + str + "\" of length " + str.length());

 System.out.println("Confidentiality applied: "
 + prop.getPrivacy());

 /*
 * Now generate a MIC and send it to the client. This is
 * just for illustration purposes. The integrity of the
 * incoming wrapped message is guaranteed irrespective of
 * the confidentiality (encryption) that was used.
 */

 /*
 * First reset the QOP of the MessageProp to 0
 * to ensure the default Quality-of-Protection
 * is applied.
 */
 prop.setQOP(0);

 token = context.getMIC(bytes, 0, bytes.length, prop);

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-87

 System.out.println("Will send MIC token of size "
 + token.length);
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 /*
 * Impersonate client
 */

 System.out.println("Impersonating client.");

 /*
 * Extract the KerberosPrincipal from the client GSSName and
populate
 * it in the principal set of a new Subject. Pass in a null for
 * credentials. If we were to pass in the delegated GSSCredential
 * instead of null, then the resulting Subject's private
credential
 * set would also be populated.
 */
 GSSName clientGSSName = context.getSrcName();
 System.out.println("clientGSSName: " + clientGSSName);
 Subject client =
 com.sun.security.jgss.GSSUtil.createSubject(clientGSSName,
 null);

 /*
 * Construct an action that will read a file meant only for the
 * client
 */
 PrivilegedAction readFile =
 new ReadFileAction(clientGSSName.toString());

 /*
 * Invoke the action via a doAsPrivileged. This allows the
 * action to be executed as the client subject, and it also runs
 * that code as privileged. This means that any permission
checking
 * that happens beyond this point applies only to the code being
 * run as the client.
 */
 Subject.doAsPrivileged(client, readFile, null);

 /*
 * Clean up
 */

 System.out.println("Closing connection with client "
 + socket.getInetAddress());
 context.dispose();

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-88

 socket.close();
 }
 }
}

ReadFileAction.java

import java.security.PrivilegedAction;
import java.io.*;

/**
 * This class implements the PrivilegedAction interface to demonstrate the
 * reading of a file that belongs to the client. This code will be
 * executed by the server while impersonating the client principal.
 */
public class ReadFileAction implements PrivilegedAction {

 private String fileName;

 /**
 * Contructs a ReadFileAction instance.
 *
 * @param kerberosPrincipalName the name of the Kerberos principal
 * who owns the file that will be read. The filename is constructed
 * from the name of the principal.
 */
 public ReadFileAction(String kerberosPrincipalName) {
 /*
 * Separate the realm component from the name and use the rest of
 * it for constructing the filename. If the principal name is
 * "joe@REALM" then the file that will be read is
 * "data/joe_info.txt". The path separator "/" might be "\" in the
 * case of Windows.
 */
 int realmSeparatorPos = kerberosPrincipalName.lastIndexOf('@');
 fileName = "data" + File.separatorChar
 + kerberosPrincipalName.substring(0, realmSeparatorPos)
 + "_info.txt";
 }

 /**
 * Does the actual reading of the file. It displays the text contained
 * in the file.
 */
 public Object run() {
 System.out.println("===");
 System.out.println("Reading file: " + fileName);
 try {
 BufferedReader reader = new BufferedReader(new
FileReader(fileName));
 String str = reader.readLine();
 while (str != null) {
 System.out.println(str);
 str = reader.readLine();
 }

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-89

 } catch (IOException e) {
 System.err.println(e);
 }
 System.out.println("===");
 return null;
 }
}

serverimp.policy

grant CodeBase "file:./Login.jar" {
 permission java.security.AllPermission;
};

grant CodeBase "file:./SampleServerImp.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "service_principal@your_realm" {

 permission java.net.SocketPermission "*", "accept";

 permission javax.security.auth.kerberos.ServicePermission
 "service_principal@your_realm", "accept";

 permission javax.security.auth.AuthPermission "doAsPrivileged";
};

grant CodeBase "file:./ReadFileAction.jar"
 Principal javax.security.auth.kerberos.KerberosPrincipal
 "your_user_name@your_realm" {

 permission java.io.FilePermission
 "data/your_user_name_info.txt", "read";
};

csImpLogin.conf

/**
 * Login Configuration for JAAS.
 */

SampleClient {
 com.sun.security.auth.module.Krb5LoginModule required;
};

SampleServerImp {
 com.sun.security.auth.module.Krb5LoginModule required storeKey=true
principal="service_principal@your_realm";
};

Related Documentation
• API specifications

– com.sun.security.jgss package

Chapter 7
Introduction to JAAS and Java GSS-API Tutorials

7-90

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/package-summary.html

– com.sun.security.auth package

– com.sun.security.auth.callback package

– com.sun.security.auth.login package

– com.sun.security.auth.module package

• User guides and tutorials

– Java Authentication and Authorization Service (JAAS) Reference Guide

– Java Security Tutorial

• Other Java Security Documentation

– Default Policy Implementation and Policy File Syntax

– Permissions in the JDK

– Single Sign-on Using Kerberos in Java

– Java SE Platform Security Architecture

• Reference document

– Generic Security Service API Version 2: Java Bindings Update

Accessing Native GSS-API
To help Java platform applications achieve seamless integration with native applications, the
JDK enhances the Java GSS-API to use native GSS-API instead of its own implementation of
cryptographic mechanisms when configured to do so. When using the native GSS-API and its
underlying native cryptographic mechanisms, the native credentials and settings in users'
environment will be picked up automatically. This is different from the default case in which the
Java GSS-API uses its own implementation of cryptographic mechanisms. When using
Kerberos, Java applications have to supply Kerberos configuration information using the
designated Kerberos system properties for the Java GSS-API to function. Introduction to JAAS
and Java GSS-API Tutorials covers the default case in great detail, so this section will focus on
how to enable or configure Java GSS-API to use native GSS-API.

Before you enable Java GSS-API to use native GSS-API, ensure that native GSS-API and its
underlying cryptographic mechanism are available and functioning with user settings. For
example, ensure that native GSS libraries are installed at the appropriate directories with
proper configurations, and the same applies to the Kerberos library and configurations. Note
that native GSS-API assumes that before an application calls its APIs, it has already obtained
and stored the mechanism-specific credentials in a location that the native mechanism
implementation is aware of. Thus, when an application uses native GSS-API with Kerberos, it
must already have obtained the appropriate native credentials, such as Kerberos tickets and
keys by using the kinit tool on the initiator side, a keytab file on the acceptor side, or default
credentials acquired during the system login.

To make the Java GSS-API use native GSS-API, Java applications must explicitly enable this
behavior by setting one or more of the following system properties:

• sun.security.jgss.native (required): Set this to true to enable the Java GSS-API to use
the native GSS library.

• sun.security.jgss.lib (optional): Set to the full path of the native GSS library. If this is
set, then the Java GSS-API looks for the specified library using the default Java library
path. If this is not set, then the Java GSS-API uses a default native GSS library. On
Windows, this is sspi.dll, which is included in the JDK. This library is client-side only

Chapter 7
Accessing Native GSS-API

7-91

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/login/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/package-summary.html
http://docs.oracle.com/javase/tutorial/security/index.html
https://tools.ietf.org/html/rfc5653

and uses the default credentials. On other platforms, the Java GSS-API searches for an
existing well-known native GSS library, for example, libgssapi.so or libgssapi_krb5.so
on Linux or libgssapi_krb5.dylib on macOS.

As mentioned previously, native GSS-API requires that the application had obtained these
credentials and that they are accessible. Java applications can access these native credentials
through the Java GSS-API and use them for establishing GSS-API security contexts with
peers. Note that when a Subject is present, for example,

javax.security.auth.Subject.getSubject(AccessController.getContext()) != null

then the Java GSS-API mandates that the credentials be obtained from the private or public
credential sets of the current Subject and that the Java GSS-API call must fail if the desired
credential cannot be found. Thus, Java platform applications that execute the Java GSS-API
calls inside a Subject.doAs/doAsPrivileged(...) call should either populate the Subject's
credential sets with the appropriate Java GSSCredential objects that encapsulate the native
credentials or explicitly set the system property javax.security.auth.useSubjectCredsOnly
to false so that the Java GSS-API can obtain credentials from other locations, for example,
from native credential caches, in addition to the Subject's credential sets.

When delegated to establish a GSS-API security context on behalf of others, Java applications
can either specify the delegated credential, as returned by GSSContext.getDelegCred(),
explicitly in Java GSS-API calls, or create a Subject object with this delegated credential and
execute the Java GSS-API calls inside the Subject.doAs/doAsPrivileged(...) calls.

Once the native GSS-API is enabled, Java platform applications that indirectly call Java GSS-
API through mechanisms or protocols such as Simple Authentication and Security Layer
(SASL) (see Java SASL API Programming and Deployment Guide) will also use user's native
settings and credentials.

Here is some sample code that helps demonstrate how to use Java GSS-API to establish
GSS-API security contexts and securely exchange data between three parties: SampleClient
contacts FooServer, which in turn contacts FooServer2 on behalf of SampleClient. Note:

• The sample code should be invoked with native GSS-API enabled. The Principal names
host@foo.sample.com and host@foo2.sample.com are placeholders and should be
replaced with actual principal names in your Kerberos database.

• When a security manager is installed, some Java GSS-API calls require that permissions
be granted. Check the Java documentation of the following classes for more details:

– javax.security.auth.kerberos.ServicePermission
– javax.security.auth.kerberos.DelegationPermission

• To simplify the example, token exchanges between peers are represented by two pseudo-
methods: SEND_TOKEN(byte[]) and READ_TOKEN(). Their actual implementation are
application-specific and thus not shown here.

• To reduce code duplication, context establishment code is referred by a pseudo-method,
ESTABLISH_CONTEXT(GSSContext), in the code segments for SampleClient, FooServer,
and FooServer2.

The following is the implementation for ESTABLISH_CONTEXT(GSSContext) using Java GSS-API.

/**
 * ESTABLISH_CONTEXT(GSSContext ctxt): establishes a context
 * with data confidentiality and mutual authentication.
 */
ctxt.requestConf(true);
ctxt.requestMutualAuth(true);

Chapter 7
Accessing Native GSS-API

7-92

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/ServicePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/DelegationPermission.html

byte[] inToken = new byte[0];
byte[] outToken = null;

if (ctxt.isInitiator()) {
 while (!ctxt.isEstablished()) {
 // Note: initSecContext(...) always ignores the arguments
 // for the first call because there is no incoming token.
 outToken = ctxt.initSecContext(inToken, 0, inToken.length);

 // Send the output token if generated.
 if (outToken != null) SEND_TOKEN(outToken); // to acceptor

 // Check whether more incoming tokens are expected.
 if (!ctxt.isEstablished()) {
 inToken = READ_TOKEN(); // from acceptor
 }
 }
} else {
 while (!ctxt.isEstablished()) {
 inToken = READ_TOKEN(); // from initiator
 outToken =
 ctxt.acceptSecContext(inToken, 0, inToken.length);

 // Send the output token if generated.
 if (outToken != null) SEND_TOKEN(outToken); // to initiator
 }
}

Following are the code segments for SampleClient, FooServer, and FooServer2:

SampleClient: It contacts FooServer and delegates the server to act on its behalf. If all goes
well, it should get back a personalized hello message produced by FooServer2.

GSSManager gssMgr = GSSManager.getInstance();
GSSName serverName = gssMgr.createName(
 "host@foo.sample.com", GSSName.NT_HOSTBASED_SERVICE);
GSSContext context = gssMgr.createContext(
 serverName, null /* default mechanism, which is Kerberos*/,
 null /* default initiator cred */,
 GSSContext.DEFAULT_LIFETIME);
context.requestCredDelegState(true);

ESTABLISH_CONTEXT(context);

// Make sure credential delegation is available.
if (!context.getCredDeleg()) {
 context.dispose();
 throw new Exception("credential delegation is denied");
}

byte[] token = READ_TOKEN(); // from "FooServer"
byte[] data =
 context.unwrap(token, 0, token.length, new MessageProp(true));
context.dispose();

// Should print "Hello from FooServer2 to <client name>" where
// <client name> is the name of the default initiator.
System.out.println(new String(data));

FooServer: It contacts FooServer2 as SampleClient and forwards the received reply to
SampleClient.

Chapter 7
Accessing Native GSS-API

7-93

GSSManager gssMgr = GSSManager.getInstance();
GSSName myName = gssMgr.createName(
 "host@foo.sample.com", GSSName.NT_HOSTBASED_SERVICE);
GSSCredential myCred = gssMgr.createCredential(
 acceptorName, GSSCredential.INDEFINITE_LIFETIME,
 (Oid[]) null /* default set of mechanisms */,
 GSSCredential.ACCEPT_ONLY);
GSSContext acontext = gssMgr.createContext(myCred);

ESTABLISH_ACC_CONTEXT(acontext);

GSSCredential delegCred = acontext.getDelegCred();
if (delegCred != null) {
 byte[] data, token;
 // Establish a context on client's behalf using the delegated
 // credential.
 GSSName serverName = gssMgr.createName(
 "host@foo2.sample.com", GSSName.NT_HOSTBASED_SERVICE);
 GSSContext icontext = gssMgr.createContext(
 serverName, null /* default mechanism Kerberos */,
 delegCred /* act on SampleClient's behalf */,
 GSSContext.DEFAULT_LIFETIME);

 ESTABLISH_CONTEXT(icontext);

 token = READ_TOKEN(); // from "FooServer2"

 MessageProp msgProp = new MessageProp(true);

 // Forward the reply from FooServer2 to SampleClient.
 data = icontext.unwrap(token, 0, token.length, msgProp);
 token = acontext.wrap(data, 0, data.length, msgProp);
 SEND_TOKEN(token); // to "SampleClient"
 icontext.dispose();
}
acontext.dispose();

FooServer2: It always replies with a hello message personalized to the name of the initiator of
the established context.

GSSManager gssMgr = GSSManager.getInstance();
GSSName myName = gssMgr.createName(
 "host@foo2.sample.com", GSSName.NT_HOSTBASED_SERVICE);
GSSCredential myCred = gssMgr.createCredential(
 myName, GSSCredential.INDEFINITE_LIFETIME,
 (Oid[]) null /* default set of mechanisms */,
 GSSCredential.ACCEPT_ONLY);
GSSContext context = gssMgr.createContext(myCred);

ESTABLISH_CONTEXT(context);

byte[] data = new String("Hello from FooServer2 to " +
 context.getSrcName()).getBytes();
byte[] token =
 context.wrap(data, 0, data.length, new MessageProp(true));

SEND_TOKEN(token); // to "FooServer"

context.dispose();

Chapter 7
Accessing Native GSS-API

7-94

Single Sign-on Using Kerberos in Java

Abstract
A significant enhancement to the Java SE security architecture is the capability to achieve
single sign-on using Kerberos Version 5. A single sign-on solution lets users authenticate
themselves just once to access information on any of several systems. This is done using
JAAS for authentication and authorization and Java GSS-API to establish a secure context for
communication with a peer application. Our focus is on Kerberos V5 as the underlying security
mechanism for single sign-on, although other security mechanisms may be added in the future.

Introduction
With the increasing use of distributed systems users need to access resources that are often
remote. Traditionally users have had to sign-on to multiple systems, each of which may involve
different user names and authentication techniques. In contrast, with single sign-on, the user
needs to authenticate only once and the authenticated identity is securely carried across the
network to access resources on behalf of the user.

In this paper we discuss how to use single sign-on based on the Kerberos V5 protocol. We use
the Java Authentication and Authorization Service (JAAS) to authenticate a principal to
Kerberos and obtain credentials that prove its identity. We show how Oracle's implementation
of a Kerberos login module can be made to read credentials from an existing cache on
platforms that contain native Kerberos support. We then use the Java Generic Security Service
API (Java GSS-API) to authenticate to a remote peer using the previously obtained Kerberos
credentials. We also show how to delegate Kerberos credentials for single sign-on in a multi-
tier environment.

Kerberos V5
Kerberos V5 is a trusted third party network authentication protocol designed to provide strong
authentication using secret key cryptography. When using Kerberos V5, the user's password is
never sent across the network, not even in encrypted form, except during Kerberos V5
administration. Kerberos was developed in the mid-1980's as part of MIT's Project Athena. A
full description of the Kerberos V5 protocol is beyond the scope of this paper. For more
information on the Kerberos V5 protocol please refer to [1] and [2].

Kerberos V5 is a mature protocol and has been widely deployed. A free reference
implementation in C is available from MIT. For these reasons we have selected Kerberos V5 as
the underlying technology for single sign-on in Java SE.

Java Authentication and Authorization Service (JAAS)
The Java SE security architecture used to solely determine privileges by the origin of the code
and the public key certificates matching the code signers. However, in a multi-user
environment it is desirable to further specify privileges based on the authenticated identity of
the user running the code.

JAAS supplies such a capability. JAAS is a pluggable framework and programming interface
specifically targeted for authentication and access control based on the authenticated
identities.

Chapter 7
Single Sign-on Using Kerberos in Java

7-95

Pluggable and Stackable Framework
JAAS authentication framework is based on Pluggable Authentication Module (PAM); see [3]
and [4]. JAAS authentication is performed in a pluggable fashion allowing system
administrators to add appropriate authentication modules. This permits Java applications to
remain independent of underlying authentication technologies, and new or updated
authentication technologies can be seamlessly configured without requiring modifications to
the application itself.

JAAS authentication framework also supports the stacking of authentication modules. Multiple
modules can be specified and they are invoked by the JAAS framework in the order they were
specified. The success of the overall authentication depends on the results of the individual
authentication modules.

Authentication and Authorization
The JAAS framework can be divided into two components: an authentication component and
an authorization component.

The JAAS authentication component provides the ability to reliably and securely determine
who is currently executing Java code, regardless of whether the code is running as an
application, an applet, a bean, or a servlet.

The JAAS authorization component supplements the existing Java security framework by
providing the means to restrict the executing Java code from performing sensitive tasks,
depending on its codesource and depending on who is executing the code.

Subject
JAAS uses the term Subject to refer to any entity that is the source of a request to access
resources. A Subject may be a user or a service. Since an entity may have many names or
principals JAAS uses Subject as an extra layer of abstraction that handles multiple names per
entity. Thus a Subject is comprised of a set of principals. There are no restrictions on principal
names.

A Subject is only populated with authenticated principals. Authentication typically involves the
user providing proof of identity, such as a password.

A Subject may also have security related attributes, which are referred to as credentials. The
credentials can be public or private. Sensitive credentials such as private cryptographic keys
are stored in the private credentials set of the Subject.

The Subject class has methods to retrieve the principals, public credentials and private
credentials associated with it.

Please note that different permissions may be required for operations on these classes. For
example AuthPermission("modifyPrincipals") may be required to modify the principal
set of the Subject. Similar permissions are required to modify the public credentials, private
credentials and to get the current Subject.

doAs and doAsPrivileged
Java SE enforces runtime access controls via java.lang.SecurityManager. The
SecurityManager is consulted anytime sensitive operations are attempted. The
SecurityManager delegates this responsibility to java.security.AccessController.

Chapter 7
Single Sign-on Using Kerberos in Java

7-96

The AccessController obtains a current image of the AccessControlContext and
verifies that it has sufficient permission to do the operation requested.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

JAAS provides two methods, doAs and doAsPrivileged, that can be used to associate an
authenticated Subject with the AccessControlContext dynamically.

The doAs method associates the Subject with the current thread's access control context and
subsequent access control checks are made on the basis of the code being executed and the
Subject executing it.

public static Object doAs(final Subject subject,
 final PrivilegedAction action)

public static Object doAs(final Subject subject,
 final PrivilegedExceptionAction action)
 throws PrivilegedActionException;

Both forms of the doAs method first associate the specified subject with the current Thread's
AccessControlContext, and then execute the action. This achieves the effect of having the
action run as the Subject. The first method can throw runtime exceptions but normal execution
has it returning an Object from the run() method of its action argument. The second method
behaves similarly except that it can throw a checked PrivilegedActionException from its
run() method. An AuthPermission("doAs") is required to call the doAs methods.

The following methods also execute code as a particular Subject:

public static Object doAsPrivileged(final Subject subject,
 final PrivilegedAction action,
 final AccessControlContext acc);

public static Object doAsPrivileged(final Subject subject,
 final PrivilegedExceptionAction action,
 final AccessControlContext acc)
 throws PrivilegedActionException;

The doAsPrivileged method behaves exactly as doAs, except that it allows the caller to
specify an access control context. Thus it effectively throws away the current
AccessControlContext and authorization decisions will be based on the
AccessControlContext passed in.

Since the AccessControlContext is set on a per thread basis, different threads within the
JVM can assume different identities. The Subject associated with a specific
AccessControlContext can be retrieved by using the following method:

public static Subject getSubject(final AccessControlContext acc);

Chapter 7
Single Sign-on Using Kerberos in Java

7-97

https://openjdk.java.net/jeps/411

LoginContext
The LoginContext class provides the basic methods used to authenticate Subjects. It also
allows an application to be independent of the underlying authentication technologies. The
LoginContext consults a configuration that determines the authentication services or
LoginModules configured for a particular application. If the application does not have a
specific entry, it defaults to the entry identified as "other".

To support the stackable nature of LoginModules, LoginContext performs authentication
in two phases. In the first phase or login phase, it invokes each configured LoginModule to
attempt the authentication. If all the necessary LoginModules succeed, then LoginContext
enters the second phase where it invokes each LoginModule again to formally commit the
authentication process. During this phase the Subject is populated with the authenticated
principals and their credentials. If either of the phase fails, then the LoginContext invokes
each configured module to abort the entire authentication attempt. Each LoginModule then
cleans up any relevant state associated with the authentication attempt.

LoginContext has four constructors that can be used to instantiate it. All of them require the
configuration entry name to be passed. In addition the Subject and/or a CallbackHandler
can also be passed to the constructors.

Callbacks
The login modules invoked by JAAS must be able to garner information from the caller for
authentication. For example the Kerberos login module may require users to enter their
Kerberos password for authentication.

The LoginContext allows the application to specify a callback handler that the underlying
login modules use to interact with users. There are two callback handlers - one based on the
command line and another based on a GUI.

LoginModules
Oracle provides an implementation of the UnixLoginModule, NTLoginModule,
JNDILoginModule, KeyStoreLoginModule and Krb5LoginModule.

The Kerberos Login Module
The class com.sun.security.auth.module.Krb5LoginModule is Oracle's
implementation of a login module for the Kerberos version 5 protocol. Upon successful
authentication the Ticket Granting Ticket (TGT) is stored in the Subject's private credentials set
and the Kerberos principal is stored in the Subject's principal set.

Based on certain configurable options, Krb5LoginModule can also use an existing
credentials cache, such as a native cache in the operating system, to acquire the TGT and/or
use a keytab file containing the secret key to implicitly authenticate a principal. Windows
contains a credentials cache that Krb5LoginModule can use for fetching the TGT. On all
platforms, Krb5LoginModule supports options to set the file path to a ticket cache or keytab
file of choice. This is useful when third-party Kerberos support is installed and Java integration
is desired. Please consult the documentation for Krb5LoginModule to learn about these
options. In the absence of a native cache or keytab, the user will be prompted for the
password and the TGT obtained from the key distribution center (KDC).

Chapter 7
Single Sign-on Using Kerberos in Java

7-98

The following is a sample JAAS login configuration entry for a client application. In this
example, Krb5LoginModule will use the native ticket cache to get the TGT available in it.
The authenticated identity will be the identity of the Kerberos principal that the TGT belongs to.

Example 7-1 Sample Client Configuration Entry

// Sample client configuration entry

SampleClient {
 com.sun.security.auth.module.Krb5LoginModule required useTicketCache=true
};

The following is a sample login configuration entry for a server application. With this
configuration, the secret key from the keytab is used to authenticate the principal nfs/
bar.example.com and both the TGT obtained from the Kerberos KDC and the secret key are
stored in the Subject's private credentials set. The stored key may be used later to validate a
service ticket sent by a client (See the section on Java GSS-API.)

Example 7-2 Sample Server Configuration Entry

// Sample server configuration entry

SampleServer {
 com.sun.security.auth.module.Krb5LoginModule
 required useKeyTab=true storeKey=true principal="nfs/bar.example.com"
};

In the following client code example, the configuration entry SampleClient will be used by the
LoginContext. The TextCallbackHandler class will be used to prompt the user for the
Kerberos password. Once the user has logged in, the Subject will be populated with the
Kerberos Principal name and the TGT. Thereafter the user can execute code using
Subject.doAs passing in the Subject obtained from the LoginContext.

Example 7-3 Sample Client Code

// Sample client code

LoginContext lc = null;

try {
 lc = new LoginContext("SampleClient", new TextCallbackHandler());
 // attempt authentication
 lc.login();
} catch (LoginException le) {
 ...
}

// Now try to execute ClientAction as the authenticated Subject

Subject mySubject = lc.getSubject();
PrivilegedAction action = new ClientAction();
Subject.doAs(mySubject, action);

ClientAction could be an action that is allowed only for authenticated Kerberos client
Principals with a specific value.

Chapter 7
Single Sign-on Using Kerberos in Java

7-99

The following shows server side sample code. It is similar to Example 7-3 except for the
application entry name and the PrivilegedAction.

Example 7-4 Sample Server Code

// Sample server code

LoginContext lc = null;

try {
 lc = new LoginContext("SampleServer", new TextCallbackHandler());
 // attempt authentication
 lc.login();
} catch (LoginException le) {
 ...
}

// Now try to execute ServerAction as the authenticated Subject

Subject mySubject = lc.getSubject();
PrivilegedAction action = new ServerAction();
Subject.doAs(mySubject, action);

Kerberos Classes
To enable other vendors to provide their own Kerberos login module implementation that can
be used with Java GSS-API, three standard Kerberos classes have been introduced in the
javax.security.auth.kerberos package. These are KerberosPrincipal for
Kerberos principals, KerberosKey for the long-term Kerberos secret key and
KerberosTicket for Kerberos tickets. All implementations of the Kerberos login module must
use these classes to store principals, keys and tickets in the Subject.

Authorization
Upon successful authentication of a Subject, access controls can be enforced based upon the
principals associated with the authenticated Subject. The JAAS principal based access
controls augment the CodeSource access controls of Java SE. Permissions granted to a
Subject are configured in Policy, which is an abstract class for representing the system wide
access control policy. Oracle provides a file based implementation of the Policy class. The
Policy class is provider based so that others can provide their own policy implementation.

Java Generic Security Service Application Program Interface (Java GSS-
API)

Generic Security Service API (GSS-API)
Enterprise applications often have varying security requirements and deploy a range of
underlying technologies to achieve this. In such a scenario how do we develop a client-server
application so that it can easily migrate from one technology to another? The GSS-API was
designed in the Common Authentication Technology working group of the IETF to solve this
problem by providing a uniform application programming interface for peer to peer
authentication and secure communication that insulates the caller from the details of the
underlying technology.

Chapter 7
Single Sign-on Using Kerberos in Java

7-100

The API, described in a language independent form in RFC 2743 [6], accommodates the
following security services: authentication, message confidentiality and integrity, sequencing of
protected messages, replay detection, and credential delegation. The underlying security
technology or "security mechanism" being used, has a choice of supporting one or more of
these features beyond the essential one way authentication. (The GSS-API Kerberos
mechanism performs client authentication at the minimum.)

There are mainly two standard security mechanisms that the IETF has defined: Kerberos V5
[6] and the Simple Public Key Mechanism (SPKM) [8].

The API is designed such that an implementation may support multiple mechanisms
simultaneously, giving the application the ability to choose one at runtime. However, a client
application and a server application that communicate with each other must use the same
security mechanism. Figure 7-1 illustrates this. It shows a client-server application that uses
the GSS-API for secure communication. The GSS framework enables this application to
support multiple security mechanisms (in this example, Kerberos V5 and SPKM). Once the
GSS-API negotiates a security mechanism for the client or server application (in this example,
Kerberos V5) the other must use the same.

Figure 7-1 A Multi-Mechanism GSS-API Implementation

Client
Application Server Application

GSS-API

SPKMKerberosSPKMKerberos

GSS-API

Mechanisms are identified by means of unique object identifier's (OID's) that are registered
with the IANA. For instance, the Kerberos V5 mechanism is identified by the OID {iso(1)
member-body(2) United States(840) mit(113554) infosys(1) gssapi(2) krb5(2)}
Another important feature of the API is that it is token based. i.e., Calls to the API generate
opaque octets that the application must transport to its peer. This enables the API to be
transport independent.

Java GSS-API
The Java API for the Generic Security Service was also defined at the IETF and is
documented in RFC 2853 [10]. Oracle is pursuing the standardization of this API under the
Java Community Process (JCP) [11] and plans to deliver a reference implementation with
Merlin. Because the JCP is merely endorsing this externally defined API, the IETF assigned
package namespace org.ietf.jgss will be retained in Merlin.

Oracle's implementation of Java GSS-API, will initially ship with support for the Kerberos V5
mechanism only. Kerberos V5 mechanism support is mandatory for all Java GSS-API
implementations in Java SE, although they are free to support additional mechanisms. In a
future release, a Service Provider Interface (SPI) will be added so that new mechanisms can
be configured statically or even at runtime. Even now the reference implementation in Merlin

Chapter 7
Single Sign-on Using Kerberos in Java

7-101

will be modular and support a private provider SPI that will be converted to public when
standardized.

The Java GSS-API framework itself is quite thin, and all security related functionality is
delegated to components obtained from the underlying mechanisms. The GSSManager class
is aware of all mechanism providers installed and is responsible for invoking them to obtain
these components.

The implementation of the default GSSManager that will ship with Java SE is obtained as
follows:

GSSManager manager = GSSManager.getInstance();

The GSSManager can be used to configure new providers and to list all mechanisms already
present. The GSSManager also serves as a factory class for three important interfaces:
GSSName, GSSCredential, and GSSContext. The following sections describe these
interfaces with the methods to instantiate their implementations. For a complete API
specification, readers are referred to [9] and [11].

Most calls to Java GSS-API throw a GSSException that encapsulate problems that occur
both within the GSS-API framework, and within the mechanism providers.

The GSSName Interface
This interface represents an entity for the purposes of Java GSS-API. An implementation of
this interface is instantiated as follows:

GSSName GSSManager.createName(String name, Oid nameType)
 throws GSSException

For example:

GSSName clientName = manager.createName("duke", GSSName.NT_USER_NAME);

This call returns a GSSName that represents the user principal duke at a mechanism
independent level. Internally, it is assumed that each supported mechanism will map the
generic representation of the user to a more mechanism specific form. For instance a Kerberos
V5 mechanism provider might map this name to duke@EXAMPLE.COM where EXAMPLE.COM is the
local Kerberos realm. Similarly, a public key based mechanism provider might map this name
to an X.509 Distinguished Name.

If we were referring to a principal that was not a user, but some sort of service, we would
indicate that to the Java GSS-API call so that the mechanism knows to interpret it differently.

Example:

GSSName serverName = manager.createName("nfs@bar.example.com",
 GSSName.NT_HOSTBASED_SERVICE);

The Kerberos V5 mechanism would map this name to the Kerberos specific form nfs/
bar.example.com@EXAMPLE.COM where EXAMPLE.COM is the realm of the principal. This principal
represents the service nfs running on the host machine bar.example.com.

Chapter 7
Single Sign-on Using Kerberos in Java

7-102

Oracle's implementation of the GSSName interface is a container class. The container class lazily
asks the individual providers to perform their mapping when their mechanism is used and then
stores each mapped element in a set of principals. In this respect an implementation of
GSSName is similar to the principal set stored in a Subject. It may even contain the same
elements that are in a Subject's principal set, but its use is restricted to the context of Java
GSS-API.

The name element stored by the Oracle Kerberos V5 provider is an instance of a subclass of
javax.security.auth.kerberos.KerberosPrincipal.

The GSSCredential Interface
This interface encapsulates the credentials owned by one entity. Like the GSSName, this
interface too is a multi-mechanism container.

Its implementation is instantiated as follows:

GSSCredential createCredential(GSSName name,
 int lifetime,
 Oid[] desiredMechs,
 int usage)
 throws GSSException

Here is an example of this call on the client side:

GSSCredential clientCreds =
 manager.createCredential(clientName,
 8*3600,
 desiredMechs,
 GSSCredential.INITIATE_ONLY);

The GSSManager invokes the providers of the mechanisms listed in the desiredMechs for
credentials that belong to the GSSName clientName. Additionally, it imposes the restriction
that the credential must be the kind that can initiate outbound requests (i.e., a client credential),
and requests a lifetime of 8 hours for it. The returned object contains elements from a subset of
desiredMechs that had some credential available to satisfy this criteria. The element stored
by the Kerberos V5 mechanism is an instance of a subclass of
javax.security.auth.kerberos.KerberosTicket containing a TGT that belongs to
the user.

Credential acquisition on the server side occurs as follows:

GSSCredential serverCreds =
 manager.createCredential(serverName,
 GSSCredential.INDEFINITE_LIFETIME,
 desiredMechs,
 GSSCredential.ACCEPT_ONLY);

The behavior is similar to the client case, except that the kind of credential requested is one
that can accept incoming requests (i.e., a server credential). Moreover, servers are typically
long lived and like to request a longer lifetime for the credentials such as the
INDEFINITE_LIFETIME shown here. The Kerberos V5 mechanism element stored is an
instance of a subclass of javax.security.auth.kerberos.KerberosKey containing the
secret key of the server.

Chapter 7
Single Sign-on Using Kerberos in Java

7-103

This step can be an expensive one, and applications generally acquire a reference at
initialization time to all the credentials they expect to use during their lifetime.

The GSSContext Interface
The GSSContext is an interface whose implementation provides security services to the two
peers.

On the client side a GSSContext implementation is obtained with the following API call:

GSSContext GSSManager.createContext(GSSName peer,
 Oid mech,
 GSSCredential clientCreds,
 int lifetime)
 throws GSSException

This returns an initialized security context that is aware of the peer that it must communicate
with and the mechanism that it must use to do so. The client's credentials are necessary to
authenticate to the peer.

On the server side the GSSContext is obtained as follows:

GSSContext GSSManager.createContext(GSSCredential serverCreds)
 throws GSSException

This returns an initialized security context on the acceptor's side. At this point it does not know
the name of the peer (client) that will send a context establishment request or even the
underlying mechanism that will be used. However, if the incoming request is not for service
principal represented by the credentials serverCreds, or the underlying mechanism
requested by the client side does not have a credential element in serverCreds, then the
request will fail.

Before the GSSContext can be used for its security services it has to be established with an
exchange of tokens between the two peers. Each call to the context establishment methods
will generate an opaque token that the application must somehow send to its peer using a
communication channel of its choice.

The client uses the following API call to establish the context:

byte[] GSSContext.initSecContext(byte[] inToken,
 int offset,
 int len)

 throws GSSException

The server uses the following call:

byte[] acceptSecContext(byte[] inToken,
 int offset,
 int len)

 throws GSSException

Chapter 7
Single Sign-on Using Kerberos in Java

7-104

These two methods are complementary and the input accepted by one is the output generated
by the other. The first token is generated when the client calls initSecContext for the first
time. The arguments to this method are ignored during that call. The last token generated
depends on the particulars of the security mechanism being used and the properties of the
context being established.

The number of round trips of GSS-API tokens required to authenticate the peers varies from
mechanism to mechanism and also varies with characteristics such as whether mutual
authentication or one-way authentication is desired. Thus each side of the application must
continue to call the context establishment methods in a loop until the process is complete.

In the case of the Kerberos V5 mechanism, there is no more than one round trip of tokens
during context establishment. The client first sends a token generated by its
initSecContext() containing the Kerberos AP-REQ message [2]. In order to generate the
AP-REQ message, the Kerberos provider obtains a service ticket for the target server using
the client's TGT. The service ticket is encrypted with the server's long-term secret key and is
encapsulated as part of the AP-REQ message. After the server receives this token, it is passed
to the acceptSecContext() method which decrypts the service ticket and authenticates the
client. If mutual authentication was not requested, both the client and server side contexts
would be established, and the server side acceptSecContext() would generate no output.

However, if mutual authentication were enabled, then the server's acceptSecContext()
would generate an output token containing the Kerberos AP-REP [2] message. This token
would need to be sent back to the client for processing by its initSecContext(), before the
client side context is established.

Note that when a GSSContext is initialized on the client side, it is clear what underlying
mechanism needs to be used. The Java GSS-API framework can obtain a context
implementation from the appropriate mechanism provider. Thereafter, all calls made to the
GSSContext object are delegated to the mechanism's context implementation. On the server
side, the mechanism to use is not decided until the first token from the client side arrives.

Here is a class showing how the client side of an application would be coded. This is the
ClientAction class that was executed using the doAs method in Example 7-3 in the section
The Kerberos Login Module:

Example 7-5 Sample Client Using Java GSS-API

// Sample client using Java GSS-API

class ClientAction implements PrivilegedAction {

 public Object run() {
 ...
 ...
 try {
 GSSManager manager = GSSManager.getInstance();
 GSSName clientName =
 manager.createName("duke", GSSName.NT_USER_NAME);
 GSSCredential clientCreds =
 manager.createCredential(clientName,
 8*3600,
 desiredMechs,
 GSSCredential.INITIATE_ONLY);
 GSSName peerName =
 manager.createName("nfs@bar.example.com",
 GSSName.NT_HOSTBASED_SERVICE);

Chapter 7
Single Sign-on Using Kerberos in Java

7-105

 GSSContext secContext =
 manager.createContext(peerName,
 krb5Oid,
 clientCreds,
 GSSContext.DEFAULT_LIFETIME);
 secContext.requestMutualAuth(true);

 // The first input token is ignored
 byte[] inToken = new byte[0];

 byte[] outToken = null;

 boolean established = false;

 // Loop while the context is still not established
 while (!established) {
 outToken =
 secContext.initSecContext(inToken, 0, inToken.length);

 // Send a token to the peer if one was generated
 if (outToken != null)
 sendToken(outToken);

 if (!secContext.isEstablished()) {
 inToken = readToken();
 else
 established = true;
 }
 } catch (GSSException e) {

 }
 ...
 ...
 }
}

The corresponding section of code on the server side running the ServerAction class from the
sample server code in the section The Kerberos Login Module:

Example 7-6 Sample Server Using Java GSS-API

// Sample server using Java GSS-API

class ServerAction implelemts PrivilegedAction {

 public Object run() {
 ...
 ...
 try {
 GSSManager manager = GSSManager.getInstance();
 GSSName serverName =
 manager.createName("nfs@bar.example.com",
 GSSName.NT_HOSTBASED_SERVICE);
 GSSCredential serverCreds =
 manager.createCredential(serverName,
 GSSCredential.INDEFINITE_LIFETIME,

Chapter 7
Single Sign-on Using Kerberos in Java

7-106

 desiredMechs,
 GSSCredential.ACCEPT_ONLY);
 GSSContext secContext = manager.createContext(serverCreds);

 byte[] inToken = null;
 byte[] outToken = null;

 // Loop while the context is still not established
 while (!secContext.isEstablished()) {
 inToken = readToken();
 outToken =
 secContext.acceptSecContext(inToken, 0, inToken.length);

 // Send a token to the peer if one was generated
 if (outToken != null)
 sendToken(outToken);
 }
 } catch (GSSException e) {
 ...
 }
 ...
 ...
 }
}

Message Protection
Once the security context is established, it can be used for message protection. Java GSS-API
provides both message integrity and message confidentiality. The two calls that enable this are
as follows:

byte[] GSSContext.wrap(byte[] clearText,
 int offset,
 int len,
 MessageProp properties)
 throws GSSException

and

byte[] unwrap(byte[] inToken,
 int offset,
 int len,
 MessageProp properties)
 throws GSSException

The wrap method is used to encapsulate a cleartext message in a token such that it is integrity
protected. Optionally, the message can also be encrypted by requesting this through a
MessageProp object. The wrap method returns an opaque token that the caller sends to its
peer. The original cleartext is returned by the peer's unwrap method when the token is passed
to it. The MessageProp object on the unwrap side returns information about whether the
message was simply integrity protected or whether it was encrypted as well. It also contains
sequencing and duplicate token warnings.

Chapter 7
Single Sign-on Using Kerberos in Java

7-107

Credential Delegation
Java GSS-API allows the client to securely delegate its credentials to the server, such that the
server can initiate other security contexts on behalf of the client. This feature is useful for single
sign-on in a multi-tier environment. Figure 7-2 illustrates this.

Figure 7-2 Traditional Credential Delegation

Constrained Delegation with S4U2proxy

Enterprise Network

Pretends
to be duke

Backend
Server

Gateway

Context
established

but credentials
not delegated

Duke

The client requests credential delegation prior to making the first call to initSecContext():

void GSSContext.requestCredDeleg(boolean state)
 throws GSSException

by setting state to true.

The server receives the delegated credential after context establishment:

GSSCredential GSSContext.getDelegCred() throws GSSException

The server can then pass this GSSCredential to GSSManager.createContext()
pretending to be the client.

In the case of the Kerberos V5 mechanism, the delegated credential is a forwarded TGT that is
encapsulated as part of the first token sent from the client to the server. Using this TGT, the
server can obtain a service ticket on behalf of the client for any other service.

MS-SFU Kerberos Extensions

MS-SFU refers to Microsoft Kerberos 5 extensions that allow a service to obtain a Kerberos
service ticket on behalf of a client. Microsoft calls this feature constrained delegation. This is
useful when the authentication between the client and this service is not established through
Kerberos (thus the standard Kerberos delegation cannot be used) but the service needs to
access a Kerberos-secured back-end server in the name of the client.

MS-SFU adds two extensions to that protocol: Service for User to Self (S4U2self), which
allows a front-end service to obtain a Kerberos service ticket to itself on behalf of a user, and
Service for User to Proxy (S4U2proxy), which enables it to obtain a service ticket on behalf of
the user to a second, back-end service. Together, these two extensions enable the front-end
service to obtain a Kerberos service ticket on behalf of a user. The resulting service ticket can
be used to access other services on the local or remote machines. The public method
ExtendedGSSCredential.impersonate(GSSName) in the com.sun.security.jgss
package implements these extensions.

This feature is very useful in secure enterprise deployments. For example, in a typical network
service, the front end (such as a web server) often needs to access the back end (such as a

Chapter 7
Single Sign-on Using Kerberos in Java

7-108

http://msdn.microsoft.com/en-us/library/cc246071.aspx
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/ExtendedGSSCredential.html#impersonate(org.ietf.jgss.GSSName)

database server) on behalf of a client. Normal Kerberos 5 supports delegation, but demands
that all layers in this chain explicitly use Kerberos authentication at each step, which is not
always possible or desirable.

For example, if a client logs in to a web server using digest authentication, then there are no
Kerberos credentials to be delegated, and normal step-by-step Kerberos 5 authentication
cannot occur. However, because MS-SFU defines the Service for User (S4U2self) extension
so that the front end can access the back end on behalf of the client without presenting the
client's Kerberos credentials, MS-SFU could provide authentication in this situation. Figure 7-3
illustrates this.

Figure 7-3 Constrained Delegation with S4U2self

Constrained Delegation with S4U2self

Enterprise Network

Pretends
to be duke

Backend
Server

No context
established

X

ImpersonatorDuke

In addition, there are potential security gaps in the standard Kerberos 5 delegation mechanism
(which Microsoft calls open delegation). In this mechanism, once the service account has the
client's delegated credentials, it has access to any service. Thus, great care is needed with
open delegation.

In contrast, with MS-SFU delegation (implemented in S4U2proxy), the administrator can
precisely control the services to which a particular service can access on behalf a client.
Figure 7-4 illustrates this.

Figure 7-4 Constrained Delegation with S4U2proxy

Constrained Delegation with S4U2proxy

Enterprise Network

Pretends
to be duke

Backend
Server

Gateway

Context
established

but credentials
not delegated

Duke

Note:

To delegate credentials as specified in the RFCs in this document, you must use
traditional delegation. With constrained delegation, the client is unable to determine if
its own credentials can be delegated because this is determined by the KDC.

Chapter 7
Single Sign-on Using Kerberos in Java

7-109

Default Credential Acquisition Model
Previously we discussed how an application uses the GSSManager.createCredential()
method to populate a GSSCredential object with mechanism specific credentials. The next
two sub-sections will focus on how Java GSS-API mechanisms obtain these credentials. The
mechanisms do not themselves perform a user login. Instead, the login is performed prior to
using Java GSS-API and the credentials are assumed to be stored in some cache that the
mechanism provider is aware of. The GSSManager.createCredential() method merely
obtains references to those credentials and returns them in a GSS-centric container, the
GSSCredential.

In Java SE, we impose the restriction that the credentials cache that Java GSS-API
mechanism providers use to obtain these elements must exclusively be the public and private
credential sets in the Subject that is on the current access control context.

This model has the advantage that credential management is simple and predictable from the
application's point of view. An application, given the right permissions, can purge the
credentials in the Subject or renew them using standard Java API's. If it purged the credentials,
it would be sure that the Java GSS-API mechanism would fail, or if it renewed a time based
credential it would be sure that the mechanism would succeed.

Here is the sequence of events relevant to credential acquisition when the Kerberos V5
mechanism is used by the client application in Example 7-3 and Example 7-5:

1. The application invokes a JAAS login, which in turn invokes the configured
Krb5LoginModule

2. Krb5LoginModule obtains a TGT (an instance of KerberosTicket) for the user either
from the KDC or from an existing ticket cache, and stores this TGT in the private
credentials set of a Subject.

Note:

Krb5LoginModule can locate an initial TGT inside a credential cache (either an
MIT krb5-style Kerberos credential cache (ccache) file, or a native service such
as Windows Local Security Authority (LSA)), and create a credential for the
principal that owns the TGT.

In addition, if the credential cache is an MIT krb5 ccache file that contains a
proxy_impersonator configuration key (see Credential Cache File Format), then
Krb5LoginModule will attempt to read an evidence ticket from the same
ccache file and create a delegated credential for the principal that owns this
evidence ticket instead. This delegated credential can be used in constrained
delegation.

You can retrieve the owner of the credential by calling the
GSSCredenial.getName() method from the acquired credential or the
getSrcName() method of an established GSSContext object created by this
credential.

3. The application retrieves the populated Subject, then calls Subject.doAs/
doAsPrivileged which places this Subject on the access control context of the thread
executing ClientAction

Chapter 7
Single Sign-on Using Kerberos in Java

7-110

https://web.mit.edu/kerberos/krb5-latest/doc/formats/ccache_file_format.html

4. ClientAction calls the GSSManager.createCredential method, passing it the
Kerberos V5 OID in desiredMechs.

5. GSSManager.createCredential invokes the Kerberos V5 GSS-API provider, asking
for a Kerberos credential for initiating security contexts.

6. The Kerberos provider obtains the Subject from the current access control context, and
searches through its private credential set for a valid KerberosTicket that represents
the TGT for the user.

7. The KerberosTicket is returned to the GSSManager which stores it in a
GSSCredential container instance to be returned to the caller.

On the server side, when the Kerberos login is successful in step 2, Krb5LoginModule stores
the KerberosKey for the server in the Subject in addition to the KerberosTicket. Later on the
KerberosKey is retrieved in steps 5 through 7 and used to decrypt the service ticket that the
client sends.

Exceptions to the Model
The default credential acquisition model for Java GSS-API requires credentials to be present in
the current Subject. Typically, the credentials are placed there after a JAAS login by the
application.

There might be cases where an application wishes to use Kerberos credentials from outside
the Subject. It is recommended that such credentials be read as part of the initial JAAS login,
either by configuring Krb5LoginModule to read them, or by writing a custom login module
that reads them. However, some applications might have constrains that either prevent them
from using JAAS prior to calling Java GSS-API, or force them to use some Kerberos
mechanism provider that does not retrieve credentials from the current Subject.

The system property javax.security.auth.useSubjectCredsOnly accommodates such cases
while still retaining the standard model for others. This system property serves as a boolean
where a value of true requires that the standard credential acquisition model be followed, and
a value of false permits the provider to use any cache of it choice. The default value of this
property (when it is not set) will be assumed to be true.

If there is no valid Kerberos credential in the current Subject, and this property is true, then the
Kerberos mechanism throws a GSSException. Setting this property to false does not
necessarily mean that the provider has to use a cache other than the current Subject, it only
gives the provider the latitude to do so if it wishes.

The Oracle provider for the Kerberos V5 GSS-API mechanism always obtains credentials from
a Subject. If there are no valid credentials in the current Subject, and this property is set to
false, then the provider attempts to obtain new credentials from a temporary Subject by
invoking a JAAS login itself. It uses the text callback handler for input/output with the user, and
the JAAS configuration entry identified by "other" for the list of modules and options to use.
(Actually, it first tries to use the JAAS configuration entry com.sun.security.jgss.initiate for
the client and com.sun.security.jgss.accept for the server and falls back on the entry for
"other" if these entries are missing. This gives system administrators some additional control
over its behavior.)

The Oracle provider for the Kerberos V5 GSS-API mechanism assumes that one of these
modules will be a Kerberos login module. It is possible to configure the modules listed under
"other" to read a pre-existing cache so that the user is not unexpectedly prompted for a
password in the middle of a Java GSS-API call. The new Subject that is populated by this login
is discarded by the Kerberos GSS-API mechanism just as soon as the required credentials are
retrieved from it.

Chapter 7
Single Sign-on Using Kerberos in Java

7-111

Security Risks
The convenience of single sign-on also introduces new risks. What happens if a malicious user
gains access to your unattended desktop from where he or she can start applets as you? What
happens if malicious applets sign on as you to services that they are not supposed to?

For the former, we have no solution but to caution you against leaving your workstation
unlocked! For the latter, we have many authorizations checks in place.

To illustrate some details of the permissions model consider an example where your browser
has performed a JAAS login at startup time and associated a Subject with all applets that run
in it.

The Subject is protected from rogue applets by means of the
javax.security.auth.AuthPermission class. This permission is checked whenever
code tries to obtain a reference to the Subject associated with any access control context.

Even if an applet were given access to a Subject, it needs a
javax.security.auth.PrivateCredentialPermission to actually read the sensitive
private credentials stored in it.

Other kinds of checks are to be done by Java GSS-API mechanism providers as they read
credentials and establish security contexts on behalf of the credential's owner. In order to
support the Kerberos V5 mechanism, two new permission classes have been added with the
package javax.security.auth.kerberos:

ServicePermission(String servicePrinicipal, String action)
DelegationPermission(String principals)

As new GSS-API mechanisms are standardized for Java SE, more packages will be added
that contain relevant permission classes for providers of those mechanisms.

The Kerberos GSS-API mechanism permission checks take place at the following points in the
program's execution:

Credential Acquisition
The GSSManager.createCredential() method obtains mechanism specific credential
elements from a cache such as the current Subject and stores them in a GSSCredential
container. Allowing applets to acquire GSSCredential freely, even if they cannot use them to
do much, is undesirable. Doing so leaks information about the existence of user and service
principals. Thus, before an application can acquire a GSSCredential with any Kerberos
credential elements in it, a ServicePermission check is made.

On the client side, a successful GSSCredential acquisition implies that a TGT has been
accessed from a cache. Thus the following ServicePermission is checked:

ServicePermission("krbtgt/EXAMPLE.COM@EXAMPLE.COM", "initiate");

The service principal krbtgt/EXAMPLE.COM@EXAMPLE.COM represents the ticket granting service
(TGS) in the Kerberos realm EXAMPLE.COM, and the action "initiate" suggests that a ticket to this
service is being accessed. The TGS service principal will always be used in this permission
check at the time of client side credential acquisition.

Chapter 7
Single Sign-on Using Kerberos in Java

7-112

On the server side, a successful GSSCredential acquisition implies that a secret key has
been accessed from a cache. Thus the following ServicePermission is checked:

ServicePermission("nfs/bar.example.com@EXAMPLE.COM", "accept");

Here the service principal nfs/bar.example.com represents the Kerberos service principal and
the action "accept" suggests that the secret key for this service is being requested.

Context Establishment
An applet that has permissions to contact a particular server, say the LDAP server, must not
instead contact a different server such as the FTP server. Of course, the applet might be
restricted from doing so with the help of SocketPermission. However, it is possible to use
ServicePermission to restrict it from authenticating using your identity, even if the network
connection was permitted.

When the Kerberos mechanism provider is about to initiate context establishment it checks the
ServicePermission:

ServicePermission("ftp@EXAMPLE.COM", "initiate");

This check prevents unauthorized code from obtaining and using a Kerberos service ticket for
the principal ftp@EXAMPLE.COM.

Providing limited access to specific service principals using this permission is still dangerous.
Downloaded code is allowed to communicate back with the host it originated from. A malicious
applet could send back the initial GSS-API output token that contains a KerberosTicket
encrypted in the target service principal's long-term secret key, thus exposing it to an offline
dictionary attack. For this reason it is not advisable to grant any "initiate"
ServicePermission to code downloaded from untrusted sites.

On the server side, the permission to use the secret key to accept incoming security context
establishment requests is already checked during credential acquisition. Hence, no checks are
made in the context establishment stage.

Credential Delegation
An applet that has permission to establish a security context with a server on your behalf also
has the ability to request that your credentials be delegated to that server. But not all servers
are trusted to the extent that your credentials can be delegated to them. Thus, before a
Kerberos provider obtains a delegated credential to send to the peer, it checks the following
permission:

DelegationPermission(" \"ftp@EXAMPLE.COM\" \"krbtgt/EXAMPLE.COM@EXAMPLE.COM\"
");

This permission allows the Kerberos service principal ftp@EXAMPLE.COM to receive a forwarded
TGT (represented by the ticket granting service krbtgt/EXAMPLE.COM@EXAMPLE.COM). The use
of two principal names in this permission allows for finer grained delegation such as proxy
tickets for specific services unlike a carte blanche forwarded TGT. Even though the GSS-API
does not allow for proxy tickets, another API such as JSSE might support this idea at some
point in the future.

Chapter 7
Single Sign-on Using Kerberos in Java

7-113

Conclusions
In this paper we have presented a framework to enable single sign-on in Java. This requires
sharing of credentials between JAAS which does the initial authentication to obtain credentials,
and Java GSS-API which uses those credentials to communicate securely over the wire. We
have focused on Kerberos V5 as the underlying security mechanism, but JAAS's stackable
architecture and Java GSS-API's multi-mechanism nature allow us to use any number of
different mechanisms simultaneously.

The Kerberos login module for JAAS is capable of reading native caches so that users do not
have to authenticate themselves beyond desktop login on platforms that support Kerberos.
Moreover, the Kerberos V5 mechanism for Java GSS-API allows credentials to be delegated
which enables single sign-on in multi-tier environments.

Finally, a number of permissions checks are shown to prevent the unauthorized use of the
single-sign on features provided by Kerberos.

Acknowledgements
We thank Gary Ellison, Charlie Lai, and Jeff Nisewanger for their contribution at each stage of
the Kerberos single sign-on project. JAAS 1.0 was implemented by Charlie as an optional
package for Kestrel (J2SE 1.3). Gary has been instrumental in designing the permissions
model for the Kerberos Java GSS-API mechanism. We are grateful to Bob Scheifler for his
feedback on integrating JAAS 1.0 into Merlin and to Tim Blackman for the
KeyStoreLoginModule and CallbackHandler implementations. We also thank Bruce Rich, Tony
Nadalin, Thomas Owusu and Yanni Zhang for their comments and suggestions. We thank
Mary Dageforde for the documentation and tutorials. Sriramulu Lakkaraju, Stuart Ke and Shital
Shisode contributed tests for the projects. Maxine Erlund provided management support for the
project.

References
1. Neuman, Clifford and Tso, Theodore (1994). Kerberos: An Authentication Service for

Computer Networks, IEEE Communications, volume 39 pages 33-38

2. J.Kohl and C.Neuman. The Kerberos Network Authentication Service (V5) Internet
Engineering Task Force, September 1993 Request for Comments 1510

3. V. Samar and C. Lai. Making Login Services Independent from Authentication
Technologies. In Proceedings of the SunSoft Developer's Conference, March 1996.

4. X/Open Single Sign-On Service (XSSO) - Pluggable Authentication. Preliminary
Specification P702, The Open Group, June 1997. https://www.opengroup.org

5. L. Gauteron and P. Girard. A Smart Card Login Module for Java Authentication and
Authorization Service. Gemplus Developer Conference, Montpellier, France, June 20–21,
2000.

6. J. Linn. Generic Security Service Application Program Interface,Version 2. Internet
Engineering Task Force, January 2000 Request for Comments 2743

7. J. Linn. The Kerberos Version 5 GSS-API Mechanism. Internet Engineering Task Force,
June 1996 Request for Comments 1964

8. C.Adams. The Simple Public-Key GSS-API Mechanism (SPKM). Internet Engineering Task
Force, October 1996 Request for Comments 2025

Chapter 7
Single Sign-on Using Kerberos in Java

7-114

http://www.ietf.org/rfc/rfc1510.txt
https://www.opengroup.org
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc1964.txt
http://www.ietf.org/rfc/rfc2025.txt

9. J. Kabat and M.Upadhyay. Generic Security Service API Version 2: Java Bindings. Internet
Engineering Task Force, January 1997 Request for Comments 2853

10. JSR 000072 Generic Security Services API

11. Java Platform, Standard Edition API Specification

Advanced Security Programming in Java SE Authentication,
Secure Communication and Single Sign-On

Java SE offers a rich set of APIs and features for developing secure Java applications and
services. The exercise sessions listed here can help you to use the Java SE GSS APIs to build
applications that authenticate their users, to communicate securely with other applications and
services, and help you to configure your applications in a Kerberos environment to achieve
Single Sign-On. In addition, you will also learn how to use stronger encryption algorithms in a
Kerberos environment, and how to use Java GSS mechanisms such as SPNEGO to secure
the association.

Setting up your Development Environment

Set up your development environment as follows before proceeding to the first exercise:

1. Configure a Kerberos server with accounts used by the exercises. See Appendix A: Setting
up Kerberos Accounts.

2. Set up the Key Distribution Center (KDC) and and start the Kerberos server.

3. Set up the Kerberos configuration on your client computer.

4. Set up the JDK environment:

• Set up the JAVA_HOME environment variable to point to the JDK installation directory

• Place %JAVA_HOME%\bin (Windows) or $JAVA_HOME/bin (Linux or macOS) in the PATH
environment variable.

Exercises

This session includes six lessons. Each part contains one or more coding exercises. Work
through the exercises in sequence:

• Part I : Secure Authentication using the Java Authentication and Authorization Service
(JAAS)

– Exercise 1: Using the JAAS API

– Exercise 2: Configuring JAAS for Kerberos Authentication

• Part II : Secure Communications using the Java SE Security API

– Exercise 3: Using the Java Generic Security Service (GSS) API

– Exercise 4: Using the Java SASL API

– Exercise 5: Using the Java Secure Socket Extension with Kerberos

• Part III : Deploying for Single Sign-On in a Kerberos Environment

– Exercise 6: Deploying for Single Sign-On

• Part IV : Secure Communications Using Stronger Encryption Algorithms

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-115

http://www.ietf.org/rfc/rfc2853.txt
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

– Exercise 7: Configuring to Use Stronger Encryption Algorithms in a Kerberos
Environment, to Secure the Communication

• Part V : Secure Authentication Using SPNEGO Java GSS Mechanism

– Exercise 8: Using the Java Generic Security Services (GSS) API with SPNEGO

• Part VI: HTTP/SPNEGO Authentication

– Exercise 9: Using HTTP/SPNEGO Authentication

Part I : Secure Authentication using the Java Authentication and
Authorization Service (JAAS)

Exercise 1: Using the JAAS API

Goal of This Exercise

The goal of this exercise is to learn how to use the Java Authentication and Authorization
(JAAS) API to perform authentication.

Background for This Exercise

JAAS provides a standard pluggable authentication framework (PAM) for the Java platform.
 An application uses the JAAS API to perform authentication - the process of verifying the
identity of the user who is using the application and gathering his identity information into a
container called a subject. The application can then use the identity information in the subject
along with the JAAS API to make authorization decisions, to decide whether the authenticated
user is allowed to access protected resources or perform restricted actions. This exercise
demonstrates JAAS Authentication. It does not demonstrate JAAS Authorization.

Resources for This Exercise

• Java Authentication and Authorization Service (JAAS) Reference Guide

• JAAS Tutorials

• JAAS JavaDoc API documentation

– javax.security.auth
– javax.security.auth.callback
– javax.security.auth.kerberos
– javax.security.auth.login
– javax.security.auth.spi
– javax.security.auth.x500

Steps to Follow

• Read the Jass.java sample code. The code performs the following tasks:

1. Define a callback handler or use a predefined one.

2. Create a LoginContext with a name that identifies which JAAS configuration entry to
use.

3. Perform the authentication.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-116

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/x500/package-summary.html

4. Define the task that the authenticated user is to perform.

5. Perform the action as the authenticated user.

6. Log out.

Subject.doAs will run the code defined in MyAction as the authenticated user [lines
14-15]. This serves two purposes. First, code in MyAction that requires identity information
for authentication to a service could get it from the subject. This exercise demonstrates this
use. Second, if MyAction accesses any protected resources/operations, the identity
information in the current subject would be used to make the corresponding access control
decision. This second aspect is not covered in this exercise.

• Make sure that the %JAVA_HOME%/bin is in the PATH environment variable.

• Compile the modified sample code. You will run this code in subsequent exercises after
doing some set up. That ends this exercise.

Summary

This exercise introduced the main classes of the JAAS APIs: LoginContext and Subject.
You learned how to use LoginContext to authenticate a user and collect its identity
information in a Subject. You then learned how to use the Subject to perform an action as the
authenticated user.

Next Steps

Proceed to Exercise 2: Configuring JAAS for Kerberos Authentication to learn how to configure
the sample application to use Kerberos for authentication.

Exercise 2: Configuring JAAS for Kerberos Authentication

Goal of This Exercise

The goal of this exercise is to learn how to configure a JAAS application to use Kerberos for
authentication.

Kerberos Background for This Exercise

Kerberos is an Internet standard protocol for trusted-third party authentication defined in RFC
4120. It is available on most modern computing platforms today, including Windows and Linux.

The Kerberos architecture is centered around a trusted authentication service called the key
distribution center, or KDC. Users and services in a Kerberos environment are referred to as
principals; each principal shares a secret (such as a password) with the KDC. A principal
 authenticates to Kerberos by proving to the KDC that it knows the shared secret. If the
authentication is successful, the KDC issues a ticket-granting-ticket (TGT) to the principal.
When the principal subsequently wants to authenticate to a service on the network, such as a
directory service or a file service, (thereby, acting as a "client" of the service), it gives the TGT
to the KDC to obtain a service ticket to communicate with the service. Not only does the
service ticket indicate the identities of the client and service principals, it also contains a
session key that can be used by the client and service to subsequently establish secure
communication. To authenticate to the service, the client sends the service ticket to the service.
When the service receives the ticket, it decodes it using the secret it shares with the KDC.

In this architecture, a principal only authenticates directly (once) to the KDC. It authenticates
indirectly to all other services via the use of service tickets. Service tickets are how the KDC
vouches for the identity of a principal. The ability of a principal to access multiple secure
services by performing explicit authentication only once is called single sign-on.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-117

http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt

JAAS Background for This exercise

In JAAS, for a client principal, "logging into Kerberos" means acquiring the TGT and placing it
in the Subject, so that it can be used for authentication with services that the client will access.
For a service principal, "logging into Kerberos" means obtaining the secret keys that the
service needs to decode incoming client authentication requests.

Resources for This Exercise

• Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide

• The Kerberos Network Authentication Service (v5)

• Appendix B: JAAS Login Configuration File

• Login module package JavaDoc API documentation:com.sun.security.auth.module
• Introduction to JAAS and Java GSS-API Tutorials

Steps to Follow

1. Examine the jaas-krb5.conf configuration file.

This file contains two entries, one named client and one named server. The client entry
indicates that the LoginContext must use the
com.sun.security.auth.module.Krb5LoginModule. The server entry indicates
that the LoginContext must use the same login module, and use keys from the
sample.keytab file for the principal host/machineName.

2. Determine the hostname of your machine by executing the hostname command.

3. Edit this file and change the entry for server principal to use the name of your machine. For
example, if your machine name is j1hol-001, this line in the configuration file should look
like this:

principal="host/j1hol-001"

4. Perform client authentication by typing the following command:

% java -Djava.security.auth.login.config=jaas-krb5.conf Jaas client

You will be prompted for a password. You should see the following output. Replace
password with a password that is secure.

Kerberos password for test: password
Authenticated principal: [test@J1LABS.EXAMPLE.COM]
Performing secure action...

5. Perform server authentication by typing the following command:

% java -Djava.security.auth.login.config=jaas-krb5.conf Jaas server

You should see the following output:

Authenticated principal: [host/j1hol-001@J1LABS.EXAMPLE.COM] Performing
secure action...

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-118

http://www.ietf.org/rfc/rfc4120.txt
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/package-summary.html

Summary

In this exercise, you learned how to configure a JAAS application to use a Kerberos login
module, both as a client principal who enters his/her username/password interactively, and as
a service principal who gets its keys from a keytab file.

Next Steps

Proceed to Part II : Secure Communications using the Java SE Security API to learn how to
establish secure communication channels using Java security APIs.

Part II : Secure Communications using the Java SE Security API

This part shows you how to build applications that perform secure communications. The Java
SE platform provides three standard APIs that allow applications to perform secure
communications: The Java Generic Security Service (GSS), the Java SASL API, and the Java
Secure Socket Extension (JSSE). When building an application, which of these APIs should
you use? The answer depends on many factors, including requirements of the protocol or
service, deployment infrastructure, and integration with other security services. For example, if
you are building an LDAP client library, you would need to use the Java SASL API because
use of SASL is part of LDAP's protocol definition. As an other example, if the service supports
SSL, then the client application attempting to access the service would need to use JSSE.

Exercise 3: Using the Java Generic Security Service (GSS) API

Goal of This Exercise

The goal of this exercise is to learn how to use the Java GSS API to perform secure
authentication and communication.

Background for This Exercise

The Generic Security Service API provides a uniform C-language interface to access various
security services, such as authentication, message integrity, and message confidentiality. The
Java GSS API provides the corresponding interface for Java applications. It allows
applications to perform authentication and establish secure communication with the peer. One
of the most common security service accessed via the GSS-API and Java GSS-API is
Kerberos.

Resources for This Exercise

• Introduction to JAAS and Java GSS-API Tutorials

• Generic Security Service API Version 2: Java Bindings (RFC 2853)

• Java GSS JavaDoc API documentation: org.ietf.jgss.

Overview of This Exercise

This exercise is a client-server application that demonstrates how to communicate securely
using the Java GSS API. The client and server parts first authenticate to Kerberos, as shown in
Exercise 1: Using the JAAS API. This stores the credentials in the subject. The application
then executes an action that performs Java GSS operations (with Kerberos as the underlying
GSS mechanism) inside of a Subject.doAs using the subject. The Java GSS Kerberos
mechanism, because it is executing inside the doAs, obtains the Kerberos credentials from the
subject, and uses them to authenticate with the peer and to exchange messages securely.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-119

http://www.ietf.org/rfc/rfc2853.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/org/ietf/jgss/package-summary.html

Steps to Follow

1. Read the GssServer.java code.

This code fragment defines the action to execute after the service principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
code first creates an instance of GSSManager, which it uses to obtain its own credentials
and to create an instance of GSSContext. It uses this context to perform authentication.
Upon completing authentication, it accepts encrypted input from the client and uses the
established security context to decrypt the data. It then uses the security context to encrypt
a reply containing the original input and the date, and then sends it back to the client.

2. Compile the sample code.

3. Read the GssClient.java code.

This code fragment defines the action to execute after the client principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
code first creates an instance of GSSManager, which it uses to obtain a principal name for
the service that it is going to communicate with. It then creates an instance of
GSSContext to perform authentication with the service. Upon completing authentication, it
uses the established security context to encrypt a message, and sends it to the server. It
then reads an encrypted message from the server and decodes it using the established
security context.

4. Compile the sample code.

5. Launch a new window and start the server:

% java -Djava.security.auth.login.config=jaas-krb5.conf GssServer

6. Run the client application. GssClient takes two parameters: the service name and the
name of the server that the service is running on. For example, if the service is host
running on the machine j1hol-001, you would enter the following:

% java -Djava.security.auth.login.config=jaas-krb5.conf GssClient host
j1hol-001

When prompted for the password, enter change_it.

7. Observe the following output in the respective client and server applications' windows.

Output for running GssServer example:

Authenticated principal: [host/j1hol-001@J1LABS.EXAMPLE.COM]
Waiting for incoming connections..
Got connection from client /192.0.2.102
Context Established!
Client principal is test@J1LABS.EXAMPLE.COM
Server principal is host/j1hol-001@J1LABS.EXAMPLE.COM
Mutual authentication took place!
Received data "Hello There!" of length 12
Confidentiality applied: true
Sending: Hello There! Thu May 06 12:11:15 PDT 2005

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-120

Output for running GssClient example:

Kerberos password for test: change_it
Authenticated principal: [test@J1LABS.EXAMPLE.COM]
Connected to address j1hol-001/192.0.2.102
Context Established!
Client principal is test@J1LABS.EXAMPLE.COM
Server principal is host@j1hol-001
Mutual authentication took place!
Sending message: Hello There!
Will read token of size 93
Received message: Hello There! Thu May 06 12:11:15 PDT 2005

Summary

In this exercise, you learned how to write a client-server application that uses the Java GSS
API to authenticate and communicate securely with each other.

Next Steps

1. Proceed to Exercise 4: Using the Java SASL API to learn how to write a client/server
application that uses the Java SASL API to authenticate and communicate securely with
each other.

2. Proceed to Exercise 5: Using the Java Secure Socket Extension with Kerberos to learn
how to write a client/server application that uses the JSSE to authenticate and
communicate securely with each other.

3. Proceed to Exercise 6: Deploying for Single Sign-On to learn how to configure the sample
programs that you have just used to achieve single sign-on in a Kerberos environment.

Exercise 4: Using the Java SASL API

Goal of This Exercise

The goal of this exercise is to learn how to use the Java SASL API to perform secure
authentication and communication.

Background for This Exercise

Simple Authentication and Security Layer (SASL) specifies a challenge-response protocol in
which data is exchanged between the client and the server for the purposes of authentication
and (optional) establishment of a security layer on which to carry on subsequent
communications. SASL allows different mechanisms to be used; each such mechanism is
identified by a profile that defines the data to be exchanged and a name. SASL is used with
connection-based protocols such as LDAPv3 and IMAPv4. SASL is described in RFC 4422.

The Java SASL API defines an API for applications to use SASL in a mechanism-independent
way. For example, if you are writing a library for a networking protocol that uses SASL, you can
use the Java SASL API to generate the data to be exchanged with the peer. When the library
is deployed, you can dynamically configure the mechanisms to use with the library.

In addition to authentication, you can use SASL to negotiate a security layer to be used after
authentication. But unlike the GSS-API, the properties of the security layer (such as whether
you want integrity or confidentiality) is decided at negotiation time. (the GSS-API allows
confidentiality to be turned on or off per message).

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-121

http://www.ietf.org/rfc/rfc4422.txt

Resources for This Exercise

• Java SASL API Programming and Deployment Guide

• javax.security.sasl
• Simple Authentication and Security Layer (SASL) (RFC 4422)

Overview of This Exercise

This exercise is a client-server application that demonstrates how to communicate securely
using the Java SASL API. The client and server parts first authenticate to Kerberos using
Exercise 1: Using the JAAS API. This stores the credentials in the subject. The application
then executes an action that performs Java SASL API operations (with Kerberos as the
underlying SASL mechanism) inside of a Subject.doAs using the subject. The SASL/
Kerberos mechanism, because it is executing inside the doAs, obtains the Kerberos
credentials from the subject, and uses them to authenticate with the peer and to exchange
messages securely.

This example uses a simple protocol implemented by the AppConnection class. This protocol
exchanges authentication commands and data commands. Each command consists of a type
(e.g., AppConnection.AUTH_CMD), the length of the data to follow, and the data itself. The data is
a SASL buffer if it is for authentication or encrypted/integrity-protected application data; it is
plain application data otherwise.

Steps to Follow

1. Read the SaslTestServer.java sample code.

This code fragment defines the action to execute after the service principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
server specifies the quality of protections (QOP) that it will support and then creates an
instance of SaslServer to perform the authentication. The challenge-response protocol
of SASL is performed in the while loop, with the server sending challenges to the client and
processing the responses from the client. After authentication, the identity of the
authenticated client can be obtained via a call to the getAuthorizedID() method. If a
security layer was negotiated, the server can exchange data securely with the client.

2. Compile the sample code.

3. Read the SaslTestClient.java sample code.

This code fragment defines the action to execute after the client principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
program first specifies the quality of protections that it wants (in this case, confidentiality)
and then creates an instance of SaslClient to use for authentication. It then checks
whether the mechanism has an initial response and if so, gets the response by invoking
the evaluateChallenge() method with an empty byte array. It then sends the response to
the server to begin the authentication. The challenge-response protocol of SASL is
performed in the while loop, with the client evaluating the challenges that it gets from the
server and sending the server the corresponding responses to the challenges. After
authentication, the client can proceed to communicate with the server using the negotiated
security layer.

4. Compile the sample code.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-122

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/package-summary.html
http://www.ietf.org/rfc/rfc4422.txt

5. Launch a new window and start the server. SaslTestServer takes two parameters: the
service name and the name of the server that the service is running on. For example, if the
service is host running on the machine j1hol-001, you would enter the following:

% java -Djava.security.auth.login.config=jaas-krb5.conf SaslTestServer
host j1hol-001

6. Run the client application. SaslTestClient takes two parameters: the service name and
the name of the server that the service is running on. For example, if the service is host
running on the machine j1hol-001, you would enter the following:

% java -Djava.security.auth.login.config=jaas-krb5.conf SaslTestClient
host j1hol-001

Provide a secure password.

7. Observe the following output in the respective client and server applications' windows.

Output for running the SaslTestServer example:

Authenticated principal: [host/j1hol-001@J1LABS.EXAMPLE.COM]
Waiting for incoming connections...
Got connection from client /192.0.2.102
Client authenticated; authorized client is: test@J1LABS.EXAMPLE.COM
Negotiated QOP: auth-conf
Received: Hello There!
Sending: Hello There! Fri May 07 15:32:37 PDT 2005
Received data "Hello There!" of length 12

Output for running the SaslTestClient example (password will be replaced by the
password that you provided):

Kerberos password for test: password
Authenticated principal: [test@J1LABS.EXAMPLE.COM]
Connected to address j1hol-001/192.0.2.102
Client authenticated.
Negotiated QOP: auth-conf
Sending: Hello There!
Received: Hello There! Fri May 07 15:32:37 PDT 2005

Summary

In this exercise, you learned how to write a client-server application that uses the Java SASL
API to authenticate and communicate securely with each other.

Next Steps

1. Proceed to Exercise 5: Using the Java Secure Socket Extension with Kerberos to learn
how to write a client/server application that uses the JSSE to authenticate and
communicate securely with each other.

2. Proceed to Exercise 6: Deploying for Single Sign-On to learn how to configure the sample
programs that you have just used to achieve single sign-on in a Kerberos environment.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-123

Exercise 5: Using the Java Secure Socket Extension with Kerberos

Goal of This Exercise

The goal of this exercise is to learn how to use the JSSE API to perform secure authentication
and communication using Kerberos cipher suites.

Background for This Exercise

Secure Socket Layer (SSL) and Transport Layer Security (TLS) are the most widely used
protocols for implementing cryptography on the Internet. TLS is the Internet standard evolved
from SSL. SSL/TLS provides application-level protocols (such as HTTP and LDAP) with secure
authentication and communication. For example, HTTPS is the resulting protocol of using
HTTP over SSL/TLS. SSL/TLS is used not only for standard protocols such as HTTP, it is also
widely used when building custom applications using custom protocols that need to
communicate securely.

SSL/TLS traditionally used certificate-based authentication and is commonly used for server-
authentication. For example, when a Web client such as a browser accesses a secure Web
site (server) on behalf of a user, the server sends its certificate to the browser so that the
browser can verify the identity of the server. This ensures that the user does not divulge
confidential information (such as credit card information) to a bogus server. Recently, a new
standard allows the use of Kerberos with TLS. This means instead of using certificate-based
authentication, an application can use Kerberos credentials and take advantage of the
Kerberos infrastructure in the deployment environment. Using Kerberos cipher suites also
provides automatic support for mutual authentication in which the client is also authenticated in
addition to the server.

The decision of whether to use Java GSS, Java SASL, or JSSE for a particular application
often depends upon several factors, including (the protocols being used by) the services with
which the application interacts, the deployment environment (PKI or Kerberos-based), and the
application's security requirements. JSSE provides a secure end-to-end channel that takes
care of the I/O and transport, while Java GSS and Java SASL provide encryption and integrity-
protection on the data, but the application is responsible for transporting the secured data to its
peer. Some details about factors for deciding when to use JSSE versus Java GSS are
presented in the document, When to Use Java GSS-API Versus JSSE.

Resources for This Exercise

• Java Secure Socket Extension (JSSE) Reference Guide

• The JSSE JavaDoc API: javax.net and javax.net.ssl
• The SSL Protocol version 3.0

• The TLS Protocol Version 1.0 (RFC 2246)

• Addition of Kerberos Cipher Suites to Transport Layer Security TLS (RFC 2712)

• When to Use Java GSS-API Versus JSSE

Overview of This Exercise

This exercise is a client-server application that demonstrates how to communicate securely
using the JSSE and Kerberos cipher suites. The client and server parts first authenticate to
Kerberos using Exercise 1: Using the JAAS API. This stores the credentials in the subject. The
application then executes an action that performs JSSE operations (using a Kerberos cipher
suite) inside of a Subject.doAs using the subject. The Kerberos cipher suite implementation,

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-124

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/package-summary.html
https://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2712.txt

because it is executing inside the doAs, obtains the Kerberos credentials from the subject, and
uses them to authenticate with the peer and to exchange messages securely. This example
sends newline-terminated messages, encrypted using the negotiated cipher suite and integrity-
protected, back and forth between client and server.

According to the standard (RFC 2712) all Kerberos-enabled TLS applications use the same
service name (host). That is why in this exercise, you do not need to explicitly supply the
Kerberos service name.

Steps to Follow

1. Read the JsseServer.java sample code.

This code fragment defines the action to execute after the service principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
server first creates an SSLServerSocket. This is analogous to an application creating a
plain ServerSocket except an SSLServerSocket will provide automatic authentication,
encryption and decryption, as needed. The server then sets the cipher suites that it wants
to use. The server then runs in a loop, accepting connections from SSL clients, and reads
and writes from the SSL socket. The server can find out the identities of the owners of
socket by invoking the getLocalPrincipal() and getPeerPrincipal() methods.

2. Compile the sample code.

3. Read the JsseClient.java sample code.

This code fragment defines the action to execute after the client principal has
authenticated to the KDC. It replaces the MyAction in Exercise 1: Using the JAAS API. The
client first creates an SSLSocket. The client then sets the cipher suites that it wants to
use. The client then exchanges messages with the server using the SSLSocket by
reading and writing to the socket's input/output streams. The client can find out the
identities of the owners of socket by invoking the getLocalPrincipal() and
getPeerPrincipal() methods.

4. Compile the sample code.

5. Launch a new window and start the server. JsseServer takes one parameter: the name of
the server that the JSSE service is running on. For example, if it is running on the machine
j1hol-001, you would enter the following:

% xterm &
% java -Djava.security.auth.login.config=jaas-krb5.conf JsseServer
j1hol-001

6. Run the client application. JsseClient takes one parameter: the name of the server that
the JSSE service is running on. For example, if the service is running on the machine
j1hol-001, you would enter the following.

% java -Djava.security.auth.login.config=jaas-krb5.conf JsseClient
j1hol-001

Provide a secure password.

7. Observe the following output in the respective client and server applications' windows.

Output for running the JsseServer example:

Authenticated principal: [host/j1hol-001@J1LABS.EXAMPLE.COM]
Waiting for incoming connections...

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-125

Got connection from client /192.0.2.102
Received: Hello There!
Sending: Hello There! Fri May 07 15:32:37 PDT 2005
Cipher suite in use: TLS_KRB5_WITH_3DES_EDE_CBC_SHA
I am: host/j1hol-001@J1LABS.EXAMPLE.COM
Client is: test@J1LABS.EXAMPLE.COM

Output for running the JsseClient example (password will be replaced by the password
that you provided):

Kerberos password for test: password
Authenticated principal: [test@J1LABS.EXAMPLE.COM]
Sending: Hello There!
Received: Hello There! Fri May 07 15:32:37 PDT 2005
Cipher suite in use: TLS_KRB5_WITH_3DES_EDE_CBC_SHA
I am: test@J1LABS.EXAMPLE.COM
Server is: host/j1hol-001@J1LABS.EXAMPLE.COM

Summary

In this exercise, you learned how to write a client-server application that uses JSSE to
authenticate and communicate securely with each other, using Kerberos as the underlying
authentication system.

Next Steps

Proceed to Exercise 6: Deploying for Single Sign-On to learn how to configure the sample
programs in Exercises 3, 4, and 5 to achieve single sign-on in a Kerberos environment.

Part III : Deploying for Single Sign-On in a Kerberos Environment

Exercise 6: Deploying for Single Sign-On

Goal of This Exercise

The goal of this exercise is to learn how to configure a JAAS application that uses Kerberos for
authentication to achieve single sign-on. Single sign-on means that the user needs only
authenticate once to a system or a collection of services. After the initial authentication, the
user can access other services in the system using the same identity as he used for the initial
authentication.

Single sign-on can be used to describe different types of authentication. There are HTTP-
based network single sign-on protocols. There is Kerberos-based single sign-on for network
services. In this particular exercise, we show how to achieve single sign-on in Kerberos-based
systems by showing how to import already-acquired Kerberos credentials from the underlying
native operating system.

Background and Resources for This Exercise

See Single Sign-on Using Kerberos in Java. In addition, see the information provided in
Exercise 2: Configuring JAAS for Kerberos Authentication and Exercise 4: Using the Java
SASL API for background information about Kerberos and Java GSS.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-126

Steps to Follow

1. Edit the jaas-krb5.conf configuration file.

This file contains two entries: one named client and one named server. Add the line
useTicketCache=true to the client entry.

2. Perform Kerberos login to the native operating system. To login to Kerberos, use kinit
command as follows:

% kinit test

Provide a secure password.

3. Run the client and server programs in Exercises 1 through 5 and you will note that the
client applications no longer ask you to enter a password.

Part IV : Secure Communications Using Stronger Encryption Algorithms

Exercise 7: Configuring to Use Stronger Encryption Algorithms in a Kerberos
Environment, to Secure the Communication

Goal of This Exercise

The goal of this exercise is to learn how to use various Kerberos encryption algorithms to
secure the communication. Java GSS/Kerberos provides a wide range of encryption
algorithms, including AES256, AES128, 3DES, RC4-HMAC, and DES.

Note:

DES-based encryption types are disabled by default.

The following is a list of all the encryption types supported by the Java GSS/Kerberos provider
in Java SE:

• AES256-CTS

• AES128-CTS

• AES256-SHA2

• AES128-SHA2

• RC4-HMAC

• DES3-CBC-SHA1

• DES-CBC-MD5

• DES-CBC-CRC

Steps to Follow

1. Configure the Key Distribution Center (KDC) and update the Kerberos database.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-127

First, you need to update to use the KDC that supports the required Kerberos encryption
types, such as the latest version of Kerberos from the MIT distribution. If you are using
Active Directory on a Windows platform, the latest version also supports RC4-HMAC and
AES encryption types.

You need to update the Kerberos database to generate the new keys with stronger
encryption algorithms.

2. Edit the Kerberos configuration file (krb5.conf).

You will need to edit the Kerberos configuration file in order to select the desired encryption
types used. The following lists the required parameters that you will need to insert under
the libdefaults section of the Kerberos configuration file. For the purpose of this
exercise, all the required entries have been added to a sample Kerberos configuration file
included with the exercise, and the entries have been commented out. To enable the
desired encryption type, you only need to uncomment the required entries.

• To only enable AES256-CTS encryption type, add the following:

[libdefaults]
default_tkt_enctypes = aes256-cts
default_tgs_enctypes = aes256-cts
permitted_enctypes = aes256-cts

• To only enable AES128-CTS encryption type, add the following:

[libdefaults]
default_tkt_enctypes = aes128-cts
default_tgs_enctypes = aes128-cts
permitted_enctypes = aes128-cts

• To only enable RC4-HMAC encryption type, add the following:

[libdefaults]
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac

• To only enable DES3-CBC-SHA1 encryption type, add the following:

[libdefaults]
default_tkt_enctypes = des3-cbc-sha1
default_tgs_enctypes = des3-cbc-sha1
permitted_enctypes = des3-cbc-sha1

Note:

Destroy any pre-existing Kerberos TGT in the ticket cache from the previous
exercise as follows:

% kdestroy

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-128

3. Launch a new window and start the server using the updated krb5.conf as follows:

% java -Djava.security.auth.login.config=jaas-krb5.conf \
-Djava.security.krb5.conf=krb5.conf GSSServer

4. Run the client application using the updated krb5.conf. The GSSClient class takes two
parameters: the service name and the name of the server that the service is running on.
For example, if the service is host running on the machine j1hol-001, use the following
(provide a secure password when prompted):

% java -Djava.security.auth.login.config=jaas-krb5.conf \
-Djava.security.krb5.conf=krb5.conf \
GSSClient host j1hol-001

Summary

In this exercise, you learned how to write a client-server application that uses Java GSS API to
authenticate and communicate securely using stronger Kerberos encryption algorithms. You
can enable Kerberos debugging (-Dsun.security.krb5.debug=true), to obtain information
about the Kerberos encryption type used.

Part V : Secure Authentication Using SPNEGO Java GSS Mechanism

Exercise 8: Using the Java Generic Security Services (GSS) API with SPNEGO

Java GSS is a framework that can support multiple security mechanisms; a way to negotiate a
security mechanism underneath GSS-API is needed. This is available via SPNEGO.

SPNEGO is standardized at IETF in RFC 4178. It is a pseudo-security mechanism used to
negotiate an underlying security mechanism. It provides the flexibility for client and server to
securely negotiate a common GSS security mechanism.

Microsoft makes heavy use of SPNEGO. SPNEGO can be used to inter-operate with Microsoft
Server over HTTP, to support HTTP-based cross-platform authentication via the Negotiate
Protocol.

Currently, when using Java GSS with Kerberos, we specify the Kerberos OID as follows:

Oid krb5Oid = new Oid("1.2.840.113554.1.2.2");

In order to use SPNEGO, you only need to specify the SPNEGO OID as follows:

Oid spnegoOid = new Oid("1.3.6.1.5.5.2");

Then you can use the SPNEGO OID when creating a GSSCredential, GSSContext, etc.

Goal of This Exercise

Currently the only security mechanism available with Java GSS is Kerberos. The goal of this
exercise is to learn how to use other Java GSS mechanisms, such as the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO), to secure the association.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-129

http://www.ietf.org/rfc/rfc4178.txt

Steps to Follow

1. Read the GssSpNegoClient.java code.

2. Compile the sample code:

% javac GssSpNegoClient.java

3. Read the GssSpNegoServer.java code.

4. Compile the sample code:

% javac GssSpNegoServer.java

5. Launch a new window and start the server:

% java -Djava.security.auth.login.config=jaas-krb5.conf GssSpNegoServer

6. Run the client application. GssSpNegoClient takes two parameters: the service name and
the name of the server that the service is running on. For example, if the service is host
running on the machine j1hol-001, use the following (provide a secure password when
prompted):

% java -Djava.security.auth.login.config=jaas-krb5.conf \
GssSpNegoClient host j1hol-001

Sample output for running GssSpNegoServer:

Authenticated principal: [host/j1hol-001@J1LABS.EXAMPLE.COM]
Waiting for incoming connections...
Got connection from client /129.145.128.102
SPNEGO Negotiated Mechanism = 1.2.840.113554.1.2.2 Kerberos V5
Context Established!
Client principal is test@J1LABS.EXAMPLE.COM
Server principal is
host/j1hol-001@J1LABS.EXAMPLE.COM
Mutual authentication took place!
Received data "Hello There!" of length 12
Confidentiality applied: true
Sending: Hello There! Thu May 06 12:11:15 PDT 2005

Sample output for running GssSpNegoClient (password is replaced with the password you
provided before):

Kerberos password for test: password
Authenticated principal: [test@J1LABS.EXAMPLE.COM]
Connected to address j1hol-001/129.145.128.102
SPNEGO Negotiated Mechanism = 1.2.840.113554.1.2.2 Kerberos V5
Context Established!
Client principal is test@J1LABS.EXAMPLE.COM
Server principal is host@j1hol-001
Mutual authentication took place!
Sending message: Hello There!

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-130

Will read token of size 93
Received message: Hello There! Thu May 06 12:11:15 PDT 2005

Summary

In this exercise, you learned how to write a client-server application that uses the Java GSS
API with SPNEGO to negotiate an underlying security mechanism, such as Kerberos, and
communicate securely using Kerberos as the underlying authentication system.

Note:

Microsoft has implemented certain variations of the SPNEGO protocol. Therefore, to
interoperate with Microsoft, a separate mode has been added through the system
property sun.security.spnego.msinterop. This property is enabled to true by
default. To disable it, you need to explicitly set this property to false. To enable
SPNEGO debugging, you can set the system property
sun.security.spnego.debug=true.

Part VI: HTTP/SPNEGO Authentication

Exercise 9: Using HTTP/SPNEGO Authentication

What is HTTP SPNEGO

HTTP SPNEGO supports the Negotiate authentication scheme in an HTTP communication.
SPNEGO supports types of authentication:

Web Authentication

The Web Server responds with

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Negotiate

the client will need to send a header like

Authorization: Negotiate YY.....

to authenticate itself to the server

Proxy Authentication

The Web Server responses with

HTTP/1.1 407 Proxy Authentication Required
Proxy-Authenticate: Negotiate

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-131

the client will need to send a header like

Proxy-Authorization: Negotiate YY.....

to authenticate itself to the proxy server.

This feature supports both types of authentication.

How to use HTTP/SPNEGO Authentication

There is no new public API function involved in the new feature, but several configurations are
needed to perform a success communication:

Kerberos 5 Configuration

Since the SPNEGO mechanism will call JGSS, which in turns calls the Kerberos V5 login
module to do real works. Kerberos 5 configurations are needed. This includes the following:

• Some way to provide Kerberos configurations. This can be achieved with the Java system
property java.security.krb5.conf. For example:

java -Djava.security.krb5.conf=krb5.conf \
 -Djavax.security.auth.useSubjectCredsOnly=false \
 ClassName

A JAAS config file denoting what login module to use. HTTP SPNEGO codes will look for
the standard entry named com.sun.security.jgss.krb5.initiate.

For example, you can provide a file spnegoLogin.conf:

com.sun.security.jgss.krb5.initiate {
 com.sun.security.auth.module.Krb5LoginModule
 required useTicketCache=true;
};

and run java with:

java -Djava.security.krb5.conf=krb5.conf \
 -Djava.security.auth.login.config=spnegoLogin.conf \
 -Djavax.security.auth.useSubjectCredsOnly=false \
 ClassName

User Name and Password Retrieval

Just like any other HTTP authentication scheme, the client can provide a customized
java.net.Authenticator to feed user name and password to the HTTP SPNEGO module
if they are needed (i.e. there is no credential cache available). The only authentication
information needed to be checked in your Authenticator is the scheme which can be
retrieved with getRequestingScheme(). The value should be "Negotiate".

This means your Authenticator implementation will look like:

class MyAuthenticator extends Authenticator {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-132

 public PasswordAuthentication getPasswordAuthentication () {
 if (getRequestingScheme().equalsIgnoreCase("negotiate")) {
 String krb5user;
 char[] krb5pass;
 // get krb5user and krb5pass in your own way

 return (new PasswordAuthentication (krb5user,
 krb5pass));
 } else {

 }
 }
 }

Note:

According to the specification of java.net.Authenticator, it's designed to get
the user name and password at the same time, so do not specify principal=xxx in
the JAAS config file.

Scheme Preference

The client can still provide system property http.auth.preference to denote that a certain
scheme should always be used as long as the server request for it. You can use "SPNEGO" or
"Kerberos" for this system property. "SPNEGO" means you prefer to response the Negotiate
scheme using the GSS/SPNEGO mechanism; "Kerberos" means you prefer to response the
Negotiate scheme using the GSS/Kerberos mechanism. Normally, when authenticating against
a Microsoft product, you can use "SPNEGO". The value "Kerberos" also works for Microsoft
servers. It's only needed when you encounter a server which knows Negotiate but doesn't
know about SPNEGO.

If http.auth.preference is not set, the internal order chosen is:

• GSS/SPNEGO -> Digest -> NTLM -> Basic

Notice that Kerberos does not appear in this list, since whenever Negotiate is supported, GSS/
SPNEGO is always chosen.

Fallback

If the server has provided more than one authentication scheme (including Negotiate),
according to the processing order mentioned in the last section, Java will try to challenge the
Negotiate scheme. However, if the protocol cannot be established successfully (for example,
the Kerberos configuration is not correct, or the server's hostname is not recorded in the KDC
principal DB, or the user name and password provided by Authenticator is wrong), then the
second strongest scheme will be automatically used.

Note:

If http.auth.preference is set to SPNEGO or Kerberos, then SPNEGO assumes
you only want to try the Negotiate scheme even if it fails. SPNEGO will not fallback to
any other scheme and your program will throw an IOException saying it received a
401 or 407 error from the HTTP response.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-133

HTTP/SPNEGO Authentication Example

Assume that you have an IIS Server running on a Windows Server within an Active Directory. A
web page on this server is configured to be protected by Integrated Windows Authentication.
This means the server will prompt for both Negotiate and NTLM authentication.

You need to prepare these files to get the protected file:

RunHttpSpnego.java

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.Authenticator;
import java.net.PasswordAuthentication;
import java.net.URL;

public class RunHttpSpnego {

 static final String kuser = "username"; // your account name
 static final String kpass = "password"; // your password for the account

 static class MyAuthenticator extends Authenticator {
 public PasswordAuthentication getPasswordAuthentication() {
 // I haven't checked getRequestingScheme() here, since for NTLM
 // and Negotiate, the usrname and password are all the same.
 System.err.println("Feeding username and password for " +
getRequestingScheme());
 return (new PasswordAuthentication(kuser, kpass.toCharArray()));
 }
 }

 public static void main(String[] args) throws Exception {
 Authenticator.setDefault(new MyAuthenticator());
 URL url = new URL(args[0]);
 InputStream ins = url.openConnection().getInputStream();
 BufferedReader reader = new BufferedReader(new
InputStreamReader(ins));
 String str;
 while((str = reader.readLine()) != null)
 System.out.println(str);
 }
}

krb.conf

[libdefaults]
 default_realm = AD.LOCAL
[realms]
 AD.LOCAL = {
 kdc = kdc.ad.local
 }

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-134

login.conf

com.sun.security.jgss.krb5.initiate {
 com.sun.security.auth.module.Krb5LoginModule required doNotPrompt=false
useTicketCache=true;
};

Compiling and Running the Example

1. Compile RunHttpSpnego.java.

2. Run RunHttpSpnego.java:

java -Djava.security.krb5.conf=krb5.conf \
 -Djava.security.auth.login.config=login.conf \
 -Djavax.security.auth.useSubjectCredsOnly=false \
 RunHttpSpnego \
 http://www.ad.local/hello/hello.html

You will see the following:

Feeding username and password for Negotiate
<h1>Hello, You got me!</h1>

In fact, if you are running on a Windows computer as a domain user, or if you are running
on a Linux computer that has already issued the kinit command and got the credential
cache, then the class MyAuthenticator will be completely ignored, and the output will be
simply:

<h1>Hello, You got me!</h1>

which shows the user name and password are not consulted. This is the so-called Single
Sign-On.

Also, you can just run

java RunHttpSpnego http://www.ad.local/hello/hello.html

to see how the fallback is done, in which case you will see

Feeding username and password for ntlm
<h1>Hello, You got me!</h1>

Source Code for Advanced Security Programming in Java SE
Authentication, Secure Communication and Single Sign-On

Jaas.java

import javax.security.auth.Subject;
import javax.security.auth.login.*;

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-135

import javax.security.auth.callback.CallbackHandler;
import java.security.*;
import com.sun.security.auth.callback.TextCallbackHandler;
import java.io.File;

public class Jaas {
 private static String name;
 private static final boolean verbose = false;

 public static void main(String[] args) throws Exception {
 if (args.length > 0) {
 name = args[0];
 } else {
 name = "client";
 }

 // Create action to perform
 PrivilegedExceptionAction action = new MyAction();

 loginAndAction(name, action);
 }

 static void loginAndAction(String name, PrivilegedExceptionAction action)
 throws LoginException, PrivilegedActionException {

 // Create a callback handler
 CallbackHandler callbackHandler = new TextCallbackHandler();

 LoginContext context = null;

 try {
 // Create a LoginContext with a callback handler
 context = new LoginContext(name, callbackHandler);

 // Perform authentication
 context.login();
 } catch (LoginException e) {
 System.err.println("Login failed");
 e.printStackTrace();
 System.exit(-1);
 }

 // Perform action as authenticated user
 Subject subject = context.getSubject();
 if (verbose) {
 System.out.println(subject.toString());
 } else {
 System.out.println("Authenticated principal: " +
 subject.getPrincipals());
 }

 Subject.doAs(subject, action);

 context.logout();
 }

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-136

 // Action to perform
 static class MyAction implements PrivilegedExceptionAction {
 MyAction() {
 }

 public Object run() throws Exception {
 // Replace the following with an action to be performed
 // by authenticated user
 System.out.println("Performing secure action ...");
 return null;
 }
 }
}

jaas-krb5.conf

client {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="test";
};

server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab=sample.keytab
 principal="host/machineName";
};

AppConnection.java

import java.io.*;
import java.net.Socket;

class AppConnection {
 public static final int AUTH_CMD = 100;
 public static final int DATA_CMD = 200;

 public static final int SUCCESS = 0;
 public static final int AUTH_INPROGRESS = 1;
 public static final int FAILURE = 2;

 private DataInputStream inStream;
 private DataOutputStream outStream;
 private Socket socket;

 // Client application
 AppConnection(String hostName, int port) throws IOException {
 socket = new Socket(hostName, port);

 inStream = new DataInputStream(socket.getInputStream());
 outStream = new DataOutputStream(socket.getOutputStream());

 System.out.println("Connected to address " +
 socket.getInetAddress());

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-137

 }

 // Server side application
 AppConnection(Socket socket) throws IOException {
 this.socket = socket;
 inStream = new DataInputStream(socket.getInputStream());
 outStream = new DataOutputStream(socket.getOutputStream());

 System.out.println("Got connection from client " +
 socket.getInetAddress());
 }

 byte[] receive(int expected) throws IOException {
 if (expected != -1) {
 int cmd = inStream.readInt();
 if (expected != cmd) {
 throw new IOException("Received unexpected code: " + cmd);
 }
 //System.out.println("Read cmd: " + cmd);
 }

 byte[] reply = null;
 int len;
 try {
 len = inStream.readInt();
 //System.out.println("Read length: " + len);

 } catch (IOException e) {
 len = 0;
 }
 if (len > 0) {
 reply = new byte[len];
 inStream.readFully(reply);
 } else {
 reply = new byte[0];
 }
 return reply;
 }

 AppReply send(int cmd, byte[] bytes) throws IOException {
 //System.out.println("Write cmd: " + cmd);
 outStream.writeInt(cmd);
 if (bytes != null) {
 //System.out.println("Write length: " + bytes.length);
 outStream.writeInt(bytes.length);
 if (bytes.length > 0) {
 outStream.write(bytes);
 }
 } else {
 //System.out.println("Write length: " + 0);
 outStream.writeInt(0);
 }

 outStream.flush();

 if (cmd == SUCCESS || cmd == FAILURE) {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-138

 return null; // Done
 }

 int returnCode = inStream.readInt();
 //System.out.println("Read cmd: " + returnCode);

 byte[] reply = null;
 if (returnCode != FAILURE) {
 reply = receive(-1);
 }
 return new AppReply(returnCode, reply);
 }

 static class AppReply {
 private int code;
 private byte[] bytes;

 AppReply(int code, byte[] bytes) {
 this.bytes = bytes;
 this.code = code;
 }

 int getStatus() {
 return code;
 }

 byte[] getBytes() {
 return bytes;
 }
 }

 void close() {
 try {
 socket.close();
 } catch (IOException e) {
 }
 }
}

GssServer.java

import org.ietf.jgss.*;
import java.io.*;
import java.net.Socket;
import java.net.ServerSocket;
import java.security.*;
import java.util.Date;

/**
 * A sample server application that uses JGSS to do mutual authentication
 * with a client using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the client.
 *
 * Every message exchanged with the client includes a 4-byte application-
 * level header that contains the big-endian integer value for the number

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-139

 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrap token to the server.
 * 3. server sends a wrap token back to the client.
 *
 * Start GssServer first before starting GssClient.
 *
 * Usage: java <options> GssServer
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * GssServer
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class GssServer {
 private static final int PORT = 4567;
 private static final boolean verbose = false;
 private static final int LOOP_LIMIT = 1;
 private static int loopCount = 0;

 public static void main(String[] args) throws Exception {

 PrivilegedExceptionAction action = new GssServerAction(PORT);

 Jaas.loginAndAction("server", action);
 }

 static class GssServerAction implements PrivilegedExceptionAction {
 private int localPort;

 GssServerAction(int port) {
 this.localPort = port;
 }

 public Object run() throws Exception {

 ServerSocket ss = new ServerSocket(localPort);

 // Get own Kerberos credentials for accepting connection
 GSSManager manager = GSSManager.getInstance();
 Oid krb5Mechanism = new Oid("1.2.840.113554.1.2.2");
 GSSCredential serverCreds = manager.createCredential(null,
 GSSCredential.DEFAULT_LIFETIME,
 krb5Mechanism,
 GSSCredential.ACCEPT_ONLY);
 while (loopCount++ < LOOP_LIMIT) {

 System.out.println("Waiting for incoming connection...");

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-140

 Socket socket = ss.accept();
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());

 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Got connection from client " +
 socket.getInetAddress());

 /*
 * Create a GSSContext to receive the incoming request
 * from the client. Use null for the server credentials
 * passed in. This tells the underlying mechanism
 * to use whatever credentials it has available that
 * can be used to accept this connection.
 */

 GSSContext context = manager.createContext(
 (GSSCredential)serverCreds);

 // Do the context establishment loop

 byte[] token = null;

 while (!context.isEstablished()) {

 if (verbose) {
 System.out.println("Reading ...");
 }
 token = new byte[inStream.readInt()];

 if (verbose) {
 System.out.println("Will read input token of size " +
 token.length + " for processing by
acceptSecContext");
 }
 inStream.readFully(token);

 if (token.length == 0) {
 if (verbose) {
 System.out.println("skipping zero length token");
 }
 continue;
 }
 if (verbose) {
 System.out.println("Token = " + getHexBytes(token));
 System.out.println("acceptSecContext..");
 }
 token = context.acceptSecContext(token, 0, token.length);

 // Send a token to the peer if one was generated by
 // acceptSecContext
 if (token != null) {
 if (verbose) {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-141

 System.out.println("Will send token of size " +
 token.length + " from acceptSecContext.");
 }

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client principal is " +
context.getSrcName());
 System.out.println("Server principal is " +
context.getTargName());

 /*
 * If mutual authentication did not take place, then
 * only the client was authenticated to the
 * server. Otherwise, both client and server were
 * authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 /*
 * Create a MessageProp which unwrap will use to return
 * information such as the Quality-of-Protection that was
 * applied to the wrapped token, whether or not it was
 * encrypted, etc. Since the initial MessageProp values
 * are ignored, just set them to the defaults of 0 and false.
 */
 MessageProp prop = new MessageProp(0, false);

 /*
 * Read the token. This uses the same token byte array
 * as that used during context establishment.
 */
 token = new byte[inStream.readInt()];
 if (verbose) {
 System.out.println("Will read token of size " +
token.length);
 }
 inStream.readFully(token);

 byte[] input = context.unwrap(token, 0, token.length, prop);
 String str = new String(input, "UTF-8");

 System.out.println("Received data \"" +
 str + "\" of length " + str.length());

 System.out.println("Confidentiality applied: " +
 prop.getPrivacy());

 /*
 * Now generate reply that is the concatenation of the

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-142

 * incoming string with the current time.
 */

 /*
 * First reset the QOP of the MessageProp to 0
 * to ensure the default Quality-of-Protection
 * is applied.
 */
 prop.setQOP(0);

 String now = new Date().toString();
 byte[] nowBytes = now.getBytes("UTF-8");
 int len = input.length + 1 + nowBytes.length;
 byte[] reply = new byte[len];
 System.arraycopy(input, 0, reply, 0, input.length);
 reply[input.length] = ' ';
 System.arraycopy(nowBytes, 0, reply, input.length+1,
 nowBytes.length);

 System.out.println("Sending: " + new String(reply, "UTF-8"));
 token = context.wrap(reply, 0, reply.length, prop);

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 System.out.println("Closing connection with client " +
 socket.getInetAddress());
 context.dispose();
 socket.close();
 }
 return null;
 }
 }

 private static final String getHexBytes(byte[] bytes, int pos, int len) {

 StringBuffer sb = new StringBuffer();
 for (int i = pos; i < (pos+len); i++) {

 int b1 = (bytes[i]>>4) & 0x0f;
 int b2 = bytes[i] & 0x0f;

 sb.append(Integer.toHexString(b1));
 sb.append(Integer.toHexString(b2));
 sb.append(' ');
 }
 return sb.toString();
 }

 private static final String getHexBytes(byte[] bytes) {
 return getHexBytes(bytes, 0, bytes.length);
 }
}

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-143

GssClient.java

import org.ietf.jgss.*;
import java.net.Socket;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.security.*;
import javax.security.auth.login.LoginException;

/**
 * A sample client application that uses JGSS to do mutual authentication
 * with a server using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the server.
 *
 * Every message sent to the server includes a 4-byte application-level
 * header that contains the big-endian integer value for the number
 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrapped token to the server.
 * 3. server sends a wrapped token back to the client for the application
 *
 * Start GssServer first before starting GssClient.
 *
 * Usage: java <options> GssClient <service> <serverName>
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * GssClient host machine.imc.org
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class GssClient {
 private static final int PORT = 4567;
 private static final boolean verbose = false;

 public static void main(String[] args) throws Exception {

 // Obtain the command-line arguments and parse the server's principal

 if (args.length < 2) {
 System.err.println(
 "Usage: java <options> GssClient <service> <serverName>");
 System.exit(-1);
 }

 String serverPrinc = args[0] + "@" + args[1];

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-144

 PrivilegedExceptionAction action =
 new GssClientAction(serverPrinc, args[1], PORT);

 Jaas.loginAndAction("client", action);
 }

 static class GssClientAction implements PrivilegedExceptionAction {
 private String serverPrinc;
 private String hostName;
 private int port;

 GssClientAction(String serverPrinc, String hostName, int port) {
 this.serverPrinc = serverPrinc;
 this.hostName = hostName;
 this.port = port;
 }

 public Object run() throws Exception {
 Socket socket = new Socket(hostName, port);
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Connected to address " +
 socket.getInetAddress());

 /*
 * This Oid is used to represent the Kerberos version 5 GSS-API
 * mechanism. It is defined in RFC 1964. We will use this Oid
 * whenever we need to indicate to the GSS-API that it must
 * use Kerberos for some purpose.
 */
 Oid krb5Oid = new Oid("1.2.840.113554.1.2.2");

 GSSManager manager = GSSManager.getInstance();

 /*
 * Create a GSSName out of the server's name.
 */
 GSSName serverName = manager.createName(serverPrinc,
 GSSName.NT_HOSTBASED_SERVICE);

 /*
 * Create a GSSContext for mutual authentication with the
 * server.
 * - serverName is the GSSName that represents the server.
 * - krb5Oid is the Oid that represents the mechanism to
 * use. The client chooses the mechanism to use.
 * - null is passed in for client credentials
 * - DEFAULT_LIFETIME lets the mechanism decide how long the
 * context can remain valid.
 * Note: Passing in null for the credentials asks GSS-API to
 * use the default credentials. This means that the mechanism
 * will look among the credentials stored in the current Subject
 * to find the right kind of credentials that it needs.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-145

 */
 GSSContext context = manager.createContext(serverName,
 krb5Oid,
 null,
 GSSContext.DEFAULT_LIFETIME);

 // Set the desired optional features on the context. The client
 // chooses these options.

 context.requestMutualAuth(true); // Mutual authentication
 context.requestConf(true); // Will use confidentiality later
 context.requestInteg(true); // Will use integrity later

 // Do the context eastablishment loop

 byte[] token = new byte[0];

 while (!context.isEstablished()) {

 // token is ignored on the first call
 token = context.initSecContext(token, 0, token.length);

 // Send a token to the server if one was generated by
 // initSecContext
 if (token != null) {
 if (verbose) {
 System.out.println("Will send token of size " +
 token.length + " from initSecContext.");
 System.out.println("writing token = " +
 getHexBytes(token));
 }

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }

 // If the client is done with context establishment
 // then there will be no more tokens to read in this loop
 if (!context.isEstablished()) {
 token = new byte[inStream.readInt()];
 if (verbose) {
 System.out.println("reading token = " +
 getHexBytes(token));
 System.out.println("Will read input token of size " +
 token.length + " for processing by
initSecContext");
 }
 inStream.readFully(token);
 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client principal is " + context.getSrcName());
 System.out.println("Server principal is " +
context.getTargName());

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-146

 /*
 * If mutual authentication did not take place, then only the
 * client was authenticated to the server. Otherwise, both
 * client and server were authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 byte[] messageBytes = "Hello There!".getBytes("UTF-8");

 /*
 * The first MessageProp argument is 0 to request
 * the default Quality-of-Protection.
 * The second argument is true to request
 * privacy (encryption of the message).
 */
 MessageProp prop = new MessageProp(0, true);

 /*
 * Encrypt the data and send it across. Integrity protection
 * is always applied, irrespective of confidentiality
 * (i.e., encryption).
 * You can use the same token (byte array) as that used when
 * establishing the context.
 */

 System.out.println("Sending message: " +
 new String(messageBytes, "UTF-8"));
 token = context.wrap(messageBytes, 0, messageBytes.length, prop);
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 /*
 * Now we will allow the server to decrypt the message,
 * append a time/date on it, and send then it back.
 */

 token = new byte[inStream.readInt()];
 System.out.println("Will read token of size " + token.length);
 inStream.readFully(token);
 byte[] replyBytes = context.unwrap(token, 0, token.length, prop);

 System.out.println("Received message: " +
 new String(replyBytes, "UTF-8"));

 System.out.println("Done.");
 context.dispose();
 socket.close();

 return null;
 }
 }

 private static final String getHexBytes(byte[] bytes, int pos, int len) {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-147

 StringBuffer sb = new StringBuffer();
 for (int i = pos; i < (pos+len); i++) {

 int b1 = (bytes[i]>>4) & 0x0f;
 int b2 = bytes[i] & 0x0f;

 sb.append(Integer.toHexString(b1));
 sb.append(Integer.toHexString(b2));
 sb.append(' ');
 }
 return sb.toString();
 }

 private static final String getHexBytes(byte[] bytes) {
 return getHexBytes(bytes, 0, bytes.length);
 }
}

SaslTestServer.java

import javax.security.sasl.*;
import javax.security.auth.callback.*;
import java.security.*;
import java.util.HashMap;
import java.net.*;
import java.util.Date;

/**
 * A sample server application that uses SASL to authenticate clients
 * using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the client.
 *
 * This sample program uses a ficticious application-level protocol.
 * Every message exchanged between the client and server an 8-byte
 * header that consists of two integers: the first integer represesents
 * the application-level command or status code while the second integer
 * indicates the length of the SASL buffer. This header is followed by
 * the SASL buffer.
 *
 * The protocol is:
 * 1. Authentication
 * a. client sends initial response to server containing
authentication
 * information
 * b. server accepts and evaluates response to generate challenge; it
 * sends the challenge to the server.
 * c. client evaluates challenge to generate response; it sends the
 * response;
 * d. Steps b and c are repeated until authentication succeeds or
fails.
 * 2. client sends an encrypted message to the server.
 * 3. server decryptes the message and sends an encrypted one back
 * that contains the original message plus the current time.
 *

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-148

 * Start SaslTestServer first before starting SaslTestClient.
 *
 * Usage: java <options> SaslTestServer service serverName
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * SaslTestServer host machine.imc.org
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class SaslTestServer {
 private static final String MECH = "GSSAPI"; // SASL name for GSS-API/
Kerberos
 private static final int PORT = 4568;
 private static final int LOOP_LIMIT = 1;
 private static int loopCount = 0;

 public static void main(String[] args) throws Exception {
 // Obtain the command-line arguments and parse the server's principal

 if (args.length < 2) {
 System.err.println(
 "Usage: java <options> SaslTestServer <service> <host>");
 System.exit(-1);
 }

 PrivilegedExceptionAction action =
 new SaslServerAction(args[0], args[1], PORT);

 Jaas.loginAndAction("server", action);
 }

 static class SaslServerAction implements PrivilegedExceptionAction {
 private String service; // used for SASL authentication
 private String serverName; // named used for SASL authentication
 private int localPort;
 private CallbackHandler cbh = new TestCallbackHandler();

 SaslServerAction(String service, String serverName, int port) {
 this.service = service;
 this.serverName = serverName;
 this.localPort = port;
 }

 public Object run() throws Exception {
 ServerSocket ss = new ServerSocket(localPort);

 HashMap<String,Object> props = new HashMap<String,Object>();
 props.put(Sasl.QOP, "auth-conf,auth-int,auth");

 // Loop, accepting requests from any client
 while (loopCount++ < LOOP_LIMIT) {
 System.out.println("Waiting for incoming connection...");

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-149

 Socket socket = ss.accept();

 // Create application-level connection to handle request
 AppConnection conn = new AppConnection(socket);

 // Normally, the application protocol will negotiate which
 // SASL mechanism to use. In this simplified example, we
 // will always use "GSSAPI", the name of the mechanism that
does
 // Kerberos via GSS-API

 // Create SaslServer to perform authentication
 SaslServer srv = Sasl.createSaslServer(MECH,
 service, serverName, props, cbh);

 if (srv == null) {
 throw new Exception(
 "Unable to find server implementation for " + MECH);
 }

 boolean auth = false;

 // Read initial response from client
 byte[] response = conn.receive(AppConnection.AUTH_CMD);
 AppConnection.AppReply clientMsg;

 while (!srv.isComplete()) {
 try {
 // Generate challenge based on response
 byte[] challenge = srv.evaluateResponse(response);

 if (srv.isComplete()) {
 conn.send(AppConnection.SUCCESS, challenge);
 auth = true;
 } else {
 clientMsg =
conn.send(AppConnection.AUTH_INPROGRESS,
 challenge);
 response = clientMsg.getBytes();
 }
 } catch (SaslException e) {
 // e.printStackTrace();
 // Send failure notification to client
 conn.send(AppConnection.FAILURE, null);
 break;
 }
 }

 // Check status of authentication
 if (srv.isComplete() && auth) {
 System.out.print("Client authenticated; ");
 System.out.println("authorized client is: " +
 srv.getAuthorizationID());
 } else {
 // Go get another client
 System.out.println("Authentication failed. ");

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-150

 continue;
 }

 String qop = (String) srv.getNegotiatedProperty(Sasl.QOP);
 System.out.println("Negotiated QOP: " + qop);

 // Now try to use security layer
 boolean sl = (qop.equals("auth-conf") || qop.equals("auth-
int"));

 byte[] msg = conn.receive(AppConnection.DATA_CMD);
 byte[] realMsg = (sl ? srv.unwrap(msg, 0, msg.length) : msg);

 System.out.println("Received: " + new String(realMsg,
"UTF-8"));

 // Construct reply to send to client
 String now = new Date().toString();
 byte[] nowBytes = now.getBytes("UTF-8");
 int len = realMsg.length + 1 + nowBytes.length;
 byte[] reply = new byte[len];
 System.arraycopy(realMsg, 0, reply, 0, realMsg.length);
 reply[realMsg.length] = ' ';
 System.arraycopy(nowBytes, 0, reply, realMsg.length+1,
 nowBytes.length);

 System.out.println("Sending: " + new String(reply, "UTF-8"));

 byte[] realReply = (sl ? srv.wrap(reply, 0, reply.length) :
reply);

 conn.send(AppConnection.SUCCESS, realReply);
 }
 return null;
 }
 }

 static class TestCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks)
 throws UnsupportedCallbackException {

 AuthorizeCallback acb = null;

 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof AuthorizeCallback) {
 acb = (AuthorizeCallback) callbacks[i];
 } else {
 throw new UnsupportedCallbackException(callbacks[i]);
 }
 }

 if (acb != null) {
 String authid = acb.getAuthenticationID();
 String authzid = acb.getAuthorizationID();
 if (authid.equals(authzid)) {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-151

 // Self is always authorized
 acb.setAuthorized(true);

 } else {
 // Should check some database for mapping and decide.
 // Current simplified policy is to reject authzids that
 // don't match authid

 acb.setAuthorized(false);
 }

 if (acb.isAuthorized()) {
 // Set canonicalized name.
 // Should look up database for canonical names

 acb.setAuthorizedID(authzid);
 }
 }
 }
 }
}

SaslTestClient.java

import javax.security.sasl.*;
import javax.security.auth.callback.*;
import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.*;
import com.sun.security.auth.callback.*;
import java.util.HashMap;

/**
 * A sample client application that uses SASL to authenticate to
 * a server using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the server.
 *
 * This sample program uses a ficticious application-level protocol.
 * Every message exchanged between the client and server an 8-byte
 * header that consists of two integers: the first integer represesents
 * the application-level command or status code while the second integer
 * indicates the length of the SASL buffer. This header is followed by
 * the SASL buffer.
 *
 * The protocol is:
 * 1. Authentication
 * a. client sends initial response to server containing
authentication
 * information
 * b. server accepts and evaluates response to generate challenge; it
 * sends the challenge to the server.
 * c. client evaluates challenge to generate response; it sends the
 * response;
 * d. Steps b and c are repeated until authentication succeeds or
fails.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-152

 * 2. client sends an encrypted message to the server.
 * 3. server decryptes the message and sends an encrypted one back
 * that contains the original message plus the current time.
 *
 * Start SaslTestServer first before starting SaslTestClient.
 *
 * Usage: java <options> SaslTestClient service serverName
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * SaslTestClient host machine.imc.org
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class SaslTestClient {
 private static final String MECH = "GSSAPI"; // SASL name for GSS-API/
Kerberos
 private static final int PORT = 4568;

 private static final byte[] EMPTY = new byte[0];

 public static void main(String[] args) throws Exception {
 // Obtain the command-line arguments and parse the server's principal

 if (args.length < 2) {
 System.err.println(
 "Usage: java <options> SaslTestClient <service>
<serverName>");
 System.exit(-1);
 }

 PrivilegedExceptionAction action =
 new SaslClientAction(args[0], args[1], PORT);

 Jaas.loginAndAction("client", action);
 }

 static class SaslClientAction implements PrivilegedExceptionAction {
 private String service; // used for SASL authentication
 private String serverName; // name used for SASL authentication
 private int port;
 private CallbackHandler cbh = null; // Don't need handler for GSSAPI

 SaslClientAction(String service, String serverName, int port) {
 this.service = service;
 this.serverName = serverName;
 this.port = port;
 }

 public Object run() throws Exception {
 // Create application-level connection
 AppConnection conn = new AppConnection(serverName, port);

 HashMap<String,Object> props = new HashMap<String,Object>();

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-153

 // Request confidentiality
 props.put(Sasl.QOP, "auth-conf");

 // Create SaslClient to perform authentication
 SaslClient clnt = Sasl.createSaslClient(
 new String[]{MECH}, null, service, serverName, props, cbh);

 if (clnt == null) {
 throw new Exception(
 "Unable to find client implementation for " + MECH);
 }

 byte[] response;
 byte[] challenge;

 // Get initial response for authentication
 response = clnt.hasInitialResponse() ?
 clnt.evaluateChallenge(EMPTY) : EMPTY;

 // Send initial response to server
 AppConnection.AppReply reply =
 conn.send(AppConnection.AUTH_CMD, response);

 // Repeat until authentication terminates
 while (!clnt.isComplete() &&
 (reply.getStatus() == AppConnection.AUTH_INPROGRESS ||
 reply.getStatus() == AppConnection.SUCCESS)) {

 // Evaluate challenge to generate response
 challenge = reply.getBytes();
 response = clnt.evaluateChallenge(challenge);

 if (reply.getStatus() == AppConnection.SUCCESS) {
 if (response != null) {
 throw new Exception("Protocol error interacting with
SASL");
 }
 break;
 }

 // Send response to server and read server's next challenge
 reply = conn.send(AppConnection.AUTH_CMD, response);
 }

 // Check status of authentication
 if (clnt.isComplete() && reply.getStatus() ==
AppConnection.SUCCESS) {
 System.out.println("Client authenticated.");
 } else {
 throw new Exception("Authentication failed: " +
 " connection status? " + reply.getStatus());
 }

 String qop = (String) clnt.getNegotiatedProperty(Sasl.QOP);
 System.out.println("Negotiated QOP: " + qop);

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-154

 // Try out security layer
 boolean sl = (qop.equals("auth-conf") || qop.equals("auth-int"));

 byte[] msg = "Hello There!".getBytes("UTF-8");
 System.out.println("Sending: " + new String(msg, "UTF-8"));

 byte[] encrypted = (sl ? clnt.wrap(msg, 0, msg.length) : msg);

 reply = conn.send(AppConnection.DATA_CMD, encrypted);

 if (reply.getStatus() == AppConnection.SUCCESS) {
 byte[] encryptedReply = reply.getBytes();

 byte[] clearReply = (sl ? clnt.unwrap(encryptedReply,
 0, encryptedReply.length) : encryptedReply);

 System.out.println("Received: " + new String(clearReply,
"UTF-8"));
 } else {
 System.out.println("Failed exchange: " + reply.getStatus());
 }

 conn.close();

 return null;
 }
 }
}

JsseServer.java

import java.io.*;
import java.net.*;
import javax.net.ssl.*;
import java.util.Date;
import java.security.PrivilegedExceptionAction;
import java.security.Principal;

/*
 * Tests support for RFC 2712. Specify use of only a KRB5 cipher for both
 * client and server, by first doing a JAAS login for the server
 * without first doing a JAAS login for the client.
 */

public class JsseServer {

 private static final String KRB5_CIPHER =
"TLS_KRB5_WITH_3DES_EDE_CBC_SHA";

 private static final int PORT = 4569;
 private static final boolean verbose = false;
 private static final int LOOP_LIMIT = 1;
 private static int loopCount = 0;

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-155

 public static void main(String[] args) throws Exception {

 PrivilegedExceptionAction action = new JsseServerAction(PORT);

 Jaas.loginAndAction("server", action);
 }

 static class JsseServerAction implements PrivilegedExceptionAction {
 private int localPort;

 JsseServerAction(int port) {
 this.localPort = port;
 }

 public Object run() throws Exception {

 SSLServerSocketFactory sslssf =
 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(localPort);

 // Enable only a KRB5 cipher suite.
 String enabledSuites[] = { KRB5_CIPHER };
 sslServerSocket.setEnabledCipherSuites(enabledSuites);
 // Should check for exception if enabledSuites is not supported

 while (loopCount++ < LOOP_LIMIT) {
 System.out.println("Waiting for incoming connection...");

 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

 System.out.println("Got connection from client " +
 sslSocket.getInetAddress());

 BufferedReader in = new BufferedReader(new InputStreamReader(
 sslSocket.getInputStream()));
 BufferedWriter out = new BufferedWriter(new
OutputStreamWriter(
 sslSocket.getOutputStream()));

 String inStr = in.readLine();
 System.out.println("Received " + inStr);

 String outStr = inStr + " " + new Date().toString() + "\n";
 out.write(outStr);
 System.out.println("Sending " + outStr);
 out.flush();

 String cipherSuiteChosen =
sslSocket.getSession().getCipherSuite();
 System.out.println("Cipher suite in use: " +
cipherSuiteChosen);
 Principal self = sslSocket.getSession().getLocalPrincipal();
 System.out.println("I am: " + self.toString());
 Principal peer = sslSocket.getSession().getPeerPrincipal();
 System.out.println("Client is: " + peer.toString());

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-156

 sslSocket.close();
 }
 return null;
 }
 }
}

JsseClient.java

import java.io.*;
import java.net.*;
import javax.net.ssl.*;
import java.security.PrivilegedExceptionAction;
import java.security.Principal;

public class JsseClient {

 private static final String KRB5_CIPHER =
"TLS_KRB5_WITH_3DES_EDE_CBC_SHA";

 private static final int PORT = 4569;
 private static final boolean verbose = false;

 public static void main(String[] args) throws Exception {
 // Obtain the command-line arguments and parse the server's name

 if (args.length < 1) {
 System.err.println(
 "Usage: java <options> JsseClient <serverName>");
 System.exit(-1);
 }

 PrivilegedExceptionAction action = new JsseClientAction(args[0],
PORT);

 Jaas.loginAndAction("client", action);
 }

 static class JsseClientAction implements PrivilegedExceptionAction {
 private String server;
 private int port;

 JsseClientAction(String server, int port) {
 this.port = port;
 this.server = server;
 }

 public Object run() throws Exception {
 SSLSocketFactory sslsf =
 (SSLSocketFactory) SSLSocketFactory.getDefault();
 SSLSocket sslSocket = (SSLSocket) sslsf.createSocket(server,
port);

 // Enable only a KRB5 cipher suite.

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-157

 String enabledSuites[] = { KRB5_CIPHER };
 sslSocket.setEnabledCipherSuites(enabledSuites);
 // Should check for exception if enabledSuites is not supported

 BufferedReader in = new BufferedReader(new InputStreamReader(
 sslSocket.getInputStream()));
 BufferedWriter out = new BufferedWriter(new OutputStreamWriter(
 sslSocket.getOutputStream()));

 String outStr = "Hello There!\n";
 out.write(outStr);
 out.flush();
 System.out.print("Sending " + outStr);

 String inStr = in.readLine();
 System.out.println("Received " + inStr);

 String cipherSuiteChosen =
sslSocket.getSession().getCipherSuite();
 System.out.println("Cipher suite in use: " + cipherSuiteChosen);
 Principal self = sslSocket.getSession().getLocalPrincipal();
 System.out.println("I am: " + self.toString());
 Principal peer = sslSocket.getSession().getPeerPrincipal();
 System.out.println("Server is: " + peer.toString());

 sslSocket.close();
 return null;
 }
 }
}

krb5.conf

krb5.conf template
In order to complete this configuration file
you will need to replace the __<name>__ placeholders
with appropriate values for your network.
#
[libdefaults]
 default_realm = J1LABS.EXAMPLE.COM
 forwardable = true

default_tkt_enctypes = aes128-cts rc4-hmac des3-cbc-sha1
default_tgs_enctypes = aes128-cts rc4-hmac des3-cbc-sha1
permitted_enctypes = aes128-cts rc4-hmac des3-cbc-sha1

[realms]
 J1LABS.EXAMPLE.COM = {
 kdc = j1hol-1280
 kdc = j1hol-004
 admin_server = j1hol-1280
 }

[domain_realm]
 .example.com = J1LABS.EXAMPLE.COM

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-158

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated no more
often than the period, and less often if the KDC is not used
frequently.

 period = 1d

how many versions of kdc.log to keep around (kdc.log.0, kdc.log.1, ...)

 versions = 10
 }

[appdefaults]
 gkadmin = {
 help_url = http://localhost:8888/ab2/coll.384.1/SEAM
 }

 kinit = {
 renewable = true
 forwardable= true
 }

 rlogin = {
 forwardable= true
 }
 rsh = {
 forwardable= true
 }
 telnet = {
 autologin = true
 forwardable= true
 }

GssSpNegoClient.java

import org.ietf.jgss.*;
import java.net.Socket;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.security.*;
import javax.security.auth.login.LoginException;

/**
 * A sample client application that uses JGSS to do mutual authentication
 * with a server using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the server.
 *
 * Every message sent to the server includes a 4-byte application-level
 * header that contains the big-endian integer value for the number

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-159

 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrapped token to the server.
 * 3. server sends a wrapped token back to the client for the application
 *
 * Start GssServer first before starting GssClient.
 *
 * Usage: java <options> GssSpNegoClient <service> <serverName>
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * GssSpNegoClient host machine.imc.org
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class GssSpNegoClient {
 private static final int PORT = 4567;
 private static final boolean verbose = false;

 public static void main(String[] args) throws Exception {

 // Obtain the command-line arguments and parse the server's principal

 if (args.length < 2) {
 System.err.println(
 "Usage: java <options> GssSpNegoClient <service>
<serverName>");
 System.exit(-1);
 }

 String serverPrinc = args[0] + "@" + args[1];

 PrivilegedExceptionAction action =
 new GssClientAction(serverPrinc, args[1], PORT);

 Jaas.loginAndAction("client", action);
 }

 static class GssClientAction implements PrivilegedExceptionAction {
 private String serverPrinc;
 private String hostName;
 private int port;

 GssClientAction(String serverPrinc, String hostName, int port) {
 this.serverPrinc = serverPrinc;
 this.hostName = hostName;
 this.port = port;
 }

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-160

 public Object run() throws Exception {
 Socket socket = new Socket(hostName, port);
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());
 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Connected to address " +
 socket.getInetAddress());

 /*
 * This Oid is used to represent the SPNEGO GSS-API
 * mechanism. It is defined in RFC 2478. We will use this Oid
 * whenever we need to indicate to the GSS-API that it must
 * use SPNEGO for some purpose.
 */
 Oid spnegoOid = new Oid("1.3.6.1.5.5.2");

 GSSManager manager = GSSManager.getInstance();

 /*
 * Create a GSSName out of the server's name.
 */
 GSSName serverName = manager.createName(serverPrinc,
 GSSName.NT_HOSTBASED_SERVICE, spnegoOid);

 /*
 * Create a GSSContext for mutual authentication with the
 * server.
 * - serverName is the GSSName that represents the server.
 * - krb5Oid is the Oid that represents the mechanism to
 * use. The client chooses the mechanism to use.
 * - null is passed in for client credentials
 * - DEFAULT_LIFETIME lets the mechanism decide how long the
 * context can remain valid.
 * Note: Passing in null for the credentials asks GSS-API to
 * use the default credentials. This means that the mechanism
 * will look among the credentials stored in the current Subject
 * to find the right kind of credentials that it needs.
 */
 GSSContext context = manager.createContext(serverName,
 spnegoOid,
 null,
 GSSContext.DEFAULT_LIFETIME);

 // Set the desired optional features on the context. The client
 // chooses these options.

 context.requestMutualAuth(true); // Mutual authentication
 context.requestConf(true); // Will use confidentiality later
 context.requestInteg(true); // Will use integrity later

 // Do the context eastablishment loop

 byte[] token = new byte[0];

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-161

 while (!context.isEstablished()) {

 // token is ignored on the first call
 token = context.initSecContext(token, 0, token.length);

 // Send a token to the server if one was generated by
 // initSecContext
 if (token != null) {
 if (verbose) {
 System.out.println("Will send token of size " +
 token.length + " from initSecContext.");
 System.out.println("writing token = " +
 getHexBytes(token));
 }

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }

 // If the client is done with context establishment
 // then there will be no more tokens to read in this loop
 if (!context.isEstablished()) {
 token = new byte[inStream.readInt()];
 if (verbose) {
 System.out.println("reading token = " +
 getHexBytes(token));
 System.out.println("Will read input token of size " +
 token.length + " for processing by
initSecContext");
 }
 inStream.readFully(token);
 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client principal is " + context.getSrcName());
 System.out.println("Server principal is " +
context.getTargName());

 /*
 * If mutual authentication did not take place, then only the
 * client was authenticated to the server. Otherwise, both
 * client and server were authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 byte[] messageBytes = "Hello There!".getBytes("UTF-8");

 /*
 * The first MessageProp argument is 0 to request
 * the default Quality-of-Protection.
 * The second argument is true to request
 * privacy (encryption of the message).
 */

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-162

 MessageProp prop = new MessageProp(0, true);

 /*
 * Encrypt the data and send it across. Integrity protection
 * is always applied, irrespective of confidentiality
 * (i.e., encryption).
 * You can use the same token (byte array) as that used when
 * establishing the context.
 */

 System.out.println("Sending message: " +
 new String(messageBytes, "UTF-8"));
 token = context.wrap(messageBytes, 0, messageBytes.length, prop);
 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 /*
 * Now we will allow the server to decrypt the message,
 * append a time/date on it, and send then it back.
 */

 token = new byte[inStream.readInt()];
 System.out.println("Will read token of size " + token.length);
 inStream.readFully(token);
 byte[] replyBytes = context.unwrap(token, 0, token.length, prop);

 System.out.println("Received message: " +
 new String(replyBytes, "UTF-8"));

 System.out.println("Done.");
 context.dispose();
 socket.close();

 return null;
 }
 }

 private static final String getHexBytes(byte[] bytes, int pos, int len) {

 StringBuffer sb = new StringBuffer();
 for (int i = pos; i < (pos+len); i++) {

 int b1 = (bytes[i]>>4) & 0x0f;
 int b2 = bytes[i] & 0x0f;

 sb.append(Integer.toHexString(b1));
 sb.append(Integer.toHexString(b2));
 sb.append(' ');
 }
 return sb.toString();
 }

 private static final String getHexBytes(byte[] bytes) {
 return getHexBytes(bytes, 0, bytes.length);

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-163

 }
}

GssSpNegoServer.java

import org.ietf.jgss.*;
import java.io.*;
import java.net.Socket;
import java.net.ServerSocket;
import java.security.*;
import java.util.Date;

/**
 * A sample server application that uses JGSS to do mutual authentication
 * with a client using Kerberos as the underlying mechanism. It then
 * exchanges data securely with the client.
 *
 * Every message exchanged with the client includes a 4-byte application-
 * level header that contains the big-endian integer value for the number
 * of bytes that will follow as part of the JGSS token.
 *
 * The protocol is:
 * 1. Context establishment loop:
 * a. client sends init sec context token to server
 * b. server sends accept sec context token to client
 *
 * 2. client sends a wrap token to the server.
 * 3. server sends a wrap token back to the client.
 *
 * Start GssSpNegoServer first before starting GssClient.
 *
 * Usage: java <options> GssSpNegoServer
 *
 * Example: java -Djava.security.auth.login.config=jaas-krb5.conf \
 * GssSpNegoServer
 *
 * Add -Djava.security.krb5.conf=krb5.conf to specify application-specific
 * Kerberos configuration (different from operating system's Kerberos
 * configuration).
 */

public class GssSpNegoServer {
 private static final int PORT = 4567;
 private static final boolean verbose = false;
 private static final int LOOP_LIMIT = 1;
 private static int loopCount = 0;

 public static void main(String[] args) throws Exception {

 PrivilegedExceptionAction action = new GssServerAction(PORT);

 Jaas.loginAndAction("server", action);
 }

 static class GssServerAction implements PrivilegedExceptionAction {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-164

 private int localPort;

 GssServerAction(int port) {
 this.localPort = port;
 }

 public Object run() throws Exception {

 ServerSocket ss = new ServerSocket(localPort);

 // Get own Kerberos credentials for accepting connection
 GSSManager manager = GSSManager.getInstance();
 Oid spnegoOid = new Oid("1.3.6.1.5.5.2");
 GSSCredential serverCreds = manager.createCredential(null,
 GSSCredential.DEFAULT_LIFETIME,
 spnegoOid,
 GSSCredential.ACCEPT_ONLY);
 while (loopCount++ < LOOP_LIMIT) {

 System.out.println("Waiting for incoming connection...");

 Socket socket = ss.accept();
 DataInputStream inStream =
 new DataInputStream(socket.getInputStream());

 DataOutputStream outStream =
 new DataOutputStream(socket.getOutputStream());

 System.out.println("Got connection from client " +
 socket.getInetAddress());

 /*
 * Create a GSSContext to receive the incoming request
 * from the client. Use null for the server credentials
 * passed in. This tells the underlying mechanism
 * to use whatever credentials it has available that
 * can be used to accept this connection.
 */

 GSSContext context = manager.createContext(
 (GSSCredential)serverCreds);

 // Do the context establishment loop

 byte[] token = null;

 while (!context.isEstablished()) {

 if (verbose) {
 System.out.println("Reading ...");
 }
 token = new byte[inStream.readInt()];

 if (verbose) {
 System.out.println("Will read input token of size " +
 token.length + " for processing by

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-165

acceptSecContext");
 }
 inStream.readFully(token);

 if (token.length == 0) {
 if (verbose) {
 System.out.println("skipping zero length token");
 }
 continue;
 }
 if (verbose) {
 System.out.println("Token = " + getHexBytes(token));
 System.out.println("acceptSecContext..");
 }
 token = context.acceptSecContext(token, 0, token.length);

 // Send a token to the peer if one was generated by
 // acceptSecContext
 if (token != null) {
 if (verbose) {
 System.out.println("Will send token of size " +
 token.length + " from acceptSecContext.");
 }

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();
 }
 }

 System.out.println("Context Established! ");
 System.out.println("Client principal is " +
context.getSrcName());
 System.out.println("Server principal is " +
context.getTargName());

 /*
 * If mutual authentication did not take place, then
 * only the client was authenticated to the
 * server. Otherwise, both client and server were
 * authenticated to each other.
 */
 if (context.getMutualAuthState())
 System.out.println("Mutual authentication took place!");

 /*
 * Create a MessageProp which unwrap will use to return
 * information such as the Quality-of-Protection that was
 * applied to the wrapped token, whether or not it was
 * encrypted, etc. Since the initial MessageProp values
 * are ignored, just set them to the defaults of 0 and false.
 */
 MessageProp prop = new MessageProp(0, false);

 /*
 * Read the token. This uses the same token byte array

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-166

 * as that used during context establishment.
 */
 token = new byte[inStream.readInt()];
 if (verbose) {
 System.out.println("Will read token of size " +
token.length);
 }
 inStream.readFully(token);

 byte[] input = context.unwrap(token, 0, token.length, prop);
 String str = new String(input, "UTF-8");

 System.out.println("Received data \"" +
 str + "\" of length " + str.length());

 System.out.println("Confidentiality applied: " +
 prop.getPrivacy());

 /*
 * Now generate reply that is the concatenation of the
 * incoming string with the current time.
 */

 /*
 * First reset the QOP of the MessageProp to 0
 * to ensure the default Quality-of-Protection
 * is applied.
 */
 prop.setQOP(0);

 String now = new Date().toString();
 byte[] nowBytes = now.getBytes("UTF-8");
 int len = input.length + 1 + nowBytes.length;
 byte[] reply = new byte[len];
 System.arraycopy(input, 0, reply, 0, input.length);
 reply[input.length] = ' ';
 System.arraycopy(nowBytes, 0, reply, input.length+1,
 nowBytes.length);

 System.out.println("Sending: " + new String(reply, "UTF-8"));
 token = context.wrap(reply, 0, reply.length, prop);

 outStream.writeInt(token.length);
 outStream.write(token);
 outStream.flush();

 System.out.println("Closing connection with client " +
 socket.getInetAddress());
 context.dispose();
 socket.close();
 }
 return null;
 }
 }

 private static final String getHexBytes(byte[] bytes, int pos, int len) {

Chapter 7
Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On

7-167

 StringBuffer sb = new StringBuffer();
 for (int i = pos; i < (pos+len); i++) {

 int b1 = (bytes[i]>>4) & 0x0f;
 int b2 = bytes[i] & 0x0f;

 sb.append(Integer.toHexString(b1));
 sb.append(Integer.toHexString(b2));
 sb.append(' ');
 }
 return sb.toString();
 }

 private static final String getHexBytes(byte[] bytes) {
 return getHexBytes(bytes, 0, bytes.length);
 }
}

Appendix A: Setting up Kerberos Accounts

Kerberos accounts are set up on the Key Distribution Center (KDC). Each entry in the
Kerberos database contains a Kerberos principal. You should create a host-based principal for
the machine that you will be running the servers (for example, "host/j1hol-001") and a client
principal (for example, "test") for accessing the servers.

For Windows, see Microsoft Kerberos.

The exercises assume that the operating system has been configured to use the correct
Kerberos server. This configuration typically requires administration privileges. If you cannot
configure the operating system, then you can use a Kerberos configuration file with your java
command by using the -Djava.security.krb5.conf option. Here is an example of how to
invoke one of the commands from the exercises to use the krb5.conf configuration file.

% java -Djava.security.auth.login.config=jaas-krb5.conf\
 -Djava.security.krb5.conf=krb5.conf Jaas client

The Kerberos 5 GSS-API Mechanism
This section describes and lists security features regarding Java Generic Security Services
(Java GSS) for Kerberos 5. It also describes the Object Identifier (OID) for the Kerberos V5
mechanism, the encryption types, and the krb5.conf settings supported by Java GSS.

The Generic Security Services Application Program Interface (GSS-API) mechanism is defined
by RFC 1964 and supplemented with RFC 4121 under the Internet Standards process.

The OID for the Kerberos V5 Mechanism

According to RFC 1964 section 1, the OID for Java Generic Security Services (Java GSS) for
Kerberos 5 is defined as 1.2.840.113554.1.2.2; see also GSSAPI Mechanisms in Java Security
Standard Algorithm Names.

Chapter 7
The Kerberos 5 GSS-API Mechanism

7-168

https://docs.microsoft.com/en-us/windows/desktop/SecAuthN/microsoft-kerberos
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc4121
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#gssapi-mechanisms

Java GSS/Kerberos Supported Encryption Types

The following table lists the preferred order of Java GSS/Kerberos supported encryption types.

Table 7-1 Java GSS/Kerberos Supported Encryption Types

Name Aliases etype Number

aes256-cts-hmac-sha1-96 aes256-sha1, aes256-cts 18

aes128-cts-hmac-sha1-96 aes128-sha1, aes128-cts 17

aes256-cts-hmac-sha384-192 aes256-sha2 20

aes128-cts-hmac-sha256-128 aes128-sha2 19

des3-cbc-sha1 des3-hmac-sha1 16

arcfour-hmac-md5 arcfour-hmac, rc4-hmac 23

des-cbc-crc None 1

des-cbc-md5 None 3

Note:

The AES-256 encryption type is enabled by default. The following legacy encryption
types are disabled by default:

• The DES-based encryption types, including des-cbc-crc and dec-cbc-md5

• des3-cbc-sha1

• arcfour-hmac-md5

A user can restrict the usage of encryption for various purposes in krb5.conf, in the
[libdefaults] section.

Supported krb5.conf Settings

The following parameters are supported:

include FILENAME
includedir DIRNAME

[libdefaults]
allow_weak_crypto
ap_req_checksum_type
canonicalize
clockskew
default_checksum
default_keytab_name
default_realm
default_tgs_enctypes
default_tkt_enctypes
dns_canonicalize_hostname
dns_fallback
dns_lookup_kdc
dns_lookup_realm
extra_addresses

Chapter 7
The Kerberos 5 GSS-API Mechanism

7-169

forwardable
kdc_default_options
kdc_timeout
max_retries
no_addresses
noaddresses
permitted_enctypes
proxiable
renew_lifetime
renewable
safe_checksum_type
ticket_lifetime
udp_preference_limit

[realms]
 REALM.NAME = {
 kdc
 kdc_timeout
 udp_preference_limit
 max_retries
 }

[capaths]
 A = {
 I = .
 B = I
 }

[domain_realm]
 domain=REALM

The following are the default values for krb5.conf file parameters:

allow_weak_crypto = false
canonicalize = false
clockskew = 300
default_tgs_enctypes = <value of permitted_enctypes>
default_tkt_enctypes = <value of permitted_enctypes>
dns_canonicalize_hostname = true
dns_lookup_kdc = true
dns_lookup_realm = false
forwardable = false
kdc_timeout = 30s
max_retries = 3
no_addresses = true
noaddresses = true
permitted_enctypes = <all encryption types in Table 7-1>
proxiable = false
renewable = false
udp_preference_limit = 1465

If no krb5.conf file is found or a setting doesn't exist in a krb5.conf file, then these default
values will be used. For example, a DNS lookup will be performed to fetch KDC details
because the default value of dns_lookup_kdc is true.

Chapter 7
The Kerberos 5 GSS-API Mechanism

7-170

8
Java Secure Socket Extension (JSSE)
Reference Guide

The Java Secure Socket Extension (JSSE) enables secure Internet communications. It
provides a framework and an implementation for a Java version of the TLS and DTLS
protocols and includes functionality for data encryption, server authentication, message
integrity, and optional client authentication.

Introduction to JSSE
Data that travels across a network can easily be accessed by someone who is not the intended
recipient. When the data includes private information, such as passwords and credit card
numbers, steps must be taken to make the data unintelligible to unauthorized parties. It is also
important to ensure that the data has not been modified, either intentionally or unintentionally,
during transport. The Transport Layer Security (TLS) protocol was designed to help protect the
privacy and integrity of data while it is being transferred across a network.

The Java Secure Socket Extension (JSSE) enables secure Internet communications. It
provides a framework and an implementation for a Java version of the TLS protocol and
includes functionality for data encryption, server authentication, message integrity, and optional
client authentication. Using JSSE, developers can provide for the secure passage of data
between a client and a server running any application protocol (such as HTTP, Telnet, or FTP)
over TCP/IP.

By abstracting the complex underlying security algorithms and handshaking mechanisms,
JSSE minimizes the risk of creating subtle but dangerous security vulnerabilities. Furthermore,
it simplifies application development by serving as a building block that developers can
integrate directly into their applications.

JSSE provides both an application programming interface (API) framework and an
implementation of that API. The JSSE API supplements the core network and cryptographic
services defined by the java.security and java.net packages by providing extended
networking socket classes, trust managers, key managers, SSL contexts, and a socket factory
framework for encapsulating socket creation behavior. Because the SSLSocket class is based
on a blocking I/O model, the Java Development Kit (JDK) includes a nonblocking SSLEngine
class to enable implementations to choose their own I/O methods.

The JSSE API supports the following security protocols:

• DTLS: versions 1.0 and 1.2

• TLS: version 1.0, 1.1, 1.2, and 1.3

• SSL (Secure Socket Layer): version 3.0

These security protocols encapsulate a normal bidirectional stream socket, and the JSSE API
adds transparent support for authentication, encryption, and integrity protection.

JSSE is a security component of the Java SE platform, and is based on the same design
principles found elsewhere in the Java Cryptography Architecture (JCA) Reference Guide
framework. This framework for cryptography-related security components allows them to have

8-1

implementation independence and, whenever possible, algorithm independence. JSSE uses
the Cryptographic Service Providers defined by the JCA framework.

Other security components in the Java SE platform include the Java Authentication and
Authorization Service (JAAS) Reference Guide and the Java security tools (see Security Tools
Summary). JSSE encompasses many of the same concepts and algorithms as those in JCA
but automatically applies them underneath a simple stream socket API.

The JSSE API was designed to allow other SSL/TLS/DTLS protocols and Public Key
Infrastructure (PKI) implementations to be plugged in seamlessly. Developers can also provide
alternative logic to determine if remote hosts should be trusted or what authentication key
material should be sent to a remote host.

JSSE Features and Benefits
JSSE includes the following important benefits and features:

• Included as a standard component of the JDK

• Extensible, provider-based architecture

• Implemented in 100% pure Java

• Provides API support for TLS/DTLS

• Provides implementations of SSL 3.0, TLS (versions 1.0, 1.1, 1.2, and 1.3), and DTLS
(versions 1.0 and 1.2)

• Includes classes that can be instantiated to create secure channels (SSLSocket,
SSLServerSocket, and SSLEngine)

• Provides support for cipher suite negotiation, which is part of the TLS/DTLS handshaking
used to initiate or verify secure communications

• Provides support for client and server authentication, which is part of the normal TLS/DTLS
handshaking

• Provides support for HTTP encapsulated in the TLS protocol, which allows access to data
such as web pages using HTTPS

• Provides server session management APIs to manage memory-resident SSL sessions

• Provides support for the certificate status request extension (OCSP stapling), which saves
client certificate validation round-trips and resources

• Provides support for the Server Name Indication (SNI) rxtension, which extends the TLS/
DTLS protocols to indicate what server name the client is attempting to connect to during
handshaking

• Provides support for endpoint identification during handshaking, which prevents man-in-
the-middle attacks

• Provides support for cryptographic algorithm constraints, which provides fine-grained
control over algorithms negotiated by JSSE

JSSE Standard API
The JSSE standard API, available in the javax.net and javax.net.ssl packages, provides:

• Secure sockets tailored to client and server-side applications.

• A non-blocking engine for producing and consuming streams of TLS/DTLS data
(SSLEngine).

Chapter 8
Introduction to JSSE

8-2

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

• Factories for creating sockets, server sockets, SSL sockets, and SSL server sockets. By
using socket factories, you can encapsulate socket creation and configuration behavior.

• A class representing a secure socket context that acts as a factory for secure socket
factories and engines.

• Key and trust manager interfaces (including X.509-specific key and trust managers), and
factories that can be used for creating them.

• A class for secure HTTP URL connections (HTTPS).

SunJSSE Provider
Oracle's implementation of Java SE includes a JSSE provider named SunJSSE, which comes
preinstalled and preregistered with the JCA. This provider supplies the following cryptographic
services:

• An implementation of the SSL 3.0, TLS (versions 1.0, 1.1, 1.2, and 1.3), and DTLS
(versions 1.0 and 1.2) security protocols.

• An implementation of the most common TLS and DTLS cipher suites. This implementation
encompasses a combination of authentication, key agreement, encryption, and integrity
protection.

• An implementation of an X.509-based key manager that chooses appropriate
authentication keys from a standard JCA keystore.

• An implementation of an X.509-based trust manager that implements rules for certificate
chain validation.

See The SunJSSE Provider.

JSSE Related Documentation
The following list contains links to online documentation and names of books about related
subjects:

JSSE API Documentation

• javax.net package

• javax.net.ssl package

Java SE Security

• The Java SE Security home page

• The Security Features in Java SE trail of the Java Tutorial

• Java PKI Programmer's Guide

• Inside Java 2 Platform Security, Second Edition: Architecture, API Design and
Implementation

Transport Layer Security (TLS)

• The TLS Protocol Version 1.0

• The TLS Protocol Version 1.1

• The TLS Protocol Version 1.2

• The (TLS) Protocol Version 1.3

Chapter 8
Introduction to JSSE

8-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/package-summary.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://docs.oracle.com/javase/tutorial/security/
http://www.oracle.com/technetwork/java/javaee/gong-135902.html
http://www.oracle.com/technetwork/java/javaee/gong-135902.html
http://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc4346.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc8446

• Transport Layer Security (TLS) Extensions

• HTTP Over TLS

Datagram Transport Layer Security (DTLS)

• The DTLS Protocol Version 1.0

• The DTLS Protocol Version 1.2

U.S. Encryption Policies

• U.S. Department of Commerce

• Technology CEO Council

• Current export policies: Encryption and Export Administration Regulations (EAR)

• NIST Computer Security Publications

JSSE Classes and Interfaces
To communicate securely, both sides of the connection must be SSL-enabled. In the JSSE
API, the endpoint classes of the connection are SSLSocket and SSLEngine. In Figure 8-1, the
major classes used to create SSLSocket and SSLEngine are laid out in a logical ordering.

Figure 8-1 JSSE Classes Used to Create SSLSocket and SSLEngine

Key Material

KeyManager

KeyManagerFactory MyKM

Key Material

TrustManager SecureRandom

TrustManagerFactory

SSLContext

SSLServerSocketFactory SSLSocketFactory

MyTM

SSLEngine

SSLServerSocket

SSLSocket SSLSocket

SSLSession

I/O I/O

SSLParameters

-accept()

An SSLSocket is created either by an SSLSocketFactory or by an SSLServerSocket accepting
an inbound connection. In turn, an SSLServerSocket is created by an
SSLServerSocketFactory. Both SSLSocketFactory and SSLServerSocketFactory objects are
created by an SSLContext. An SSLEngine is created directly by an SSLContext, and relies on
the application to handle all I/O.

Chapter 8
JSSE Classes and Interfaces

8-4

https://tools.ietf.org/html/rfc6066
http://www.ietf.org/rfc/rfc2818.txt
https://tools.ietf.org/html/rfc4347.txt
https://tools.ietf.org/html/rfc6347.txt
https://www.commerce.gov
http://www.techceocouncil.org
https://www.bis.doc.gov/index.php/policy-guidance/encryption
https://csrc.nist.gov/publications

Note:

When using raw SSLSocket or SSLEngine classes, you should always check the
peer's credentials before sending any data. Since JDK 7, endpoint identification/
verification procedures can be handled during SSL/TLS handshaking. See the
method SSLParameters.setEndpointIdentificationAlgorithm.
For example, the host name in a URL should match the host name in the peer's
credentials. An application could be exploited with URL spoofing if the host name is
not verified.

JSSE Core Classes and Interfaces

The core JSSE classes are part of the javax.net and javax.net.ssl packages.

SocketFactory and ServerSocketFactory Classes

The abstract javax.net.SocketFactory class is used to create sockets. Subclasses of this
class are factories that create particular subclasses of sockets and thus provide a general
framework for the addition of public socket-level functionality. For example, see
SSLSocketFactory and SSLServerSocketFactory Classes.

The abstract javax.net.ServerSocketFactory class is analogous to the SocketFactory class,
but is used specifically for creating server sockets.

Socket factories are a simple way to capture a variety of policies related to the sockets being
constructed, producing such sockets in a way that does not require special configuration of the
code that asks for the sockets:

• Due to polymorphism of both factories and sockets, different kinds of sockets can be used
by the same application code just by passing different kinds of factories.

• Factories can themselves be customized with parameters used in socket construction. For
example, factories could be customized to return sockets with different networking
timeouts or security parameters already configured.

• The sockets returned to the application can be subclasses of java.net.Socket (or
javax.net.ssl.SSLSocket), so that they can directly expose new APIs for features such
as compression, security, record marking, statistics collection, or firewall tunneling.

SSLSocketFactory and SSLServerSocketFactory Classes

The javax.net.ssl.SSLSocketFactory class acts as a factory for creating secure sockets.
This class is an abstract subclass of javax.net.SocketFactory.

Secure socket factories encapsulate the details of creating and initially configuring secure
sockets. This includes authentication keys, peer certificate validation, enabled cipher suites,
and the like.

The javax.net.ssl.SSLServerSocketFactory class is analogous to the SSLSocketFactory
class, but is used specifically for creating server sockets.

Chapter 8
JSSE Classes and Interfaces

8-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/SocketFactory.html

Obtaining an SSLSocketFactory
The following ways can be used to obtain an SSLSocketFactory:

• Get the default factory by calling the SSLSocketFactory.getDefault() static method.

• Receive a factory as an API parameter. That is, code that must create sockets but does
not care about the details of how the sockets are configured can include a method with an
SSLSocketFactory parameter that can be called by clients to specify which
SSLSocketFactory to use when creating sockets (for example,
javax.net.ssl.HttpsURLConnection).

• Construct a new factory with specifically configured behavior.

The default factory is typically configured to support server authentication only so that sockets
created by the default factory do not leak any more information about the client than a normal
TCP socket would.

Many classes that create and use sockets do not need to know the details of socket creation
behavior. Creating sockets through a socket factory passed in as a parameter is a good way of
isolating the details of socket configuration, and increases the reusability of classes that create
and use sockets.

You can create new socket factory instances either by implementing your own socket factory
subclass or by using another class which acts as a factory for socket factories. One example of
such a class is SSLContext, which is provided with the JSSE implementation as a provider-
based configuration class.

SSLSocket and SSLServerSocket Classes

The javax.net.ssl.SSLSocket class is a subclass of the standard Java java.net.Socket
class. It supports all of the standard socket methods and adds methods specific to secure
sockets. Instances of this class encapsulate the SSLContext under which they were created.
See SSLContext Class. There are APIs to control the creation of secure socket sessions for a
socket instance, but trust and key management are not directly exposed.

The javax.net.ssl.SSLServerSocket class is analogous to the SSLSocket class, but is used
specifically for creating server sockets.

To prevent peer spoofing, you should always verify the credentials presented to an SSLSocket.
See Cipher Suite Choice and Remote Entity Verification.

Note:

Due to the complexity of the SSL and TLS protocols, it is difficult to predict whether
incoming bytes on a connection are handshake or application data, and how that
data might affect the current connection state (even causing the process to block). In
the Oracle JSSE implementation, the available() method on the object obtained by
SSLSocket.getInputStream() returns a count of the number of application data
bytes successfully decrypted from the SSL connection but not yet read by the
application.

Chapter 8
JSSE Classes and Interfaces

8-6

Obtaining an SSLSocket
Instances of SSLSocket can be obtained in one of the following ways:

• An SSLSocket can be created by an instance of SSLSocketFactory via one of the
several createSocket methods of that class.

• An SSLSocket can be created through the accept method of the SSLServerSocket
class.

Cipher Suite Choice and Remote Entity Verification

The SSL/TLS protocols define a specific series of steps to ensure a protected connection.
However, the choice of cipher suite directly affects the type of security that the connection
enjoys. For example, if an anonymous cipher suite is selected, then the application has no way
to verify the remote peer's identity. If a suite with no encryption is selected, then the privacy of
the data cannot be protected. Additionally, the SSL/TLS protocols do not specify that the
credentials received must match those that peer might be expected to send. If the connection
were somehow redirected to a rogue peer, but the rogue's credentials were acceptable based
on the current trust material, then the connection would be considered valid.

When using raw SSLSocket and SSLEngine classes, you should always check the peer's
credentials before sending any data. The SSLSocket and SSLEngine classes do not
automatically verify that the host name in a URL matches the host name in the peer's
credentials. An application could be exploited with URL spoofing if the host name is not
verified. Since JDK 7, endpoint identification/verification procedures can be handled during
SSL/TLS handshaking. See the
SSLParameters.getEndpointIdentificationAlgorithm method.

Protocols such as HTTPS (HTTP Over TLS) do require host name verification. Since JDK 7,
the HTTPS endpoint identification is enforced during handshaking for HttpsURLConnection
by default. See the SSLParameters.getEndpointIdentificationAlgorithm method.
Alternatively, applications can use the HostnameVerifier interface to override the default
HTTPS host name rules. See HostnameVerifier Interface and HttpsURLConnection Class.

SSLEngine Class
As mentioned previously, TLS/DTLS are standard protocols for secure network
communications, and are being used in a wide variety of applications across a wide range of
computing platforms and devices. Along with this popularity come demands to use TLS/DTLS
with different I/O and threading models to satisfy the applications' performance, scalability,
footprint, and other requirements. There are demands to use TLS/DTLS with blocking and
nonblocking I/O channels, asynchronous I/O, arbitrary input and output streams, and byte
buffers. There are demands to use it in highly scalable, performance-critical environments,
requiring management of thousands of network connections.

Abstracting the I/O transport mechanism using the SSLEngine class in Java SE allows
applications to use the TLS/DTLS protocols in a transport-independent way, and thus frees
application developers to choose transport and computing models that best meet their needs.
Not only does this abstraction allow applications to use nonblocking I/O channels and other I/O
models, it also accommodates different threading models. This effectively leaves the I/O and
threading decisions up to the application developer. Because of this flexibility, the application
developer must manage I/O and threading (complex topics in and of themselves), as well as
have some understanding of the TLS/DTLS protocols. Because the SSLEngine class requires

Chapter 8
JSSE Classes and Interfaces

8-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocketFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm()
http://www.ietf.org/rfc/rfc2818.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm()

an understanding of SSL/TLS, I/O, and threading models, it is considered an advanced API:
beginners should use SSLSocket.

Users of other Java programming language APIs such as the Java Generic Security Services
(Java GSS-API) and the Java Simple Authentication Security Layer (Java SASL) will notice
similarities in that the application is also responsible for transporting data.

The core class is javax.net.ssl.SSLEngine. It encapsulates a TLS/DTLS state machine
and operates on inbound and outbound byte buffers that are filled and drained respectively by
the user of the SSLEngine class. Figure 8-2 illustrates the flow of data from the application,
through SSLEngine, to the transport mechanism, and back.

Figure 8-2 Flow of Data Through SSLEngine

Application Data
(Plaintext)

Application Buffers

SSLEngine

Privacy
and
Integrity
Protection

Application Transport
(Ciphertext)

Network Buffers

Handshake Data

Handshake Data

Application Buffers Network Buffers

dshdshdshakeakeakeakeake Data

dshdshakeakeakeakeake Data

Calls to SSLEngine produce and consume TLS/DTLS packets, which must then be exchanged
with the peer. The nomenclature for SSLEngine data is always from the perspective of the local
side: data bound for the peer is called outbound data, and the peer's data for the local side is
called inbound data. Before application data can be produced/consumed from the application
buffers, a handshaking procedure that negotiates security parameters must complete. The
handshake data that is produced/consumed is internal to SSLEngine and must be exchanged
with the peer before application data will be produced/consumed. The application is
responsible for all data transportation.

The application, shown on the left, supplies application (plaintext) data in an application buffer
and passes it to SSLEngine. After handshaking has completed and cryptographic parameters
have been negotiated, the SSLEngine object consumes the data contained in the outbound
application data buffer to produce TLS/DTLS encoded data and places it in the network buffer
supplied by the application. The application is now responsible for sending the contents of the
outbound network buffer to the peer using the transport mechanism. Upon receiving TLS/DTLS
encoded data from its peer (via the transport), the application places the inbound data into a
network buffer and passes it to SSLEngine. The SSLEngine object processes the network
buffer's contents to produce application data (or handshake data, which is consumed
internally).

An instance of the SSLEngine class can be in one of the following states:

Creation
The SSLEngine has been created and initialized, but has not yet been used. During this phase,
an application may set any SSLEngine-specific settings (enabled cipher suites, whether the
SSLEngine should handshake in client or server mode, and so on). Once handshaking has
begun, though, any new settings (except client/server mode) will be used for the next
handshake.

Chapter 8
JSSE Classes and Interfaces

8-8

Initial handshaking
The initial handshake is a procedure by which the two peers exchange communication
parameters until an SSLSession is established. Application data can’t be sent during this
phase.

Application data
After the communication parameters have been established and the handshake is complete,
application data can flow through the SSLEngine. Outbound application messages are
encrypted and integrity protected, and inbound messages reverse the process.

Rehandshaking
Either side can request a renegotiation of the session at any time during the Application Data
phase. New handshaking data can be intermixed among the application data. Before starting
the rehandshake phase, the application may reset the TLS/DTLS communication parameters
such as the list of enabled cipher suites and whether to use client authentication, but can not
change between client/server modes. As before, after handshaking has begun, any new
SSLEngine configuration settings won’t be used until the next handshake.

Closure
When the connection is no longer needed, the application should close the SSLEngine and
should send/receive any remaining messages to the peer before closing the underlying
transport mechanism. Once an engine is closed, it is not reusable: a new SSLEngine must be
created.

SSLEngine Methods
There are three types of SSLEngine methods: those that initialize the SSLEngine and start
the handshake, those that process data packets for writing to or reading from the network, and
those that properly close the SSLEngine and connection.

The following steps describe the handshake process with respect to the methods of
SSLEngine:

1. After you have created the SSLEngine, call the various set* methods to configure all
aspects of the connection that is about to occur (for example, setEnabledProtocols(),
setEnabledCipherSuites(), setUseClientMode(), and
setWantClientAuth()). You can also configure the connection with the
SSLParameters class, which enables you to set multiple settings in a single method call.

2. Obtain the currently empty SSLSession for the SSLEngine, then determine the
maximum buffer sizes for the application and network bytes that could be generated with
the getApplicationBufferSize() and getPacketBufferSize() methods.
Allocate ByteBuffer instances for application and network buffers accordingly.

3. Once you have configured the connection and the buffers, call the beginHandshake()
method, which moves the SSLEngine into the initial handshaking state.

4. Create the transport mechanism that the connection will use with, for example, the
SocketChannel or Socket classes.

5. Call the wrap() and unwrap() methods to perform the initial handshaking. You'll need to
call these methods several times before application data can be consumed, produced, and
properly protected by later wrap()/unwrap() calls.

The handshake bytes must be exchanged with the peer using the transport mechanism.
For more information about the TLS handshaking mechanism, see one of the TLS RFCs
(such as RFC 5246: The Transport Layer Security (TLS) Protocol: Version 1.2).

Chapter 8
JSSE Classes and Interfaces

8-9

https://tools.ietf.org/html/rfc5246

For example, if your SSLEngine is acting as a client and handshaking using TLSv1.2,
then you might see the following occurring:

a. The wrap() method produces a TLS ClientHello message, then places it in the
outbound network buffer. The application must correctly send the bytes of this
message to the peer.

b. The SSLEngine must now process the peer's response (such as the ServerHello,
Certificate, and ServerHelloDone messages) to drive the handshake forward. The
application obtains the response bytes from the network transport and places them in
the inbound network buffer. The SSLEngine processes these bytes using the
unwrap() method.

c. The SSLEngine sends more handshaking data (such as the ChangeCipherSuite and
Finished messages). The wrap() places the bytes of the message in the outbound
network buffer. The application must correctly send these bytes to the peer as before.

d. The SSLEngine waits for its peer's ChangeCipherSuite or Finished message. The
bytes of this message follow the same path as in Step b.

6. Once the handshaking has completed, application data can now start flowing. Call the
wrap() method to take the bytes from the outbound application buffer, encrypt and protect
them, and then place them in the network buffer for transport to the peer. Likewise, call the
unwrap() method to decrypt and unprotect inbound network data. The resulting
application data is placed in the inbound application data buffer.

7. Once data has been exchanged between the two peers, close both the inbound and
outbound sides of the SSLEngine. Call the closeOutbound() method to signal the
SSLEngine that the application will not be sending any more data. Call the
closeInbound() method to signal the SSLEngine that the network connection has been
closed and there will be no more data.

Understanding SSLEngine Operation Statuses
To indicate the status of the engine and what actions the application should take, the
SSLEngine.wrap() and SSLEngine.unwrap() methods return an SSLEngineResult instance, as
shown in Example 8-5. This SSLEngineResult object contains two pieces of status information:
the overall status of the engine and the handshaking status.

The possible overall statuses are represented by the SSLEngineResult.Status enum. The
following statuses are available:

OK
There was no error.

CLOSED
The operation closed the SSLEngine or the operation could not be completed because it was
already closed.

BUFFER_UNDERFLOW
The input buffer had insufficient data to process, indicating that the application must obtain
more data from the peer (for example, by reading more data from the network) and try the
operation again.

BUFFER_OVERFLOW
The output buffer had insufficient space to hold the result, indicating that the application must
clear or enlarge the destination buffer and try the operation again.

Chapter 8
JSSE Classes and Interfaces

8-10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngineResult.html

Example 8-1 illustrates how to handle the BUFFER_UNDERFLOW and BUFFER_OVERFLOW statuses of
the SSLEngine.unwrap() method. It uses SSLSession.getApplicationBufferSize() and
SSLSession.getPacketBufferSize() to determine how large to make the byte buffers.

The possible handshaking statuses are represented by the
SSLEngineResult.HandshakeStatus enum. They represent whether handshaking has
completed, whether the caller must send or receive more handshaking data from the peer, and
so on. The following handshake statuses are available:

FINISHED
The SSLEngine has just finished handshaking.

NEED_TASK
The SSLEngine needs the results of one (or more) delegated tasks before handshaking can
continue.

NEED_UNWRAP
The SSLEngine needs to receive data from the remote side before handshaking can continue.

NEED_UNWRAP_AGAIN
The SSLEngine needs to unwrap before handshaking can continue. This value indicates that
not-yet-interpreted data has been previously received from the remote side and does not need
to be received again; the data has been brought into the JSSE framework but has not been
processed yet.

NEED_WRAP
The SSLEngine must send data to the remote side before handshaking can continue, so
SSLEngine.wrap() should be called.

NOT_HANDSHAKING
The SSLEngine is not currently handshaking.

Having two statuses per result allows the SSLEngine to indicate that the application must take
two actions: one in response to the handshaking and one representing the overall status of the
wrap() and unwrap() methods. For example, the engine might, as the result of a single
SSLEngine.unwrap() call, return SSLEngineResult.Status.OK to indicate that the input data
was processed successfully and SSLEngineResult.HandshakeStatus.NEED_UNWRAP to indicate
that the application should obtain more TLS/DTLS encoded data from the peer and supply it to
SSLEngine.unwrap() again so that handshaking can continue. As you will see, the following
examples are greatly simplified; they would need to be expanded significantly to properly
handle all of these status combinations.

Example 8-2 and Example 8-3 illustrate how to process handshaking data by checking
handshaking status and the overall status of the wrap() and unwrap() methods.

Example 8-1 Sample Code for Handling BUFFER_UNDERFLOW and
BUFFER_OVERFLOW

The following code sample illustrates how to handle BUFFER_UNDERFLOW and
BUFFER_OVERFLOW status:

 SSLEngineResult res = engine.unwrap(peerNetData, peerAppData);
 switch (res.getStatus()) {

 case BUFFER_OVERFLOW:
 // Maybe need to enlarge the peer application data buffer if
 // it is too small, and be sure you've compacted/cleared the

Chapter 8
JSSE Classes and Interfaces

8-11

 // buffer from any previous operations.
 if (engine.getSession().getApplicationBufferSize() >
peerAppData.capacity()) {
 // enlarge the peer application data buffer
 } else {
 // compact or clear the buffer
 }
 // retry the operation
 break;

 case BUFFER_UNDERFLOW:
 // Not enough inbound data to process. Obtain more network data
 // and retry the operation. You may need to enlarge the peer
 // network packet buffer, and be sure you've compacted/cleared
 // the buffer from any previous operations.
 if (engine.getSession().getPacketBufferSize() >
peerNetData.capacity()) {
 // enlarge the peer network packet buffer
 } else {
 // compact or clear the buffer
 }
 // obtain more inbound network data and then retry the operation
 break;

 // Handle other status: CLOSED, OK
 // ...
 }

Example 8-2 Sample Code for Checking and Processing Handshaking Statuses and
Overall Statuses

The following code sample illustrates how to process handshaking data by checking
handshaking status and the overall status of the wrap() and unwrap() methods:

void doHandshake(SocketChannel socketChannel, SSLEngine engine,
 ByteBuffer myNetData, ByteBuffer peerNetData) throws Exception {

 // Create byte buffers to use for holding application data
 int appBufferSize = engine.getSession().getApplicationBufferSize();
 ByteBuffer myAppData = ByteBuffer.allocate(appBufferSize);
 ByteBuffer peerAppData = ByteBuffer.allocate(appBufferSize);

 // Begin handshake
 engine.beginHandshake();
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();

 // Process handshaking message
 while (hs != SSLEngineResult.HandshakeStatus.FINISHED &&
 hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {

 switch (hs) {

 case NEED_UNWRAP:
 // Receive handshaking data from peer
 if (socketChannel.read(peerNetData) < 0) {
 // The channel has reached end-of-stream

Chapter 8
JSSE Classes and Interfaces

8-12

 }

 // Process incoming handshaking data
 peerNetData.flip();
 SSLEngineResult res = engine.unwrap(peerNetData, peerAppData);
 peerNetData.compact();
 hs = res.getHandshakeStatus();

 // Check status
 switch (res.getStatus()) {
 case OK :
 // Handle OK status
 break;

 // Handle other status: BUFFER_UNDERFLOW, BUFFER_OVERFLOW,
CLOSED
 // ...
 }
 break;

 case NEED_WRAP:
 // Ensure that any previous net data in myNetData has been sent
 // to the peer (not shown here), then generate more.

 // Empty/clear the local network packet buffer.
 myNetData.clear();

 // Generate more data to send if possible.
 res = engine.wrap(myAppData, myNetData);
 hs = res.getHandshakeStatus();

 // Check status
 switch (res.getStatus()) {
 case OK :
 myNetData.flip();

 // Send the handshaking data to peer
 while (myNetData.hasRemaining()) {
 socketChannel.write(myNetData);
 }
 break;

 // Handle other status: BUFFER_OVERFLOW, BUFFER_UNDERFLOW,
CLOSED
 // ...
 }
 break;

 case NEED_TASK :
 // Handle blocking tasks
 break;

 // Handle other status: // FINISHED or NOT_HANDSHAKING
 // ...
 }
 }

Chapter 8
JSSE Classes and Interfaces

8-13

 // Processes after handshaking
 // ...
}

Example 8-3 Sample Code for Handling DTLS handshake Status and Overall Status

The following code sample illustrates how to handle DTLS handshake status:

void handshake(SSLEngine engine, DatagramSocket socket,
 SocketAddress peerAddr) throws Exception {
 boolean endLoops = false;
 // private static int MAX_HANDSHAKE_LOOPS = 60;
 int loops = MAX_HANDSHAKE_LOOPS;
 engine.beginHandshake();
 while (!endLoops && (serverException == null) && (clientException ==
null)) {
 if (--loops < 0) {
 throw new RuntimeException("Too many loops to produce handshake
packets");
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP ||
 hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP_AGAIN) {
 ByteBuffer iNet;
 ByteBuffer iApp;
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP) {
 // receive ClientHello request and other SSL/TLS/DTLS records
 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 try {
 socket.receive(packet);
 } catch (SocketTimeoutException ste) {
 // retransmit the packet if timeout
 List <DatagramPacket> packets =
 onReceiveTimeout(engine, peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 continue;
 }
 iNet = ByteBuffer.wrap(buf, 0, packet.getLength());
 iApp = ByteBuffer.allocate(1024);
 } else {
 iNet = ByteBuffer.allocate(0);
 iApp = ByteBuffer.allocate(1024);
 }
 SSLEngineResult r = engine.unwrap(iNet, iApp);
 SSLEngineResult.Status rs = r.getStatus();
 hs = r.getHandshakeStatus();
 if (rs == SSLEngineResult.Status.BUFFER_OVERFLOW) {
 // the client maximum fragment size config does not work?
 throw new Exception("Buffer overflow: " +
 "incorrect client maximum fragment size");
 } else if (rs == SSLEngineResult.Status.BUFFER_UNDERFLOW) {
 // bad packet, or the client maximum fragment size

Chapter 8
JSSE Classes and Interfaces

8-14

 // config does not work?
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Buffer underflow: " +
 "incorrect client maximum fragment
size");
 } // otherwise, ignore this packet
 } else if (rs == SSLEngineResult.Status.CLOSED) {
 endLoops = true;
 } // otherwise, SSLEngineResult.Status.OK:
 if (rs != SSLEngineResult.Status.OK) {
 continue;
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_WRAP) {
 List <DatagramPacket> packets =
 // Call a function to produce handshake packets
 produceHandshakePackets(engine, peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 runDelegatedTasks(engine);
 } else if (hs == SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 // OK, time to do application data exchange.
 endLoops = true;
 } else if (hs == SSLEngineResult.HandshakeStatus.FINISHED) {
 endLoops = true;
 }
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Not ready for application data yet");
 }
}

SSLEngine for TLS Protocols
This section shows you how to create an SSLEngine object and use it to generate and
process TLS data.

Creating an SSLEngine Object
Use the SSLContext.createSSLEngine() method to create an SSLEngine object.

Before you use an SSLEngine object, you must configure the engine to act as a client or a
server, and set other configuration parameters, such as which cipher suites to use and whether
client authentication is required.

Example 8-4 Sample Code for Creating an SSLEngine Client for TLS with JKS as
Keystore

The following sample code creates an SSLEngine client for TLS that uses JKS as keystore.

Chapter 8
JSSE Classes and Interfaces

8-15

Note:

In this sample, the server name and port number are not used for communicating
with the server (all transport is the responsibility of the application). They are hints to
the JSSE provider to use for TLS session caching.

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("JKS");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("JKS");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an instance of SSLContext for TLS protocols
 sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLengine(hostname, port);

 // Use as client
 engine.setUseClientMode(true);

Generating and Processing TLS Data
The two main SSLEngine methods are wrap() and unwrap(). They are responsible for
generating and consuming network data respectively. Depending on the state of the SSLEngine
object, this data might be handshake or application data.

Performing TLS Handshake, Then Processing TLS Data, With SSLEngine.wrap() and
SSLEngine.unwrap()

Each SSLEngine object has several phases during its lifetime. Before application data can be
sent or received, the TLS protocol requires a handshake to establish cryptographic
parameters. This handshake requires a series of back-and-forth steps by the SSLEngine object.
During the initial handshaking, the wrap() and unwrap() methods generate and consume
handshake data before starting to exchange application data.

The application is responsible for reliably transporting the data (for example, by using TCP) to
and from the peer. That is, your application (and not SSLEngine) must reliably deliver to the

Chapter 8
JSSE Classes and Interfaces

8-16

peer any data generated by the wrap() method, and your application (and not SSLEngine) must
reliably obtain data from the peer so that it can decode it by calling the unwrap() method.

Each SSLEngine operation generates an instance of the SSLEngineResult class, in which the
SSLEngineResult.HandshakeStatus field is used to determine what operation must occur next
to move the handshake along.

When handshaking is complete, further calls to wrap() will attempt to consume application
data and package it for transport. The unwrap() method will attempt the opposite.

To send data to the peer, the application first supplies the data that it wants to send via
SSLEngine.wrap() to obtain the corresponding TLS encoded data. The application then sends
the encoded data to the peer using its chosen transport mechanism. When the application
receives the TLS encoded data from the peer via the transport mechanism, it supplies this data
to the SSLEngine via SSLEngine.unwrap() to obtain the plaintext data sent by the peer.

Figure 8-3 shows the state machine during a typical TLS handshake, with corresponding
messages and statuses:

Figure 8-3 State Machine during TLS Handshake

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create SSL/TLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Application
Data

Steps to Process TLS Data

Suppose you want to process TLS data sent between a client and server. In general, you
would follow these steps:

Chapter 8
JSSE Classes and Interfaces

8-17

1. Create ByteBuffer instances to represent the application data buffer and the network data
buffer on the client and server. In the client's and server's outbound application data
buffers, specify the data that you want encrypted and sent over the network to the server
and client, respectively.

Note:

In the wrap(ByteBuffer src, ByteBuffer dst) method, the parameter src is
the application data buffer and dst is the network data buffer. Conversely, in the
unwrap(ByteBuffer src, ByteBuffer dst) method, the parameter src is the
network data buffer and dst is the application data buffer. Both wrap() and
unwrap() return an instance of SSLEngineResult, which contains a
SSLEngineResult.HandshakeStatus field that indicates whether the handshake is
complete or what must occur next to move the handshake along.

2. In a loop, call wrap() and unwrap() on the client and server as follows, until the handshake
is complete and both the client and server have sent their application data to each other:

a. Call wrap() on the client and the server. Check the value of the
SSLEngineResult.HandshakeStatus field in the SSLEngineResult instance that wrap()
returns:

• If the handshake isn't complete, then the parameter dst will contain handshake
data that has to be sent over the network to the peer.

• If the handshake is complete, then dst will contain application data encrypted by
SSLEngine, ready to be sent to the remote peer.

b. Add code to handle the SSLEngineResult.HandshakeStatus value returned by the
wrap() and unwrap() methods. See Understanding SSLEngine Operation Statuses for
more information.

c. If the wrap() method generated data in the network data buffer (which can contain
either handshake data or encrypted application data), then send it over the network to
the remote peer.

Note:

• It is the responsibility of your application, not SSLEngine, to send data in
the network data buffer to the remote peer.

• After you call wrap(), you must ensure that all data in the network data
buffer has been sent to the peer.

For example, Example 8-2 sends network data to the remote peer by calling
SocketChannel.write(). It checks that all network data has been sent by
calling ByteBuffer.hasRemaining():

 while (myNetData.hasRemaining()) {
 socketChannel.write(myNetData);
 }

d. Obtain network data sent over the network by the remote peer. Note that it's the
responsibility of your application, not SSLEngine, to do this. For example, Example 8-2
obtains network data from the remote peer by calling SocketChannel.read():

Chapter 8
JSSE Classes and Interfaces

8-18

 case NEED_UNWRAP:
 // Receive handshaking data from peer
 if (socketChannel.read(peerNetData) < 0) {
 // The channel has reached end-of-stream
 }

e. With the network data obtained from the remote peer, call unwrap() on the client and
the server. Check the value of the SSLEngineResult.HandshakeStatus field in the
SSLEngineResult instance that unwrap() returns:

• If the handshake isn't complete, then the src parameter may contain additional
handshake packets, or more packets will need to be obtained from the peer to
continue the handshake.

• If the handshake is complete, then dst may contain application data decrypted by
SSLEngine, ready to be processed by the application.

f. Ensure that the client and server handles the SSLEngineResult.HandshakeStatus
value returned by unwrap().

Example 8-5 Sample Code for Creating a Nonblocking SocketChannel

The following example is an SSL application that uses a non-blocking SocketChannel to
communicate with its peer. It sends the string "hello" to the peer by encoding it using the
SSLEngine created in Example 8-4 . It uses information from the SSLSession to determine how
large to make the byte buffers.

Note:

The example can be made more robust and scalable by using a Selector with the
nonblocking SocketChannel.

 // Create a nonblocking socket channel
 SocketChannel socketChannel = SocketChannel.open();
 socketChannel.configureBlocking(false);
 socketChannel.connect(new InetSocketAddress(hostname, port));

 // Complete connection
 while (!socketChannel.finishedConnect()) {
 // do something until connect completed
 }

 // Create byte buffers for holding application and encoded data

 SSLSession session = engine.getSession();
 ByteBuffer myAppData =
ByteBuffer.allocate(session.getApplicationBufferSize());
 ByteBuffer myNetData = ByteBuffer.allocate(session.getPacketBufferSize());
 ByteBuffer peerAppData =
ByteBuffer.allocate(session.getApplicationBufferSize());
 ByteBuffer peerNetData =
ByteBuffer.allocate(session.getPacketBufferSize());

 // Do initial handshake
 doHandshake(socketChannel, engine, myNetData, peerNetData);

Chapter 8
JSSE Classes and Interfaces

8-19

 myAppData.put("hello".getBytes());
 myAppData.flip();

 while (myAppData.hasRemaining()) {
 // Generate TLS/DTLS encoded data (handshake or application data)
 SSLEngineResult res = engine.wrap(myAppData, myNetData);

 // Process status of call
 if (res.getStatus() == SSLEngineResult.Status.OK) {
 myAppData.compact();

 // Send TLS/DTLS encoded data to peer
 while(myNetData.hasRemaining()) {
 int num = socketChannel.write(myNetData);
 if (num == 0) {
 // no bytes written; try again later
 }
 }
 }

 // Handle other status: BUFFER_OVERFLOW, CLOSED
 ...
 }

Example 8-6 Sample Code for Reading Data From Nonblocking SocketChannel

SocketChannelSSLEngineExample 8-4

 // Read TLS/DTLS encoded data from peer
 int num = socketChannel.read(peerNetData);
 if (num == -1) {
 // The channel has reached end-of-stream
 } else if (num == 0) {
 // No bytes read; try again ...
 } else {
 // Process incoming data
 peerNetData.flip();
 res = engine.unwrap(peerNetData, peerAppData);

 if (res.getStatus() == SSLEngineResult.Status.OK) {
 peerNetData.compact();

 if (peerAppData.hasRemaining()) {
 // Use peerAppData
 }
 }

 // Handle other status: BUFFER_OVERFLOW, BUFFER_UNDERFLOW, CLOSED
 ...

SSLEngine for DTLS Protocols
This section shows you how to create an SSLEngine object and use it to handle a DTLS
handshake, generate and process DTLS data, and handle retransmissions in DTLS
connections.

Chapter 8
JSSE Classes and Interfaces

8-20

Creating an SSLEngine Object for DTLS
The following examples illustrate how to create an SSLEngine object for DTLS.

Note:

The server name and port number are not used for communicating with the server
(all transport is the responsibility of the application). They are hints to the JSSE
provider to use for DTLS session caching, and for Kerberos-based cipher suite
implementations to determine which server credentials should be obtained.

Example 8-7 Sample Code for Creating an SSLEngine Client for DTLS with PKCS12 as
Keystore

The following sample code creates an SSLEngine client for DTLS that uses PKCS12 as
keystore:

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("PKCS12");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("PKCS12");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an instance of SSLContext for DTLS protocols
 sslContext = SSLContext.getInstance("DTLS");
 sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLengine(hostname, port);

 // Use engine as client
 engine.setUseClientMode(true);

Chapter 8
JSSE Classes and Interfaces

8-21

Example 8-8 Sample Code for Creating an SSLEngine Server for DTLS with PKCS12 as
Keystore

SSLEngine

 import javax.net.ssl.*;
 import java.security.*;

 // Create and initialize the SSLContext with key material
 char[] passphrase = "passphrase".toCharArray();

 // First initialize the key and trust material
 KeyStore ksKeys = KeyStore.getInstance("PKCS12");
 ksKeys.load(new FileInputStream("testKeys"), passphrase);
 KeyStore ksTrust = KeyStore.getInstance("PKCS12");
 ksTrust.load(new FileInputStream("testTrust"), passphrase);

 // KeyManagers decide which key material to use
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(ksKeys, passphrase);

 // TrustManagers decide whether to allow connections
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ksTrust);

 // Get an SSLContext for DTLS Protocol without authentication
 sslContext = SSLContext.getInstance("DTLS");
 sslContext.init(null, null, null);

 // Create the engine
 SSLEngine engine = sslContext.createSSLeEngine(hostname, port);

 // Use the engine as server
 engine.setUseClientMode(false);

 // Require client authentication
 engine.setNeedClientAuth(true);

Generating and Processing DTLS Data

A DTLS handshake and a TLS handshake generate and process data similarly. (See
Generating and Processing TLS Data.) They both use the SSLEngine.wrap() and
SSLEngine.wrap() methods to generate and consume network data, respectively.

The following diagram shows the state machine during a typical DTLS handshake, with
corresponding messages and statuses:

Chapter 8
JSSE Classes and Interfaces

8-22

Figure 8-4 State Machine during DTLS Handshake

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

NEED_UNWRAP_AGAIN

Example 8-9 Sample Code for Handling DTLS Handshake Status and Overall Status

This sample demonstrates how to handle DTLS handshake status (from the
SSLEngine.getHandshakeStatus method) and overall status (from the
SSLEngineResult.getStatus method).

void handshake(SSLEngine engine, DatagramSocket socket, SocketAddress
peerAddr) throws Exception {
 boolean endLoops = false;
 // private static int MAX_HANDSHAKE_LOOPS = 60;
 int loops = MAX_HANDSHAKE_LOOPS;
 engine.beginHandshake();
 while (!endLoops && (serverException == null) && (clientException ==
null)) {
 if (--loops < 0) {
 throw new RuntimeException("Too many loops to produce handshake
packets");
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP ||
 hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP_AGAIN) {
 ByteBuffer iNet;

Chapter 8
JSSE Classes and Interfaces

8-23

 ByteBuffer iApp;
 if (hs == SSLEngineResult.HandshakeStatus.NEED_UNWRAP) {
 // Receive ClientHello request and other SSL/TLS/DTLS records
 byte[] buf = new byte[1024];
 DatagramPacket packet = new DatagramPacket(buf, buf.length);
 try {
 socket.receive(packet);
 } catch (SocketTimeoutException ste) {
 // Retransmit the packet if timeout
 List <DatagramPacket> packets = onReceiveTimeout(engine,
peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 continue;
 }
 iNet = ByteBuffer.wrap(buf, 0, packet.getLength());
 iApp = ByteBuffer.allocate(1024);
 } else {
 iNet = ByteBuffer.allocate(0);
 iApp = ByteBuffer.allocate(1024);
 }
 SSLEngineResult r = engine.unwrap(iNet, iApp);
 SSLEngineResult.Status rs = r.getStatus();
 hs = r.getHandshakeStatus();
 if (rs == SSLEngineResult.Status.BUFFER_OVERFLOW) {
 // The client maximum fragment size config does not work?
 throw new Exception("Buffer overflow: " +
 "incorrect client maximum fragment size");
 } else if (rs == SSLEngineResult.Status.BUFFER_UNDERFLOW) {
 // Bad packet, or the client maximum fragment size
 // config does not work?
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Buffer underflow: " +
 "incorrect client maximum fragment
size");
 } // Otherwise, ignore this packet
 } else if (rs == SSLEngineResult.Status.CLOSED) {
 endLoops = true;
 } // Otherwise, SSLEngineResult.Status.OK
 if (rs != SSLEngineResult.Status.OK) {
 continue;
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_WRAP) {
 // Call a function to produce handshake packets
 List <DatagramPacket> packets = produceHandshakePackets(engine,
peerAddr);
 for (DatagramPacket p : packets) {
 socket.send(p);
 }
 } else if (hs == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 runDelegatedTasks(engine);
 } else if (hs == SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 // OK, time to do application data exchange
 endLoops = true;
 } else if (hs == SSLEngineResult.HandshakeStatus.FINISHED) {

Chapter 8
JSSE Classes and Interfaces

8-24

 endLoops = true;
 }
 }
 SSLEngineResult.HandshakeStatus hs = engine.getHandshakeStatus();
 if (hs != SSLEngineResult.HandshakeStatus.NOT_HANDSHAKING) {
 throw new Exception("Not ready for application data yet");
 }
}

Difference Between the TLS and DTLS SSLEngine.wrap() Methods

The SSLEngine.wrap() method for DTLS is different from TLS as follows:

• In the TLS implementation of SSLEngine, the output buffer of SSLEngine.wrap() contains
one or more TLS records (due to the TLSv1 BEAST Cipher Block Chaining vulnerability).

• In the DTLS implementation of SSLEngine, the output buffer of SSLEngine.wrap() contains
at most one record, so that every DTLS record can be marshaled and delivered to the
datagram layer individually.

Note:

Each record produced by SSLEngine.wrap() should comply to the maximum packet
size limitation as specified by SSLParameters.getMaximumPacketSize().

Handling Retransmissions in DTLS Connections
In SSL/TLS over a reliable connection, data is guaranteed to arrive in the proper order, and
retransmission is unnecessary. However, for DTLS, which often works over unreliable media,
missing or delayed handshake messages must be retransmitted.

The SSLEngine class operates in a completely transport-neutral manner, and the application
layer performs all I/O. Because the SSLEngine class isn’t responsible for I/O, the application
instead is responsible for providing timers and signalling the SSLEngine class when a
retransmission is needed. The application layer must determine the right timeout value and
when to trigger the timeout event. During handshaking, if an SSLEngine object is in
HandshakeStatus.NEED_UNWRAP state, a call to SSLEngine.wrap() means that the previous
packets were lost, and must be retransmitted. For such cases, the DTLS implementation of the
SSLEngine class takes the responsibility to wrap the previous necessary handshaking
messages again if necessary.

Note:

In a DTLS engine, only handshake messages must be properly exchanged.
Application data can handle packet loss without the need for timers.

Chapter 8
JSSE Classes and Interfaces

8-25

Handling Retransmission in an Application

SSLEngine.unwrap() and SSLEngine.wrap() can be used together to handle retransmission in
an application.

Figure 8-5 shows a typical scenario for handling DTLS handshaking retransmission:

Figure 8-5 DTLS Handshake Retransmission State Flow

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

5

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

3

2

NEED_UNWRAP_AGAIN

4

1. Create and initialize an instance of DTLS SSLEngine.

See Creating an SSLEngine Object. The DTLS handshake process begins.

2. If the handshake status is HandshakeStatus.NEED_UNWRAP, wait for data from network.

3. If the timer times out, it indicates that the previous delivered handshake messages may
have been lost.

Note:

In DTLS handshaking retransmission, the determined handshake status isn’t
necessarily HandshakeStatus.NEED_WRAP for the call to SSLEngine.wrap().

Chapter 8
JSSE Classes and Interfaces

8-26

4. Call SSLEngine.wrap().

5. The wrapped packets are delivered.

Handling a Buffered Handshake Message in an Application

Datagram transport doesn’t require or provide reliable or in-order delivery of data. Handshake
messages may be lost or need to be reordered. In the DTLS implementation, a handshake
message may need to be buffered for future handling before all previous messages have been
received.

The DTLS implementation of SSLEngine takes the responsibility to reorder handshake
messages. Handshake message buffering and reordering are transparent to applications.

However, applications must manage HandshakeStatus.NEED_UNWRAP_AGAIN status. This status
indicates that for the next SSLEngine.unwrap() operation no additional data from the
remote side is required.

Figure 8-6 shows a typical scenario for using the HandshakeStatus.NEED_UNWRAP_AGAIN.

Figure 8-6 State Machine of DTLS Buffered Handshake with NEED_UNWRAP_AGAIN

Determine Handshake Status

wrap()

Wait for Data
from Network

Use Data if
Available

Send Data if
Available

Run
Task

unwrap ()

Create DTLS SSLEngines
Create Buffers
Set Client or Server mode
Begin Handshake
Set Maximum Fragment Size

1

NEED_TASK NEED_WRAP

NEED_UNWRAP FINISHED

Handshake Finished

Network
Data

Network
Data

Timeout Application
Data

3

2

NEED_UNWRAP_AGAIN

5 4&6

1. Create and initialize an instance of DTLS SSLEngine.

See Creating an SSLEngine Object.

Chapter 8
JSSE Classes and Interfaces

8-27

2. Optional: If the handshake status is HandshakeStatus.NEED_UNWRAP, wait for data from
network.

3. Optional: If you received the network data, call SSLEngine.unwrap().

4. Determine the handshake status for next processing. The handshake status can be
HandshakeStatus.NEED_UNWRAP_AGAIN, HandshakeStatus.NEED_UNWRAP, or
HandshakeStatus.NEED_WRAP.

• If the handshake status is HandshakeStatus.NEED_UNWRAP_AGAIN, call
SSLEngine.unwrap().

Note:

For HandshakeStatus.NEED_UNWRAP_AGAIN status, no additional data from the
network is required for an SSLEngine.unwrap() operation.

5. Determine the handshake status for further processing. The handshake status can be
HandshakeStatus.NEED_UNWRAP_AGAIN, HandshakeStatus.NEED_UNWRAP, or
HandshakeStatus.NEED_WRAP.

Dealing With Blocking Tasks

During handshaking, an SSLEngine might encounter tasks that can block or take a long time.
For example, a TrustManager may need to connect to a remote certificate validation service, or
a KeyManager might need to prompt a user to determine which certificate to use as part of
client authentication. To preserve the nonblocking nature of SSLEngine, when the engine
encounters such a task, it will return SSLEngineResult.HandshakeStatus.NEED_TASK. Upon
receiving this status, the application should invoke SSLEngine.getDelegatedTask() to get the
task, and then, using the threading model appropriate for its requirements, process the task.
The application might, for example, obtain threads from a thread pool to process the tasks,
while the main thread handles other I/O.

The following code executes each task in a newly created thread:

if (res.getHandshakeStatus() == SSLEngineResult.HandshakeStatus.NEED_TASK) {
 Runnable task;
 while ((task = engine.getDelegatedTask()) != null) {
 new Thread(task).start();
 }
}

The SSLEngine will block future wrap() and unwrap() calls until all of the outstanding tasks are
completed.

Shutting Down a TLS/DTLS Connection
For an orderly shutdown of a TLS/DTLS connection, the TLS/DTLS protocols require
transmission of close messages. Therefore, when an application is done with the TLS/DTLS
connection, it should first obtain the close messages from the SSLEngine, then transmit them to
the peer using its transport mechanism, and finally shut down the transport mechanism.
Example 8-10 illustrates this.

Chapter 8
JSSE Classes and Interfaces

8-28

In addition to an application explicitly closing the SSLEngine, the SSLEngine might be closed by
the peer (via receipt of a close message while it is processing handshake data), or by the
SSLEngine encountering an error while processing application or handshake data, indicated by
throwing an SSLException. In such cases, the application should invoke SSLEngine.wrap() to
get the close message and send it to the peer until SSLEngine.isOutboundDone() returns true
(as shown in Example 8-10), or until the SSLEngineResult.getStatus() returns CLOSED.

In addition to orderly shutdowns, there can also be unexpected shutdowns when the transport
link is severed before close messages are exchanged. In the previous examples, the
application might get -1 or IOException when trying to read from the nonblocking
SocketChannel, or get IOException when trying to write to the non-blocking SocketChannel.
When you get to the end of your input data, you should call engine.closeInbound(), which will
verify with the SSLEngine that the remote peer has closed cleanly from the TLS/DTLS
perspective. Then the application should still try to shut down cleanly by using the procedure in
Example 8-10. Obviously, unlike SSLSocket, the application using SSLEngine must deal with
more state transitions, statuses, and programming. See Sample Code Illustrating the Use of an
SSLEngine.

Example 8-10 Sample Code for Shutting Down a SSL/TLS/DTLS Connection

The following code sample illustrates how to shut down a TLS/DTLS connection:

// Indicate that application is done with engine
engine.closeOutbound();

while (!engine.isOutboundDone()) {
 // Get close message
 SSLEngineResult res = engine.wrap(empty, myNetData);

 // Check res statuses

 // Send close message to peer
 while(myNetData.hasRemaining()) {
 int num = socketChannel.write(myNetData);
 if (num == 0) {
 // no bytes written; try again later
 }
 myNetData().compact();
 }
}

// Close transport
socketChannel.close();

SSLSession and ExtendedSSLSession
The javax.net.ssl.SSLSession interface represents a security context negotiated between
the two peers of an SSLSocket or SSLEngine connection. After a session has been arranged, it
can be shared by future SSLSocket or SSLEngine objects connected between the same two
peers.

In some cases, parameters negotiated during the handshake are needed later in the
handshake to make decisions about trust. For example, the list of valid signature algorithms
might restrict the certificate types that can be used for authentication. The SSLSession can be
retrieved during the handshake by calling getHandshakeSession() on an SSLSocket or

Chapter 8
JSSE Classes and Interfaces

8-29

SSLEngine. Implementations of TrustManager or KeyManager can use the
getHandshakeSession() method to get information about session parameters to help them
make decisions.

A fully initialized SSLSession contains the cipher suite that will be used for communications
over a secure socket as well as a nonauthoritative hint as to the network address of the remote
peer, and management information such as the time of creation and last use. A session also
contains a shared master secret negotiated between the peers that is used to create
cryptographic keys for encrypting and guaranteeing the integrity of the communications over
an SSLSocket or SSLEngine connection. The value of this master secret is known only to the
underlying secure socket implementation and is not exposed through the SSLSession API.

ExtendedSSLSession extends the SSLSession interface to support additional session attributes.
The ExtendedSSLSession class adds methods that describe the signature algorithms that are
supported by the local implementation and the peer. The getRequestedServerNames() method
called on an ExtendedSSLSession instance is used to obtain a list of SNIServerName objects in
the requested Server Name Indication (SNI) Extension. The server should use the requested
server names to guide its selection of an appropriate authentication certificate, and/or other
aspects of the security policy. The client should use the requested server names to guide its
endpoint identification of the peer's identity, and/or other aspects of the security policy.

Calls to the getPacketBufferSize() and getApplicationBufferSize() methods on
SSLSession are used to determine the appropriate buffer sizes used by SSLEngine.

Note:

The TLS protocols specify that implementations are to produce packets containing at
most 16 kilobytes (KB) of plain text. However, some implementations violate the
specification and generate large records up to 32 KB. If the SSLEngine.unwrap()
code detects large inbound packets, then the buffer sizes returned by SSLSession will
be updated dynamically. Applications should always check the
BUFFER_OVERFLOW and BUFFER_UNDERFLOW statuses and enlarge the
corresponding buffers if necessary. See Understanding SSLEngine Operation
Statuses. SunJSSE will always send standard compliant 16 KB records and allow
incoming 32 KB records. For a workaround, see the System property
jsse.SSLEngine.acceptLargeFragments in Customizing JSSE.

HttpsURLConnection Class
The javax.net.ssl.HttpsURLConnection class extends the java.net.HttpURLConnection
class and adds support for HTTPS-specific features.

The HTTPS protocol is similar to HTTP, but HTTPS first establishes a secure channel through
TLS sockets and then verifies the identity of the peer (see Cipher Suite Choice and Remote
Entity Verification) before requesting or receiving data. The
javax.net.ssl.HttpsURLConnection class extends the java.net.HttpURLConnection class
and adds support for HTTPS-specific features. To know more about how HTTPS URLs are
constructed and used, see thejava.net.URL, java.net.URLConnection,
java.net.HttpURLConnection, and javax.net.ssl.HttpsURLConnection classes.

Upon obtaining an HttpsURLConnection instance, you can configure a number of HTTP and
HTTPS parameters before actually initiating the network connection via the
URLConnection.connect() method. Of particular interest are:

Chapter 8
JSSE Classes and Interfaces

8-30

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URL.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URLConnection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/HttpURLConnection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/HttpsURLConnection.html

• Setting the Assigned SSLSocketFactory

• Setting the Assigned HostnameVerifier

Setting the Assigned SSLSocketFactory

In some situations, it is desirable to specify the SSLSocketFactory that an HttpsURLConnection
instance uses. For example, you might want to tunnel through a proxy type that is not
supported by the default implementation. The new SSLSocketFactory could return sockets that
have already performed all necessary tunneling, thus allowing HttpsURLConnection to use
additional proxies.

The HttpsURLConnection class has a default SSLSocketFactory that is assigned when the
class is loaded (this is the factory returned by the SSLSocketFactory.getDefault() method).
Future instances of HttpsURLConnection will inherit the current default SSLSocketFactory until
a new default SSLSocketFactory is assigned to the class via the static
HttpsURLConnection.setDefaultSSLSocketFactory() method. Once an instance of
HttpsURLConnection has been created, the inherited SSLSocketFactory on this instance can
be overridden with a call to the setSSLSocketFactory() method.

Note:

Changing the default static SSLSocketFactory has no effect on existing instances of
HttpsURLConnection. A call to the setSSLSocketFactory() method is necessary to
change the existing instances.

You can obtain the per-instance or per-class SSLSocketFactory by making a call to the
getSSLSocketFactory() or getDefaultSSLSocketFactory() method, respectively.

Setting the Assigned HostnameVerifier

If the host name of the URL does not match the host name in the credentials received as part
of the TLS handshake, then it is possible that URL spoofing has occurred. If the
implementation cannot determine a host name match with reasonable certainty, then the TLS
implementation performs a callback to the instance's assigned HostnameVerifier for further
checking. The host name verifier can take whatever steps are necessary to make the
determination, such as performing host name pattern matching or perhaps opening an
interactive dialog box. An unsuccessful verification by the host name verifier closes the
connection. For more information regarding host name verification, see RFC 2818: HTTP over
TLS.

The setHostnameVerifier() and setDefaultHostnameVerifier() methods operate
in a similar manner to the setSSLSocketFactory() and
setDefaultSSLSocketFactory() methods, in that HostnameVerifier objects are
assigned on a per-instance and per-class basis, and the current values can be obtained by a
call to the getHostnameVerifier() or getDefaultHostnameVerifier() method.

Support Classes and Interfaces

The classes and interfaces in this section are provided to support the creation and initialization
of SSLContext objects, which are used to create SSLSocketFactory, SSLServerSocketFactory,

Chapter 8
JSSE Classes and Interfaces

8-31

http://www.ietf.org/rfc/rfc2818.txt?number=2818
http://www.ietf.org/rfc/rfc2818.txt?number=2818

and SSLEngine objects. The support classes and interfaces are part of the javax.net.ssl
package.

Three of the classes described in this section (SSLContext Class, KeyManagerFactory Class,
and TrustManagerFactory Class) are engine classes. An engine class is an API class for
specific algorithms (or protocols, in the case of SSLContext), for which implementations may be
provided in one or more Cryptographic Service Provider (provider) packages. See JCA Design
Principles and Engine Classes and Algorithms.

The SunJSSE provider that comes standard with JSSE provides SSLContext,
KeyManagerFactory, and TrustManagerFactory implementations, as well as implementations
for engine classes in the standard java.security API. Table 8-1 lists implementations supplied
by SunJSSE.

Table 8-1 Implementations Supplied by SunJSSE

Engine Class Implemented Algorithm or Protocol

KeyStore PKCS12

KeyManagerFactory PKIX, SunX509

TrustManagerFactory PKIX (X509 or SunPKIX), SunX509

SSLContext SSLv31, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3,
DTLSv1.0, DTLSv1.2

1 Starting with JDK 8u31, the SSLv3 protocol (Secure Socket Layer) has been deactivated and is not available by
default. See the java.security.Security property jdk.tls.disabledAlgorithms in the
<java_home>/conf/security/java.security file. If SSLv3 is absolutely required, the protocol can be
reactivated by removing SSLv3 from the jdk.tls.disabledAlgorithms property in the
java.security file or by dynamically setting this Security Property before JSSE is initialized.

SSLContext Class
The javax.net.ssl.SSLContext class is an engine class for an implementation of a secure
socket protocol. An instance of this class acts as a factory for SSLSocket, SSLServerSocket,
and SSLEngine. An SSLContext object holds all of the state information shared across all
objects created under that context. For example, session state is associated with the
SSLContext when it is negotiated through the handshake protocol by sockets created by socket
factories provided by the context. These cached sessions can be reused and shared by other
sockets created under the same context.

Each instance is configured through its init method with the keys, certificate chains, and
trusted root CA certificates that it needs to perform authentication. This configuration is
provided in the form of key and trust managers. These managers provide support for the
authentication and key agreement aspects of the cipher suites supported by the context.

Currently, only X.509-based managers are supported.

Obtaining and Initializing the SSLContext Class
The SSLContext class is used to create the SSLSocketFactory or SSLServerSocketFactory
class.

There are two ways to obtain and initialize an SSLContext:

• The simplest way is to call the static SSLContext.getDefault method on either the
SSLSocketFactory or SSLServerSocketFactory class. This method creates a default
SSLContext with a default KeyManager, TrustManager, and SecureRandom (a secure

Chapter 8
JSSE Classes and Interfaces

8-32

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html#getDefault()

random number generator). A default KeyManagerFactory and TrustManagerFactory are
used to create the KeyManager and TrustManager, respectively. The key material used is
found in the default keystore and truststore, as determined by system properties described
in Customizing the Default Keystores and Truststores, Store Types, and Store Passwords.

• The approach that gives the caller the most control over the behavior of the created
context is to call the static method SSLContext.getDefault on the SSLContext class, and
then initialize the context by calling the instance's proper init() method. One variant of
the init() method takes three arguments: an array of KeyManager objects, an array of
TrustManager objects, and a SecureRandom object. The KeyManager and TrustManager
objects are created by either implementing the appropriate interfaces or using the
KeyManagerFactory and TrustManagerFactory classes to generate implementations. The
KeyManagerFactory and TrustManagerFactory can then each be initialized with key
material contained in the KeyStore passed as an argument to the init() method of the
TrustManagerFactory or KeyManagerFactory classes. Finally, the getTrustManagers()
method (in TrustManagerFactory) and getKeyManagers() method (in KeyManagerFactory)
can be called to obtain the array of trust managers or key managers, one for each type of
trust or key material.

Once a TLS connection is established, an SSLSession is created which contains various
information, such as identities established and cipher suite used. The SSLSession is then used
to describe an ongoing relationship and state information between two entities. Each TLS
connection involves one session at a time, but that session may be used on many connections
between those entities, simultaneously or sequentially.

Creating an SSLContext Object
Like other JCA provider-based engine classes, SSLContext objects are created using the
getInstance() factory methods of the SSLContext class. These static methods each return an
instance that implements at least the requested secure socket protocol. The returned instance
may implement other protocols, too. For example, getInstance("TLSv1") may return an
instance that implements TLSv1, TLSv1.1, and TLSv1.2. The getSupportedProtocols()
method returns a list of supported protocols when an SSLSocket, SSLServerSocket, or
SSLEngine is created from this context. You can control which protocols are actually enabled
for an SSL connection by using the setEnabledProtocols(String[] protocols) method.

Note:

An SSLContext object is automatically created, initialized, and statically assigned to
the SSLSocketFactory class when you call the SSLSocketFactory.getDefault()
method. Therefore, you do not have to directly create and initialize an SSLContext
object (unless you want to override the default behavior).

To create an SSLContext object by calling the getInstance() factory method, you must specify
the protocol name. You may also specify which provider you want to supply the implementation
of the requested protocol:

• public static SSLContext getInstance(String protocol);
• public static SSLContext getInstance(String protocol, String provider);
• public static SSLContext getInstance(String protocol, Provider provider);

Chapter 8
JSSE Classes and Interfaces

8-33

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html#getDefault()

If just a protocol name is specified, then the system will determine whether an implementation
of the requested protocol is available in the environment. If there is more than one
implementation, then it will determine whether there is a preferred one.

If both a protocol name and a provider are specified, then the system will determine whether
an implementation of the requested protocol is in the provider requested. If there is no
implementation, an exception will be thrown.

A protocol is a string (such as "TLS") that describes the secure socket protocol desired.
Common protocol names for SSLContext objects are defined in Java Security Standard
Algorithm Names.

An SSLContext can be obtained as follows:

SSLContext sc = SSLContext.getInstance("TLS");

A newly created SSLContext should be initialized by calling the init method:

public void init(KeyManager[] km, TrustManager[] tm, SecureRandom random);

If the KeyManager[] parameter is null, then an empty KeyManager will be defined for this
context. If the TrustManager[] parameter is null, then the installed security providers will be
searched for the highest-priority implementation of the TrustManagerFactory class (see
TrustManagerFactory Class), from which an appropriate TrustManager will be obtained.
Likewise, the SecureRandom parameter may be null, in which case a default implementation will
be used.

If the internal default context is used, (for example, an SSLContext is created by
SSLSocketFactory.getDefault() or SSLServerSocketFactory.getDefault()), then a default
KeyManager and TrustManager are created. The default SecureRandom implementation is also
chosen.

TrustManager Interface
The primary responsibility of the TrustManager is to determine whether the presented
authentication credentials should be trusted. If the credentials are not trusted, then the
connection will be terminated. To authenticate the remote identity of a secure socket peer, you
must initialize an SSLContext object with one or more TrustManager objects. You must pass
one TrustManager for each authentication mechanism that is supported. If null is passed into
the SSLContext initialization, then a trust manager will be created for you. Typically, a single
trust manager supports authentication based on X.509 public key certificates (for example,
X509TrustManager). Some secure socket implementations may also support authentication
based on shared secret keys, Kerberos, or other mechanisms.

TrustManager objects are created either by a TrustManagerFactory, or by providing a
concrete implementation of the interface.

TrustManagerFactory Class
The javax.net.ssl.TrustManagerFactory is an engine class for a provider-based service that
acts as a factory for one or more types of TrustManager objects. Because it is provider-based,
additional factories can be implemented and configured to provide additional or alternative trust
managers that provide more sophisticated services or that implement installation-specific
authentication policies.

Chapter 8
JSSE Classes and Interfaces

8-34

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Creating a TrustManagerFactory
You create an instance of this class in a similar manner to SSLContext, except for passing an
algorithm name string instead of a protocol name to the getInstance() method:

TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm);
TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm,
String provider);
TrustManagerFactory tmf = TrustManagerFactory.getInstance(String algorithm,
Provider provider);

A sample call is as follows:

TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX", "SunJSSE");

The preceding call creates an instance of the SunJSSE provider's PKIX trust manager factory.
This factory can be used to create trust managers that provide X.509 PKIX-based certification
path validity checking.

When initializing an SSLContext, you can use trust managers created from a trust manager
factory, or you can write your own trust manager, for example, using the CertPath API. See
Java PKI Programmer’s Guide. You do not need to use a trust manager factory if you
implement a trust manager using the X509TrustManager interface.

A newly created factory should be initialized by calling one of the init() methods:

public void init(KeyStore ks);
public void init(ManagerFactoryParameters spec);

Call whichever init() method is appropriate for the TrustManagerFactory you are using. If
you are not sure, then ask the provider vendor.

For many factories, such as the SunX509 TrustManagerFactory from the SunJSSE provider,
the KeyStore is the only information required to initialize the TrustManagerFactory and thus
the first init method is the appropriate one to call. The TrustManagerFactory will query the
KeyStore for information about which remote certificates should be trusted during authorization
checks.

Sometimes, initialization parameters other than a KeyStore are needed by a provider. Users of
that provider are expected to pass an implementation of the appropriate
ManagerFactoryParameters as defined by the provider. The provider can then call the
specified methods in the ManagerFactoryParameters implementation to obtain the needed
information.

For example, suppose the TrustManagerFactory provider requires initialization parameters B,
R, and S from any application that wants to use that provider. Like all providers that require
initialization parameters other than a KeyStore, the provider requires the application to provide
an instance of a class that implements a particular ManagerFactoryParameters subinterface. In
the example, suppose that the provider requires the calling application to implement and create

Chapter 8
JSSE Classes and Interfaces

8-35

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPath.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/X509TrustManager.html

an instance of MyTrustManagerFactoryParams and pass it to the second init() method. The
following example illustrates what MyTrustManagerFactoryParams can look like:

public interface MyTrustManagerFactoryParams extends ManagerFactoryParameters
{
 public boolean getBValue();
 public float getRValue();
 public String getSValue();
}

Some trust managers can make trust decisions without being explicitly initialized with a
KeyStore object or any other parameters. For example, they may access trust material from a
local directory service via LDAP, use a remote online certificate status checking server, or
access default trust material from a standard local location.

Check TrustManagerFactory Object's Certificates' Expiration Date
The following method, filterTrustAnchors, filters a set of trust anchors, removing those
whose certificates will expire by the specified date, then initializes a TrustManagerFactory
object with this set.

 public static void filterTrustAnchors (
 String truststore, String password, String validityDate)
 throws FileNotFoundException, KeyStoreException, IOException,
 ParseException, NoSuchAlgorithmException,
 InvalidAlgorithmParameterException, CertificateException,
 KeyManagementException {

 FileInputStream is = new FileInputStream(truststore);
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(is, password.toCharArray());
 PKIXParameters params = new PKIXParameters(keystore);

 // Obtain CA root certificates
 Set<TrustAnchor> myTrustAnchors = params.getTrustAnchors();

 // Create new set of CA certificates that are still valid for
 // specified date
 Set<TrustAnchor> validTrustAnchors =
 myTrustAnchors.stream().filter(
 ta -> {
 try {
 ta.getTrustedCert().checkValidity(
 DateFormat.getDateInstance().parse(validityDate));
 } catch (CertificateException | ParseException e) {
 return false;
 }
 return true; }).collect(Collectors.toSet());

 // Create PKIXBuilderParameters parameters
 PKIXBuilderParameters pkixParams =
 new PKIXBuilderParameters(validTrustAnchors, new
X509CertSelector());

 // Wrap PKIX parameters as trust manager parameters

Chapter 8
JSSE Classes and Interfaces

8-36

 ManagerFactoryParameters trustParams =
 new CertPathTrustManagerParameters(pkixParams);

 // Create TrustManagerFactory for PKIX-compliant trust managers
 TrustManagerFactory factory = TrustManagerFactory.getInstance("PKIX");

 // Pass parameters to factory to be passed to CertPath implementation
 factory.init(trustParams);

 // Use factory
 SSLContext ctx = SSLContext.getInstance("TLS");
 ctx.init(null, factory.getTrustManagers(), null);
 }

PKIX TrustManager Support
The default trust manager algorithm is PKIX. It can be changed by editing the
ssl.TrustManagerFactory.algorithm property in the java.security file.

The PKIX trust manager factory uses the CertPath PKIX implementation (see PKI
Programmer's Guide Overview) from an installed security provider. The trust manager factory
can be initialized using the normal init(KeyStores) method, or by passing CertPath
parameters to the PKIX trust manager using the CertPathTrustManagerParameters
class.

Example 8-11 illustrates how to get the trust manager to use a particular LDAP certificate store
and enable revocation checking.

If the TrustManagerFactory.init(KeyStore) method is used, then default PKIX parameters
are used with the exception that revocation checking is disabled. It can be enabled by setting
the com.sun.net.ssl.checkRevocation system property to true. This setting requires that the
CertPath implementation can locate revocation information by itself. The PKIX implementation
in the provider can do this in many cases but requires that the system property
com.sun.security.enableCRLDP be set to true. Note that the
TrustManagerFactory.init(ManagerFactoryParameters) method has revocation
checking enabled by default.

See PKIX Classes and The CertPath Class.

Example 8-11 Sample Code for Using a LDAP Certificate to Enable Revocation
Checking

The following example illustrates how to get the trust manager to use a particular LDAP
certificate store and enable revocation checking:

 import javax.net.ssl.*;
 import java.security.cert.*;
 import java.security.KeyStore;
 import java.io.FileInputStream;
 ...

 // Obtain Keystore password
 char[] pass = System.console().readPassword("Password: ");

 // Create PKIX parameters
 KeyStore anchors = KeyStore.getInstance("JKS");

Chapter 8
JSSE Classes and Interfaces

8-37

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/CertPathTrustManagerParameters.html

 anchors.load(new FileInputStream(anchorsFile, pass));
 PKIXBuilderParameters pkixParams = new PKIXBuilderParameters(anchors, new
X509CertSelector());

 // Specify LDAP certificate store to use
 LDAPCertStoreParameters lcsp = new
LDAPCertStoreParameters("ldap.imc.org", 389);
 pkixParams.addCertStore(CertStore.getInstance("LDAP", lcsp));

 // Specify that revocation checking is to be enabled
 pkixParams.setRevocationEnabled(true);

 // Wrap PKIX parameters as trust manager parameters
 ManagerFactoryParameters trustParams = new
CertPathTrustManagerParameters(pkixParams);

 // Create TrustManagerFactory for PKIX-compliant trust managers
 TrustManagerFactory factory = TrustManagerFactory.getInstance("PKIX");

 // Pass parameters to factory to be passed to CertPath implementation
 factory.init(trustParams);

 // Use factory
 SSLContext ctx = SSLContext.getInstance("TLS");
 ctx.init(null, factory.getTrustManagers(), null);

X509TrustManager Interface
The javax.net.ssl.X509TrustManager interface extends the general TrustManager interface.
It must be implemented by a trust manager when using X.509-based authentication.

To support X.509 authentication of remote socket peers through JSSE, an instance of this
interface must be passed to the init method of an SSLContext object.

Creating an X509TrustManager
You can either implement this interface directly yourself or obtain one from a provider-based
TrustManagerFactory (such as that supplied by the SunJSSE provider). You could also
implement your own interface that delegates to a factory-generated trust manager. For
example, you might do this to filter the resulting trust decisions and query an end-user through
a graphical user interface.

If a null KeyStore parameter is passed to the SunJSSE PKIX or SunX509
TrustManagerFactory, then the factory uses the following process to try to find trust material:

1. If the javax.net.ssl.trustStore property is defined, then the TrustManagerFactory
attempts to find a file using the file name specified by that system property, and uses that
file for the KeyStore parameter. If the javax.net.ssl.trustStorePassword system
property is also defined, then its value is used to check the integrity of the data in the
truststore before opening it.

If the javax.net.ssl.trustStore property is defined but the specified file does not exist,
then a default TrustManager using an empty keystore is created.

2. If the javax.net.ssl.trustStore system property was not specified, then:

• if the file java-home/lib/security/jssecacerts exists, that file is used;

Chapter 8
JSSE Classes and Interfaces

8-38

• if the file java-home/lib/security/cacerts exists, that file is used;

• if neither of these files exists, then the TLS cipher suite is anonymous, does not
perform any authentication, and thus does not need a truststore.

To know more about what java-home refers to, see Terms and Definitions.

The factory looks for a file specified via the javax.net.ssl.trustStore Security Property or
for the jssecacerts file before checking for a cacerts file. Therefore, you can provide a
JSSE-specific set of trusted root certificates separate from ones that might be present in
cacerts for code-signing purposes.

Creating Your Own X509TrustManager
If the supplied X509TrustManager behavior is not suitable for your situation, then you can
create your own X509TrustManager by either creating and registering your own
TrustManagerFactory or by implementing the X509TrustManager interface directly.

Example 8-12 illustrates a MyX509TrustManager class that enhances the default SunJSSE
X509TrustManager behavior by providing alternative authentication logic when the default
X509TrustManager fails.

Once you have created such a trust manager, assign it to an SSLContext via the init()
method, as in the following example. Future SocketFactories created from this SSLContext
will use your new TrustManager when making trust decisions.

TrustManager[] myTMs = new TrustManager[] { new MyX509TrustManager() };
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(null, myTMs, null);

Example 8-12 Sample Code for Creating a X509TrustManager

The following code sample illustrates MyX509TrustManager class that enhances the default
SunJSSE X509TrustManager behavior by providing alternative authentication logic when the
default X509TrustManager fails:

class MyX509TrustManager implements X509TrustManager {

 /*
 * The default PKIX X509TrustManager9. Decisions are delegated
 * to it, and a fall back to the logic in this class is performed
 * if the default X509TrustManager does not trust it.
 */
 X509TrustManager pkixTrustManager;

 MyX509TrustManager() throws Exception {
 // create a "default" JSSE X509TrustManager.

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("trustedCerts"),
"passphrase".toCharArray());

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ks);

 TrustManager tms [] = tmf.getTrustManagers();

Chapter 8
JSSE Classes and Interfaces

8-39

 /*
 * Iterate over the returned trust managers, looking
 * for an instance of X509TrustManager. If found,
 * use that as the default trust manager.
 */
 for (int i = 0; i < tms.length; i++) {
 if (tms[i] instanceof X509TrustManager) {
 pkixTrustManager = (X509TrustManager) tms[i];
 return;
 }
 }

 /*
 * Find some other way to initialize, or else the
 * constructor fails.
 */
 throw new Exception("Couldn't initialize");
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType);
 } catch (CertificateException excep) {
 /*
 * Possibly pop up a dialog box asking whether to trust the
 * cert chain.
 */
 }
 }

 /*
 * Merely pass this through.
 */
 public X509Certificate[] getAcceptedIssuers() {
 return pkixTrustManager.getAcceptedIssuers();
 }
}

Chapter 8
JSSE Classes and Interfaces

8-40

Updating the Keystore Dynamically
You can enhance MyX509TrustManager to handle dynamic keystore updates. When a
checkClientTrusted or checkServerTrusted test fails and does not establish a trusted
certificate chain, you can add the required trusted certificate to the keystore. You must create a
new pkixTrustManager from the TrustManagerFactory initialized with the updated keystore.
When you establish a new connection (using the previously initialized SSLContext), the newly
added certificate will be used when making trust decisions.

X509ExtendedTrustManager Class
The X509ExtendedTrustManager class is an abstract implementation of the X509TrustManager
interface. It adds methods for connection-sensitive trust management. In addition, it enables
endpoint verification at the TLS layer.

In TLS 1.2 and later, both client and server can specify which hash and signature algorithms
they will accept. To authenticate the remote side, authentication decisions must be based on
both X509 certificates and the local accepted hash and signature algorithms. The local
accepted hash and signature algorithms can be obtained using the
ExtendedSSLSession.getLocalSupportedSignatureAlgorithms() method.

The ExtendedSSLSession object can be retrieved by calling the
SSLSocket.getHandshakeSession() method or the SSLEngine.getHandshakeSession()
method.

The X509TrustManager interface is not connection-sensitive. It provides no way to access
SSLSocket or SSLEngine session properties.

Besides TLS 1.2 and later support, the X509ExtendedTrustManager class also supports
algorithm constraints and SSL layer host name verification. For JSSE providers and trust
manager implementations, the X509ExtendedTrustManager class is highly recommended over
the legacy X509TrustManager interface.

Creating an X509ExtendedTrustManager
You can either create an X509ExtendedTrustManager subclass yourself (which is outlined in
the following section) or obtain one from a provider-based TrustManagerFactory (such as that
supplied by the SunJSSE provider). In Java SE 7, the PKIX or SunX509 TrustManagerFactory
returns an X509ExtendedTrustManager instance.

Creating Your Own X509ExtendedTrustManager
This section outlines how to create a subclass of X509ExtendedTrustManager in nearly the
same way as described for X509TrustManager.

Example 8-13 illustrates how to create a class that uses the PKIX TrustManagerFactory to
locate a default X509ExtendedTrustManager that will be used to make decisions about trust.

Example 8-13 Sample Code for Creating a PKIX TrustManagerFactory

The following code sample illustrates how to create a class that uses the PKIX
TrustManagerFactory to locate a default X509ExtendedTrustManager that will be used to make
decisions about trust. If the default trust manager fails for any reason, then the subclass can

Chapter 8
JSSE Classes and Interfaces

8-41

add other behavior. In the sample, these locations are indicated by comments in the catch
clauses.

import java.io.*;
import java.net.*;
import java.security.*;
import java.security.cert.*;
import javax.net.ssl.*;

public class MyX509ExtendedTrustManager extends X509ExtendedTrustManager {

 /*
 * The default PKIX X509ExtendedTrustManager. Decisions are
 * delegated to it, and a fall back to the logic in this class is
 * performed if the default X509ExtendedTrustManager does not
 * trust it.
 */

 X509ExtendedTrustManager pkixTrustManager;

 MyX509ExtendedTrustManager() throws Exception {
 // create a "default" JSSE X509ExtendedTrustManager.

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream("trustedCerts"), "passphrase".toCharArray());

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(ks);

 TrustManager tms [] = tmf.getTrustManagers();

 /*
 * Iterate over the returned trust managers, looking
 * for an instance of X509ExtendedTrustManager. If found,
 * use that as the default trust manager.
 */
 for (int i = 0; i < tms.length; i++) {
 if (tms[i] instanceof X509ExtendedTrustManager) {
 pkixTrustManager = (X509ExtendedTrustManager) tms[i];
 return;
 }
 }

 /*
 * Find some other way to initialize, or else we have to fail the
 * constructor.
 */
 throw new Exception("Couldn't initialize");
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {

Chapter 8
JSSE Classes and Interfaces

8-42

 pkixTrustManager.checkClientTrusted(chain, authType);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Delegate to the default trust manager.
 */
 public void checkServerTrusted(X509Certificate[] chain, String authType)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType);
 } catch (CertificateException excep) {
 /*
 * Possibly pop up a dialog box asking whether to trust the
 * cert chain.
 */
 }
 }

 /*
 * Connection-sensitive verification.
 */
 public void checkClientTrusted(X509Certificate[] chain, String authType,
Socket socket)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType, socket);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkClientTrusted(X509Certificate[] chain, String authType,
SSLEngine engine)
 throws CertificateException {
 try {
 pkixTrustManager.checkClientTrusted(chain, authType, engine);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkServerTrusted(X509Certificate[] chain, String authType,
Socket socket)
 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType, socket);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 public void checkServerTrusted(X509Certificate[] chain, String authType,
SSLEngine engine)

Chapter 8
JSSE Classes and Interfaces

8-43

 throws CertificateException {
 try {
 pkixTrustManager.checkServerTrusted(chain, authType, engine);
 } catch (CertificateException excep) {
 // do any special handling here, or rethrow exception.
 }
 }

 /*
 * Merely pass this through.
 */
 public X509Certificate[] getAcceptedIssuers() {
 return pkixTrustManager.getAcceptedIssuers();
 }
}

KeyManager Interface

The primary responsibility of the KeyManager is to select the authentication credentials that will
eventually be sent to the remote host. To authenticate yourself (a local secure socket peer) to a
remote peer, you must initialize an SSLContext object with one or more KeyManager objects.
You must pass one KeyManager for each different authentication mechanism that will be
supported. If null is passed into the SSLContext initialization, then an empty KeyManager will be
created. If the internal default context is used (for example, an SSLContext created by
SSLSocketFactory.getDefault() or SSLServerSocketFactory.getDefault()), then a default
KeyManager is created. See Customizing the Default Keystores and Truststores, Store Types,
and Store Passwords. Typically, a single key manager supports authentication based on X.509
public key certificates. Some secure socket implementations may also support authentication
based on shared secret keys, Kerberos, or other mechanisms.

KeyManager objects are created either by a KeyManagerFactory, or by providing a concrete
implementation of the interface.

KeyManagerFactory Class
The javax.net.ssl.KeyManagerFactory class is an engine class for a provider-based service
that acts as a factory for one or more types of KeyManager objects. The SunJSSE provider
implements a factory that can return a basic X.509 key manager. Because it is provider-based,
additional factories can be implemented and configured to provide additional or alternative key
managers.

Creating a KeyManagerFactory
You create an instance of this class in a similar manner to SSLContext, except for passing an
algorithm name string instead of a protocol name to the getInstance() method:

KeyManagerFactory kmf = getInstance(String algorithm);
KeyManagerFactory kmf = getInstance(String algorithm, String provider);
KeyManagerFactory kmf = getInstance(String algorithm, Provider provider);

A sample call as follows:

KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509", "SunJSSE");

Chapter 8
JSSE Classes and Interfaces

8-44

The preceding call creates an instance of the SunJSSE provider's default key manager factory,
which provides basic X.509-based authentication keys.

A newly created factory should be initialized by calling one of the init methods:

public void init(KeyStore ks, char[] password);
public void init(ManagerFactoryParameters spec);

Call whichever init method is appropriate for the KeyManagerFactory you are using. If you are
not sure, then ask the provider vendor.

For many factories, such as the default SunX509 KeyManagerFactory from the SunJSSE
provider, the KeyStore and password are the only information required to initialize the
KeyManagerFactory and thus the first init method is the appropriate one to call. The
KeyManagerFactory will query the KeyStore for information about which private key and
matching public key certificates should be used for authenticating to a remote socket peer. The
password parameter specifies the password that will be used with the methods for accessing
keys from the KeyStore. All keys in the KeyStore must be protected by the same password.

Sometimes initialization parameters other than a KeyStore and password are needed by a
provider. Users of that provider are expected to pass an implementation of the appropriate
ManagerFactoryParameters as defined by the provider. The provider can then call the
specified methods in the ManagerFactoryParameters implementation to obtain the needed
information.

Some factories can provide access to authentication material without being initialized with a
KeyStore object or any other parameters. For example, they may access key material as part
of a login mechanism such as one based on JAAS, the Java Authentication and Authorization
Service.

As previously indicated, the SunJSSE provider supports a SunX509 factory that must be
initialized with a KeyStore parameter.

X509KeyManager Interface
The javax.net.ssl.X509KeyManager interface extends the general KeyManager interface. It
must be implemented by a key manager for X.509-based authentication. To support X.509
authentication to remote socket peers through JSSE, an instance of this interface must be
passed to the init() method of an SSLContext object.

Creating an X509KeyManager
You can either implement this interface directly yourself or obtain one from a provider-based
KeyManagerFactory (such as that supplied by the SunJSSE provider). You could also
implement your own interface that delegates to a factory-generated key manager. For
example, you might do this to filter the resulting keys and query an end-user through a
graphical user interface.

Creating Your Own X509KeyManager

If the default X509KeyManager behavior is not suitable for your situation, then you can create
your own X509KeyManager in a way similar to that shown in Creating Your Own
X509TrustManager.

Chapter 8
JSSE Classes and Interfaces

8-45

X509ExtendedKeyManager Class
The X509ExtendedKeyManager abstract class is an implementation of the X509KeyManager
interface that allows for connection-specific key selection. It adds two methods that select a
key alias for client or server based on the key type, allowed issuers, and current SSLEngine:

• public String chooseEngineClientAlias(String[] keyType, Principal[] issuers,
SSLEngine engine)

• public String chooseEngineServerAlias(String keyType, Principal[] issuers,
SSLEngine engine)

If a key manager is not an instance of the X509ExtendedKeyManager class, then it will not work
with the SSLEngine class.

For JSSE providers and key manager implementations, the X509ExtendedKeyManager class is
highly recommended over the legacy X509KeyManager interface.

In TLS 1.2 and later, both client and server can specify which hash and signature algorithms
they will accept. To pass the authentication required by the remote side, local key selection
decisions must be based on both X509 certificates and the remote accepted hash and
signature algorithms. The remote accepted hash and signature algorithms can be retrieved
using the ExtendedSSLSession.getPeerSupportedSignatureAlgorithms() method.

You can create your own X509ExtendedKeyManager subclass in a way similar to that shown in
Creating Your Own X509TrustManager.

Support for the Server Name Indication (SNI) Extension on the server side enables the key
manager to check the server name and select the appropriate key accordingly. For example,
suppose there are three key entries with certificates in the keystore:

• cn=www.example.com
• cn=www.example.org
• cn=www.example.net
If the ClientHello message requests to connect to www.example.net in the SNI extension, then
the server should be able to select the certificate with subject cn=www.example.net.

Relationship Between a TrustManager and a KeyManager
Historically, there has been confusion regarding the functionality of a TrustManager and a
KeyManager.

A TrustManager determines whether the remote authentication credentials (and thus the
connection) should be trusted.

A KeyManager determines which authentication credentials to send to the remote host.

Secondary Support Classes and Interfaces
These classes are provided as part of the JSSE API to support the creation, use, and
management of secure sockets. They are less likely to be used by secure socket applications
than are the core and support classes. The secondary support classes and interfaces are part
of the javax.net.ssl and javax.security.cert packages.

Chapter 8
JSSE Classes and Interfaces

8-46

SSLParameters Class
The SSLParameters class encapsulates the following parameters that affect a SSL/TLS/DTLS
connection:

• The list of cipher suites to be accepted in a TLS/DTLS handshake

• The list of protocols to be allowed

• The endpoint identification algorithm during TLS/DTLS handshaking

• The server names and server name matchers (see Server Name Indication (SNI)
Extension)

• The cipher suite preference to be used in a TLS/DTLS handshake

• Algorithm during TLS/DTLS handshaking

• The Server Name Indication (SNI)

• The maximum network packet size

• The algorithm constraints and whether TLS/DTLS servers should request or require client
authentication

You can retrieve the current SSLParameters for an SSLSocket or SSLEngine by using the
following methods:

• getSSLParameters() in an SSLSocket, SSLServerSocket, and SSLEngine
• getDefaultSSLParameters() and getSupportedSSLParamters() in an SSLContext
You can assign SSLParameters with the setSSLParameters() method in an SSLSocket,
SSLServerSocket and SSLEngine.

You can explicitly set the server name indication with the SSLParameters.setServerNames()
method. The server name indication in client mode also affects endpoint identification. In the
implementation of X509ExtendedTrustManager, it uses the server name indication retrieved by
the ExtendedSSLSession.getRequestedServerNames() method. See Example 8-14.

Example 8-14 Sample Code to Set Server Name Indication

This example uses the host name in the server name indication (www.example.com) to make
endpoint identification against the peer's identity presented in the end-entity's X.509 certificate.

 SSLSocketFactory factory = ...
 SSLSocket sslSocket = factory.createSocket("172.16.10.6", 443);
 // SSLEngine sslEngine = sslContext.createSSLEngine("172.16.10.6", 443);

 SNIHostName serverName = new SNIHostName("www.example.com");
 List<SNIServerName> serverNames = new ArrayList<>(1);
 serverNames.add(serverName);

 SSLParameters params = sslSocket.getSSLParameters();
 params.setServerNames(serverNames);
 sslSocket.setSSLParameters(params);
 // sslEngine.setSSLParameters(params);

Chapter 8
JSSE Classes and Interfaces

8-47

Cipher Suite Preference
During TLS handshaking, the client requests to negotiate a cipher suite from a list of
cryptographic options that it supports, starting with its first preference. Then, the server selects
a single cipher suite from the list of cipher suites requested by the client. The selection honors
the server's preference by default, which is the most secure setting. However, the server can
choose to honor the client's preference rather than its own preference by invoking the method
SSLParameters.setUseCipherSuitesOrder(false).

SSLSessionContext Interface

The javax.net.ssl.SSLSessionContext interface is a grouping of SSLSession objects
associated with a single entity. For example, it could be associated with a server or client that
participates in many sessions concurrently. The methods in this interface enable the
enumeration of all sessions in a context and allow lookup of specific sessions via their session
IDs.

An SSLSessionContext may optionally be obtained from an SSLSession by calling the
SSLSession getSessionContext() method. The context may be unavailable in some
environments, in which case the getSessionContext() method returns null.

SSLSessionBindingListener Interface

The javax.net.ssl.SSLSessionBindingListener interface is implemented by objects that are
notified when they are being bound or unbound from an SSLSession.

SSLSessionBindingEvent Class

The javax.net.ssl.SSLSessionBindingEvent class defines the event communicated to an
SSLSessionBindingListener (see SSLSessionBindingListener Interface) when it is bound
or unbound from an SSLSession (see SSLSession and ExtendedSSLSession).

HandShakeCompletedListener Interface
The javax.net.ssl.HandShakeCompletedListener interface is an interface implemented by
any class that is notified of the completion of an SSL protocol handshake on a given SSLSocket
connection.

HandShakeCompletedEvent Class

The javax.net.ssl.HandShakeCompletedEvent class defines the event communicated to a
HandShakeCompletedListener (see HandShakeCompletedListener Interface) upon
completion of an SSL protocol handshake on a given SSLSocket connection.

HostnameVerifier Interface

If the SSL/TLS implementation's standard host name verification logic fails, then the
implementation calls the verify() method of the class that implements this interface and is
assigned to this HttpsURLConnection instance. If the callback class can determine that the
host name is acceptable given the parameters, it reports that the connection should be

Chapter 8
JSSE Classes and Interfaces

8-48

allowed. An unacceptable response causes the connection to be terminated. See
Example 8-15.

See HttpsURLConnection for more information about how to assign the HostnameVerifier to
the HttpsURLConnection.

Example 8-15 Sample Code for Implementing the HostnameVerifier Interface

The following example illustrates a class that implements HostnameVerifier interface:

 public class MyHostnameVerifier implements HostnameVerifier {

 public boolean verify(String hostname, SSLSession session) {
 // pop up an interactive dialog box
 // or insert additional matching logic
 if (good_address) {
 return true;
 } else {
 return false;
 }
 }
 }

 //...deleted...

 HttpsURLConnection urlc = (HttpsURLConnection)
 (new URL("https://www.example.com/")).openConnection();
 urlc.setHostnameVerifier(new MyHostnameVerifier());

X509Certificate Class
Many secure socket protocols perform authentication using public key certificates, also called
X.509 certificates. This is the default authentication mechanism for the TLS protocol.

The java.security.cert.X509Certificate abstract class provides a standard way to access
the attributes of X.509 certificates.

Note:

The javax.security.cert.X509Certificate class is supported only for backward
compatibility with previous (1.0.x and 1.1.x) versions of JSSE. New applications
should use the java.security.cert.X509Certificate class instead.

AlgorithmConstraints Interface
The java.security.AlgorithmConstraints interface is used for controlling allowed
cryptographic algorithms. AlgorithmConstraints defines three permits() methods. These
methods tell whether an algorithm name or a key is permitted for certain cryptographic
functions. Cryptographic functions are represented by a set of CryptoPrimitive, which is an
enumeration containing fields like STREAM_CIPHER, MESSAGE_DIGEST, and SIGNATURE.

Thus, an AlgorithmConstraints implementation can answer questions like: Can I use this key
with this algorithm for the purpose of a cryptographic operation?

Chapter 8
JSSE Classes and Interfaces

8-49

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/HttpsURLConnection.html

An AlgorithmConstraints object can be associated with an SSLParameters object by using
the new setAlgorithmConstraints() method. The current AlgorithmConstraints object for
an SSLParameters object is retrieved using the getAlgorithmConstraints() method.

StandardConstants Class
The StandardConstants class is used to represent standard constants definitions in JSSE.

StandardConstants.SNI_HOST_NAME represents a domain name server (DNS) host name in a
Server Name Indication (SNI) extension, which can be used when instantiating an
SNIServerName or SNIMatcher object.

SNIServerName Class

An instance of the abstract SNIServerName class represents a server name in the Server Name
Indication (SNI) extension. It is instantiated using the type and encoded value of the specified
server name.

You can use the getType() and getEncoded() methods to return the server name type and a
copy of the encoded server name value, respectively. The equals() method can be used to
check if some other object is "equal" to this server name. The hashCode() method returns a
hash code value for this server name. To get a string representation of the server name
(including the server name type and encoded server name value), use the toString() method.

SNIMatcher Class

An instance of the abstract SNIMatcher class performs match operations on an SNIServerName
object. Servers can use information from the Server Name Indication (SNI) extension to decide
if a specific SSLSocket or SSLEngine should accept a connection. For example, when multiple
"virtual" or "name-based" servers are hosted on a single underlying network address, the
server application can use SNI information to determine whether this server is the exact server
that the client wants to access. Instances of this class can be used by a server to verify the
acceptable server names of a particular type, such as host names.

The SNIMatcher class is instantiated using the specified server name type on which match
operations will be performed. To match a given SNIServerName, use the matches() method. To
return the server name type of the given SNIMatcher object, use the getType() method.

SNIHostName Class

An instance of the SNIHostName class (which extends the SNIServerName class) represents a
server name of type "host_name" (see StandardConstants Class) in the Server Name
Indication (SNI) Extension. To instantiate an SNIHostName, specify the fully qualified DNS host
name of the server (as understood by the client) as a String argument. The argument is illegal
in the following cases:

• The argument is empty.

• The argument ends with a trailing period.

• The argument is not a valid Internationalized Domain Name (IDN) compliant with the RFC
3490 specification.

You can also instantiate an SNIHostName by specifying the encoded host name value as a byte
array. This method is typically used to parse the encoded name value in a requested SNI

Chapter 8
JSSE Classes and Interfaces

8-50

extension. Otherwise, use the SNIHostName(String hostname) constructor. The encoded
argument is illegal in the following cases:

• The argument is empty.

• The argument ends with a trailing period.

• The argument is not a valid Internationalized Domain Name (IDN) compliant with the RFC
3490 specification.

• The argument is not encoded in UTF-8 or US-ASCII.

Note:

The encoded byte array passed in as an argument is cloned to protect against
subsequent modification.

To return the host name of an SNIHostName object in US-ASCII encoding, use the
getAsciiName() method. To compare a server name to another object, use the equals()
method (comparison is not case-sensitive). To return a hash code value of an SNIHostName,
use the hashCode() method. To return a string representation of an SNIHostName, including the
DNS host name, use the toString() method.

You can create an SNIMatcher object for an SNIHostName object by passing a regular
expression representing one or more host names to match to the createSNIMatcher()
method.

Customizing JSSE
JSSE includes a standard implementation that can be customized by plugging in different
implementations or specifying the default keystore, and so on.

Table 8-2 and Table 8-3 summarize which aspects can be customized, what the defaults are,
and which mechanisms are used to provide customization.

Some of the customizations are done by setting system property or Security Property values.
Sections following the table explain how to set such property values.

Note:

Many of the properties shown in this table are currently used by the JSSE
implementation, but there is no guarantee that they will continue to have the same
names and types (system or security) or even that they will exist at all in future
releases. All such properties are flagged with an asterisk (*). They are documented
here for your convenience for use with the JSSE implementation.

Table 8-2 shows items that are customized by setting the java.security.Security property.
See How to Specify a java.security.Security Property

Chapter 8
Customizing JSSE

8-51

Table 8-2 Security Properties and Customized Items

Security Property Customized Item Default Value Notes

cert.provider.x509v1 Customizing the
X509Certificate
Implementation

X509Certificate
implementation from Oracle

None

JCE encryption algorithms
used by the SunJSSE
provider

Give alternative JCE
algorithm providers a higher
preference order than the
SunJCE provider

SunJCE implementations None

jdk.certpath.disabledAl
gorithms*

Disabled certificate
verification cryptographic
algorithms (see Disabled and
Restricted Cryptographic
Algorithms)

MD2, MD5, SHA1 jdkCA &
usage TLSServer, RSA
keySize < 1024, DSA keySize
< 1024, EC keySize < 224,
SHA1 usage SignedJAR &
denyAfter 2019-01-011

None

jdk.tls.disabledAlgorit
hms*

Disabled and Restricted
Cryptographic Algorithms

SSLv3, TLSv1, TLSv1.1,
DTLSv1.0, RC4, DES,
MD5withRSA, DH keySize <
1024, EC keySize < 224,
3DES_EDE_CBC, anon,
NULL1

Disables specific algorithms
(protocols versions, cipher
suites, key exchange
mechanisms, etc.) that will
not be negotiated for TLS/
DTLS connections, even if
they are enabled explicitly in
an application

jdk.tls.keyLimits* Limiting Amount of Data
Algorithms May Encrypt with
a Set of Keys

AES/GCM/NoPadding
KeyUpdate 2^37, ChaCha20-
Poly1305 KeyUpdate 2^37

Limits the amount of data an
algorithm may encrypt with a
specific set of keys; once this
limit is reached, a KeyUpdate
post-handshake message is
sent, which requests that the
current set of keys be
updated.

jdk.tls.legacyAlgorithm
s*

Legacy Cryptographic
Algorithms

NULL, anon, RC4, DES,
3DES_EDE_CBC1

Specifies which algorithms
are considered legacy
algorithms, which are not
negotiated during TLS/DTLS
security parameters
negotiation unless there are
no other candidates.

jdk.tls.server.defaultD
HEParameters

Diffie-Hellman groups Safe prime Diffie-Hellman
groups in OpenJDK TLS/
DTLS implementation

Defines default finite field
Diffie-Hellman ephemeral
(DHE) parameters for
(Datagram) Transport Layer
Security ((D)TLS) processing

ocsp.enable* Client-Driven OCSP and
OCSP Stapling

false Enables client-driven Online
Certificate Status Protocol
(OCSP).
You must also enable
revocation checking; see
Setting up a Java Client to
use Client-Driven OCSP.

Chapter 8
Customizing JSSE

8-52

Table 8-2 (Cont.) Security Properties and Customized Items

Security Property Customized Item Default Value Notes

security.provider.n Cryptographic service
provider; see Customizing the
Provider Implementation and
Customizing the Encryption
Algorithm Providers

The first five providers in
order of priority are:

1. SUN

2. SunRsaSign

3. SunEC

4. SunJSSE

5. SunJCE

Specify the provider in the
security.provider.n=
line in security properties file,
where n is an integer whose
value is equal or greater than
1.

ssl.KeyManagerFactory.a
lgorithm

Default key manager factory
algorithm name (see
Customizing the Default Key
Managers and Trust
Managers)

SunX509 None

ssl.ServerSocketFactory
.provider*

Default
SSLServerSocketFactory
implementation

SSLServerSocketFactory
implementation from Oracle

None

ssl.SocketFactory.provi
der*

Default SSLSocketFactory
implementation

SSLSocketFactory
implementation from Oracle

None

ssl.TrustManagerFactory
.algorithm

Default trust manager factory
algorithm name (see
Customizing the Default Key
Managers and Trust
Managers)

PKIX None

1 The list of restricted, disabled, and legacy algorithms specified in these Security Properties may change; see the java.security
file in your JDK installation for the latest values.

* This Security Property is currently used by the JSSE implementation, but it is not guaranteed
to be examined and used by other implementations. If it is examined by another
implementation, then that implementation should handle it in the same manner as the JSSE
implementation does. There is no guarantee the property will continue to exist or be of the
same type (system or security) in future releases.

Table 8-3 shows items that are customized by setting java.lang.System property. See How to
Specify a java.lang.System Property.

Table 8-3 System Properties and Customized Items

System Property Customized Item Default Notes

com.sun.net.ssl.checkRe
vocation*

Revocation checking false You must enable revocation
checking to enable client-
driven OCSP; see Client-
Driven OCSP and OCSP
Stapling.

Customize via port field in
the HTTPS URL.*

Default HTTPS port 443 None

Chapter 8
Customizing JSSE

8-53

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

https.cipherSuites* Default cipher suites for
HTTPS connections

Determined by the socket
factory.

This contains a comma-
separated list of cipher suite
names specifying which
cipher suites to enable for use
on this
HttpsURLConnection. See
the
SSLSocket.setEnabledCip
herSuites(String[])
method. Note that this
method sets the preference
order of the ClientHello cipher
suites directly from the
String array passed to it.

https.protocols* Default handshaking
protocols for HTTPS
connections

Determined by the socket
factory.

This contains a comma-
separated list of protocol suite
names specifying which
protocol suites to enable on
this HttpsURLConnection.
See
SSLSocket.setEnabledPro
tocols(String[])

https.proxyHost* Default proxy host None None

https.proxyPort* Default proxy port 80 None

java.protocol.handler.p
kgs

Specifying an Alternative
HTTPS Protocol
Implementation

Implementation from Oracle None

javax.net.ssl.keyStore* Default keystore; see
Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

None The value NONE may be
specified. This setting is
appropriate if the keystore is
not file-based (for example, it
resides in a hardware token)

javax.net.ssl.keyStoreP
assword*

Default keystore password;
see Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

None It is inadvisable to specify the
password in a way that
exposes it to discovery by
other users.

For example, specifying the
password on the command
line. To keep the password
secure, have the application
prompt for the password, or
specify the password in a
properly protected option file

javax.net.ssl.keyStoreP
rovider*

Default keystore provider; see
Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

None None

javax.net.ssl.keyStoreT
ype*

Default keystore type; see
Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

KeyStore.getDefaultTyp
e()

None

Chapter 8
Customizing JSSE

8-54

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites(java.lang.String[])

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

javax.net.ssl.sessionCa
cheSize

Default value for the
maximum number of entries
in the SSL session cache

20480 The session cache size can
be set by calling the
SSLSessionContext.setSe
ssionCacheSize method or
by setting the
javax.net.ssl.sessionCa
chSize system property. If
the cache size is not set, the
default value is used.

javax.net.ssl.trustStor
e*

Default truststore; see
Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

jssecacerts, if it exists.
Otherwise, cacerts

The value NONE may be
specified. This setting is
appropriate if the truststore is
not file-based (for example, it
resides in a hardware token).

javax.net.ssl.trustStor
ePassword*

Default truststore password;
see Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

None It is inadvisable to specify the
password in a way that
exposes it to discovery by
other users.

For example, specifying the
password on the command
line. To keep the password
secure, have the application
prompt for the password, or
specify the password in a
properly protected option file

javax.net.ssl.trustStor
eProvider*

Default truststore provider;
see Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

None None

javax.net.ssl.trustStor
eType*

Default truststore type; see
Customizing the Default
Keystores and Truststores,
Store Types, and Store
Passwords

KeyStore.getDefaultTyp
e()

None

jdk.tls.acknowledgeClos
eNotify*

Specifying That close_notify
Alert Is Sent When One Is
Received

false If true, then when the client
or server receives a
close_notify alert, it sends a
corresponding close_notify
alert and the connection is
duplex closed.

jdk.tls.allowUnsafeServ
erCertChange*

Defines whether unsafe
server certificate change in
an SSL/TLS renegotiation
should be restricted or not;
see Allow Unsafe Server
Certificate Change in
SSL/TLS Renegotiations

false Caution: Do not set this
system property to true
unless it is really necessary
as this would re-establish the
unsafe server certificate
change vulnerability.

Chapter 8
Customizing JSSE

8-55

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

jdk.tls.client.cipherSu
ites*

Client-side default enabled
cipher suites; see Specifying
Default Enabled Cipher
Suites

See SunJSSE Cipher Suites
for a list of currently
implemented SunJSSE cipher
suites for this JDK release,
sorted by order of preference

Caution: These system
properties can be used to
configure weak cipher suites,
or the configured cipher
suites may be weak in the
future. It is not recommended
that you use these system
properties without
understanding the risks.

jdk.tls.client.disableE
xtensions*

Configuring Default
Extensions

None Blocks extensions used on
the client side.

jdk.tls.client.enableCA
Extension*

Enabling
certificate_authorities
Extension for Server
Certificate Selection

false If the client or server trusts
more CAs such that it
exceeds the size limit of the
extension (less than 2^16
bytes), then the extension is
not enabled. Also, some
server implementations don't
allow handshake messages
to exceed 2^14 bytes. Thus,
there may be interoperability
issues if
jdk.tls.client.enableCA
Extension is set to true
and the client trusts more
CAs such that it exceeds the
server implementation limit.

jdk.tls.client.enableSe
ssionTicketExtension*

Resuming Session Without
Server-Side State

true If true, the client will send a
session ticket extension in the
ClientHello for TLS 1.2 and
earlier.

This extension enables the
client to accept the server's
session state for server-side
stateless TLS session
resumption (RFC 5077).

Chapter 8
Customizing JSSE

8-56

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

jdk.tls.client.protocol
s*

Default handshaking
protocols for TLS/DTLS
clients. See The SunJSSE
Provider

None To enable specific SunJSSE
protocols on the client,
specify them in a comma-
separated list within quotation
marks; all other supported
protocols are not enabled on
the client

For example,
• If

jdk.tls.client.prot
ocols="TLSv1,TLSv1.
1", then the default
protocol settings on the
client for TLSv1 and
TLSv1.1 are enabled,
while SSLv3, TLSv1.2,
TLSv1.3, and
SSLv2Hello are not
enabled

• If
jdk.tls.client.prot
ocols="DTLSv1.2" ,
then the protocol setting
on the client for DTLS1.2
is enabled, while
DTLS1.0 is not enabled

jdk.tls.client.Signatur
eSchemes*

Contains a comma-separated
list of supported signature
scheme names that specifies
the signature schemes that
could be used for TLS
connections on the client
side.

Not defined Unrecognized or unsupported
signature scheme names
specified in the property are
ignored. If this system
property is not defined or
empty, then the provider-
specific default is used. The
names are not case sensitive.
For a list of signature scheme
names, see the section
"Signature Schemes" in Java
Security Standard Algorithm
Names Specification.

jdk.tls.ephemeralDHKeyS
ize*

Customizing the Size of
Ephemeral Diffie-Hellman
Keys

2048 bits None

jdk.tls.maxCertificateC
hainLength*

Certificate chain handling 10 Specifies the maximum
allowed length of the
certificate chain in TLS/DTLS
handshaking.

jdk.tls.maxHandshakeMes
sageSize*

Certificate chain handling 32768 (32 kilobytes) Specifies the maximum
allowed size, in bytes, for the
handshake message in TLS/
DTLS handshaking.

Chapter 8
Customizing JSSE

8-57

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

jdk.tls.namedGroups* Customizing the supported
named groups for TLS/DTLS
key exchange

If this System Property is not
defined or the value is empty,
then the implementation
default groups and
preferences will be used.

This contains a comma-
separated list within quotation
marks of enabled named
groups in preference order.
For example:

jdk.tls.namedGroups="se
cp521r1,secp256r1,
ffdhe2048"

jdk.tls.rejectClientIni
tiatedRenegotiation*

Rejects client-initiated
renegotiation on the server
side. If this system property is
true, then the server will not
accept client initiated
renegotiations and will fail
with a fatal
handshake_failure alert.
Rejects server-side client-
initialized renegotiation.

false None

jdk.tls.server.cipherSu
ites*

Server-side default enabled
cipher suites. See Specifying
Default Enabled Cipher
Suites

See SunJSSE Cipher Suites
to determine which cipher
suites are enabled by default

Caution: These system
properties can be used to
configure weak cipher suites,
or the configured cipher
suites may be weak in the
future. It is not recommended
that you use these system
properties without
understanding the risks.

jdk.tls.server.disableE
xtensions*

Configuring Default
Extensions

None Blocks extensions used on
the server side.

jdk.tls.server.enableSe
ssionTicketExtension*

Resuming Session Without
Server-Side State

true If true, the server will
provide stateless session
tickets, if the client supports
it, as described in RFC 5077
(TLS Session Resumption
Without Server-Side State)
for TLS 1.2 and earlier and
RFC 8446 for TLS 1.3.

A stateless session ticket
contains the encrypted
server's state, which saves
server resources.

Chapter 8
Customizing JSSE

8-58

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

jdk.tls.server.protocol
s*

Default handshaking
protocols for TLS/DTLS
servers. See The SunJSSE
Provider

None To configure the default
enabled protocol suite on the
server side of a SunJSSE
provider, specify the protocols
in a comma-separated list
within quotation marks.

The protocols in this list are
standard SSL protocol names
as described in Java Security
Standard Algorithm Names.

Note that this System
Property impacts only the
default protocol suite
(SSLContext of the
algorithms SSL, TLS and
DTLS). If an application uses
a version-specific SSLContext
(SSLv3, TLSv1, TLSv1.1,
TLSv1.2, TLSv1.3, DTLSv1.0,
or DTLSv1.2), or sets the
enabled protocol version
explicitly, this System
Property has no impact.

jdk.tls.server.sessionT
icketTimeout*

Specifies how long a session
in the server cache or
stateless resumption tickets
are available for use

86400 seconds (24 hours) You can modify the value set
with this property during run
time with the method
SSLSessionContext.s
etSessionTimeout().

jdk.tls.server.Signatur
eSchemes*

Contains a comma-separated
list of supported signature
scheme names that specifies
the signature schemes that
could be used for TLS
connections on the server
side.

Not defined Unrecognized or unsupported
signature scheme names
specified in the property are
ignored. If this system
property is not defined or
empty, then the provider-
specific default is used. The
names are not case sensitive.
For a list of signature scheme
names, see the section
"Signature Schemes" in Java
Security Standard Algorithm
Names Specification.

jsse.enableFFDHE* Enables or disables Finite
Field Diffie-Hellman
Ephemeral (FFDHE)
parameters for TLS/DTLS key
exchange

true FFDHE is a TLS/DTLS
extension defined in RFC
7919. It enables TLS/DTLS
connections to use known
finite field Diffie-Hellman
groups. Some very old TLS
vendors may not be able
handle TLS extensions. In
this case, set this property to
false to disable the FFDHE
extension.

Chapter 8
Customizing JSSE

8-59

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc7919

Table 8-3 (Cont.) System Properties and Customized Items

System Property Customized Item Default Notes

jsse.enableMFLNExtensio
n*

Customizing the Maximum
Fragment Length Negotiation
(MFLN) Extension

false None

jsse.enableSNIExtension
*

Server Name Indication
option

true Server Name Indication (SNI)
is a TLS extension, defined in
RFC 6066. It enables TLS
connections to virtual servers,
in which multiple servers for
different network names are
hosted at a single underlying
network address. Some very
old TLS vendors may not be
able handle TLS extensions.
In this case, set this property
to false to disable the SNI
extension

jsse.SSLEngine.acceptLa
rgeFragments*

Default sizing buffers for large
TLS packets

None Setting this system property
to true, SSLSession will
size buffers to handle large
data packets by default. This
may cause applications to
allocate unnecessarily large
SSLEngine buffers. Instead,
applications should
dynamically check for buffer
overflow conditions and
resize buffers as appropriate

sun.security.ssl.allowL
egacyHelloMessages*

Allows legacy Hello
messages; see SunJSSE
Renegotiation Interoperability
Modes

false Setting this system property
to true allows the peer to
handshake without requiring
the proper RFC 5746
messages.

This system property is
deprecated and might be
removed in a future JDK
release.

sun.security.ssl.allowU
nsafeRenegotiation*

Allows unsafe SSL/TLS
renegotiations; see SunJSSE
Renegotiation Interoperability
Modes

false Setting this system property
to true permits full (unsafe)
legacy renegotiation.

This system property is
deprecated and might be
removed in a future JDK
release.

* This system property is currently used by the JSSE implementation, but it is not guaranteed
to be examined and used by other implementations. If it is examined by another
implementation, then that implementation should handle it in the same manner as the JSSE
implementation does. There is no guarantee the property will continue to exist or be of the
same type (system or security) in future releases.

Chapter 8
Customizing JSSE

8-60

https://tools.ietf.org/html/rfc6066

How to Specify a java.lang.System Property

You can customize some aspects of JSSE by setting system properties. There are several
ways to set these properties:

• To set a system property statically, use the -D option of the java command. For example,
to run an application named MyApp and set the javax.net.ssl.trustStore system
property to specify a truststore named MyCacertsFile. See truststore. Enter the following:

 java -Djavax.net.ssl.trustStore=MyCacertsFile MyApp

• To set a system property dynamically, call the java.lang.System.setProperty() method
in your code:

 System.setProperty("propertyName", "propertyValue");

For example, a setProperty() call corresponding to the previous example for setting the
javax.net.ssl.trustStore system property to specify a truststore named
"MyCacertsFile" would be:

 System.setProperty("javax.net.ssl.trustStore", "MyCacertsFile");

How to Specify a java.security.Security Property

You can customize some aspects of JSSE by setting Security Properties. You can set a
Security Property either statically or dynamically:

• To set a Security Property statically, add a line to the security properties file. The security
properties file is located at java-home/conf/security/java.security

java-home
See Terms and Definitions

To specify a Security Property value in the security properties file, you add a line of the
following form:

propertyName=propertyValue

For example, suppose that you want to specify a different key manager factory algorithm
name than the default SunX509. You do this by specifying the algorithm name as the value
of a Security Property named ssl.KeyManagerFactory.algorithm. For example, to set the
value to MyX509, add the following line to the security properties file:

ssl.KeyManagerFactory.algorithm=MyX509

Chapter 8
Customizing JSSE

8-61

Note:

Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the
changes are properly reflected.

• To set a Security Property dynamically, call the java.security.Security.setProperty
method in your code:

Security.setProperty("propertyName," "propertyValue");

For example, a call to the setProperty() method corresponding to the previous example
for specifying the key manager factory algorithm name would be:

Security.setProperty("ssl.KeyManagerFactory.algorithm", "MyX509");

Customizing the X509Certificate Implementation
The X509Certificate implementation returned by the X509Certificate.getInstance() method
is by default the implementation from the JSSE implementation.

To cause a different implementation to be returned:

Specify the name (and package) of the other implementation's class as the value of a How to
Specify a java.security.Security Property named cert.provider.x509v1.

MyX509CertificateImplcom.cryptox

 cert.provider.x509v1=com.cryptox.MyX509CertificateImpl

Specifying Default Enabled Cipher Suites
You can specify the default enabled cipher suites in your application or with the system
properties jdk.tls.client.cipherSuites and jdk.tls.server.cipherSuites.

Note:

The actual use of enabled cipher suites is restricted by algorithm constraints.

The set of cipher suites to enable by default is determined by one of the following ways in this
order of preference:

1. Explicitly set by application

2. Specified by system property

3. Specified by JSSE provider defaults

For example, explicitly setting the default enabled cipher suites in your application overrides
settings specified in jdk.tls.client.cipherSuites or jdk.tls.server.cipherSuites as well
as JSSE provider defaults.

Chapter 8
Customizing JSSE

8-62

Explicitly Set by Application

You can set which cipher suites are enabled with one of the following methods:

• SSLSocket.setEnabledCipherSuites(String[])
• SSLEngine.setEnabledCipherSuites(String[])
• SSLServerSocket.setEnabledCipherSuites(String[])
• SSLParameters(String[] cipherSuites)
• SSLParameters(String[] cipherSuites, String[] protocols)
• SSLParameters.setCipherSuites(String[])
• https.cipherSuites system property for HttpsURLConnection

Specified by System Property

The system property jdk.tls.client.cipherSuites specifies the default enabled cipher
suites on the client side; jdk.tls.server.cipherSuites specifies those on the server side.

The syntax of the value of these two system properties is a comma-separated list of supported
cipher suite names. Unrecognized or unsupported cipher suite names that are specified in
these properties are ignored. See Java Security Standard Algorithms for standard JSSE cipher
suite names.

Note:

These system properties are currently supported by Oracle JDK and OpenJDK. They
are not guaranteed to be supported by other JDK implementations.

Caution:

These system properties can be used to configure weak cipher suites, or the
configured cipher suites may be weak in the future. It is not recommended that you
use these system properties without understanding the risks.

Specified by JSSE Provider Defaults

Each JSSE provider has its own default enabled cipher suites. See The SunJSSE Provider in
JDK Providers Documentation for the cipher suite names supported by the SunJSSE provider
and which ones that are enabled by default.

Specifying an Alternative HTTPS Protocol Implementation
You can communicate securely with an SSL-enabled web server by using the HTTPS URL
scheme for the java.net.URL class. The JDK provides a default HTTPS URL implementation.

If you want an alternative HTTPS protocol implementation to be used, set the
java.protocol.handler.pkgs How to Specify a java.lang.System Property to include the new
class name. This action causes the specified classes to be found and loaded before the JDK
default classes. See the URL class for details.

Chapter 8
Customizing JSSE

8-63

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLServerSocket.html#setEnabledCipherSuites(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#%3Cinit%3E(java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#%3Cinit%3E(java.lang.String%5B%5D,java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#setCipherSuites(java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URL.html

Customizing the Provider Implementation
The JDK comes with a JSSE Cryptographic Service Provider, or provider for short, named
SunJSSE. Providers are essentially packages that implement one or more engine classes for
specific cryptographic algorithms.

The JSSE engine classes are SSLContext, KeyManagerFactory, and TrustManagerFactory.
See Java Cryptography Architecture (JCA) Reference Guide to know more about providers
and engine classes.

Before it can be used, a provider must be registered, either statically or dynamically. You do
not need to register the SunJSSE provider because it is preregistered. If you want to use other
providers, read the following sections to see how to register them.

Registering the Cryptographic Provider Statically

Register a provider statically by adding a line of the following form to the security properties
file, <java-home>/conf/security/java.security:

security.provider.n=provName|className

This declares a provider, and specifies its preference order n. The preference order is the order
in which providers are searched for requested algorithms when no specific provider is
requested. The order is 1-based; 1 is the most preferred, followed by 2, and so on.

provName is the provider's name and className is the fully qualified class name of the provider.

Standard security providers are automatically registered for you in the java.security security
properties file.

To use another JSSE provider, add a line registering the other provider, giving it whatever
preference order you prefer.

You can have more than one JSSE provider registered at the same time. The registered
providers may include different implementations for different algorithms for different engine
classes, or they may have support for some or all of the same types of algorithms and engine
classes. When a particular engine class implementation for a particular algorithm is searched
for, if no specific provider is specified for the search, then the providers are searched in
preference order and the implementation from the first provider that supplies an
implementation for the specified algorithm is used.

See Step 8.1: Configure the Provider in Steps to Implement and Integrate a Provider.

Registering the Cryptographic Service Provider Dynamically
Instead of registering a provider statically, you can add the provider dynamically at runtime by
calling either the addProvider or insertProviderAt method in the Security class. Note
that this type of registration is not persistent and can only be done by code which is granted
the insertProvider.<provider name> permission.

See Step 8.1: Configure the Provider in Steps to Implement and Integrate a Provider.

Provider Configuration

Chapter 8
Customizing JSSE

8-64

Some providers may require configuration. This is done using the configure method of the
Provider class, prior to calling the addProvider method of the Security class. See
SunPKCS11 Configuration for an example. The Provider.configure() method is new to Java
SE 9.

Configuring the Preferred Provider for Specific Algorithms
Specify the preferred provider for a specific algorithm in the
jdk.security.provider.preferred Security Property. By specifying a preferred provider you
can configure providers that offer performance gains for specific algorithms but are not the best
performing provider for other algorithms. The ordered provider list specified using the
security.provider.n property is not sufficient to order providers that offer performance gains
for specific algorithms but are not the best performing provider for other algorithms. More
flexibility is required for configuring the ordering of provider list to achieve performance gains.

The jdk.security.provider.preferred Security Property allows specific algorithms, or
service types to be selected from a preferred set of providers before accessing the list of
registered providers. See How to Specify a java.security.Security Property.

The jdk.security.provider.preferred Security Property does not register the providers. The
ordered provider list must be Registering the Cryptographic Provider Statically using the
security.provider.n property. Any provider that is not registered is ignored.

Specifying the Preferred Provider for an Algorithm

The syntax for specifying the preferred providers string in the
jdk.security.provider.preferred Security Property is a comma-separated list of
ServiceType.Algorithm:Provider
In this syntax:

ServiceType
The name of the service type (for example: "MessageDigest"). ServiceType is optional. If it
isn’t specified, then the algorithm applies to all service types.

Algorithm
The standard algorithm name. See Java Security Standard Algorithm Names. Algorithms can
be specified as full standard name, (AES/CBC/PKCS5Padding) or as partial (AES, AES/CBC,
AES//PKCS5Padding).

Provider
The name of the provider. Any provider that isn’t listed in the registered list is ignored. See
JDK Providers.

Entries containing errors such as parsing errors are ignored. Use the command java -
Djava.security.debug=jca to debug errors.

Preferred Providers and FIPS

If you add a FIPS provider to the security.provider.n property, and specify the preferred
provider ordering in the jdk.security.provider.preferred property then the preferred
providers specified in jdk.security.provider.preferred are selected first.

Hence, it is recommended that you don’t configure jdk.security.provider.preferred
property for FIPS provider configurations.

Chapter 8
Customizing JSSE

8-65

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

jdk.security.provider.preferred Default Values

The jdk.security.provider.preferred property is not set by default and is used only for
application performance tuning.

Example 8-16 Sample jdk.security.provider.preferred Property

The syntax for specifying the jdk.security.provider.preferred property is as follows:

jdk.security.provider.preferred=AES/GCM/NoPadding:SunJCE,
MessageDigest.SHA-256:SUN
In this syntax:

ServiceType
MessageDigest

Algorithm
AES/GCM/NoPadding, SHA-256

Provider
SunJCE, SUN

Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords

Whenever a default SSLSocketFactory or SSLServerSocketFactory is created (via a call to
SSLSocketFactory.getDefault or SSLServerSocketFactory.getDefault), and this default
SSLSocketFactory (or SSLServerSocketFactory) comes from the JSSE reference
implementation, a default SSLContext is associated with the socket factory. (The default socket
factory will come from the JSSE implementation.)

This default SSLContext is initialized with a default KeyManager and a default TrustManager. If
a keystore is specified by the javax.net.ssl.keyStore system property and an appropriate
javax.net.ssl.keyStorePassword system property (see How to Specify a java.lang.System
Property), then the KeyManager created by the default SSLContext will be a KeyManager
implementation for managing the specified keystore. (The actual implementation will be as
specified in Customizing the Default Key Managers and Trust Managers.) If no such system
property is specified, then the keystore managed by the KeyManager will be a new empty
keystore.

Generally, the peer acting as the server in the handshake will need a keystore for its
KeyManager in order to obtain credentials for authentication to the client. However, if one of
the anonymous cipher suites is selected, then the server's KeyManager keystore is not
necessary. And, unless the server requires client authentication, the peer acting as the client
does not need a KeyManager keystore. Thus, in these situations it may be OK if no
javax.net.ssl.keyStore system property value is defined.

Similarly, if a truststore is specified by the javax.net.ssl.trustStore system property, then
the TrustManager created by the default SSLContext will be a TrustManager implementation for
managing the specified truststore. In this case, if such a property exists but the file it specifies
does not, then no truststore is used. If no javax.net.ssl.trustStore property exists, then a
default truststore is searched for. If a truststore named java-home/lib/security/
jssecacerts is found, it is used. If not, then a truststore named java-home/lib/

Chapter 8
Customizing JSSE

8-66

security/cacerts is searched for and used (if it exists). Finally, if a truststore is still not
found, then the truststore managed by the TrustManager will be a new empty truststore.

Note:

The JDK ships with a limited number of trusted root certificates in the java-
home/lib/security/cacerts file. As documented in keytool in Java
Development Kit Tool Specifications, it is your responsibility to maintain (that is, add
and remove) the certificates contained in this file if you use this file as a truststore.

Depending on the certificate configuration of the servers that you contact, you may
need to add additional root certificates. Obtain the needed specific root certificates
from the appropriate vendor.

If the javax.net.ssl.keyStoreType and/or javax.net.ssl.keyStorePassword system
properties are also specified, then they are treated as the default KeyManager keystore type
and password, respectively. If no type is specified, then the default type is that returned by the
KeyStore.getDefaultType() method, which is the value of the keystore.type Security
Property, or "jks" if no such Security Property is specified. If no keystore password is specified,
then it is assumed to be a blank string "".

Similarly, if the javax.net.ssl.trustStoreType and/or javax.net.ssl.trustStorePassword
system properties are also specified, then they are treated as the default truststore type and
password, respectively. If no type is specified, then the default type is that returned by the
KeyStore.getDefaultType() method. If no truststore password is specified, then it is assumed
to be a blank string "".

Note:

This section describes the current JSSE reference implementation behavior. The
system properties described in this section are not guaranteed to continue to have
the same names and types (system or security) or even to exist at all in future
releases. They are also not guaranteed to be examined and used by any other JSSE
implementations. If they are examined by an implementation, then that
implementation should handle them in the same manner as the JSSE reference
implementation does, as described herein.

Customizing the Default Key Managers and Trust Managers

As noted in Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords, whenever a default SSLSocketFactory or SSLServerSocketFactory is created,
and this default SSLSocketFactory (or SSLServerSocketFactory) comes from the JSSE
reference implementation, a default SSLContext is associated with the socket factory.

This default SSLContext is initialized with a KeyManager and a TrustManager. The KeyManager
and/or TrustManager supplied to the default SSLContext will be an implementation for
managing the specified keystore or truststore, as described in the aforementioned section.

The KeyManager implementation chosen is determined by first examining the
ssl.KeyManagerFactory.algorithm Security Property. If such a property value is specified,
then a KeyManagerFactory implementation for the specified algorithm is searched for. The

Chapter 8
Customizing JSSE

8-67

implementation from the first provider that supplies an implementation is used. Its
getKeyManagers() method is called to determine the KeyManager to supply to the default
SSLContext. Technically, getKeyManagers() returns an array of KeyManager objects, one
KeyManager for each type of key material. If no such Security Property value is specified, then
the default value of SunX509 is used to perform the search.

Note:

A KeyManagerFactory implementation for the SunX509 algorithm is supplied by the
SunJSSE provider. The KeyManager that it specifies is a
javax.net.ssl.X509KeyManager implementation.

Similarly, the TrustManager implementation chosen is determined by first examining the
ssl.TrustManagerFactory.algorithm Security Property. If such a property value is specified,
then a TrustManagerFactory implementation for the specified algorithm is searched for. The
implementation from the first provider that supplies an implementation is used. Its
getTrustManagers() method is called to determine the TrustManager to supply to the default
SSLContext. Technically, getTrustManagers() returns an array of TrustManager objects, one
TrustManager for each type of trust material. If no such Security Property value is specified,
then the default value of PKIX is used to perform the search.

Note:

A TrustManagerFactory implementation for the PKIX algorithm is supplied by the
SunJSSE provider. The TrustManager that it specifies is a
javax.net.ssl.X509TrustManager implementation.

Note:

This section describes the current JSSE reference implementation behavior. The
system properties described in this section are not guaranteed to continue to have
the same names and types (system or security) or even to exist at all in future
releases. They are also not guaranteed to be examined and used by any other JSSE
implementations. If they are examined by an implementation, then that
implementation should handle them in the same manner as the JSSE reference
implementation does, as described herein.

Disabled and Restricted Cryptographic Algorithms
In some environments, certain algorithms or key lengths may be undesirable when using TLS/
DTLS. The Oracle JDK uses the jdk.certpath.disabledAlgorithms and
jdk.tls.disabledAlgorithm Security Properties to disable algorithms during TLS/DTLS
protocol negotiation, including version negotiation, cipher suites selection, peer authentication,
and key exchange mechanisms. Note that these Security Properties are not guaranteed to be
used by other JDK implementations. See the <java-home>/conf/security/

Chapter 8
Customizing JSSE

8-68

java.security file for information about the syntax of these Security Properties and their
current active values.

• jdk.certpath.disabledAlgorithms Property: CertPath code uses the
jdk.certpath.disabledAlgorithms Security Property to determine which algorithms
should not be allowed during CertPath checking. For example, when a TLS server sends
an identifying certificate chain, a client TrustManager that uses a CertPath
implementation to verify the received chain will not allow the stated conditions. For
example, the following line blocks any MD2-based certificate, as well as SHA1 TLSServer
certificates that chain to trust anchors that are pre-installed in the cacaerts keystore.
Likewise, this line blocks any RSA key less than 1024 bits.

jdk.certpath.disabledAlgorithms=MD2, SHA1 jdkCA & usage TLSServer, RSA
keySize < 1024

• jdk.tls.disabledAlgorithms Property: SunJSSE code uses the
jdk.tls.disabledAlgorithms Security Property to disable TLS/DTLS protocols, cipher
suites, keys, and so on. The syntax is similar to the jdk.certpath.disabledAlgorithms
Security Property. For example, the following line disables the SSLv3 algorithm and all of
the TLS_*_RC4_* cipher suites:

jdk.tls.disabledAlgorithms=SSLv3, RC4

Note:

The algorithm restrictions specified by these Security Properties do not apply to trust
anchors or self-signed certificates.

If you require a particular condition, you can reactivate it by either removing the associated
value in the Security Property in the java.security file or dynamically setting the proper
Security Property before JSSE is initialized.

Note:

Contact your security architect before modifying these Security Properties or enabling
a cipher suite that hasn't been enabled; this allows the use of cipher suites with
weaker protections.

Note that these Security Properties effectively create a third set of cipher suites, Disabled. The
following list describes these three sets:

• Disabled: If a cipher suite contains any components (for example, RC4) on the disabled
list (for example, RC4 is specified in the jdk.tls.disabledAlgorithms Security Property),
then that cipher suite is disabled and will not be considered for a connection handshake.

• Enabled: A list of specific cipher suites that will be considered for a connection.

• Not Enabled: A list of non-disabled cipher suites that will not be considered for a
connection. To re-enable these cipher suites, call the appropriate
setEnabledCipherSuites() or setSSLParameters() methods.

Chapter 8
Customizing JSSE

8-69

If any application attempts to reenable a cipher suite, which has been disabled by the
jdk.tls.disabledAlgorithms Security Property, through the setEnabledCipherSuites()
or setSSLParameters() methods, then JSSE allows the method call but does not allow the
use of the disabled cipher suite during handshaking.

See SunJSSE Cipher Suites for a list of currently implemented SunJSSE cipher suites for this
JDK release.

Legacy Cryptographic Algorithms
In some environments, a certain algorithm may be undesirable but it cannot be disabled
because of its use in legacy applications. Legacy algorithms may still be supported, but
applications should not use them as the security strength of legacy algorithms is usually not
strong enough. During TLS/DTLS security parameters negotiation, legacy algorithms are not
negotiated unless there are no other candidates. The Security Property
jdk.tls.legacyAlgorithms specifies which algorithms the Oracle JDK considers as legacy
algorithms. <java-home>/conf/security/java.security file for the syntax of this Security
Property.

Note:

• If a legacy algorithm is also restricted through the jdk.tls.disabledAlgorithms
property or the java.security.AlgorithmConstraints API (see the method
javax.net.ssl.SSLParameters.setAlgorithmConstraints), then the algorithm
is completely disabled and will not be negotiated.

• If your application uses an algorithm specified in the Security Property
jdk.tls.legacyAlgorithms, use an alternative algorithm as soon as possible; a
future JDK release may specify a legacy algorithm as a restricted algorithm.

Customizing the Encryption Algorithm Providers
The SunJSSE provider uses the SunJCE implementation for all its cryptographic needs.
Although it is recommended that you leave the provider at its regular position, you can use
implementations from other JCA or JCE providers by registering them before the SunJCE
provider.

The standard JCA mechanism (see How Provider Implementations Are Requested and
Supplied) can be used to configure providers, either statically via the security properties file
<java-home>/conf/security/java.security, or dynamically via the addProvider() or
insertProviderAt() method in the java.security.Security class.

Customizing the Size of Ephemeral Diffie-Hellman Keys
In TLS/DTLS connections, ephemeral Diffie-Hellman (DH) keys may be used internally during
the handshaking. The SunJSSE provider provides a flexible approach to customize the
strength of the ephemeral DH key size during TLS/DTLS handshaking.

Diffie-Hellman (DH) keys of sizes less than 2048 bits have been deprecated because of their
insufficient strength. You can customize the ephemeral DH key size with the system property
jdk.tls.ephemeralDHKeySize. This system property does not impact DH key sizes in

Chapter 8
Customizing JSSE

8-70

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#setAlgorithmConstraints(java.security.AlgorithmConstraints)

ServerKeyExchange messages for exportable cipher suites. It impacts only the DHE_RSA,
DHE_DSS, and DH_anon-based cipher suites in the JSSE Oracle provider.

Note:

Unless the jdk.tls.ephemeralDHKeySize system property is set to legacy, the
SunJSSE implementation will first try to negotiate a common DH group using
FFDHE, which is a TLS extension defined by RFC 7919. If the SunJSSE
implementation can negotiate a group, then it will use the size defined by that group.
Otherwise, it will fallback to using a keysize as described in this section. FFDHE is
enabled by default, but you can disable it by setting the system property
jsse.enableFFDHE to false.

You can specify one of the following values for this property:

• Undefined: A DH key of size 2048 bits will be used always for non-exportable cipher suites.
This is the default value for this property.

• legacy: The JSSE Oracle provider preserves the legacy behavior (for example, using
ephemeral DH keys of sizes 512 bits and 768 bits) of JDK 7 and earlier releases.

• matched:

– For non-exportable anonymous cipher suites, the DH key size in ServerKeyExchange
messages is 2048 bits.

– For X.509 certificate-based authentication (of non-exportable cipher suites), the DH
key size matching the corresponding authentication key is used, except that a fixed
size of 1024 bits is used for any key smaller than 1024 bits, and a fixed size of 2048
bits is used for any key larger than 2048 bits.

For example, if the public key size of an authentication certificate is 2048 bits, then the
ephemeral DH key size is 2048 bits unless the cipher suite is exportable. This key
sizing scheme keeps the cryptographic strength consistent between authentication
keys and key-exchange keys.

• A valid integer between 1024 and 8192 in multiples of 64, inclusively: A fixed ephemeral
DH key size of the specified value, in bits, will be used for non-exportable cipher suites.

The following table summarizes the minimum and maximum acceptable DH key sizes for each
of the possible values for the system property jdk.tls.ephemeralDHKeySize:

Table 8-4 DH Key Sizes for the System Property jdk.tls.ephemeralDHKeySize

Value of
jdk.tls.ephemeral
DHKeySize

Undefined legacy matched Integer value
(fixed)

Exportable DH key
size

512 512 512 512

Chapter 8
Customizing JSSE

8-71

Table 8-4 (Cont.) DH Key Sizes for the System Property jdk.tls.ephemeralDHKeySize

Value of
jdk.tls.ephemeral
DHKeySize

Undefined legacy matched Integer value
(fixed)

Non-exportable
anonymous cipher
suites

2048 768 2048 A valid integer
between 1024 and
8192 in multiples of
64, inclusively: A
fixed ephemeral
DH key size of the
specified value, in
bits, will be used for
non-exportable
cipher suites.

Authentication
certificate

2048 768 The key size is the
same as the
authentication
certificate unless
the key is less than
1024 bits or greater
than 2048 bits. If
the key is less than
1024 bits, then a
DH key of 1024 bits
is used. If the key is
greater than 2048
bits, then a DH key
of 2048 bits is
used.

Consequently, you
may use the values
1024 or 2048 only.

The fixed key size
is specified by a
valid integer
property value,
which must be
between 1024 and
8192 in multiples of
64, inclusively.

Customizing the Maximum Fragment Length Negotiation (MFLN) Extension
In order to negotiate smaller maximum fragment lengths, clients have an option to include an
extension of type max_fragment_length in the ClientHello message. A system property
jsse.enableMFLNExtension can be used to enable or disable the MFLN extension for TLS/
DTLS.

Maximum Fragment Length Negotiation

It may be desirable for constrained TLS/DTLS clients to negotiate a smaller maximum
fragment length due to memory limitations or bandwidth limitations. In order to negotiate
smaller maximum fragment lengths, clients have an option to include an extension of type
max_fragment_length in the (extended) ClientHello message. See RFC 6066.

Once a maximum fragment length has been successfully negotiated, the TLS/DTLS client and
server can immediately begin fragmenting messages (including handshake messages) to
ensure that no fragment larger than the negotiated length is sent.

System Property jsse.enableMFLNExtension

A system property jsse.enableMFLNExtension is defined to enable or disable the MFLN
extension. The jsse.enableMFLNExtension is disabled by default.

Chapter 8
Customizing JSSE

8-72

https://tools.ietf.org/html/rfc6066

The value of the system property can be set as follows:

Table 8-5 jsse.enableMFLNExtension system property

System Property Description

jsse.enableMFLNExtension=true Enable the MFLN extension. If the returned value
of SSLParameters.getMaximumPacketSize() is
less than (212 + header-size) the maximum
fragment length negotiation extension would be
enabled.

jsse.enableMFLNExtension=false Disable the MFLN extension.

Configuring the Maximum and Minimum Packet Size

Set the maximum expected network packet size in bytes for a TLS/DTLS record with the
SSLParameters.setMaximumPacketSize method.

It is recommended that the packet size should not be less than 256 bytes so that small
handshake messages, such as HelloVerifyRequests, are not fragmented.

Limiting Amount of Data Algorithms May Encrypt with a Set of Keys
You can specify a limit on the amount of data an algorithm may encrypt with a specific set of
keys with the jdk.tls.keyLimits Security Property. Once this limit is reached, a KeyUpdate
post-handshake message is sent, which requests that the current set of keys be updated. This
Security Property is only for symmetrical ciphers with TLS 1.3.

The syntax for this property is as follows:

jdk.tls.keyLimits=KeyLimit { , KeyLimit }

KeyLimit

AlgorithmName KeyUpdate Length

AlgorithmName
A full algorithm transformation

Length
The amount of encrypted data in a session before a KeyUpdate message is sent. This value
may be an integer value in bytes or as a power of two, for example, 2^37.

For example, the following specifies that a KeyUpdate message is sent once the algorithm
AES/GCM/NoPadding has encrypted 237 bytes:

jdk.tls.keyLimits=AES/GCM/NoPadding KeyUpdate 2^37

Resuming Session Without Server-Side State
The feature session resumption without server-site state enables the server side of JSSE to
operate stateless. As described in RFC 5077 (TLS Session Resumption Without Server-Side
State) for TLS 1.2 and earlier and RFC 8446 for TLS 1.3, the TLS server sends internal

Chapter 8
Customizing JSSE

8-73

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#setMaximumPacketSize(int)

session information in the form of an encrypted session ticket to a client that supports stateless
operation. That session ticket is presented to the server during the TLS handshake to resume
the session. This should improve the performance and memory usage of the TLS server under
large workloads as the session cache will seldom be used. However, with less session
information cached, some session information may not be available. This feature is enabled by
default; you can turn it off by setting two system properties:

• jdk.tls.client.enableSessionTicketExtension: Toggles the session ticket extension in
the ClientHello message on the client side for TLS 1.2 and earlier. A value of true (default
value) sends the extension, false does not.

• jdk.tls.server.enableSessionTicketExtension: Enables a server to use stateless
session tickets if the client supports it. Clients that don't support stateless session tickets
use the cache instead. A value of true (default value) enables the use of stateless session
tickets and stateless session resumption: the NewSessionTicket message includes all
session information (in an encrypted format). A value of false disables the use of stateless
session tickets, which means that session resumption is stateful: the NewSessionTicket
message just contains a key that is used by the server during session resumption to
access the session information from its session cache.

Note:

For TLS 1.3, stateless tickets use the existing pre-shared key (PSK) resumption
extension (see Session Resumption with a Pre-Shared Key). Therefore, session
resumption without server-site state doesn't require these two properties. However,
the contents of stateless tickets, in particular, the contents of a NewSessionTicket
message, depend on the value of jdk.tls.server.enableSessionTicketExtension:
If jdk.tls.server.enableSessionTicketExtension is true, then the
NewSessionTicket message contains the encrypted session state. If false, then the
session state is cached with the PSK resumption extension.

For TLS 1.2, stateless session tickets are used only if they are supported by the
client.

Specifying That close_notify Alert Is Sent When One Is Received
If the jdk.tls.acknowledgeCloseNotify system property is set to true, then when the client or
server receives a close_notify alert, it sends a corresponding close_notify alert and the
connection is duplex closed.

TLS 1.2 and earlier versions use a duplex-close policy. However, TLS 1.3 uses a half-close
policy, which means that the inbound and the outbound close_notify alerts are independent.
When upgrading to TLS 1.3, unexpected behavior can occur if your application shuts down the
TLS/DTLS connection by using only one of the SSLEngine.closeInbound() or
SSLEngine.closeOutbound() methods but not both on each side of the connection. If your
application unexpectedly hangs or times out when the underlying TLS/DTLS transportation is
not duplex closed, you may need to set this property to true.

Note that when a TLS/DTLS connection is no longer needed, the client and server applications
should each close both sides of their respective connection.

Chapter 8
Customizing JSSE

8-74

Enabling certificate_authorities Extension for Server Certificate Selection
The certificate_authorities extension is an optional extension introduced in TLS 1.3. It's used to
indicate the certificate authorities (CAs) that an endpoint supports and should be used by the
receiving endpoint to guide certificate selection.

This extension is always present for client certificate selection, while it's optional for server
certificate selection.

Enable this extension for server certificate selection by setting the system property
jdk.tls.client.enableCAExtension to true. The default value of the property is false.

Note:

If the client or server trusts more CAs such that it exceeds the size limit of the
extension (less than 2^16 bytes), then the extension is not enabled. Also, some
server implementations don't allow handshake messages to exceed 2^14 bytes.
Thus, there may be interoperability issues if jdk.tls.client.enableCAExtension is
set to true and the client trusts more CAs such that it exceeds the server
implementation limit.

SunJSSE Renegotiation Interoperability Modes
The SunJSSE implementation reenables renegotiations by default for connections to peers
compliant with RFC 5746. That is, both the client and server must support RFC 5746 to
securely renegotiate. (RFC 5746 addresses a flaw that was discovered in SSL/TLS protocols.)
SunJSSE provides some interoperability modes for connections with peers that have not been
upgraded, but users are strongly encouraged to update both their client and server
implementations as soon as possible.

SunJSSE has three renegotiation interoperability modes. Each mode fully supports RFC 5746:
Transport Layer Security (TLS) Renegotiation Indication Extension, but has these added
semantics when communicating with a peer that has not been upgraded:

• Strict mode: Requires both client and server be upgraded to RFC 5746 and to send the
proper RFC 5746 messages. If not, the initial (or subsequent) handshaking will fail and the
connection will be terminated.

• Interoperable mode (default): Use of the proper RFC 5746 messages is optional;
however, legacy (original SSL/TLS specifications) renegotiations are disabled if the proper
messages are not used. Initial legacy connections are still allowed, but legacy
renegotiations are disabled. This is the best mix of security and interoperability, and is the
default setting.

• Insecure mode: Permits full legacy renegotiation. Most interoperable with legacy peers
but vulnerable to the original MITM attack.

The three mode distinctions only affect a connection with a peer that has not been upgraded.
Ideally, strict (full RFC 5746) mode should be used for all clients and servers; however, it will
take some time for all deployed SSL/TLS implementations to support RFC 5746, because the
interoperable mode is the current default.

The following table contains interoperability information about the modes for various cases in
which the client and/or server are either updated to support RFC 5746 or not.

Chapter 8
Customizing JSSE

8-75

https://www.ietf.org/rfc/rfc5746.txt
https://www.ietf.org/rfc/rfc5746.txt

Table 8-6 Interoperability Information

Client Server Mode

Updated Updated Secure renegotiation in all modes.

Legacy1 Updated • Strict If clients do not send the proper
RFC 5746 messages, then initial
connections will immediately be
terminated by the server
(SSLHandshakeException or
handshake_failure).

• Interoperable Initial connections from
legacy clients are allowed (missing RFC
5746 messages), but renegotiations will
not be allowed by the server. 23

• Insecure Connections and
renegotiations with legacy clients are
allowed, but are vulnerable to the
original MITM attack.

Updated Legacy 1 • Strict If the server does not respond
with the proper RFC 5746 messages,
then the client will immediately
terminate the connection
(SSLHandshakeException or
handshake_failure).

• Interoperable Initial connections from
legacy servers are allowed (missing
RFC 5746 messages), but
renegotiations will not be allowed by the
server. 23

• Insecure Connections and
renegotiations with legacy servers are
allowed, but are vulnerable to the
original MITM attack.

Legacy 1 Legacy 1 Existing SSL/TLS behavior, vulnerable to the
MITM attack.

1 "Legacy" means the original SSL/TLS specifications (that is, not RFC 5746).
2 If renegotiations are reenabled, then they will be treated as "Legacy" by the peer that is compliant with RFC 5746,

because they do not send the proper RFC 5746 messages.
3 In SSL/TLS, renegotiations can be initiated by either side. Applications communicating with a peer that has not been

upgraded in Interoperable mode and that attempt to initiate renegotiation (via SSLSocket.startHandshake()
or SSLEngine.beginHandshake()) will receive an SSLHandshakeException (IOException) and the
connection will be shut down (handshake_failure). Applications that receive a renegotiation request from a
peer that has not been upgraded will respond according to the type of connection in place:
– TLSv1 A warning alert message of type no_renegotiation(100) will be sent to the peer and the

connection will remain open. Older versions of SunJSSE will shut down the connection when a
no_renegotiation alert is received.

– SSLv3 The application will receive an SSLHandshakeException, and the connection will be closed
(handshake_failure). The no_renegotiation alert is not defined in the SSLv3 specification.

Set the mode with the the following system properties (see How to Specify a java.lang.System
Property):

• sun.security.ssl.allowUnsafeRenegotiation controls whether legacy (unsafe)
renegotiations are permitted.

Chapter 8
Customizing JSSE

8-76

• sun.security.ssl.allowLegacyHelloMessages allows the peer to perform the handshake
process without requiring the proper RFC 5746 messages.

Note:

The system properties sun.security.ssl.allowUnsafeRenegotiation and
sun.security.ssl.allowLegacyHelloMessages are deprecated and might be
removed in a future JDK release.

Table 8-7 Values of the System Properties for Setting the Interoperability Mode

Mode allowLegacyHelloMessages allowUnsafeRenegotiation

Strict false false
Interoperable (default) true false
Insecure true true

Caution:

Do not reenable the insecure SSL/TLS renegotiation, as this would reestablish the
vulnerability that was discovered in SSL/TLS protocols.

Workarounds and Alternatives to SSL/TLS Renegotiation
All peers should be updated to RFC 5746-compliant implementation as soon as possible. Even
with this RFC 5746 fix, communications with peers that have not been upgraded will be
affected if a renegotiation is necessary. Here are a few suggested options:

• Restructure the peer to not require renegotiation.

Renegotiations are typically used by web servers that initially allow for anonymous client
browsing but later require SSL/TLS authenticated clients, or that may initially allow weak
cipher suites but later need stronger ones. The alternative is to require client authentication
or strong cipher suites during the initial negotiation. There are a couple of options for doing
so:

– If an application has a browse mode until a certain point is reached and a renegotiation
is required, then you can restructure the server to eliminate the browse mode and
require all initial connections be strong.

– Break the server into two entities, with the browse mode occurring on one entity, and
using a second entity for the more secure mode. When the renegotiation point is
reached, transfer any relevant information between the servers.

Both of these options require a fair amount of work, but will not reopen the original security
flaw.

• Set renegotiation interoperability mode to "insecure" using the system properties.

See SunJSSE Renegotiation Interoperability Modes.

Chapter 8
Customizing JSSE

8-77

Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations
Server certificate change in an SSL/TLS renegotiation may be unsafe if all of the following
apply:

• Endpoint identification is not enabled in an SSL/TLS handshaking.

• The previous handshake is a session-resumption abbreviated initial handshake.

• The identities represented by both certificates can be regarded as different. The following
steps are followed to determine if two certificates represent the same identity:

1. If the subject alternative names of IP address are present in both certificates, then they
are identical.

2. Otherwise, if the subject alternative names of DNS name are present in both
certificates, then they are identical.

3. Otherwise, if the subject fields are present in both certificates, then the certificate
subjects and issuers are identical.

Unsafe server certificate change in SSL/TLS renegotiations is not allowed by default. Use the
system property jdk.tls.allowUnsafeServerCertChange to define whether unsafe server
certificate change in an SSL/TLS renegotiation should be restricted or not. The default value of
this system property is false.

Caution:

Do not set the system property to true unless it is really necessary, as this would re-
establish the unsafe server certificate change vulnerability.

Client-Driven OCSP and OCSP Stapling
Use the Online Certificate Status Protocol (OCSP) to determine the X.509 certificate
revocation status during the Transport Layer Security (TLS) handshake.

X.509 certificates used in TLS can be revoked by the issuing Certificate Authority (CA) if there
is reason to believe that a certificate is compromised. You can check the revocation status of
certificates during the TLS handshake by using one of the following approaches.

• Certificate Revocation List (CRL): A CRL is a simple list of revoked certificates. The
application receiving a certificate gets the CRL from a CRL server and checks if the
certificate received is on the list. There are two disadvantages to using CRLs that mean a
certificate could be revoked:

– CRLs can become very large so there can be a substantial increase in network traffic.

– Many CRLs are created with longer validity periods, which increases the possibility of
a certificate being revoked within that validity period and not showing up until the next
CRL refresh.

See Certificate/CRL Storage Classes in Java PKI Programmer's Guide.

• Client-driven OCSP : In client-driven OCSP, the client uses OCSP to contact an OCSP
responder to check the certificate’s revocation status. The amount of data required is
usually less than that of a CRL, and the OCSP responder is likely to be more up-to-date
with the revocation status than a CRL. Each client connecting to a server requires an
OCSP response for each certificate being checked. If the server is a popular one,

Chapter 8
Customizing JSSE

8-78

and many of the clients are using clientdriven OCSP, these OCSP requests can have a
negative effect on the performance of the OCSP responder.

• OCSP stapling: OCSP stapling enables the server, rather than the client, to make the
request to the OCSP responder. The server staples the OCSP response to the certificate
and returns it to the client during the TLS handshake. This approach enables the presenter
of the certificate, rather than the issuing CA, to bear the resource cost of providing OCSP
responses. It also enables the server to cache the OCSP responses and supply them to all
clients. This significantly reduces the load on the OCSP responder because the response
can be cached and periodically refreshed by the server rather than by each client.

Client-Driven OCSP and Certificate Revocation
Client-driven Online Certificate Status Protocol (OCSP) enables the client to check the
certificate revocation status by connecting to an OCSP responder during the Transport Layer
Security (TLS) handshake.

The client-driven OCSP request occurs during the TLS handshake just after the client receives
the certificate from the server and validates it.

TLS Handshake with Client-Driven OCSP

Client-driven OCSP is used during the TLS handshake between the client and the server to
check the server certificate revocation status. After the client receives the certificate, it
performs certificate validation. If the validation is successful, then the client verifies that the
certificate was not revoked by the issuer. This is done by sending an OCSP request to an
OCSP responder. After receiving the OCSP response, the client checks this response before
completing the TLS handshake.

Usually the client finds the OCSP responder's URL by looking in the Authority Information
Access (AIA) extension of the certificate, but it can be set to a static URL through the use of a
system property.

Setting up a Java Client to use Client-Driven OCSP
Client-driven OCSP is enabled by enabling revocation checking and enabling OCSP.

To configure a Java client to use client-driven OCSP, the Java client must already be set up to
connect to a server using TLS.

1. Enable revocation checking. You can do this in two different ways.

• Set the system property com.sun.net.ssl.checkRevocation to true.

• Use the setRevocationEnabled method on PKIXParameters. See The
PKIXParameters Class.

2. Enable client-driven OCSP:

Set the Security Property ocsp.enable to true.

Both steps are necessary. The ocsp.enable setting has no effect unless revocation checking is
enabled.

Chapter 8
Customizing JSSE

8-79

OCSP Stapling and Certificate Revocation
Online Certificate Status Protocol (OCSP) stapling enables the presenter of a certificate, rather
than the issuing Certificate Authority (CA), to bear the resource cost of providing the OCSP
responses that contain the certificate’s revocation status.

TLS Handshake with OCSP Stapling

OCSP stapling is used during the Transport Layer Security (TLS) handshake between the
client and the server to check the server certificate revocation status. The server makes the
OCSP request to the OCSP responder and staples the OCSP responses to the certificates
returned to the client. By having the server make the request to the OCSP responder, the
responses can be cached, and then used multiple times for many clients.

The client receiving the certificates with stapled OCSP responses validates each certificate,
and then checks the OCSP responses before continuing with the handshake. If, from the
client’s perspective, the stapled OCSP response from the server for a certificate is missing, the
client will attempt to use client-driven OCSP or Certificate Revocation Lists (CRLs) to get
revocation information if the following are true:

• The RevocationEnabled flag is set to true through the
PKIXParameters.setRecovcationEnabled method.

• OCSP checking is enabled by setting the ocsp.enable Security Property to true.

OCSP checking works in conjunction with CRLs during revocation checking. See Appendix C:
OCSP Support in Java PKI Programmer's Guide.

Status Request Versus Multiple Status Request

The OCSP stapling feature implements the TLS Certificate Status Request extension (section
8 of RFC 6066) and the Multiple Certificate Status Request Extension (RFC 6961).

The TLS Certificate Status Request extension requests revocation information for only the
server certificate in the certificate chain while the Multiple Certificate Status Request Extension
requests revocation information for all certificates in the certificate chain. In the case where
only the server certificate's revocation information is sent to the client, other certificates in the
chain may be verified using the Certificate Revocation Lists (CRLs) or client-driven OCSP (but
the client will need to be set up to do this).

Although TLS allows the server to also request the client’s certificate, there is no provision in
OCSP stapling that enables the client to contact the appropriate OCSP responder and staple
the response to the certificate sent to the server.

The OCSP Request and Response

OCSP request and response messages are usually sent over unencrypted HTTP. The
response is signed by the CA.

If necessary, the stapled responses can be obtained in the client code by calling the
getStatusResponses method on the ExtendedSSLSession object. The method signature is:

public List<byte[]> getStatusResponses();

The OCSP response is encoded using the Distinguished Encoding Rules (DER) in a format
described by the ASN.1 found in RFC 6960.

Chapter 8
Customizing JSSE

8-80

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXParameters.html#setRevocationEnabled(boolean)
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/rfc6960

Setting Up a Java Client to Use OCSP Stapling
Online Certificate Status Protocol (OCSP) stapling is enabled on the client side by setting the
system property jdk.tls.client.enableStatusRequestExtension to true (its default value).

To configure a Java client to make use of the OCSP response stapled to the certificate
returned by a server, the Java client must already be set up to connect to a server using TLS,
and the server must be set up to staple an OCSP response to the certificate it returns part of
the TLS handshake.

1. Enable OCSP stapling on the client:

If necessary, set the system property jdk.tls.client.enableStatusRequestExtension to
true.

2. Enable revocation checking. You can do this in two different ways.

• Set the system property com.sun.net.ssl.checkRevocation to true. You can do this
from the command line or in the code.

• Use the setRevocationEnabled method on the PKIXParameters class. See The
PKIXParameters Class.

For the client to include the stapled responses received from the server in the certificate
validation, revocation checking must be set to true. If revocation checking is not set to
true, then the connection will be allowed to proceed regardless of the presence or status
of the revocation information

Setting Up a Java Server to Use OCSP Stapling
Online Certificate Status Protocol (OCSP) stapling is enabled on the server by setting the
system property jdk.tls.server.enableStatusRequestExtension to true. (It is set to false
by default.)

The following steps can be used to configure a Java server to connect to an OCSP responder
and staple the OCSP response to the certificate to be returned to the client. The Java server
must already be set up to respond to clients using TLS.

1. Enable OCSP stapling on the server:

Set the system property jdk.tls.server.enableStatusRequestExtension to true.

2. Optional: Set other properties as required. See OCSP Stapling Configuration Properties for
a list of the valid properties.

OCSP Stapling Configuration Properties
This topic lists the effects of setting various properties when using the Online Certificate Status
Protocol (OCSP). It shows the properties used in both client-driven OCSP and OCSP stapling.

Server-side Properties

Most of the properties are read at SSLContext instantiation time. This means that if you set a
property, you must obtain a new SSLContext object so that an SSLSocket or SSLEngine object
you obtain from that SSLContext object will reflect the property setting. The one exception is
the jdk.tls.stapling.responseTimeout property. That property is evaluated when the
ServerHandshaker object is created (essentially at the same time that an SSLSocket or
SSLEngine object gets created).

Chapter 8
Customizing JSSE

8-81

Table 8-8 Server-Side OCSP stapling Properties

Property Description Default Value

jdk.tls.server.enableStatusRequestExtensio
n

Enables the server-side support for OCSP
stapling.

False

jdk.tls.stapling.responseTimeout Controls the maximum amount of time the
server will use to obtain OCSP responses,
whether from the cache or by contacting an
OCSP responder.

The responses that are already received will be
sent in a CertificateStatus message, if
applicable based on the type of stapling being
done.

5000 (integer
value in
milliseconds)

jdk.tls.stapling.cacheSize Controls the maximum cache size in entries.

If the cache is full and a new response needs to
be cached, then the least recently used cache
entry will be replaced with the new one. A value
of zero or less for this property means that the
cache will have no upper bound on the number
of responses it can contain.

256 objects

jdk.tls.stapling.cacheLifetime Controls the maximum life of a cached
response.

It is possible for responses to have shorter
lifetimes than the value set with this property if
the response has a nextUpdate field that
expires sooner than the cache lifetime. A value
of zero or less for this property disables the
cache lifetime. If an object has no nextUpdate
value and cache lifetimes are disabled, then the
response will not be cached.

3600 seconds (1
hour)

jdk.tls.stapling.responderURI Enables the administrator to set a default URI in
the event that certificates used for TLS do not
have the Authority Info Access (AIA) extension.

It will not override the Authority Info Access
extension value unless the
jdk.tls.stapling.responderOverride
property is set.

Not set

jdk.tls.stapling.responderOverride Enables a URI provided through the
jdk.tls.stapling.responderURI property
to override any AIA extension value.

False

jdk.tls.stapling.ignoreExtensions Disables the forwarding of OCSP extensions
specified in
the status_request or status_request_v2
TLS extensions.

False

Client-Side Settings

Table 8-9 Client-Side Settings Used in OCSP Stapling

PKIXBuilderParameter
s

checkRevocation
Property

PKIXRevocationCheck
er

Result

Default Default Default Revocation checking is
disabled.

Chapter 8
Customizing JSSE

8-82

Table 8-9 (Cont.) Client-Side Settings Used in OCSP Stapling

PKIXBuilderParameter
s

checkRevocation
Property

PKIXRevocationCheck
er

Result

Default True Default Revocation checking is
enabled.[1]

Instantiated Default Default Revocation checking is
enabled.[1]

Instantiated Default Instantiated, added to
PKIXBuilderParamete
rs object.

Revocation checking is
enabled and[1]will
behave according to the
PKIXRevocationCheck
er settings.

Footnote 1 Note that client-side OCSP fallback will occur only if the ocsp.enable Security
Property is set to true.

Developers have some flexibility in how to handle the responses provided through OCSP
stapling. OCSP stapling makes no changes to the current methodologies involved in certificate
path checking and revocation checking. This means that it is possible to have both client and
server assert the status_request extensions, obtain OCSP responses through the
CertificateStatus message, and provide user flexibility in how to react to revocation
information, or the lack thereof.

If no PKIXBuilderParameters is provided by the caller, then revocation checking is disabled. If
the caller creates a PKIXBuilderParameters object and uses
the setRevocationEnabled method to enable revocation checking, then stapled OCSP
responses will be evaluated. This is also the case if
the com.sun.net.ssl.checkRevocation property is set to true.

Configuring Default Extensions
Some TLS implementations may not handle unknown extensions properly. As a result, you
might encounter unexpected interoperability issues when the JDK introduces new extensions.
Two system properties enable you to customize default extensions:

• jdk.tls.client.disableExtensions: Blocks extensions used on the client side.

• jdk.tls.server.disableExtensions: Blocks extensions used on the server side.

If an extension is disabled, then it won't be produced nor processed in handshake messages.

The value of these system properties is a list of comma-separated standard TLS extension
names. See Transport Layer Security (TLS) Extensions for a list of these names. Extension
names are case-sensitive, and unknown, unsupported misspelled and duplicated names are
ignored.

Note:

Although system properties exist that enable and disable specific TLS extensions,
such as jsse.enableMFLNExtension, jsse.enableSNIExtension, and
jsse.enableSNIExtension, an extension won't be enabled if it's disabled through
jdk.tls.client.disableExtensions or jdk.tls.server.disableExtensions, even
though it could be enabled though the corresponding system property.

Chapter 8
Customizing JSSE

8-83

https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

Hardware Acceleration and Smartcard Support
The Java Cryptography Architecture (JCA) is a set of packages that provides a framework and
implementations for encryption, key generation and key agreement, and message
authentication code (MAC) algorithms. (See Java Cryptography Architecture (JCA) Reference
Guide.) The SunJSSE provider uses JCA exclusively for all of its cryptographic operations and
can automatically take advantage of JCE features and enhancements, including JCA's support
for RSA PKCS#11. This support enables the SunJSSE provider to use hardware cryptographic
accelerators for significant performance improvements and to use smartcards as keystores for
greater flexibility in key and trust management. .

Use of hardware cryptographic accelerators is automatic if JCA has been configured to use the
Oracle PKCS#11 provider, which in turn has been configured to use the underlying accelerator
hardware. The provider must be configured before any other JCA providers in the provider list.
For details on how to configure the Oracle PKCS#11 provider, see PKCS#11 Reference Guide.

Configuring JSSE to Use Smartcards as Keystores and Truststores

Support for PKCS#11 in JCA also enables access to smartcards as a keystore. For details on
how to configure the type and location of the keystores to be used by JSSE, see Customizing
JSSE. To use a smartcard as a keystore or truststore, set the javax.net.ssl.keyStoreType
and javax.net.ssl.trustStoreType system properties, respectively, to pkcs11, and set the
javax.net.ssl.keyStore and javax.net.ssl.trustStore system properties, respectively, to
NONE. To specify the use of a specific provider, use the javax.net.ssl.keyStoreProvider and
javax.net.ssl.trustStoreProvider system properties (for example, set them to SunPKCS11-
joe). By using these properties, you can configure an application that previously depended on
these properties to access a file-based keystore to use a smartcard keystore with no changes
to the application.

Some applications request the use of keystores programmatically. These applications can
continue to use the existing APIs to instantiate a Keystore and pass it to its key manager and
trust manager. If the Keystore instance refers to a PKCS#11 keystore backed by a Smartcard,
then the JSSE application will have access to the keys on the smartcard.

Multiple and Dynamic Keystores
Smartcards (and other removable tokens) have additional requirements for an
X509KeyManager. Different smartcards can be present in a smartcard reader during the lifetime
of a Java application, and they can be protected using different passwords.

The KeyStore.Builder class abstracts the construction and initialization of a KeyStore object.
It supports the use of CallbackHandler for password prompting, and its subclasses can be
used to support additional features as desired by an application. For example, it is possible to
implement a Builder that allows individual KeyStore entries to be protected with different
passwords. The KeyStoreBuilderParameters class then can be used to initialize a
KeyManagerFactory using one or more of these Builder objects.

A X509KeyManager implementation in the SunJSSE provider called NewSunX509 supports
these parameters. If multiple certificates are available, it attempts to pick a certificate with the
appropriate key usage and prefers valid to expired certificates.

Example 8-17 illustrates how to tell JSSE to use both a PKCS#11 keystore (which might in turn
use a smartcard) and a PKCS#12 file-based keystore.

Chapter 8
Hardware Acceleration and Smartcard Support

8-84

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.Builder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/KeyStoreBuilderParameters.html

Example 8-17 Sample Code to Use PKCS#11 and PKCS#12 File-based Keystore

import javax.net.ssl.*;
import java.security.KeyStore.*;
// ...

// Specify keystore builder parameters for PKCS#11 keystores
Builder scBuilder = Builder.newInstance("PKCS11", null,
 new CallbackHandlerProtection(myGuiCallbackHandler));

// Specify keystore builder parameters for a specific PKCS#12 keystore
Builder fsBuilder = Builder.newInstance("PKCS12", null,
 new File(pkcsFileName), new PasswordProtection(pkcsKsPassword));

// Wrap them as key manager parameters
ManagerFactoryParameters ksParams = new KeyStoreBuilderParameters(
 Arrays.asList(new Builder[] { scBuilder, fsBuilder }));

// Create KeyManagerFactory
KeyManagerFactory factory = KeyManagerFactory.getInstance("NewSunX509");

// Pass builder parameters to factory
factory.init(ksParams);

// Use factory
SSLContext ctx = SSLContext.getInstance("TLS");
ctx.init(factory.getKeyManagers(), null, null);

Additional Keystore Formats (PKCS12)
The PKCS#12 (Personal Information Exchange Syntax Standard) specifies a portable format
for storage and/or transport of a user's private keys, certificates, miscellaneous secrets, and
other items. The SunJSSE provider supplies a complete implementation of the PKCS12
java.security.KeyStore format for reading and writing PKCS12 files. This format is also
supported by other toolkits and applications for importing and exporting keys and certificates,
such as Mozilla Firefox, Microsoft Internet Explorer, and OpenSSL. For example, these
implementations can export client certificates and keys into a file using the .p12 file name
extension.

With the SunJSSE provider, you can access PKCS12 keys through the KeyStore API with a
keystore type of PKCS12. In addition, you can list the installed keys and associated certificates
by using the keytool command with the -storetype option set to pkcs12. See keytool in Java
Development Kit Tool Specifications.

Server Name Indication (SNI) Extension
The SNI extension is a feature that extends the TLS/DTLS protocol to indicate what server
name the client is attempting to connect to during handshaking. Servers can use server name
indication information to decide if specific SSLSocket or SSLEngine instances should accept a
connection. For example, when multiple virtual or name-based servers are hosted on a single
underlying network address, the server application can use SNI information to determine
whether this server is the exact server that the client wants to access. Instances of this class

Chapter 8
Additional Keystore Formats (PKCS12)

8-85

https://www.rfc-editor.org/rfc/rfc7292.html

can be used by a server to verify the acceptable server names of a particular type, such as
host names. See section 3 of TLS Extensions (RFC 6066).

Developers of client applications can explicitly set the server name indication using the
SSLParameters.setServerNames(List<SNIServerName> serverNames) method. See
Example 8-18.

Developers of server applications can use the SNIMatcher class to decide how to recognize
server name indication. Example 8-19 and Example 8-20 illustrate this functionality:

Example 8-18 Sample Code to Set the Server Name Indication

The following code sample illustrates how to set the server name indication using the method
SSLParameters.setServerNames(List<SNIServerName> serverNames):

SSLSocketFactory factory = ...
SSLSocket sslSocket = factory.createSocket("172.16.10.6", 443);
// SSLEngine sslEngine = sslContext.createSSLEngine("172.16.10.6", 443);

SNIHostName serverName = new SNIHostName("www.example.com");
List<SNIServerName> serverNames = new ArrayList<>(1);
serverNames.add(serverName);

SSLParameters params = sslSocket.getSSLParameters();
params.setServerNames(serverNames);
sslSocket.setSSLParameters(params);
// sslEngine.setSSLParameters(params);

Example 8-19 Sample Code Using SSLSocket Class to Recognize SNI

The following code sample illustrates how the server applications can use the SNIMatcher
class to decide how to recognize server name indication:

SSLSocket sslSocket = sslServerSocket.accept();

SNIMatcher matcher = SNIHostName.createSNIMatcher("www\\.example\\.(com|
org)");
Collection<SNIMatcher> matchers = new ArrayList<>(1);
matchers.add(matcher);

SSLParameters params = sslSocket.getSSLParameters();
params.setSNIMatchers(matchers);
sslSocket.setSSLParameters(params);

Example 8-20 Sample Code Using SSLServerSocket Class to Recognize SNI

The following code sample illustrates how the server applications can use the SNIMatcher
class to decide how to recognize server name indication:

SSLServerSocket sslServerSocket = ...;

SNIMatcher matcher = SNIHostName.createSNIMatcher("www\\.example\\.(com|
org)");
Collection<SNIMatcher> matchers = new ArrayList<>(1);

Chapter 8
Server Name Indication (SNI) Extension

8-86

http://www.ietf.org/rfc/rfc6066.txt

matchers.add(matcher);

SSLParameters params = sslServerSocket.getSSLParameters();
params.setSNIMatchers(matchers);
sslServerSocket.setSSLParameters(params);

SSLSocket sslSocket = sslServerSocket.accept();

The following list provides examples for the behavior of the SNIMatcher when receiving various
server name indication requests in the ClientHello message:

• Matcher configured to www\\.example\\.com:

– If the requested host name is www.example.com, then it will be accepted and a
confirmation will be sent in the ServerHello message.

– If the requested host name is www.example.org, then it will be rejected with an
unrecognized_name fatal error.

– If there is no requested host name or it is empty, then the request will be accepted but
no confirmation will be sent in the ServerHello message.

• Matcher configured to www\\.invalid\\.com:

– If the requested host name is www.example.com, then it will be rejected with an
unrecognized_name fatal error.

– If the requested host name is www.example.org, then it will be accepted and a
confirmation will be sent in the ServerHello message.

– If there is no requested host name or it is empty, then the request will be accepted but
no confirmation will be sent in the ServerHello message.

• Matcher is not configured:

Any requested host name will be accepted but no confirmation will be sent in the
ServerHello message.

For descriptions of new classes that implement the SNI extension, see:

• StandardConstants Class

• SNIServerName Class

• SNIMatcher Class

• SNIHostName Class

For examples, see Using the Server Name Indication (SNI) Extension.

TLS Application Layer Protocol Negotiation
Negotiate an application protocol for a TLS connection with Application Layer Protocol
Negotiation (ALPN).

What is ALPN?

Some applications might want or need to negotiate a shared application level value before a
TLS handshake has completed. For example, HTTP/2 uses the Application Layer Protocol
Negotiation mechanism to help establish which HTTP version ("h2", "spdy/3", "http/1.1") can or
will be used on a particular TCP or UDP port. ALPN (RFC 7301) does this without adding
network round-trips between the client and the server. In the case of HTTP/2 the protocol must

Chapter 8
TLS Application Layer Protocol Negotiation

8-87

https://www.rfc-editor.org/rfc/rfc7301.txt

be established before the connection is negotiated, as client and server need to know what
version of HTTP to use before they start communicating. Without ALPN it would not be
possible to have application protocols HTTP/1 and HTTP/2 on the same port.

The client uses the ALPN extension at the beginning of the TLS handshake to send a list of
supported application protocols to the server as part of the ClientHello. The server reads the
list of supported application protocols in the ClientHello, and determines which of the
supported protocols it prefers. It then sends a ServerHello message back to the client with the
negotiation result. The message may contain either the name of the protocol that has been
chosen or that no protocol has been chosen.

The application protocol negotiation can thus be accomplished within the TLS handshake,
without adding network round-trips, and allows the server to associate a different certificate
with each application protocol, if desired.

Unlike many other TLS extensions, this extension does not establish properties of the session,
only of the connection. That's why you'll find the negotiated values in the SSLSocket/
SSLEngine, not the SSLSession. When session resumption or session tickets are used (see
TLS Session Resumption without Server-Side State), the previously negotiated values are
irrelevant, and only the values in the new handshake messages are considered.

Setting up ALPN on the Client
Set up Application Layer Protocol Negotiation (ALPN) values supported by the client to send to
the server by calling the SSLParameters.setApplicationProtocols(String[]) method,
followed by the setSSLParameters method of either SSLSocket or SSLEngine. During the
handshake with the server, the server will read the client’s list of application protocols and will
determine which is the most suitable.

Example 8-21 Sample Code for Setting and Getting ALPN Values in a Java Client

For example, here are the steps to set ALPN values of "three" and "two" on the client.

To run the code the property javax.net.ssl.trustStore must be set to a valid root certificate.
(This can be done on the command line).

import java.io.*;
import java.util.*;
import javax.net.ssl.*;
public class SSLClient {
 public static void main(String[] args) throws Exception {

 // Code for creating a client side SSLSocket
 SSLSocketFactory sslsf = (SSLSocketFactory)
SSLSocketFactory.getDefault();
 SSLSocket sslSocket = (SSLSocket) sslsf.createSocket("localhost",
9999);

 // Get an SSLParameters object from the SSLSocket
 SSLParameters sslp = sslSocket.getSSLParameters();

 // Populate SSLParameters with the ALPN values
 // On the client side the order doesn't matter as
 // when connecting to a JDK server, the server's list takes priority
 String[] clientAPs = {"three", "two"};
 sslp.setApplicationProtocols(clientAPs);

Chapter 8
TLS Application Layer Protocol Negotiation

8-88

http://www.rfc-editor.org/rfc/rfc5077.txt

 // Populate the SSLSocket object with the SSLParameters object
 // containing the ALPN values
 sslSocket.setSSLParameters(sslp);

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that has been
negotiated
 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol client side: \"" + ap +
"\"");

 // Do simple write/read
 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslOS.write(280);
 sslOS.flush();
 sslIS.read();
 sslSocket.close();
 }
}

When this code is run, it sends a ClientHello message to a Java server that has set the
ALPN values one, two, and three. The code prints the following output:

Application Protocol client side: two

It is also possible to check the results of the negotiation during handshaking. See Determining
Negotiated ALPN Value during Handshaking.

Setting up Default ALPN on the Server
Use the default ALPN mechanism to determine a suitable application protocol by setting ALPN
values on the server.

To use the default mechanism for ALPN on the server, populate an SSLParameters object with
the ALPN values you wish to set, and then use this SSLParameters object to populate either
the SSLSocket object or the SSLEngine object with these parameters as you have done when
you set up ALPN on the client (see the section Setting up ALPN on the Client). The first value
of the ALPN values set on the server that matches any of the ALPN values contained in the
ClientHello will be chosen and returned to the client as part of the ServerHello.

Example 8-22 Sample Code for Default ALPN Value Negotiation on the Server

Here is the code for a Java server that uses the default approach for protocol negotiation. To
run the code the property javax.net.ssl.keyStore must be set to a valid keystore. (This can
be done on the command line, see Creating a Keystore to Use with JSSE).

import java.util.*;
import javax.net.ssl.*;
public class SSLServer {
 public static void main(String[] args) throws Exception {

 // Code for creating a server side SSLSocket
 SSLServerSocketFactory sslssf =

Chapter 8
TLS Application Layer Protocol Negotiation

8-89

 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

 // Get an SSLParameters object from the SSLSocket
 SSLParameters sslp = sslSocket.getSSLParameters();

 // Populate SSLParameters with the ALPN values
 // As this is server side, put them in order of preference
 String[] serverAPs ={ "one", "two", "three" };
 sslp.setApplicationProtocols(serverAPs);

 // If necessary at any time, get the ALPN values set on the
 // SSLParameters object with:
 // String serverAPs = sslp.setApplicationProtocols();

 // Populate the SSLSocket object with the ALPN values
 sslSocket.setSSLParameters(sslp);

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that
 // has been negotiated

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap +
"\"");

 // Continue with the work of the server
 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();
 sslSocket.close();
 }
}

When this code is run and a Java client sends a ClientHello with ALPN values three and
two, the output is:

Application Protocol server side: two

It is also possible to check the results of the negotiation during handshaking. See Determining
Negotiated ALPN Value during Handshaking.

Setting up Custom ALPN on the Server
Use the custom ALPN mechanism to determine a suitable application protocol by setting up a
callback method.

If you do not want to use the server’s default negotiation protocol, you can use the
setHandshakeApplicationProtocolSelector method of SSLEngine or SSLSocket to register a
BiFunction (lambda) callback that can examine the handshake state so far, and then make

Chapter 8
TLS Application Layer Protocol Negotiation

8-90

your selection based on the client’s list of application protocols and any other relevant
information. For example, you may consider using the cipher suite suggested, or the Server
Name Indication (SNI) or any other data you can obtain in making the choice. If custom
negotiation is used, the values set by the setApplicationProtocols method (default
negotiation) will be ignored.

Example 8-23 Sample Code for Custom ALPN Value Negotiation on the Server

Here is the code for a Java server that uses the custom mechanism for protocol negotiation. To
run the code the property javax.net.ssl.keyStore must be set to a valid certificate. (This can
be done on the command line, see Creating a Keystore to Use with JSSE).

import java.util.*;
import javax.net.ssl.*;

public class SSLServer {
 public static void main(String[] args) throws Exception {

 // Code for creating a server side SSLSocket

 SSLServerSocketFactory sslssf =
 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

 // Code to set up a callback function
 // Pass in the current SSLSocket to be inspected and client AP values

 sslSocket.setHandshakeApplicationProtocolSelector(
 (serverSocket, clientProtocols) -> {
 SSLSession handshakeSession =
serverSocket.getHandshakeSession();

 // callback function called with current SSLSocket and client
AP values
 // plus any other useful information to help determine
appropriate
 // application protocol. Here the protocol and ciphersuite
are also
 // passed to the callback function.

 return chooseApplicationProtocol(
 serverSocket,
 clientProtocols,
 handshakeSession.getProtocol(),
 handshakeSession.getCipherSuite());
 });

 sslSocket.startHandshake();

 // After the handshake, get the application protocol that has been
 // returned from the callback method.

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap +

Chapter 8
TLS Application Layer Protocol Negotiation

8-91

"\"");

 // Continue with the work of the server

 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();
 sslSocket.close();
 }

 // The callback method. Note how the parameters match the call within
 // the setHandshakeApplicationProtocolSelector method.

 public static String chooseApplicationProtocol(SSLSocket serverSocket,
 List<String> clientProtocols, String protocol, String
cipherSuite) {
 // For example, check the cipher suite and return an application
protocol
 // value based on that.
 if (cipherSuite.equals("<--a_particular_ciphersuite-->")) {
 return "three";
 } else {
 return "";
 }
 }
}

If the cipher suite matches the one you specify in the condition statement when this code is
run , then the value three will be returned. Otherwise an empty string will be returned.

Note that the BiFunction object’s return value is a String, which will be the application
protocol name, or null to indicate that none of the advertised names are acceptable. If the
return value is an empty String then application protocol indications will not be used. If the
return value is null (no value chosen) or is a value that was not advertised by the peer, the
underlying protocol will determine what action to take. (For example, the server code will send
a "no_application_protocol" alert and terminate the connection.)

After handshaking completes on both client and server, you can check the result of the
negotiation by calling the getApplicationProtocol method on either the SSLSocket object or
the SSLEngine object.

Determining Negotiated ALPN Value during Handshaking
To determine the ALPN value that has been negotiated during the handshaking, create a
custom KeyManager or TrustManager class, and include in this custom class a call to the
getHandshakeApplicationProtocol method.

There are some use cases where the selected ALPN and SNI values will affect the choices
made by a KeyManager or TrustManager. For example, an application might want to select
different certificate/private key sets depending on the attributes of the server and the chosen
ALPN/SNI/ciphersuite values.

Chapter 8
TLS Application Layer Protocol Negotiation

8-92

The sample code given illustrates how to call the getHandshakeApplicationProtocol method
from within a custom X509ExtendedKeyManager that you create and register as the KeyManager
object.

Example 8-24 Sample Code for a Custom KeyManager

This example shows the entire code for a custom KeyManager that extends
X509ExtendedKeyManager. Most methods simply return the value returned from the KeyManager
class that is being wrapped by this MyX509ExtendedKeyManager class. However the
chooseServerAlias method calls the getHandshakeApplicationProtocol on the SSLSocket
object and therefore can determine the current negotiated ALPN value.

import java.net.Socket;
import java.security.*;
import javax.net.ssl.*;

public class MyX509ExtendedKeyManager extends X509ExtendedKeyManager {

 // X509ExtendedKeyManager is an abstract class so your new class
 // needs to implement all the abstract methods in this class.
 // The easiest way to do this is to wrap an existing KeyManager
 // and call its methods for each of the methods you need to implement.

 X509ExtendedKeyManager akm;

 public MyX509ExtendedKeyManager(X509ExtendedKeyManager akm) {
 this.akm = akm;
 }

 @Override
 public String[] getClientAliases(String keyType, Principal[] issuers) {
 return akm.getClientAliases(keyType, issuers);
 }

 @Override
 public String chooseClientAlias(String[] keyType, Principal[] issuers,
 Socket socket) {
 return akm.chooseClientAlias(keyType, issuers, socket);
 }

 @Override
 public String chooseServerAlias(String keyType, Principal[] issuers,
 Socket socket) {

 // This method has access to a Socket, so it is possible to call the
 // getHandshakeApplicationProtocol method here. Note the cast from
 // a Socket to an SSLSocket
 String ap = ((SSLSocket) socket).getHandshakeApplicationProtocol();
 System.out.println("In chooseServerAlias, ap is: " + ap);
 return akm.chooseServerAlias(keyType, issuers, socket);
 }

 @Override
 public String[] getServerAliases(String keyType, Principal[] issuers) {

Chapter 8
TLS Application Layer Protocol Negotiation

8-93

 return akm.getServerAliases(keyType, issuers);
 }

 @Override
 public X509Certificate[] getCertificateChain(String alias) {
 return akm.getCertificateChain(alias);
 }

 @Override
 public PrivateKey getPrivateKey(String alias) {
 return akm.getPrivateKey(alias);
 }
}

When this code is registered as the KeyManager for a Java server and a Java client sends a
ClientHello with ALPN values, the output will be:

 In chooseServerAlias, ap is: <negotiated value>

Example 8-25 Sample Code for Using a Custom KeyManager in a Java Server

This example shows a simple Java server that uses the default ALPN negotiation strategy and
the custom KeyManager, MyX509ExtendedKeyManager, shown in the prior code sample.

import java.io.*;
import java.util.*;
import javax.net.ssl.*;
import java.security.KeyStore;

public class SSLServerHandshake {

 public static void main(String[] args) throws Exception {
 SSLContext ctx = SSLContext.getInstance("TLS");

 // You need to explicitly create a create a custom KeyManager

 // Keystores
 KeyStore keyKS = KeyStore.getInstance("PKCS12");
 keyKS.load(new FileInputStream("serverCert.p12"),
 "password".toCharArray());

 // Generate KeyManager
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("PKIX");
 kmf.init(keyKS, "password".toCharArray());
 KeyManager[] kms = kmf.getKeyManagers();

 // Code to substitute MyX509ExtendedKeyManager
 if (!(kms[0] instanceof X509ExtendedKeyManager)) {
 throw new Exception("kms[0] not X509ExtendedKeyManager");
 }

 // Create a new KeyManager array and set the first index
 // of the array to an instance of MyX509ExtendedKeyManager.
 // Notice how creating this object is done by passing in the
 // existing default X509ExtendedKeyManager

Chapter 8
TLS Application Layer Protocol Negotiation

8-94

 kms = new KeyManager[] {
 new MyX509ExtendedKeyManager((X509ExtendedKeyManager) kms[0])};

 // Initialize SSLContext using the new KeyManager
 ctx.init(kms, null, null);

 // Instead of using SSLServerSocketFactory.getDefault(),
 // get a SSLServerSocketFactory based on the SSLContext
 SSLServerSocketFactory sslssf = ctx.getServerSocketFactory();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslssf.createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();
 SSLParameters sslp = sslSocket.getSSLParameters();
 String[] serverAPs ={"one","two","three"};
 sslp.setApplicationProtocols(serverAPs);
 sslSocket.setSSLParameters(sslp);
 sslSocket.startHandshake();

 String ap = sslSocket.getApplicationProtocol();
 System.out.println("Application Protocol server side: \"" + ap +
"\"");

 InputStream sslIS = sslSocket.getInputStream();
 OutputStream sslOS = sslSocket.getOutputStream();
 sslIS.read();
 sslOS.write(85);
 sslOS.flush();

 sslSocket.close();
 sslServerSocket.close();
 }
}

With the custom X509ExtendedKeyManager in place, when chooseServerAlias is called during
handshaking the KeyManager has the opportunity to examine the negotiated application
protocol value. In the case of the example shown, this value is output to the console.

For example, when this code is run and a Java client sends a ClientHello with ALPN values
three and two, the output will be:

Application Protocol server side: two

Reading and Writing ALPN Values with the SunJSSE Provider
ALPN transports data with byte arrays, which means that it expects text to be encoded with
single byte character encodings such as US-ASCII. Java ALPN APIs use the String class for
text, but prior to Java SE 16/11.0.2/8u301, the SunJSSE provider converts String instances
to byte arrays with UTF-8. However, UTF-8 is a variable-width character encoding. It encodes
characters above U+007F with more than one byte, which may not be expected by an ALPN
peer.

In Java SE 16/11.0.2/8u301 and later, the SunJSSE provider encodes and decodes String
characters as 8-bit ISO_8859_1/LATIN-1 characters.

Chapter 8
TLS Application Layer Protocol Negotiation

8-95

ALPN values are now represented using the network byte representation expected by the peer,
which should require no modification for standard 7-bit ASCII-based String instances.

The methods in the javax.net.ssl.SSLSocket and javax.net.ssl.SSLEngine return
ApplicationProtocol String values in the network byte representation sent by the peer.

However, if you have Unicode data with characters that are above U+007F, then your
application must correctly encode or decode them to byte arrays before sending or receiving
them instead of relying on the SunJSSE provider to automatically encode or decode Unicode
characters. Alternatively, you can set the security property jdk.tls.alpnCharset to UTF-8
to revert to the previous behavior.

To compare ALPN values with their expected values, you can convert them to byte arrays and
then compare them.

The expected ALPN values in the following example are the string http/1.1 and the UTF-8
encoded string (in hexadecimal) 0xABCD0xABCE0xABCF (which are the Meetei Mayek letters
"HUK UN I"). The example converts the ALPN value to a byte array with ISO-8859-1, converts
http/1.1 to a byte array with UTF-8, and manually specifies the byte array representation of
0xABCD0xABCE0xABCF.

 // Get the ALPN value negotiated by the TLS handshake currently
 // in progress

 String networkString = sslEngine.getHandshakeApplicationProtocol();

 // Encode the ALPN value into a byte array with the ISO-8859-1
 // character encoding

 byte[] bytes = networkString.getBytes(StandardCharsets.ISO_8859_1);

 String HTTP1_1 = "http/1.1";

 // Encode the String "http/1.1" into a byte array with the
 // UTF-8 character set

 byte[] HTTP1_1_BYTES = HTTP1_1.getBytes(StandardCharsets.UTF_8);

 // Create a byte array representing the Unicode characters 0xABCD,
 // 0xABCE, and 0xABCF, which are the Meetei Mayek letters "HUK UN I"

 byte[] HUK_UN_I_BYTES = new byte[] {
 (byte) 0xab, (byte) 0xcd,
 (byte) 0xab, (byte) 0xce,
 (byte) 0xab, (byte) 0xcf};

 // Test whether the APLN value is equal to "http/1.1" or
 // 0xABCD0xABCE0xABCF

 if ((Arrays.compare(bytes, HTTP1_1_BYTES) == 0) ||
 Arrays.compare(bytes, HUK_UN_I_BYTES) == 0) {
 // ...
 }

Chapter 8
TLS Application Layer Protocol Negotiation

8-96

Alternatively, you can compare ALPN values with the method String.equals() if you know
that the ALPN value was encoded from a String using a certain character set, for example
UTF-8. You must decode the ALPN value to a Unicode String before comparing it.

 String unicodeString = new String(bytes, StandardCharsets.UTF_8);
 if (unicodeString.equals(HTTP1_1) ||
 unicodeString.equals("\uabcd\uabce\uabcf")) {
 // ...
 }

For the method
javax.net.ssl.SSLParameters.setApplicationProtocols(String[]
protocols), you must convert its String arguments to the network byte representation
expected by the peer. For example, if the peer expects ALPN values in UTF-8, you must
convert it to a byte array with UTF-8 and then store it as a byte-oriented String:

// Convert Meetei Mayek letters "HUK UN I" (in hexadecimal,
0xABCD0xABCE0xABCF)
// to a byte array with UTF-8
byte[] bytes = "\uabcd\uabce\uabcf".getBytes(StandardCharsets.UTF_8);

// Create a byte-oriented String with ISO-8859-1
String HUK_UN_I = new String(bytes, StandardCharsets.ISO_8859_1);

// GREASE value {0x8A, 0x8A}
String rfc7301Grease8A = "\u008A\u008A";
SSLParameters p = sslSocket.getSSLParameters();
p.setApplicationProtocols(new String[] {"h2", "http/1.1", rfc7301Grease8A,
HUK_UN_I});
sslSocket.setSSLParameters(p);

At the beginning of the TLS handshake, the client sends a list of ALPN values to the server,
and the server selects which values it can use and ignores those that it doesn't recognize.
However, a flawed TLS implementation might instead reject unrecognized ALPN values, which
may prevent the handshake from proceeding, but developers or administrators may not notice
this flaw because it will still enable clients and servers whose ALPN values it recognizes to
connect.

Consequently, the TLS specification has introduced Generate Random Extensions And
Sustain Extensibility (GREASE) values: a reserved set of TLS protocol values that a TLS
implementation may randomly advertise to ensure that peers correctly handle unrecognized
values.

In the previous example, one of the values passed to the method
setApplicationProtocols, rfc7301Grease8A, is a GREASE value. The peer should
ignore it instead of reject it.

Chapter 8
TLS Application Layer Protocol Negotiation

8-97

ALPN Related Classes and Methods
These classes and methods are used when working with Application Layer Protocol
Negotiation (ALPN).

Classes and Methods to Use

SSLEngine and SSLSocket contain the same ALPN related methods and they have the same
functionality.

Class Method Purpose

SSLParameters public String[]
getApplicationProtocols();

Client-side and server-side: use the method to
return a String array containing each protocol
set.

SSLParameters public void
setApplicationProtocols([] protocols)
;

Client-side: use the method to set the protocols
that can be chosen by the server.

Server-side: use the method to set the
protocols that the server can use. The String
array should contain the protocols in order of
preference.

SSLEngine
SSLSocket

public String
getApplicationProtocol();

Client-side and server-side: use the method
after TLS protocol negotiation has completed to
return a String containing the protocol that has
been chosen for the connection.

SSLEngine
SSLSocket

public String
getHandshakeApplicationProtocol();

Client-side and server-side: use the method
during handshaking to return a String
containing the protocol that has been chosen for
the connection. If this method is called before or
after handshaking, it will return null. See
Determining Negotiated ALPN Value during
Handshaking for instructions on how to call this
method.

SSLEngine
SSLSocket

public void
setHandshakeApplicationProtocolSelect
or(BiFunction,String> selector)

Server-side: use the method to register a
callback function. The application protocol value
can then be set in the callback based on any
information available, for example the protocol or
cipher suite. See Setting up Custom ALPN on
the Server for instructions on how to use this
method.

Troubleshooting JSSE
This section contains information for troubleshooting JSSE. First, it provides some common
Configuration Problems and ways to solve them, and then it describes helpful Debugging
Utilities.

Configuration Problems
Solutions to some common configuration problems.

Chapter 8
Troubleshooting JSSE

8-98

SSLHandshakeException: No Available Authentication Scheme, Handshake Failure
Problem: The server throws this exception:

javax.net.ssl.SSLHandshakeException: No available authentication scheme

The client then receives a fatal alert:

javax.net.ssl.SSLHandshakeException: Received fatal alert: handshake_failure

Cause: The server throws this SSLHandshakeException if TLSv1.3 is chosen as the
protocol version and only DSA certificates are available in the server’s keymanager. Verify this
with the keytool command; change testkeys.dsa to the name of your keystore:

keytool -list -keystore testkeys.dsa -v

Enter keystore password:
Keystore type: PKCS12
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: localhost
Creation date: Sep 19, 2018
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]: Owner: CN=localhost, OU=Widget, O=Ficticious, L=Sunnyvale,
ST=CA, C=US Issuer: CN=localhost, OU=Widget, O=Ficticious, L=Sunnyvale,
ST=CA, C=US

...deleted...

Signature algorithm name: SHA256withDSA
Subject Public Key Algorithm: 2048-bit DSA key

...deleted...

Solution: Update your certificates so that they contain RSA or EC public keys.

CertificateException While Handshaking

Problem: When negotiating an TLS/DTLS connection, the client or server throws a
CertificateException.

Cause 1: This is generally caused by the remote side sending a certificate that is unknown to
the local side.

Solution 1: The best way to debug this type of problem is to turn on debugging (see
Debugging Utilities) and watch as certificates are loaded and when certificates are received via
the network connection. Most likely, the received certificate is unknown to the trust mechanism
because the wrong trust file was loaded.

Refer to the following sections:

Chapter 8
Troubleshooting JSSE

8-99

• JSSE Classes and Interfaces

• TrustManager Interface

• KeyManager Interface

Cause 2: The system clock is not set correctly. In this case, the perceived time may be outside
the validity period on one of the certificates, and unless the certificate can be replaced with a
valid one from a truststore, the system must assume that the certificate is invalid, and therefore
throw the exception.

Solution 2: Correct the system clock time.

Runtime Exception: SSL Service Not Available

Problem: When running a program that uses JSSE, an exception occurs indicating that an
SSL service is not available. For example, an exception similar to one of the following is
thrown:

 Exception in thread "main" java.net.SocketException:
 no SSL Server Sockets

 Exception in thread "main":
 SSL implementation not available

Cause: There was a problem with SSLContext initialization, for example, due to an incorrect
password on a keystore or a corrupted keystore (a JDK vendor once shipped a keystore in an
unknown format, and that caused this type of error).

Solution: Check initialization parameters. Ensure that any keystores specified are valid and
that the passwords specified are correct. One way that you can check this is by trying to use
keytool to examine the keystores and the relevant contents. See keytool in Java
Development Kit Tool Specifications.

Runtime Exception: "No available certificate corresponding to the SSL cipher suites
which are enabled"

Problem: When trying to run a simple SSL server program, the following exception is thrown:

 Exception in thread "main" javax.net.ssl.SSLException:
 No available certificate corresponding to the SSL cipher suites which
are enabled...

Cause: Various cipher suites require certain types of key material. For example, if an RSA
cipher suite is enabled, then an RSA keyEntry must be available in the keystore. If no such
key is available, then this cipher suite cannot be used. This exception is thrown if there are no
available key entries for all of the cipher suites enabled.

Solution: Create key entries for the various cipher suite types, or use an anonymous suite.
Anonymous cipher suites are inherently dangerous because they are vulnerable to MITM
(man-in-the-middle) attacks. See RFC 5246: The Transport Layer Security (TLS) Protocol,
Version 1.2.

Refer to the following sections to learn how to pass the correct keystore and certificates:

Chapter 8
Troubleshooting JSSE

8-100

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

• JSSE Classes and Interfaces

• Customizing the Default Keystores and Truststores, Store Types, and Store Passwords

• Additional Keystore Formats (PKCS12)

Runtime Exception: No Cipher Suites in Common

Problem 1: When handshaking, the client and/or server throw this exception.

Cause 1: Both sides of a TLS connection must agree on a common cipher suite. If the
intersection of the client's cipher suite set with the server's cipher suite set is empty, then you
will see this exception.

Solution 1: Configure the enabled cipher suites to include common cipher suites, and be sure
to provide an appropriate keyEntry for asymmetric cipher suites. Also see Runtime Exception:
"No available certificate corresponding to the SSL cipher suites which are enabled" in this
section.)

Problem 2: When using Mozilla Firefox or Microsoft Internet Explorer to access files on a
server that only has DSA-based certificates, a runtime exception occurs indicating that there
are no cipher suites in common.

Cause 2: By default, keyEntries created with keytool use DSA public keys. If only DSA
keyEntries exist in the keystore, then only DSA-based cipher suites can be used. By default,
Firefox and Internet Explorer send only RSA-based cipher suites. Because the intersection of
client and server cipher suite sets is empty, this exception is thrown.

Solution 2: To interact with Firefox or Internet Explorer, you should create certificates that use
RSA-based keys. To do this, specify the -keyalg RSA option when using keytool. For example:

keytool -genkeypair -alias duke -keystore testkeys -keyalg rsa

Socket Disconnected After Sending ClientHello Message

Problem: A socket attempts to connect, sends a ClientHello message, and is immediately
disconnected.

Cause: Some TLS servers will disconnect if a ClientHello message is received in a format they
do not understand or with a protocol version number that they do not support.

Solution: Try adjusting the enabled protocols on the client side. This involves modifying or
invoking some of the following system properties and methods:

• System property https.protocols for the HttpsURLConnection class

• System property jdk.tls.client.protocols
• SSLContext.getInstance method

• SSLEngine.setEnabledProtocols method

• SSLSocket.setEnabledProtocols method

• SSLParameters.setProtocols and SSLEngine.setSSLParameters methods

• SSLParameters.setProtocols and SSLSocket.setSSLParameters methods

For backwards compatibility, some TLS implementations (such as SunJSSE) can send TLS
ClientHello messages encapsulated in the SSLv2 ClientHello format. The SunJSSE provider

Chapter 8
Troubleshooting JSSE

8-101

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html#getInstance(java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html#setEnabledProtocols(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setEnabledProtocols(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#setProtocols(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html#setSSLParameters(javax.net.ssl.SSLParameters)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#setProtocols(java.lang.String[])
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLSocket.html#setSSLParameters(javax.net.ssl.SSLParameters)

supports this feature. If you want to use this feature, add the "SSLv2Hello" protocol to the
enabled protocol list, if necessary. (See Protocols in the JDK Providers, which lists the
protocols that are enabled by default for the SunJSSE provider.)

The TLS RFC standards require that implementations negotiate to the latest version both sides
speak, but some non-conforming implementation simply hang up if presented with a version
they don't understand. For example, some older server implementations that speak only SSLv3
will shutdown if TLSv1.2 is requested. In this situation, consider using a TLS version fallback
scheme:

1. Fall back from TLSv1.2 to TLSv1.1 if the server does not understand TLSv1.2.

2. Fall back from TLSv1.1 to TLSv1.0 if the previous step does not work.

For example, if the enabled protocol list on the client is TLSv1, TLSv1.1, and TLSv1.2, a typical
TLS version fallback scheme may look like:

1. Try to connect to server. If server rejects the TLS connection request immediately, go to
step 2.

2. Try the version fallback scheme by removing the highest protocol version (for example,
TLSv1.2 for the first failure) in the enabled protocol list.

3. Try to connect to the server again. If server rejects the connection, go to step 2 unless
there is no version to which the server can fall back.

4. If the connection fails and SSLv2Hello is not on the enabled protocol list, restore the
enable protocol list and enable SSLv2Hello. (For example, the enable protocol list should
be SSLv2Hello, TLSv1, TLSv1.1, and TLSv1.2.) Start again from step 1.

Note:

A fallback to a previous version normally means security strength downgrading to a
weaker protocol. It is not suggested to use a fallback scheme unless it is really
necessary, and you clearly know that the server does not support a higher protocol
version.

Note:

As part of disabling SSLv3, some servers have also disabled SSLv2Hello, which
means communications with SSLv2Hello-active clients (JDK 6u95) will fail. Starting
with JDK 7, SSLv2Hello default to disabled on clients, enabled on servers.

SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and
Causes a NoSuchAlgorithmException

Problem: A handshake is attempted and fails when it cannot find a required algorithm.
Examples might include:

Exception in thread ...deleted...
 ...deleted...
 Caused by java.security.NoSuchAlgorithmException: Cannot find any
 provider supporting RSA/ECB/PKCS1Padding

Chapter 8
Troubleshooting JSSE

8-102

or

Caused by java.security.NoSuchAlgorithmException: Cannot find any
 provider supporting AES/CBC/NoPadding

Cause: SunJSSE uses JCE for all its cryptographic algorithms. If the SunJCE provider has
been deregistered from the Provider mechanism and an alternative implementation from JCE
is not available, then this exception will be thrown.

Solution: Ensure that the SunJCE is available by checking that the provider is registered with
the Provider interface. Try to run the following code in the context of your SSL connection:

import javax.crypto.*;

System.out.println("=====Where did you get AES=====");
Cipher c = Cipher.getInstance("AES/CBC/NoPadding");
System.out.println(c.getProvider());

Exception Thrown When Obtaining Application Resources from a Virtual Host Web
Server that Requires an SNI Extension

Problem: If you receive an Exception when trying to obtain application resources from your
web server over TLS, and your web server is implemented as a virtual host that requires a
valid Server Name Indication (SNI) extension (such as Apache HTTP Server) to distinguish the
virtual host, then the web server might not be configured correctly.

Cause: Because Java SE supports the SNI extension in the JSSE client, the requested host
name of the virtual server is included in the first message sent from the client to the server
during the TLS handshake. The server may deny the client's request for a connection if the
requested host name (the server name indication) does not match the expected server name,
which should be specified in the virtual host's configuration. This triggers an TLS handshake
unrecognized name alert, which results in an Exception being thrown.

Solution: If the cause of the problem is javax.net.ssl.SSLProtocolException: handshake
alert: unrecognized_name, it is likely that the virtual host configuration for SNI is incorrect. If
you are using Apache HTTP Server, see Name-based Virtual Host Support about configuring
virtual hosts. In particular, ensure that the ServerName directive is configured properly in a
<VirtualHost> block.

See the following:

• SSL with Virtual Hosts Using SNI from Apache HTTP Server Wiki

• SSL/TLS Strong Encryption: FAQ from Apache HTTP Server Documentation

• RFC 3546, Transport Layer Security (TLS) Extensions

• Bug 7194590: SSL handshaking error caused by virtual server misconfiguration

Chapter 8
Troubleshooting JSSE

8-103

https://httpd.apache.org/docs/trunk/vhosts/name-based.html
https://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI
https://cwiki.apache.org/confluence/display/HTTPD/Home
https://httpd.apache.org/docs/trunk/ssl/ssl_faq.html
https://httpd.apache.org/docs/
https://www.ietf.org/rfc/rfc3546.txt
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=7194590

IllegalArgumentException When RC4 Cipher Suites are Configured for DTLS

Problem: An IllegalArgumentException exception is thrown when RC4 cipher suite
algorithm is specified in SSLEngine.setEnabledCipherSuites(String[] suites) method and
the SSLEngine is a DTLS engine.

sslContext = SSLContext.getInstance("DTLS");

// Create the engine
SSLEngine engine = sslContext.createSSLengine(hostname, port);

String enabledSuites[] = { "SSL_RSA_WITH_RC4_128_SHA" };
engine.setEnabledCipherSuites(enabledSuites);

Cause: According to DTLS Version 1.0 and DTLS Version 1.2, RC4 cipher suites must not be
used with DTLS.

Solution: Do not use RC4 based cipher suites for DTLS connections. See "JSSE Cipher Suite
Names" in Java Security Standard Algorithm Names.

Debugging Utilities

The SunJSSE provider supports dynamic debug tracing. This is similar to the mechanism that
debugs security library issues. The generic Java dynamic debug tracing support is accessed
with the java.security.debug system property, whereas the JSSE-specific dynamic debug
tracing support is accessed with the javax.net.debug system property.

Note:

Currently, the SunJSSE provider uses the debug utility. There is no guarantee that
other providers use the debug utility. If other providers support the debug utility, then
the implementation and output may be different. There is no guarantee the debug
utility will continue to exist or be the same (for example, have the same options or
output format) in future releases.

To view the options of the JSSE dynamic debug utility, use the following command-line option
on the java command, where MyApp is an existing Java application:

java -Djavax.net.debug=help MyApp

Chapter 8
Troubleshooting JSSE

8-104

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc6347
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Note:

• The MyApp application will not run after the debug help information is printed, as
the help code causes the application to exit.

• If you specify the value help with either dynamic debug utility when running a
program that does not use any classes that the utility was designed to debug,
you will not get the debugging options.

The current options are:

• all: Turn on all debugging

• ssl: Turn on SSL debugging

The following can be used with the ssl option to select what type of debug information to print:

• defaultctx: Print default SSL initialization

• handshake: Print each handshake message

• keygen: Print key generation data

• keymanager: Print key manager tracing

• pluggability: Print pluggability tracing

• record: Enable per-record tracing

• respmgr: Print status response manager tracing

• session: Print session activity

• sessioncache: Print session cache tracing

• sslctx: Print SSLContext tracing

• trustmanager: Print trust manager tracing

Messages generated from the handshake option can be widened with these options:

• data: Hex dump of each handshake message

• verbose: Verbose handshake message printing

Messages generated from the record option can be widened with these options:

• plaintext: Hex dump of record plaintext

• packet: Print raw SSL/TLS packets

To enable JSSE-specific dynamic debug tracing, set the value of the javax.net.debug system
property (see How to Specify a java.security.Security Property) to either all or ssl. For the ssl
option, to specify additional options, specify them after the ssl option. You do not have to have
a separator between options, although a separator such as a colon (:) or a comma (,) helps
readability. It does not matter what separators you use, and the ordering of the option
keywords is also not important.

For an introduction to reading this debug information, see Debugging TLS Connections.

The following are examples of using the javax.net.debug system property:

Chapter 8
Troubleshooting JSSE

8-105

• To view all debugging messages:

java -Djavax.net.debug=all MyApp

• To view the hexadecimal dumps of each handshake message (the colons are optional):

java -Djavax.net.debug=ssl:handshake:data MyApp

• To view the hexadecimal dumps of each handshake message, and to print trust manager
tracing (the commas are optional):

java -Djavax.net.debug=ssl,handshake,data,trustmanager MyApp

Debugging TLS Connections

Understanding TLS connection problems can sometimes be difficult, especially when it is not
clear what messages are actually being sent and received. JSSE has a built-in debug facility
and is activated by the system property javax.net.debug. To know more about
javax.net.debug System property, see Debugging Utilities.

This section gives a brief overview of the debug output of the basic TLS 1.3 handshake. To
know more about the TLS protocol, see RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3.

Note:

• Debug output information about all possible TLS handshake combinations and
protocols is beyond the scope of this guide. Instead, refer to the relevant RFC for
more detailed information about a particular version of TLS. See TLS and DTLS
Protocols for a list of supported SSL/TLS/DTLS protocols and links to their
respective RFCs.

• The output is non-standard and may change from release to release.

This example uses the default JSSE X509KeyManager and X509TrustManager, which also
prints debug information about the keys and trusted certificates used during a connection. It
uses the ClassFileServer and SSLSocketClientWithClientAuth sample applications from
JSSE Sample Code in the Java SE 8 documentation. ClassFileServer is a simple HTTPS
server that can require client authentication. SSLSocketClientWithClientAuth demonstrates
how to use the SSLSocket class as a client to send an HTTP request and get a response
from an HTTPS server. To make things simpler, both ClassFileServer and
SSLSocketClientWithClientAuth are run from the same host.

Run ClassFileServer on localhost

The following command runs the ClassFileServer application on localhost, port 2002:

java \
 -Djavax.net.ssl.trustStore=/my_home_directory/jssesamples/samples/
samplecacerts \
 -Djavax.net.ssl.trustStorePassword=changeit \
 ClassFileServer 2002 \

Chapter 8
Troubleshooting JSSE

8-106

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

 /my_home_directory/jssesamples/samples/ \
 TLS true

Run SSLSocketClientWithClientAuth on locahost

The following command runs the SSLSocketClientWithClientAuth application on localhost,
port 2002. The application connects to the HTTPS server that you started with the previous
command. It sends an HTTPS request to the server and receives the reply. Note that the
command sets the value of the system property javax.net.debug to all, which turns on all
debugging.

java -Djavax.net.debug=all -Djavax.net.ssl.trustStore=/my_home_directory/
jssesamples/samples/samplecacerts SSLSocketClientWithClientAuth localhost
2002 /index.html

Debug Output Format

Each line of the debug output contains the following information; each field is separated by a
vertical bar (|):

• Logger name (System.getLogger("javax.net.ssl"))

• Debug level (System.Logger.Level)

• Thread ID (Thread.currentThread().getId())

• Thread name (Thread.currentThread().getName())

• Date and time

• Caller (location of the logging call)

• Message

Determine Client-Side and Server-Side Enabled Cipher Suites

The values of the system properties jdk.tls.client.cipherSuites and
jdk.tls.server.cipherSuites are checked to determine the default enabled cipher suites;
see Specifying Default Enabled Cipher Suites for more information about these system
properties.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:46.990 EDT|
SSLContextImpl.java:427|System property jdk.tls.client.cipherSuites is set to
'null'
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.026 EDT|
SSLContextImpl.java:427|System property jdk.tls.server.cipherSuites is set to
'null'
...

The values of these system properties are null, so the default enabled cipher suites are those
that the SunJSSE provider enables by default; see The SunJSSE Provider in JDK Providers
Documentation.

Chapter 8
Troubleshooting JSSE

8-107

The value of jdk.tls.keyLimits is checked to determine the limit of the amount of data an
algorithm may encrypt with a specific set of keys; see Limiting Amount of Data Algorithms May
Encrypt with a Set of Keys.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.124 EDT|SSLCipher.java:436|
jdk.net.keyLimits: entry = AES/GCM/NoPadding KeyUpdate 2^37. AES/GCM/
NOPADDING:KEYUPDATE = 137438953472
...

The debug output lists unsupported and disabled cipher suites:

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.150 EDT|
SSLContextImpl.java:401|Ignore disabled cipher suite:
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
javax.net.ssl|ALL|01|main|2018-08-18 01:04:47.150 EDT|SSLContextImpl.java:410|
Ignore unsupported cipher suite: TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.152 EDT|
SSLContextImpl.java:401|Ignore disabled cipher suite:
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
...

Initialize X509KeyManager

The X509KeyManager is initialized. It discovers that there is one keyEntry in the supplied
KeyStore for a subject called "duke". If this application wants to authenticate itself, then the
X509KeyManager searches its list of keyEntries for an appropriate credential.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.224 EDT|
SunX509KeyManagerImpl.java:164|found key for : duke (
 "certificate" : {
 "version" : "v1",
 "serial number" : "3B 0A FA 66",
 "signature algorithm": "MD5withRSA",
 "issuer" : "CN=Duke, OU=Java Software, O="Sun Microsystems,
Inc.", L=Cupertino, ST=CA, C=US",
 "not before" : "2001-05-22 19:46:46.000 EDT",
 "not after" : "2011-05-22 19:46:46.000 EDT",
 "subject" : "CN=Duke, OU=Java Software, O="Sun Microsystems,
Inc.", L=Cupertino, ST=CA, C=US",
 "subject public key" : "RSA"}
)
...

Initialize a TrustManager

A TrustManager is initialized and it finds in the truststore several certificates from various
Certificate Authorities (CAs). It also finds a self-signed certificate with a distinguished name
“localhost”. A server that presents valid credentials (certificates) that chain back to a trusted
certificate in the truststore will itself be trusted.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.229 EDT|
TrustStoreManager.java:112|trustStore is: /my_home_directory/jssesamples/
samples/samplecacerts
trustStore type is: pkcs12

Chapter 8
Troubleshooting JSSE

8-108

trustStore provider is:
the last modified time is: Tue Dec 11 06:43:38 EST 2012
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.229 EDT|
TrustStoreManager.java:311|Reload the trust store
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.264 EDT|
TrustStoreManager.java:318|Reload trust certs
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.266 EDT|
TrustStoreManager.java:323|Reloaded 32 trust certs
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.322 EDT|
X509TrustManagerImpl.java:79|adding as trusted certificates (
 "certificate" : {
 "version" : "v1",
 "serial number" : "00 9B 7E 06 49 A3 3E 62 B9 D5 EE 90 48 71 29 EF
57",
 "signature algorithm": "SHA1withRSA",
 "issuer" : "CN=VeriSign Class 3 Public Primary Certification
Authority - G3, OU="(c) 1999 VeriSign, Inc. - For authorized use only",
OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US",
 "not before" : "1999-09-30 20:00:00.000 EDT",
 "not after" : "2036-07-16 19:59:59.000 EDT",
 "subject" : "CN=VeriSign Class 3 Public Primary Certification
Authority - G3, OU="(c) 1999 VeriSign, Inc. - For authorized use only",
OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US",
 "subject public key" : "RSA"},
 "certificate" : {
 "version" : "v1",
 "serial number" : "61 70 CB 49 8C 5F 98 45 29 E7 B0 A6 D9 50 5B 7A",
 "signature algorithm": "SHA1withRSA",
 "issuer" : "CN=VeriSign Class 2 Public Primary Certification
Authority - G3, OU="(c) 1999 VeriSign, Inc. - For authorized use only",
OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US",
 "not before" : "1999-09-30 20:00:00.000 EDT",
 "not after" : "2036-07-16 19:59:59.000 EDT",
 "subject" : "CN=VeriSign Class 2 Public Primary Certification
Authority - G3, OU="(c) 1999 VeriSign, Inc. - For authorized use only",
OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US",
 "subject public key" : "RSA"},
...
 "certificate" : {
 "version" : "v1",
 "serial number" : "41 00 44 46",
 "signature algorithm": "MD5withRSA",
 "issuer" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "not before" : "2004-07-22 18:48:38.000 EDT",
 "not after" : "2011-05-22 18:48:38.000 EDT",
 "subject" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "subject public key" : "RSA"},
...

Chapter 8
Troubleshooting JSSE

8-109

Perform Additional Initialization

The example performs additional initialization code, then connects to the server.

javax.net.ssl|ALL|01|main|2018-08-18 01:04:47.326 EDT|SSLContextImpl.java:115|
trigger seeding of SecureRandom
javax.net.ssl|ALL|01|main|2018-08-18 01:04:47.524 EDT|SSLContextImpl.java:119|
done seeding of SecureRandom
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.562 EDT|
HandshakeContext.java:291|Ignore unsupported cipher suite:
TLS_AES_128_GCM_SHA256 for TLS12
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.563 EDT|
HandshakeContext.java:291|Ignore unsupported cipher suite:
TLS_AES_256_GCM_SHA384 for TLS12
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.577 EDT|
HandshakeContext.java:291|Ignore unsupported cipher suite:
TLS_AES_128_GCM_SHA256 for TLS11
...

The debug output also notifies you of disabled, unsupported, or unavailable extensions and
signature algorithms:

javax.net.ssl|WARNING|01|main|2018-08-18 01:04:47.695 EDT|
ServerNameExtension.java:255|Unable to indicate server name
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.695 EDT|
SSLExtensions.java:235|Ignore, context unavailable extension: server_name
javax.net.ssl|WARNING|01|main|2018-08-18 01:04:47.703 EDT|
SignatureScheme.java:282|Signature algorithm, ed25519, is not supported by
the underlying providers
javax.net.ssl|WARNING|01|main|2018-08-18 01:04:47.704 EDT|
SignatureScheme.java:282|Signature algorithm, ed448, is not supported by the
underlying providers
javax.net.ssl|ALL|01|main|2018-08-18 01:04:47.724 EDT|
SignatureScheme.java:358|Ignore disabled signature sheme: rsa_md5
javax.net.ssl|INFO|01|main|2018-08-18 01:04:47.724 EDT|AlpnExtension.java:161|
No available application protocols
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.724 EDT|
SSLExtensions.java:235|Ignore, context unavailable extension:
application_layer_protocol_negotiation
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.725 EDT|
SSLExtensions.java:235|Ignore, context unavailable extension: cookie
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.763 EDT|
SSLExtensions.java:235|Ignore, context unavailable extension:
renegotiation_info
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.763 EDT|
PreSharedKeyExtension.java:606|No session to resume.
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.763 EDT|
SSLExtensions.java:235|Ignore, context unavailable extension: pre_shared_key
...

Send ClientHello Message

The client sends a ClientHello message to the server. This message specifies the following:

Chapter 8
Troubleshooting JSSE

8-110

• Client version: For TLS 1.3, this has a fixed value, TLSv1.2; TLS 1.3 uses the extension
supported_versions and not this field to negotiate protocol version

• Random: A random value used to initialize the cryptographic algorithms

• Session ID: Previous versions of TLS use this ID to support a session resumption feature

• Cipher Suites: The list of cipher suites that the client requests; depending on the enabled
cipher suites, there may be a broad mix of cipher suite names, some of which are only for
TLSv1.3 while others are for TLSv1.2 and earlier

• Compression methods: For TLS 1.3, this must have the value 0

• Extensions:

– status_request: The client requests OCSP; see Client-Driven OCSP and OCSP
Stapling

– supported_groups: Lists the named groups that the client supports for key exchange.
These named groups include elliptic curve groups (ECDHE) and finite field groups
(DHE). The ClientHello message must include this message if it’s using ECDHE or
DHE key exchange.

– ec_point_formats: Lists the elliptical curve point formats that the client can parse; in
this example, the client can parse uncompressed point formats only. Other formats
include compressed and ansiX962_compressed_prime.

– signature algorithms: Lists which signature algorithms may be used in CertificateVerify
messages

– signature_algorithms_cert: Lists which signature algorithms may be used in digital
signatures

– status_request_v2: Enables clients to specify and support several certificate status
methods. Note that this extension is deprecated for TLS 1.3.

– extended_master_secret: In TLS 1.2 and earlier, this extension requests that both
sides digest larger parts of the handshake transcript into the master secret than the
original version of the protocol did; see RFC 7627. The extension is included in TLS
1.3 handshakes in case a TLS 1.2 handshake is negotiated.

– supported_versions: Lists which versions of TLS the client supports. In particular, if the
client requests TLS 1.3, then the client version field has the value TLSv1.2 and this
extension contains the value TLSv1.3; if the client requests TLS 1.2, then the client
version field has the value TLSv1.2 and this extension either doesn’t exist or contains
the value TLSv1.2 but not the value TLSv1.3.

– psk_key_exchange_modes: Lists which key exchange modes that may be used with
pre-shared keys (PSKs); in this example, the client supports PSK with (EC)DHE key
establishment (psk_dhe_ke). In this mode, the client and server must supply values for
the key_share extension.

– key_share: Lists cryptographic parameters for key exchange. It contains a field named
client_shares that contains this list. Each item of this list contains two fields: group and
key_exchange. This example contains key exchange information for the elliptical curve
secp256r1.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.769 EDT|ClientHello.java:633|
Produced ClientHello handshake message (
"ClientHello": {
 "client version" : "TLSv1.2",
 "random" : "64 CF 68 A1 CF AB B1 6F 43 F6 DE 1B 49 49 DE 5A 42
9A 71 DD CB 9A E3 9F 32 00 E8 87 7A 00 DA C6",

Chapter 8
Troubleshooting JSSE

8-111

https://tools.ietf.org/html/rfc7627

 "session id" : "02 0D BE 1B A4 5F F2 E8 B6 31 9D A4 EF F3 22 84 C3
58 0B 5C C0 57 0F A5 6D 8A 83 EB DC DA B1 B6",
 "cipher suites" : "[TLS_AES_128_GCM_SHA256(0x1301),
TLS_AES_256_GCM_SHA384(0x1302),
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384(0xC02C),
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256(0xC02B),
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384(0xC030),
TLS_RSA_WITH_AES_256_GCM_SHA384(0x009D),
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384(0xC02E),
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384(0xC032),
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384(0x009F),
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384(0x00A3),
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256(0xC02F),
TLS_RSA_WITH_AES_128_GCM_SHA256(0x009C),
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256(0xC02D),
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256(0xC031),
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256(0x009E),
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256(0x00A2),
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384(0xC024),
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384(0xC028),
TLS_RSA_WITH_AES_256_CBC_SHA256(0x003D),
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384(0xC026),
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384(0xC02A),
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256(0x006B),
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256(0x006A),
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA(0xC00A),
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA(0xC014),
TLS_RSA_WITH_AES_256_CBC_SHA(0x0035),
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA(0xC005),
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA(0xC00F),
TLS_DHE_RSA_WITH_AES_256_CBC_SHA(0x0039),
TLS_DHE_DSS_WITH_AES_256_CBC_SHA(0x0038),
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256(0xC023),
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256(0xC027),
TLS_RSA_WITH_AES_128_CBC_SHA256(0x003C),
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256(0xC025),
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256(0xC029),
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256(0x0067),
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256(0x0040),
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA(0xC009),
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA(0xC013),
TLS_RSA_WITH_AES_128_CBC_SHA(0x002F),
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA(0xC004),
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA(0xC00E),
TLS_DHE_RSA_WITH_AES_128_CBC_SHA(0x0033),
TLS_DHE_DSS_WITH_AES_128_CBC_SHA(0x0032),
TLS_EMPTY_RENEGOTIATION_INFO_SCSV(0x00FF)]",
 "compression methods" : "00",
 "extensions" : [
 "status_request (5)": {
 "certificate status type": ocsp
 "OCSP status request": {
 "responder_id": <empty>
 "request extensions": {
 <empty>
 }

Chapter 8
Troubleshooting JSSE

8-112

 }
 },
 "supported_groups (10)": {
 "versions": [secp256r1, secp384r1, secp521r1, sect283k1, sect283r1,
sect409k1, sect409r1, sect571k1, sect571r1, secp256k1, ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144, ffdhe8192]
 },
 "ec_point_formats (11)": {
 "formats": [uncompressed]
 },
 "signature_algorithms (13)": {
 "signature schemes": [ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
ecdsa_secp512r1_sha512, rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
rsa_pss_rsae_sha512, rsa_pss_pss_sha256, rsa_pss_pss_sha384,
rsa_pss_pss_sha512, rsa_pkcs1_sha256, rsa_pkcs1_sha384, rsa_pkcs1_sha512,
dsa_sha256, ecdsa_sha1, rsa_pkcs1_sha1, dsa_sha1]
 },
 "signature_algorithms_cert (50)": {
 "signature schemes": [ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
ecdsa_secp512r1_sha512, rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
rsa_pss_rsae_sha512, rsa_pss_pss_sha256, rsa_pss_pss_sha384,
rsa_pss_pss_sha512, rsa_pkcs1_sha256, rsa_pkcs1_sha384, rsa_pkcs1_sha512,
dsa_sha256, ecdsa_sha1, rsa_pkcs1_sha1, dsa_sha1]
 },
 "status_request_v2 (17)": {
 "cert status request": {
 "certificate status type": ocsp_multi
 "OCSP status request": {
 "responder_id": <empty>
 "request extensions": {
 <empty>
 }
 }
 }
 },
 "extended_master_secret (23)": {
 <empty>
 },
 "supported_versions (43)": {
 "versions": [TLSv1.3, TLSv1.2, TLSv1.1, TLSv1]
 },
 "psk_key_exchange_modes (45)": {
 "ke_modes": [psk_dhe_ke]
 },
 "key_share (51)": {
 "client_shares": [
 {
 "named group": secp256r1
 "key_exchange": {
 0000: 04 1F 80 50 D9 C6 03 45 7B 59 0F A7 B6 9E AE
39 ...P...E.Y.....9
 0010: 37 BE B0 5B 09 D8 91 37 72 5D 2B 8E 01 0A 84 56 7..
[...7r]+....V
 0020: 99 0D 37 49 8F 92 61 A9 D6 54 E1 3B EE D1 E8
D2 ..7I..a..T.;....
 0030: 92 22 F9 17 CE A7 F8 51 47 C9 1E 5C D6 59 0F

Chapter 8
Troubleshooting JSSE

8-113

4F .".....QG..\.Y.O
 0040: 55
 }
 },
]
 }
]
}
)
...

Show Actual Data Sent and Read

The debug output shows the actual data sent to the raw output object (in this case, an
OutputStream):

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.770 EDT|
SSLSocketOutputRecord.java:217|WRITE: TLS13 handshake, length = 405
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.774 EDT|
SSLSocketOutputRecord.java:231|Raw write (
 0000: 16 03 03 01 95 01 00 01 91 03 03 64 CF 68 A1 CF d.h..
 0010: AB B1 6F 43 F6 DE 1B 49 49 DE 5A 42 9A 71 DD CB ..oC...II.ZB.q..
 0020: 9A E3 9F 32 00 E8 87 7A 00 DA C6 20 02 0D BE 1B ...2...z...
...

Then, the debug output shows the raw data read from the input device (InputStream) before
any processing has been performed:

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.862 EDT|
SSLSocketInputRecord.java:215|READ: TLSv1.2 handshake, length = 155
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.863 EDT|
SSLSocketInputRecord.java:474|Raw read (
 0000: 02 00 00 97 03 03 66 24 0F F6 6D 4A 0C 5A A1 23 f$..mJ.Z.#
 0010: F6 5D 4B 87 B1 6E AC 13 BB 4D C1 A4 0F F0 2C EF .]K..n...M....,.
 0020: D7 4F 03 11 19 B1 20 02 0D BE 1B A4 5F F2 E8 B6 .O...._...
...

Whenever the client sends or reads a message, the debug output shows the raw data sent or
read and how any messages (and their extensions) have been processed. The following
sections omit these parts of the debug output.

Read ServerHello Message

At this point, TLS 1.3 has been negotiated. The server selects the TLS version and replies
using a combination of the server version and the supported_versions extension. In this case,
a TLSv1.3 protocol was indicated.

The ServerHello message specifies the following:

• Server version: For TLS 1.3, this must have the value TLSv1.2; TLS 1.3 uses the
extension supported_versions and not this field to indicate the negotiated protocol version

• Random: Also used to initialize the cryptographic algorithms

• Session ID: For TLS 1.3, this has the same value as the corresponding field of the
ClientHello message

Chapter 8
Troubleshooting JSSE

8-114

• Cipher suite: The selected cipher suite; in this example, it is
TLS_AES_128_GCM_SHA256

• Compression methods: For TLS 1.3, this must have the value 0

• Extensions

– supported_versions: Specifies which TLS version the server uses. Note that for TLS
1.3, the server must use the value of the ClientHello message’s supported_versions
extension for version negotiation instead of the value of the client version field.

– key_share: The named group and key values for a ECDHE key exchange

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.863 EDT|
SSLSocketInputRecord.java:251|READ: TLSv1.2 handshake, length = 155
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.867 EDT|ServerHello.java:862|
Consuming ServerHello handshake message (
"ServerHello": {
 "server version" : "TLSv1.2",
 "random" : "66 24 0F F6 6D 4A 0C 5A A1 23 F6 5D 4B 87 B1 6E AC
13 BB 4D C1 A4 0F F0 2C EF D7 4F 03 11 19 B1",
 "session id" : "02 0D BE 1B A4 5F F2 E8 B6 31 9D A4 EF F3 22 84 C3
58 0B 5C C0 57 0F A5 6D 8A 83 EB DC DA B1 B6",
 "cipher suite" : "TLS_AES_128_GCM_SHA256(0x1301)",
 "compression methods" : "00",
 "extensions" : [
 "supported_versions (43)": {
 "selected version": [TLSv1.3]
 },
 "key_share (51)": {
 "server_share": {
 "named group": secp256r1
 "key_exchange": {
 0000: 04 DE 5B 20 0E FD EB 6E DA 70 C2 D0 FA 0D 4C 53 ..
[...n.p....LS
 0010: 6D E1 9E 67 77 65 36 AF B5 EB E6 D2 88 92 9B EE
m..gwe6.........
 0020: E4 97 A3 B3 C1 FB D8 29 3B 92 87 D2 B3 9E 3D
AA );.....=.
 0030: 14 99 1E 84 8F C2 E9 E3 E1 AC 9A 12 95 F0 26
B5 &.
 0040: 88
 }
 },
 }
]
}
)
...

The session is initialized:

javax.net.ssl|ALL|01|main|2018-08-18 01:04:47.873 EDT|SSLSessionImpl.java:203|
Session initialized: Session(1534568687873|TLS_AES_128_GCM_SHA256)
...

Chapter 8
Troubleshooting JSSE

8-115

Read EncryptedExtensions Message

At this point in the handshake, enough cryptographic information has been exchanged, and the
remainder of the handshake will be performed encrypted.

The EncryptedExtensions message contains responses to ClientHello extensions that are not
required to determine the cryptographic parameters, other than those that are specific to
individual certificates; in this example, it returns the list of named groups that the client
supports for key exchange.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.942 EDT|
EncryptedExtensions.java:171|Consuming EncryptedExtensions handshake message (
"EncryptedExtensions": [
 "supported_groups (10)": {
 "versions": [secp256r1, secp384r1, secp521r1, sect283k1, sect283r1,
sect409k1, sect409r1, sect571k1, sect571r1, secp256k1, ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144, ffdhe8192]
 }
]
)
...

Read Server’s CertificateRequest Message

The server sends the CertificateRequest message if certificate-based client authentication is
desired. This message contains the desired parameters for that certificate. It specifies the
following:

• certificate_request_context: A string that identifies the certificate request; the value of this
field is of zero length unless it’s being used for post-handshake authentication

• Extensions: The following two extensions indicate which signature algorithms may be used
in digital signatures:

– signature_algorithms: Originally appearing in TLS 1.2, applies to signatures in
CertificateVerify messages

– signature_algorithms_cert: Applies to signatures in certificates

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.947 EDT|
CertificateRequest.java:864|Consuming CertificateRequest handshake message (
"CertificateRequest": {
 "certificate_request_context": "",
 "extensions": [
 "signature_algorithms (13)": {
 "signature schemes": [ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
ecdsa_secp512r1_sha512, rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
rsa_pss_rsae_sha512, rsa_pss_pss_sha256, rsa_pss_pss_sha384,
rsa_pss_pss_sha512, rsa_pkcs1_sha256, rsa_pkcs1_sha384, rsa_pkcs1_sha512,
dsa_sha256, ecdsa_sha1, rsa_pkcs1_sha1, dsa_sha1]
 },
 "signature_algorithms_cert (50)": {
 "signature schemes": [ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
ecdsa_secp512r1_sha512, rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
rsa_pss_rsae_sha512, rsa_pss_pss_sha256, rsa_pss_pss_sha384,
rsa_pss_pss_sha512, rsa_pkcs1_sha256, rsa_pkcs1_sha384, rsa_pkcs1_sha512,
dsa_sha256, ecdsa_sha1, rsa_pkcs1_sha1, dsa_sha1]

Chapter 8
Troubleshooting JSSE

8-116

 }
]
}
)
...

Read Server’s Certificate Message

The Certificate message contains the authentication certificate and any other supporting
certificates in the certificate chain. It specifies the following:

• certificate_request_context: For server authentication, this field is empty

• certificate_list: Contains a certificate chain signed by a signature algorithm advertised by
the client. However, in this example, a self-signed certificate (a certificate whose subject
and issue name are identical) was received. This same self-signed certificate was
discovered earlier during initialization, so it will be trusted when the TrustManager is
actually called to verify the received certificate.

There are many different ways of establishing trust, so if the default X509TrustManager is not
doing the types of trust management you need, you can supply your own X509TrustManager
to SSLContext.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:47.964 EDT|
CertificateMessage.java:1148|Consuming server Certificate handshake message (
"Certificate": {
 "certificate_request_context": "",
 "certificate_list": [
 {
 "certificate" : {
 "version" : "v1",
 "serial number" : "41 00 44 46",
 "signature algorithm": "MD5withRSA",
 "issuer" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "not before" : "2004-07-22 18:48:38.000 EDT",
 "not after" : "2011-05-22 18:48:38.000 EDT",
 "subject" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "subject public key" : "RSA"}
 "extensions": {
 <no extension>
 }
 },
]
}
)
...

The client recognizes this certificate and can trust it.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.165 EDT|
X509TrustManagerImpl.java:242|Found trusted certificate (
 "certificate" : {
 "version" : "v1",
 "serial number" : "41 00 44 46",

Chapter 8
Troubleshooting JSSE

8-117

 "signature algorithm": "MD5withRSA",
 "issuer" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "not before" : "2004-07-22 18:48:38.000 EDT",
 "not after" : "2011-05-22 18:48:38.000 EDT",
 "subject" : "CN=localhost, OU=Widget Development Group,
O="Ficticious Widgets, Inc.", L=Sunnyvale, ST=CA, C=US",
 "subject public key" : "RSA"}
)
...

Read Server’s CertificateVerify Message

The certificate sent by the server is verified by the CertificateVerify message. The message is
used to provide explicit proof that the server has the private key corresponding to its certificate.
This message specifies the following:

• Signature algorithm: The signature algorithm used; in this example, it is
rsa_pss_rsae_sha256.

• Signature: The signature over the entire handshake using the private key corresponding to
the public key in the Certificate message

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.194 EDT|
CertificateVerify.java:1128|Consuming CertificateVerify handshake message (
"CertificateVerify": {
 "signature algorithm": rsa_pss_rsae_sha256
 "signature": {
 0000: 0F 25 DD 62 03 6B 8C 8F 22 C7 8D 46 A2 A6 45 39 .%.b.k.."..F..E9
 0010: 08 8D 51 1E 48 52 66 A4 F8 28 D3 FD 18 93 70 C6 ..Q.HRf..(....p.
 0020: 32 74 C1 CC 0A C4 60 41 50 AF 7C DA 0C DB 92 F9 2t....`AP.......
 0030: 14 CB EF 15 7F 3E 52 16 F7 CC 8A 7C C9 1F 42 CA >R.......B.
 0040: 90 8D FA B7 F2 3A 46 7E F7 9F 43 CE C6 AA 15 59 :F...C....Y
 0050: EE AD 34 10 FF B7 BC FD A2 F7 F3 1A FA 7F 26 61 ..4...........&a
 0060: 80 2B 50 3A 8A 9E 5C 0E 4C A6 24 DA E6 3D 71 FA .+P:..\.L.$..=q.
 0070: AE 78 79 D2 DA 36 DE C1 A6 BC 18 46 04 CE 03 4E .xy..6.....F...N
 }
}
)
...

Read Server’s Finished Message

The server sends a Finished message. This message contains a Message Authentication
Code (MAC) over the entire handshake.

javax.net.ssl|DEBUG|01|main|2018-08-17 01:56:26.764 EDT|Finished.java:860|
Consuming server Finished handshake message (
"Finished": {
 "verify data": {
 0000: CA 7B 74 A6 79 36 ED 62 A7 0E 14 9D 9F D0 4A 0F ..t.y6.b......J.
 0010: 02 4C 78 BB E2 89 A2 C6 E8 BD 28 CA E7 D9 DB 68 .Lx.......(....h
 }'}
)
...

Chapter 8
Troubleshooting JSSE

8-118

Send Certificate Message

The client sends a Certificate message because the server requested client authentication
through a CertificateRequest message. The certificate message specifies similar information
as the server’s Certificate message. The client needs to send credentials back to the sever, so
its X509KeyManager is consulted. The client looks for a match between the list of accepted
issuers and the certificates that are in the KeyStore. In this case, there is a match: the client
has the credentials for "duke". It's now up to the server's X509TrustManager to decide whether
to accept these credentials.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.222 EDT|
CertificateMessage.java:1116|Produced client Certificate message (
"Certificate": {
 "certificate_request_context": "",
 "certificate_list": [
 {
 "certificate" : {
 "version" : "v1",
 "serial number" : "3B 0A FA 66",
 "signature algorithm": "MD5withRSA",
 "issuer" : "CN=Duke, OU=Java Software, O="Sun Microsystems,
Inc.", L=Cupertino, ST=CA, C=US",
 "not before" : "2001-05-22 19:46:46.000 EDT",
 "not after" : "2011-05-22 19:46:46.000 EDT",
 "subject" : "CN=Duke, OU=Java Software, O="Sun Microsystems,
Inc.", L=Cupertino, ST=CA, C=US",
 "subject public key" : "RSA"}
 "extensions": {
 <no extension>
 }
 },
]
}
)
...

Send CertificateVerify Message

As with the CertificateVerify message sent by the server, the certificate sent by the client is
verified by the CertificateVerify message. The message is used to provide explicit proof that
the client has the private key corresponding to its certificate.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.268 EDT|
CertificateVerify.java:1097|Produced client CertificateVerify handshake
message (
"CertificateVerify": {
 "signature algorithm": rsa_pss_rsae_sha256
 "signature": {
 0000: 91 C2 F7 5D 8D 90 B4 82 E4 BA C6 23 08 E2 B4 DD ...].......#....
 0010: 8D 95 8F 9F 31 4F 26 F3 97 3B FB 5B 10 4D AE F6 1O&..;.[.M..
 0020: 71 78 FB 7B 3A 4F F6 1B BF D2 E3 FB BE 53 F6 70 qx..:O.......S.p
 0030: 7E 73 83 F4 9A 5E 08 19 63 C1 97 4C 10 B1 C7 3F .s...^..c..L...?
 0040: 4A 7D EF 4A 30 44 15 9F D0 F2 8B C4 D1 45 69 B1 J..J0D.......Ei.
 0050: D9 DB 45 83 C4 11 91 B3 81 5E 69 F4 5C 2A CF 69 ..E......^i.*.i
 0060: D3 A6 7E 75 B4 C9 30 FB 5B AC BA 9F A3 C5 0C FD ...u..0.[.......

Chapter 8
Troubleshooting JSSE

8-119

 0070: 9A 62 A4 DA 5A 80 6B 72 CD F5 A5 53 AD 14 74 1C .b..Z.kr...S..t.
 }
}
)

Send Finished Message

The client then sends its Finished message to the sever:

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.271 EDT|Finished.java:658|
Produced client Finished handshake message (
"Finished": {
 "verify data": {
 0000: 93 04 B5 23 8F 48 3A CF 4A 85 35 9E 5F E0 1D 4C ...#.H:.J.5._..L
 0010: 9C 65 06 D4 E8 B4 ED 8F 01 6B 1E A2 DD 18 BD 78 .e.......k.....x
 }'}
)
...

The client and server have verified the Finished messages that they have received from their
peers. Both sides may now send and receive application data over the connection.

Exchange Application Data, Client Sends GET Command

The server and client are ready to exchange application data. The client sends a "GET /
index.html HTTP1.0" command.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.375 EDT|SSLCipher.java:2019|
Plaintext before ENCRYPTION (
 0000: 47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
 0010: 48 54 54 50 2F 31 2E 30 0D 0A 0D 0A 17 00 00 00 HTTP/1.0........
 0020: 00 00 00 00 00 00 00 00 00 00 00 00 00
)
...

Note that data over the wire is encrypted:

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.385 EDT|
SSLSocketOutputRecord.java:295|Raw write (
 0000: 17 03 03 00 3D 90 BF D1 81 E6 A3 E7 DA 50 A9 8B =........P..
 0010: 18 F5 4B 30 AE 59 41 81 25 C4 9E 3E 70 29 5D C6 ..K0.YA.%..>p)].
 0020: 64 49 0B 4A 0E 93 E3 8F DC 42 BA B5 21 42 38 88 dI.J.....B..!B8.
 0030: 62 4D 0C 86 FE 9A 8C B9 95 EF 89 93 61 3C 13 69 bM..........a<.i
 0040: 6C 45 lE
)
...

Chapter 8
Troubleshooting JSSE

8-120

Read NewSessionTicket Message

After the server receives the client’s Finished message, it can send a NewSessionTicket
message anytime, which contains a PSK ticket that the client can use for speeding up future
handshakes.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.517 EDT|
NewSessionTicket.java:330|Consuming NewSessionTicket message (
"NewSessionTicket": {
 "ticket_lifetime" : "86,400",
 "ticket_age_add" : "<omitted>",
 "ticket_nonce" : "01",
 "ticket" : "A5 30 8C B6 AD 95 79 E8 2A D1 95 C0 F0 2F 6F AA
9E 97 58 AA 3D 19 82 2D 2C 47 C0 ED BF 64 48 AB",
 "extensions" : [
 <no extension>
]
}
)

A duplicate SSLSession is created with the newly generated PSK information attached.

javax.net.ssl|ALL|01|main|2018-08-18 01:04:48.517 EDT|SSLSessionImpl.java:203|
Session initialized: Session(1534568687873|TLS_AES_128_GCM_SHA256)
...

Exchange Application Data, Server Sends HTTPS Header and Data

The client receives application data from the server, first the HTTPS header, then the actual
data.

javax.net.ssl|ALL|01|main|2018-08-18 01:04:48.517 EDT|SSLSessionImpl.java:203|
Session initialized: Session(1534568687873|TLS_AES_128_GCM_SHA256)
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.617 EDT|
SSLSocketInputRecord.java:474|Raw read (
 0000: 17 03 03 00 63 c
)
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.618 EDT|
SSLSocketInputRecord.java:215|READ: TLSv1.2 application_data, length = 99
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.618 EDT|
SSLSocketInputRecord.java:474|Raw read (
 0000: 65 87 0E 1E 78 F7 AC C4 F7 C6 4D 55 91 6F 72 CC e...x.....MU.or.
 0010: 18 2D 74 C3 B6 7B 2A F9 EB 2B F4 A8 C7 FD 09 FA .-t...*..+......
 0020: 7E 36 9D F7 88 E7 44 DD 60 AF EB B0 F8 CF E1 64 .6....D.`......d
 0030: 0D 9B F4 B0 24 C2 BC B1 BF F7 F2 B6 CB E4 2E 39 $..........9
 0040: 78 B8 73 09 91 65 7A 0F 4C 49 DE 9A 7F 7B 42 86 x.s..ez.LI....B.
 0050: CA 33 87 DB 0D B2 E5 61 3C 70 6F F9 6A 15 A9 74 .3.....a<po.j..t
 0060: 64 E0 B0 d..
)
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.619 EDT|
SSLSocketInputRecord.java:251|READ: TLSv1.2 application_data, length = 99
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.621 EDT|SSLCipher.java:1914|
Plaintext after DECRYPTION (
 0000: 48 54 54 50 2F 31 2E 30 20 32 30 30 20 4F 4B 0D HTTP/1.0 200 OK.

Chapter 8
Troubleshooting JSSE

8-121

 0010: 0A 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A .Content-Length:
 0020: 20 32 35 37 37 0D 0A 43 6F 6E 74 65 6E 74 2D 54 2577..Content-T
 0030: 79 70 65 3A 20 74 65 78 74 2F 68 74 6D 6C 0D 0A ype: text/html..
 0040: 0D 0A ..
)
...
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.626 EDT|
SSLSocketInputRecord.java:215|READ: TLSv1.2 application_data, length = 2610
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.628 EDT|
SSLSocketInputRecord.java:474|Raw read (
 0000: 69 8D F9 A3 E9 25 09 87 F0 E0 A1 63 12 9D 81 DF i....%.....c....
 0010: 42 FC FA 7A 03 74 FD D5 ED 47 6C 5F 61 F2 BB 39 B..z.t...Gl_a..9
 0020: CF 64 0B B2 10 14 24 99 A3 66 8B D2 13 C9 66 FD .d....$..f....f.
...
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.642 EDT|
SSLSocketInputRecord.java:251|READ: TLSv1.2 application_data, length = 2610
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.647 EDT|SSLCipher.java:1914|
Plaintext after DECRYPTION (
 0000: 3C 21 44 4F 43 54 59 50 45 20 68 74 6D 6C 20 50 <!DOCTYPE html P
 0010: 55 42 4C 49 43 20 22 2D 2F 2F 57 33 43 2F 2F 44 UBLIC "-//W3C//D
 0020: 54 44 20 58 48 54 4D 4C 20 31 2E 30 20 54 72 61 TD XHTML 1.0 Tra
 0030: 6E 73 69 74 69 6F 6E 61 6C 2F 2F 45 4E 22 0A 20 nsitional//EN".
...

Read Server’s Alert Message

The server sends a close_notify alert, which notifies the client that it won’t send anymore
messages on this connection.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.658 EDT|Alert.java:232|
Received alert message (
"Alert": {
 "level" : "warning",
 "description": "close_notify"
}
)

Close the Connection

The server closes the socket and then the TLS connection.

javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.661 EDT|
SSLSocketImpl.java:1161|close the underlying socket
javax.net.ssl|DEBUG|01|main|2018-08-18 01:04:48.661 EDT|
SSLSocketImpl.java:921|close the ssl connection (passive)
javax.net.ssl|ALL|01|main|2018-08-18 01:04:48.661 EDT|SSLSocketImpl.java:658|
Closing input stream
javax.net.ssl|ALL|01|main|2018-08-18 01:04:48.661 EDT|SSLSocketImpl.java:728|
Closing output stream

Chapter 8
Troubleshooting JSSE

8-122

Compatibility Risks and Known Issues
Enhancements to JSSE may introduce compatibility problems and other known issues, which
are described in this section.

TLS 1.3 Not Directly Compatible with Previous Versions

TLS 1.3 is not directly compatible with previous versions. Although TLS 1.3 can be
implemented with a backward-compatibility mode, there are still several compatibility risks to
consider when upgrading to TLS 1.3:

• TLS 1.3 uses a half-close policy, while TLS 1.2 and earlier use a duplex-close policy. For
applications that depend on the duplex-close policy, there may be compatibility issues
when upgrading to TLS 1.3.

• The signature_algorithms_cert extension requires that pre-defined signature algorithms are
used for certificate authentication. In practice, however, an application may use
unsupported signature algorithms.

• The DSA signature algorithm is not supported in TLS 1.3. If a server is configured to only
use DSA certificates, it cannot negotiate a TLS 1.3 connection.

• The supported cipher suites for TLS 1.3 are not the same as TLS 1.2 and earlier. If an
application hardcodes cipher suites that are no longer supported, it may not be able to use
TLS 1.3 without modifications to its code, for example TLS_AES_128_GCM_SHA256 (1.3
and later) versus TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (1.2 and earlier).

• The TLS 1.3 session resumption and key update behaviors are different from TLS 1.2 and
earlier. The compatibility impact should be minimal, but it could be a risk if an application
depends on the handshake details of the TLS protocols.

Code Examples
The following code examples are included in this section:

Topics

• Converting an Unsecure Socket to a Secure Socket

• Running the JSSE Sample Code

• Creating a Keystore to Use with JSSE

• Using the Server Name Indication (SNI) Extension

Converting an Unsecure Socket to a Secure Socket
Example 8-26 shows sample code that can be used to set up communication between a client
and a server using unsecure sockets. This code is then modified in Example 8-27 to use JSSE
to set up secure socket communication.

Example 8-26 Socket Example Without SSL

The following examples demonstrates server-side and client-side code for setting up an
unsecure socket connection.

Chapter 8
Compatibility Risks and Known Issues

8-123

In a Java program that acts as a server and communicates with a client using sockets, the
socket communication is set up with code similar to the following:

 import java.io.*;
 import java.net.*;

 . . .

 int port = availablePortNumber;

 ServerSocket s;

 try {
 s = new ServerSocket(port);
 Socket c = s.accept();

 OutputStream out = c.getOutputStream();
 InputStream in = c.getInputStream();

 // Send messages to the client through
 // the OutputStream
 // Receive messages from the client
 // through the InputStream
 } catch (IOException e) { }

The client code to set up communication with a server using sockets is similar to the following:

 import java.io.*;
 import java.net.*;

 . . .

 int port = availablePortNumber;
 String host = "hostname";

 try {
 s = new Socket(host, port);

 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();

 // Send messages to the server through
 // the OutputStream
 // Receive messages from the server
 // through the InputStream
 } catch (IOException e) { }

Example 8-27 Socket Example with SSL

The following examples demonstrate server-side and client-side code for setting up a secure
socket connection.

Chapter 8
Code Examples

8-124

In a Java program that acts as a server and communicates with a client using secure sockets,
the socket communication is set up with code similar to the following. Differences between this
program and the one for communication using unsecure sockets are highlighted in bold.

 import java.io.*;
 import javax.net.ssl.*;

 . . .

 int port = availablePortNumber;

 SSLServerSocket s;

 try {
 SSLServerSocketFactory sslSrvFact =
 (SSLServerSocketFactory)SSLServerSocketFactory.getDefault();
 s = (SSLServerSocket)sslSrvFact.createServerSocket(port);

 SSLSocket c = (SSLSocket)s.accept();

 OutputStream out = c.getOutputStream();
 InputStream in = c.getInputStream();

 // Send messages to the client through
 // the OutputStream
 // Receive messages from the client
 // through the InputStream
 }

 catch (IOException e) {
 }

The client code to set up communication with a server using secure sockets is similar to the
following, where differences with the unsecure version are highlighted in bold:

 import java.io.*;
 import javax.net.ssl.*;

 . . .

 int port = availablePortNumber;
 String host = "hostname";

 try {
 SSLSocketFactory sslFact =
 (SSLSocketFactory)SSLSocketFactory.getDefault();
 SSLSocket s = (SSLSocket)sslFact.createSocket(host, port);

 OutputStream out = s.getOutputStream();
 InputStream in = s.getInputStream();

 // Send messages to the server through
 // the OutputStream

Chapter 8
Code Examples

8-125

 // Receive messages from the server
 // through the InputStream
 }

 catch (IOException e) {
 }

Running the JSSE Sample Code
The JSSE sample programs illustrate how to use JSSE.

Note:

When you use the sample code, be aware that the sample programs are designed to
illustrate how to use JSSE. They are not designed to be robust applications.

Setting up secure communications involves complex algorithms. The sample
programs provide no feedback during the setup process. When you run the
programs, be patient: you may not see any output for a while. If you run the programs
with the javax.net.debug system property set to all, you will see more feedback.
For an introduction to reading this debug information, see Debugging TLS
Connections.

This section contains the following topics:

• Where to Find the Sample Code

• Sample Certificates and Keys

• The following topics describe the samples:

– Sample Code Illustrating a Secure Socket Connection Between a Client and a Server

– Sample Code Illustrating HTTPS Connections

– Sample Code Illustrating a Secure RMI Connection

– Sample Code Illustrating the Use of an SSLEngine

• Troubleshooting JSSE Sample Code

Where to Find the Sample Code

JSSE Sample Code in the Java SE 8 documentation lists all the sample code files and text
files. That page also provides a link to a ZIP file that you can download to obtain all the sample
code files.

Sample Certificates and Keys

The JSSE samples use the following certificate keystore files to authenticate the clients and
servers:

• */testkeys
These files are used by the code samples as the source of public/private key and
certificate material. In the client program directories, the testkeys files contains the
certificate entry for the Java mascot Duke. In the server program directories (./sockets/
server and rmi), the file contains a certificate entry for the server localhost.

Chapter 8
Code Examples

8-126

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

The sample code expects the testkeys file to be in the current working directory.

Note:

These are very simple certificates and are not appropriate for a production
environment, but they should be sufficient for running the samples here.

The password for these keystores is: passphrase

• samplecacerts
This truststore file is very similar to the stock JDK cacerts file, in that it contains trust
certificates from several vendors. It also contains the trusted certificates from Duke and
localhost.

The password for this keystore is the same as the JDK cacert's initial password:
changeit
Please see your provider's documentation for how to configure the location of your trusted
certificate file.

Note:

Users of the JDK can specify the location of the truststore by using one of the
following methods:

1. System properties:

java -Djavax.net.ssl.trustStore=samplecacerts \
 -Djavax.net.ssl.trustStorePassword=changeit Application

2. Install the file into:

<java-home>/lib/security/jssecacerts

3. Install the file into:

<java-home>/lib/security/cacerts

If you choose (2) or (3), be sure to replace this file with a production cacerts file before
deployment.

The utility keytool can be used to generate alternate certificates and keystore files.

Chapter 8
Code Examples

8-127

Note:

Ensure that you verify your cacerts file. Since you trust the CAs in the cacerts file
as entities for signing and issuing certificates to other entities, you must manage the
cacerts file carefully. The cacerts file should contain only certificates of the
entities and CAs you trust. It is your responsibility to verify the trusted root CA
certificates bundled in the cacerts file and make your own trust decisions. To
remove an untrusted CA certificate from the cacerts file, use the -delete command
of the keytool utility with the -cacerts option. Contact your system administrator if
you do not have permission to edit this file.

Alternatively, you can use your own truststore and keystore files. See Creating a Keystore to
Use with JSSE.

Sample Code Illustrating a Secure Socket Connection Between a Client and a Server

The sample programs in the samples/sockets directory illustrate how to set up a secure
socket connection between a client and a server.

When running the sample client programs, you can communicate with an existing server, such
as a web server, or you can communicate with the sample server program, ClassFileServer.
You can run the sample client and the sample server programs on different machines
connected to the same network, or you can run them both on one machine but from different
terminal windows.

All the sample SSLSocketClient* programs in the samples/sockets/client directory (and
URLReader* programs described in Sample Code Illustrating HTTPS Connections) can be run
with the ClassFileServer sample server program. An example of how to do this is shown in
Running SSLSocketClientWithClientAuth with ClassFileServer. You can make similar changes
to run URLReader, SSLSocketClient, or SSLSocketClientWithTunneling with
ClassFileServer.

If an authentication error occurs during communication between the client and the server
(whether using a web server or ClassFileServer), it is most likely because the necessary keys
are not in the truststore (trust key database). See Terms and Definitions. For example, the
ClassFileServer uses a keystore called testkeys containing the private key for localhost as
needed during the SSL handshake. The testkeys keystore is included in the same samples/
sockets/server directory as the ClassFileServer source. If the client cannot find a
certificate for the corresponding public key of localhost in the truststore it consults, then an
authentication error will occur. Be sure to use the samplecacerts truststore (which contains the
public key and certificate of the localhost), as described in the next section.

Configuration Requirements

When running the sample programs that create a secure socket connection between a client
and a server, you will need to make the appropriate certificates file (truststore) available. For
both the client and the server programs, you should use the certificates file samplecacerts
from the samples directory. Using this certificates file will allow the client to authenticate the
server. The file contains all the common Certificate Authority (CA) certificates shipped with the
JDK (in the cacerts file), plus a certificate for localhost needed by the client to authenticate
localhost when communicating with the sample server ClassFileServer. The
ClassFileServer uses a keystore containing the private key for localhost that corresponds to
the public key in samplecacerts.

Chapter 8
Code Examples

8-128

To make the samplecacerts file available to both the client and the server, you can either copy
it to the file <java-home>/lib/security/jssecacerts, rename it to cacerts, and use it to
replace the <java-home>/lib/security/cacerts file, or add the following option to the
command line when running the java command for both the client and the server:

-Djavax.net.ssl.trustStore=path_to_samplecacerts_file

To know more about <java-home>, see Terms and Definitions.

The password for the samplecacerts truststore is changeit. You can substitute your own
certificates in the samples by using the keytool utility.

If you use a browser, such as Mozilla Firefox or Microsoft Internet Explorer, to access the
sample SSL server provided in the ClassFileServer example, then a dialog box may pop up
with the message that it does not recognize the certificate. This is normal because the
certificate used with the sample programs is self-signed and is for testing only. You can accept
the certificate for the current session. After testing the SSL server, you should exit the browser,
which deletes the test certificate from the browser's namespace.

For client authentication, a separate duke certificate is available in the appropriate directories.
The public key and certificate is also stored in the samplecacerts file.

Running SSLSocketClient

The SSLSocketClient.java program in JSSE Sample Code in the Java SE 8 documentation
demonstrates how to create a client that uses an SSLSocket to send an HTTP request and to
get a response from an HTTPS server. The output of this program is the HTML source for
https://www.verisign.com/index.html.

You must not be behind a firewall to run this program as provided. If you run it from behind a
firewall, you will get an UnknownHostException because JSSE cannot find a path through your
firewall to www.verisign.com. To create an equivalent client that can run from behind a firewall,
set up proxy tunneling as illustrated in the sample program SSLSocketClientWithTunneling.

Running SSLSocketClientWithTunneling

The SSLSocketClientWithTunneling.java program in JSSE Sample Code in the Java SE 8
documentation illustrates how to do proxy tunneling to access a secure web server from
behind a firewall. To run this program, you must set the following Java system properties to the
appropriate values:

java -Dhttps.proxyHost=webproxy
-Dhttps.proxyPort=ProxyPortNumber
SSLSocketClientWithTunneling

Note:

Proxy specifications with the -D options are optional. Replace webproxy with the
name of your proxy host and ProxyPortNumber with the appropriate port number.

The program will return the HTML source file from https://www.verisign.com/index.html.

Chapter 8
Code Examples

8-129

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

Running SSLSocketClientWithClientAuth

The SSLSocketClientWithClientAuth.java program in JSSE Sample Code in the Java
SE 8 documentation shows how to set up a key manager to do client authentication if required
by a server. This program also assumes that the client is not outside a firewall. You can modify
the program to connect from inside a firewall by following the example in
SSLSocketClientWithTunneling.

To run this program, you must specify three parameters: host name, port number, and
requested file path. To mirror the previous examples, you can run this program without client
authentication by setting the host to www.verisign.com, the port to 443, and the requested file
path to https://www.verisign.com/. The output when using these parameters is the HTML
for the website https://www.verisign.com/.

To run SSLSocketClientWithClientAuth to do client authentication, you must access a server
that requests client authentication. You can use the sample program ClassFileServer as this
server. This is described in the following sections.

Running ClassFileServer

The program referred to herein as ClassFileServer is made up of two files:
ClassFileServer.java and ClassServer.java in JSSE Sample Code in the Java SE 8
documentation.

To execute them, run ClassFileServer.class, which requires the following parameters:

• port can be any available unused port number, for example, you can use the number
2001.

• docroot indicates the directory on the server that contains the file you want to retrieve. For
example, on Linux, you can use /home/userid/ (where userid refers to your particular
UID), whereas on Windows, you can use c:\.

• TLS is an optional parameter that indicates that the server is to use SSL or TLS.

• true is an optional parameter that indicates that client authentication is required. This
parameter is only consulted if the TLS parameter is set.

Note:

The TLS and true parameters are optional. If you omit them, indicating that an
ordinary (not TLS) file server should be used, without authentication, then nothing
happens. This is because one side (the client) is trying to negotiate with TLS, while
the other (the server) is not, so they cannot communicate.

The server expects GET requests in the form GET /path_to_file.

Running SSLSocketClientWithClientAuth with ClassFileServer

You can use the sample programs SSLSocketClientWithClientAuth.java and
ClassFileServer in JSSE Sample Code in the Java SE 8 documentation to set up
authenticated communication, where the client and server are authenticated to each other. You
can run both sample programs on different machines connected to the same network, or you
can run them both on one machine but from different terminal windows or command prompt
windows. To set up both the client and the server, do the following:

Chapter 8
Code Examples

8-130

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

1. Run the program ClassFileServer from one machine or terminal window.
See Running ClassFileServer.

2. Run the program SSLSocketClientWithClientAuth on another machine or terminal
window. SSLSocketClientWithClientAuth requires the following parameters:

• host is the host name of the machine that you are using to run ClassFileServer.

• port is the same port that you specified for ClassFileServer.

• requestedfilepath indicates the path to the file that you want to retrieve from the
server. You must give this parameter as /filepath. Forward slashes are required in
the file path because it is used as part of a GET statement, which requires forward
slashes regardless of what type of operating system you are running. The statement is
formed as follows:

"GET " + requestedfilepath + " HTTP/1.0"

Note:

You can modify the other SSLClient* applications' GET commands to connect to a
local machine running ClassFileServer.

Sample Code Illustrating HTTPS Connections

There are two primary APIs for accessing secure communications through JSSE. One way is
through a socket-level API that can be used for arbitrary secure communications, as illustrated
by the SSLSocketClient, SSLSocketClientWithTunneling, and
SSLSocketClientWithClientAuth (with and without ClassFileServer) sample programs.

A second, and often simpler, way is through the standard Java URL API. You can
communicate securely with an SSL-enabled web server by using the HTTPS URL protocol or
scheme using the java.net.URL class.

Support for HTTPS URL schemes is implemented in many of the common browsers, which
allows access to secured communications without requiring the socket-level API provided with
JSSE.

An example URL is https://www.verisign.com.

The trust and key management for the HTTPS URL implementation is environment-specific.
The JSSE implementation provides an HTTPS URL implementation. To use a different HTTPS
protocol implementation, set the java.protocol.handler.pkgs. See How to Specify a
java.lang.System Property to the package name. See the java.net.URL class documentation
for details.

The samples that you can download with JSSE include two sample programs that illustrate
how to create an HTTPS connection. Both of these sample programs (URLReader.java and
URLReaderWithOptions.java) are in the samples/urls directory.

Running URLReader

The URLReader.java program in JSSE Sample Code in the Java SE 8 documentation
illustrates using the URL class to access a secure site. The output of this program is the HTML
source for https://www.verisign.com/. By default, the HTTPS protocol implementation
included with JSSE is used. To use a different implementation, set the system property

Chapter 8
Code Examples

8-131

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

java.protocol.handler.pkgs value to be the name of the package containing the
implementation.

If you are running the sample code behind a firewall, then you must set the https.proxyHost
and https.proxyPort system properties. For example, to use the proxy host "webproxy" on
port 8080, you can use the following options for the java command:

-Dhttps.proxyHost=webproxy
-Dhttps.proxyPort=8080

Alternatively, you can set the system properties within the source code with the
java.lang.System method setProperty(). For example, instead of using the command-line
options, you can include the following lines in your program:

System.setProperty("java.protocol.handler.pkgs", "com.ABC.myhttpsprotocol");
System.setProperty("https.proxyHost", "webproxy");
System.setProperty("https.proxyPort", "8080");

Running URLReaderWithOptions

The URLReaderWithOptions.java program in JSSE Sample Code in the Java SE 8
documentation is essentially the same as the URLReader.java program, except that it allows
you to optionally input any or all of the following system properties as arguments to the
program when you run it:

• java.protocol.handler.pkgs
• https.proxyHost
• https.proxyPort
• https.cipherSuites
To run URLReaderWithOptions, enter the following command:

java URLReaderWithOptions [-h proxyhost -p proxyport] [-k
protocolhandlerpkgs] [-c ciphersarray]

Note:

Multiple protocol handlers can be included in the protocolhandlerpkgs argument as
a list with items separated by vertical bars. Multiple SSL cipher suite names can be
included in the ciphersarray argument as a list with items separated by commas.
The possible cipher suite names are the same as those returned by the
SSLSocket.getSupportedCipherSuites() method. The suite names are taken from
the SSL and TLS protocol specifications.

You need a protocolhandlerpkgs argument only if you want to use an HTTPS protocol
handler implementation other than the default one provided by Oracle.

If you are running the sample code behind a firewall, then you must include arguments for the
proxy host and the proxy port. Additionally, you can include a list of cipher suites to enable.

Chapter 8
Code Examples

8-132

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

Here is an example of running URLReaderWithOptions and specifying the proxy host
"webproxy" on port 8080:

java URLReaderWithOptions -h webproxy -p 8080

Sample Code Illustrating a Secure RMI Connection

The sample code in the samples/rmi directory illustrates how to create a secure Java
Remote Method Invocation (RMI) connection. The sample code is basically a "Hello World"
example modified to install and use a custom RMI socket factory.

Sample Code Illustrating the Use of an SSLEngine

SSLEngine gives application developers flexibility when choosing I/O and compute strategies.
Rather than tie the SSL/TLS implementation to a specific I/O abstraction (such as single-
threaded SSLSockets), SSLEngine removes the I/O and compute constraints from the SSL/TLS
implementation.

As mentioned earlier, SSLEngine is an advanced API, and is not appropriate for casual use.
Some introductory sample code is provided here that helps illustrate its use. The first demo
removes most of the I/O and threading issues, and focuses on many of the SSLEngine
methods. The second demo is a more realistic example showing how SSLEngine might be
combined with Java NIO to create a rudimentary HTTP/HTTPS server.

Running SSLEngineSimpleDemo

The SSLEngineSimpleDemo.java program in JSSE Sample Code in the Java SE 8
documentation is a very simple application that focuses on the operation of the SSLEngine
while simplifying the I/O and threading issues. This application creates two SSLEngine objects
that exchange SSL/TLS messages via common ByteBuffer objects. A single loop serially
performs all of the engine operations and demonstrates how a secure connection is
established (handshaking), how application data is transferred, and how the engine is closed.

The SSLEngineResult provides a great deal of information about the current state of the
SSLEngine. This example does not examine all of the states. It simplifies the I/O and threading
issues to the point that this is not a good example for a production environment; nonetheless, it
is useful to demonstrate the overall function of the SSLEngine.

Troubleshooting JSSE Sample Code

One of the most common problems people have in using JSSE is when the JSSE receives a
certificate that is unknown to the mechanism that makes trust decisions. If an unknown
certificate is received, the trust mechanism will throw an exception saying that the certificate is
untrusted. Make sure that the correct trust store is being used, and that the JSSE is installed
and configured correctly.

If you are using the "localhost" or "duke" credentials, be sure that you have correctly specified
the location of the samplecacerts file, otherwise your application will not work. (See Sample
Certificates and Keys for more information.)

The SSL debug mechanism can be used to investigate such trust problems. See the
implementation documentation for more information about this subject.

Creating a Keystore to Use with JSSE
This section demonstrates how you can use the keytool utility to create a simple PKCS12
keystore suitable for use with JSSE.

Chapter 8
Code Examples

8-133

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/index.html

First you make a keyEntry (with public and private keys) in the keystore, and then you make a
corresponding trustedCertEntry (public keys only) in a truststore. For client authentication,
you follow a similar process for the client's certificates.

Note:

It is beyond the scope of this example to explain each step in detail. See The keytool
Command in Java Development Kit Tool Specifications for more information.

User input is shown in bold.

1. Create a new keystore and self-signed certificate with corresponding public and private
keys.

 % keytool -genkeypair -alias duke -keyalg RSA -validity 7 -keystore
keystore

 Enter keystore password: <password>
 What is your first and last name?
 [Unknown]: Duke
 What is the name of your organizational unit?
 [Unknown]: Java Software
 What is the name of your organization?
 [Unknown]: Oracle, Inc.
 What is the name of your City or Locality?
 [Unknown]: Palo Alto
 What is the name of your State or Province?
 [Unknown]: CA
 What is the two-letter country code for this unit?
 [Unknown]: US
 Is CN=Duke, OU=Java Software, O="Oracle, Inc.",
 L=Palo Alto, ST=CA, C=US correct?
 [no]: yes

2. Examine the keystore. Notice that the entry type is PrivatekeyEntry, which means that
this entry has a private key associated with it).

 % keytool -list -v -keystore keystore

 Enter keystore password: <password>

 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 Alias name: duke
 Creation date: Jul 25, 2016
 Entry type: PrivateKeyEntry
 Certificate chain length: 1
 Certificate[1]:
 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,

Chapter 8
Code Examples

8-134

https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,
ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27
IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256:
ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF
75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

3. Export and examine the self-signed certificate.

 % keytool -export -alias duke -keystore keystore -rfc -file duke.cer
 Enter keystore password: <password>
 Certificate stored in file <duke.cer>
 % cat duke.cer
 -----BEGIN CERTIFICATE-----
 MIIDdzCCAl+gAwIBAgIEIQzM/DANBgkqhkiG9w0BAQsFADBsMQswCQYDVQQGEwJV
 UzELMAkGA1UECBMCQ0ExEjAQBgNVBAcTCVBhbG8gQWx0bzEVMBMGA1UEChMMT3Jh
 Y2xlLCBJbmMuMRYwFAYDVQQLEw1KYXZhIFNvZnR3YXJlMQ0wCwYDVQQDEwREdWtl
 MB4XDTE2MDcyNTA1MDMyN1oXDTE2MDgwMTA1MDMyN1owbDELMAkGA1UEBhMCVVMx
 CzAJBgNVBAgTAkNBMRIwEAYDVQQHEwlQYWxvIEFsdG8xFTATBgNVBAoTDE9yYWNs
 ZSwgSW5jLjEWMBQGA1UECxMNSmF2YSBTb2Z0d2FyZTENMAsGA1UEAxMERHVrZTCC
 ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJ7+Yeu6HDZgWwkGlG4iKH9w
 vGKrxXVR57FaFyheMevrgj1ovVnQVFhfdMvjPkjWmpqLg6rfTqU4bKbtoMWV6+Rn
 uQrCw2w9xNC93hX9PxRa20UKrSRDKnUSvi1wjlaxfj0KUKuMwbbY9S8x/naYGeTL
 lwbHiiMvkoFkP2kzhVgeqHjIwSz4HRN8vWHCwgIDFWX/ZlS+LbvB4TSZkS0ZcQUV
 vJWTocOd8RB90W3bkibWkWq166XYGE1Nq1L4WIhrVJwbav6ual69yJsEpVcshVkx
 E1WKzJg7dGb03to4agbReb6+aoCUwb2vNUudNWasSrxoEFArVFGD/ZkPT0esfqEC
 AwEAAaMhMB8wHQYDVR0OBBYEFH/JlUhCjWiRuh7mXCxr/3VfGXhDMA0GCSqGSIb3
 DQEBCwUAA4IBAQAmcTm2ahsIJLayajsvm8yPzQsHA7kIwWfPPHCoHmNbynG67oHB
 fleaNvrgm/raTT3TrqQkg0525qI6Cqaoyy8JA2fAp3i+hmyoGHaIlo14bKazaiPS
 RCCqk0J8vwY3CY9nVal1XlHJMEcYV7X1sxKbuAKFoAJ29E/p6ie0JdHtQe31M7X9
 FNLYzt8EpJYUtWo13B9Oufz/Guuex9PQ7aC93rbO32MxtnnCGMxQHlaHLLPygc/x
 cffGz5Xe5s+NEm78CY7thgN+drI7icBYmv4navsnr2OQaD3AfnJ4WYSQyyUUCPxN
 zuk+B0fbLn7PCCcQspmqfgzIpgbEM9M1/yav
 -----END CERTIFICATE-----

Chapter 8
Code Examples

8-135

Alternatively, you could generate a Certificate Signing Request (CSR) with the -certreq
command and send that to a Certificate Authority (CA) for signing. See Requesting a
Signed Certificate from a CA in The keytool Command for an example.

4. Import the certificate into a new truststore.

 % keytool -import -alias dukecert -file duke.cer -keystore truststore
 Enter keystore password: <password>
 Re-enter new password:
 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,
ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,
ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27
IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256:
ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF
75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

 Trust this certificate? [no]: yes
 Certificate was added to keystore

5. Examine the truststore. Note that the entry type is trustedCertEntry, which means that a
private key is not available for this entry. It also means that this file is not suitable as a
keystore of the KeyManager.

 % keytool -list -v -keystore truststore
 Enter keystore password: <password>

 Keystore type: PKCS12
 Keystore provider: SUN

 Your keystore contains 1 entry

 Alias name: dukecert

Chapter 8
Code Examples

8-136

https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html#requesting-a-signed-certificate-from-a-ca
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html#requesting-a-signed-certificate-from-a-ca
https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html

 Creation date: Jul 25, 2016
 Entry type: trustedCertEntry

 Owner: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,
ST=CA, C=US
 Issuer: CN=Duke, OU=Java Software, O="Oracle, Inc.", L=Palo Alto,
ST=CA, C=US
 Serial number: 210cccfc
 Valid from: Mon Jul 25 10:33:27 IST 2016 until: Mon Aug 01 10:33:27
IST 2016
 Certificate fingerprints:
 SHA1: 80:E5:8A:47:7E:4F:5A:70:83:97:DD:F4:DA:29:3D:15:6B:2A:45:1F
 SHA256:
ED:3C:70:68:4E:86:35:9C:63:CC:B9:59:35:58:94:1F:7E:B8:B0:EE:D2:
 4B:9D:80:31:67:8A:D4:B4:7A:B5:12
 Signature algorithm name: SHA256withRSA
 Subject Public Key Algorithm: RSA (2048)
 Version: 3

 Extensions:

 #1: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7F C9 95 48 42 8D 68 91 BA 1E E6 5C 2C 6B FF
75 ...HB.h....\,k.u
 0010: 5F 19 78 43 _.xC
]
]

6. Now run your applications with the appropriate keystores. Because this example assumes
that the default X509KeyManager and X509TrustManager are used, you select the keystores
using the system properties described in Customizing JSSE.

% java -Djavax.net.ssl.keyStore=keystore -
Djavax.net.ssl.keyStorePassword=password Server
% java -Djavax.net.ssl.trustStore=truststore -
Djavax.net.ssl.trustStorePassword=trustword Client

Note:

This example authenticated the server only. For client authentication, provide a
similar keystore for the client's keys and an appropriate truststore for the server.

Using the Server Name Indication (SNI) Extension

Chapter 8
Code Examples

8-137

These examples illustrate how you can use the Server Name Indication (SNI) Extension for
client-side and server-side applications, and how it can be applied to a virtual infrastructure.

For all examples in this section, to apply the parameters after you set them, call the
setSSLParameters(SSLParameters) method on the corresponding SSLSocket, SSLEngine, or
SSLServerSocket object.

Typical Client-Side Usage Examples

The following is a list of use cases that require understanding of the SNI extension for
developing a client application:

• Case 1. The client wants to access www.example.com.

Set the host name explicitly:

 SNIHostName serverName = new SNIHostName("www.example.com");
 sslParameters.setServerNames(Collections.singletonList(serverName));

The client should always specify the host name explicitly.

• Case 2. The client does not want to use SNI because the server does not support it.

Disable SNI with an empty server name list:

 sslParameters.setServerNames(Collections.emptyList());

• Case 3. The client wants to access URL https://www.example.com.

Oracle providers will set the host name in the SNI extension by default, but third-party
providers may not support the default server name indication. To keep your application
provider-independent, always set the host name explicitly.

• Case 4. The client wants to switch a socket from server mode to client mode.

First switch the mode with the following method: sslSocket.setUseClientMode(true).
Then reset the server name indication parameters on the socket.

Typical Server-Side Usage Examples

The following is a list of use cases that require understanding of the SNI extension for
developing a server application:

• Case 1. The server wants to accept all server name indication types.

If you do not have any code dealing with the SNI extension, then the server ignores all
server name indication types.

• Case 2. The server wants to deny all server name indications of type host_name.

Set an invalid server name pattern for host_name:

 SNIMatcher matcher = SNIHostName.createSNIMatcher("");
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

Chapter 8
Code Examples

8-138

Another way is to create an SNIMatcher subclass with a matches() method that always
returns false:

 class DenialSNIMatcher extends SNIMatcher {
 DenialSNIMatcher() {
 super(StandardConstants.SNI_HOST_NAME);
 }

 @Override
 public boolean matches(SNIServerName serverName) {
 return false;
 }
 }

 SNIMatcher matcher = new DenialSNIMatcher();
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

• Case 3. The server wants to accept connections to any host names in the example.com
domain.

Set the recognizable server name for host_name as a pattern that includes all
*.example.com addresses:

 SNIMatcher matcher = SNIHostName.createSNIMatcher("(.*\\.)*example\
\.com");
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 sslParameters.setSNIMatchers(matchers);

• Case 4. The server wants to switch a socket from client mode to server mode.

First switch the mode with the following method: sslSocket.setUseClientMode(false).
Then reset the server name indication parameters on the socket.

Working with Virtual Infrastructures
This section describes how to use the Server Name Indication (SNI) extension from within a
virtual infrastructure. It illustrates how to create a parser for ClientHello messages from a
socket, provides examples of virtual server dispatchers using SSLSocket and SSLEngine,
describes what happens when the SNI extension is not available, and demonstrates how to
create a failover SSLContext.

Preparing the ClientHello Parser

Applications must implement an API to parse the ClientHello messages from a socket. The
following examples illustrate the SSLCapabilities and SSLExplorer classes that can perform
these functions.

SSLSocketClient.java encapsulates the TLS/DTLS security capabilities during handshaking
(that is, the list of cipher suites to be accepted in an TLS/DTLS handshake, the record version,
the hello version, and the server name indication). It can be retrieved by exploring the network
data of an TLS/DTLS connection via the SSLExplorer.explore() method.

SSLExplorer.java explores the initial ClientHello message from a TLS client, but it does not
initiate handshaking or consume network data. The SSLExplorer.explore() method parses

Chapter 8
Code Examples

8-139

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sockets/client/SSLSocketClient.java
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sni/SSLExplorer.java

the ClientHello message, and retrieves the security parameters into SSLCapabilities. The
method must be called before handshaking occurs on any TLS connections.

Virtual Server Dispatcher Based on SSLSocket

This section describes the procedure for using a virtual server dispatcher based on SSLSocket.

1. Register the server name handler.

At this step, the application may create different SSLContext objects for different server
name indications, or link a certain server name indication to a specified virtual machine or
distributed system.

For example, if the server name is www.example.org, then the registered server name
handler may be for a local virtual hosting web service. The local virtual hosting web service
will use the specified SSLContext. If the server name is www.example.com, then the
registered server name handler may be for a virtual machine hosting on 10.0.0.36. The
handler may map this connection to the virtual machine.

2. Create a ServerSocket and accept the new connection.

ServerSocket serverSocket = new ServerSocket(serverPort);
Socket socket = serverSocket.accept();

3. Read and buffer bytes from the socket input stream, and then explore the buffered
bytes.

InputStream ins = socket.getInputStream();
byte[] buffer = new byte[0xFF];
int position = 0;
SSLCapabilities capabilities = null;

// Read the header of TLS record
while (position < SSLExplorer.RECORD_HEADER_SIZE) {
 int count = SSLExplorer.RECORD_HEADER_SIZE - position;
 int n = ins.read(buffer, position, count);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }
 position += n;
}

// Get the required size to explore the SSL capabilities
int recordLength = SSLExplorer.getRequiredSize(buffer, 0, position);
if (buffer.length < recordLength) {
 buffer = Arrays.copyOf(buffer, recordLength);
}

while (position < recordLength) {
 int count = recordLength - position;
 int n = ins.read(buffer, position, count);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }
 position += n;
}

Chapter 8
Code Examples

8-140

// Explore
capabilities = SSLExplorer.explore(buffer, 0, recordLength);
if (capabilities != null) {
 System.out.println("Record version: " +
capabilities.getRecordVersion());
 System.out.println("Hello version: " + capabilities.getHelloVersion());
}

4. Get the requested server name from the explored capabilities.

List<SNIServerName> serverNames = capabilities.getServerNames();

5. Look for the registered server name handler for this server name indication.

If the service of the host name is resident in a virtual machine or another distributed
system, then the application must forward the connection to the destination. The
application will need to read and write the raw internet data, rather then the SSL
application from the socket stream.

Socket destinationSocket = new Socket(serverName, 443);
// Forward buffered bytes and network data from the current socket to the
destinationSocket.

If the service of the host name is resident in the same process, and the host name service
can use the SSLSocket directly, then the application will need to set the SSLSocket instance
to the server:

// Get service context from registered handler
// or create the context
SSLContext serviceContext = ...

SSLSocketFactory serviceSocketFac = serviceContext.getSSLSocketFactory();

// wrap the buffered bytes
ByteArrayInputStream bais = new ByteArrayInputStream(buffer, 0, position);
SSLSocket serviceSocket = (SSLSocket)serviceSocketFac.createSocket(socket,
bais, true);

// Now the service can use serviceSocket as usual.

Virtual Server Dispatcher Based on SSLEngine

This section describes the procedure for using a virtual server dispatcher based on SSLEngine.

1. Register the server name handler.

At this step, the application may create different SSLContext objects for different server
name indications, or link a certain server name indication to a specified virtual machine or
distributed system.

For example, if the server name is www.example.org, then the registered server name
handler may be for a local virtual hosting web service. The local virtual hosting web service
will use the specified SSLContext. If the server name is www.example.com, then the
registered server name handler may be for a virtual machine hosting on 10.0.0.36. The
handler may map this connection to the virtual machine.

Chapter 8
Code Examples

8-141

2. Create a ServerSocket or ServerSocketChannel and accept the new connection.

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.bind(...);
...
SocketChannel socketChannel = serverSocketChannel.accept();

3. Read and buffer bytes from the socket input stream, and then explore the buffered
bytes.

ByteBuffer buffer = ByteBuffer.allocate(0xFF);
SSLCapabilities capabilities = null;
while (true) {
 // ensure the capacity
 if (buffer.remaining() == 0) {
 ByteBuffer oldBuffer = buffer;
 buffer = ByteBuffer.allocate(buffer.capacity() + 0xFF);
 buffer.put(oldBuffer);
 }

 int n = sc.read(buffer);
 if (n < 0) {
 throw new Exception("unexpected end of stream!");
 }

 int position = buffer.position();
 buffer.flip();
 capabilities = explorer.explore(buffer);
 buffer.rewind();
 buffer.position(position);
 buffer.limit(buffer.capacity());
 if (capabilities != null) {
 System.out.println("Record version: " +
 capabilities.getRecordVersion());
 System.out.println("Hello version: " +
 capabilities.getHelloVersion());
 break;
 }
}

buffer.flip(); // reset the buffer position and limitation

4. Get the requested server name from the explored capabilities.

List<SNIServerName> serverNames = capabilities.getServerNames();

5. Look for the registered server name handler for this server name indication.

If the service of the host name is resident in a virtual machine or another distributed
system, then the application must forward the connection to the destination. The

Chapter 8
Code Examples

8-142

application will need to read and write the raw internet data, rather then the SSL
application from the socket stream.

Socket destinationSocket = new Socket(serverName, 443);
// Forward buffered bytes and network data from the current socket to the
destinationSocket.

If the service of the host name is resident in the same process, and the host name service
can use the SSLEngine directly, then the application will simply feed the net data to the
SSLEngine instance:

// Get service context from registered handler
// or create the context
SSLContext serviceContext = ...

SSLEngine serviceEngine = serviceContext.createSSLEngine();
// Now the service can use the buffered bytes and other byte buffer as
usual.

No SNI Extension Available

If there is no server name indication in a ClientHello message, then there is no way to select
the proper service according to SNI. For such cases, the application may need to specify a
default service, so that the connection can be delegated to it if there is no server name
indication.

Failover SSLContext

The SSLExplorer.explore() method does not check the validity of TLS/DTLS contents. If the
record format does not comply with TLS/DTLS specification, or the explore() method is
invoked after handshaking has started, then the method may throw an IOException and be
unable to produce network data. In such cases, handle the exception thrown by
SSLExplorer.explore() by using a failover SSLContext, which is not used to negotiate a TLS/
DTLS connection, but to close the connection with the proper alert message. The following
example illustrates a failover SSLContext. You can find an example of the DenialSNIMatcher
class in Case 2 in Typical Server-Side Usage Examples.

byte[] buffer = ... // buffered network data
boolean failed = true; // SSLExplorer.explore() throws an exception

SSLContext context = SSLContext.getInstance("TLS");
// the failover SSLContext

context.init(null, null, null);
SSLSocketFactory sslsf = context.getSocketFactory();
ByteArrayInputStream bais = new ByteArrayInputStream(buffer, 0, position);
SSLSocket sslSocket = (SSLSocket)sslsf.createSocket(socket, bais, true);

SNIMatcher matcher = new DenialSNIMatcher();
Collection<SNIMatcher> matchers = new ArrayList<>(1);
matchers.add(matcher);
SSLParameters params = sslSocket.getSSLParameters();
params.setSNIMatchers(matchers); // no recognizable server name
sslSocket.setSSLParameters(params);

Chapter 8
Code Examples

8-143

try {
 InputStream sslIS = sslSocket.getInputStream();
 sslIS.read();
} catch (Exception e) {
 System.out.println("Server exception " + e);
} finally {
 sslSocket.close();
}

Standard Names
The JDK Security API requires and uses a set of standard names for algorithms, certificates
and keystore types. See the Java Security Standard Algorithm Names specification. Find
specific provider information in JDK Providers Documentation.

Provider Pluggability
JSSE is fully pluggable and does not restrict the use of third-party JSSE providers in any way.

Transport Layer Security (TLS) Protocol Overview
Transport Layer Security (TLS) is the most widely used protocol for implementing cryptography
on the web. TLS uses a combination of cryptographic processes to provide secure
communication over a network. This section provides an introduction to TLS and the
cryptographic processes it uses.

TLS provides a secure enhancement to the standard TCP/IP sockets protocol used for Internet
communications. As shown in Table 8-10, the secure sockets layer is added between the
transport layer and the application layer in the standard TCP/IP protocol stack. The application
most commonly used with TLS is Hypertext Transfer Protocol (HTTP), the protocol for Internet
web pages. Other applications, such as Net News Transfer Protocol (NNTP), Telnet,
Lightweight Directory Access Protocol (LDAP), Interactive Message Access Protocol (IMAP),
and File Transfer Protocol (FTP), can be used with TLS as well.

Table 8-10 TCP/IP Protocol Stack with TLS

TCP/IP Layer Protocol

Application Layer HTTP, NNTP, Telnet, FTP, and so on

Transport Layer Security TLS

Transmission Control Protocol TCP

Internet Layer IP

Secure Socket Layer (SSL) was developed by Netscape in 1994, and with input from the
Internet community, has evolved to become a standard. It is now under the control of the
international standards organization, the Internet Engineering Task Force (IETF). The IETF
renamed SSL to TLS, and released the first specification, version 1.0, in January 1999. TLS
1.0 is a modest upgrade to the most recent version of SSL, version 3.0. This upgrade
corrected defects in previous versions and prohibited the use of known weak algorithms. TLS
1.1 was released in April 2006, TLS 1.2 in August 2008, and TLS 1.3 in August 2018. TLS 1.3
is a major overhaul of the TLS protocol and provides significant security and performance
improvements over previous versions.

Chapter 8
Standard Names

8-144

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

How TLS Works
One of the reasons that TLS is effective is that it uses several different cryptographic
processes. TLS uses public-key cryptography to provide authentication, and secret-key
cryptography with hash functions to provide for privacy and data integrity. Before you can
understand TLS, it’s helpful to understand these cryptographic processes.

Cryptographic Processes
The primary purpose of cryptography is to make it difficult for an unauthorized third party to
access and understand private communication between two parties. It is not always possible to
restrict all unauthorized access to data, but private data can be made unintelligible to
unauthorized parties through the process of encryption. Encryption uses complex algorithms to
convert the original message (cleartext) to an encoded message (ciphertext). The algorithms
used to encrypt and decrypt data that is transferred over a network typically come in two
categories: secret-key cryptography and public-key cryptography.

Both secret-key cryptography and public-key cryptography depend on the use of an agreed-
upon cryptographic key or pair of keys. A key is a string of bits that is used by the
cryptographic algorithm or algorithms during the process of encrypting and decrypting the data.
A cryptographic key is like a key for a lock; only with the right key can you open the lock.

Safely transmitting a key between two communicating parties is not a trivial matter. A public
key certificate enables a party to safely transmit its public key, while providing assurance to the
receiver of the authenticity of the public key. See Public Key Certificates.

The descriptions of the cryptographic processes in secret-key cryptography and public-key
cryptography follow conventions widely used by the security community: the two
communicating parties are labeled with the names Alice and Bob. The unauthorized third party,
also known as the attacker, is named Charlie.

Secret-Key Cryptography
With secret-key cryptography, both communicating parties, Alice and Bob, use the same key to
encrypt and decrypt the messages. Before any encrypted data can be sent over the network,
both Alice and Bob must have the key and must agree on the cryptographic algorithm that they
will use for encryption and decryption

One of the major problems with secret-key cryptography is the logistical issue of how to get the
key from one party to the other without allowing access to an attacker. If Alice and Bob are
securing their data with secret-key cryptography, and if Charlie gains access to their key, then
Charlie can understand any secret messages he intercepts between Alice and Bob. Not only
can Charlie decrypt Alice's and Bob's messages, but he can also pretend that he is Alice and
send encrypted data to Bob. Bob won’t know that the message came from Charlie, not Alice.

After the problem of secret key distribution is solved, secret-key cryptography can be a
valuable tool. The algorithms provide excellent security and encrypt data relatively quickly. The
majority of the sensitive data sent in an TLS session is sent using secret-key cryptography.

Secret-key cryptography is also called symmetric cryptography because the same key is used
to both encrypt and decrypt the data. Well-known secret-key cryptographic algorithms include
Advanced Encryption Standard (AES), Triple Data Encryption Standard (3DES), and Rivest
Cipher 4 (RC4).

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-145

Public-Key Cryptography
Public-key cryptography solves the logistical problem of key distribution by using both a public
key and a private key. The public key can be sent openly through the network while the private
key is kept private by one of the communicating parties. The public and the private keys are
cryptographic inverses of each other; what one key encrypts, the other key will decrypt.

Assume that Bob wants to send a secret message to Alice using public-key cryptography. Alice
has both a public key and a private key, so she keeps her private key in a safe place and
sends her public key to Bob. Bob encrypts the secret message to Alice using Alice's public key.
Alice can later decrypt the message with her private key.

If Alice encrypts a message using her private key and sends the encrypted message to Bob,
then Bob can be sure that the data he receives comes from Alice; if Bob can decrypt the data
with Alice's public key, the message must have been encrypted by Alice with her private key,
and only Alice has Alice's private key. The problem is that anybody else can read the message
as well because Alice's public key is public. Although this scenario does not allow for secure
data communication, it does provide the basis for digital signatures. A digital signature is one
of the components of a public key certificate, and is used in TLS to authenticate a client or a
server. See Public Key Certificates and Digital Signatures.

Public-key cryptography is also called asymmetric cryptography because different keys are
used to encrypt and decrypt the data. A well-known public key cryptographic algorithm often
used with TLS is the Rivest Shamir Adleman (RSA) algorithm. Another public key algorithm
used with TLS that is designed specifically for secret key exchange is the Diffie-Hellman (DH)
algorithm. Public-key cryptography requires extensive computations, making it very slow. It is
therefore typically used only for encrypting small pieces of data, such as secret keys, rather
than for the bulk of encrypted data communications.

Comparison Between Secret-Key and Public-Key Cryptography
Both secret-key cryptography and public-key cryptography have strengths and weaknesses.
With secret-key cryptography, data can be encrypted and decrypted quickly, but because both
communicating parties must share the same secret key information, the logistics of exchanging
the key can be a problem. With public-key cryptography, key exchange is not a problem
because the public key does not need to be kept secret, but the algorithms used to encrypt and
decrypt data require extensive computations, and are therefore very slow.

Public Key Certificates

A public key certificate provides a safe way for an entity to pass on its public key to be used in
asymmetric cryptography. The public key certificate avoids the following situation: if Charlie
creates his own public key and private key, he can claim that he is Alice and send his public
key to Bob. Bob will be able to communicate with Charlie, but Bob will think that he is sending
his data to Alice.

A public key certificate can be thought of as the digital equivalent of a passport. It is issued by
a trusted organization and provides identification for the bearer. A trusted organization that
issues public key certificates is known as a Certificate Authority (CA). The CA can be likened
to a notary public. To obtain a certificate from a CA, one must provide proof of identity. Once
the CA is confident that the applicant represents the organization it says it represents, the CA
signs the certificate attesting to the validity of the information contained within the certificate.

A public key certificate contains the following fields:

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-146

Issuer
The CA that issued the certificate. If a user trusts the CA that issued the certificate, and if the
certificate is valid, then the user can trust the certificate.

Period of validity
A certificate has an expiration date. This date should be checked when verifying the validity of
a certificate.

Subject
Includes information about the entity that the certificate represents.

Subject's public key
The primary piece of information that the certificate provides is the subject's public key. All the
other fields are provided to ensure the validity of this key.

Signature
The certificate is digitally signed by the CA that issued the certificate. The signature is created
using the CA's private key and ensures the validity of the certificate. Because only the
certificate is signed, not the data sent in the TLS transaction, TLS does not provide for
nonrepudiation.

If Bob only accepts Alice's public key as valid when she sends it in a public key certificate, then
Bob won’t be fooled into sending secret information to Charlie when Charlie masquerades as
Alice.

Multiple certificates may be linked in a certificate chain. When a certificate chain is used, the
first certificate is always that of the sender. The next is the certificate of the entity that issued
the sender's certificate. If more certificates are in the chain, then each is that of the authority
that issued the previous certificate. The final certificate in the chain is the certificate for a root
CA. A root CA is a public Certificate Authority that is widely trusted. Information for several root
CAs is typically stored in the client's Internet browser. This information includes the CA's public
key. Well-known CAs include Comodo, DigiCert, and GoDaddy.

Cryptographic Hash Functions
When sending encrypted data, TLS typically uses a cryptographic hash function to ensure data
integrity. The hash function prevents Charlie from tampering with data that Alice sends to Bob.

A cryptographic hash function is similar to a checksum. The main difference is that whereas a
checksum is designed to detect accidental alterations in data, a cryptographic hash function is
designed to detect deliberate alterations. When data is processed by a cryptographic hash
function, a small string of bits, known as a hash, is generated. The slightest change to the
message typically makes a large change in the resulting hash. A cryptographic hash function
does not require a cryptographic key. A hash function often used with TLS is Secure Hash
Algorithm (SHA). SHA was proposed by the U.S. National Institute of Standards and
Technology (NIST).

Message Authentication Code
A message authentication code (MAC) is similar to a cryptographic hash, except that it is
based on a secret key. When secret key information is included with the data that is processed
by a cryptographic hash function, then the resulting hash is known as an HMAC.

If Alice wants to be sure that Charlie does not tamper with her message to Bob, then she can
calculate an HMAC for her message and append the HMAC to her original message. She can
then encrypt the message plus the HMAC using a secret key that she shares with Bob. When

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-147

http://www.nist.gov/index.html
http://www.nist.gov/index.html

Bob decrypts the message and calculates the HMAC, he will be able to tell if the message was
modified in transit. With TLS, an HMAC is used with the transmission of secure data.

Digital Signatures
Once a cryptographic hash is created for a message, the hash is encrypted with the sender's
private key. This encrypted hash is called a digital signature.

The TLS 1.3 Handshake
Communication using TLS 1.3 begins the TLS handshake. This is an initial negotiation
between the client and server that establishes the parameters of their subsequent interactions
within TLS. It consists of three phases: key exchange, server parameters, and authentication:

1. Key Exchange: This phase establishes shared keying material, such as which named
group the shared key can belong to (Elliptic Curve Groups (ECDHE) or Finite Field Groups
(DHE)), and selects cryptographic parameters, such as symmetric cipher options.

2. Server Parameters: This phase establishes other handshake parameters such as whether
certificate-based client authentication is desired.

3. Authentication: This phase authenticates the server (and optionally the client) and
provides key confirmation and handshake integrity.

The TLS 1.3 Protocol
The following figure shows the sequence of messages for the full TLS handshake.

Figure 8-7 TLS 1.3 Handshake

Application Data Application Data

ClientHello
 support_versions
 status_request
 supported_groups
 key_share
 pre_shared_key

Certificate (optional)
status_request
signed_certificate_timestamp
CertificateVerify (optional)
Finished

ServerHello
support_versions

key_share
pre_shared_key

EncryptedExtensions
CertificateRequest (optional)

signature_algorithms
signature_algorithms_cert

certificate_authorities
support_groups

Certificate (optional)
status_request

signed_certificate_timestamp
CertificateVerify (optional)

Finished

ServerClient

Key
Exchange

Authentication

Key
Exchange

Server
Parameters

Authentication

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-148

1. Key exchange:

a. The client sends a ClientHello message to server.

b. The server processes the ClientHello message and determines the appropriate
cryptographic parameters for the connection. It then responds with its own ServerHello
message, which indicates the negotiated connection parameters. For TLS 1.3, the
ServerHello message determines the key and cipher options only. Other handshake
parameters may be determined later.

2. Server parameters: The server sends two messages to establish server parameters:

• EncryptedExtensions: This message contains responses to ClientHello extensions that
are not required to determine the cryptographic parameters, other than those that are
specific to individual certificates.

• CertificateRequest (optional): If certificate-based client authentication is desired, then
the server sends this message, which contains the desired parameters for that
certificate. This message is omitted if client authentication is not desired.

3. Authentication:

a. The server sends these authentication messages:

• Certificate (optional): This message contains the authentication certificate and any
other supporting certificates in the certificate chain. This message is omitted if the
server is not authenticating with a certificate.

Note:

The Certificate message can contain a raw key instead of a certificate.

• CertificateVerify (optional): This message contains a signature over the entire
handshake using the private key corresponding to the public key in the Certificate
message. This message is omitted if the server is not authenticating with a
certificate.

• Finished: a MAC (Message Authentication Code) over the entire handshake.

b. The client responds with its own Certificate, CertificateVerify, and Finished messages.
The Certificate message is omitted if the server did not send a CertificateRequest
message. The CertificateVerify message is omitted if the client is not authenticating
with a certificate.

The client and server can now securely send application data to each other.

Key Exchange
The key exchange messages, ClientHello and ServerHello, determine the security capabilities
of the client and the server and establish shared secrets, including the traffic keys used to
protect the rest of the handshake and the application data.

ClientHello

The TLS handshake begins with the client sending a ClientHello message to the server. This
message contains the following fields:

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-149

Note:

TLS messages may contain additional fields than the ones listed here; see the TLS
1.3 specification for full details about TLS messages and their fields.

• cipher_suites: This field contains a list of the symmetric cipher options supported by the
client, specifically the record protection algorithm (including secret key length) and a hash
to be used with Keyed-Hash Message Code (HMAC)-based Extract-and-Expand Key
Derivation Function (HKDF).

• extensions: Extensions facilitates the addition of new features to the TLS protocol with
minimal impact to existing clients. Extensions that the ClientHello message may contain,
but are not limited to, the following:

– supported_versions: This extension indicates which versions of TLS the client
supports. The ClientHello message must contain this message.

– status_request: This extension indicates that client wants to use a certificate status
protocol; the server may not agree to use it. An example of a certificate status protocol
is Online Certificate Status Protocol (OCSP). See Client-Driven OCSP and OCSP
Stapling.

– supported_groups: This extension indicates the named groups that the client
supports for key exchange. These named groups include elliptic curve groups
(ECDHE) and finite field groups (DHE). The ClientHello message must include this
message if it’s using ECDHE or DHE key exchange.

– key_share: This extension contains a list of cryptographic parameters for key
exchange. It contains a field named client_shares that contains this list. Each item in
this list contains the following fields:

* group: The name of the group on which the key exchange cryptographic method
is based. See The SunJSSE Provider in JDK Providers Documentation.

* key_exchange: Key exchange information, which is determined by the value of
the group field.

– pre_shared_key: A pre-shared key (PSK) is a shared secret that was previously
shared between the two parties using some secure channel before it needs to be
used. PSKs can be established in a previous connection and then used to establish a
new connection. Once a handshake has completed, the server can send to the client a
PSK identity that corresponds to a unique key derived from the initial handshake. See
Session Resumption with a Pre-Shared Key.

– cookie: When a server sends a HelloRetryRequest message, it can include this
extension to the client. (The server sends a HelloRetryRequest message in response
to a ClientHello message if it can find an acceptable set of parameters, but the
ClientHello message doesn’t have enough information to proceed with the
handshake.) One purpose of this extension is to enable the server to force the client to
demonstrate reachability at their apparent network address (which provides some
denial-of-service attack (DoS) protection. When the client sends a new ClientHello
message, it must copy the contents received in the HelloRetryRequest into a cookie
extension in this new ClientHello message.

– server_name: TLS 1.3 doesn’t provide a mechanism for a client to tell a server the
name of the server it is contacting. Clients can use this extension to provide this
information to facilitate connections to servers that host multiple virtual servers at a
single network address. Note that some servers may require clients to send this
extension.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-150

https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446

ServerHello

The server responds to the client’s ClientHello message with a ServerHello message if it’s able
to negotiate an acceptable set of handshake parameters. This message contains the following
fields:

• cipher_suite: This field contains the single cipher suite selected by the server from the list
in the ClientHello.cipher_suites field.

• extensions: This field contains extensions that are required to establish the cryptographic
context and negotiate the protocol version. The extensions that the SeverHello may
contain include the following:

– supported_versions: Indicates which version of TLS it’s using. The ServerHello
message must contain this extension.

– key_share: This extension contains a list of cryptographic parameters for key
exchange.

– pre_shared_key: This extension contains the pre-shared key the server agreed to
use. See Session Resumption with a Pre-Shared Key for information about pre-shared
keys.

The server sends other extensions separately in the EncryptedExtensions message.

Server Parameters
After the server sends a ServerHello message to the client, it sends two messages to establish
server parameters: EncryptedExtensions and CertificateRequest:

• EncryptedExtensions: This message contains responses to ClientHello extensions that
are not required to determine cryptographic parameters other than those that are specific
to individual certificates.

• CertificateRequest: If certificate-based client authentication is desired, then this message
is sent. It contains parameters for a certificate requested from the client. It includes the
following fields:

– certificate_request_context: This field contains an identifier that identifies the
certificate request

– extensions: This field contains extensions that describe the requested certificate’s
parameters. It may contain the following extensions:

– signature_algorithms: This extension indicates which signature algorithms may be
used in CertificateVerify messages. The ServerHello message must contain this
extension.

– signature_algorithms_cert: This extension indicates which signature algorithms may
be used in digital signatures. If this message isn’t sent, then it uses the values
specified in the signature_algorithms extension.

– certificate_authorities: This extension indicates which certificate authorities the
server accepts.

– supported_groups: This message contains named groups that the server prefers.
The client may use this information to change what groups it uses in its key_share
extension in subsequent connections.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-151

Authentication
The last three messages that the server and client send to each other in a TLS handshake are
Certificate, CertificateVerify, and Finished.

Certificate

This message contains the authentication certificate and any other supporting certificates in
the certificate chain. The server must send this message if the key exchange method uses
certificates for authentication. The client must send this if and only if the server requested client
authentication through a CertificateRequest message. The certificate message includes the
following fields:

• certificate_list: This field contains a sequence of CertificateEntry structures, each
containing a single certificate and a set of extensions

• extensions: Extensions that the Certificate message may contain include the following:

– status_request: See Client-Driven OCSP and OCSP Stapling

– signed_certificate_timestamp: TLS clients won’t accept certificates unless they are
logged. When a valid certificate is submitted to a log, the log must return a Signed
Certificate Timestamp (SCT); see RFC 6962: Certificate Transparency.

CertificateVerify

This message contains a signature over the entire handshake using the private key
corresponding to the public key in the Certificate message. It provides proof that the client or
the server has the private key corresponding to its certificate. This message includes the
following fieds:

• algorithm: This field contains the signature algorithm used. See The SunJSSE Provider in
JDK Providers Documentation for supported algorithms.

• signature: This field contains the digital signature using the algorithm.

Finished

This message contains a Message Authentication Code (MAC) over the entire handshake.
Once the client and server have verified the Finished messages that they have received from
their peers, both sides may send and receive application data over the connection.

Session Resumption with a Pre-Shared Key
A pre-shared key (PSK) is a shared secret that was previously shared between the two parties
using some secure channel before it needs to be used. You can establish a PSK during one
TLS handshake and then use it to establish a new connection in another handshake; this is
called session resumption with a PSK. The PSK corresponds to a unique key derived from the
initial handshake. If the server accepts the PSK when establishing a new connection, then the
security context of this connection is cryptographically tied to the original connection, and the
key derived from the initial handshake is used to bootstrap the cryptographic state instead of
the full TLS handshake.

The following figures show two handshakes, the first establishes a PSK and the second uses
it.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-152

https://tools.ietf.org/html/rfc6962

Figure 8-8 TLS 1.3 Handshake That Establishes a PSK

Application Data Application Data

ClientHello
key_share

Certificate
CertificateVerify
Finished

ServerHello
key_share

EncryptedExtensions
CertificateRequest

Certificate
CertificateVerify

Finished

NewSessionTicket

ServerClient

Key
Exchange

Authentication

Key
Exchange

Server
Parameters

Authentication

Figure 8-9 TLS 1.3 Handshake That Uses a PSK

Application Data Application Data

Application Data

ClientHello
key_share
pre_shared_key

Finished

ServerHello
pre_shared_key

key_share

EncryptedExtensions

Finished

ServerClient

Key
Exchange

Key
Exchange

Server
Parameters

1. The client sends a ClientHello message with a key_share extension to the server. This
extension lists which key exchange cryptographic methods that the client supports.

2. The server responds with a ServerHello message with a key_share extension. This
extension contains the cryptographic method it wants to use for the key exchange.

3. The server sends its server parameters to the client.

4. Both the server and client exchange authentication messages.

5. The server sends a NewSessionTicket message to the client, which contains a PSK that
the client then may use for future handshakes by including it in the pre_shared_key
extension in its ClientHello message.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-153

6. The client and server can now exchange encrypted application data.

7. In a future handshake, the client sends to the server a ClientHello message with the
key_share and pre_shared_key extensions. The pre_shared_key extension contains a
PSK sent in a NewSessionTicket message.

8. The server responds with a ServerHello message with the pre_shared_key and key_share
extensions. The pre_shared_key extension contains the PSK the server as agreed to use.

9. The server sends its parameters to the client.

10. The server and the client send each other Finished messages. They don’t perform the
authentication phase as the security context of this connection is cryptographically tied to
the original connection.

11. The client and server can now exchange encrypted application data.

Note:

The following are not supported in JDK 11:

• Resumption using PSK only: You must use PSKs with (EC)DHE key exchange,
which provides forward secrecy in combination with shared keys. Resumption
using PSK only is less secure with regards to forward and backward secrecy.

• Zero Round Trip Time Resumption (0–RTT): This enables the client and server to
send application data in the first messages (ClientHello and ServerHello) to each
other. The client uses a PSK to encrypt the application data it initially sends with
the ClientHello and to authenticate the server. This has the security issues of
resumption using PSK only and some potential for replay attacks.

• Stateless server PSKs: RFC5077: Transport Layer Security (TLS) Session
Resumption without Server-Site State describes a mechanism that enables the
server to resume sessions and avoid keeping per-client session state. This
mechanism would reduce server memory usage at the expense of forward
secrecy for resumption using PSK only.

• Out-of-band PSK establishment: This means the production of PSKs other than
through NewSessionTicket messages.

Post-Handshake Messages
The client and server can send other messages after the handshake: new session ticket
message, post-handshake authentication, and key update.

New Session Ticket Message

The NewSessionTicket message, sent by the server after it receives the Finished message,
contains a pre-shared key that the client then may use for future handshakes. See Session
Resumption with a Pre-Shared Key.

Post-Handshake Authentication
If client sent the post_handshake_auth extension, the server may request client authentication
at any time after the handshake by sending a CertificateRequest message. If the client
authenticates, then it must send Certificate, CertificateVerify, and Finished messages. If the

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-154

https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077

client declines, then it must send a Certificate message that contains no certificates and the
Finished message.

KeyUpdate Message
The KeyUpdate handshake message is used to indicate that the sender is updating its sending
cryptographic keys. It replaces the ChangeCipherSpec message in TLS 1.2.

You can specify a limit on the amount of data an algorithm may encrypt with a specific set of
keys with the jdk.tls.keyLimits Security Property. See Limiting Amount of Data Algorithms
May Encrypt with a Set of Keys.

Compatibility Risks and Known Issues
Enhancements to JSSE may introduce compatibility problems and other known issues, which
are described in this section.

TLS 1.3 Not Directly Compatible with Previous Versions

TLS 1.3 is not directly compatible with previous versions. Although TLS 1.3 can be
implemented with a backward-compatibility mode, there are still several compatibility risks to
consider when upgrading to TLS 1.3:

• TLS 1.3 uses a half-close policy, while TLS 1.2 and earlier use a duplex-close policy. For
applications that depend on the duplex-close policy, there may be compatibility issues
when upgrading to TLS 1.3.

• The signature_algorithms_cert extension requires that pre-defined signature algorithms are
used for certificate authentication. In practice, however, an application may use
unsupported signature algorithms.

• The DSA signature algorithm is not supported in TLS 1.3. If a server is configured to only
use DSA certificates, it cannot negotiate a TLS 1.3 connection.

• The supported cipher suites for TLS 1.3 are not the same as TLS 1.2 and earlier. If an
application hardcodes cipher suites that are no longer supported, it may not be able to use
TLS 1.3 without modifications to its code, for example TLS_AES_128_GCM_SHA256 (1.3
and later) versus TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (1.2 and earlier).

• The TLS 1.3 session resumption and key update behaviors are different from TLS 1.2 and
earlier. The compatibility impact should be minimal, but it could be a risk if an application
depends on the handshake details of the TLS protocols.

The TLS 1.2 Handshake

Communication using SSL begins with an exchange of information between the client and the
server. This exchange of information is called the SSL handshake. The SSL handshake
includes the following stages:

1. Negotiating the cipher suite
The SSL session begins with a negotiation between the client and the server as to which
cipher suite they will use. A cipher suite is a set of cryptographic algorithms and key sizes
that a computer can use to encrypt data. The cipher suite includes information about the
public key exchange algorithms or key agreement algorithms, and cryptographic hash
functions. The client tells the server which cipher suites it has available, and the server
chooses the best mutually acceptable cipher suite.

2. Authenticating the server's identity (optional)

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-155

In SSL, the authentication step is optional, but in the example of an e-commerce
transaction over the web, the client will generally want to authenticate the server.
Authenticating the server allows the client to be sure that the server represents the entity
that the client believes the server represents.

To prove that a server belongs to the organization that it claims to represent, the server
presents its public key certificate to the client. If this certificate is valid, then the client can
be sure of the identity of the server.

The client and server exchange information that allows them to agree on the same secret
key. For example, with RSA, the client uses the server's public key, obtained from the
public key certificate, to encrypt the secret key information. The client sends the encrypted
secret key information to the server. Only the server can decrypt this message because the
server's private key is required for this decryption.

3. Agreeing on encryption mechanisms
Both the client and the server now have access to the same secret key. With each
message, they use the cryptographic hash function, chosen in the first step of the
handshake, and shared secret information, to compute an HMAC that they append to the
message. They then use the secret key and the secret key algorithm negotiated in the first
step of the handshake to encrypt the secure data and the HMAC. The client and server
can now communicate securely using their encrypted and hashed data.

The TLS 1.2 Protocol

The TLS 1.2 Handshake provides a high-level description of the SSL handshake, which is the
exchange of information between the client and the server prior to sending the encrypted
message. Figure 8-10 provides more detail. It shows the sequence of messages that are
exchanged in the SSL handshake. Messages that are sent only in certain situations are noted
as optional. Each of the SSL messages is described in detail afterward.

Figure 8-10 The SSL/TLS Handshake

SSL
Server

ClientHello

Certificate (Optional)
ClientKeyExchange
CertificateVerify (Optional)
ChangeCipherSpec
Finished

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

ChangeCipherSpec

Finished

Encrypted Data

SSL
Client

Close Messages

The SSL messages are sent in the following order:

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-156

1. Client hello: The client sends the server information including the highest version of SSL
that it supports and a list of the cipher suites that it supports (TLS 1.0 is indicated as SSL
3.1). The cipher suite information includes cryptographic algorithms and key sizes.

2. Server hello: The server chooses the highest version of SSL and the best cipher suite that
both the client and server support and sends this information to the client.

3. (Optional) Certificate: The server sends the client a certificate or a certificate chain. A
certificate chain typically begins with the server's public key certificate and ends with the
certificate authority's root certificate. This message is optional, but is used whenever
server authentication is required.

4. (Optional) Certificate request: If the server must authenticate the client, then it sends the
client a certificate request. In Internet applications, this message is rarely sent.

5. (Optional) Server key exchange: The server sends the client a server key exchange
message if the public key information from the Certificate is not sufficient for key exchange.
For example, in cipher suites based on Diffie-Hellman (DH), this message contains the
server's DH public key.

6. Server hello done: The server tells the client that it is finished with its initial negotiation
messages.

7. (Optional) Certificate: If the server Certificate request from the client, the client sends its
certificate chain, just as the server did previously.

Note:

Only a few Internet server applications ask for a certificate from the client.

8. Client key exchange: The client generates information used to create a key to use for
symmetric encryption. For RSA, the client then encrypts this key information with the
server's public key and sends it to the server. For cipher suites based on DH, this message
contains the client's DH public key.

9. (Optional) Certificate verify: This message is sent by the client when the client presents a
certificate as previously explained. Its purpose is to allow the server to complete the
process of authenticating the client. When this message is used, the client sends
information that it digitally signs using a cryptographic hash function. When the server
decrypts this information with the client's public key, the server is able to authenticate the
client.

10. Change cipher spec: The client sends a message telling the server to change to
encrypted mode.

11. Finished The client tells the server that it is ready for secure data communication to begin.

12. Change cipher spec: The server sends a message telling the client to change to
encrypted mode.

13. Finished: The server tells the client that it is ready for secure data communication to
begin. This is the end of the SSL handshake.

14. Encrypted data: The client and the server communicate using the symmetric encryption
algorithm and the cryptographic hash function negotiated during the client hello and server
hello, and using the secret key that the client sent to the server during the client key
exchange. The handshake can be renegotiated at this time. See Handshaking Again
(Renegotiation).

15. Close Messages:At the end of the connection, each side sends a close_notify alert to
inform the peer that the connection is closed.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-157

If the parameters generated during an SSL session are saved, then these parameters can
sometimes be reused for future SSL sessions. Saving SSL session parameters allows
encrypted communication to begin much more quickly.

Handshaking Again (Renegotiation)
Once the initial handshake is finished and application data is flowing, either side is free to
initiate a new handshake at any time. An application might like to use a stronger cipher suite
for especially critical operations, or a server application might want to require client
authentication.

Regardless of the reason, the new handshake takes place over the existing encrypted session,
and application data and handshake messages are interleaved until a new session is
established.

Your application can initiate a new handshake by using one of the following methods:

• SSLSocket.startHandshake()
• SSLEngine.beginHandshake()

Cipher Suite Choice and Remote Entity Verification

The SSL/TLS protocols define a specific series of steps to ensure a protected connection.
However, the choice of cipher suite directly affects the type of security that the connection
enjoys. For example, if an anonymous cipher suite is selected, then the application has no way
to verify the remote peer's identity. If a suite with no encryption is selected, then the privacy of
the data cannot be protected. Additionally, the SSL/TLS protocols do not specify that the
credentials received must match those that peer might be expected to send. If the connection
were somehow redirected to a rogue peer, but the rogue's credentials were acceptable based
on the current trust material, then the connection would be considered valid.

When using raw SSLSocket and SSLEngine classes, you should always check the peer's
credentials before sending any data. The SSLSocket and SSLEngine classes do not
automatically verify that the host name in a URL matches the host name in the peer's
credentials. An application could be exploited with URL spoofing if the host name is not
verified. Since JDK 7, endpoint identification/verification procedures can be handled during
SSL/TLS handshaking. See the
SSLParameters.getEndpointIdentificationAlgorithm method.

Protocols such as HTTPS (HTTP Over TLS) do require host name verification. Since JDK 7,
the HTTPS endpoint identification is enforced during handshaking for HttpsURLConnection
by default. See the SSLParameters.getEndpointIdentificationAlgorithm method.
Alternatively, applications can use the HostnameVerifier interface to override the default
HTTPS host name rules. See HostnameVerifier Interface and HttpsURLConnection Class.

Datagram Transport Layer Security (DTLS) Protocol
Datagram Transport Layer Security (DTLS) protocol is designed to construct “TLS over
datagram” traffic that doesn't require or provide reliable or in-order delivery of data. Java
Secure Socket Extension (JSSE) API and the SunJSSE security provider support the DTLS
protocol.

Because the TLS requires a transparent reliable transport channel such as TCP it can’t be
used to secure unreliable datagram traffic. DTLS is a datagram-compatible variant of TLS.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-158

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm()
http://www.ietf.org/rfc/rfc2818.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLParameters.html#getEndpointIdentificationAlgorithm()

The JSSE API now supports DTLS Version 1.0 and DTLS Version 1.2 along with Secure
Socket Layer (SSL) and Transport Layer Security (TLS) protocols.

The javax.net.ssl.SSLEngine programming model is used by the JSSE API for DTLS.

The DTLS Handshake
Before application data can be sent or received, the DTLS protocol requires a handshake to
establish cryptographic parameters. This handshake requires a series of back-and-forth
messages between the client and server by the SSLEngine object.

DTLS handshake requires all messages be received properly. Thus, in unreliable datagram
traffic, missing or delayed packets must be retransmitted. Since javax.net.ssl.SSLEngine is
not responsible for I/O operations, it is up to the application to provide timers and signal the
SSLEngine when a retransmission is needed. It is important that you implement a timer and
retransmission strategy for your application. See Handling Retransmissions in DTLS
Connections.

The DTLS handshake includes the following stages:

1. Negotiating the cipher suite
The DTLS session begins with a negotiation between the client and the server as to which
cipher suite they will use. A cipher suite is a set of cryptographic algorithms and key sizes
that a computer can use to encrypt data. The cipher suite includes information about the
public key exchange algorithms or key agreement algorithms, and cryptographic hash
functions. The client tells the server which cipher suites it has available, and the server
chooses the best mutually acceptable cipher suite.

A cookie is exchanged between the client and server along with the cipher suite in order to
prevent denial of service attacks (DoS).

2. Authenticating the server's identity (optional)
The authentication step is optional, but in the example of an e-commerce transaction over
the web, the client chooses to authenticate the server. Authenticating the server allows the
client to be sure that the server represents the entity that the client believes the server
represents.

To prove that a server belongs to the organization that it claims to represent, the server
presents its public key certificate to the client. If this certificate is valid, then the client can
be sure of the identity of the server.

The client and server exchange information that allows them to agree on the same secret
key. For example, with RSA, the client uses the server's public key, obtained from the
public key certificate, to encrypt the secret key information. The client sends the encrypted
secret key information to the server. Only the server can decrypt this message because the
server's private key is required for this decryption.

3. Agreeing on encryption mechanisms
Both the client and the server now have access to the same secret key. With each
message, they use the cryptographic hash function, chosen in the first step of the
handshake, and shared secret information, to compute an HMAC that they append to the
message. They then use the secret key and the secret key algorithm negotiated in the first
step of the handshake to encrypt the secure data and the HMAC. The client and server
can now communicate securely using their encrypted and hashed data.

The DTLS Handshake Message Exchange

In a DTLS handshake, series of back-and-forth messages are exchanged between the client
and server by the SSLEngine object.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-159

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc6347
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html

Figure 8-11 shows the sequence of messages that are exchanged in the DTLS handshake.
Messages that are sent only in certain situations are noted as optional. Each message is
described following the figure.

To know more about DTLS handshake messages, see DTLS Version 1.0 and DTLS Version
1.2.

Figure 8-11 DTLS Handshake

DTLS
Server

ClientHello

ClientHello
(with cookie)

HelloVerifyRequest

(contains cookie)

ServerHello

Certificate (Optional)

ServerKeyExchange (Optional)

CertificateRequest (Optional)

ServerHelloDone

Certificate (Optional)

ClientKeyExchange

CertificateVerify (Optional)

ChangeCipherSpec

Finished

DTLS
Client

ChangeCipherSpec

Finished

The following handshake messages are exchanged between the client and server during DTLS
handshake:

1. ClientHello:
The client sends the server information including the highest version of DTLS that it
supports and a list of the cipher suites that it supports. The cipher suite information
includes cryptographic algorithms and key sizes.

2. HelloVerifyRequest:
The server responds to the ClientHello message from the client with a cookie.

3. ClientHello:
The client sends a second ClientHello message to the server with highest version of DTLS
that it supports and a list of the cipher suites that it supports. The cookie received in the
HelloVerifyRequest is sent back to the server.

4. ServerHello:
The server chooses the highest version of DTLS and the best cipher suite that both the
client and server support and sends this information to the client.

5. (Optional) Certificate:
The server sends the client a certificate or a certificate chain. A certificate chain typically
begins with the server's public key certificate and ends with the certificate authority's root
certificate. This message is optional, but is used whenever server authentication is
required

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-160

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347

6. (Optional) CertificateRequest:
If the server must authenticate the client, then it sends the client a certificate request. In
Internet applications, this message is rarely sent.

7. (Optional) ServerKeyExchange:
The server sends the client a server key exchange message if the public key information
from the Certificate is not sufficient for key exchange. For example, in cipher suites based
on Diffie-Hellman (DH), this message contains the server's DH public key.

8. ServerHelloDone:
The server tells the client that it is finished with its initial negotiation messages.

9. (Optional) Certificate:
If the server Certificate request from the client, the client sends its certificate chain, just as
the server did previously.

Note:

Only a few Internet server applications ask for a certificate from the client.

10. ClientKeyExchange:
The client generates information used to create a key to use for symmetric encryption. For
RSA, the client then encrypts this key information with the server's public key and sends it
to the server. For cipher suites based on DH, this message contains the client's DH public
key.

11. (Optional) CertificateVerify:
This message is sent by the client when the client presents a certificate as previously
explained. Its purpose is to allow the server to complete the process of authenticating the
client. When this message is used, the client sends information that it digitally signs using
a cryptographic hash function. When the server decrypts this information with the client's
public key, the server is able to authenticate the client.

12. ChangeCipherSpec:
The client sends a message telling the server that subsequent data will be protected under
the newly negotiated CipherSpec and keys and the data is encrypted

13. Finished:
The client tells the server that it is ready for secure data communication to begin.

14. ChangeCipherSpec:
The server sends a message telling the client that subsequent data will be protected under
the newly negotiated CipherSpec and keys and the data is encrypted.

15. Finished:
The server tells the client that it is ready for secure data communication to begin. This is
the end of the DTLS handshake.

Handshaking Again (Renegotiation)

Once the initial handshake is finished and application data is flowing, either side is free to
initiate a new handshake at any time. An application might like to use a stronger cipher suite
for especially critical operations, or a server application might want to require client
authentication.

Regardless of the reason, the new handshake takes place over the existing encrypted session,
and application data and handshake messages are interleaved until a new session is
established.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-161

Your application can initiate a new handshake by using the SSLEngine.beginHandshake()
method.

Chapter 8
Transport Layer Security (TLS) Protocol Overview

8-162

9
Java PKI Programmer's Guide

The Java Certification Path API consists of classes and interfaces for handling certification
paths, which are also called certification chains. If a certification path meets certain validation
rules, it may be used to securely establish the mapping of a public key to a subject.

Topics

PKI Programmer's Guide Overview

Core Classes and Interfaces

Implementing a Service Provider

Appendix A: Standard Names

Appendix B: CertPath Implementation in SUN Provider

Appendix C: OCSP Support

Appendix D: CertPath Implementation in JdkLDAP Provider

Appendix E: Disabling Cryptographic Algorithms

PKI Programmer's Guide Overview
The Java Certification Path API defines interfaces and abstract classes for creating, building,
and validating certification paths. Implementations may be plugged in using a provider-based
interface.

This API is based on the Cryptographic Service Providers architecture, described in the Java
Cryptography Architecture Reference Guide, and includes algorithm-specific classes for
building and validating X.509 certification paths according to the PKIX standards. The PKIX
standards were developed by the IETF PKIX working group.

This API was originally specified using the Java Community Process program as Java
Specification Request (JSR) 000055. The API was included in the Java SDK, starting with
Java SE Development Kit (JDK) 1.4. See JSR 55: Certification Path API.

Who Should Read This Document

This document is intended for two types of experienced developers:

1. Those who want to design secure applications that build or validate certification paths.

2. Those who want to write a service provider implementation for building or validating
certification paths.

This document assumes that you have already read Cryptographic Service Providers.

9-1

http://datatracker.ietf.org/wg/pkix/charter/
http://jcp.org/en/home/index
http://jcp.org/en/jsr/detail?id=55

Introduction to Public Key Certificates
Users of public key applications and systems must be confident that a subject's public key is
genuine, i.e., that the associated private key is owned by the subject. Public key certificates
are used to establish this trust.

A public key (or identity) certificate is a binding of a public key to an identity, which is
digitally signed by the private key of another entity, often called a Certification Authority (CA).
For the remainder of this section, the term CA is used to refer to an entity that signs a
certificate.

If the user does not have a trusted copy of the public key of the CA that signed the subject's
public key certificate, then another public key certificate vouching for the signing CA is
required. This logic can be applied recursively, until a chain of certificates (or a certification
path) is discovered from a trust anchor or a most-trusted CA to the target subject
(commonly referred to as the end-entity). The most-trusted CA is usually specified by a
certificate issued to a CA that the user directly trusts. In general, a certification path is an
ordered list of certificates, usually comprised of the end-entity's public key certificate and zero
or more additional certificates. A certification path typically has one or more encodings,
allowing it to be safely transmitted across networks and to different operating system
architectures.

The following figure illustrates a certification path from a most-trusted CA's public key (CA 1) to
the target subject (Alice). The certification path establishes trust in Alice's public key through
an intermediate CA named CA2.

Figure 9-1 Certification Path from CA's Public Key (CA 1) to the Target Subject

CA1’s Public Key

Default #1
Issuer = CA1

Subject = CA2

CA2’s Public Key

Default #1
Issuer = CA2

Subject = Alice

Alice’s Public Key

A certification path must be validated before it can be relied on to establish trust in a subject's
public key. Validation can consist of various checks on the certificates contained in the
certification path, such as verifying the signatures and checking that each certificate has not
been revoked. The PKIX standards define an algorithm for validating certification paths
consisting of X.509 certificates.

Often a user may not have a certification path from a most-trusted CA to the subject. Providing
services to build or discover certification paths is an important feature of public key enabled
systems. RFC 2587 defines an LDAP (Lightweight Directory Access Protocol) schema
definition that facilitates the discovery of X.509 certification paths using the LDAP directory
service protocol.

Building and validating certification paths is an important part of many standard security
protocols such as SSL/TLS/DTLS, S/MIME, and IPsec. The Java Certification Path API
provides a set of classes and interfaces for developers who need to integrate this functionality
into their applications. This API benefits two types of developers: those who need to write
service provider implementations for a specific certification path building or validation
algorithm; and those who need to access standard algorithms for creating, building, and
validating certification paths in an implementation-independent manner.

Chapter 9
PKI Programmer's Guide Overview

9-2

http://www.ietf.org/rfc/rfc2587.txt

X.509 Certificates and Certificate Revocation Lists (CRLs)
A public-key certificate is a digitally signed statement from one entity saying that the public key
and some other information of another entity has some specific value.

The following table defines some of the key terms:

Public Keys
These are numbers associated with a particular entity, and are intended to be known to
everyone who needs to have trusted interactions with that entity. Public keys are used to verify
signatures.

Digitally Signed
If some data is digitally signed, it has been stored with the "identity" of an entity, and a
signature that proves that entity knows about the data. The data is rendered unforgeable by
signing with the entity's private key.

Identity
A known way of addressing an entity. In some systems the identity is the public key, in others
it can be anything from a UNIX UID to an Email address to an X.509 Distinguished Name.

Signature
A signature is computed over some data using the private key of an entity (the signer).

Private Keys
These are numbers, each of which is supposed to be known only to the particular entity whose
private key it is (that is, it's supposed to be kept secret). Private and public keys exist in pairs
in all public key cryptography systems (also referred to as "public key crypto systems"). In a
typical public key crypto system, such as DSA, a private key corresponds to exactly one public
key. Private keys are used to compute signatures.

Entity
An entity is a person, organization, program, computer, business, bank, or something else you
are trusting to some degree.

Basically, public key cryptography requires access to users' public keys. In a large-scale
networked environment it is impossible to guarantee that prior relationships between
communicating entities have been established or that a trusted repository exists with all used
public keys. Certificates were invented as a solution to this public key distribution problem.
Now a Certification Authority (CA) can act as a Trusted Third Party. CAs are entities (for
example, businesses) that are trusted to sign (issue) certificates for other entities. It is
assumed that CAs will only create valid and reliable certificates as they are bound by legal
agreements. There are many public Certification Authorities, such as Comodo, DigiCert, and
GoDaddy.

What Applications use Certificates?

Probably the most widely visible application of X.509 certificates today is in web browsers
(such as Mozilla Firefox and Microsoft Internet Explorer) that support the TLS protocol. TLS
(Transport Layer Security) is a security protocol that provides privacy and authentication for
your network traffic. These browsers can only use this protocol with web servers that support
TLS.

Other technologies that rely on X.509 certificates include:

• Various code-signing schemes, such as signed Java ARchives, and Microsoft
Authenticode.

Chapter 9
PKI Programmer's Guide Overview

9-3

• Various secure E-Mail standards, such as PEM and S/MIME.

How do I Get a Certificate?

There are two basic techniques used to get certificates:

• You can create one yourself (using the right tools, such as keytool).

• You can ask a Certification Authority to issue you one (either directly or using a tool such
as keytool to generate the request).

The main inputs to the certificate creation process are:

• Matched public and private keys, generated using some special tools (such as keytool), or
a browser. Only the public key is ever shown to anyone else. The private key is used to
sign data; if someone knows your private key, they can masquerade as you ... perhaps
forging legal documents attributed to you!

• You need to provide information about the entity being certified (for example, you). This
normally includes information such as your name and organizational address. If you ask a
CA to issue a certificate for you, you will normally need to provide proof to show
correctness of the information.

If you are asking a CA to issue you a certificate, you provide your public key and some
information about you. You'll use a tool (such as keytool or a browser that supports Certificate
Signing Request generation). to digitally sign this information, and send it to the CA. The CA
will then generate the certificate and return it.

If you're generating the certificate yourself, you'll take that same information, add a little more
(dates during which the certificate is valid, a serial number), and just create the certificate using
some tool (such as keytool). Not everyone will accept self-signed certificates; one part of the
value provided by a CA is to serve as a neutral and trusted introduction service, based in part
on their verification requirements, which are openly published in their Certification Service
Practices (CSP).

What's Inside an X.509 Certificate?

The X.509 standard defines what information can go into a certificate, and describes how to
write it down (the data format). All X.509 certificates have the following data, in addition to the
signature:

Version
This identifies which version of the X.509 standard applies to this certificate, which affects
what information can be specified in it. Thus far, three versions are defined.

Serial Number
The entity that created the certificate is responsible for assigning it a serial number to
distinguish it from other certificates it issues. This information is used in numerous ways, for
example when a certificate is revoked its serial number is placed in a Certificate Revocation
List (CRL).

Signature Algorithm Identifier
This identifies the algorithm used by the CA to sign the certificate.

Issuer Name
The X.500 name of the entity that signed the certificate. This is normally a CA. Using this
certificate implies trusting the entity that signed this certificate. (Note that in some cases, such
as root or top-level CA certificates, the issuer signs its own certificate.)

Chapter 9
PKI Programmer's Guide Overview

9-4

Validity Period
Each certificate is valid only for a limited amount of time. This period is described by a start
date and time and an end date and time, and can be as short as a few seconds or almost as
long as a century. The validity period chosen depends on a number of factors, such as the
strength of the private key used to sign the certificate or the amount one is willing to pay for a
certificate. This is the expected period that entities can rely on the public value, if the
associated private key has not been compromised.

Subject Name
The name of the entity whose public key the certificate identifies. This name uses the X.500
standard, so it is intended to be unique across the Internet. This is the Distinguished Name
(DN) of the entity, for example,

CN=Java Duke, OU=Java Software Division, O=Sun Microsystems Inc, C=US

(These refer to the subject's Common Name, Organizational Unit, Organization, and Country.)

Subject Public Key Information
This is the public key of the entity being named, together with an algorithm identifier which
specifies which public key crypto system this key belongs to and any associated key
parameters.

X.509 Version 1 has been available since 1988, is widely deployed, and is the most generic.

X.509 Version 2 introduced the concept of subject and issuer unique identifiers to handle the
possibility of reuse of subject and/or issuer names over time. Most certificate profile documents
strongly recommend that names not be reused, and that certificates should not make use of
unique identifiers. Version 2 certificates are not widely used.

X.509 Version 3 is the most recent (1996) and supports the notion of extensions, whereby
anyone can define an extension and include it in the certificate. Some common extensions in
use today are: KeyUsage (limits the use of the keys to particular purposes such as "signing-
only") and AlternativeNames (allows other identities to also be associated with this public key,
for example, DNS names, Email addresses, IP addresses). Extensions can be marked critical
to indicate that the extension should be checked and enforced/used. For example, if a
certificate has the KeyUsage extension marked critical and set to "keyCertSign" then if this
certificate is presented during SSL communication, it should be rejected, as the certificate
extension indicates that the associated private key should only be used for signing certificates
and not for SSL use.

All the data in a certificate is encoded using two related standards called ASN.1/DER. Abstract
Syntax Notation 1 describes data. The Distinguished Encoding Rules describe a single way to
store and transfer that data.

What Java API Can Be Used to Access and Manage Certificates?

The Certificate API, found in the java.security.cert package, includes the following:

• CertificateFactory class defines the functionality of a certificate factory, which is used to
generate certificate, certificate revocation list (CRL), and certification path objects from
their encoding.

• Certificate class is an abstract class for managing a variety of certificates. It is an
abstraction for certificates that have different formats but important common uses. For
example, different types of certificates, such as X.509 and PGP, share general certificate
functionality (like encoding and verifying) and some types of information like public key.

Chapter 9
PKI Programmer's Guide Overview

9-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/package-summary.html

• CRL class is an abstract class for managing a variety of Certificate Revocation Lists
(CRLs).

• X509Certificate class is an abstract class for X.509 Certificates. It provides a standard
way to access all the attributes of an X.509 certificate.

• X509Extension interface is an interface for an X.509 extension. The extensions defined
for X.509 v3 certificates and v2 CRLs (Certificate Revocation Lists) provide mechanisms
for associating additional attributes with users or public keys, such as for managing the
certification hierarchy, and for managing CRL distribution.

• X509CRL class is an abstract class for an X.509 Certificate Revocation List (CRL). A CRL
is a time-stamped list identifying revoked certificates. It is signed by a Certification
Authority (CA) and made freely available in a public repository.

• X509CRLEntry class is an abstract class for a CRL entry.

What Java Tool Can Generate, Display, Import, and Export X.509 Certificates?

There is a tool named keytool that can be used to create public/private key pairs and X.509 v3
certificates, and to manage keystores. Keys and certificates are used to digitally sign your Java
applications and applets (see jarsigner).

A keystore is a protected database that holds keys and certificates. Access to a keystore is
guarded by a password (defined at the time the keystore is created, by the person who creates
the keystore, and changeable only when providing the current password). In addition, each
private key in a keystore can be guarded by its own password.

Using keytool, it is possible to display, import, and export X.509 v1, v2, and v3 certificates
stored as files, and to generate new v3 certificates. For examples, see keytool in the Java
Development Kit Tool Specifications.

Core Classes and Interfaces
The core classes of the Java Certification Path API consist of interfaces and classes that
support certification path functionality in an algorithm and implementation-independent manner.

The API builds on and extends the existing java.security.cert package for handling
certificates. The core classes can be broken up into 4 class categories: Basic, Validation,
Building, and Storage:

• Basic Certification Path Classes

– CertPath, CertificateFactory, and CertPathParameters
• Certification Path Validation Classes

– CertPathValidator, CertPathValidatorResult, and CertPathChecker
• Certification Path Building Classes

– CertPathBuilder, and CertPathBuilderResult
• Certificate/CRL Storage Classes

– CertStore, CertStoreParameters, CertSelector, and CRLSelector
The Java Certification Path API also includes a set of algorithm-specific classes modeled for
use with the PKIX certification path validation algorithm defined in RFC 5280: Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The PKIX Classes are:

• TrustAnchor

Chapter 9
Core Classes and Interfaces

9-6

http://www.ietf.org/rfc/rfc5280.txt

• PKIXParameters
• PKIXCertPathValidatorResult
• PKIXBuilderParameters
• PKIXCertPathBuilderResult
• PKIXCertPathChecker
• PKIXRevocationChecker
The complete reference documentation for the relevant Certification Path API classes can be
found in java.security.cert .

Most of the classes and interfaces in the CertPath API are not thread-safe. However, there
are some exceptions, which will be noted in this guide and in the API specification. Multiple
threads that need to access a single non-thread-safe object concurrently should synchronize
amongst themselves and provide the necessary locking. Multiple threads each manipulating
separate objects need not synchronize.

Topics

Basic Certification Path Classes

Certification Path Validation Classes

Certification Path Building Classes

Certificate/CRL Storage Classes

PKIX Classes

Basic Certification Path Classes
The basic certification path classes provide fundamental functionality for encoding and
representing certification paths. The key basic class in the Java Certification Path API is
CertPath, which encapsulates the universal aspects shared by all types of certification paths.
An application uses an instance of the CertificateFactory class to create a CertPath object.

Topics

The CertPath Class

The CertificateFactory Class

The CertPathParameters Interface

The CertPath Class
The CertPath class is an abstract class for certification paths. It defines the functionality
shared by all certification path objects. Various certification path types can be implemented by
subclassing the CertPath class, even though they may have different contents and ordering
schemes.

All CertPath objects are serializable, immutable and thread-safe and share the following
characteristics:

• A type

Chapter 9
Core Classes and Interfaces

9-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/package-summary.html

This corresponds to the type of the certificates in the certification path, for example: X.509.
The type of a CertPath is obtained using the method:

 public String getType()

For standard certificate types, see CertificateFactory Types.

• A list of certificates

The getCertificates method returns the list of certificates in the certification path:

 public abstract List<? extends Certificate> getCertificates()

This method returns a List of zero or more java.security.cert.Certificate objects.
The returned List and the Certificates contained within it are immutable, in order to
protect the contents of the CertPath object. The ordering of the certificates returned
depends on the type. By convention, the certificates in a CertPath object of type X.509 are
ordered starting with the target certificate and ending with a certificate issued by the trust
anchor. That is, the issuer of one certificate is the subject of the following one. The
certificate representing the TrustAnchor should not be included in the certification path.
Unvalidated X.509 CertPaths may not follow this convention. PKIX CertPathValidators will
detect any departure from these conventions that cause the certification path to be invalid
and throw a CertPathValidatorException.

• One or more encodings

Each CertPath object supports one or more encodings. These are external encoded forms
for the certification path, used when a standard representation of the path is needed
outside the Java Virtual Machine (as when transmitting the path over a network to some
other party). Each path can be encoded in a default format, the bytes of which are returned
using the method:

 public abstract byte[] getEncoded()

Alternatively, the getEncoded(String) method returns a specific supported encoding by
specifying the encoding format as a String (ex: "PKCS7"). For standard encoding formats,
see CertPath Encodings.

 public abstract byte[] getEncoded(String encoding)

Also, the getEncodings method returns an iterator over the supported encoding format
Strings (the default encoding format is returned first):

 public abstract Iterator<String> getEncodings()

All CertPath objects are also Serializable. CertPath objects are resolved into an alternate
CertPath.CertPathRep object during serialization. This allows a CertPath object to be serialized
into an equivalent representation regardless of its underlying implementation.

Chapter 9
Core Classes and Interfaces

9-8

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#certificatefactory-types
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html#certpath-encodings
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPath.CertPathRep.html

CertPath objects are generated from an encoded byte array or list of Certificates using a
CertificateFactory. Alternatively, a CertPathBuilder may be used to try to find a CertPath from a
most-trusted CA to a particular subject. Once a CertPath object has been created, it may be
validated by passing it to the validate method of CertPathValidator. Each of these concepts
are explained in more detail in subsequent sections.

The CertificateFactory Class
The CertificateFactory class is an engine class that defines the functionality of a certificate
factory. It is used to generate Certificate, CRL, and CertPath objects.

A CertificateFactory should not be confused with a CertPathBuilder. A CertPathBuilder
(discussed later) is used to discover or find a certification path when one does not exist. In
contrast, a CertificateFactory is used when a certification path has already been discovered
and the caller needs to instantiate a CertPath object from its contents, which exist in a different
form such as an encoded byte array or an array of Certificates.

Creating a CertificateFactory Object

See the CertificateFactory section in the Java Cryptography Architecture Reference Guide for
the details of creating a CertificateFactory object.

Generating CertPath Objects

A CertificateFactory instance generates CertPath objects from a List of Certificate
objects or from an InputStream that contains the encoded form of a CertPath. Just like a
CertPath, each CertificateFactory supports a default encoding format for certification paths
(ex: PKCS#7). To generate a CertPath object and initialize it with the data read from an input
stream (in the default encoding format), use the generateCertPath method:

public final CertPath generateCertPath(InputStream inStream)

or from a particular encoding format:

 public final CertPath generateCertPath(InputStream inStream,
 String encoding)

To find out what encoding formats are supported, use the getCertPathEncodings method (the
default encoding is returned first):

public final Iterator<String> getCertPathEncodings()

To generate a certification path object from a List of Certificate objects, use the following
method:

public final CertPath generateCertPath(List<? extends Certificate>
certificates)

A CertificateFactory always returns CertPath objects that consist of Certificates that are
of the same type as the factory. For example, a CertificateFactory of type X.509 returns
CertPath objects consisting of certificates that are an instance of
java.security.cert.X509Certificate.

Chapter 9
Core Classes and Interfaces

9-9

The following code sample illustrates generating a certification path from a PKCS#7 encoded
certificate reply stored in a file:

 // open an input stream to the file
 FileInputStream fis = new FileInputStream(filename);
 // instantiate a CertificateFactory for X.509
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 // extract the certification path from
 // the PKCS7 SignedData structure
 CertPath cp = cf.generateCertPath(fis, "PKCS7");
 // print each certificate in the path
 List<Certificate> certs = cp.getCertificates();
 for (Certificate cert : certs) {
 System.out.println(cert);
 }

Here's another code sample that fetches a certificate chain from a KeyStore and converts it to
a CertPath using a CertificateFactory:

 // instantiate a KeyStore with type JKS
 KeyStore ks = KeyStore.getInstance("JKS");
 // load the contents of the KeyStore
 ks.load(new FileInputStream("./keystore"),
 "password".toCharArray());
 // fetch certificate chain stored with alias "sean"
 Certificate[] certArray = ks.getCertificateChain("sean");
 // convert chain to a List
 List certList = Arrays.asList(certArray);
 // instantiate a CertificateFactory for X.509
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 // extract the certification path from
 // the List of Certificates
 CertPath cp = cf.generateCertPath(certList);

Note that there is an existing method in CertificateFactory named generateCertificates
that parses a sequence of Certificates. For encodings consisting of multiple certificates, use
generateCertificates when you want to parse a collection of possibly unrelated certificates.
Otherwise, use generateCertPath when you want to generate a CertPath and subsequently
validate it with a CertPathValidator (discussed later).

The CertPathParameters Interface
The CertPathParameters interface is a transparent representation of the set of parameters
used with a particular certification path builder or validation algorithm.

Its main purpose is to group (and provide type safety for) all certification path parameter
specifications. The CertPathParameters interface extends the Cloneable interface and defines
a clone() method that does not throw an exception. All concrete implementations of this
interface should implement and override the Object.clone() method, if necessary. This allows
applications to clone any CertPathParameters object.

Objects implementing the CertPathParameters interface are passed as arguments to methods
of the CertPathValidator and CertPathBuilder classes. Typically, a concrete implementation of the
CertPathParameters interface will hold a set of input parameters specific to a particular

Chapter 9
Core Classes and Interfaces

9-10

certification path build or validation algorithm. For example, the PKIXParameters class is an
implementation of the CertPathParameters interface that holds a set of input parameters for
the PKIX certification path validation algorithm. One such parameter is the set of most-trusted
CAs that the caller trusts for anchoring the validation process. This parameter among others is
discussed in more detail in the section discussing the PKIXParameters class.

Certification Path Validation Classes
The Java Certification Path API includes classes and interfaces for validating certification
paths. An application uses an instance of the CertPathValidator class to validate a CertPath
object. If successful, the result of the validation algorithm is returned in an object implementing
the CertPathValidatorResult interface.

Topics

The CertPathValidator Class

The CertPathValidatorResult Interface

The CertPathValidator Class
The CertPathValidator class is an engine class used to validate a certification path.

Creating a CertPathValidator Object

As with all engine classes, the way to get a CertPathValidator object for a particular
validation algorithm is to call one of the getInstance static factory methods on the
CertPathValidator class:

 public static CertPathValidator getInstance(String algorithm)
 public static CertPathValidator getInstance(String algorithm,
 String provider)
 public static CertPathValidator getInstance(String algorithm,
 Provider provider)

The algorithm parameter is the name of a certification path validation algorithm (for example,
"PKIX"). Standard CertPathValidator algorithm names are listed in the Java Security
Standard Algorithm Names.

Validating a Certification Path

Once a CertPathValidator object is created, paths can be validated by calling the validate
method, passing it the certification path to be validated and a set of algorithm-specific
parameters:

 public final CertPathValidatorResult
 validate(CertPath certPath, CertPathParameters params)
 throws CertPathValidatorException,
 InvalidAlgorithmParameterException

If the validation algorithm is successful, the result is returned in an object implementing the
CertPathValidatorResult interface. Otherwise, a CertPathValidatorException is thrown. The

Chapter 9
Core Classes and Interfaces

9-11

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

CertPathValidatorException contains methods that return the CertPath, and if relevant, the
index of the certificate that caused the algorithm to fail and the root exception or cause of the
failure.

Note that the CertPath and CertPathParameters passed to the validate method must be of a
type that is supported by the validation algorithm. Otherwise, an
InvalidAlgorithmParameterException is thrown. For example, a CertPathValidator
instance that implements the PKIX algorithm validates CertPath objects of type X.509 and
CertPathParameters that are an instance of PKIXParameters.

The CertPathValidatorResult Interface
The CertPathValidatorResult interface is a transparent representation of the successful
result or output of a certification path validation algorithm.

The main purpose of this interface is to group and provide type safety for all validation results.
Similar to the CertPathParameters interface, CertPathValidatorResult extends Cloneable
and defines a clone() method that does not throw an exception. This allows applications to
clone any CertPathValidatorResult object.

Objects implementing the CertPathValidatorResult interface are returned by the validate
method of CertPathValidatorResult interface when successful. If not successful, a
CertPathValidatorException is thrown with a description of the failure. Typically, a concrete
implementation of the CertPathValidatorResult interface will hold a set of output parameters
specific to a particular certification path validation algorithm. For example, the
PKIXCertPathValidatorResult class is an implementation of the CertPathValidatorResult
interface, which contains methods to get the output parameters of the PKIX certification path
validation algorithm. One such parameter is the valid policy tree. This parameter among others
is discussed in more detail in the section discussing the PKIXCertPathValidatorResult class.

The following code sample shows how to create a CertPathValidator and use it to validate a
certification path. The sample assumes that the CertPath and CertPathParameters objects
which are passed to the validate method have been previously created; a more complete
example will be illustrated in the section describing the PKIX classes.

 // create CertPathValidator that implements the "PKIX" algorithm
 CertPathValidator cpv = null;
 try {
 cpv = CertPathValidator.getInstance("PKIX");
 } catch (NoSuchAlgorithmException nsae) {
 System.err.println(nsae);
 System.exit(1);
 }
 // validate certification path ("cp") with specified parameters ("params")
 try {
 CertPathValidatorResult cpvResult = cpv.validate(cp, params);
 } catch (InvalidAlgorithmParameterException iape) {
 System.err.println("validation failed: " + iape);
 System.exit(1);
 } catch (CertPathValidatorException cpve) {
 System.err.println("validation failed: " + cpve);
 System.err.println("index of certificate that caused exception: "
 + cpve.getIndex());

Chapter 9
Core Classes and Interfaces

9-12

 System.exit(1);
 }

Certification Path Building Classes
The Java Certification Path API includes classes for building (or discovering) certification
paths. An application uses an instance of the CertPathBuilder class to build a CertPath
object. If successful, the result of the build is returned in an object implementing the
CertPathBuilderResult interface.

Topics

The CertPathBuilder Class

The CertPathBuilderResult Interface

The CertPathBuilder Class
The CertPathBuilder class is an engine class used to build a certification path.

Creating a CertPathBuilder Object

As with all engine classes, the way to get a CertPathBuilder object for a particular build
algorithm is to call one of the getInstance static factory method on the CertPathBuilder
class:

 public static CertPathBuilder getInstance(String algorithm)
 public static CertPathBuilder getInstance(String algorithm,
 String provider)
 public static CertPathBuilder getInstance(String algorithm,
 Provider provider)

The algorithm parameter is the name of a certification path builder algorithm (for example,
"PKIX"). Standard CertPathBuilder algorithm names are listed in Java Security Standard
Algorithm Names.

Building a Certification Path

Once a CertPathBuilder object is created, paths can be constructed by calling the build
method, passing it an algorithm-specific parameter specification:

 public final CertPathBuilderResult build(CertPathParameters params)
 throws CertPathBuilderException,
 InvalidAlgorithmParameterException

If the build algorithm is successful, the result is returned in an object implementing the
CertPathBuilderResult interface. Otherwise, a CertPathBuilderException is thrown containing
information about the failure; for example, the underlying exception (if any) and an error
message.

Chapter 9
Core Classes and Interfaces

9-13

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Note that the CertPathParameters passed to the build method must be of a type that is
supported by the build algorithm. Otherwise, an InvalidAlgorithmParameterException is
thrown.

The CertPathBuilderResult Interface
The CertPathBuilderResult interface is a transparent representation of the result or output of
a certification path builder algorithm.

This interface contains a method to return the certification path that has been successfully
built:

 public CertPath getCertPath()

The purpose of the CertPathBuilderResult interface is to group (and provide type safety for)
all build results. Like the CertPathValidatorResult interface, CertPathBuilderResult
extends Cloneable and defines a clone() method that does not throw an exception. This
allows applications to clone any CertPathBuilderResult object.

Objects implementing the CertPathBuilderResult interface are returned by the build method
of CertPathBuilder.

The following code sample shows how to create a CertPathBuilder and use it to build a
certification path. The sample assumes that the CertPathParameters object which is passed to
the build method has been previously created; a more complete example will be illustrated in
the section describing the PKIX classes.

 // create CertPathBuilder that implements the "PKIX" algorithm
 CertPathBuilder cpb = null;
 try {
 cpb = CertPathBuilder.getInstance("PKIX");
 } catch (NoSuchAlgorithmException nsae) {
 System.err.println(nsae);
 System.exit(1);
 }
 // build certification path using specified parameters ("params")
 try {
 CertPathBuilderResult cpbResult = cpb.build(params);
 CertPath cp = cpbResult.getCertPath();
 System.out.println("build passed, path contents: " + cp);
 } catch (InvalidAlgorithmParameterException iape) {
 System.err.println("build failed: " + iape);
 System.exit(1);
 } catch (CertPathBuilderException cpbe) {
 System.err.println("build failed: " + cpbe);
 System.exit(1);
 }

Certificate/CRL Storage Classes
The Java Certification Path API includes the CertStore class for retrieving certificates and
CRLs from a repository.

Chapter 9
Core Classes and Interfaces

9-14

This class enables a caller to specify the repository a CertPathValidator or CertPathBuilder
implementation should use to find certificates and CRLs. See the addCertStores method of
the PKIXParameters class.

A CertPathValidator implementation may use the CertStore object that the caller specifies
as a callback mechanism to fetch CRLs for performing revocation checks. Similarly, a
CertPathBuilder may use the CertStore as a callback mechanism to fetch certificates and, if
performing revocation checks, CRLs.

Topics

The CertStore Class

The CertStoreParameters Interface

The CertSelector and CRLSelector Interfaces

The CertStore Class
The CertStore class is an engine class used to provide the functionality of a certificate and
certificate revocation list (CRL) repository.

This class can be used by CertPathBuilder and CertPathValidator implementations to find
certificates and CRLs, or as a general purpose certificate and CRL retrieval mechanism.

Unlike the java.security.KeyStore class, which provides access to a cache of private keys
and trusted certificates, a CertStore is designed to provide access to a potentially vast
repository of untrusted certificates and CRLs. For example, an LDAP implementation of
CertStore provides access to certificates and CRLs stored in one or more directories using the
LDAP protocol.

All public methods of CertStore objects are thread-safe. That is, multiple threads may
concurrently invoke these methods on a single CertStore object (or more than one) with no ill
effects. This allows a CertPathBuilder to search for a CRL while simultaneously searching for
further certificates, for instance.

Creating a CertStore Object

As with all engine classes, the way to get a CertStore object for a particular repository type is
to call one of the getInstance static factory methods on the CertStore class:

 public static CertStore getInstance(String type,
 CertStoreParameters params)
 public static CertStore getInstance(String type,
 CertStoreParameters params, String provider)
 public static CertStore getInstance(String type,
 CertStoreParameters params, Provider provider)

The type parameter is the name of a certificate repository type (for example, "LDAP").
Standard CertStore types are listed in Java Security Standard Algorithm Names.

The initialization parameters (params) are specific to the repository type. For example, the
initialization parameters for a server-based repository may include the hostname and the port
of the server. An InvalidAlgorithmParameterException is thrown if the parameters are invalid

Chapter 9
Core Classes and Interfaces

9-15

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

for this CertStore type. The getCertStoreParameters method returns the
CertStoreParameters that were used to initialize a CertStore:

 public final CertStoreParameters getCertStoreParameters()

Retrieving Certificates

After you have created a CertStore object, you can retrieve certificates from the repository
using the getCertificates method. This method takes a CertSelector (discussed in more detail
later) object as an argument, which specifies a set of selection criteria for determining which
certificates should be returned:

 public final Collection<? extends Certificate>
getCertificates(CertSelector selector)
 throws CertStoreException

This method returns a Collection of java.security.cert.Certificate objects that satisfy
the selection criteria. An empty Collection is returned if there are no matches. A
CertStoreException is usually thrown if an unexpected error condition is encountered, such
as a communications failure with a remote repository.

For some CertStore implementations, it may not be feasible to search the entire repository for
certificates or CRLs that match the specified selection criteria. In these instances, the
CertStore implementation may use information that is specified in the selectors to locate
certificates and CRLs. For instance, an LDAP CertStore may not search all entries in the
directory. Instead, it may just search entries that are likely to contain the certificates it is looking
for. If the CertSelector provided does not provide enough information for the LDAP CertStore
to determine which entries it should look in, the LDAP CertStore may throw a
CertStoreException.

Retrieving CRLs

You can also retrieve CRLs from the repository using the getCRLs method. This method takes
a CRLSelector (discussed in more detail later) object as an argument, which specifies a set of
selection criteria for determining which CRLs should be returned:

 public final Collection<? extends CRL> getCRLs(CRLSelector selector)
 throws CertStoreException

This method returns a Collection of java.security.cert.CRL objects that satisfy the
selection criteria. An empty Collection is returned if there are no matches.

The CertStoreParameters Interface
The CertStoreParameters interface is a transparent representation of the set of parameters
used with a particular CertStore.

The main purpose of this interface is to group and provide type safety for all certificate storage
parameter specifications. The CertStoreParameters interface extends the Cloneable interface
and defines a clone method that does not throw an exception. Implementations of this

Chapter 9
Core Classes and Interfaces

9-16

interface should implement and override the Object.clone() method, if necessary. This allows
applications to clone any CertStoreParameters object.

Objects implementing the CertStoreParameters interface are passed as arguments to the
getInstance method of the CertStore class. Two classes implementing the
CertStoreParameters interface are defined in this API: the LDAPCertStoreParameters class and
the CollectionCertStoreParameters class.

The LDAPCertStoreParameters Class

The LDAPCertStoreParameters class is an implementation of the CertStoreParameters
interface and holds a set of minimal initialization parameters (host and port number of the
directory server) for retrieving certificates and CRLs from a CertStore of type LDAP.

See LDAPCertStoreParameters.

The CollectionCertStoreParameters Class

The CollectionCertStoreParameters class is an implementation of the CertStoreParameters
interface and holds a set of initialization parameters for retrieving certificates and CRLs from a
CertStore of type Collection.

See CollectionCertStoreParameters.

The CertSelector and CRLSelector Interfaces
The CertSelector and CRLSelector interfaces are a specification of the set of criteria for
selecting certificates and CRLs from a collection or large group of certificates and CRLs.

The interfaces group and provide type safety for all selector specifications. Each selector
interface extends Cloneable and defines a clone() method that does not throw an exception.
This allows applications to clone any CertSelector or CRLSelector object.

The CertSelector and CRLSelector interfaces each define a method named match. The match
method takes a Certificate or CRL object as an argument and returns true if the object
satisfies the selection criteria. Otherwise, it returns false. The match method for the
CertSelector interface is defined as follows:

 public boolean match(Certificate cert)

and for the CRLSelector interface:

 public boolean match(CRL crl)

Typically, objects implementing these interfaces are passed as parameters to the
getCertificates and getCRLs methods of the CertStore class. These methods return a
Collection of Certificates or CRLs from the CertStore repository that match the specified
selection criteria. CertSelectors may also be used to specify the validation constraints on a
target or end-entity certificate in a certification path (see for example, the
PKIXParameters.setTargetCertConstraints method.)

Chapter 9
Core Classes and Interfaces

9-17

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/LDAPCertStoreParameters.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CollectionCertStoreParameters.html

The X509CertSelector Class
The X509CertSelector class is an implementation of the CertSelector interface that defines a
set of criteria for selecting X.509 certificates.

An X509Certificate object must match all of the specified criteria to be selected by the match
method. The selection criteria are designed to be used by a CertPathBuilder implementation
to discover potential certificates as it builds an X.509 certification path.

For example, the setSubject method of X509CertSelector allows a PKIX CertPathBuilder to
filter out X509Certificates that do not match the issuer name of the preceding
X509Certificate in a partially completed chain. By setting this and other criteria in an
X509CertSelector object, a CertPathBuilder is able to discard irrelevant certificates and
more easily find an X.509 certification path that meets the requirements specified in the
CertPathParameters object.

See RFC 5280 for definitions of the X.509 certificate extensions mentioned in this section.

Creating an X509CertSelector Object

An X509CertSelector object is created by calling the default constructor:

 public X509CertSelector()

No criteria are initially set (any X509Certificate will match).

Setting Selection Criteria

The selection criteria allow a caller to match on different components of an X.509 certificate. A
few of the methods for setting selection criteria are described here. See X509CertSelector.

The setIssuer methods set the issuer criterion:

 public void setIssuer(X500Principal issuer)
 public void setIssuer(String issuerDN)
 public void setIssuer(byte[] issuerDN)

The specified distinguished name (in X500Principal, RFC 2253 String or ASN.1 DER encoded
form) must match the issuer distinguished name in the certificate. If null, any issuer
distinguished name will do. Note that use of an X500Principal to represent a distinguished
name is preferred because it is more efficient and suitably typed.

Similarly, the setSubject methods set the subject criterion:

 public void setSubject(X500Principal subject)
 public void setSubject(String subjectDN)
 public void setSubject(byte[] subjectDN)

The specified distinguished name (in X500Principal, RFC 2253 String or ASN.1 DER encoded
form) must match the subject distinguished name in the certificate. If null, any subject
distinguished name will do.

Chapter 9
Core Classes and Interfaces

9-18

http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/X509CertSelector.html
http://www.ietf.org/rfc/rfc2253.txt

The setSerialNumber method sets the serialNumber criterion:

 public void setSerialNumber(BigInteger serial)

The specified serial number must match the certificate serial number in the certificate. If null,
any certificate serial number will do.

The setAuthorityKeyIdentifier method sets the authorityKeyIdentifier criterion:

 public void setAuthorityKeyIdentifier(byte[] authorityKeyID)

The certificate must contain an Authority Key Identifier extension matching the specified value.
If null, no check will be done on the authorityKeyIdentifier criterion.

The setCertificateValid method sets the certificateValid criterion:

 public void setCertificateValid(Date certValid)

The specified date must fall within the certificate validity period for the certificate. If null, any
date is valid.

The setKeyUsage method sets the keyUsage criterion:

 public void setKeyUsage(boolean[] keyUsage)

The certificate's Key Usage Extension must allow the specified key usage values (those which
are set to true). If null, no keyUsage check will be done.

Getting Selection Criteria

The current values for each of the selection criteria can be retrieved using an appropriate get
method. See X509CertSelector .

Here is an example of retrieving X.509 certificates from an LDAP CertStore with the
X509CertSelector class.

First, we create the LDAPCertStoreParameters object that we will use to initialize the
CertStore object with the hostname and port of the LDAP server:

 LDAPCertStoreParameters lcsp = new
 LDAPCertStoreParameters("ldap.sun.com", 389);

Next, create the CertStore object, and pass it the LDAPCertStoreParameters object, as in the
following statement:

 CertStore cs = CertStore.getInstance("LDAP", lcsp);

Chapter 9
Core Classes and Interfaces

9-19

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/X509CertSelector.html

This call creates a CertStore object that retrieves certificates and CRLs from an LDAP
repository using the schema defined in RFC 2587.

The following block of code establishes an X509CertSelector to retrieve all unexpired (as of
the current date and time) end-entity certificates issued to a particular subject with 1) a key
usage that allows digital signatures, and 2) a subject alternative name with a specific email
address:

 X509CertSelector xcs = new X509CertSelector();

 // select only unexpired certificates
 xcs.setCertificateValid(new Date());

 // select only certificates issued to
 // 'CN=alice, O=xyz, C=us'
 xcs.setSubject(new X500Principal("CN=alice, O=xyz, C=us"));

 // select only end-entity certificates
 xcs.setBasicConstraints(-2);

 // select only certificates with a digitalSignature
 // keyUsage bit set (set the first entry in the
 // boolean array to true)
 boolean[] keyUsage = {true};
 xcs.setKeyUsage(keyUsage);

 // select only certificates with a subjectAltName of
 // 'alice@xyz.example.com' (1 is the integer value of
 // an RFC822Name)
 xcs.addSubjectAlternativeName(1, "alice@xyz.example.com");

Then we pass the selector to the getCertificates method of our CertStore object that we
previously created:

 Collection<Certificate> certs = cs.getCertificates(xcs);

A PKIX CertPathBuilder may use similar code to help discover and sort through potential
certificates by discarding those that do not meet validation constraints or other criteria.

The X509CRLSelector Class
The X509CRLSelector class is an implementation of the CRLSelector interface that defines a
set of criteria for selecting X.509 CRLs.

An X509CRL object must match all of the specified criteria to be selected by the match method.
The selection criteria are designed to be useful to a CertPathValidator or CertPathBuilder
implementation that must retrieve CRLs from a repository to check the revocation status of
certificates in an X.509 certification path.

For example, the setDateAndTime method of X509CRLSelector allows a PKIX
CertPathValidator to filter out X509CRLs that have been issued after or expire before the time
indicated. By setting this and other criteria in an X509CRLSelector object, it allows the

Chapter 9
Core Classes and Interfaces

9-20

CertPathValidator to discard irrelevant CRLs and more easily check if a certificate has been
revoked.

Please refer to RFC 5280 for definitions of the X.509 CRL fields and extensions mentioned in
this section.

Creating an X509CRLSelector Object

An X509CRLSelector object is created by calling the default constructor:

 public X509CRLSelector()

No criteria are initially set (any X509CRL will match).

Setting Selection Criteria

The selection criteria allow a caller to match on different components of an X.509 CRL. Most of
the methods for setting selection criteria are described here. Please refer to the
X509CRLSelector Class API documentation for details on the remaining methods.

The setIssuers and setIssuerNames methods set the issuerNames criterion:

 public void setIssuers(Collection<X500Principal> issuers)
 public void setIssuerNames(Collection<?> names)

The issuer distinguished name in the CRL must match at least one of the specified
distinguished names. The setIssuers method is preferred as the use of X500Principals to
represent distinguished names is more efficient and suitably typed. For the setIssuerNames
method, each entry of the names argument is either a String or a byte array (representing the
name, in RFC 2253 or ASN.1 DER encoded form, respectively). If null, any issuer
distinguished name will do.

The setMinCRLNumber and setMaxCRLNumber methods set the minCRLNumber and
maxCRLNumber criterion:

 public void setMinCRLNumber(BigInteger minCRL)
 public void setMaxCRLNumber(BigInteger maxCRL)

The CRL must have a CRL Number extension whose value is greater than or equal to the
specified value if the setMinCRLNumber method is called, and less than or equal to the specified
value if the setMaxCRLNumber method is called. If the value passed to one of these methods is
null, the corresponding check is not done.

The setDateAndTime method sets the dateAndTime criterion:

 public void setDateAndTime(Date dateAndTime)

The specified date must be equal to or later than the value of the thisUpdate component of the
CRL and earlier than the value of the nextUpdate component. If null, no dateAndTime check
will be done.

Chapter 9
Core Classes and Interfaces

9-21

http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/X509CRLSelector.html

The setCertificateChecking method sets the certificate whose revocation status is being
checked:

 public void setCertificateChecking(X509Certificate cert)

This is not a criterion. Rather, it is optional information that may help a CertStore find CRLs
that would be relevant when checking revocation for the specified certificate. If null is specified,
then no such optional information is provided. An application should always call this method
when checking revocation for a particular certificate, as it may provide the CertStore with more
information for finding the correct CRLs and filtering out irrelevant ones.

Getting Selection Criteria

The current values for each of the selection criteria can be retrieved using an appropriate get
method. Please refer to the X509CRLSelector Class API documentation for further details on
these methods.

Creating an X509CRLSelector to retrieve CRLs from an LDAP repository is similar to the
X509CertSelector example. Suppose we want to retrieve all current (as of the current date
and time) CRLs issued by a specific CA and with a minimum CRL number. First, we create an
X509CRLSelector object and call the appropriate methods to set the selection criteria:

 X509CRLSelector xcrls = new X509CRLSelector();
 // select CRLs satisfying current date and time
 xcrls.setDateAndTime(new Date());
 // select CRLs issued by 'O=xyz, C=us'
 xcrls.addIssuerName("O=xyz, C=us");
 // select only CRLs with a CRL number at least '2'
 xcrls.setMinCRLNumber(new BigInteger("2"));

Then we pass the selector to the getCRLs method of our CertStore object (created in the
X509CertSelector example):

 Collection<CRL> crls = cs.getCRLs(xcrls);

PKIX Classes
The Java Certification Path API includes a set of algorithm-specific classes modeled for use
with the PKIX certification path validation algorithm.

The PKIX certification path validation algorithm is defined in RFC 5280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

Topics

The TrustAnchor Class

The PKIXParameters Class

The CertPathValidatorResult Interface

The PolicyNode Interface and PolicyQualifierInfo Class

Chapter 9
Core Classes and Interfaces

9-22

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/X509CRLSelector.html
http://www.ietf.org/rfc/rfc5280.txt

The PKIXBuilderParameters Class

The PKIXCertPathBuilderResult Class

The PKIXCertPathChecker Class

Using PKIXCertPathChecker in Certificate Path Validation

The TrustAnchor Class
The TrustAnchor class represents a "most-trusted CA", which is used as a trust anchor for
validating X.509 certification paths.

A TrustAnchor includes the public key of the CA, the CA's name, and any constraints on the
set of paths that can be validated using this key. These parameters can be specified in the
form of a trusted X509Certificate or as individual parameters.

All TrustAnchor objects are immutable and thread-safe. That is, multiple threads may
concurrently invoke the methods defined in this class on a single TrustAnchor object (or more
than one) with no ill effects. Requiring TrustAnchor objects to be immutable and thread-safe
allows them to be passed around to various pieces of code without worrying about coordinating
access.

Note:

Although this class is described as a PKIX class it may be used with other X.509
certification path validation algorithms.

Creating a TrustAnchor Object

To instantiate a TrustAnchor object, a caller must specify "the most-trusted CA" as a trusted
X509Certificate or public key and distinguished name pair. The caller may also optionally
specify name constraints that are applied to the trust anchor by the validation algorithm during
initialization. Note that support for name constraints on trust anchors is not required by the
PKIX algorithm, therefore a PKIX CertPathValidator or CertPathBuilder may choose not to
support this parameter and instead throw an exception. Use one of the following constructors
to create a TrustAnchor object:

 public TrustAnchor(X509Certificate trustedCert,
 byte[] nameConstraints)
 public TrustAnchor(X500Principal caPrincipal, PublicKey pubKey,
 byte[] nameConstraints)
 public TrustAnchor(String caName, PublicKey pubKey,
 byte[] nameConstraints)

The nameConstraints parameter is specified as a byte array containing the ASN.1 DER
encoding of a NameConstraints extension. An IllegalArgumentException is thrown if the
name constraints cannot be decoded (are not formatted correctly).

Chapter 9
Core Classes and Interfaces

9-23

Getting Parameter Values

Each of the parameters can be retrieved using a corresponding get method:

 public final X509Certificate getTrustedCert()
 public final X500Principal getCA()
 public final String getCAName()
 public final PublicKey getCAPublicKey()
 public final byte[] getNameConstraints()

Note:

The getTrustedCert method returns null if the trust anchor was specified as a
public key and name pair. Likewise, the getCA, getCAName and getCAPublicKey
methods return null if the trust anchor was specified as an X509Certificate.

The PKIXParameters Class
The PKIXParametersClass class specifies the set of input parameters defined by the PKIX
certification path validation algorithm. It also includes a few additional useful parameters.

This class implements the CertPathParameters interface.

An X.509 CertPath object and a PKIXParameters object are passed as arguments to the
validate method of a CertPathValidator instance implementing the PKIX algorithm. The
CertPathValidator uses the parameters to initialize the PKIX certification path validation
algorithm.

Creating a PKIXParameters Object

To instantiate a PKIXParameters object, a caller must specify "the most-trusted CA(s)" as
defined by the PKIX validation algorithm. The most-trusted CAs can be specified using one of
two constructors:

 public PKIXParameters(Set<TrustAnchor> trustAnchors)
 throws InvalidAlgorithmParameterException
 public PKIXParameters(KeyStore keystore)
 throws KeyStoreException, InvalidAlgorithmParameterException

The first constructor allows the caller to specify the most-trusted CAs as a Set of TrustAnchor
objects. Alternatively, a caller can use the second constructor and specify a KeyStore instance
containing trusted certificate entries, each of which will be considered as a most-trusted CA.

Setting Parameter Values

After a PKIXParameters object has been created, a caller can set (or replace the current value
of) various parameters. A few of the methods for setting parameters are described here.
Please refer to the PKIXParameters API documentation for details on the other methods.

Chapter 9
Core Classes and Interfaces

9-24

The setInitialPolicies method sets the initial policy identifiers, as specified by the PKIX
validation algorithm. The elements of the Set are object identifiers (OIDs) represented as a
String. If the initialPolicies parameter is null or not set, any policy is acceptable:

 public void setInitialPolicies(Set<String> initialPolicies)

The setDate method sets the time for which the validity of the path should be determined. If
the date parameter is not set or is null, the current date is used:

 public void setDate(Date date)

The setPolicyMappingInhibited method sets the value of the policy mapping inhibited flag.
The default value for the flag, if not specified, is false:

 public void setPolicyMappingInhibited(boolean val)

The setExplicitPolicyRequired method sets the value of the explicit policy required flag. The
default value for the flag, if not specified, is false:

 public void setExplicitPolicyRequired(boolean val)

The setAnyPolicyInhibited method sets the value of the any policy inhibited flag. The default
value for the flag, if not specified, is false:

 public void setAnyPolicyInhibited(boolean val)

The setTargetCertConstraints method allows the caller to set constraints on the target or
end-entity certificate. For example, the caller can specify that the target certificate must contain
a specific subject name. The constraints are specified as a CertSelector object. If the
selector parameter is null or not set, no constraints are defined on the target certificate:

 public void setTargetCertConstraints(CertSelector selector)

The setCertStores method allows a caller to specify a List of CertStore objects that will be
used by a PKIX implementation of CertPathValidator to find CRLs for path validation. This
provides an extensible mechanism for specifying where to locate CRLs. The setCertStores
method takes a List of CertStore objects as a parameter. The first CertStores in the list may
be preferred to those that appear later.

 public void setCertStores(List<CertStore> stores)

The setCertPathCheckers method allows a caller to extend the PKIX validation algorithm by
creating implementation-specific certification path checkers. For example, this mechanism can

Chapter 9
Core Classes and Interfaces

9-25

be used to process private certificate extensions. The setCertPathCheckers method takes a
list of PKIXCertPathChecker (discussed later) objects as a parameter:

 public void setCertPathCheckers(List<PKIXCertPathChecker> checkers)

The setRevocationEnabled method allows a caller to disable revocation checking. Revocation
checking is enabled by default, since it is a required check of the PKIX validation algorithm.
However, PKIX does not define how revocation should be checked. An implementation may
use CRLs or OCSP, for example. This method allows the caller to disable the implementation's
default revocation checking mechanism if it is not appropriate. A different revocation checking
mechanism can then be specified by calling the setCertPathCheckers method, and passing it
a PKIXCertPathChecker that implements the alternate mechanism.

 public void setRevocationEnabled(boolean val)

The setPolicyQualifiersRejected method allows a caller to enable or disable policy qualifier
processing. When a PKIXParameters object is created, this flag is set to true. This setting
reflects the most common (and simplest) strategy for processing policy qualifiers. Applications
that want to use a more sophisticated policy must set this flag to false.

 public void setPolicyQualifiersRejected(boolean qualifiersRejected)

Getting Parameter Values

The current values for each of the parameters can be retrieved using an appropriate get
method. Please refer to the Class PKIXParameters API documentation for further details on
these methods.

The PKIXCertPathValidatorResult Class
The PKIXCertPathValidatorResult class represents the result of the PKIX certification path
validation algorithm.

This class implements the CertPathValidatorResult interface. It holds the valid policy tree and
subject public key resulting from the validation algorithm, and includes methods
(getPolicyTree() and getPublicKey()) for returning them. Instances of
PKIXCertPathValidatorResult are returned by the validate method of CertPathValidator
objects implementing the PKIX algorithm.

Please refer to the PKIXCertPathValidatorResult API documentation for more detailed
information on this class.

The PolicyNode Interface and PolicyQualifierInfo Class
The PKIX validation algorithm defines several outputs related to certificate policy processing.
Most applications will not need to use these outputs, but all providers that implement the PKIX
validation or building algorithm must support them.

The PolicyNode interface represents a node of a valid policy tree resulting from a successful
execution of the PKIX certification path validation. An application can obtain the root of a valid

Chapter 9
Core Classes and Interfaces

9-26

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXParameters.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathValidatorResult.html

policy tree using the getPolicyTree method of PKIXCertPathValidatorResult. Policy Trees
are discussed in more detail in the RFC 5280.

The getPolicyQualifiers method of PolicyNode returns a Set of PolicyQualifierInfo
objects, each of which represents a policy qualifier contained in the Certificate Policies
extension of the relevant certificate that this policy applies to.

Most applications will not need to examine the valid policy tree and policy qualifiers. They can
achieve their policy processing goals by setting the policy-related parameters in
PKIXParameters. However, the valid policy tree is available for more sophisticated applications,
especially those that process policy qualifiers.

Please refer to the Interface PolicyNode and PolicyQualifierInfo API documentation for
more detailed information on these classes.

Example 9-1 Example of Validating a Certification Path using the PKIX algorithm

This is an example of validating a certification path with the PKIX validation algorithm. The
example ignores most of the exception handling and assumes that the certification path and
public key of the trust anchor have already been created.

First, create the CertPathValidator, as in the following line:

 CertPathValidator cpv = CertPathValidator.getInstance("PKIX");

The next step is to create a TrustAnchor object. This will be used as an anchor for validating the
certification path. In this example, the most-trusted CA is specified as a public key and name
(name constraints are not applied and are specified as null):

 TrustAnchor anchor = new TrustAnchor("O=xyz,C=us", pubkey, null);

The next step is to create a PKIXParameters object. This will be used to populate the parameters
used by the PKIX algorithm. In this example, we pass to the constructor a Set containing a
single element - the TrustAnchor we created in the previous step:

 PKIXParameters params = new PKIXParameters(Collections.singleton(anchor));

Next, we populate the parameters object with constraints or other parameters used by the
validation algorithm. In this example, we enable the explicitPolicyRequired flag and specify a
set of initial policy OIDs (the contents of the set are not shown):

 // set other PKIX parameters here
 params.setExplicitPolicyRequired(true);
 params.setInitialPolicies(policyIds);

The final step is to validate the certification path using the input parameter set we have
created:

 try {
 PKIXCertPathValidatorResult result =

Chapter 9
Core Classes and Interfaces

9-27

http://www.ietf.org/rfc/rfc5280.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PolicyNode.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PolicyQualifierInfo.html

 (PKIXCertPathValidatorResult) cpv.validate(certPath, params);
 PolicyNode policyTree = result.getPolicyTree();
 PublicKey subjectPublicKey = result.getPublicKey();
 } catch (CertPathValidatorException cpve) {
 System.out.println("Validation failure, cert["
 + cpve.getIndex() + "] :" + cpve.getMessage());
 }

If the validation algorithm is successful, the policy tree and subject public key resulting from the
validation algorithm are obtained using the getPolicyTree and getPublicKey methods of
PKIXCertPathValidatorResult.

Otherwise, a CertPathValidatorException is thrown and the caller can catch the exception
and print some details about the failure, such as the error message and the index of the
certificate that caused the failure.

The PKIXBuilderParameters Class
The PKIXBuilderParameters class specifies the set of parameters to be used with
CertPathBuilder class.

This class (which extends the PKIXParameters class) specifies the set of parameters to be used
with CertPathBuilder class that build certification paths validated against the PKIX certification
path validation algorithm.

A PKIXBuilderParameters object is passed as an argument to the build method of a
CertPathBuilder instance implementing the PKIX algorithm. All PKIX CertPathBuilders must
return certification paths which have been validated according to the PKIX certification path
validation algorithm.

Please note that the mechanism that a PKIX CertPathBuilder uses to validate a constructed
path is an implementation detail. For example, an implementation might attempt to first build a
path with minimal validation and then fully validate it using an instance of a PKIX
CertPathValidator, whereas a more efficient implementation may validate more of the path as
it is building it, and backtrack to previous stages if it encounters validation failures or dead-
ends.

Creating a PKIXBuilderParameters Object

Creating a PKIXBuilderParameters object is similar to creating a PKIXParameters object.
However, a caller must specify constraints on the target or end-entity certificate when creating
a PKIXBuilderParameters object. These constraints should provide the CertPathBuilder with
enough information to find the target certificate. The constraints are specified as a
CertSelector object. Use one of the following constructors to create a
PKIXBuilderParameters object:

 public PKIXBuilderParameters(Set<TrustAnchor> trustAnchors,
 CertSelector targetConstraints)
 throws InvalidAlgorithmParameterException
 public PKIXBuilderParameters(KeyStore keystore,
 CertSelector targetConstraints)
 throws KeyStoreException, InvalidAlgorithmParameterException

Chapter 9
Core Classes and Interfaces

9-28

Getting/Setting Parameter Values

The PKIXBuilderParameters class inherits all of the parameters that can be set in the
PKIXParameters class. In addition, the setMaxPathLength method can be called to place a limit
on the maximum number of certificates in a certification path:

 public void setMaxPathLength(int maxPathLength)

The maxPathLength parameter specifies the maximum number of non-self-issued intermediate
certificates that may exist in a certification path. A CertPathBuilder instance implementing the
PKIX algorithm must not build paths longer than the length specified. If the value is 0, the path
can only contain a single certificate. If the value is -1, the path length is unconstrained (i.e.,
there is no maximum). The default maximum path length, if not specified, is 5. This method is
useful to prevent the CertPathBuilder from spending resources and time constructing long
paths that may or may not meet the caller's requirements.

If any of the CA certificates in the path contain a Basic Constraints extension, the value of the
pathLenConstraint component of the extension overrides the value of the maxPathLength
parameter whenever the result is a certification path of smaller length. There is also a
corresponding getMaxPathLength method for retrieving this parameter:

 public int getMaxPathLength()

Also, the setCertStores method (inherited from the PKIXParameters class) is typically used by
a PKIX implementation of CertPathBuilder to find Certificates for path construction as well as
finding CRLs for path validation. This provides an extensible mechanism for specifying where
to locate Certificates and CRLs.

The PKIXCertPathBuilderResult Class
The PKIXCertPathBuilderResult class represents the successful result of the PKIX
certification path construction algorithm.

This class extends the PKIXCertPathValidatorResult class and implements the CertPathBuilder
interface. Instances of PKIXCertPathBuilderResult are returned by the build method of
CertPathBuilder objects implementing the PKIX algorithm.

The getCertPath method of a PKIXCertPathBuilderResult instance always returns a
CertPath object validated using the PKIX certification path validation algorithm. The returned
CertPath object does not include the most-trusted CA certificate that may have been used to
anchor the path. Instead, use the getTrustAnchor method to get the Certificate of the most-
trusted CA.

See the PKIXCertPathBuilderResult API documentation for more detailed information on this
class.

Example 9-2 Example of Building a Certification Path using the PKIX algorithm

This is an example of building a certification path validated against the PKIX algorithm. Some
details have been left out, such as exception handling, and the creation of the trust anchors
and certificates for populating the CertStore.

Chapter 9
Core Classes and Interfaces

9-29

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXCertPathBuilderResult.html

First, create the CertPathBuilder, as in the following example:

 CertPathBuilder cpb = CertPathBuilder.getInstance("PKIX");

This call creates a CertPathBuilder object that returns paths validated against the PKIX
algorithm.

The next step is to create a PKIXBuilderParameters object. This will be used to populate the PKIX
parameters used by the CertPathBuilder:

 // Create parameters object, passing it a Set of
 // trust anchors for anchoring the path
 // and a target subject DN.
 X509CertSelector targetConstraints = new X509CertSelector();
 targetConstraints.setSubject("CN=alice,O=xyz,C=us");
 PKIXBuilderParameters params =
 new PKIXBuilderParameters(trustAnchors, targetConstraints);

The next step is to specify the CertStore that the CertPathBuilder will use to look for
certificates and CRLs. For this example, we will populate a Collection CertStore with the
certificates and CRLs:

 CollectionCertStoreParameters ccsp =
 new CollectionCertStoreParameters(certsAndCrls);
 CertStore store = CertStore.getInstance("Collection", ccsp);
 params.addCertStore(store);

The next step is to build the certification path using the input parameter set we have created:

 try {
 PKIXCertPathBuilderResult result =
 (PKIXCertPathBuilderResult) cpb.build(params);
 CertPath cp = result.getCertPath();
 } catch (CertPathBuilderException cpbe) {
 System.out.println("build failed: " + cpbe.getMessage());
 }

If the CertPathBuilder cannot build a path that meets the supplied parameters it will throw a
CertPathBuilderException. Otherwise, the validated certification path can be obtained from
the PKIXCertPathBuilderResult using the getCertPath method.

The PKIXCertPathChecker Class
The PKIXCertPathChecker class allows a user to extend a PKIX CertPathValidator or
CertPathBuilder implementation. This is an advanced feature that most users will not need to
understand. However, anyone implementing a PKIX service provider should read this section

The PKIXCertPathChecker class is an abstract class that executes one or more checks on an
X.509 certificate. Developers should create concrete implementations of the

Chapter 9
Core Classes and Interfaces

9-30

PKIXCertPathChecker class when it is necessary to dynamically extend a PKIX
CertPathValidator or CertPathBuilder implementation at runtime. The following are a few
examples of when a PKIXCertPathChecker implementation is useful:

• If the revocation mechanism supplied by a PKIX CertPathValidator or CertPathBuilder
implementation is not adequate: For example, you can use the PKIXRevocationChecker
(introduced in JDK 8; see Check Revocation Status of Certificates with
PKIXRevocationChecker Class) to have more control over the revocation mechanism, or
you can implement your own PKIXCertPathChecker to check that certificates have not
been revoked.

• If the user wants to recognize certificates containing a critical private extension. Since the
extension is private, it will not be recognized by the PKIX CertPathValidator or
CertPathBuilder implementation and a CertPathValidatorException will be thrown. In
this case, a developer can implement a PKIXCertPathChecker that recognizes and
processes the critical private extension.

• If the developer wants to record information about each certificate processed for
debugging or display purposes.

• If the user wants to reject certificates with certain policy qualifiers.

The setCertPathCheckers method of the PKIXParameters class allows a user to pass a List
of PKIXCertPathChecker objects to a PKIX CertPathValidator or CertPathBuilder
implementation. Each of the PKIXCertPathChecker objects will be called in turn, for each
certificate processed by the PKIX CertPathValidator or CertPathBuilder implementation.

Creating and using a PKIXCertPathChecker Object

The PKIXCertPathChecker class does not have a public constructor. This is intentional, since
creating an instance of PKIXCertPathChecker is an implementation-specific issue. For
example, the constructor for a PKIXCertPathChecker implementation that uses OCSP to check
a certificate's revocation status may require the hostname and port of the OCSP server:

 PKIXCertPathChecker checker = new OCSPChecker("ocsp.sun.com", 1321);

Once the checker has been instantiated, it can be added as a parameter using the
addCertPathChecker method of the PKIXParameters class:

 params.addCertPathChecker(checker);

Alternatively, a List of checkers can be added using the setCertPathCheckers method of the
PKIXParameters class.

Implementing a PKIXCertPathChecker Object

The PKIXCertPathChecker class is abstract. It has four methods (check,
getSupportedExtensions, init, and isForwardCheckingSupported) that all concrete
subclasses must implement.

Implementing a PKIXCertPathChecker may be trivial or complex. A PKIXCertPathChecker
implementation can be stateless or stateful. A stateless implementation does not maintain
state between successive calls of the check method. For example, a PKIXCertPathChecker
that checks that each certificate contains a particular policy qualifier is stateless. In contrast, a
stateful implementation does maintain state between successive calls of the check method.
The check method of a stateful implementation usually depends on the contents of prior

Chapter 9
Core Classes and Interfaces

9-31

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXRevocationChecker.html

certificates in the certification path. For example, a PKIXCertPathChecker that processes the
NameConstraints extension is stateful.

Also, the order in which the certificates processed by a service provider implementation are
presented (passed) to a PKIXCertPathChecker is very important, especially if the
implementation is stateful. Depending on the algorithm used by the service provider, the
certificates may be presented in reverse or forward order. A reverse ordering means that the
certificates are ordered from the most trusted CA (if present) to the target subject, whereas a
forward ordering means that the certificates are ordered from the target subject to the most
trusted CA. The order must be made known to the PKIXCertPathChecker implementation, so
that it knows how to process consecutive certificates.

Initializing a PKIXCertPathChecker Object

The init method initializes the internal state of the checker:

 public abstract void init(boolean forward)

All stateful implementations should clear or initialize any internal state in the checker. This
prevents a service provider implementation from calling a checker that is in an uninitialized
state. It also allows stateful checkers to be reused in subsequent operations without
reinstantiating them. The forward parameter indicates the order of the certificates presented to
the PKIXCertPathChecker. If forward is true, the certificates are presented from target to trust
anchor; if false, from trust anchor to target.

Forward Checking

The isForwardCheckingSupported method returns a boolean that indicates if the
PKIXCertPathChecker supports forward checking:

 public abstract boolean isForwardCheckingSupported()

All PKIXCertPathChecker implementations mustsupport reverse checking. A
PKIXCertPathChecker implementation maysupport forward checking.

Supporting forward checking improves the efficiency of CertPathBuilders that build forward,
since it allows paths to be checked as they are built. However, some stateful
PKIXCertPathCheckers may find it difficult or impossible to support forward checking.

Supported Extensions

The getSupportedExtensions method returns an immutable Set of OID Strings for the X.509
extensions that the PKIXCertPathChecker implementation supports (i.e., recognizes, is able to
process):

 public abstract Set<String> getSupportedExtensions()

The method should return null if no extensions are processed. All implementations should
return the Set of OID Strings that the check method may process.

A CertPathBuilder can use this information to identify certificates with unrecognized critical
extensions, even when performing a forward build with a PKIXCertPathChecker that does not
support forward checking.

Chapter 9
Core Classes and Interfaces

9-32

Executing the Check

The following method executes a check on the certificate:

 public abstract void
 check(Certificate cert, Collection<String> unresolvedCritExts)
 throws CertPathValidatorException

The unresolvedCritExts parameter contains a collection of OIDs as Strings. These OIDs
represent the set of critical extensions in the certificate that have not yet been resolved by the
certification path validation algorithm. Concrete implementations of the check method should
remove any critical extensions that it processes from the unresolvedCritExts parameter.

If the certificate does not pass the check(s), a CertPathValidatorException should be thrown.

Cloning a PKIXCertPathChecker

The PKIXCertPathChecker class implements the Cloneable interface. All stateful
PKIXCertPathChecker implementations must override the clone method if necessary. The
default implementation of the clone method calls the Object.clone method, which performs a
simple clone by copying all fields of the original object to the new object. A stateless
implementation should not override the clone method. However, all stateful implementations
must ensure that the default clone method is correct, and override it if necessary. For example,
a PKIXCertPathChecker that stores state in an array must override the clone method to make
a copy of the array, rather than just a reference to the array.

The reason that PKIXCertPathChecker objects are Cloneable is to allow a PKIX
CertPathBuilder implementation to efficiently backtrack and try another path when a potential
certification path reaches a dead end or point of failure. In this case, the implementation is able
to restore prior path validation states by restoring the cloned objects.

Example 9-3 Sample Code to Check for a Private Extension

This is an example of a stateless PKIXCertPathChecker implementation. It checks if a private
extension exists in a certificate and processes it according to some rules.

 import java.security.cert.Certificate;
 import java.security.cert.X509Certificate;
 import java.util.Collection;
 import java.util.Collections;
 import java.util.Set;
 import java.security.cert.PKIXCertPathChecker;
 import java.security.cert.CertPathValidatorException;

 public class MyChecker extends PKIXCertPathChecker {
 private static Set supportedExtensions =
 Collections.singleton("2.16.840.1.113730.1.1");

 /*
 * Initialize checker
 */
 public void init(boolean forward)
 throws CertPathValidatorException {
 // nothing to initialize
 }

Chapter 9
Core Classes and Interfaces

9-33

 public Set getSupportedExtensions() {
 return supportedExtensions;
 }

 public boolean isForwardCheckingSupported() {
 return true;
 }

 /*
 * Check certificate for presence of Netscape's
 * private extension
 * with OID "2.16.840.1.113730.1.1"
 */
 public void check(Certificate cert,
 Collection unresolvedCritExts)
 throws CertPathValidatorException
 {
 X509Certificate xcert = (X509Certificate) cert;
 byte[] ext =
 xcert.getExtensionValue("2.16.840.1.113730.1.1");
 if (ext == null)
 return;

 //
 // process private extension according to some
 // rules - if check fails, throw a
 // CertPathValidatorException ...
 // {insert code here}

 // remove extension from collection of unresolved
 // extensions (if it exists)
 if (unresolvedCritExts != null)
 unresolvedCritExts.remove("2.16.840.1.113730.1.1");
 }
 }

How a PKIX Service Provider implementation should use a PKIXCertPathChecker

Each PKIXCertPathChecker object must be initialized by a service provider implementation
before commencing the build or validation algorithm, for example:

 List<PKIXCertPathChecker> checkers = params.getCertPathCheckers();
 for (PKIXCertPathChecker checker : checkers) {
 checker.init(false);
 }

For each certificate that it validates, the service provider implementation must call the check
method of each PKIXCertPathChecker object in turn, passing it the certificate and any
remaining unresolved critical extensions:

 for (PKIXCertPathChecker checker : checkers) {
 checker.check(cert, unresolvedCritExts);
 }

Chapter 9
Core Classes and Interfaces

9-34

If any of the checks throw a CertPathValidatorException, a CertPathValidator
implementation should terminate the validation procedure. However, a CertPathBuilder
implementation may simply log the failure and continue to search for other potential paths. If all
of the checks are successful, the service provider implementation should check that all critical
extensions have been resolved and if not, consider the validation to have failed. For example:

 if (unresolvedCritExts != null &&
 !unresolvedCritExts.isEmpty())
 {
 // Note that a CertPathBuilder may have an enclosing
 // try block to catch the exception and continue on error
 throw new CertPathValidatorException
 ("Unrecognized Critical Extension");
 }

As discussed in the previous section, a CertPathBuilder implementation may need to
backtrack when a potential certification path reaches a dead end or point of failure.
Backtracking in this context implies returning to the previous certificate in the path and
checking for other potential paths. If the CertPathBuilder implementation is validating the path
as it is building it, it will need to restore the previous state of each PKIXCertPathChecker. It can
do this by making clones of the PKIXCertPathChecker objects before each certificate is
processed, for example:

 /* clone checkers */
 List newList = new ArrayList(checkers);
 ListIterator li = newList.listIterator();
 while (li.hasNext()) {
 PKIXCertPathChecker checker = (PKIXCertPathChecker) li.next();
 li.set(checker.clone());
 }

Using PKIXCertPathChecker in Certificate Path Validation
Using a PKIXCertPathChecker to customize certificate path validation is relatively
straightforward.

Basic Certification Path Validation

First, consider code that validates a certificate path:

Set<TrustAnchor> trustAnchors = getTrustAnchors();
CertPath cp = getCertPath();

PKIXParameters pkixp = new PKIXParameters(trustAnchors);
pkixp.setRevocationEnabled(false);

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
PKIXCertPathValidatorResult pcpvr =
 (PKIXCertPathValidatorResult)cpv.validate(cp, pkixp);

If the validation fails, the validate() method throws an exception.

The fundamental steps are as follows:

Chapter 9
Core Classes and Interfaces

9-35

1. Obtain the CA root certificates and the certification path to be validated.

2. Create a PKIXParameters with the trust anchors.

3. Use a CertPathValidator to validate the certificate path.

In this example, getTrustAnchors() and getCertPath() are the methods that obtain CA root
certificates and the certification path.

The getTrustAnchors() method in the example must return a Set of TrustAnchors that
represent the CA root certificates you wish to use for validation. Here is one simple
implementation that loads a single CA root certificate from a file:

public Set<TrustAnchor> getTrustAnchors()
 throws IOException, CertificateException {

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 X509Certificate c;
 try (InputStream in = new FileInputStream("x509_ca-certificate.cer")) {
 c = (X509Certificate)cf.generateCertificate(in);
 }

 TrustAnchor anchor = new TrustAnchor(c, null);
 return Collections.singleton(anchor);
}

Similarly, here is a simple implementation of getCertPath() that loads a certificate path from a
file:

public CertPath getCertPath() throws IOException, CertificateException {
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 CertPath cp;
 try (InputStream in = new FileInputStream("certpath.pkcs7")) {
 cp = cf.generateCertPath(in, "PKCS7");
 }
 return cp;
}

Note that PKCS#7 does not require a specific order for the certificates in the file, so this code
only works for certification path validation when the certificates are ordered starting from the
entity to be validated and progressing back toward the CA root. If the certificates are not in the
right order, you need to do some additional processing. CertificateFactory has a
generateCertPath() method that accepts a Collection, which is useful for this type of
processing.

Chapter 9
Core Classes and Interfaces

9-36

Adding in a PKIXCertPathChecker
To customize certification path validation, add a PKIXCertPathChecker as follows. In this
example, SimpleChecker is a PKIXCertPathChecker subclass. The new lines are shown in
bold.

Set<TrustAnchor> trustAnchors = getTrustAnchors();
CertPath cp = getCertPath();

PKIXParameters pkixp = new PKIXParameters(trustAnchors);
pkixp.setRevocationEnabled(false);

SimpleChecker sc = new SimpleChecker();
pkixp.addCertPathChecker(sc);

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
PKIXCertPathValidatorResult pcpvr =
 (PKIXCertPathValidatorResult)cpv.validate(cp, pkixp);

SimpleChecker is a rudimentary subclass of PKIXCertPathChecker. Its check() method is
called for every certificate in the certification path that is being validated. SimpleChecker uses
an AlgorithmConstraints implementation to examine the signature algorithm and public key
of each certificate.

import java.security.AlgorithmConstraints;
import java.security.CryptoPrimitive;
import java.security.Key;
import java.security.cert.*;
import java.util.*;

public class SimpleChecker extends PKIXCertPathChecker {
 private final static Set<CryptoPrimitive> SIGNATURE_PRIMITIVE_SET =
 EnumSet.of(CryptoPrimitive.SIGNATURE);

 public void init(boolean forward) throws CertPathValidatorException {}

 public boolean isForwardCheckingSupported() { return true; }

 public Set<String> getSupportedExtensions() { return null; }

 public void check(Certificate cert,
 Collection<String> unresolvedCritExts)
 throws CertPathValidatorException {
 X509Certificate c = (X509Certificate)cert;
 String sa = c.getSigAlgName();
 Key key = c.getPublicKey();

 AlgorithmConstraints constraints = new SimpleConstraints();

 if (constraints.permits(SIGNATURE_PRIMITIVE_SET, sa, null) == false)
 throw new CertPathValidatorException("Forbidden algorithm: " + sa);

Chapter 9
Core Classes and Interfaces

9-37

 if (constraints.permits(SIGNATURE_PRIMITIVE_SET, key) == false)
 throw new CertPathValidatorException("Forbidden key: " + key);
 }
}

Finally, SimpleConstraints is an AlgorithmConstraints implementation that requires RSA
2048.

import java.security.AlgorithmConstraints;
import java.security.AlgorithmParameters;
import java.security.CryptoPrimitive;
import java.security.Key;
import java.security.interfaces.RSAKey;
import java.util.Set;

public class SimpleConstraints implements AlgorithmConstraints {
 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, AlgorithmParameters parameters) {
 return permits(primitives, algorithm, null, parameters);
 }

 public boolean permits(Set<CryptoPrimitive> primitives, Key key) {
 return permits(primitives, null, key, null);
 }

 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, Key key, AlgorithmParameters parameters) {
 if (algorithm == null) algorithm = key.getAlgorithm();

 if (algorithm.indexOf("RSA") == -1) return false;

 if (key != null) {
 RSAKey rsaKey = (RSAKey)key;
 int size = rsaKey.getModulus().bitLength();
 if (size < 2048) return false;
 }

 return true;
 }
}

Check Revocation Status of Certificates with PKIXRevocationChecker Class
An instance of PKIXRevocationChecker checks the revocation status of certificates with the
Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs).

The PKIXRevocationChecker (introduced in JDK 8), which is a subclass of
PKIXCertPathChecker, checks the revocation status of certificates with the PKIX algorithm.

An instance of PKIXRevocationChecker checks the revocation status of certificates with the
Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs). OCSP is
described in RFC 2560 and is a network protocol for determining the status of a certificate. A
CRL is a time-stamped list identifying revoked certificates, and RFC 5280 describes an
algorithm for determining the revocation status of certificates using CRLs.

Chapter 9
Core Classes and Interfaces

9-38

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXRevocationChecker.html
http://www.ietf.org/rfc/rfc2560.txt

Each PKIX CertPathValidator and CertPathBuilder instance provides a default revocation
implementation that is enabled by default. If you want more control over the revocation settings
used by that implementation, use the PKIXRevocationChecker class.

Follow these general steps to check the revocation status of a certificate path with the
PKIXRevocationChecker class:

1. Obtain a PKIXRevocationChecker instance by calling the getRevocationChecker method
of a PKIX CertPathValidator or CertPathBuilder instance.

2. Set additional parameters and options specific to certificate revocation with methods
contained in the PKIXRevocationChecker class. These methods include
setOCSPResponder(URI), which sets the URI that identifies the location of the OCSP
responder (although normally the URI is included in the certificate and does not have to be
set) and setOptions(Set<PKIXRevocationChecker.Option>), which sets revocation
options. PKIXRevocationChecker.Option is an enumerated type used to specify the
following options:

• ONLY_END_ENTITY: Only check the revocation status of end-entity certificates.

• PREFER_CRLS: By default, OCSP is the preferred mechanism for checking revocation
status, with CRLs as the fallback mechanism. Switch this preference to CRLs with this
option.

• SOFT_FAIL: Ignore network failures.

3. After obtaining an instance of PKIXRevocationChecker, add it to a PKIXParameters or
PKIXBuilderParameters object with the addCertPathChecker or setCertPathCheckers
method.

4. Follow one of these steps depending on whether you are using a PKIX CertPathValidator
or CertPathBuilder instance:

• If you are using a PKIX CertPathValidator instance, call the validate method using
as arguments the certificate path you want to validate and the PKIXParameters object
that contains a revocation checker.

• If you are using a PKIX CertPathBuilder instance, call the build method using as
arguments the PKIXBuilderParameters object that contains a revocation checker.

5. Call the validate method of the PKIX CertPathValidator or CertPathBuilder instance
using as arguments the certificate path you want to validate and the PKIXParameters or
PKIXBuilderParameters object that contains a revocation checker.

The following excerpt checks the revocation status of certificates contained in a certificate
path. The CertPath object path is the certificate path, and params is an object of type
PKIXParameters:

 CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
 PKIXRevocationChecker rc =
(PKIXRevocationChecker)cpv.getRevocationChecker();
 rc.setOptions(EnumSet.of(Option.SOFT_FAIL));
 params.addCertPathChecker(rc);
 params.setRevocationEnabled(false);
 CertPathValidatorResult res = cpv.validate(path, params);

Chapter 9
Core Classes and Interfaces

9-39

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXRevocationChecker.html#setOcspResponder(java.net.URI)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXRevocationChecker.html#setOptions(java.util.Set)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXRevocationChecker.Option.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXParameters.html#addCertPathChecker(java.security.cert.PKIXCertPathChecker)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/PKIXParameters.html#setCertPathCheckers(java.util.List)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathValidator.html#validate(java.security.cert.CertPath,java.security.cert.CertPathParameters)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathBuilder.html#build(java.security.cert.CertPathParameters)

In this excerpt, the SOFT_FAIL option causes the revocation checker to ignore any network
failures (such as failing to establish a connection to the OCSP server) when it checks the
revocation status.

Implementing a Service Provider
Experienced programmers can create their own provider packages supplying certification path
service implementations.

This section assumes that you have read Java Cryptography Architecture (JCA) Reference
Guide.

The following engine classes are defined in the Java Certification Path API:

• CertPathValidator - used to validate certification paths

• CertPathBuilder - used to build certification paths

• CertStore - used to retrieve certificates and CRLs from a repository

In addition, the pre-existing CertificateFactory engine class also supports the generation of
certification paths.

The application interfaces supplied by an engine class are implemented in terms of a "Service
Provider Interface" (SPI). The name of each SPI class is the same as that of the corresponding
engine class, followed by "Spi". For example, the SPI class corresponding to the
CertPathValidator engine class is the CertPathValidatorSpi class. Each SPI class is
abstract. To supply the implementation of a particular type of service, for a specific algorithm or
type, a provider must subclass the corresponding SPI class and provide implementations for all
the abstract methods. For example, the CertStore class provides access to the functionality of
retrieving certificates and CRLs from a repository. The actual implementation supplied in a
CertStoreSpi subclass would be that for a specific type of certificate repository, such as LDAP.

Steps to Implement and Integrate a Provider
When implementing and integrating a provider for the certification path services, you must
ensure that certain information is provided.

Developers should follow the Steps to Implement and Integrate a Provider. Here are some
additional rules to follow for certain steps:

Step 3: Write your "Master Class", a subclass of Provider

In Step 3: Write Your Master Class, a Subclass of Provider these are the properties that must
be defined for the certification path services, where the algorithm name is substituted for
algName, and certstore type for storeType:

• CertPathValidator.algName

• CertPathBuilder.algName

• CertStore.storeType

See Java Security Standard Algorithm Names for the standard names that are defined for
algName and storeType. The value of each property must be the fully qualified name of the
class implementing the specified algorithm, or certstore type. That is, it must be the package
name followed by the class name, where the two are separated by a period. For example, a

Chapter 9
Implementing a Service Provider

9-40

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

provider sets the CertPathValidator.PKIX property to have the value
"sun.security.provider.certpath.PKIXCertPathValidator" as follows:

put("CertPathValidator.PKIX",
"sun.security.provider.certpath.PKIXCertPathValidator")

In addition, service attributes can be defined for the certification path services. These attributes
can be used as filters for selecting service providers. See Appendix A for the definition of some
standard service attributes. For example, a provider may set the ValidationAlgorithm service
attribute to the name of an RFC or specification that defines the PKIX validation algorithm:

put("CertPathValidator.PKIX ValidationAlgorithm", "RFC5280");

Step 11: Document your Provider and its Supported Services

In Step 12: Document Your Provider and Its Supported Services, certification path service
providers should document the following information for each SPI:

Certificate Factories

A provider should document what types of certification paths (and the version numbers of the
certificates in the path, if relevant) can be created by the factory. A provider should describe
the ordering of the certificates in the certification path, as well as the contents.

A provider should document the list of encoding formats supported. This is not technically
necessary, since the client can request them by calling the getCertPathEncodings method.
However, the documentation should describe each encoding format in more detail and
reference any standards when applicable.

Certification Path Validators

A provider should document any relevant information regarding the CertPathValidator
implementation, including the types of certification paths that it validates. In particular, a PKIX
CertPathValidator implementation should document the following information:

• The RFC or specification it is compliant with.

• The mechanism it uses to check that certificates have not been revoked.

• Any optional certificate or CRL extensions that it recognizes and how it processes them.

Certification Path Builders

A provider should document any relevant information regarding the CertPathBuilder
implementation, including the types of certification paths that it creates and whether or not they
are validated. In particular a PKIX CertPathBuilder implementation should document the
following information:

• The RFC or specification it is compliant with.

• The mechanism it uses to check that certificates have not been revoked.

• Any optional certificate or CRL extensions that it recognizes and how it processes them.

• Details on the algorithm it uses for finding certification paths. Ex: depth-first, breadth-first,
forward (i.e., from target to trust anchor(s)), reverse (i.e., from trust anchor(s) to target).

Chapter 9
Implementing a Service Provider

9-41

• The algorithm it uses to select and sort potential certificates. For example, given two
certificates that are potential candidates for the next certificate in the path, what criteria are
used to select one before the other? What criteria are used to reject a certificate?

• If applicable, the algorithm it uses for backtracking or constructing another path (i.e., when
potential paths do not meet constraints).

• The types of CertStore implementations that have been tested. The implementation
should be designed to work with any CertStore type, but this information may still be
useful.

All CertPathBuilder implementations should provide additional debugging support, in order to
analyze and correct potential path building problems. Details on how to access this debugging
information should be documented.

Certificate/CRL Stores

A provider should document what types of certificates and CRLs (and the version numbers, if
relevant) are retrieved by the CertStore.

A provider should also document any relevant information regarding the CertStore
implementation (such as protocols used or formats supported). For example, an LDAP
CertStore implementation should describe which versions of LDAP are supported and which
standard attributes are used for finding certificates and CRLs. It should also document if the
implementation caches results, and for how long (i.e., under what conditions are they
refreshed).

If the implementation returns the certificates and CRLs in a particular order, it should describe
the sorting algorithm. An implementation should also document any additional or default
initialization parameters. Finally, an implementation should document if and how it uses
information in the CertSelector or CRLSelector objects to find certificates and CRLs.

Service Interdependencies
Common types of algorithm interdependencies in certification path service implementations.

The following are some common types of algorithm interdependencies in certification path
service implementations:

• Certification Path Validation and Signature Algorithms

A CertPathValidator implementation often requires use of a signature algorithm to verify
each certificate's digital signature. The setSigProvider method of the PKIXParameters
class allows a user to specify a specific Signature provider.

• Certification Path Builders and Certificate Factories

A CertPathBuilder implementation will often utilize a CertificateFactory to generate a
certification path from a list of certificates.

• CertStores and Certificate Factories

A CertStore implementation will often utilize a CertificateFactory to generate
certificates and CRLs from their encodings. For example, an LDAP CertStore
implementation may use an X.509 CertificateFactory to generate X.509 certificates and
CRLs from their ASN.1 encoded form.

Certification Path Parameter Specification Interfaces
The Certification Path API contains two interfaces representing transparent specifications of
parameters, the CertPathParameters and CertStoreParameters interfaces.

Chapter 9
Implementing a Service Provider

9-42

Two implementations of the CertPathParameters interface are included, the PKIXParameters
and PKIXBuilderParameters classes. If you are working with PKIX certification path validation
and algorithm parameters, you can utilize these classes. If you need parameters for a different
algorithm, you will need to supply your own CertPathParameters implementation for that
algorithm.

Two implementations of the CertStoreParameters interface are included, the
LDAPCertStoreParameters and the CollectionCertStoreParameters classes. These classes
are to be used with LDAP and Collection CertStore implementations, respectively. If you need
parameters for a different repository type, you will need to supply your own
CertStoreParameters implementation for that type.

The CertPathParameters and CertStoreParameters interfaces each define a clone method
that implementations should override. A typical implementation will perform a "deep" copy of
the object, such that subsequent changes to the copy will not affect the original (and vice
versa). However, this is not an absolute requirement for implementations of
CertStoreParameters. A shallow copy implementation of clone is more appropriate for
applications that need to hold a reference to a parameter contained in the
CertStoreParameters. For example, since CertStore.getInstance makes a clone of the
specified CertStoreParameters, a shallow copy clone allows an application to hold a
reference to and later release the resources of a particular CertStore initialization parameter,
rather than waiting for the garbage collection mechanism. This should be done with the utmost
care, since the CertStore may still be in use by other threads.

Certification Path Result Specification Interfaces
The Certification Path API contains two interfaces representing transparent specifications of
results, the CertPathValidatorResult and CertPathBuilderResult interfaces.

One implementation for each of the interfaces is included: the PKIXCertPathValidatorResult
and PKIXCertPathBuilderResult classes. If you are implementing PKIX certification path
service providers, you can utilize these classes. If you need certification path results for a
different algorithm, you will need to supply your own CertPathValidatorResult or
CertPathBuilderResult implementation for that algorithm.

A PKIX implementation of a CertPathValidator or a CertPathBuilder may find it useful to
store additional information in the PKIXCertPathValidatorResult or
PKIXCertPathBuilderResult, such as debugging traces. In these cases, the implementation
should implement a subclass of the appropriate result class with methods to retrieve the
relevant information. These classes must be shipped with the provider classes, for example, as
part of the provider JAR file.

Certification Path Exception Classes
The Certification Path API contains a set of exception classes for handling errors.
CertPathValidatorException, CertPathBuilderException, and CertStoreException are
subclasses of GeneralSecurityException.

You may need to extend these classes in your service provider implementation.

For example, a CertPathBuilder implementation may provide additional information such as
debugging traces when a CertPathBuilderException is thrown. The implementation may
throw a subclass of CertPathBuilderException that holds this information. Likewise, a
CertStore implementation can provide additional information when a failure occurs by throwing
a subclass of CertStoreException . Also, you may want to implement a subclass of

Chapter 9
Implementing a Service Provider

9-43

CertPathValidatorException to describe a particular failure mode of your CertPathValidator
implementation.

In each case, the new exception classes must be shipped with the provider classes, for
example, as part of the provider JAR file. Each provider should document the exception
subclasses.

Appendix A: Standard Names
The Java Certification Path API requires and utilizes a set of standard names for certification
path validation algorithms, encodings and certificate storage types.

The standard names previously found here in Appendix A and in the other security
specifications (JCA/JSSE/etc.) have been combined in the Java Security Standard Algorithm
Names. Specific provider information can be found in the JDK Providers.

Please note that a service provider may choose to define a new name for a proprietary or non-
standard algorithm that is not mentioned in the Standard Names document. However, to
prevent name collisions, it is recommended that the name be prefixed with the reverse Internet
domain name of the provider's organization (for example: com.sun.MyCertPathValidator).

Appendix B: CertPath Implementation in SUN Provider
The "SUN" provider supports the following standard algorithms, types and encodings:

• CertificateFactory: X.509 CertPath type with PKCS7 and PkiPath encodings

• CertPathValidator: PKIX algorithm

• CertPathBuilder: PKIX algorithm

• CertStore: Collection CertStore type

The following discusses each of these service provider interface implementations:

CertificateFactory

The "SUN" provider for the CertificateFactory engine class supports generation of X.509
CertPath objects. The PKCS7 and PkiPath encodings are supported. The PKCS#7
implementation supports a subset of RFC 2315 (only the SignedData ContentInfo type is
supported). The certificates in the CertPath are ordered in the forward direction (from target to
trust anchor). Each certificate in the CertPath is of type
java.security.cert.X509Certificate , and versions 1, 2 and 3 are supported.

CertPathValidator

The "SUN" provider supplies a PKIX implementation of the CertPathValidator engine class.
The implementation validates CertPaths of type X.509 and implements the certification path
validation algorithm defined in RFC 5280: PKIX Certificate and CRL Profile. This
implementation sets the ValidationAlgorithm service attribute to "RFC5280".

Weak cryptographic algorithms can be disabled in the "SUN" provider using the
jdk.certpath.disabledAlgorithms Security Property. See Appendix E: Disabling
Cryptographic Algorithms for a description and examples of this property.

The PKIX Certificate and CRL Profile has many optional features. The "SUN" provider
implements support for the policy mapping, authority information access and CRL distribution
point certificate extensions, the issuing distribution point CRL extension, and the reason code

Chapter 9
Appendix A: Standard Names

9-44

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
http://www.ietf.org/rfc/rfc2315.txt
http://www.ietf.org/rfc/rfc5280.txt

and certificate issuer CRL entry extensions. It does not implement support for the freshest CRL
or subject information access certificate extensions. It also does not include support for the
freshest CRL and delta CRL Indicator CRL extensions and the invalidity date and hold
instruction code CRL entry extensions.

The implementation supports a CRL revocation checking mechanism that conforms to section
6.3 of the PKIX Certificate and CRL Profile. OCSP (RFC 2560) is also currently supported as a
built in revocation checking mechanism. See Appendix C: OCSP Support for more details on
the implementation and configuration and how it works in conjunction with CRLs.

The implementation does not support the nameConstraints parameter of the TrustAnchor
class and the validate method throws an InvalidAlgorithmParameterException if it is
specified.

CertPathBuilder

The "SUN" provider supplies a PKIX implementation of the CertPathBuilder engine class. The
implementation builds CertPaths of type X.509. Each CertPath is validated according to the
PKIX algorithm defined in RFC 5280: PKIX Certificate and CRL Profile. This implementation
sets the ValidationAlgorithm service attribute to "RFC5280".

The implementation requires that the targetConstraints parameter of a
PKIXBuilderParameters object is an instance of X509CertSelector and the subject criterion is
set to a non-null value. Otherwise the build method throws an
InvalidAlgorithmParameterException.

The implementation builds CertPath objects in a forward direction using a depth-first algorithm.
It backtracks to previous states and tries alternate paths when a potential path is determined to
be invalid or exceeds the PKIXBuilderParameters maxPathLength parameter.

Validation of the path is performed in the same manner as the CertPathValidator
implementation. The implementation validates most of the path as it is being built, in order to
eliminate invalid paths earlier in the process. Validation checks that cannot be executed on
certificates ordered in a forward direction are delayed and executed on the path after it has
been constructed (but before it is returned to the application).

As with CertPathValidator, the jdk.certpath.disabledAlgorithms Security Property can be
used to exclude cryptographic algorithms that are not considered safe.

When two or more potential certificates are discovered that may lead to finding a path that
meets the specified constraints, the implementation uses the following criteria to prioritize the
certificates (in the following examples, assume a TrustAnchor distinguished name of
"ou=D,ou=C,o=B,c=A" is specified):

1. The issuer DN of the certificate matches the DN of one of the specified TrustAnchors (ex:
issuerDN = "ou=D,ou=C,o=B,c=A").

2. The issuer DN of the certificate is a descendant of the DN of one of the TrustAnchors,
ordered by proximity to the anchor (ex: issuerDN = "ou=E,ou=D,ou=C,o=B,c=A").

3. The issuer DN of the certificate is an ancestor of the DN of one of the TrustAnchors,
ordered by proximity to the anchor (ex: issuerDN = "ou=C,o=B,c=A".

4. The issuer DN of the certificate is in the same namespace of one of the TrustAnchors,
ordered by proximity to the anchor (ex: issuerDN = "ou=G,ou=C,o=B,c=A").

5. The issuer DN of the certificate is an ancestor of the subject DN of the certificate, ordered
by proximity to the subject.

These are followed by certificates which don't meet any of these criteria.

Chapter 9
Appendix B: CertPath Implementation in SUN Provider

9-45

http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc5280.txt

This implementation has been tested with the LDAP and Collection CertStore implementations
included in this release of the "SUN" provider.

Debugging support can be enabled by setting the java.security.debug property to certpath.
For example:

java -Djava.security.debug=certpath BuildCertPath

This will print additional debugging information to standard error.

Collection CertStore

The SUN provider supports the Collection implementation of the CertStore engine class.

The Collection CertStore implementation can hold any objects that are an instance of
java.security.cert.Certificate or java.security.cert.CRL.

The certificates and CRLs are not returned in any particular order and will not contain
duplicates.

Support for the CRL Distribution Points Extension

Support for the CRL Distribution Points extension is available. It is disabled by default for
compatibility and can be enabled by setting the system property
com.sun.security.enableCRLDP to the value true.

If set to true, Oracle's PKIX implementation uses the information in a certificate's CRL
Distribution Points extension (in addition to CertStores that are specified) to find the CRL,
provided the distribution point is an X.500 distinguished name or a URI of type ldap, http, or ftp.

Note:

Depending on your network and firewall setup, it may be necessary to also configure
your networking proxy servers.

Support for the Authority Information Access (AIA) Extension

Support for the caIssuers access method of the Authority Information Access extension is
available. It is disabled by default for compatibility and can be enabled by setting the system
property com.sun.security.enableAIAcaIssuers to the value true.

If set to true, Oracle's PKIX implementation of CertPathBuilder uses the information in a
certificate's AIA extension (in addition to CertStores that are specified) to find the issuing CA
certificate, provided it is a URI of type ldap, http, or ftp.

Note:

Depending on your network and firewall setup, it may be necessary to also configure
your networking proxy servers.

Maximum Network Connection and Read Timeouts for CRL and OCSP Retrievals

The following system properties set timeout values in seconds or milliseconds. A number by
itself or appended by s represents a value in seconds. For example, 10 and 10s both represent

Chapter 9
Appendix B: CertPath Implementation in SUN Provider

9-46

10 seconds. A number appended by ms represents a value in milliseconds. For example,
1000ms represents 1000 milliseconds or 1 second. If a property has not been set, or if its value
is negative, it is set to the default value of 15 seconds. A value of 0 means an infinite timeout.

Table 9-1 Maximum Network Connection and Read Timeouts for CRL and OCSP
Retrievals

System Property Description Default Timeout Duration

com.sun.security.cert.time
out

Sets the maximum timeout to
establish a TCP connection when
specified in an X.509 certificate's
AuthorityInfoAccess
extension.

15 seconds

com.sun.security.cert.read
timeout

Sets the maximum timeout to
read data once a TCP connection
has been established when
specified in an X.509 certificate's
AuthorityInfoAccess
extension.

15 seconds

com.sun.security.crl.timeo
ut

Sets the maximum connection
timeout for CRL retrievals.

15 seconds

com.sun.security.crl.readt
imeout

Sets the maximum read timeout
for CRL retrievals. The read
timeout prevents a CRL download
from taking a long time when a
connection is established.

15 seconds

com.sun.security.ocsp.time
out

Sets the maximum timeout to
establish a TCP connection.

15 seconds

com.sun.security.ocsp.read
timeout

Sets the maximum timeout to
read data once a TCP connection
has been established.

15 seconds

Appendix C: OCSP Support
Client-side support for the On-Line Certificate Status Protocol (OCSP) as defined in RFC 2560
is supported.

OCSP checking is controlled by the following Security Properties:

Property Name Description

ocsp.enable This property's value is either true or false. If true,
OCSP checking is enabled when doing certificate
revocation checking; if false or not set, OCSP
checking is disabled.

Chapter 9
Appendix C: OCSP Support

9-47

Property Name Description

ocsp.responderURL This property's value is a URL that identifies the
location of the OCSP responder. Here is an
example

ocsp.responderURL=http://
ocsp.example.net:80

By default, the location of the OCSP responder is
determined implicitly from the certificate being
validated. The property is used when the Authority
Information Access extension (defined in RFC
5280) is absent from the certificate or when it
requires overriding.

ocsp.responderCertSubjectName This property's value is the subject name of the
OCSP responder's certificate. Here is an example

ocsp.responderCertSubjectName="CN=OCS
P Responder, O=XYZ Corp"

By default, the certificate of the OCSP responder is
that of the issuer of the certificate being validated.
This property identifies the certificate of the OCSP
responder when the default does not apply. Its
value is a string distinguished name (defined in
RFC 2253) which identifies a certificate in the set
of certificates supplied during cert path validation.
In cases where the subject name alone is not
sufficient to uniquely identify the certificate, then
both the ocsp.responderCertIssuerName and
ocsp.responderCertSerialNumber properties
must be used instead. When this property is set,
then those two properties are ignored.

ocsp.responderCertIssuerName This property's value is the issuer name of the
OCSP responder's certificate . Here is an example

ocsp.responderCertIssuerName="CN=Ente
rprise CA, O=XYZ Corp"

By default, the certificate of the OCSP responder is
that of the issuer of the certificate being validated.
This property identifies the certificate of the OCSP
responder when the default does not apply. Its
value is a string distinguished name (defined in
RFC 2253) which identifies a certificate in the set
of certificates supplied during cert path validation.
When this property is set then the
ocsp.responderCertSerialNumber property
must also be set. Note that this property is ignored
when the ocsp.responderCertSubjectName
property has been set.

Chapter 9
Appendix C: OCSP Support

9-48

Property Name Description

ocsp.responderCertSerialNumber This property's value is the serial number of the
OCSP responder's certificate Here is an example

ocsp.responderCertSerialNumber=2A:FF:
00

By default, the certificate of the OCSP responder is
that of the issuer of the certificate being validated.
This property identifies the certificate of the OCSP
responder when the default does not apply. Its
value is a string of hexadecimal digits (colon or
space separators may be present) which identifies
a certificate in the set of certificates supplied
during cert path validation. When this property is
set then the ocsp.responderCertIssuerName
property must also be set. Note that this property is
ignored when the
ocsp.responderCertSubjectName property has
been set.

These properties may be set either statically in the Java runtime's <java_home>/conf/
security/java.security file, or dynamically using the
java.security.Security.setProperty() method.

By default, OCSP checking is not enabled. It is enabled by setting the ocsp.enable property to
"true". Use of the remaining properties is optional. Note that enabling OCSP checking only
has an effect if revocation checking has also been enabled. Revocation checking is enabled
via the PKIXParameters.setRevocationEnabled() method.

OCSP checking works in conjunction with Certificate Revocation Lists (CRLs) during
revocation checking. The following is a summary of the interaction of OCSP and CRLs.
Failover to CRLs occurs only if an OCSP problem is encountered. Failover does not occur if
the OCSP responder confirms either that the certificate has been revoked or that it has not
been revoked.

PKIXParameters
RevocationEnabled
(default=true)

ocsp.enable (default=false) Behavior

true true Revocation checking using
OCSP, failover to using CRLs

true false Revocation checking using CRLs
only

false true No revocation checking

false false No revocation checking

Enable OSCP Nonce Extension
The OSCP nonce extension cryptographically binds a request and a response to prevent
replay attacks. The system property jdk.security.certpath.ocspNonce enables you to
specify whether the PKIXRevocationChecker class includes the OCSP nonce extension:

Chapter 9
Appendix C: OCSP Support

9-49

The OSCP nonce extension cryptographically binds a request and a response to prevent
replay attacks. The system property jdk.security.certpath.ocspNonce enables you to
specify whether the PKIXRevocationChecker class includes the OCSP nonce extension:

• If jdk.security.certpath.OCSPNonce is false and the application provides the OCSP
nonce extension, then the PKIXRevocationChecker class uses application-provided
nonce in the OCSP request.

• If jdk.security.certpath.OCSPNonce is true and the application does not provide the
nonce extension, then the PKIXRevocationChecker class includes a 16-byte nonce
with each OCSP request.

• If jdk.security.certpath.OCSPNonce is true and the application also provides the nonce
extension, then the PKIXRevocationChecker class throws an exception.

By default, jdk.security.certpath.OCSPNonce is false.

Maximum Allowable Clock Skew
You might encounter connection failures during revocation checking because the network is
slow or the system clock is off by some amount. Set the maximum allowable clock skew (the
time difference between response time and local time), in seconds, used for revocation checks
with the system property com.sun.security.ocsp.clockskew. If the property has not been set,
or if its value is negative, it's set to the default value of 900 seconds (15 minutes).

Fallback Option for POST-Only OCSP Requests
HTTP-based OCSP requests can use either the GET or the POST method to submit their
requests. By default, the OCSP client uses GET requests for small requests, which are those
that are less than 255 bytes after encoding. It uses POST requests for everything else.

However, if your OCSP responders are encountering issues with GET requests, you can
disable GET OCSP requests with the JDK system property -
Dcom.sun.security.ocsp.useget=false. The default value of this property is true.

Appendix D: CertPath Implementation in JdkLDAP Provider
The JdkLDAP provider supports the LDAP implementation of the CertStore engine class.

LDAP CertStore

The LDAP CertStore implementation retrieves certificates and CRLs from an LDAP directory
using the LDAP schema defined in RFC 2587.

The LDAPSchema service attribute is set to "RFC2587".

The implementation fetches certificates from different locations, depending on the values of the
subject, issuer, and basicConstraints selection criteria specified in the X509CertSelector. It
performs as many of the following operations as possible:

1. Subject non-null, basicConstraints <= -1
Looks for certificates in the subject DN's "userCertificate" attribute.

2. Subject non-null, basicConstraints >= -1
Looks for certificates in the forward element of the subject DN's "crossCertificatePair"
attribute AND in the subject's "caCertificate" attribute.

3. Issuer non-null, basicConstraints >= -1

Chapter 9
Appendix D: CertPath Implementation in JdkLDAP Provider

9-50

http://www.ietf.org/rfc/rfc2587.txt

Looks for certificates in the reverse element of the issuer DN's "crossCertificatePair"
attribute AND in the issuer DN's "caCertificate" attribute.

In each case, certificates are checked using X509CertSelector.match() before adding
them to the resulting collection.

If none of the conditions specified previously applies, then an exception is thrown to indicate
that it was impossible to fetch certificates using the criteria supplied. Note that even if one or
more of the conditions apply, the Collection returned may still be empty if there are no
certificates in the directory.

The implementation fetches CRLs from the issuer DNs specified in the
setCertificateChecking, addIssuerName or setIssuerNames methods of the
X509CRLSelector class. If no issuer DNs have been specified using one of these methods, the
implementation throws an exception indicating it was impossible to fetch CRLs using the
criteria supplied. Otherwise, the CRLs are searched as follows:

1. The implementation first creates a list of issuer names. If a certificate was specified in the
setCertificateChecking method, it uses the issuer of that certificate. Otherwise, it
uses the issuer names specified using the addIssuerName or setIssuerNames
methods.

2. Next, the implementation iterates through the list of issuer names. For each issuer name, it
searches first in the issuer's "authorityRevocationList" attribute and then, if no
matching CRL was found there, in the issuer's "certificateRevocationList" attribute.
One exception is that if the issuer name was obtained from the certificate specified in the
setCertificateChecking method, it only checks the issuer's
"authorityRevocationList" attribute if the specified certificate is a CA certificate.

3. All CRLs are checked using X509CRLSelector.match() before adding them to the
resulting collection.

4. If no CRLs satisfying the selection criteria can be found, an empty Collection is returned.

Caching

By default each LDAP CertStore instance caches lookups for a maximum of 30 seconds. The
cache lifetime can be changed by setting the system property
sun.security.certpath.ldap.cache.lifetime to a value in seconds. A value of 0 disables
the cache completely. A value of -1 means unlimited lifetime.

Appendix E: Disabling Cryptographic Algorithms
The jdk.certpath.disabledAlgorithms Security Property contains a list of cryptographic
algorithms and key size constraints that are considered weak or broken. Certificates and other
data (CRLs, OCSPResponses) containing any of these algorithms or key sizes will be blocked
during certification path building and validation. This property is used by Oracle's PKIX
implementation, other implementations might not examine and use it.

The exact syntax of the jdk.certpath.disabledAlgorithms Security Property is described in
the java.security file. In Java SE 9, the default value of the property is:

jdk.certpath.disabledAlgorithms=MD2, MD5, SHA1 jdkCA & usage TLSServer, \
 RSA keySize < 1024, DSA keySize < 1024, EC keySize < 224

In this syntax:

Chapter 9
Appendix E: Disabling Cryptographic Algorithms

9-51

MD2
Any MD2-based algorithm will be blocked.
For example, a certificate, CRL, or OCSPResponse signed with an MD2withRSA signature
algorithm.

MD5
Any MD5-based algorithm will be blocked.
For example, a certificate, CRL, or OCSPResponse signed with an MD5withRSA signature
algorithm.

SHA1 jdkCA & usage TLSServer
All SHA1 certificates that chain to trust anchors pre-installed in the cacerts keystore and that
are used for authentication of TLS Servers. See JEP 288.

RSA keySize < 1024
Any RSA key less than 1024 bits will be blocked.
For example, a certificate with a 768-bit RSA public key.

DSA keySize < 1024
Any DSA key less than 1024 bits will be blocked.
For example, a certificate with a 512-bit DSA public key.

EC keySize < 224
Any EC key less than 224 bits will be blocked.
For example, a certificate with a 160-bit EC public key.

Administrators or users can modify the value of the jdk.certpath.disabledAlgorithms
property to address additional security requirements. However, removing any of the current
algorithms or key sizes is not recommended.

Note:

The algorithm restrictions specified by this Security Property do not apply to trust
anchors or self-signed certificates.

Chapter 9
Appendix E: Disabling Cryptographic Algorithms

9-52

http://openjdk.java.net/jeps/288

10
Java SASL API Programming and Deployment
Guide

Simple Authentication and Security Layer, or SASL, is an Internet standard (RFC 2222) that
specifies a protocol for authentication and optional establishment of a security layer between
client and server applications. SASL defines how authentication data is to be exchanged but
does not itself specify the contents of that data. It is a framework into which specific
authentication mechanisms that specify the contents and semantics of the authentication data
can fit.

SASL is used by protocols, such as the Lightweight Directory Access Protocol, version 3
(LDAP v3), and the Internet Message Access Protocol, version 4 (IMAP v4) to enable
pluggable authentication. Instead of hardwiring an authentication method into the protocol,
LDAP v3 and IMAP v4 use SASL to perform authentication, thus enabling authentication via
various SASL mechanisms.

There are a number of standard SASL mechanisms defined by the Internet community for
various levels of security and deployment scenarios. These range from no security (for
example, anonymous authentication) to high security (for example, Kerberos authentication)
and levels in between.

The Java SASL API

The Java SASL API defines classes and interfaces for applications that use SASL
mechanisms. It is defined to be mechanism-neutral: the application that uses the API need not
be hardwired into using any particular SASL mechanism. The API supports both client and
server applications. It allows applications to select the mechanism to use based on desired
security features, such as whether they are susceptible to passive dictionary attacks or
whether they accept anonymous authentication.

The Java SASL API also allows developers to use their own, custom SASL mechanisms.
SASL mechanisms are installed by using the Java Cryptography Architecture (JCA); see Java
Cryptography Architecture (JCA) Reference Guide.

When to Use SASL

SASL provides a pluggable authentication and security layer for network applications. There
are other features in Java SE that provide similar functionality, including Java Secure Socket
Extension (JSSE) (see Java Secure Socket Extension (JSSE) Reference Guide) and the Java
Generic Security Service. JSSE provides a framework and an implementation for a Java
language version of the SSL, TLS, and DTLS protocols. Java GSS is the Java language
bindings for the Generic Security Service Application Programming Interface (GSS-API). The
only mechanism currently supported underneath this API on Java SE is Kerberos v5.

With the exception of defining and building protocols from scratch, protocol definition is often
the biggest factor that goes into determining which API to use. When compared with JSSE and
Java GSS, SASL is relatively lightweight and is popular among some protocols. It also has the
advantage that several popular, lightweight (in terms of infrastructure support) SASL
mechanisms have been defined. Primary JSSE and Java GSS mechanisms, on the other
hand, have relatively heavyweight mechanisms that require more elaborate infrastructures
(Public Key Infrastructure and Kerberos, respectively).

10-1

http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2853.txt
http://www.ietf.org/rfc/rfc2743.txt

SASL, JSSE, and Java GSS are often used together. For example, a common pattern is for an
application to use JSSE for establishing a secure channel, and to use SASL for client,
username/password-based authentication. There are also SASL mechanisms layered on top of
GSS-API mechanisms; one popular example is a SASL GSS-API/Kerberos v5 mechanism that
is used with LDAP.

With the exception of defining and building protocols from scratch, protocol definition is often
the biggest factor in determining which API to use. For example, LDAP and IMAP are defined
to use SASL, so software related to these protocols should use the Java SASL API. When
building Kerberos applications and services, the API to use is Java GSS. When building
applications and services that use SSL/TLS as their protocol, the API to use is JSSE.

Java SASL API Overview
SASL is a challenge-response protocol. The server issues a challenge to the client, and the
client sends a response based on the challenge. This exchange continues until the server is
satisfied and issues no further challenge. These challenges and responses are binary tokens
of arbitrary length. The encapsulating protocol (such as LDAP or IMAP) specifies how these
tokens are encoded and exchanged. For example, LDAP specifies how SASL tokens are
encapsulated within LDAP bind requests and responses.

The Java SASL API is modeled according to this style of interaction and usage. It has
interfaces, SaslClient and SaslServer, that represent client-side and server-side
mechanisms, respectively. The application interacts with the mechanisms via byte arrays that
represent the challenges and responses. The server-side mechanism iterates, issuing
challenges and processing responses, until it is satisfied, while the client-side mechanism
iterates, evaluating challenges and issuing responses, until the server is satisfied. The
application that is using the mechanism drives each iteration. That is, it extracts the challenge
or response from a protocol packet and supplies it to the mechanism, and then puts the
response or challenge returned by the mechanism into a protocol packet and sends it to the
peer.

Creating the Mechanisms
The client and server code that use the SASL mechanisms are not hardwired to use specific
mechanism(s). In many protocols that use SASL, the server advertises (either statically or
dynamically) a list of SASL mechanisms that it supports. The client then selects one of these
based on its security requirements.

The Sasl class is used for creating instances of SaslClient and SaslServer. Here is an
example of how an application creates a SASL client mechanism using a list of possible SASL
mechanisms.

 String[] mechanisms = new String[]{"DIGEST-MD5", "PLAIN"};
 SaslClient sc = Sasl.createSaslClient(
 mechanisms, authzid, protocol, serverName, props, callbackHandler);

Based on the availability of the mechanisms supported by the platform and other configuration
information provided via the parameters, the Java SASL framework selects one of the listed
mechanisms and return an instance of SaslClient.

The name of the selected mechanism is usually transmitted to the server via the application
protocol. Upon receiving the mechanism name, the server creates a corresponding

Chapter 10
Java SASL API Overview

10-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html

SaslServer object to process client-sent responses. Here is an example of how the server
would create an instance of SaslServer.

 SaslServer ss = Sasl.createSaslServer(
 mechanism, protocol, myName, props, callbackHandler);

Passing Input to the Mechanisms
Because the Java SASL API is a general framework, it must be able to accommodate many
different types of mechanisms. Each mechanism needs to be initialized with input and may
need input to make progress. The API provides three means by which an application gives
input to a mechanism:

1. Common input parameters: The application uses predefined parameters to supply
information that are defined by the SASL specification and commonly required by
mechanisms. ForSaslClient mechanisms, the input parameters are authorization id,
protocol id, and server name. ForSaslServer mechanisms, the common input
parameters are protocol id and (its own fully qualified) server name.

2. Properties parameter: The application uses the properties parameter, a mapping of
property names to (possibly non-string) property values, to supply configuration
information. The Java SASL API defines some standard properties, such as Sasl.QOP
(quality-of-protection), Sasl.STRENGTH (cipher strength), and Sasl.MAX_BUFFER
(maximum buffer size). The parameter can also be used to pass in non-standard
properties that are specific to particular mechanisms.

3. Callbacks: The application uses the CallbackHandler parameter to supply input that
cannot be predetermined or might not be common across mechanisms. When a
mechanism requires input data, it uses the callback handler supplied by the application to
collect the data, possibly from the end-user of the application. For example, a mechanism
might require the end-user of the application to supply a name and password.

Mechanisms can use the callbacks defined in the javax.security.auth.callback
package; these are generic callbacks useful for building applications that perform
authentication. Mechanisms might also need SASL-specific callbacks, such as those for
collecting realm and authorization information, or even (non-standardized) mechanism-
specific callbacks. The application should be able to accommodate a variety of
mechanisms. Consequently, its callback handler must be able to service all of the
callbacks that the mechanisms might request. This is not possible in general for arbitrary
mechanisms, but is usually feasible due to the limited number of mechanisms that are
typically deployed and used.

Using the Mechanisms

Once the application has created a mechanism, it uses the mechanism to obtain SASL tokens
to exchange with the peer. The client typically indicates to the server via the application
protocol which mechanism to use. Some protocols allow the client to accompany the request
with an optional initial response for mechanisms that have an initial response. This feature can
be used to lower the number of message exchanges required for authentication. Here is an
example of how a client might use SaslClient for authentication.

 // Get optional initial response
 byte[] response =
 (sc.hasInitialResponse() ? sc.evaluateChallenge(new byte[]) : null);

Chapter 10
Java SASL API Overview

10-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/CallbackHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html

 String mechanism = sc.getMechanismName();

 // Send selected mechanism name and optional initial response to server
 send(mechanism, response);

 // Read response
 msg = receive();
 while (!sc.isComplete() && (msg.status == CONTINUE || msg.status ==
SUCCESS)) {
 // Evaluate server challenge
 response = sc.evaluateChallenge(msg.contents);

 if (msg.status == SUCCESS) {
 // done; server doesn't expect any more SASL data
 if (response != null) {
 throw new IOException(
 "Protocol error: attempting to send response after
completion");
 }
 break;
 } else {
 send(mechanism, response);
 msg = receive();
 }
 }

The client application iterates through each step of the authentication by using the mechanism
(sc) to evaluate the challenge gotten from the server and to get a response to send back to the
server. It continues this cycle until either the mechanism or application-level protocol indicates
that the authentication has completed, or if the mechanism cannot evaluate a challenge. If the
mechanism cannot evaluate the challenge, it throws an exception to indicate the error and
terminates the authentication. Disagreement between the mechanism and protocol about the
completion state must be treated as an error because it might indicate a compromise of the
authentication exchange.

Here is an example of how a server might use SaslServer.

 // Read request that contains mechanism name and optional initial response
 msg.receive();

 // Obtain a SaslServer to perform authentication
 SaslServer ss = Sasl.createSaslServer(msg.mechanism,
 protocol, myName, props, callbackHandler);

 // Perform authentication steps until done
 while (!ss.isComplete()) {
 try {
 // Process response
 byte[] challenge = sc.evaluateResponse(msg.contents);

 if (ss.isComplete()) {
 send(mechanism, challenge, SUCCESS);
 } else {
 send(mechanism, challenge, CONTINUE);
 msg.receive();
 }

Chapter 10
Java SASL API Overview

10-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslServer.html

 } catch (SaslException e) {
 send(ERROR);
 sc.dispose();
 break;
 }
 }

The server application iterates through each step of the authentication by giving the client's
response to the mechanism (ss) to process. If the response is incorrect, the mechanism
indicates the error by throwing a SaslException so that the server can report the error and
terminate the authentication. If the response is correct, the mechanism returns challenge data
to be sent to the client and indicates whether the authentication is complete. Note that
challenge data can accompany a "success" indication. This might be used, for example, to tell
the client to finalize some negotiated state.

Using the Negotiated Security Layer
Some SASL mechanisms support only authentication while others support use of a negotiated
security layer after authentication. The security layer feature is often not used when the
application uses some other means, such as SSL/TLS, to communicate securely with the peer.

When a security layer has been negotiated, all subsequent communication with the peer must
take place using the security layer. To determine whether a security layer has been negotiated,
get the negotiated Sasl.QOP from the mechanism. Here is an example of how to determine
whether a security layer has been negotiated.

String qop = (String) sc.getNegotiatedProperty(Sasl.QOP);
boolean hasSecurityLayer = (qop != null &&
 (qop.equals("auth-int") || qop.equals("auth-conf")));

A security layer has been negotiated if the Sasl.QOP property indicates that either integrity
and/or confidentiality has been negotiated.

To communicate with the peer using the negotiated layer, the application first uses the wrap
method to encode the data to be sent to the peer to produce a "wrapped" buffer. It then
transfers a length field representing the number of octets in the wrapped buffer followed by the
contents of the wrapped buffer to the peer. The peer receiving the stream of octets passes the
buffer (without the length field) to unwrap to obtain the decoded bytes sent by the peer. Details
of this protocol are described in RFC 2222. Example 10-1 illustrates how a client application
sends and receives application data using a security layer.

Example 10-1 Sample Code for SASL Client Send and Receive Data

// Send outgoing application data to peer
byte[] outgoing = ...;
byte[] netOut = sc.wrap(outgoing, 0, outgoing.length);

send(netOut.length, netOut); // send to peer

// Receive incoming application data from peer
byte[] netIn = receive(); // read length and ensuing bytes from peer

Chapter 10
Java SASL API Overview

10-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslException.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html#unwrap(byte%5B%5D,int,int)
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/SaslClient.html#unwrap(byte[],int,int)
http://www.ietf.org/rfc/rfc2222.txt

byte[] incoming = sc.unwrap(netIn, 0, netIn.length);

How SASL Mechanisms are Installed and Selected
SASL mechanism implementations are provided by SASL security providers. Each provider
may support one or more SASL mechanisms and is registered with the JCA.

By default, the SunSASL provider is automatically registered as a JCA provider. To remove it
or reorder its priority as a JCA provider, change the line

security.provider.7=SunSASL

in the Java security properties file (java-home/conf/security/java.security).

To add or remove a SASL provider, you add or remove the corresponding line in the security
properties file. For example, if you want to add a SASL provider and have its mechanisms be
chosen over the same ones implemented by the SunSASL provider, then you would add a line
to the security properties file with a lower number.

security.provider.7=com.example.MyProvider
security.provider.8=SunSASL

Alternatively, you can programmatically add your own provider using the
java.security.Security class. For example, the following sample code registers the
com.example.MyProvider to the list of available SASL security providers.

Security.addProvider(new com.example.MyProvider());

See Step 8: Prepare for Testing in Steps to Implement and Integrate a Provider for more
information about adding providers to the security properties file and programmatically adding
your own providers.

When an application requests a SASL mechanism by supplying one or more mechanism
names, the SASL framework looks for registered SASL providers that support that mechanism
by going through, in order, the list of registered providers. The providers must then determine
whether the requested mechanism matches the selection policy properties in the Sasl and if
so, return an implementation for the mechanism.

The selection policy properties specify the security aspects of a mechanism, such as its
susceptibility to certain attacks. These are characteristics of the mechanism (definition), rather
than its implementation so all providers should come to the same conclusion about a particular
mechanism. For example, the PLAIN mechanism is susceptible to plaintext attacks regardless
of how it is implemented. If no selection policy properties are supplied, there are no restrictions
on the selected mechanism. Using these properties, an application can ensure that it does not
use unsuitable mechanisms that might be deployed in the execution environment. For
example, an application might use the following sample code if it does not want to allow the
use of mechanisms susceptible to plaintext attacks.

 Map<String, String> props = new HashMap<>();
 props.put(Sasl.POLICY_NOPLAINTEXT, "true");
 SaslClient sc = Sasl.createSaslClient(
 mechanisms, authzid, protocol, serverName, props, callbackHandler);

Chapter 10
How SASL Mechanisms are Installed and Selected

10-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html

The SunSASL Provider
The SunSASL provider supports the following client and server mechanisms:

• Client Mechanisms

– PLAIN (RFC 2595). This mechanism supports cleartext user name/password
authentication.

– CRAM-MD5 (RFC 2195). This mechanism supports a hashed user name/password
authentication scheme.

– DIGEST-MD5 (RFC 2831). This mechanism defines how HTTP Digest Authentication
can be used as a SASL mechanism.

– EXTERNAL (RFC 2222). This mechanism obtains authentication information from an
external channel (such as TLS or IPsec).

– NTLM. This mechanism supports NTLM authentication.

• Server Mechanisms

– CRAM-MD5

– DIGEST-MD5

– NTLM

The SunSASL Provider Client Mechanisms
The SunSASL provider supports several SASL client mechanisms used in popular protocols
such as LDAP, IMAP, and SMTP.

The following table summarizes the client mechanisms and their required input.

Table 10-1 SunSASL Provider Client Mechanisms

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

CRAM-MD5 authorization id (as
default user name)

PasswordCallbac
k
NameCallback

 None Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

DIGEST-MD5 authorization id

protocol id

server name

NameCallback
PasswordCallbac
k
RealmCallback
RealmChoiceCall
back

Sasl.QOP
Sasl.STRENGTH
Sasl.MAX_BUFFER
Sasl.SERVER_AUT
H
javax.security.sas
l.sendmaxbuffer
com.sun.security.s
asl.digest.cipher

Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

Chapter 10
The SunSASL Provider

10-7

http://www.ietf.org/rfc/rfc2595.txt
http://www.ietf.org/rfc/rfc2195.txt
http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc2222.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmChoiceCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmChoiceCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT

Table 10-1 (Cont.) SunSASL Provider Client Mechanisms

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

EXTERNAL authorization id

external channel

 None None Sasl.POLICY_NOP
LAINTEXT
Sasl.POLICY_NOA
CTIVE
Sasl.POLICY_NOD
ICTIONARY

NTLM authzId (as default user
name)

serverName (as default
domain)

RealmCallback
NameCallback
PasswordCallbac
k

Sasl.QOP
com.sun.security.s
asl.ntlm.version
com.sun.security.s
asl.ntlm.random
com.sun.security.s
asl.ntlm.hostname

Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

PLAIN authorization id NameCallback
PasswordCallbac
k

 None Sasl.POLICY_NOANON
YMOUS

An application that uses these mechanisms from the SunSASL provider must supply the
required parameters, callbacks and properties. The properties have reasonable defaults and
only need to be set if the application wants to override the defaults. Most of the parameters,
callbacks, and properties are described in the API documentation. The following sections
describe mechanism-specific behaviors and parameters not already covered by the API
documentation.

Cram-MD5

The Cram-MD5 client mechanism uses the authorization id parameter, if supplied, as the
default user name in the NameCallback to solicit the application/end-user for the authentication
id. The authorization id is otherwise not used by the Cram-MD5 mechanism; only the
authentication id is exchanged with the server.

Digest-MD5

The Digest-MD5 mechanism is used for digest authentication and optional establishment of a
security layer. It specifies the following ciphers for use with the security layer: Triple DES, DES
and RC4 (128, 56, and 40 bits). The Digest-MD5 mechanism can support only ciphers that are
available on the platform. For example, if the platform does not support the RC4 ciphers, then
the Digest-MD5 mechanism will not use those ciphers.

The Sasl.STRENGTH property supports high, medium, and low settings; its default is
high,medium,low. The ciphers are mapped to the strength settings as follows:

Table 10-2 Cipher Strength

Strength Cipher Cipher Id

high Triple DES
RC4 128 bits

3des rc4

Chapter 10
The SunSASL Provider

10-8

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NODICTIONARY
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NODICTIONARY
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS

Table 10-2 (Cont.) Cipher Strength

Strength Cipher Cipher Id

medium DES
RC4 56 bits

des rc4-56

low RC4 40 bits rc4-40

When there is more than one choice for a particular strength, the cipher selected depends on
the availability of the ciphers in the underlying platform. To explicitly name the cipher to use,
set the com.sun.security.sasl.digest.cipher property to the corresponding cipher id. Note
that this property setting must be compatible with Sasl.STRENGTH and the ciphers available in
the underlying platform. For example, Sasl.STRENGTH being set to low and
com.sun.security.sasl.digest.cipher being set to 3des are incompatible. The
com.sun.security.sasl.digest.cipher property has no default.

The javax.security.sasl.sendmaxbufferproperty specifies (the string representation of) the
maximum send buffer size in bytes. The default is 65536. The actual maximum number of
bytes will be the minimum of this number and the peer's maximum receive buffer size.

NTLM

Note:

This section applies both to the NTLM client mechanism and the NTLM server
mechanism.

NT LAN Manager (NTLM) is an security protocol from Microsoft used to access their various
services such as IIS Web Server and Exchange Mail Server. As a SASL mechanism, it can be
used to access Microsoft Exchange Server. It is also useful for HTTP authentication with the
NTLM scheme.

The NTLM mechanism is used for NTLM authentication. It does not provide a security layer.
This means that you can only set the javax.security.sasl.qop environment property to auth.

If the LMCompatibilityLevel registry value is set to a high value on the server, certain low value
requests are not supported. However, there's no protocol for the server to inform the client to
use a higher version, so the user must manually choose the correct version on the client side.

Set the system property ntlm.debug to any value to turn on debugging

Provide the following information either at mechanism creation or through callbacks:

Table 10-3 NTLM Required Information

Information Type Required or Optional Description

Name String Required Provided through
NameCallback with the
authzid input argument as
the default value

Chapter 10
The SunSASL Provider

10-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html

Table 10-3 (Cont.) NTLM Required Information

Information Type Required or Optional Description

Password char[] Required Provided through
PasswordCallback
If the password contains non-
ASCII characters, the original
LM version might fail. In this
case, do not choose LM as
the version.

Domain String Optional Provided through
RealmCallback with the
serverName input
argument as the default
value.

The domain provided on the
client side is used to create
the Type 1 message. The
negotiated property
com.sun.security.sasl.n
tlm.domain is determined
by the server's Type 2
message.

Chapter 10
The SunSASL Provider

10-10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmCallback.html

Table 10-3 (Cont.) NTLM Required Information

Information Type Required or Optional Description

NTLM version String Optional Specifies a specific version to
use. Provided through the
com.sun.security.sasl.n
tlm.version property. It can
have one of the following
values:

• LM/NTLM: Original NTLM
v1

• LM: Original NTLM v1,
LM only

• NTLM: Original NTLM v1,
NTLM only

• NTLM2: NTLM v1 with
Client Challenge

• LMv2/NTLMv2: NTLM v2

• LMv2: NTLM v2, LM only

• NTLMv2: NTLM v2,
NTLM only

If not provided, then the
system property
ntlm.version is used. If
still not provided, then the
value LMv2/NTLMv2 is used,
and on the server side, all
values are accepted.

Note: these types are only
different on the client side. On
the server side, because
authentication succeeds if
only one of LM (or LMv2) or
NTLM (or NTLMv2) is
verified, the first three types
are effectively the same; this
is also true for the last three
types.

Host name String Optional Provided through the
com.sun.security.sasl.n
tlm.hostname property,
which will be sent to the
server. If not provided, then
the system will automatically
derive a host name. This
property is only used on the
client side.

Random source java.util.Random Optional Used as random source to
derive nonce bytes. Provided
through the
com.sun.security.sasl.n
tlm.random property. If not
provided, then an internal
java.util.Random
object is used.

Chapter 10
The SunSASL Provider

10-11

After authentication, the client will receive a negotiated property named
com.sun.security.sasl.html.domain, which is provided by the server, and the server will
receive a negotiated property named com.sun.security.sasl.ntlm.hostname, which is he
host name the client used to access this server.

The SunSASL Provider Server Mechanisms
The SunSASL provider supports several SASL server mechanisms used in popular protocols
such as LDAP, IMAP, and SMTP.

The following table summarizes the server mechanisms and the required input:

Table 10-4 Server Mechanisms

Server Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

CRAM-MD5 server name AuthorizeCallba
ck
NameCallback
PasswordCallbac
k

 None Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

DIGEST-MD5 protocol id
server name

AuthorizeCallba
ck
NameCallback
PasswordCallbac
k
RealmCallback

Sasl.QOP
Sasl.STRENGTH
Sasl.MAX_BUFFER
javax.security.sas
l.sendmaxbuffer
com.sun.security.s
asl.digest.realm
com.sun.security.s
asl.digest.utf8

Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

NTLM serverName (as
domain, can be
overridden by
properties)

RealmCallback,
providing request
user's domain

NameCallback,
providing request
user's name

PasswordCallbac
k

Sasl.QOP
com.sun.security.s
asl.ntlm.random
com.sun.security.s
asl.ntlm.version
com.sun.security.s
asl.ntlm.domain

Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

An application that uses these mechanisms from the SunSASL provider must supply the
required parameters, callbacks and properties. The properties have reasonable defaults and
only need to be set if the application wants to override the defaults.

All users of server mechanisms must have a callback handler that deals with the
AuthorizeCallback. This is used by the mechanisms to determine whether the authenticated
user is allowed to act on behalf of the requested authorization id, and also to obtain the
canonicalized name of the authorized user (if canonicalization is applicable).

Most of the parameters, callbacks, and properties are described in the API documentation. The
following sections describe mechanism-specific behaviors and parameters not already covered
by the API documentation.

Chapter 10
The SunSASL Provider

10-12

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#STRENGTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/RealmCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/NameCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/callback/PasswordCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT

Cram-MD5

The Cram-MD5 server mechanism uses the NameCallback and PasswordCallback to obtain
the password required to verify the SASL client's response. The callback handler should use
the NameCallback.getDefaultName() as the key to fetch the password.

Digest-MD5

The Digest-MD5 server mechanism uses the RealmCallback, NameCallback, and
PasswordCallback to obtain the password required to verify the SASL client's response. The
callback handler should use RealmCallback.getDefaultText() and
NameCallback.getDefaultName() as keys to fetch the password.

The javax.security.sasl.sendmaxbuffer property specifies (the string representation of) the
maximum send buffer size in bytes. The default is 65536. The actual maximum number of
bytes will be the minimum of this number and the peer's maximum receive buffer size.

The com.sun.security.sasl.digest.realm property is used to specify a list of space-
separated realm names that the server supports. The list is sent to the client as part of the
challenge. If this property has not been set, the default realm is the server's name (supplied as
a parameter).

The com.sun.security.sasl.digest.utf8 property is used to specify the character encoding
to use. The value true means to use UTF-8 encoding; the value false means to use ISO Latin
1 (ISO-8859-1). The default value is true.

The JdkSASL Provider
The JdkSASL provider supports the following client and server mechanisms:

• Client Mechanisms

– GSSAPI (RFC 2222). This mechanism uses the GSSAPI for obtaining authentication
information. It supports Kerberos v5 authentication.

• Server Mechanisms

– GSSAPI (Kerberos v5)

The JdkSASL Provider Client Mechanism
The JdkSASL provider supports the GSSAPI client mechanism used in popular protocols such
as LDAP, IMAP, and SMTP.

The following table summarizes the GSSAPI client mechanism and its required input.

Chapter 10
The JdkSASL Provider

10-13

http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2078.txt

Table 10-5 JdkSASL Provider Client Mechanism

Client Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

GSSAPI JAAS Subject
authorization id

protocol id

server name

 None Sasl.QOP
Sasl.MAX_BUFFER
Sasl.SERVER_AUT
H
javax.security.sas
l.sendmaxbuffer
com.sun.security.j
gss.inquiretype.ty
pe_name

Sasl.POLICY_NOA
CTIVE
Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

An application that uses the GSSAPI mechanism from the JdkSASL provider must supply the
required parameters, callbacks and properties. The properties have reasonable defaults and
only need to be set if the application wants to override the defaults. Most of the parameters,
callbacks, and properties are described in the API documentation. The following section
describes further GSSAPI behaviors and parameters not already covered by the API
documentation.

GSSAPI

Note:

The GSSAPI server mechanism has the same requirements as the GSSAPI client
mechanism in terms of Kerberos credentials and the
javax.security.sasl.sendmaxbuffer property.

The GSSAPI mechanism is used for Kerberos v5 authentication and optional establishment of
a security layer. The mechanism expects the calling thread's Subject to contain the client's
Kerberos credentials or that the credentials could be obtained by implicitly logging in to
Kerberos. To obtain the client's Kerberos credentials, use the Java Authentication and
Authorization Service (JAAS) to log in using the Kerberos login module. See Introduction to
JAAS and Java GSS-API Tutorials for details and examples. After using JAAS authentication
to obtain the Kerberos credentials, you put the code that uses the SASL GSSAPI mechanism
within doAs or doAsPrivileged.

LoginContext lc = new LoginContext("JaasSample", new TextCallbackHandler());
lc.login();
lc.getSubject().doAs(new SaslAction());

class SaslAction implements java.security.PrivilegedAction<Void> {
 public Void run() {
 // ...
 String[] mechanisms = new String[]{"GSSAPI"};
 SaslClient sc = Sasl.createSaslClient(
 mechanisms, authzid, protocol, serverName, props, callbackHandler);
 // ...

Chapter 10
The JdkSASL Provider

10-14

https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#SERVER_AUTH
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT

 }
}

To obtain Kerberos credentials without doing explicit JAAS programming, see Use of Java
GSS-API for Secure Message Exchanges Without JAAS Programming. When using this
approach, there is no need to wrap the code within doAs or doAsPrivileged
The javax.security.sasl.sendmaxbuffer property specifies (the string representation of) the
maximum send buffer size in bytes. The default is 65536. The actual maximum number of
bytes will be the minimum of this number and the peer's maximum receive buffer size.

The com.sun.security.jgss.inquiretype.type_name negotiated property contains the value
returned by the ExtendedGSSContext.inquireSecContext(InquireType) method,
where type_name is the string form of the InquireType enum parameter in lower case.

The JdkSASL Provider Server Mechanism
The JdkSASL provider supports the GSSAPI mechanism used in popular protocols such as
LDAP, IMAP, and SMTP.

The following table summarizes the GSSAPI server mechanism and the required input:

Table 10-6 Server mechanism

Server Mechanism
Name

Parameters/Input Callbacks Configuration
Properties

Selection Policy

GSSAPI Subject
protocol id

server name

AuthorizeCallba
ck

Sasl.QOP
Sasl.MAX_BUFFER
javax.security.sas
l.sendmaxbuffer

Sasl.POLICY_NOA
CTIVE
Sasl.POLICY_NOA
NONYMOUS
Sasl.POLICY_NOP
LAINTEXT

An application that uses the GSSAPI mechanism from the JdkSASL provider must supply the
required parameters, callbacks and properties. The properties have reasonable defaults and
only need to be set if the application wants to override the defaults.

All users of server mechanism must have a callback handler that deals with the
AuthorizeCallback. This is used by the mechanism to determine whether the authenticated
user is allowed to act on behalf of the requested authorization id, and also to obtain the
canonicalized name of the authorized user (if canonicalization is applicable).

Most of the parameters, callbacks, and properties are described in the API documentation.

Debugging and Monitoring
The SunSASL and JdkSASL providers uses the Logging APIs to provide implementation
logging output. This output can be controlled by using the logging configuration file and
programmatic API (java.util.logging). The logger name used by the SunSASL provider

Chapter 10
Debugging and Monitoring

10-15

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/ExtendedGSSContext.html#inquireSecContext(com.sun.security.jgss.InquireType)
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/InquireType.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/Subject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/AuthorizeCallback.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#QOP
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#MAX_BUFFER
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOACTIVE
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOANONYMOUS
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/javax/security/sasl/Sasl.html#POLICY_NOPLAINTEXT
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

is javax.security.sasl. Here is a sample logging configuration file that enables the FINEST
logging level for the SunSASL provider:

javax.security.sasl.level=FINEST
handlers=java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level=FINEST

Table 10-7 shows the mechanisms and the logging output that they generate:

Table 10-7 Logging Output

Mechanism Logging Level Information Logged

CRAM-MD5 FINE Configuration properties; challenge/
response messages

DIGEST-MD5 INFO Message discarded due to encoding
problem (for example, unmatched
MACs, incorrect padding)

DIGEST-MD5 FINE Configuration properties; challenge/
response messages

DIGEST-MD5 FINER More detailed information about
challenge/response messages

DIGEST-MD5 FINEST Buffers exchanged at the security layer

GSSAPI FINE Configuration properties; challenge/
response messages

GSSAPI FINER More detailed information about
challenge/response messages

GSSAPI FINEST Buffers exchanged at the security layer

Implementing a SASL Security Provider
There are three basic steps in implementing a SASL security provider:

1. Write a class that implements the SaslClient or SaslServer interface.

This involves providing an implementation for the SASL mechanism. To implement a client
mechanism, you need to implement the methods declared in the SaslClient interface.
Similarly, for a server mechanism, you need to implement the methods declared in the
SaslServer interface. For the purposes of this discussion, suppose you are developing an
implementation for the client mechanism "SAMPLE-MECH", implemented by the class,
com.example.SampleMechClient. You must decide what input are needed by the
mechanism and how the implementation is going to collect them. For example, if the
mechanism is username/password-based, then the implementation would likely need to
collect that information via the callback handler parameter.

2. Write a factory class (that implements SaslClientFactory or SaslServerFactory) that
creates instances of the class.

This involves providing a factory class that will create instances of
com.example.SampleMechClient. The factory needs to determine the characteristics of the
mechanism that it supports (as described by the Sasl.POLICY_* properties) so that it can
return an instance of the mechanism when the API user requests it using compatible policy
properties. The factory may also check for validity of the parameters before creating the
mechanism. For the purposes of this discussion, suppose the factory class is named

Chapter 10
Implementing a SASL Security Provider

10-16

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINE
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#INFO
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINE
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINER
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINEST
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINE
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINER
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html#FINEST

com.example.MySampleClientFactory. Although our sample factory is responsible for only
one mechanism, a single factory can be responsible for any number of mechanisms.

3. Write a JCA provider that registers the factory.

This involves creating a JCA provider. The steps for creating a JCA provider is described in
detail in Steps to Implement and Integrate a Provider. SASL client factories are registered
using property names of the form SaslClientFactory.mechName while SASL server
factories are registered using property names of the form SaslServerFactory.mechName

mechName is the SASL mechanism's name. This is what's returned by
SaslClient.getMechanismName() and SaslServer.getMechanismName(). Continuing with
our example, here is how the provider would register the "SAMPLE-MECH" mechanism.

 put("SaslClientFactory.SAMPLE-MECH",
"com.example.MySampleClientFactory");

A single SASL provider might be responsible for many mechanisms. Therefore, it might
have many invocations of put to register the relevant factories. The completed SASL
provider can then be made available to applications using the instructions described in
How SASL Mechanisms are Installed and Selected.

Chapter 10
Implementing a SASL Security Provider

10-17

11
XML Digital Signature API Overview and
Tutorial

The Java XML Digital Signature API is a standard Java API for generating and validating XML
Signatures. This API was defined under the Java Community Process as JSR 105.

XML Signatures can be applied to data of any type, XML or binary (see XML Signature Syntax
and Processing). The resulting signature is represented in XML. An XML Signature can be
used to secure your data and provide data integrity, message authentication, and signer
authentication.

After providing a brief overview of XML Signatures and the XML Digital Signature API, this
document presents two examples that demonstrate how to use the API to validate and
generate an XML Signature. This document assumes that you have a basic knowledge of
cryptography and digital signatures.

The API is designed to support all of the required or recommended features of the W3C
Recommendation for XML-Signature Syntax and Processing. The API is extensible and
pluggable and is based on the Java Cryptography Service Provider Architecture; see Java
Cryptography Architecture (JCA) Reference Guide. The API is designed for two types of
developers:

• Developers who want to use the XML Digital Signature API to generate and validate XML
signatures

• Developers who want to create a concrete implementation of the XML Digital Signature
API and register it as a cryptographic service of a JCA provider (see The Provider Class).

Package Hierarchy
The following six packages, which are contained in the java.xml.crypto module, comprise
the XML Digital Signature API:

• javax.xml.crypto
• javax.xml.crypto.dsig
• javax.xml.crypto.dsig.keyinfo
• javax.xml.crypto.dsig.spec
• javax.xml.crypto.dom
• javax.xml.crypto.dsig.dom
The javax.xml.crypto package contains common classes that are used to perform XML
cryptographic operations, such as generating an XML signature or encrypting XML data. Two
notable classes in this package are the KeySelector class, which allows developers to
supply implementations that locate and optionally validate keys using the information contained
in a KeyInfo object, and the URIDereferencer class, which allows developers to create
and specify their own URI dereferencing implementations.

11-1

http://www.jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/KeySelector.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/URIDereferencer.html

The javax.xml.crypto.dsig package includes interfaces that represent the core elements
defined in the W3C XML digital signature specification. Of primary significance is the
XMLSignature class, which allows you to sign and validate an XML digital signature. Most of
the XML signature structures or elements are represented by a corresponding interface
(except for the KeyInfo structures, which are included in their own package and are discussed
in the next paragraph). These interfaces include: SignedInfo, CanonicalizationMethod,
SignatureMethod, Reference, Transform, DigestMethod, XMLObject, Manifest,
SignatureProperty, and SignatureProperties. The XMLSignatureFactory class is
an abstract factory that is used to create objects that implement these interfaces.

The javax.xml.crypto.dsig.keyinfo package contains interfaces that represent most
of the KeyInfo structures defined in the W3C XML digital signature recommendation,
including KeyInfo, KeyName, KeyValue, X509Data, X509IssuerSerial,
RetrievalMethod, and PGPData. The KeyInfoFactory class is an abstract factory that is
used to create objects that implement these interfaces.

The javax.xml.crypto.dsig.spec package contains interfaces and classes representing
input parameters for the digest, signature, transform, or canonicalization algorithms used in the
processing of XML signatures.

Finally, the javax.xml.crypto.dom and javax.xml.crypto.dsig.dom packages
contains DOM-specific classes for the javax.xml.crypto and javax.xml.crypto.dsig
packages, respectively. Only developers and users who are creating or using a DOM-based
XMLSignatureFactory or KeyInfoFactory implementation will need to make direct use of
these packages.

Service Providers
A Java XML Signature is a concrete implementation of the abstract XMLSignatureFactory
and KeyInfoFactory classes and is responsible for creating objects and algorithms that
parse, generate and validate XML Signatures and KeyInfo structures. A concrete
implementation of XMLSignatureFactory must provide support for each of the required
algorithms as specified by the W3C recommendation for XML Signatures. It can optionally
support other algorithms as defined by the W3C recommendation or other specifications.

The Java XML Digital Signature API leverages the JCA provider model for registering and
loading XMLSignatureFactory and KeyInfoFactory implementations.

Each concrete XMLSignatureFactory or KeyInfoFactory implementation supports a
specific XML mechanism type that identifies the XML processing mechanism that an
implementation uses internally to parse and generate XML signature and KeyInfo structures.
This JSR supports one standard type, DOM. The XML Digital Signature provider
implementation that is bundled with the JDK supports the DOM mechanism.

An XML Digital Signature API implementation should use underlying JCA engine classes, such
as java.security.Signature and java.security.MessageDigest, to perform
cryptographic operations.

In addition to the XMLSignatureFactory and KeyInfoFactory classes, JSR 105 supports
a service provider interface for transform and canonicalization algorithms. The
TransformService class allows you to develop and plug in an implementation of a specific
transform or canonicalization algorithm for a particular XML mechanism type. The
TransformService class uses the standard JCA provider model for registering and loading
implementations. Each JSR 105 implementation should use the TransformService class to

Chapter 11
Service Providers

11-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/XMLSignature.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/SignedInfo.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/CanonicalizationMethod.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/SignatureMethod.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/Reference.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/Transform.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/DigestMethod.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/XMLObject.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/Manifest.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/SignatureProperty.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/SignatureProperties.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyInfo.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyName.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyValue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/X509Data.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/X509IssuerSerial.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/RetrievalMethod.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/PGPData.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/spec/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dom/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/dom/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/XMLSignatureFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/keyinfo/KeyInfoFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/javax/xml/crypto/dsig/TransformService.html

find a provider that supports transform and canonicalization algorithms in XML Signatures that
it is generating or validating.

Introduction to XML Signatures
You can use an XML Signature to sign any arbitrary data, whether it is XML or binary. The data
is identified via URIs in one or more Reference elements. XML Signatures are described in one
or more of three forms: detached, enveloping, or enveloped. A detached signature is over data
that is external, or outside of the signature element itself. Enveloping signatures are signatures
over data that is inside the signature element, and an enveloped signature is a signature that is
contained inside the data that it is signing.

Example of an XML Signature

The easiest way to describe the contents of an XML Signature is to show an actual sample and
describe each component in more detail. Example 11-3 is an enveloped XML Signature
generated over the contents of an XML document. The root element, Envelop, contains a
Signature element:

<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <!-- ... -->
 </Signature>
</Envelope>

This Signature element has been inserted inside the content that it is signing, thereby making
it an enveloped signature. The required SignedInfo element contains the information that is
actually signed:

<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <DigestValue>/juoQ4bDxElf1M+KJauO20euW+QAvvPP0nDCruCQooM=</
DigestValue>
 </Reference>
 </SignedInfo>
 <!-- ... -->
 </Signature>
</Envelope>

Chapter 11
Introduction to XML Signatures

11-3

The required CanonicalizationMethod element defines the algorithm used to canonicalize the
SignedInfo element before it is signed or validated. Canonicalization is the process of
converting XML content to a canonical form, to take into account changes that can invalidate a
signature over that data. Canonicalization is necessary due to the nature of XML and the way it
is parsed by different processors and intermediaries, which can change the data such that the
signature is no longer valid but the signed data is still logically equivalent.

The required SignatureMethod element defines the digital signature algorithm used to
generate the signature, in this case RSA with SHA-256.

One or more Reference elements identify the data that is digested. Each Reference element
identifies the data via a URI. In this example, the value of the URI is the empty String (""),
which indicates the root of the document. The optional Transforms element contains a list of
one or more Transform elements, each of which describes a transformation algorithm used to
transform the data before it is digested. In this example, there is one Transform element for the
enveloped transform algorithm. The enveloped transform is required for enveloped signatures
so that the signature element itself is removed before calculating the signature value. The
required DigestMethod element defines the algorithm used to digest the data, in this case
SHA-256. Finally the required DigestValue element contains the actual base64-encoded
digested value.

The required SignatureValue element contains the base64-encoded signature value of the
signature over the SignedInfo element.

The optional KeyInfo element contains information about the key that is needed to validate the
signature:

 <KeyInfo>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
9hSmAKw/4TTw/1l1u1pYzdFm6lOjRB/5NfdGWl/fB8iAa/tiK0f1u/VWoK6SMtogYgSDKqQThbAu
9dy9rRnOWRGY2He1JtpOvGh0WCmIFUEs2P22HvEf+JGKVEpkoP4hv53ucT69T+7nKGK3/bjxgp+T
C7fbnVj651+jAHuDFlC8Txt1R8ZymfN5cUeHIH96dvNFrtai/uwZDbVMfhV9chL//+Vyhx4O5nHv
jfS+0So9Qi52YAbEyLu6+BLdu8wnMWapC88CfXsRwrpx8b6aCU0e6QSZyOvdgXWz3+9ifVTBDIxE
kjhL5OASx0qjvc+dPUOMvq7fJE05RRZLyb0YJw==
 </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>

This KeyInfo element contains a KeyValue element, which in turn contains a RSAKeyValue
element consisting of the public key needed to validate the signature. KeyInfo can contain
various content such as X.509 certificates and PGP key identifiers. See The KeyInfo Element
in XML Signature Syntax and Processing for more information on the different KeyInfo types.

XML Signature Secure Validation Mode
The XML Signature secure validation mode can protect you from XML Signatures that may
contain potentially hostile constructs that can cause denial-of-service or other types of security
issues.

XML Signature secure validation mode is enabled by default.

Chapter 11
XML Signature Secure Validation Mode

11-4

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo
https://www.w3.org/TR/xmldsig-core/

If necessary, and at your own risk, you can disable the XML Signature secure validation mode
by setting the org.jcp.xml.dsig.secureValidation property to Boolean.FALSE with the
DOMValidateContext.setProperty() method.

When XML Signature secure validation mode is enabled, XML Signatures are processed more
securely. Limits are set on various XML Signature constructs to avoid conditions such as
denial-of-service attacks. By default, it enforces the following restrictions:

• Forbids the use of XSLT transforms

• Restricts the number of SignedInfo or Manifest Reference elements to 30 or less

• Restricts the number of Reference transforms to 5 or less

• Forbids the use of MD5 or SHA-1 signatures or MD5 MAC algorithms

• Ensures that Reference IDs are unique to help prevent signature wrapping attacks

• Forbids Reference URIs of type http, https, or file
• Does not allow a RetrievalMethod element to reference another RetrievalMethod

element

• Forbids RSA or DSA keys less than 1024 bits

• Forbids EC keys less than 224 bits

In addition, you can use the jdk.xml.dsig.secureValidationPolicy Security Property to
control and fine-tune the restrictions listed previously or add additional restrictions. See the
definition of this Security Property in the java.security file for more information.

XML Digital Signature API Examples
The following sections describe two examples that show how to use the XML Digital Signature
API:

Validate Example

To compile and run the example, execute the following commands:

$ javac Validate.java
$ java Validate signature.xml

The sample program will validate the signature in the file signature.xml in the current
working directory.

Example 11-1 Validate.java

import javax.xml.crypto.*;
import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dom.*;
import javax.xml.crypto.dsig.dom.DOMValidateContext;
import javax.xml.crypto.dsig.keyinfo.*;
import java.io.FileInputStream;
import java.security.*;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

Chapter 11
XML Digital Signature API Examples

11-5

import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;

/**
 * This is a simple example of validating an XML Signature using
 * the XML Signature API. It assumes the key needed to validate
 * the signature is contained in a KeyValue KeyInfo.
 */
public class Validate {

 //
 // Synopsis: java Validate [document]
 //
 // where "document" is the name of a file containing the XML document
 // to be validated.
 //
 public static void main(String[] args) throws Exception {

 // Instantiate the document to be validated
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc = null;
 try (FileInputStream fis = new FileInputStream(args[0])) {
 doc = dbf.newDocumentBuilder().parse(fis);
 }

 // Find Signature element
 NodeList nl =
 doc.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");
 if (nl.getLength() == 0) {
 throw new Exception("Cannot find Signature element");
 }

 // Create a DOM XMLSignatureFactory that will be used to unmarshal the
 // document containing the XMLSignature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a DOMValidateContext and specify a KeyValue KeySelector
 // and document context
 DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

 // unmarshal the XMLSignature
 XMLSignature signature = fac.unmarshalXMLSignature(valContext);

 // Validate the generated XMLSignature
 boolean coreValidity = signature.validate(valContext);

 // Check core validation status
 if (coreValidity == false) {
 System.err.println("Signature failed core validation");
 boolean sv = signature.getSignatureValue().validate(valContext);
 System.out.println("signature validation status: " + sv);
 // check the validation status of each Reference
 Iterator<Reference> i =

Chapter 11
XML Digital Signature API Examples

11-6

 signature.getSignedInfo().getReferences().iterator();
 for (int j=0; i.hasNext(); j++) {
 boolean refValid = i.next().validate(valContext);
 System.out.println("ref["+j+"] validity status: " + refValid);
 }
 } else {
 System.out.println("Signature passed core validation");
 }
 }

 /**
 * KeySelector which retrieves the public key out of the
 * KeyValue element and returns it.
 * NOTE: If the key algorithm doesn't match signature algorithm,
 * then the public key will be ignored.
 */
 private static class KeyValueKeySelector extends KeySelector {
 public KeySelectorResult select(KeyInfo keyInfo,
 KeySelector.Purpose purpose,
 AlgorithmMethod method,
 XMLCryptoContext context)
 throws KeySelectorException {
 if (keyInfo == null) {
 throw new KeySelectorException("Null KeyInfo object!");
 }
 SignatureMethod sm = (SignatureMethod) method;
 List<XMLStructure> list = keyInfo.getContent();

 for (int i = 0; i < list.size(); i++) {
 XMLStructure xmlStructure = list.get(i);
 if (xmlStructure instanceof KeyValue) {
 PublicKey pk = null;
 try {
 pk = ((KeyValue)xmlStructure).getPublicKey();
 } catch (KeyException ke) {
 throw new KeySelectorException(ke);
 }
 // make sure algorithm is compatible with method
 if (algEquals(sm.getAlgorithm(), pk.getAlgorithm())) {
 return new SimpleKeySelectorResult(pk);
 }
 }
 }
 throw new KeySelectorException("No KeyValue element found!");
 }

 static boolean algEquals(String algURI, String algName) {
 if (algName.equalsIgnoreCase("DSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2009/xmldsig11#dsa-
sha256")) {
 return true;
 } else if (algName.equalsIgnoreCase("RSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256")) {
 return true;
 } else {

Chapter 11
XML Digital Signature API Examples

11-7

 return false;
 }
 }
 }

 private static class SimpleKeySelectorResult implements KeySelectorResult
{
 private PublicKey pk;
 SimpleKeySelectorResult(PublicKey pk) {
 this.pk = pk;
 }

 public Key getKey() { return pk; }
 }
}

Example 11-2 envelope.xml

<Envelope xmlns="urn:envelope">
</Envelope>

Example 11-3 signature.xml

This file has been indented and formatted for readability.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Envelope xmlns="urn:envelope">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256"/>
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <DigestValue>/juoQ4bDxElf1M+KJauO20euW+QAvvPP0nDCruCQooM=</
DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
Vorr4nABCD7eWOjh4jn8pdM5iseGJPt4BmlgjEbxr05TsR9ObHq7WLVOBOtJfb3M6pXv6NnTucpH
e/97zHbuUMaNeGxCs/gN7YDUGOkQE1Gs4HAbGwXuTcif3pw+066ZW4uxyzapwS6lZHmqIm7PRl8I
NIQXVL4dezLe+rx77Kh+rZRheVe4UlTTP+TmIOaBZo93GQ5FudreMhSiuIC0Nx2SP7mAkt6+8kVH
luZouFbqriSvyhzIxDgyOXpm/PHCuuPU2scCokwjEZBtlZXDOl6lIWGllnyrptWntQ6F/ngQObI5
c2+npgCshq1svGuS/xx18MAFHGWi98Vj+07QCg==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>
9hSmAKw/4TTw/1l1u1pYzdFm6lOjRB/5NfdGWl/fB8iAa/tiK0f1u/VWoK6SMtogYgSDKqQThbAu

Chapter 11
XML Digital Signature API Examples

11-8

9dy9rRnOWRGY2He1JtpOvGh0WCmIFUEs2P22HvEf+JGKVEpkoP4hv53ucT69T+7nKGK3/bjxgp+T
C7fbnVj651+jAHuDFlC8Txt1R8ZymfN5cUeHIH96dvNFrtai/uwZDbVMfhV9chL//+Vyhx4O5nHv
jfS+0So9Qi52YAbEyLu6+BLdu8wnMWapC88CfXsRwrpx8b6aCU0e6QSZyOvdgXWz3+9ifVTBDIxE
kjhL5OASx0qjvc+dPUOMvq7fJE05RRZLyb0YJw==
 </Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </Signature>
</Envelope>

Validating an XML Signature

This example shows you how to validate an XML Signature using the Java XML Digital
Signature API. The example uses DOM (the Document Object Model) to parse an XML
document containing a Signature element and a DOM implementation to validate the
signature.

Instantiating the Document that Contains the Signature

First we use a JAXP DocumentBuilderFactory to parse the XML document containing the
Signature. An application obtains the default implementation for
DocumentBuilderFactory by calling the following line of code:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

 dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used to parse
the document:

 Document doc = null;
 try (FileInputStream fis = new FileInputStream(args[0])) {
 doc = dbf.newDocumentBuilder().parse(fis);
 }

Specifying the Signature Element to be Validated

We need to specify the Signature element that we want to validate, since there could be
more than one in the document. We use the DOM method
Document.getElementsByTagNameNS, passing it the XML Signature namespace URI and
the tag name of the Signature element, as shown:

 NodeList nl =
 doc.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");
 if (nl.getLength() == 0) {

Chapter 11
XML Digital Signature API Examples

11-9

 throw new Exception("Cannot find Signature element");
 }

This returns a list of all Signature elements in the document. In this example, there is only
one Signature element.

Creating a Validation Context

We create an XMLValidateContext instance containing input parameters for validating the
signature. Since we are using DOM, we instantiate a DOMValidateContext instance (a
subclass of XMLValidateContext), and pass it two parameters, a KeyValueKeySelector
object and a reference to the Signature element to be validated (which is the first entry of the
NodeList we generated earlier):

 DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

The KeyValueKeySelector is explained in greater detail in Using KeySelectors.

Unmarshalling the XML Signature

We extract the contents of the Signature element into an XMLSignature object. This
process is called unmarshalling. The Signature element is unmarshalled using an
XMLSignatureFactory object. An application can obtain a DOM implementation of
XMLSignatureFactory by calling the following line of code:

 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

We then invoke the unmarshalXMLSignature method of the factory to unmarshal an
XMLSignature object, and pass it the validation context we created earlier:

 XMLSignature signature = fac.unmarshalXMLSignature(valContext);

Validating the XML Signature

Now we are ready to validate the signature. We do this by invoking the validate method on the
XMLSignature object, and pass it the validation context as follows:

 boolean coreValidity = signature.validate(valContext);

The validate method returns "true" if the signature validates successfully according to the core
validation rules in the W3C XML Signature Recommendation, and false otherwise.

What If the XML Signature Fails to Validate?

If the XMLSignature.validate method returns false, we can try to narrow down the cause
of the failure. There are two phases in core XML Signature validation:

• Signature validation (the cryptographic verification of the signature)

Chapter 11
XML Digital Signature API Examples

11-10

• Reference validation (the verification of the digest of each reference in the signature)

Each phase must be successful for the signature to be valid. To check if the signature failed to
cryptographically validate, we can check the status, as follows:

 boolean sv = signature.getSignatureValue().validate(valContext);
 System.out.println("signature validation status: " + sv);

We can also iterate over the references and check the validation status of each one, as
follows:

 Iterator<Reference> i =
 signature.getSignedInfo().getReferences().iterator();
 for (int j=0; i.hasNext(); j++) {
 boolean refValid = i.next().validate(valContext);
 System.out.println("ref["+j+"] validity status: " + refValid);
 }

Using KeySelectors

KeySelectors are used to find and select keys that are needed to validate an
XMLSignature. Earlier, when we created a DOMValidateContext object, we passed a
KeyValueKeySelector object as the first argument:

 DOMValidateContext valContext = new DOMValidateContext
 (new KeyValueKeySelector(), nl.item(0));

Alternatively, we could have passed a PublicKey as the first argument if we already knew
what key is needed to validate the signature. However, we often don't know.

The KeyValueKeySelector class is a concrete implementation of the abstract KeySelector
class. The KeyValueKeySelector implementation tries to find an appropriate validation key
using the data contained in KeyValue elements of the KeyInfo element of an
XMLSignature. It does not determine if the key is trusted. This is a very simple
KeySelector implementation, designed for illustration rather than real-world usage. A more
practical example of a KeySelector is one that searches a KeyStore for trusted keys that
match X509Data information (for example, X509SubjectName, X509IssuerSerial,
X509SKI, or X509Certificate elements) contained in a KeyInfo.

The implementation of the KeyValueKeySelector class is as follows:

 private static class KeyValueKeySelector extends KeySelector {
 public KeySelectorResult select(KeyInfo keyInfo,
 KeySelector.Purpose purpose,
 AlgorithmMethod method,
 XMLCryptoContext context)
 throws KeySelectorException {
 if (keyInfo == null) {
 throw new KeySelectorException("Null KeyInfo object!");
 }
 SignatureMethod sm = (SignatureMethod) method;
 List<XMLStructure> list = keyInfo.getContent();

Chapter 11
XML Digital Signature API Examples

11-11

 for (int i = 0; i < list.size(); i++) {
 XMLStructure xmlStructure = list.get(i);
 if (xmlStructure instanceof KeyValue) {
 PublicKey pk = null;
 try {
 pk = ((KeyValue)xmlStructure).getPublicKey();
 } catch (KeyException ke) {
 throw new KeySelectorException(ke);
 }
 // make sure algorithm is compatible with method
 if (algEquals(sm.getAlgorithm(), pk.getAlgorithm())) {
 return new SimpleKeySelectorResult(pk);
 }
 }
 }
 throw new KeySelectorException("No KeyValue element found!");
 }

 static boolean algEquals(String algURI, String algName) {
 if (algName.equalsIgnoreCase("DSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2009/xmldsig11#dsa-
sha256")) {
 return true;
 } else if (algName.equalsIgnoreCase("RSA") &&
 algURI.equalsIgnoreCase("http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256")) {
 return true;
 } else {
 return false;
 }
 }
 }

 private static class SimpleKeySelectorResult implements KeySelectorResult
{
 private PublicKey pk;
 SimpleKeySelectorResult(PublicKey pk) {
 this.pk = pk;
 }

 public Key getKey() { return pk; }
 }

GenEnveloped Example

To compile and run this sample, execute the following command:

$ javac GenEnveloped.java
$ java GenEnveloped envelope.xml envelopedSignature.xml

The sample program will generate an enveloped signature of the document in the file
envelope.xml and store it in the file envelopedSignature.xml in the current working
directory.

Chapter 11
XML Digital Signature API Examples

11-12

Example 11-4 GenEnveloped.java

import javax.xml.crypto.dsig.*;
import javax.xml.crypto.dsig.dom.DOMSignContext;
import javax.xml.crypto.dsig.keyinfo.*;
import javax.xml.crypto.dsig.spec.*;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.security.*;
import java.util.List;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.Document;

/**
 * This is a simple example of generating an Enveloped XML
 * Signature using the Java XML Digital Signature API. The
 * resulting signature will look like (key and signature
 * values will be different):
 *
 * <pre><code>
 *<Envelope xmlns="urn:envelope">
 * <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 * <SignedInfo>
 * <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 * <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256"/>
 * <Reference URI="">
 * <Transforms>
 * <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>
 * </Transforms>
 * <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 * <DigestValue>/
juoQ4bDxElf1M+KJauO20euW+QAvvPP0nDCruCQooM=<DigestValue>
 * </Reference>
 * </SignedInfo>
 * <SignatureValue>
 * YeS+F0uiYv0h946M69Q9pKFNnD6dxUwLA8QT3GX/0H3cSPKRnNFyZiR4RPgaA1ir/
ztb4rt6Lqb8
 *
hgwPERIa5qhoGUJyHDfUTcQ0Xqn1jYCVoC3ho+oUgJPXNVgtMAtpvOgxcWXUPATYdyimO6RrHF8+
 *
JXDkeICI9BPA4NKN1i77CAy6JJbaA87aNIpMJPImwJf8CM7mYsXremZz+RsafNE2cXXRzAoNOynC
 * pi4oPYpE7CBLzhd23gf7zYRoyT06/
bVIj4j3qOlVY1TQofsQ20NtAz6PbqAs7QkNoDzkX1CYlDSJ
 * U8cGHuwXpul/UIpOiL6MZF8I/YI4ZlJn+O8Mvg==
 * </SignatureValue>
 * <KeyInfo>
 * <KeyValue>
 * <RSAKeyValue>
 * <Modulus>

Chapter 11
XML Digital Signature API Examples

11-13

 * mH0S/
iw2K2tFTFHI75BtB67pzjR52HvQ8K7Xi5UX3NJm0oA+KX2mm0IrVcUuv609vbAAyQoW7CWm
 * 4kswVgStCm68dlw36309cxrEmPhG+PKBmUaGuBmRzwityjXRyRZJ6yaLenE8SJO/
DC5ntQvmHqQQ
 *
qeOJYvz2Cbi2bi6x9XwmpqOfZCE5iTvYwioEsrglhP1uLG9fiXyNR2PXUTyLqD91HLhZFj1CEiU7
 * aE+
+WfkKaowIx5p8e3F6hQ+VFRNXjtemK5aajuL0gwU+Oujg9ijgbyMh19vBoI8LruJoMOBrYFNN
 * 2boQJ3wP0Ek7CPIqAzQB5MnmvKc9jICKiiZVZw==
 * </Modulus>
 * <Exponent>AQAB</Exponent>
 * </RSAKeyValue>
 * </KeyValue>
 * </KeyInfo>
 * </Signature>
 *</Envelope>
 * </code></pre>
 */
public class GenEnveloped {

 //
 // Synopsis: java GenEnveloped [document] [output]
 //
 // where "document" is the name of a file containing the XML document
 // to be signed, and "output" is the name of the file to store the
 // signed document. The 2nd argument is optional - if not specified,
 // standard output will be used.
 //
 public static void main(String[] args) throws Exception {

 // Instantiate the document to be signed
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 Document doc = null;
 try (FileInputStream fis = new FileInputStream(args[0])) {
 doc = dbf.newDocumentBuilder().parse(fis);
 }

 // Create a RSA KeyPair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

 // Create a DOMSignContext and specify the RSA PrivateKey and
 // location of the resulting XMLSignature's parent element
 DOMSignContext dsc = new DOMSignContext
 (kp.getPrivate(), doc.getDocumentElement());

 // Create a DOM XMLSignatureFactory that will be used to generate the
 // enveloped signature
 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

 // Create a Reference to the enveloped document (in this case we are
 // signing the whole document, so a URI of "" signifies that) and
 // also specify the SHA256 digest algorithm and the ENVELOPED
Transform.

Chapter 11
XML Digital Signature API Examples

11-14

 Reference ref = fac.newReference
 ("", fac.newDigestMethod(DigestMethod.SHA256, null),
 List.of
 (fac.newTransform
 (Transform.ENVELOPED, (TransformParameterSpec) null)),
 null, null);

 // Create the SignedInfo
 SignedInfo si = fac.newSignedInfo
 (fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256", null),
 List.of(ref));

 // Create a KeyValue containing the RSA PublicKey that was generated
 KeyInfoFactory kif = fac.getKeyInfoFactory();
 KeyValue kv = kif.newKeyValue(kp.getPublic());

 // Create a KeyInfo and add the KeyValue to it
 KeyInfo ki = kif.newKeyInfo(List.of(kv));

 // Create the XMLSignature (but don't sign it yet)
 XMLSignature signature = fac.newXMLSignature(si, ki);

 // Marshal, generate (and sign) the enveloped signature
 signature.sign(dsc);

 // output the resulting document
 OutputStream os;
 if (args.length > 1) {
 os = new FileOutputStream(args[1]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));
 }
}

Example 11-5 envelope.xml

<Envelope xmlns="urn:envelope">
</Envelope>

Generating an XML Signature

This example shows you how to generate an XML Signature using the XML Digital Signature
API. More specifically, the example generates an enveloped XML Signature of an XML
document. An enveloped signature is a signature that is contained inside the content that it is

Chapter 11
XML Digital Signature API Examples

11-15

signing. The example uses DOM (the Document Object Model) to parse the XML document to
be signed and a DOM implementation to generate the resulting signature.

A basic knowledge of XML Signatures and their different components is helpful for
understanding this section. See XML Signature Syntax and Processing Version 1.1 for more
information.

Instantiating the Document to be Signed

First, we use a JAXP DocumentBuilderFactory to parse the XML document that we want
to sign. An application obtains the default implementation for DocumentBuilderFactory by
calling the following line of code:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

We must also make the factory namespace-aware:

 dbf.setNamespaceAware(true);

Next, we use the factory to get an instance of a DocumentBuilder, which is used to parse
the document:

 Document doc = null;
 try (FileInputStream fis = new FileInputStream(args[0])) {
 doc = dbf.newDocumentBuilder().parse(fis);
 }

Creating a Public Key Pair

We generate a public key pair. Later in the example, we will use the private key to generate the
signature. We create the key pair with a KeyPairGenerator. In this example, we will create
a RSA KeyPair with a length of 2048 bytes:

 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
 kpg.initialize(2048);
 KeyPair kp = kpg.generateKeyPair();

In practice, the private key is usually previously generated and stored in a KeyStore file with
an associated public key certificate.

Creating a Signing Context

We create an XMLSignContext containing input parameters for generating the signature.
Since we are using DOM, we instantiate a DOMSignContext (a subclass of
XMLSignContext), and pass it two parameters, the private key that will be used to sign the
document and the root of the document to be signed:

 DOMSignContext dsc = new DOMSignContext
 (kp.getPrivate(), doc.getDocumentElement());

Chapter 11
XML Digital Signature API Examples

11-16

https://www.w3.org/TR/xmldsig-core/

Assembling the XML Signature

We assemble the different parts of the Signature element into an XMLSignature object.
These objects are all created and assembled using an XMLSignatureFactory object. An
application obtains a DOM implementation of XMLSignatureFactory by calling the following
line of code:

 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM");

We then invoke various factory methods to create the different parts of the XMLSignature
object. We create a Reference object, passing to it the following:

• The URI of the object to be signed (We specify a URI of "", which implies the root of the
document.)

• The DigestMethod (we use SHA256)

• A single Transform, the enveloped Transform, which is required for enveloped
signatures so that the signature itself is removed before calculating the signature value

 Reference ref = fac.newReference
 ("", fac.newDigestMethod(DigestMethod.SHA256, null),
 List.of
 (fac.newTransform
 (Transform.ENVELOPED, (TransformParameterSpec) null)),
 null, null);

Next, we create the SignedInfo object, which is the object that is actually signed. When
creating the SignedInfo, we pass as parameters:

• The CanonicalizationMethod (we use inclusive and preserve comments)

• The SignatureMethod (we use RSA)

• A list of References (in this case, only one)

 SignedInfo si = fac.newSignedInfo
 (fac.newCanonicalizationMethod
 (CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
 (C14NMethodParameterSpec) null),
 fac.newSignatureMethod("http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256", null),
 List.of(ref));

Next, we create the optional KeyInfo object, which contains information that enables the
recipient to find the key needed to validate the signature. In this example, we add a KeyValue
object containing the public key. To create KeyInfo and its various subtypes, we use a
KeyInfoFactory object, which can be obtained by invoking the getKeyInfoFactory
method of the XMLSignatureFactory, as follows:

 KeyInfoFactory kif = fac.getKeyInfoFactory();

Chapter 11
XML Digital Signature API Examples

11-17

We then use the KeyInfoFactory to create the KeyValue object and add it to a KeyInfo
object:

 KeyValue kv = kif.newKeyValue(kp.getPublic());
 KeyInfo ki = kif.newKeyInfo(List.of(kv));

Finally, we create the XMLSignature object, passing as parameters the SignedInfo and
KeyInfo objects that we created earlier:

 XMLSignature signature = fac.newXMLSignature(si, ki);

Notice that we haven't actually generated the signature yet; we'll do that in the next step.

Generating the XML Signature

Now we are ready to generate the signature, which we do by invoking the sign method on the
XMLSignature object, and pass it the signing context as follows:

 signature.sign(dsc);

The resulting document now contains a signature, which has been inserted as the last child
element of the root element.

Printing or Displaying the Resulting Document

You can use the following code to print the resulting signed document to a file or standard
output:

 OutputStream os;
 if (args.length > 1) {
 os = new FileOutputStream(args[1]);
 } else {
 os = System.out;
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer trans = tf.newTransformer();
 trans.transform(new DOMSource(doc), new StreamResult(os));

Chapter 11
XML Digital Signature API Examples

11-18

12
Java API for XML Processing (JAXP) Security
Guide

The JDK and Java XML APIs have been improved over the years with various measures and
tools that can help prevent applications from being exploited by XML-related attacks. This
guide shows you how to use the secure processing features of Java API for XML Processing
(JAXP) to safeguard your applications and systems.

Potential Attacks During XML Processing
XML processing can expose applications to certain vulnerabilities. Among the most prominent
and well-known attacks are the XML External Entity (XXE) injection attack and the exponential
entity expansion attack, also know as the XML bomb or billion laughs attack. These attacks
can potentially cause serious damage to a system by denying its services or worse, lead to the
loss of sensitive data.

You should evaluate your applications' requirements and operating environment to assess the
level of potential threat, for example, whether or to what extent the applications are exposed to
untrusted XML sources.

XML External Entity Injection Attack

The XML, XML Schema, and XSLT standards define a number of structures that enable the
embedding of external content in XML documents through system identifiers that reference
external resources. In general, XML processors resolve and retrieve almost all of these
external resources; see External Resources Supported by XML, Schema, and XSLT Standards
for a list of constructs that support the inclusion of external resources. In addition, some
constructs enable the execution of applications through external functions. XML External Entity
(XXE) injection attacks exploit XML processors that have not been secured by restricting the
external resources that it may resolve, retrieve, or execute. This can result in disclosing
sensitive data such as passwords or enabling arbitrary execution of code.

External Resources Supported by XML, Schema, and XSLT Standards
XML, Schema, and XSLT standards support the following constructs that require external
resources. The default behavior of the JDK XML processors is to make a connection and fetch
the external resources as specified.

• External DTD: references an external Document Type Definition (DTD), for example:

<!DOCTYPE root_element SYSTEM "url">

• External Entity Reference: Refers to external data, the following is the syntax:

<!ENTITY name SYSTEM "url">

12-1

• General entity reference, for example:

<?xml version="1.0" standalone="no" ?>
<!DOCTYPE doc [<!ENTITY otherFile SYSTEM "otherFile.xml">]>
<doc>
 <a>
 &otherFile;

</doc>

• External Parameter Entities: The following is the syntax:

<!ENTITY % name SYSTEM uri>

The following is an example:

<?xml version="1.0" standalone="no"?>
 <!DOCTYPE doc [
 <!ENTITY % ent1 SYSTEM "http://www.example.com/student.dtd">
 %ent1;
]>

• XInclude: Includes an external infoset in an XML document, for example:

<Book xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href=toc.xml"/>
 <xi:include href=part1.xml"/>
 <xi:include href=part2.xml"/>
 <xi:include href=index.xml"/>
</Book>

• References to XML Schema components using the schemaLocation attribute and import
and include elements, for example:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="http://www.example.com/schema/
schema1.xsd"/>
 <!-- ... -->
</xs:schema>

• Combining style sheets using import or include elements, the following is the syntax:

<xsl:include href="include.xsl"/>

• xml-stylesheet processing instruction: Used to include a stylesheet in an XML document,
for example:

<?xml-stylesheet href="include.xsl" type="text/xsl"?>

• XSLT document() function: Used to access nodes in an external XML document, for
example:

<xsl:variable name="dummy" select="document('DocumentFunc2.xml')"/>

Chapter 12
Potential Attacks During XML Processing

12-2

Exponential Entity Expansion Attack
The exponential entity expansion attack, also know as the XML bomb or billion laughs attack,
is a denial-of-service attack that involves XML parsers. The basic exploit is to have several
layers of nested entities, each referring to a number of entities of the next layer. The following
is a sample SOAP document that contains deeply nested entity references:

<?xml version="1.0" encoding ="UTF-8"?>
<!DOCTYPE bbb[
 <!ENTITY x100 "bbb">
 <!ENTITY x99 "&x100;&x100;">
 <!ENTITY x98 "&x99;&x99;">
 ...
 <!ENTITY x2 "&x3;&x3;">
 <!ENTITY x1 "&x2;&x2;">
]>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=...>
 <SOAP-ENV:Body>
 <ns1:aaa xmlns:ns1="urn:aaa" SOAP-ENV:encodingStyle="...">
 <foobar xsi:type="xsd:string">&x1;</foobar>
 </ns1:aaa>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

When an XML parser encounters such a document, it will attempt to resolve the entity
declaration by expanding the references. Because the references are nested, the expansion
becomes exponential by the number of entities each refers to. Such a process can lead the
XML parser to consume 100% of CPU time and a large amount of memory, and eventually the
system runs out of memory.

Feature for Secure Processing (FSP)
Feature for Secure Processing (FSP), which is defined as
javax.xml.XMLConstants.FEATURE_SECURE_PROCESSING, is the central mechanism to
help safeguard XML processing. It instructs XML processors, such as parsers, validators, and
transformers, to try and process XML securely.

By default, the JDK turns on FSP for DOM and SAX parsers and XML schema validators,
which sets a number of processing limits on the processors. Conversely, by default, the JDK
turns off FSP for transformers and XPath, which enables extension functions for XSLT and
XPath.

Turn on and off FSP by calling the setFeature method on factories and setting
XMLConstants.FEATURE_SECURE_PROCESSING to either true or false. For example, the
following code snippet turns on FSP for SAX parsers that are created by the factory spf by
setting XMLConstants.FEATURE_SECURE_PROCESSING to true:

 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

While FSP can be turned on and off through factories, it is always on when a Java Security
Manager is present and cannot be turned off. The Java XML processors therefore will enforce

Chapter 12
Feature for Secure Processing (FSP)

12-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/javax/xml/XMLConstants.html#FEATURE_SECURE_PROCESSING

limits and restrictions when a Java Security Manager is present. You can however adjust
individual properties depending on the specific needs of your applications. There are two types
of JAXP properties:

• Processing limits: Helps guard against excessive memory consumption from XML
processing.

• External access restrictions: Controls the fetching of external resources.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

The following sections describe these two types of JAXP properties.

JAXP Properties for Processing Limits
XML processing can sometimes be a memory intensive operation. Applications, especially
those that accept XML, XSD and XSL from untrusted sources, should take steps to guard
against excessive memory consumption by using JAXP properties for processing limits.

Evaluate your application's requirements and operating environment to determine the
acceptable processing limits for your system configurations and set these limits accordingly.
For example, use size-related limits to prevent malformed XML sources from consuming large
amounts of memory. Use the jdk.xml.entityExpansionLimit property to enable an
application to control memory consumption under an acceptable level.

The JDK XML parsers observe processing limits by default. Both DOM and SAX parsers have
Feature for Secure Processing (FSP) turned on by default and therefore turn on the limits. The
StAX parser also observes processing limits by default even though it doesn't support FSP.

The JDK XML processors enable you to adjust processing limits individually in three ways:

• Through standard XML APIs

• By using System properties

• In the jaxp.properties file

See Using JAXP Properties and Scope and Order.

The following table describes the JAXP properties for processing limits supported in the JDK.
The value for each of these processing limits is a positive integer. A value less than or equal to
0 indicates no limit. If the value is not an integer, a NumericFormatException is thrown.

See the table Implementation Specific Properties in the java.xml module summary for more
information.

Table 12-1 JAXP Processing Limit Properties

Property Name and System
Property

Description Default Value

jdk.xml.elementAttributeLi
mit

Limits the number of attributes an
element can have.

10000

Chapter 12
Feature for Secure Processing (FSP)

12-4

https://openjdk.java.net/jeps/411

Table 12-1 (Cont.) JAXP Processing Limit Properties

Property Name and System
Property

Description Default Value

jdk.xml.entityExpansionLim
it

Limits the number of entity
expansions.

64000

jdk.xml.entityReplacementL
imit

Limits the total number of nodes
in all entity references.

3000000

jdk.xml.maxElementDepth Limits the maximum element
depth.

0

jdk.xml.maxGeneralEntitySi
zeLimit

Limits the maximum size of any
general entities.

0

jdk.xml.maxOccurLimit Limits the number of content
model nodes that may be created
when building a grammar for a
W3C XML Schema that contains
maxOccurs attributes with values
other than "unbounded".

5000

jdk.xml.maxParameterEntity
SizeLimit

Limits the maximum size of any
parameter entities, including the
result of nesting multiple
parameter entities.

1000000

jdk.xml.maxXMLNameLimit Limits the maximum size of XML
names, including element name,
attribute name and namespace
prefix and URI.

1000

jdk.xml.totalEntitySizeLim
it

Limits the total size of all entities
that include general and
parameter entities. The size is
calculated as an aggregation of
all entities.

5x10^7

jdk.xml.xpathExprGrpLimit Limits the number of groups an
XPath expression can contain.

10

jdk.xml.xpathExprOpLimit Limits the number of operators an
XPath expression can contain.

100

jdk.xml.xpathTotalOpLimit Limits the total number of XPath
operators in an XSL Stylesheet.

100000

JAXP Properties for External Access Restrictions
The JAXP Properties for external access restrictions, along with their corresponding System
properties, enable you to regulate external connections.

External access restrictions enable you to specify the type of external connections that can or
cannot be permitted. The property values are a list of protocols. The JAXP processors check if
a given external connection is permitted by matching the protocol with those in the list.
Processors will attempt to establish the connection if it is on the list, or reject it if not. Use these
JAXP properties along with custom resolvers and the Catalog API (see Using Resolvers and
Catalogs) to reduce the risk of external connections by rejecting and resolving them with local
resources.

Chapter 12
Feature for Secure Processing (FSP)

12-5

Note:

Explicitly turning on Feature for Secure Processing (FSP) through the API, for
example, factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true),
disables all external connections.

The external access restrictions JAXP properties are defined in javax.xml.XMLConstants
as follows:

• javax.xml.XMLConstants.ACCESS_EXTERNAL_DTD
• javax.xml.XMLConstants.ACCESS_EXTERNAL_SCHEMA
• javax.xml.XMLConstants.ACCESS_EXTERNAL_STYLESHEET

Table 12-2 ACCESS_EXTERNAL_DTD

Attribute Description

Name http://javax.xml.XMLConstants/property/
accessExternalDTD

Definition Restricts access to external DTDs and external
entity references to the protocols specified.

Value See Values of External Access Restrictions JAXP
Properties

Default value all, connection permitted to all protocols

System property javax.xml.accessExternalDTD

Table 12-3 ACCESS_EXTERNAL_SCHEMA

Attribute Description

Name http://javax.xml.XMLConstants/property/
accessExternalSchema

Definition Restricts access to the protocols specified for
external references set by the schemaLocation
attribute, import element, and include element.

Value See Values of External Access Restrictions JAXP
Properties

Default value all, connection permitted to all protocols.

System property javax.xml.accessExternalSchema

Table 12-4 ACCESS_EXTERNAL_STYLESHEET

Attribute Description

Name http://javax.xml.XMLConstants/property/
accessExternalStylesheet

Definition Restricts access to the protocols specified for
external references set by the stylesheet
processing instruction, document function, and
import and include elements.

Value See Values of External Access Restrictions JAXP
Properties

Chapter 12
Feature for Secure Processing (FSP)

12-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/javax/xml/XMLConstants.html#ACCESS_EXTERNAL_DTD
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/javax/xml/XMLConstants.html#ACCESS_EXTERNAL_SCHEMA
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/javax/xml/XMLConstants.html#ACCESS_EXTERNAL_STYLESHEET

Table 12-4 (Cont.) ACCESS_EXTERNAL_STYLESHEET

Attribute Description

Default value all, connection permitted to all protocols.

System property javax.xml.accessExternalStylesheet

Values of External Access Restrictions JAXP Properties

All JAXP properties for external access restrictions have values of the same format:

• Value: A list of protocols separated by comma. A protocol is the scheme portion of an URI,
or in the case of the JAR protocol, jar plus the scheme portion separated by colon. A
scheme is defined as:

scheme = alpha *(alpha | digit | "+" | "-" | ".")
where alpha = a-z and A-Z.

The JAR protocol is defined as: jar[:scheme]
Protocols are case-insensitive. Any whitespace characters as defined by
Character.isSpaceChar in the value are ignored. Examples of protocols are file,
http, and jar:file.

• Default value: The default value is implementation specific. For the JDK, the default value
is all, which grants permissions to all protocols.

• Granting all access: The keyword all grants permission to all protocols. For example,
specifying javax.xml.accessExternalDTD=all in the JAXP configuration file enables a
system to work as before with no restrictions on accessing external DTDs and entity
references.

• Denying any access: An empty string ("") means that no permission is granted to any
protocol. For example, specifying javax.xml.accessExternalDTD="" in the JAXP
configuration file instructs JAXP processors to deny any external connections.

Scope and Order

Scope of Setting Feature for Secure Processing

Feature for Secure Processing (FSP) is required for XML processors including DOM, SAX,
schema validation, XSLT, and XPath.

When FSP is turned on, then default processing limits (see JAXP Properties for Processing
Limits) are enforced. Turning off FSP does not change the limits.

When FSP is "explicitly" turned on through the API, for example,
factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true), then external
access restrictions (see JAXP Properties for External Access Restrictions) are set to the
empty string, which means that no permission is granted to any protocol. Although FSP is
turned on by default for DOM, SAX and schema validation, it is not treated as if "explicitly"
turned on; therefore, the default value for external access restrictions is all, which means that
permission is granted to all protocols.

When a Java Security Manager is present, FSP is turned on and cannot be turned off.

Chapter 12
Feature for Secure Processing (FSP)

12-7

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Scope and Order of Setting JAXP Properties

In general, JAXP properties set in a smaller scope override those in a larger one:

• JAXP properties specified through JAXP factories or processors take preference over
System properties, the jaxp.properties file, and FSP.

• System properties, when set, affect one JDK invocation only and override processing limit
and external access restriction values set by default, set in the jaxp.properties file, or
set by FSP.

• Properties specified in the jaxp.properties file affect the entire JDK and override
processing limit and external access restriction values set by default or set by FSP.

Scope of Setting External Access Restrictions

External access restrictions have no effect on the relevant constructs that they attempt to
restrict in the following situations:

• When there is a resolver and the source returned by the resolver is not null: This applies to
entity resolvers that may be set on SAX and DOM parsers, XML resolvers on StAX
parsers, LSResourceResolver on SchemaFactory, a Validator or
ValidatorHandler, or URIResolver on a transformer.

• When a schema is created explicitly by calling the newSchema method from
SchemaFactory.

• When external resources are not required: For example, the following features and
properties are supported by the JDK and may be used to instruct the processor to not load
the external DTD or resolve external entities:

http://apache.org/xml/features/disallow-doctype-decl true
http://apache.org/xml/features/nonvalidating/load-external-dtd false
http://xml.org/sax/features/external-general-entities false
http://xml.org/sax/features/external-parameter-entities false

Relationship with Security Manager

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

JAXP properties are checked first before a connection is attempted, whether or not a
SecurityManager is present. This means that a connection may be blocked even if it is
granted permission by the SecurityManager. For example, if the JAXP properties are set to

Chapter 12
Feature for Secure Processing (FSP)

12-8

https://openjdk.java.net/jeps/411
https://openjdk.java.net/jeps/411

disallow the HTTP protocol, then they will effectively block any connection attempt even when
an application has a SocketPermission.

For the purpose of restricting connections, the SecurityManager can be viewed as being at
a lower level. Permissions are checked after JAXP properties are evaluated. For example, if an
application does not have a SocketPermission, then a SecurityException will be
thrown even if JAXP properties are set to allow HTTP connections.

When a SecurityManager is present, Feature for Secure Processing (FSP) is set to true.
This behavior does not turn on any external access restrictions.

When to Use Processing Limits
When determining which processing limits to apply and what values to use, at the system level,
consider the amount of memory available for applications and whether XML, XSD, or XSL
sources from untrusted sources are accepted and processed. At the application level, consider
whether certain constructs such as DTDs are used.

Memory Setting and Limits

XML processing can be very memory intensive. The amount of memory that should be allowed
to be consumed depends on the requirements of the applications in a specific environment.
Processing of malformed XML data must be prevented from consuming excessive memory.

The default limits are generally set to allow legitimate XML inputs for most applications with
memory usage allowed for a small hardware system, such as a PC. It is recommended that the
limits are set to the smallest possible values, so that any malformed input can be caught before
it consumes large amounts of memory.

The limits are correlated, but not entirely redundant. You should set appropriate values for all of
the limits: usually the limits should be set to a much smaller value than the default.

For example, ENTITY_EXPANSION_LIMIT and GENERAL_ENTITY_SIZE_LIMIT can be set to
prevent excessive entity references. But when the exact combination of the expansion and
entity sizes are unknown, TOTAL_ENTITY_SIZE_LIMIT can serve as a overall control. Similarly,
while TOTAL_ENTITY_SIZE_LIMIT controls the total size of a replacement text, if the text is a
very large chunk of XML, ENTITY_REPLACEMENT_LIMIT sets a restriction on the total number of
nodes that can appear in the text and prevents overloading the system.

Estimating the Limits Using the getEntityCountInfo Property

To help you analyze what values you should set for the limits, a special property called http://
www.oracle.com/xml/jaxp/properties/getEntityCountInfo is available. The following code
snippet, from Processing Limit Samples in The Java Tutorials, shows an example of using the
property:

 public static final String ORACLE_JAXP_PROPERTY_PREFIX =
 "http://www.oracle.com/xml/jaxp/properties/";
 // ...
 public static final String JDK_ENTITY_COUNT_INFO =
 ORACLE_JAXP_PROPERTY_PREFIX + "getEntityCountInfo";
 // ...
 parser.setProperty(JDK_ENTITY_COUNT_INFO, "yes");

When you run the processing limit sample with the DTD in W3C MathML 3.0, it prints out the
following table:

Chapter 12
Feature for Secure Processing (FSP)

12-9

https://docs.oracle.com/javase/tutorial/jaxp/limits/sample.html

Table 12-5 Running JAXP Processing Limits Sample with DTD in W3C MatchML 3.0

Property Limit Total Size Size Entity Name

ENTITY_EXPANSIO
N_LIMIT

64000 1417 0 null

MAX_OCCUR_NODE_
LIMIT

5000 0 0 null

ELEMENT_ATTRIBU
TE_LIMIT

10000 0 0 null

TOTAL_ENTITY_SI
ZE_LIMIT

50000000 55425 0 null

GENERAL_ENTITY_
SIZE_LIMIT

0 0 0 null

PARAMETER_ENTIT
Y_SIZE_LIMIT

1000000 0 7303 %MultiScriptExp
ression

MAX_ELEMENT_DEP
TH_LIMIT

0 2 0 null

MAX_NAME_LIMIT 1000 13 13 null

ENTITY_REPLACEM
ENT_LIMIT

3000000 0 0 null

In this example, the total number of entity references, or the entity expansion, is 1417; the
default limit is 64000. The total size of all entities is 55425; the default limit is 50000000. The
biggest parameter entity is %MultiScriptExpression with a length of 7303 after all references
are resolved; the default limit is 1000000.

If this is the largest file that the application is expected to process, it is recommended that the
limits be set to smaller numbers. For example, 2000 for ENTITY_EXPANSION_LIMIT, 100000 for
TOTAL_ENTITY_SIZE_LIMIT, and 10000 for PARAMETER_ENTITY_SIZE_LIMIT.

When to Use External Access Restrictions

The XML processors, by default, attempt to connect and read external resources that are
referenced in XML sources. Note that this may potentially expose applications and systems to
risks posed by external connections. It's therefore recommended that applications consider
limiting external connections with external access restriction properties.

Internal applications and systems that handle only trusted XML documents may not need these
restrictions. Applications and systems that rely on the Java Security Manager to regulate
external connections may also have no need for them. However, keep in mind that external
access restrictions are specific to the XML processors and are at the top layer of the process,
which means that the processors check these restrictions before any connections are made.
They may therefore serve as an additional and more direct protection against external
connection risks.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Chapter 12
Feature for Secure Processing (FSP)

12-10

https://openjdk.java.net/jeps/411

You can use external access restriction properties along with custom resolvers and catalogs
(see Using Resolvers and Catalogs) to effectively manage external connections and reduce
risks.

Even in a trusted environment with trusted sources, it's recommended that you use both
external access restrictions and resolvers to minimize dependencies on external sources.

Using JAXP Properties

Setting Properties Through JAXP Factories

If you can modify your application's code, or you're creating a new application, then setting
JAXP properties through JAXP factories or a parser is the preferred method. Set these
properties through the following interfaces:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setAttribute(name, value);

 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser parser = spf.newSAXParser();
 parser.setProperty(name, value);

 SchemaFactory schemaFactory = SchemaFactory.newInstance(schemaLanguage);
 schemaFactory.setProperty(name, value);

 TransformerFactory factory = TransformerFactory.newInstance();
 factory.setAttribute(name, value);

 XMLInputFactory xif = XMLInputFactory.newInstance();
 xif.setProperty(name, value);

 XPathFactory xf = XPathFactory.newInstance();
 xf.setProperty(name, value);

The following is an example of setting processing limits:

 dbf.setAttribute("jdk.xml.entityExpansionLimit", "2000");
 dbf.setAttribute("jdk.xml.totalEntitySizeLimit", "100000");
 dbf.setAttribute("jdk.xml.maxParameterEntitySizeLimit", "10000");
 dbf.setAttribute("jdk.xml.maxElementDepth", "100");

 factory.setAttribute("jdk.xml.xpathTotalOpLimit", "1000");
 xf.setProperty("jdk.xml.xpathExprGrpLimit", "20");

The following is an example of limiting a DOM parser to only local connections for external
DTDs:

 dbf.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, "file, jar:file");

Chapter 12
Feature for Secure Processing (FSP)

12-11

If a parser module within the application handles untrusted sources, it may further restrict
access. The following code overrides those in the jaxp.properties file and those specified
by System properties and enables the XML processor to read local files only:

 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
 dbf.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, "file");
 // ...
 SchemaFactory schemaFactory =
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, "file");
 schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, "file");

As described in Scope and Order of Setting JAXP Properties, JAXP properties specified
through JAXP factories have the narrowest scope, affecting only the processors created by the
factories, and therefore override any default settings, System properties, and those in the
jaxp.properties file. By setting JAXP properties through JAXP factories, you can ensure
that your applications behave the same way regardless of which JDK release you're using or
whether JAXP properties are set through other means.

Using System Properties

System properties may be useful if you can't modify your application's code.

To set JAXP properties for an entire JDK invocation, set their corresponding System properties
on the command line.

To set JAXP properties for only a portion of the application, set their corresponding System
properties before the portion, and then clear them afterward. For example, if your application
requires access to external DTDs and schemas, then add these lines to your application's
initialization code block:

 System.setProperty("javax.xml.accessExternalDTD", "file, http");
 System.setProperty("javax.xml.accessExternalSchema", "file, http");

Then, once your application is done processing XML documents or before it exits, clear out the
properties as follows:

 System.clearProperty("javax.xml.accessExternalDTD");
 System.clearProperty("javax.xml.accessExternalSchema");

The following code, from Processing Limit Samples in The Java Tutorials, is another example
that shows how to do this for the processing limit maxGeneralEntitySizeLimit:

 public static final String SP_GENERAL_ENTITY_SIZE_LIMIT =
 "jdk.xml.maxGeneralEntitySizeLimit";

 // Set limits using System property;
 // this setting will affect all processing after it's set
 System.setProperty(SP_GENERAL_ENTITY_SIZE_LIMIT, "2000");

 // Perform some processing here

Chapter 12
Feature for Secure Processing (FSP)

12-12

https://docs.oracle.com/javase/tutorial/jaxp/limits/sample.html

 // After it is done, clear the property
 System.clearProperty(SP_GENERAL_ENTITY_SIZE_LIMIT);

Note that processing limit values are integers. A NumberFormatException is thrown if a
processing limit's value is not a parsable integer; see the method
java.lang.Integer.parseInt(String).

The following example allows the resolution of external schemas for a portion of an application:

 // Allow resolution of external schemas
 // This setting will affect all processing after it's set
 System.setProperty("javax.xml.accessExternalSchema", "file, http");

 // Perform some processing here

 // After it's done, clear the property
 System.clearProperty("javax.xml.accessExternalSchema");

Using the jaxp.properties File

If you want to specify a JAXP property that affects every JDK invocation, then create a
configuration file named <java-home>/conf/jaxp.properties and specify names and
values of JAXP properties in it, one name-value pair on each line. For example, the following
jaxp.properties file sets the maxGeneralEntitySizeLimit processing limit property to
2000 and restricts access to the file and HTTP protocols for external references set by the
stylesheet processing instruction, document function, and the import and include elements.

jdk.xml.maxGeneralEntitySizeLimit=2000
javax.xml.accessExternalStylesheet=file, http

If you don't want to allow any external connection by XML processors, you can set all access
external restrictions to file only:

javax.xml.accessExternalDTD=file
javax.xml.accessExternalSchema=file
javax.xml.accessExternalStylesheet=file

If you want to prevent applications from accidentally reading external files through an XML
processor, set the external access restrictions as follows in the jaxp.properties file as
follows:

javax.xml.accessExternalDTD=""
javax.xml.accessExternalSchema=""
javax.xml.accessExternalStylesheet=""

Chapter 12
Feature for Secure Processing (FSP)

12-13

Note:

• Use the corresponding System property in the jaxp.properties file.
Processing limit System properties have the prefix jdk.xml. External access
restriction System properties have the prefix javax.xml.

• Processing limit values are integers. A NumberFormatException is thrown if a
processing limit's value is not a parsable integer; see the method
java.lang.Integer.parseInt(String).

Handling Errors from JAXP Properties
It is recommended that applications catch org.xml.sax.SAXNotRecognizedException
when setting JAXP properties so that the applications will work properly on older releases that
don't support them.

For example, the following method, isNewPropertySupported, from Processing Limit Samples
in The Java Tutorials, detects if the sample is run with a version of the JDK that supports the
JDK_GENERAL_ENTITY_SIZE_LIMIT property:

 public boolean isNewPropertySupported() {
 try {
 SAXParser parser = getSAXParser(false, false, false);
 parser.setProperty(JDK_GENERAL_ENTITY_SIZE_LIMIT, "10000");
 } catch (ParserConfigurationException ex) {
 fail(ex.getMessage());
 } catch (SAXException ex) {
 String err = ex.getMessage();
 if (err.indexOf("Property '" + JDK_GENERAL_ENTITY_SIZE_LIMIT +
 "' is not recognized.") > -1) {
 // expected before this patch
 debugPrint("New limit properties not supported. Samples not
run.");
 return false;
 }
 }
 return true;
 }

When input files contain constructs that cause an over-the-limit exception, applications may
check the error code to determine the nature of the failure. The following error codes are
defined for processing limits:

• EntityExpansionLimit: JAXP00010001

• ElementAttributeLimit: JAXP00010002

• MaxEntitySizeLimit: JAXP00010003

• TotalEntitySizeLimit: JAXP00010004

• MaxXMLNameLimit: JAXP00010005

• maxElementDepth: JAXP00010006

Chapter 12
Feature for Secure Processing (FSP)

12-14

https://docs.oracle.com/javase/tutorial/jaxp/limits/sample.html

• EntityReplacementLimit: JAXP00010007

The error code has the following format:

"JAXP" + components (two digits) + error category (two digits) + sequence
number

The code JAXP00010001, therefore, represents the JAXP base parser security limit
EntityExpansionLimit.

If access to external resources is denied due to the restrictions set by external access
restrictions, then an exception will be thrown with an error in the following format:

[type of construct]: Failed to read [type of construct]
 "[name of the external resource]", because "[type of restriction]"
 access is not allowed due to restriction set by the
 [property name] property.

For example, suppose the following:

• The ACCESS_EXTERNAL_DTD JAXP property is set as follows:

parser.setProperty(
 "http://javax.xml.XMLConstants/property/accessExternalDTD", "file");

• Your application tries to fetch an external DTD with the HTTP protocol.

• The parser parsed an XML file that contains an external reference to http://
www.example.com/dtd/properties.dtd.

The error message would look like the following:

External DTD: Failed to read external DTD
 "http://www.example.com/dtd/properties.dtd", because "http"
 access is not allowed due to restriction set by the
 accessExternalDTD property.

Streaming API for XML and JAXP Properties
Streaming API for XML (StAX), JSR 173, does not support FSP nor does it support external
access restrictions. However, JDK's StAX implementation supports processing limits, and StAX
in the context of JAXP supports external access restrictions.

StAX and Processing Limits

JDK's StAX implementation supports processing limits and their corresponding System
properties. However, because FSP is not supported, you can't turn on or off processing limits
for StAX by turning on or off FSP. Processing limits continue to behave as described in JAXP
Properties for Processing Limits .

Chapter 12
Feature for Secure Processing (FSP)

12-15

StAX and External Access Restrictions

JDK's StAX implementation supports the JAXP properties related to external access
restrictions. Setting them is similar to SAX or DOM, but through the XMLInputFactory class, for
example:

 XMLInputFactory xif = XMLInputFactory.newInstance();
 xif.setProperty(
 "http://javax.xml.XMLConstants/property/accessExternalDTD",
 "file");

For compatibility, StAX properties and features take precedence over the processing limit and
external access restriction properties. For example, the SupportDTD property, when set to
false, causes a program to throw an exception when an input file contains a DTD before it can
be parsed. Therefore, processing limits and external access restrictions on DTDs will have no
effect on applications that have disabled by setting SupportDTD property to false.

Extension Functions
Because Feature for Secure Processing (FSP) is off by default for Transformer and XPath,
extension functions are allowed. For applications processing documents from untrusted
sources, it is recommended to turn off the extension functions feature. There are two ways to
do so:

• By setting FSP to true, for example:

 TransformerFactory tf = TransformerFactory.newInstance();
 tf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

• By setting the enableExtensionFunctions property to false:

 final static String ENABLE_EXTENSION_FUNCTIONS =
 "http://www.oracle.com/xml/jaxp/properties/
enableExtensionFunctions";
 // ...
 TransformerFactory tf = TransformerFactory.newInstance();
 tf.setFeature(ENABLE_EXTENSION_FUNCTIONS, false);

In cases where extension functions are disabled as a result of installing a Java Security
Manager, applications may also choose to re-enable the extension functions feature by setting
the property enableExtensionFunctions to true. The following table defines this property:

Table 12-6 enableExtensionFunctions

Attribute Description

Name http://www.oracle.com/xml/jaxp/
properties/enableExtensionFunctions

Definition Determines whether XSLT and XPath extension
functions are allowed.

Value A boolean. True indicates that extension functions
are allowed; False otherwise.

Default value true

Chapter 12
Feature for Secure Processing (FSP)

12-16

Table 12-6 (Cont.) enableExtensionFunctions

Attribute Description

System property jdk.xml.enableExtensionFunctions
Since 7u60

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Disabling DTD Processing
If your applications don't require DTDs, then consider disabling DTD processing to safeguard
against many common DTD-related attacks, including denial-of-service, XML external entity
(XXE), and server-side request forgery (SSRF).

Disabling DTD Processing for SAX and DOM Parsers

To disable DTD processing for SAX and DOM parsers, set the feature http://
apache.org/xml/features/disallow-doctype-decl to true through a factory. The following
code snippet disables DTDs for SAX parsers. A fatal error is thrown if the incoming XML
document contains a DOCTYPE declaration.

 final static String DISALLOW_DTD =
 "http://apache.org/xml/features/disallow-doctype-decl";
 // ...
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setFeature(DISALLOW_DTD, true);

Disabling DTD processing for StAX Parsers

To disable DTD processing for StAX parsers, set the property SupportDTD with the the
XMLInputFactory.setProperty method:

 XMLInputFactory xif = XMLInputFactory.newInstance();
 xif.setProperty(XMLInputFactory.SUPPORT_DTD, Boolean.FALSE);

Using Resolvers and Catalogs
You can register custom resolvers and catalogs on a JDK XML processor to intercept any
references to external resources and resolve them with local ones. This feature eliminates the
need to read and access external resources, thus helping to remove a source of potential risk.

Java XML Resolvers
The Java XML API supports various resolvers that you can register on JDK XML processors to
resolve external resources. These resolvers includes entity resolvers for SAX and DOM

Chapter 12
Disabling DTD Processing

12-17

https://openjdk.java.net/jeps/411

parsers, XML resolvers for StAX parsers, LSResourceResolver for validation, and
URIResolver for transformation.

Entity Resolvers for SAX and DOM
SAX defines an interface that DOM also supports, org.xml.sax.EntityResolver. It
enables applications to step into the entity resolution process and perform entity resolution on
their own terms. The following is the interface's definition:

package org.xml.sax;

public interface EntityResolver {
 public InputSource resolveEntity(String publicID, String systemID)
 throws SAXException;
}

You can then register an implementation of the interface on a SAX driver:

 EntityResolver resolver = ...;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XMLReader reader = factory.newSAXParser().getXMLReader();
 reader.setEntityResolver(resolver);

Alternatively, you can register it on a DOM builder:

 DocumentBuilder builder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 docBuilder.setEntityResolver(resolver);

XMLResolver for StAX
StAX defines a javax.xml.stream.XMLResolver interface:

package javax.xml.stream;

public interface XMLResolver {
 public Object resolveEntity(
 String publicID, String systemID,
 String baseURI, String namespace)
 throws XMLStreamException;
}

You can register it on a StAX factory:

 XMLResolver resolver = ...;
 XMLInputFactory xif = XMLInputFactory.newInstance();
 xif.setProperty(XMLInputFactory.RESOLVER, resolver);

Chapter 12
Using Resolvers and Catalogs

12-18

URIResolver for javax.xml.transform
The javax.xml.transform API supports custom resolution of external resources through
the URIResolver interface:

package javax.xml.transform;

public interface URIResolver {
 public Source resolve(String href, String base)
 throws TransformerException;
}

You can register an implementation of URIResolver on a Transformer as follows:

 URIResolver resolver = ...;
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer t =
 tf.newTransformer(new StreamSource(
 new StringReader("xsl source")));
 t.setURIResolver(resolver);

LSResourceResolver for javax.xml.validation
The javax.xml.validation API supports Document Object Model Level 3 Load and Save
(DOM LS) DOM through the LSResourceResolver interface:

package org.w3c.dom.ls;

public interface LSResourceResolver {
 public LSInput resolveResource(
 String type, String namespaceURI, String publicId,
 String systemId, String baseURI);
}

You can register an implementation of LSResourceResolver on a SchemaFactory as
follows:

 SchemaFactory schemaFactory =
 SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
 LSResourceResolver resolver = ...;
 schemaFactory.setResourceResolver(resolver);

The Catalog API

The XML Catalog API supports the Organization for the Advancement of Structured
Information Standards (OASIS) XML Catalogs, OASIS Standard V1.1. This API is fully
implemented by the JDK XML processors and easy to use. See XML Catalog API in Java
Platform, Standard Edition Core Libraries.

Use the XML Catalog API to resolve external resources with the CatalogResolver interface
and to enable catalogs on JDK XML processors.

Chapter 12
Using Resolvers and Catalogs

12-19

Catalog Resolver

You can use a CatalogResolver as a custom resolver that substitutes external references
with local resources configured as Catalog objects. You can register a CatalogResolver
on factories or processors in place of EntityResolver, XMLResolver, URIResolver or
LSResourceResolver as described in Java XML Resolvers. In the following code snippet, a
CatalogResolver is registered as an EntityResolver on a SAXParserFactory:

 URI catalogUri = URI.create("file:///users/auser/catalog/catalog.xml")
 CatalogResolver cr =
 CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XMLReader reader = factory.newSAXParser().getXMLReader();
 reader.setEntityResolver(cr);

Enable Catalogs on JDK XML Processors
The JDK XML processors implement the Catalog API as a native function. Therefore, there is
no need to instantiate a CatalogResolver outside the processors. All you need to do is
register the catalog files on the XML processors through the setProperty or setAttribute
methods, through System properties, or in the jaxp.properties file. The XML processors
then perform the mappings through the catalogs automatically. The following code snippet
demonstrates how to register catalogs on StAX parsers through XMLInputFactory:

 String catalog = "file:///users/auser/catalog/catalog.xml";
 XMLInputFactory factory = XMLInputFactory.newInstance();
 factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);

For more examples, see XML Catalog API in Java Platform, Standard Edition Core Libraries.

Third-Party Parsers
The JDK will always use its system-default parser even when there's a third-party parser on
the classpath. To override the JDK system-default parser, set the
jdk.xml.overrideDefaultParser property to true.

Table 12-7 overrideDefaultParser

Attribute Description

Name jdk.xml.overrideDefaultParser
Definition Enables the use of a third-party's parser

implementation to override the system-default
parser for the JDK's Transformer,
Validator, and XPath implementations. The
property can be set through JAXP factories,
System properties, or the jaxp.properties
file.

Chapter 12
Third-Party Parsers

12-20

Table 12-7 (Cont.) overrideDefaultParser

Attribute Description

Value A boolean. Setting it to true enables third-party
parser implementations to override the system-
default implementation during XML transformation,
XML validation, or XPath operations. Setting it to
false disables the use of third-party parser
implementations. When the value is specified as a
String, the returning value will be that of
Boolean.parseBoolean.

Default value false

System property jdk.xml.overrideDefaultParser
Since 6u181, 7u171, 8u161, 9.0.4

The following code snippets instruct the factories to use a third-party parser, if found on the
classpath, by setting the jdk.xml.overrideDefaultParser property with the setFeature
method:

 static final String JDK_OVERRIDE_PARSER = "jdk.xml.overrideDefaultParser";
 ...
 TransformerFactory tFactory = TransformerFactory.newInstance();
 tFactory.setFeature(JDK_OVERRIDE_PARSER, true);
 ...
 XPathFactory xf = XPathFactory.newInstance();
 xf.setFeature(JDK_OVERRIDE_PARSER, true);
 ...
 SchemaFactory schemaFactory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 schemaFactory.setFeature(JDK_OVERRIDE_PARSER, true);
 ...
 Schema schema = schemaFactory.newSchema(new File("mySchema.xsd"));
 Validator validator = schema.newValidator();
 validator.setFeature(JDK_OVERRIDE_PARSER, true);

The following code snippet sets jdk.xml.overrideDefaultParser as a System property:

System.setProperty("jdk.xml.overrideDefaultParser", "true"));

You can add the following line to the jaxp.properties file to enable third-party parsers:

jdk.xml.overrideDefaultParser=true

JAXP Security Processing
JAXP security processing instructs JAXP components such as parsers, transformers, and so
on to behave in a secure fashion. Note that when a Security Manager is present, JAXP
security processing is turned on automatically; otherwise, JAXP security processing is disabled
by default.

Chapter 12
JAXP Security Processing

12-21

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

JAXP Security Processing Default Limitations

The following table describes which XML-related factory classes are disabled and which
processing limits are set if JAXP security processing is enabled.

Table 12-8 Default Limitations Set by JAXP Security Processing on XML-Related
Factory Classes

XML-Related Factory Class Enabled? Processing Limits

DocumentBuilderFactory true entityExpansionLimit =
64000
elementAttributeLimit =
1000
maxOccurLimit = 5000

SAXParserFactory true entityExpansionLimit =
64000
elementAttributeLimit =
10000
maxOccurLimit = 5000

SchemaFactory true maxOccurLimit = 5000
TransformerFactory false Extension functions disabled

XPathFactory false Extension functions disabled

See Processing Limits in The Java Tutorials for more information about
entityExpansionLimit, elementAttributeLimit, maxOccurLimit and other JAXP processing
limits.

The following sections describes the processing limits in this table in detail and how you can
change them.

Limiting Entity Expansion

Limit the the number of entity expansions by either setting the system property
entityExpansionLimit or the parser property http://apache.org/xml/properties/entity-
expansion-limit. Both properties accept java.lang.Integer values. The parser throws a
fatal error once it has reached the entity expansion limit. By default, entityExpansionLimit is
set to 64,000.

The following command-line example sets the entity expansion limit to 10,000:

java -DentityExpansionLimit=10000 MyApp

The following code example sets the entity expansion limit to 10,000:

 System.setProperty("entityExpansionLimit","10000");

Chapter 12
JAXP Security Processing

12-22

https://openjdk.java.net/jeps/411
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html

The following code example sets the parser property http://apache.org/xml/properties/
entity-expansion-limit to 10,000:

 DocumentBuilderFactory dfactory = DocumentBuilderFactory.newInstance();
 dfactory.setAttribute(
 "http://apache.org/xml/properties/entity-expansion-limit",
 new Integer("10000"));
 DocumentBuilder docBuilder = dbFactory.newDocumentBuilder();

Limiting Number of Element Attributes

Limit the number of attributes in an element by either setting the system property
elementAttributeLimit or by setting the parser property http://apache.org/xml/
properties/elementAttributeLimit. Both properties accept Integer values. By default,
elementAttributeLimit is set to 10,000. When the parser property http://apache.org/xml/
properties/elementAttributeLimit is set, it overrides the system property. The parser
throws a fatal error if the number of attributes in a element exceeds the limit.

The following command-line example sets the element attribute limit to 20:

java -DelementAttributeLimit=20 MyApp

The following code example sets the element attribute limit to 20:

System.setProperty("elementAttributeLimit","20");

The following code example sets the parser property http://apache.org/xml/properties/
entity-expansion-limit to 20:

 DocumentBuilderFactory dfactory = DocumentBuilderFactory.newInstance();
 dfactory.setAttribute(
 "http://apache.org/xml/properties/elementAttributeLimit",
 new Integer(20));
 DocumentBuilder docBuilder = dbFactory.newDocumentBuilder();

Limit Number of Nodes Created by Constructs That Contain maxOccurs

In constructs like xsd:sequence, the validating parser may use space (memory) proportional to
the value of the maxOccurs occurrence indicator. This may cause the VM to run out of memory,
or simply run for a very long time. To prevent potential attacks that exploit this behavior, enable
secure processing on a factory as follows:

factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, Boolean.TRUE);

Note that for xsd:element and xsd:any, the validating parser uses a constant amount of
space, which is independent of the value of the maxOccurs occurrence indicator.

The default value of maxOccursLimit is 5,000. This system property limits the number of
content model nodes that may be created when building a grammar for a W3C XML Schema
that contains maxOccurs occurrence indicators with values other than "unbounded".

Chapter 12
JAXP Security Processing

12-23

Disabling XPath and XSLT Extension Functions

By default, XPath and XSLT extension functions are disabled when JAXP secure processing is
enabled. The following code enables JAXP secure processing and disables XPath and XSLT
extension functions for XPathFactory:

 XPathFactory xpf = xPathFactory.newInstance();
 xpf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

The following code enables JAXP secure processing and disables XSLT extension functions
for TransformerFactory:

 TransformerFactory tf = TransformerFactory.newInstance();
 tf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

Security Issue Posed by Nested Entity Definitions

While XML does not allow recursive entity definitions, it does permit nested entity definitions,
which produces the potential for Denial of Service attacks on a server which accepts XML data
from external sources. For example, a SOAP document like the following that has very deeply
nested entity definitions can consume 100% of CPU time and large amounts of memory in
entity expansions:

<?xml version="1.0" encoding ="UTF-8"?>
<!DOCTYPE foobar[
 <!ENTITY x100 "foobar">
 <!ENTITY x99 "&x100;&x100;">
 <!ENTITY x98 "&x99;&x99;">
 ...
 <!ENTITY x2 "&x3;&x3;">
 <!ENTITY x1 "&x2;&x2;">
]>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=...>
 <SOAP-ENV:Body>
 <ns1:aaa xmlns:ns1="urn:aaa" SOAP-ENV:encodingStyle="...">
 <foobar xsi:type="xsd:string">&x1;</foobar>
 </ns1:aaa>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You don't have worry about this issue if your system doesn't take in external XML data, but a
system that does should turn on the secure processing feature and reset the limits as
described in Limiting Entity Expansion and Limiting Number of Element Attributes.

Disallowing DTDs

When you set the http://apache.org/xml/features/disallow-doctype-decl parser property
to true, a fatal error is then thrown if the incoming XML document contains a DOCTYPE
declaration. (The default value for this property is false.) This property is typically useful for
SOAP based applications where a SOAP message must not contain a Document Type
Declaration.

Chapter 12
JAXP Security Processing

12-24

Secure Processing Using StAX

The class XMLInputFactory includes the property javax.xml.stream.supportDTD that
requests processors that do not support DTDs. StAX includes a similar property,
XMLInputFactory.SUPPORT_DTD, that you can use to disable DTD processing:

 XMLInputFactory xif = XMLInputFactory.newInstance();
 xif.setProperty(XMLInputFactory.SUPPORT_DTD, Boolean.FALSE);

Resolving External Resources

The following system properties restrict how XML parsers resolve external resources:

• javax.xml.XMLConstants.ACCESS_EXTERNAL_DTD
• javax.xml.XMLConstants.ACCESS_EXTERNAL_SCHEMA
• javax.xml.XMLConstants.ACCESS_EXTERNAL_STYLESHEET
See JAXP 1.5 and New Properties in The Java Tutorials for more information about these
properties.

Turning off JAXP Secure Processing

Turn off JAXP secure processing by calling the setFeature method on factories. The following
code example turns off JAXP secure processing for the SAX parser:

 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING,false);

When you turn off JAXP secure processing for the DOM or SAX parser, you remove the default
limiations specified by entityExpansionLimit, elementAttributeLimit, and maxOccurs.

General Recommendations for JAXP Security
The following are general recommendations for configuring JAXP properties and features to
help secure your applications and systems:

• Turn on Feature for Secure Processing (FSP), then adjust individual features and
properties in accordance with your specific requirements.

• For processing limits, adjust them so that they are just large enough to accommodate the
maximum amount your applications require.

• For external access restrictions, reduce or eliminate your applications' reliance on external
resources, including the use of resolvers, then tighten these restrictions.

• Set up a local catalog and enable the Catalog API on all XML processors to further reduce
your applications' reliance on external resources.

Appendix A: Glossary of Java API for XML Processing Terms
and Definitions

Chapter 12
General Recommendations for JAXP Security

12-25

https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/javax/xml/stream/XMLInputFactory.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/index.html

Table 12-9 JAXP Glossary

Term Definition

JAXP Java API for XML Processing

Java SE XML API APIs defined in the JAXP JSR and integrated into
Java SE

Java XML API Equivalent term for Java SE XML API

Java XML Features and Properties XML-related features and properties defined by the
Java SE specification

java.xml The java.xml module

JDK XML The JDK implementation of the Java XML API

JDK XML Parsers The JDK implementation of the XML parsers

JDK XML Properties The JDK Implementation-only properties

FSP FEATURE_SECURE_PROCESSING

Appendix B: Java and JDK XML Features and Properties
Naming Convention

Java and JDK XML features and properties are defined in the javax.xml.XMLConstants
class. The features have a prefix http://javax.xml.XMLConstants/feature; the properties,
http://javax.xml.XMLConstants/property. If there is a corresponding System property, its
prefix is javax.xml.

The JDK XML properties are JDK implementation-only properties. The prefix of the properties
is http://www.oracle.com for JDK 8 and earlier and jdk.xml for JDK 9 and later. The
following table summarizes this naming convention:

Table 12-10 Java and JDK XML Features and Properties Naming Convention

Scope API Property Prefix System Property Prefix Java SE and JDK
Version

Java SE http://
javax.xml.XMLConsta
nts/feature
http://
javax.xml.XMLConsta
nts/property

javax.xml Since 1.4

JDK http://
www.oracle.com/xml/
jaxp/properties

jdk.xml Since 7

JDK jdk.xml jdk.xml Since 9

Chapter 12
Appendix B: Java and JDK XML Features and Properties Naming Convention

12-26

https://docs.oracle.com/en/java/javase/11/docs/api/java.xml/module-summary.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 General Security
	Terms and Definitions
	Java Security Overview
	Introduction to Java Security
	Java Language Security and Bytecode Verification
	Basic Security Architecture
	Security Providers

	Java Cryptography
	Public Key Infrastructure
	Key and Certificate Storage
	Public Key Infrastructure Tools

	Authentication
	Secure Communication
	TLS and DTLS Protocols
	Simple Authentication and Security Layer (SASL)
	Generic Security Service API and Kerberos

	Access Control
	Permissions
	Security Policy
	Access Control Enforcement

	XML Signature
	Java API for XML Processing (JAXP)
	Security Tools Summary
	Built-In Providers

	The Security Properties File
	Specifying an Alternative Security Properties File
	Statically Setting a Security Property in a Security Properties File
	Dynamically Setting a Security Property in Application Code
	Troubleshooting Security Properties

	Java SE Platform Security Architecture
	Introduction
	The Original Sandbox Model
	Evolving the Sandbox Model

	Protection Mechanisms – Overview of Basic Concepts
	Permissions and Security Policy
	The Permission Classes
	java.security.Permission
	java.security.PermissionCollection
	java.security.Permissions
	java.security.UnresolvedPermission
	java.io.FilePermission
	java.net.SocketPermission
	java.security.BasicPermission
	java.util.PropertyPermission
	java.lang.RuntimePermission
	java.awt.AWTPermission
	java.net.NetPermission
	java.lang.reflect.ReflectPermission
	java.io.SerializablePermission
	java.security.SecurityPermission
	java.security.AllPermission
	javax.security.auth.AuthPermission
	Discussion of Permission Implications
	How To Create New Types of Permissions

	java.security.CodeSource
	java.security.Policy
	Policy File Format
	Property Expansion in Policy Files
	General Expansion in Policy Files
	Assigning Permissions
	Default System and User Policy Files
	Customizing Policy Evaluation

	java.security.GeneralSecurityException

	Access Control Mechanisms and Algorithms
	java.security.ProtectionDomain
	java.security.AccessController
	Algorithm for Checking Permissions
	Handling Privileges

	Inheritance of Access Control Context
	java.security.AccessControlContext

	Secure Class Loading
	Class Loader Class Hierarchies
	The Primordial Class Loader
	Class Loader Delegation
	Class Resolution Algorithm

	Security Management
	Managing Applets and Applications
	SecurityManager versus AccessController
	Auxiliary Tools
	The Key and Certificate Management Tool
	The JAR Signing and Verification Tool

	GuardedObject and SignedObject
	java.security.GuardedObject and java.security.Guard
	java.security.SignedObject

	Discussion and Future Directions
	Resource Consumption Management
	Arbitrary Grouping of Permissions
	Object-Level Protection
	Subdividing Protection Domains
	Running Applets with Signed Content

	Appendix A: API for Privileged Blocks
	Using the doPrivileged API
	No Return Value, No Exception Thrown
	Returning Values
	Accessing Local Variables
	Handling Exceptions
	Asserting a Subset of Privileges
	Least Privilege
	More Privilege

	What It Means to Have Privileged Code
	Reflection

	Appendix B: Acknowledgments
	Appendix C: References

	Standard Algorithm Names
	Permissions in the JDK
	Permission Descriptions and Risks
	Methods and the Permissions They Require
	java.lang.SecurityManager Method Permission Checks
	JDK Supported Permissions

	Default Policy Implementation and Policy File Syntax
	Default Policy Implementation
	Default Policy File Locations
	Modifying the Policy Implementation
	Policy File Syntax
	Keystore Entry
	Grant Entries
	The SignedBy, Principal, and CodeBase Fields
	The Permission Entries
	File Path Specifications on Windows Systems

	Policy File Examples
	Property Expansion in Policy Files
	Windows Systems, File Paths, and Property Expansion
	General Expansion in Policy Files

	Appendix A: FilePermission Path Name Canonicalization Disabled By Default

	Troubleshooting Security
	The java.security.debug System Property
	Printing Thread and Timestamp Information
	The java -XshowSettings:security Option

	2 Java Cryptography Architecture (JCA) Reference Guide
	Introduction to Java Cryptography Architecture
	JCA Design Principles
	Provider Architecture
	Cryptographic Service Providers
	How Providers Are Actually Implemented
	Keystores

	Engine Classes and Algorithms

	Core Classes and Interfaces
	The Provider Class
	How Provider Implementations Are Requested and Supplied
	Installing Providers
	Provider Class Methods

	The Security Class
	Managing Providers
	Security Properties

	The SecureRandom Class
	Creating a SecureRandom Object
	Seeding or Re-Seeding the SecureRandom Object
	Using a SecureRandom Object
	Generating Seed Bytes

	The MessageDigest Class
	Creating a MessageDigest Object
	Updating a Message Digest Object
	Computing the Digest

	The Signature Class
	Signature Object States
	Creating a Signature Object
	Initializing a Signature Object
	Signing with a Signature Object
	Verifying with a Signature Object

	The Cipher Class
	Other Cipher-based Classes
	The Cipher Stream Classes
	The SealedObject Class

	The Mac Class
	The KEM Class
	Key Interfaces
	The KeyPair Class
	Key Specification Interfaces and Classes
	The KeySpec Interface
	The KeySpec Subinterfaces
	The EncodedKeySpec Class
	The PKCS8EncodedKeySpec Class
	The X509EncodedKeySpec Class

	Generators and Factories
	The KeyFactory Class
	The SecretKeyFactory Class
	The KeyPairGenerator Class
	The KeyGenerator Class

	The KeyAgreement Class
	Key Management
	The KeyStore Class

	Algorithm Parameters Classes
	The AlgorithmParameterSpec Interface
	The AlgorithmParameters Class
	The AlgorithmParameterGenerator Class

	The CertificateFactory Class

	Standard Names
	How the JCA Might Be Used in a SSL/TLS Implementation
	Cryptographic Strength Configuration
	Jurisdiction Policy File Format
	How to Make Applications Exempt from Cryptographic Restrictions
	Packaging Your Application
	Additional JCA Code Samples
	Computing a MessageDigest Object
	Generating a Pair of Keys
	Generating and Verifying a Signature Using Generated Keys
	Generating/Verifying Signatures Using Key Specifications and KeyFactory
	Generating Random Numbers
	Determining If Two Keys Are Equal
	Reading Base64-Encoded Certificates
	Parsing a Certificate Reply
	Using Encryption
	Using Password-Based Encryption
	Encapsulating and Decapsulating Keys

	Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256
	Diffie-Hellman Key Exchange between Two Parties
	Diffie-Hellman Key Exchange between Three Parties
	AES/GCM Example
	HMAC-SHA256 Example

	3 How to Implement a Provider in the Java Cryptography Architecture
	Who Should Read This Document
	Notes on Terminology
	Introduction to Implementing Providers
	Engine Classes and Corresponding Service Provider Interface Classes
	Steps to Implement and Integrate a Provider
	Step 1: Write your Service Implementation Code
	Step 1.1: Consider Additional JCA Provider Requirements and Recommendations for Encryption Implementations

	Step 2: Give your Provider a Name
	Step 3: Write Your Master Class, a Subclass of Provider
	Step 3.1: Create a Provider That Uses String Objects to Register Its Services
	Step 3.2: Create a Provider That Uses Provider.Service
	Step 3.3: Specify Additional Information for Cipher Implementations

	Step 4: Create a Module Declaration for Your Provider
	Step 5: Compile Your Code
	Step 6: Place Your Provider in a JAR File
	Step 7: Sign Your JAR File, If Necessary
	Step 7.1: Get a Code-Signing Certificate
	Step 7.2: Sign Your Provider

	Step 8: Prepare for Testing
	Step 8.1: Configure the Provider
	Step 8.2: Set Provider Permissions

	Step 9: Write and Compile Your Test Programs
	Step 10: Run Your Test Programs
	Step 11: Apply for U.S. Government Export Approval If Required
	Step 12: Document Your Provider and Its Supported Services
	Step 12.1: Indicate Whether Your Implementation is Cloneable for Message Digests and MACs

	Step 13: Make Your Class Files and Documentation Available to Clients

	Further Implementation Details and Requirements
	Alias Names
	Service Interdependencies
	Default Initialization
	Default Key Pair Generator Parameter Requirements
	The Provider.Service Class
	Signature Formats
	DSA Interfaces and their Required Implementations
	RSA Interfaces and their Required Implementations
	Diffie-Hellman Interfaces and their Required Implementations
	Interfaces for Other Algorithm Types
	Algorithm Parameter Specification Interfaces and Classes
	Key Specification Interfaces and Classes Required by Key Factories
	Secret-Key Generation
	Adding New Object Identifiers
	Ensuring Exportability

	Sample Code for MyProvider

	4 JDK Providers Documentation
	Introduction to JDK Providers
	Import Limits on Cryptographic Algorithms
	Cipher Transformations
	SecureRandom Implementations
	The SunPKCS11 Provider
	The SUN Provider
	The SunRsaSign Provider
	The SunJSSE Provider
	The SunJCE Provider
	The SunJGSS Provider
	The SunSASL Provider
	The XMLDSig Provider
	The SunPCSC Provider
	The SunMSCAPI Provider
	The SunEC Provider
	The Apple Provider
	The JdkLDAP Provider
	The JdkSASL Provider

	5 PKCS#11 Reference Guide
	SunPKCS11 Provider
	SunPKCS11 Requirements
	SunPKCS11 Configuration
	Accessing Network Security Services (NSS)
	Troubleshooting PKCS#11
	Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms
	Application Developers
	Token Login
	Token Keys
	Delayed Provider Selection
	JAAS KeyStoreLoginModule
	Tokens as JSSE Keystore and Trust Stores

	Using keytool and jarsigner with PKCS#11 Tokens
	Keystore Entry Syntax in Policy File
	Provider Developers
	Provider Services
	Parameter Support

	SunPKCS11 Provider Supported Algorithms
	SunPKCS11 Provider KeyStore Requirements
	Example Provider

	6 Java Authentication and Authorization Service (JAAS)
	Java Authentication and Authorization Service (JAAS) Reference Guide
	Who Should Read This Document
	Related Documentation
	Core Classes and Interfaces
	Common Classes
	Subject
	The doAs methods for performing an action as a particular Subject
	Subject.doAs Example
	The doAsPrivileged methods
	doAs versus doAsPrivileged

	Principals
	Credentials
	Refreshable
	Destroyable

	Authentication Classes and Interfaces
	LoginContext
	LoginModule
	CallbackHandler
	Callback

	Authorization Classes
	Policy
	AuthPermission
	PrivateCredentialPermission

	JAAS Tutorials and Sample Programs
	Appendix A: JAAS Settings in the java.security Security Properties File
	Login Configuration Provider
	Login Configuration URLs
	Policy Provider
	Policy File URLs

	Appendix B: JAAS Login Configuration File
	Login Configuration File Structure and Contents
	Where to Specify Which Login Configuration File Should Be Used

	JAAS Tutorials
	JAAS Authentication Tutorial
	The Authentication Tutorial Code
	SampleAcn.java
	The SampleAcn Class
	Instantiating a LoginContext
	Calling the LoginContext's login Method
	The Complete SampleAcn Class Code

	The MyCallbackHandler Class

	SampleLoginModule.java and SamplePrincipal.java

	The Login Configuration
	The Login Configuration File for the JAAS Authentication Tutorial

	Running the Code
	Running the Code with a Security Manager

	JAAS Authorization Tutorial
	What is JAAS Authorization?
	How is JAAS Authorization Performed?
	How Do You Make Principal-Based Policy File Statements?
	How Do You Associate a Subject with an Access Control Context?

	The Authorization Tutorial Code
	SampleAzn.java
	SampleAction.java

	The Login Configuration File for the JAAS Authorization Tutorial
	The Policy File
	Permissions Required by SampleAzn
	Permissions Required by SampleAction
	Permissions Required by SampleLoginModule
	The Full Policy File

	Running the Authorization Tutorial Code

	Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide
	Introduction to LoginModule
	Steps to Implement a LoginModule
	Step 1: Understand the Authentication Technology
	Step 2: Name the LoginModule Implementation
	Step 3: Implement the LoginModule Interface
	Step 4: Choose or Write a Sample Application
	Step 5: Compile the LoginModule and Application
	Step 6: Prepare for Testing
	Step 7: Test Use of the LoginModule
	Step 8: Document Your LoginModule Implementation
	Step 9: Make LoginModule JAR File and Documents Available

	7 Java Generic Security Services (Java GSS-API)
	Introduction to JAAS and Java GSS-API Tutorials
	When to Use Java GSS-API Versus JSSE
	Use of Java GSS-API for Secure Message Exchanges Without JAAS Programming
	Overview of the Client and Server Applications
	The SampleClient and SampleServer Code
	Obtaining the Command-Line Arguments
	Arguments Read by SampleClient
	Argument Read by SampleServer

	Establishing a Socket Connection for Message Exchanges
	SampleClient Code for Socket Connection
	SampleServer Code for Socket Connection

	Establishing a Security Context
	Context Establishment by SampleClient
	SampleClient GSSContext Instantiation
	The GSSName peer Argument
	The Oid mech Argument
	The GSSCredential myCred Argument
	The int lifetime Argument
	The Complete createContext Call

	SampleClient Setting of Desired Options
	SampleClient Context Establishment Loop

	Context Establishment by SampleServer
	SampleServer GSSContext Instantiation
	SampleServer Context Establishment Loop

	Exchanging Messages Securely
	GSSContext Methods for Message Exchange
	wrap
	getMIC

	The SampleClient and SampleServer Message Exchanges
	SampleClient Code to Encrypt the Message and Send It
	SampleServer Code to Unwrap Token, Calculate MIC, and Send It
	SampleClient Code to Verify the MIC

	Clean Up

	Kerberos User and Service Principal Names
	When the Realm Is Required in Principal Names

	The Login Configuration File
	The useSubjectCredsOnly System Property
	Running the SampleClient and SampleServer Programs
	Prepare SampleServer for Execution
	Prepare SampleClient for Execution
	Execute SampleServer
	Execute SampleClient

	JAAS Authentication
	The Authentication Tutorial Code
	Instantiating a LoginContext
	Calling the LoginContext's login Method

	The Login Configuration
	The Login Configuration File for This Tutorial

	Running the Code
	Running the Code with a Security Manager

	JAAS Authorization
	What is JAAS Authorization?
	How Is JAAS Authorization Performed?
	How Do You Make Principal-Based Policy File Statements?
	How Do You Associate a Subject with an Access Control Context?

	The Authorization Tutorial Code
	JaasAzn.java
	SampleAction.java

	The Login Configuration File
	The Policy File
	Permissions Required by JaasAzn
	Permissions Required by SampleAction

	Running the Authorization Tutorial Code

	Use of JAAS Login Utility
	What You Need to Know About the Login Utility
	Application and Other File Requirements
	Application Requirements
	Login Configuration File Requirements
	Policy File Requirements

	The Sample Application Program
	The Login Configuration File
	The Policy File
	Permissions Required by the Login and MyAction Classes
	Permissions Required by Sample

	Running the Sample Program with the Login Utility

	Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges
	Before You Start: Recommended Reading
	Overview of the Client and Server Applications
	Kerberos User and Service Principal Names
	When the Realm is Required in Principal Names

	The Login Configuration File
	The Policy Files
	The Client Policy File
	Permissions Required by the Login Utility Classes
	Permissions Required by SampleClient

	The Server Policy File
	Permissions Required by the Login Utility Classes
	Permissions Required by SampleServer

	Running the SampleClient and SampleServer Programs
	Prepare SampleServer for Execution
	Prepare SampleClient for Execution
	Execute SampleServer
	Execute SampleClient

	More Things You Can Do with Java GSS-API and JAAS
	Executing Code on Behalf of the Client User
	Basic Approach
	Sample Code and Policy File
	SampleServerImp.java
	ReadFileAction.java
	serverimp.policy

	Running the Sample Code

	Using Credentials Delegated from the Client
	Permission Required In Order to Delegate Credentials

	Kerberos Requirements
	Setting Properties to Indicate the Default Realm and KDC
	Locating the krb5.conf Configuration File
	Naming Conventions for Realm Names and Hostnames
	Cross-Realm Authentication

	Troubleshooting
	Source Code for JAAS and Java GSS-API Tutorials
	Related Documentation

	Accessing Native GSS-API
	Single Sign-on Using Kerberos in Java
	Abstract
	Introduction
	Kerberos V5
	Java Authentication and Authorization Service (JAAS)
	Pluggable and Stackable Framework
	Authentication and Authorization
	Subject
	doAs and doAsPrivileged
	LoginContext
	Callbacks
	LoginModules
	The Kerberos Login Module
	Kerberos Classes
	Authorization

	Java Generic Security Service Application Program Interface (Java GSS-API)
	Generic Security Service API (GSS-API)
	Java GSS-API
	The GSSName Interface
	The GSSCredential Interface
	The GSSContext Interface
	Message Protection
	Credential Delegation

	Default Credential Acquisition Model
	Exceptions to the Model
	Security Risks
	Credential Acquisition
	Context Establishment
	Credential Delegation

	Conclusions
	Acknowledgements
	References

	Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On
	Part I : Secure Authentication using the Java Authentication and Authorization Service (JAAS)
	Exercise 1: Using the JAAS API
	Exercise 2: Configuring JAAS for Kerberos Authentication

	Part II : Secure Communications using the Java SE Security API
	Exercise 3: Using the Java Generic Security Service (GSS) API
	Exercise 4: Using the Java SASL API
	Exercise 5: Using the Java Secure Socket Extension with Kerberos

	Part III : Deploying for Single Sign-On in a Kerberos Environment
	Exercise 6: Deploying for Single Sign-On

	Part IV : Secure Communications Using Stronger Encryption Algorithms
	Exercise 7: Configuring to Use Stronger Encryption Algorithms in a Kerberos Environment, to Secure the Communication

	Part V : Secure Authentication Using SPNEGO Java GSS Mechanism
	Exercise 8: Using the Java Generic Security Services (GSS) API with SPNEGO

	Part VI: HTTP/SPNEGO Authentication
	Exercise 9: Using HTTP/SPNEGO Authentication
	What is HTTP SPNEGO
	How to use HTTP/SPNEGO Authentication
	HTTP/SPNEGO Authentication Example

	Source Code for Advanced Security Programming in Java SE Authentication, Secure Communication and Single Sign-On
	Appendix A: Setting up Kerberos Accounts

	The Kerberos 5 GSS-API Mechanism

	8 Java Secure Socket Extension (JSSE) Reference Guide
	Introduction to JSSE
	JSSE Features and Benefits
	JSSE Standard API
	SunJSSE Provider
	JSSE Related Documentation

	JSSE Classes and Interfaces
	JSSE Core Classes and Interfaces
	SocketFactory and ServerSocketFactory Classes
	SSLSocketFactory and SSLServerSocketFactory Classes
	Obtaining an SSLSocketFactory

	SSLSocket and SSLServerSocket Classes
	Obtaining an SSLSocket
	Cipher Suite Choice and Remote Entity Verification

	SSLEngine Class
	SSLEngine Methods
	Understanding SSLEngine Operation Statuses
	SSLEngine for TLS Protocols
	Creating an SSLEngine Object
	Generating and Processing TLS Data

	SSLEngine for DTLS Protocols
	Creating an SSLEngine Object for DTLS
	Generating and Processing DTLS Data
	Handling Retransmissions in DTLS Connections
	Handling Retransmission in an Application
	Handling a Buffered Handshake Message in an Application

	Dealing With Blocking Tasks
	Shutting Down a TLS/DTLS Connection

	SSLSession and ExtendedSSLSession
	HttpsURLConnection Class
	Setting the Assigned SSLSocketFactory
	Setting the Assigned HostnameVerifier

	Support Classes and Interfaces
	SSLContext Class
	Obtaining and Initializing the SSLContext Class
	Creating an SSLContext Object

	TrustManager Interface
	TrustManagerFactory Class
	Creating a TrustManagerFactory
	Check TrustManagerFactory Object's Certificates' Expiration Date
	PKIX TrustManager Support

	X509TrustManager Interface
	Creating an X509TrustManager
	Creating Your Own X509TrustManager
	Updating the Keystore Dynamically

	X509ExtendedTrustManager Class
	Creating an X509ExtendedTrustManager
	Creating Your Own X509ExtendedTrustManager

	KeyManager Interface
	KeyManagerFactory Class
	Creating a KeyManagerFactory

	X509KeyManager Interface
	Creating an X509KeyManager
	Creating Your Own X509KeyManager

	X509ExtendedKeyManager Class
	Relationship Between a TrustManager and a KeyManager

	Secondary Support Classes and Interfaces
	SSLParameters Class
	Cipher Suite Preference

	SSLSessionContext Interface
	SSLSessionBindingListener Interface
	SSLSessionBindingEvent Class
	HandShakeCompletedListener Interface
	HandShakeCompletedEvent Class
	HostnameVerifier Interface
	X509Certificate Class
	AlgorithmConstraints Interface
	StandardConstants Class
	SNIServerName Class
	SNIMatcher Class
	SNIHostName Class

	Customizing JSSE
	How to Specify a java.lang.System Property
	How to Specify a java.security.Security Property
	Customizing the X509Certificate Implementation
	Specifying Default Enabled Cipher Suites
	Specifying an Alternative HTTPS Protocol Implementation
	Customizing the Provider Implementation
	Registering the Cryptographic Provider Statically
	Registering the Cryptographic Service Provider Dynamically
	Provider Configuration
	Configuring the Preferred Provider for Specific Algorithms
	Customizing the Default Keystores and Truststores, Store Types, and Store Passwords
	Customizing the Default Key Managers and Trust Managers
	Disabled and Restricted Cryptographic Algorithms
	Legacy Cryptographic Algorithms
	Customizing the Encryption Algorithm Providers
	Customizing the Size of Ephemeral Diffie-Hellman Keys
	Customizing the Maximum Fragment Length Negotiation (MFLN) Extension
	Configuring the Maximum and Minimum Packet Size
	Limiting Amount of Data Algorithms May Encrypt with a Set of Keys
	Resuming Session Without Server-Side State
	Specifying That close_notify Alert Is Sent When One Is Received
	Enabling certificate_authorities Extension for Server Certificate Selection
	SunJSSE Renegotiation Interoperability Modes
	Workarounds and Alternatives to SSL/TLS Renegotiation
	Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations

	Client-Driven OCSP and OCSP Stapling
	Client-Driven OCSP and Certificate Revocation
	Setting up a Java Client to use Client-Driven OCSP

	OCSP Stapling and Certificate Revocation
	Setting Up a Java Client to Use OCSP Stapling
	Setting Up a Java Server to Use OCSP Stapling

	OCSP Stapling Configuration Properties

	Configuring Default Extensions

	Hardware Acceleration and Smartcard Support
	Configuring JSSE to Use Smartcards as Keystores and Truststores
	Multiple and Dynamic Keystores

	Additional Keystore Formats (PKCS12)
	Server Name Indication (SNI) Extension
	TLS Application Layer Protocol Negotiation
	Setting up ALPN on the Client
	Setting up Default ALPN on the Server
	Setting up Custom ALPN on the Server
	Determining Negotiated ALPN Value during Handshaking
	Reading and Writing ALPN Values with the SunJSSE Provider
	ALPN Related Classes and Methods

	Troubleshooting JSSE
	Configuration Problems
	SSLHandshakeException: No Available Authentication Scheme, Handshake Failure
	CertificateException While Handshaking
	Runtime Exception: SSL Service Not Available
	Runtime Exception: "No available certificate corresponding to the SSL cipher suites which are enabled"
	Runtime Exception: No Cipher Suites in Common
	Socket Disconnected After Sending ClientHello Message
	SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and Causes a NoSuchAlgorithmException
	Exception Thrown When Obtaining Application Resources from a Virtual Host Web Server that Requires an SNI Extension
	IllegalArgumentException When RC4 Cipher Suites are Configured for DTLS

	Debugging Utilities
	Debugging TLS Connections

	Compatibility Risks and Known Issues
	Code Examples
	Converting an Unsecure Socket to a Secure Socket
	Running the JSSE Sample Code
	Creating a Keystore to Use with JSSE
	Using the Server Name Indication (SNI) Extension
	Typical Client-Side Usage Examples
	Typical Server-Side Usage Examples
	Working with Virtual Infrastructures

	Standard Names
	Provider Pluggability
	Transport Layer Security (TLS) Protocol Overview
	How TLS Works
	Cryptographic Processes
	Secret-Key Cryptography
	Public-Key Cryptography
	Comparison Between Secret-Key and Public-Key Cryptography
	Public Key Certificates
	Cryptographic Hash Functions
	Message Authentication Code
	Digital Signatures

	The TLS 1.3 Handshake
	The TLS 1.3 Protocol
	Key Exchange
	Server Parameters
	Authentication

	Session Resumption with a Pre-Shared Key
	Post-Handshake Messages
	New Session Ticket Message
	Post-Handshake Authentication
	KeyUpdate Message

	Compatibility Risks and Known Issues

	The TLS 1.2 Handshake
	The TLS 1.2 Protocol
	Handshaking Again (Renegotiation)
	Cipher Suite Choice and Remote Entity Verification

	Datagram Transport Layer Security (DTLS) Protocol
	The DTLS Handshake
	The DTLS Handshake Message Exchange
	Handshaking Again (Renegotiation)

	9 Java PKI Programmer's Guide
	PKI Programmer's Guide Overview
	Introduction to Public Key Certificates
	X.509 Certificates and Certificate Revocation Lists (CRLs)

	Core Classes and Interfaces
	Basic Certification Path Classes
	The CertPath Class
	The CertificateFactory Class
	The CertPathParameters Interface

	Certification Path Validation Classes
	The CertPathValidator Class
	The CertPathValidatorResult Interface

	Certification Path Building Classes
	The CertPathBuilder Class
	The CertPathBuilderResult Interface

	Certificate/CRL Storage Classes
	The CertStore Class
	The CertStoreParameters Interface
	The CertSelector and CRLSelector Interfaces
	The X509CertSelector Class
	The X509CRLSelector Class

	PKIX Classes
	The TrustAnchor Class
	The PKIXParameters Class
	The PKIXCertPathValidatorResult Class
	The PolicyNode Interface and PolicyQualifierInfo Class
	The PKIXBuilderParameters Class
	The PKIXCertPathBuilderResult Class
	The PKIXCertPathChecker Class
	Using PKIXCertPathChecker in Certificate Path Validation
	Check Revocation Status of Certificates with PKIXRevocationChecker Class

	Implementing a Service Provider
	Steps to Implement and Integrate a Provider
	Service Interdependencies
	Certification Path Parameter Specification Interfaces
	Certification Path Result Specification Interfaces
	Certification Path Exception Classes

	Appendix A: Standard Names
	Appendix B: CertPath Implementation in SUN Provider
	Appendix C: OCSP Support
	Enable OSCP Nonce Extension
	Maximum Allowable Clock Skew
	Fallback Option for POST-Only OCSP Requests

	Appendix D: CertPath Implementation in JdkLDAP Provider
	Appendix E: Disabling Cryptographic Algorithms

	10 Java SASL API Programming and Deployment Guide
	Java SASL API Overview
	Creating the Mechanisms
	Passing Input to the Mechanisms
	Using the Mechanisms
	Using the Negotiated Security Layer

	How SASL Mechanisms are Installed and Selected
	The SunSASL Provider
	The SunSASL Provider Client Mechanisms
	The SunSASL Provider Server Mechanisms

	The JdkSASL Provider
	The JdkSASL Provider Client Mechanism
	The JdkSASL Provider Server Mechanism

	Debugging and Monitoring
	Implementing a SASL Security Provider

	11 XML Digital Signature API Overview and Tutorial
	Package Hierarchy
	Service Providers
	Introduction to XML Signatures
	Example of an XML Signature

	XML Signature Secure Validation Mode
	XML Digital Signature API Examples
	Validate Example
	Validating an XML Signature
	Instantiating the Document that Contains the Signature
	Specifying the Signature Element to be Validated
	Creating a Validation Context
	Unmarshalling the XML Signature
	Validating the XML Signature
	What If the XML Signature Fails to Validate?

	Using KeySelectors

	GenEnveloped Example
	Generating an XML Signature
	Instantiating the Document to be Signed
	Creating a Public Key Pair
	Creating a Signing Context
	Assembling the XML Signature
	Generating the XML Signature
	Printing or Displaying the Resulting Document

	12 Java API for XML Processing (JAXP) Security Guide
	Potential Attacks During XML Processing
	XML External Entity Injection Attack
	External Resources Supported by XML, Schema, and XSLT Standards

	Exponential Entity Expansion Attack

	Feature for Secure Processing (FSP)
	JAXP Properties for Processing Limits
	JAXP Properties for External Access Restrictions
	Scope and Order
	Relationship with Security Manager
	When to Use Processing Limits
	When to Use External Access Restrictions
	Using JAXP Properties
	Handling Errors from JAXP Properties
	Streaming API for XML and JAXP Properties
	Extension Functions

	Disabling DTD Processing
	Using Resolvers and Catalogs
	Java XML Resolvers
	Entity Resolvers for SAX and DOM
	XMLResolver for StAX
	URIResolver for javax.xml.transform
	LSResourceResolver for javax.xml.validation

	The Catalog API
	Catalog Resolver
	Enable Catalogs on JDK XML Processors

	Third-Party Parsers
	JAXP Security Processing
	General Recommendations for JAXP Security
	Appendix A: Glossary of Java API for XML Processing Terms and Definitions
	Appendix B: Java and JDK XML Features and Properties Naming Convention

