Java Platform, Standard Edition
Security Developer’s Guide

Release 17
F40863-17
April 2025

ORACLE"

Java Platform, Standard Edition Security Developer’s Guide, Release 17
F40863-17
Copyright © 1993, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience XX
Documentation Accessibility XX
Diversity and Inclusion XX
Related Documents XX
Conventions XX

1 General Security

Terms and Definitions 11
Java Security Overview 1-4
Introduction to Java Security 1-4
Java Language Security and Bytecode Verification 1-5
Basic Security Architecture 1-6
Security Providers 1-6
Java Cryptography 1-8
Public Key Infrastructure 1-9
Key and Certificate Storage 1-9
Public Key Infrastructure Tools 1-10
Authentication 1-11
Secure Communication 1-12
TLS and DTLS Protocols 1-12
Simple Authentication and Security Layer (SASL) 1-13
Generic Security Service APl and Kerberos 1-13
Access Control 1-14
Permissions 1-14
Security Policy 1-15
Access Control Enforcement 1-15
XML Signature 1-17
Java API for XML Processing (JAXP) 1-18
Security Tools Summary 1-18
Built-In Providers 1-19
The Security Properties File 1-19
Specifying an Alternative Security Properties File 1-20

ORACLE

Statically Setting a Security Property in a Security Properties File
Dynamically Setting a Security Property in Application Code
Troubleshooting Security Properties
Java SE Platform Security Architecture
Introduction
The Original Sandbox Model
Evolving the Sandbox Model
Protection Mechanisms — Overview of Basic Concepts
Permissions and Security Policy
The Permission Classes
java.security.CodeSource
java.security.Policy
java.security.GeneralSecurityException
Access Control Mechanisms and Algorithms
java.security.ProtectionDomain
java.security.AccessController
Inheritance of Access Control Context
java.security.AccessControlContext
Secure Class Loading
Class Loader Class Hierarchies
The Primordial Class Loader
Class Loader Delegation
Class Resolution Algorithm
Security Management
Managing Applets and Applications
SecurityManager versus AccessController
Auxiliary Tools
GuardedObject and SignedObject
java.security.GuardedObject and java.security.Guard
java.security.SignedObject
Discussion and Future Directions
Resource Consumption Management
Arbitrary Grouping of Permissions
Object-Level Protection
Subdividing Protection Domains
Running Applets with Signed Content
Appendix A: API for Privileged Blocks
Using the doPrivileged API
What It Means to Have Privileged Code
Reflection
Appendix B: Acknowledgments
Appendix C: References

ORACLE

1-20
1-21
1-21
1-21
1-22
1-22
1-23
1-25
1-27
1-27
1-36
1-36
1-49
1-49
1-49
1-50
1-54
1-55
1-56
1-57
1-57
1-57
1-58
1-59
1-59
1-60
1-60
1-61
1-61
1-63
1-64
1-64
1-64
1-64
1-64
1-65
1-65
1-65
1-71
1-72
1-72
1-72

Standard Algorithm Names 1-73
Permissions in the JDK 1-73
Permission Descriptions and Risks 1-74
Methods and the Permissions They Require 1-75
java.lang.SecurityManager Method Permission Checks 1-100

JDK Supported Permissions 1-104

Default Policy Implementation and Policy File Syntax 1-105
Default Policy Implementation 1-105

Default Policy File Locations 1-105
Modifying the Policy Implementation 1-107

Policy File Syntax 1-108

Policy File Examples 1-113
Property Expansion in Policy Files 1-115
Windows Systems, File Paths, and Property Expansion 1-117
General Expansion in Policy Files 1-117
Appendix A: FilePermission Path Name Canonicalization Disabled By Default 1-119
Troubleshooting Security 1-121
The java.security.debug System Property 1-121
Printing Thread and Timestamp Information 1-124
The java -XshowSettings:security Option 1-125

2 Java Cryptography Architecture (JCA) Reference Guide

Introduction to Java Cryptography Architecture 2-1
JCA Design Principles 2-2
Provider Architecture 2-3
Cryptographic Service Providers 2-3

How Providers Are Actually Implemented 2-5
Keystores 2-6

Engine Classes and Algorithms 2-7
Core Classes and Interfaces 2-8
The Provider Class 2-9
How Provider Implementations Are Requested and Supplied 2-10
Installing Providers 2-11
Provider Class Methods 2-12

The Security Class 2-12
Managing Providers 2-13
Security Properties 2-14

The SecureRandom Class 2-15
Creating a SecureRandom Object 2-15
Seeding or Re-Seeding the SecureRandom Object 2-16

Using a SecureRandom Object 2-16

ORACLE

Generating Seed Bytes
The MessageDigest Class
Creating a MessageDigest Object
Updating a Message Digest Object
Computing the Digest
The Signature Class
Signature Object States
Creating a Signature Object
Initializing a Signature Object
Signing with a Signature Object
Verifying with a Signature Object
The Cipher Class
Other Cipher-based Classes
The Cipher Stream Classes
The SealedObiject Class
The Mac Class
The KEM Class
Key Interfaces
The KeyPair Class
Key Specification Interfaces and Classes
The KeySpec Interface
The KeySpec Subinterfaces
The EncodedKeySpec Class
Generators and Factories
The KeyFactory Class
The SecretKeyFactory Class
The KeyPairGenerator Class
The KeyGenerator Class
The KeyAgreement Class
Key Management
The KeyStore Class
Algorithm Parameters Classes
The AlgorithmParameterSpec Interface
The AlgorithmParameters Class
The AlgorithmParameterGenerator Class
The CertificateFactory Class
Standard Names
How the JCA Might Be Used in a SSL/TLS Implementation
Cryptographic Strength Configuration
Jurisdiction Policy File Format
How to Make Applications Exempt from Cryptographic Restrictions
Packaging Your Application

ORACLE

2-16
2-16
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-19
2-20
2-21
2-29
2-29
2-32
2-33
2-34
2-35
2-37
2-37
2-37
2-38
2-38
2-39
2-39
2-41
2-42
2-44
2-45
2-47
2-49
2-52
2-53
2-53
2-54
2-55
2-57
2-57
2-59
2-62
2-64
2-68

Vi

Additional JCA Code Samples 2-69
Computing a MessageDigest Object 2-69
Generating a Pair of Keys 2-71
Generating and Verifying a Signature Using Generated Keys 2-72
Generating/Verifying Signatures Using Key Specifications and KeyFactory 2-73
Generating Random Numbers 2-74
Determining If Two Keys Are Equal 2-75
Reading Base64-Encoded Certificates 2-76
Parsing a Certificate Reply 2-77
Using Encryption 2-77
Using Password-Based Encryption 2-78
Encapsulating and Decapsulating Keys 2-79

Sample Programs for Diffie-Hellman Key Exchange, AES/GCM, and HMAC-SHA256 2-80
Diffie-Hellman Key Exchange between Two Parties 2-80
Diffie-Hellman Key Exchange between Three Parties 2-83
AES/GCM Example 2-85
HMAC-SHA256 Example 2-86

3 How to Implement a Provider in the Java Cryptography Architecture

Who Should Read This Document 3-1

Notes on Terminology 3-1

Introduction to Implementing Providers 3-1

Engine Classes and Corresponding Service Provider Interface Classes 3-2

Steps to Implement and Integrate a Provider 3-5
Step 1: Write your Service Implementation Code 3-5

Step 1.1: Consider Additional JCA Provider Requirements and Recommendations
for Encryption Implementations 3-6
Step 2: Give your Provider a Name 3-7
Step 3: Write Your Master Class, a Subclass of Provider 3-7
Step 3.1: Create a Provider That Uses String Objects to Register Its Services 3-7
Step 3.2: Create a Provider That Uses Provider.Service 3-10
Step 3.3: Specify Additional Information for Cipher Implementations 3-12
Step 4: Create a Module Declaration for Your Provider 3-14
Step 5: Compile Your Code 3-15
Step 6: Place Your Provider in a JAR File 3-15
Step 7: Sign Your JAR File, If Necessary 3-16
Step 7.1: Get a Code-Signing Certificate 3-16
Step 7.2: Sign Your Provider 3-18
Step 8: Prepare for Testing 3-19
Step 8.1: Configure the Provider 3-19
Step 8.2: Set Provider Permissions 3-21

ORACLE

Vii

Step 9: Write and Compile Your Test Programs 3-22

Step 10: Run Your Test Programs 3-22
Step 11: Apply for U.S. Government Export Approval If Required 3-24
Step 12: Document Your Provider and Its Supported Services 3-25
Step 12.1: Indicate Whether Your Implementation is Cloneable for Message Digests

and MACs 3-25
Step 13: Make Your Class Files and Documentation Available to Clients 3-27
Further Implementation Details and Requirements 3-27
Alias Names 3-27
Service Interdependencies 3-28
Default Initialization 3-30
Default Key Pair Generator Parameter Requirements 3-30
The Provider.Service Class 3-31
Signature Formats 3-32
DSA Interfaces and their Required Implementations 3-32
RSA Interfaces and their Required Implementations 3-35
Diffie-Hellman Interfaces and their Required Implementations 3-36
Interfaces for Other Algorithm Types 3-38
Algorithm Parameter Specification Interfaces and Classes 3-38
Key Specification Interfaces and Classes Required by Key Factories 3-41
Secret-Key Generation 3-46
Adding New Object Identifiers 3-46
Ensuring Exportability 3-48
Sample Code for MyProvider 3-48

4 JDK Providers Documentation

Introduction to JDK Providers 4-1
Import Limits on Cryptographic Algorithms 4-2
Cipher Transformations 4-3
SecureRandom Implementations 4-3
The SunPKCS11 Provider 4-4
The SUN Provider 4-4
The SunRsaSign Provider 4-8
The SunJSSE Provider 4-9
The SunJCE Provider 4-15
The SunJGSS Provider 4-22
The SunSASL Provider 4-22
The XMLDSig Provider 4-22
The SunPCSC Provider 4-23
The SunMSCAPI Provider 4-24
The SunEC Provider 4-25
ORACLE

viii

The Apple Provider 4-28

The JAKLDAP Provider 4-29

The JAKSASL Provider 4-29

5 PKCS#11 Reference Guide

SunPKCS11 Provider 5-1

SunPKCS11 Requirements 5-2

SunPKCS11 Configuration 5-2

Accessing Network Security Services (NSS) 5-13

Troubleshooting PKCS#11 5-15

Disabling PKCS#11 Providers and/or Individual PKCS#11 Mechanisms 5-16

Application Developers 5-17
Token Login 5-17
Token Keys 5-18
Delayed Provider Selection 5-19
JAAS KeyStoreLoginModule 5-20
Tokens as JSSE Keystore and Trust Stores 5-21

Using keytool and jarsigner with PKCS#11 Tokens 5-21

Keystore Entry Syntax in Policy File 5-23

Provider Developers 5-23
Provider Services 5-23
Parameter Support 5-25

SunPKCS11 Provider Supported Algorithms 5-25

SunPKCS11 Provider KeyStore Requirements 5-30

Example Provider 5-32

6 Java Authentication and Authorization Service (JAAS)

Java Authentication and Authorization Service (JAAS) Reference Guide 6-1
Who Should Read This Document 6-2
Related Documentation 6-2
Core Classes and Interfaces 6-2

Common Classes 6-2
Authentication Classes and Interfaces 6-8
Authorization Classes 6-10
JAAS Tutorials and Sample Programs 6-11
Appendix A: JAAS Settings in the java.security Security Properties File 6-12
Login Configuration Provider 6-13
Login Configuration URLS 6-14
Policy Provider 6-14
Policy File URLs 6-14

ORACLE

Appendix B: JAAS Login Configuration File 6-15
Login Configuration File Structure and Contents 6-15
Where to Specify Which Login Configuration File Should Be Used 6-17

JAAS Tutorials 6-18

JAAS Authentication Tutorial 6-18
The Authentication Tutorial Code 6-19
The Login Configuration 6-34
Running the Code 6-34
Running the Code with a Security Manager 6-36

JAAS Authorization Tutorial 6-39
What is JAAS Authorization? 6-40
How is JAAS Authorization Performed? 6-40
The Authorization Tutorial Code 6-42
The Login Configuration File for the JAAS Authorization Tutorial 6-47
The Policy File 6-48
Running the Authorization Tutorial Code 6-49

Java Authentication and Authorization Service (JAAS): LoginModule Developer's Guide 6-52
Introduction to LoginModule 6-52
Steps to Implement a LoginModule 6-54

Step 1: Understand the Authentication Technology 6-54
Step 2: Name the LoginModule Implementation 6-54
Step 3: Implement the LoginModule Interface 6-54
Step 4: Choose or Write a Sample Application 6-59
Step 5: Compile the LoginModule and Application 6-59
Step 6: Prepare for Testing 6-59
Step 7: Test Use of the LoginModule 6-61
Step 8: Document Your LoginModule Implementation 6-62
Step 9: Make LoginModule JAR File and Documents Available 6-62
7 Java Generic Security Services (Java GSS-API)

Introduction to JAAS and Java GSS-API Tutorials 7-1
When to Use Java GSS-API Versus JSSE 7-2
Use of Java GSS-API for Secure Message Exchanges Without JAAS Programming 7-3

Overview of the Client and Server Applications 7-4
The SampleClient and SampleServer Code 7-5
Kerberos User and Service Principal Names 7-18
The Login Configuration File 7-19
The useSubjectCredsOnly System Property 7-20
Running the SampleClient and SampleServer Programs 7-20

JAAS Authentication 7-23

The Authentication Tutorial Code 7-24

ORACLE

The Login Configuration
Running the Code
Running the Code with a Security Manager
JAAS Authorization
What is JAAS Authorization?
How Is JAAS Authorization Performed?
The Authorization Tutorial Code
The Login Configuration File
The Policy File
Running the Authorization Tutorial Code
Use of JAAS Login Utility
What You Need to Know About the Login Utility
Application and Other File Requirements
The Sample Application Program
The Login Configuration File
The Policy File
Running the Sample Program with the Login Utility
Use of JAAS Login Utility and Java GSS-API for Secure Message Exchanges
Before You Start: Recommended Reading
Overview of the Client and Server Applications
Kerberos User and Service Principal Names
The Login Configuration File
The Policy Files
Running the SampleClient and SampleServer Programs
More Things You Can Do with Java GSS-API and JAAS
Executing Code on Behalf of the Client User
Using Credentials Delegated from the Client
Permission Required In Order to Delegate Credentials
Kerberos Requirements
Setting Properties to Indicate the Default Realm and KDC
Locating the krb5.conf Configuration File
Naming Conventions for Realm Names and Hostnames
Cross-Realm Authentication
Troubleshooting
Source Code for JAAS and Java GSS-API Tutorials
Related Documentation
Accessing Native GSS-API
Single Sign-on Using Kerberos in Java
Abstract
Introduction
Kerberos V5
Java Authentication and Authorization Service (JAAS)

ORACLE

7-26
7-26
7-28
7-30
7-31
7-31
7-33
7-34
7-35
7-36
7-38
7-38
7-39
7-40
7-40
7-41
7-42
7-44
7-45
7-45
7-46
7-47
7-48
7-51
7-56
7-56
7-62
7-63
7-64
7-65
7-65
7-66
7-66
7-66
7-69
7-90
7-91
7-95
7-95
7-95
7-95
7-95

Xi

Pluggable and Stackable Framework
Authentication and Authorization
Subject
doAs and doAsPrivileged
LoginContext
Callbacks
LoginModules
The Kerberos Login Module
Kerberos Classes
Authorization
Java Generic Security Service Application Program Interface (Java GSS-API)
Generic Security Service APl (GSS-API)
Java GSS-API
The GSSName Interface
The GSSCredential Interface
The GSSContext Interface
Message Protection
Credential Delegation
Default Credential Acquisition Model
Exceptions to the Model
Security Risks
Credential Acquisition
Context Establishment
Credential Delegation
Conclusions
Acknowledgements
References

Advanced Security Programming in Java SE Authentication, Secure Communication and
Single Sign-On

Part | : Secure Authentication using the Java Authentication and Authorization Service
(JAAS)

Exercise 1: Using the JAAS API
Exercise 2: Configuring JAAS for Kerberos Authentication
Part Il : Secure Communications using the Java SE Security API
Exercise 3: Using the Java Generic Security Service (GSS) API
Exercise 4: Using the Java SASL API
Exercise 5: Using the Java Secure Socket Extension with Kerberos
Part 11l : Deploying for Single Sign-On in a Kerberos Environment
Exercise 6: Deploying for Single Sign-On
Part IV : Secure Communications Using Stronger Encryption Algorithms

Exercise 7: Configuring to Use Stronger Encryption Algorithms in a Kerberos
Environment, to Secure the Communication

Part V : Secure Authentication Using SPNEGO Java GSS Mechanism

ORACLE

7-96

7-96

7-96

7-96

7-98

7-98

7-98

7-98
7-100
7-100
7-100
7-100
7-101
7-102
7-103
7-104
7-107
7-108
7-110
7-111
7-112
7-112
7-113
7-113
7-114
7-114
7-114

7-115

7-116
7-116
7-117
7-119
7-119
7-121
7-124
7-126
7-126
7-127

7-127
7-129

Xii

Exercise 8: Using the Java Generic Security Services (GSS) API with SPNEGO 7-129
Part VI: HTTP/SPNEGO Authentication 7-131
Exercise 9: Using HTTP/SPNEGO Authentication 7-131

Source Code for Advanced Security Programming in Java SE Authentication, Secure
Communication and Single Sign-On 7-135
Appendix A: Setting up Kerberos Accounts 7-168
The Kerberos 5 GSS-API Mechanism 7-168

8 Java Secure Socket Extension (JSSE) Reference Guide

Introduction to JSSE 8-1
JSSE Features and Benefits 8-2
JSSE Standard API 8-2
SunJSSE Provider 8-3
JSSE Related Documentation 8-3
JSSE Classes and Interfaces 8-4
JSSE Core Classes and Interfaces 8-5
SocketFactory and ServerSocketFactory Classes 8-5
SSLSocketFactory and SSLServerSocketFactory Classes 8-5
Obtaining an SSLSocketFactory 8-6
SSLSocket and SSLServerSocket Classes 8-6
Obtaining an SSLSocket 8-7
Cipher Suite Choice and Remote Entity Verification 8-7
SSLEnNgine Class 8-7
SSLEngine Methods 8-9
Understanding SSLEngine Operation Statuses 8-10
SSLEnNgine for TLS Protocols 8-15
SSLEngine for DTLS Protocols 8-20
Dealing With Blocking Tasks 8-28
Shutting Down a TLS/DTLS Connection 8-28
SSLSession and ExtendedSSLSession 8-29
HttpsURLConnection Class 8-30
Setting the Assigned SSLSocketFactory 8-31
Setting the Assigned HosthameVerifier 8-31
Support Classes and Interfaces 8-31
SSLContext Class 8-32
TrustManager Interface 8-34
TrustManagerFactory Class 8-34
X509TrustManager Interface 8-38
X509ExtendedTrustManager Class 8-41
KeyManager Interface 8-44
KeyManagerFactory Class 8-44

ORACLE

Xiii

X509KeyManager Interface 8-45

X509ExtendedKeyManager Class 8-46
Relationship Between a TrustManager and a KeyManager 8-46
Secondary Support Classes and Interfaces 8-46
SSLParameters Class 8-47
SSLSessionContext Interface 8-48
SSLSessionBindingListener Interface 8-48
SSLSessionBindingEvent Class 8-48
HandShakeCompletedListener Interface 8-48
HandShakeCompletedEvent Class 8-48
HostnameVerifier Interface 8-48
X509Certificate Class 8-49
AlgorithmConstraints Interface 8-49
StandardConstants Class 8-50
SNIServerName Class 8-50
SNIMatcher Class 8-50
SNIHostName Class 8-50
Customizing JSSE 8-51
How to Specify a java.lang.System Property 8-61
How to Specify a java.security.Security Property 8-61
Customizing the X509Certificate Implementation 8-62
Specifying Default Enabled Cipher Suites 8-62
Specifying an Alternative HTTPS Protocol Implementation 8-63
Customizing the Provider Implementation 8-64
Registering the Cryptographic Provider Statically 8-64
Registering the Cryptographic Service Provider Dynamically 8-64
Provider Configuration 8-64
Configuring the Preferred Provider for Specific Algorithms 8-65
Customizing the Default Keystores and Truststores, Store Types, and Store Passwords 8-66
Customizing the Default Key Managers and Trust Managers 8-67
Disabled and Restricted Cryptographic Algorithms 8-68
Legacy Cryptographic Algorithms 8-70
Customizing the Encryption Algorithm Providers 8-70
Customizing the Size of Ephemeral Diffie-Hellman Keys 8-70
Customizing the Maximum Fragment Length Negotiation (MFLN) Extension 8-72
Configuring the Maximum and Minimum Packet Size 8-73
Limiting Amount of Data Algorithms May Encrypt with a Set of Keys 8-73
Resuming Session Without Server-Side State 8-73
Specifying That close_notify Alert Is Sent When One Is Received 8-74
Enabling certificate_authorities Extension for Server Certificate Selection 8-75
SunJSSE Renegotiation Interoperability Modes 8-75
Workarounds and Alternatives to SSL/TLS Renegotiation 8-77

ORACLE Xiv

Allow Unsafe Server Certificate Change in SSL/TLS Renegotiations

Client-Driven OCSP and OCSP Stapling

Client-Driven OCSP and Certificate Revocation
OCSP Stapling and Certificate Revocation
OCSP Stapling Configuration Properties

Configuring Default Extensions

Hardware Acceleration and Smartcard Support

Configuring JSSE to Use Smartcards as Keystores and Truststores

Multiple and Dynamic Keystores
Additional Keystore Formats (PKCS12)
Server Name Indication (SNI) Extension

TLS Application Layer Protocol Negotiation
Setting up ALPN on the Client
Setting up Default ALPN on the Server

Setting up Custom ALPN on the Server

Determining Negotiated ALPN Value during Handshaking
Reading and Writing ALPN Values with the SunJSSE Provider
ALPN Related Classes and Methods

Troubleshooting JSSE
Configuration Problems

SSLHandshakeException: No Available Authentication Scheme, Handshake Failure
CertificateException While Handshaking
Runtime Exception: SSL Service Not Available

Runtime Exception: "No available certificate corresponding to the SSL cipher suites
which are enabled"

Runtime Exception: No Cipher Suites in Common
Socket Disconnected After Sending ClientHello Message

SunJSSE Cannot Find a JCA Provider That Supports a Required Algorithm and
Causes a NoSuchAlgorithmException

Exception Thrown When Obtaining Application Resources from a Virtual Host Web
Server that Requires an SNI Extension

lllegalArgumentException When RC4 Cipher Suites are Configured for DTLS

Debugging Utilities

Debugging TLS Connections

Compatibility Risks and Known Issues

Code Examples

Converting an Unsecure Socket to a Secure Socket
Running the JSSE Sample Code
Creating a Keystore to Use with JSSE

Using the Server Name Indication (SNI) Extension

ORACLE

Typical Client-Side Usage Examples
Typical Server-Side Usage Examples
Working with Virtual Infrastructures

8-78
8-78
8-79
8-80
8-81
8-83
8-84
8-84
8-84
8-85
8-85
8-87
8-88
8-89
8-90
8-92
8-95
8-98
8-98
8-98
8-99
8-99
8-100

8-100
8-101
8-101

8-102

8-103
8-104
8-104
8-106
8-123
8-123
8-123
8-126
8-133
8-137
8-138
8-138
8-139

XV

Standard Names 8-144
Provider Pluggability 8-144
Transport Layer Security (TLS) Protocol Overview 8-144
How TLS Works 8-145
Cryptographic Processes 8-145
Secret-Key Cryptography 8-145
Public-Key Cryptography 8-146
Comparison Between Secret-Key and Public-Key Cryptography 8-146

Public Key Certificates 8-146
Cryptographic Hash Functions 8-147
Message Authentication Code 8-147

Digital Signatures 8-148

The TLS 1.3 Handshake 8-148
The TLS 1.3 Protocol 8-148
Session Resumption with a Pre-Shared Key 8-152
Post-Handshake Messages 8-154
Compatibility Risks and Known Issues 8-155

The TLS 1.2 Handshake 8-155
The TLS 1.2 Protocol 8-156
Datagram Transport Layer Security (DTLS) Protocol 8-158
The DTLS Handshake 8-159

O Java PKI Programmer's Guide

PKI Programmer's Guide Overview 9-1
Introduction to Public Key Certificates 9-2
X.509 Certificates and Certificate Revocation Lists (CRLS) 9-3
Core Classes and Interfaces 9-6
Basic Certification Path Classes 9-7
The CertPath Class 9-7

The CertificateFactory Class 9-9

The CertPathParameters Interface 9-10
Certification Path Validation Classes 9-11
The CertPathValidator Class 9-11

The CertPathValidatorResult Interface 9-12
Certification Path Building Classes 9-13
The CertPathBuilder Class 9-13

The CertPathBuilderResult Interface 9-14
Certificate/CRL Storage Classes 9-14
The CertStore Class 9-15

The CertStoreParameters Interface 9-16

The CertSelector and CRLSelector Interfaces 9-17

ORACLE

XVi

PKIX Classes 9-22
The TrustAnchor Class 9-23

The PKIXParameters Class 9-24

The PKIXCertPathValidatorResult Class 9-26

The PolicyNode Interface and PolicyQualifierinfo Class 9-26

The PKIXBuilderParameters Class 9-28

The PKIXCertPathBuilderResult Class 9-29

The PKIXCertPathChecker Class 9-30

Using PKIXCertPathChecker in Certificate Path Validation 9-35
Implementing a Service Provider 9-40
Steps to Implement and Integrate a Provider 9-40
Service Interdependencies 9-42
Certification Path Parameter Specification Interfaces 9-42
Certification Path Result Specification Interfaces 9-43
Certification Path Exception Classes 9-43
Appendix A: Standard Names 9-44
Appendix B: CertPath Implementation in SUN Provider 9-44
Appendix C: OCSP Support 9-47
Enable OSCP Nonce Extension 9-49
Maximum Allowable Clock Skew 9-50
Fallback Option for POST-Only OCSP Requests 9-50
Appendix D: CertPath Implementation in JAKLDAP Provider 9-50
Appendix E: Disabling Cryptographic Algorithms 9-51

10 Java SASL API Programming and Deployment Guide

Java SASL API Overview 10-2
Creating the Mechanisms 10-2
Passing Input to the Mechanisms 10-3
Using the Mechanisms 10-3
Using the Negotiated Security Layer 10-5
How SASL Mechanisms are Installed and Selected 10-6
The SunSASL Provider 10-7
The SunSASL Provider Client Mechanisms 10-7
The SunSASL Provider Server Mechanisms 10-12
The JdkSASL Provider 10-13
The JAkSASL Provider Client Mechanism 10-13
The JAKSASL Provider Server Mechanism 10-15
Debugging and Monitoring 10-15
Implementing a SASL Security Provider 10-16

ORACLE

XVii

11 XML Digital Signature API Overview and Tutorial

Package Hierarchy 11-1
Service Providers 11-2
Introduction to XML Signatures 11-3
Example of an XML Signature 11-3
XML Signature Secure Validation Mode 11-4
XML Digital Signature API Examples 11-5
Validate Example 11-5
Validating an XML Signature 11-9
Instantiating the Document that Contains the Signature 11-9
Specifying the Signature Element to be Validated 11-9
Creating a Validation Context 11-10
Unmarshalling the XML Signature 11-10
Validating the XML Signature 11-10

Using KeySelectors 11-11
GenEnveloped Example 11-12
Generating an XML Signature 11-15
Instantiating the Document to be Signed 11-16
Creating a Public Key Pair 11-16
Creating a Signing Context 11-16
Assembling the XML Signature 11-17
Generating the XML Signature 11-18
Printing or Displaying the Resulting Document 11-18

12 Java API for XML Processing (JAXP) Security Guide

Potential Attacks During XML Processing 12-1
XML External Entity Injection Attack 12-1
External Resources Supported by XML, Schema, and XSLT Standards 12-1
Exponential Entity Expansion Attack 12-3
Feature for Secure Processing (FSP) 12-3
JAXP Properties for Processing Limits 12-4
JAXP Properties for External Access Restrictions 12-5
Scope and Order 12-7
Relationship with Security Manager 12-8
When to Use Processing Limits 12-9
When to Use External Access Restrictions 12-10
Using JAXP Properties 12-11
Handling Errors from JAXP Properties 12-14
Streaming API for XML and JAXP Properties 12-15
Extension Functions 12-16

ORACLE

XVviil

Disabling DTD Processing
Using Resolvers and Catalogs
Java XML Resolvers
Entity Resolvers for SAX and DOM
XMLResolver for StAX
URIResolver for javax.xml.transform
LSResourceResolver for javax.xml.validation
The Catalog API
Catalog Resolver
Enable Catalogs on JDK XML Processors
Third-Party Parsers
JAXP Security Processing
General Recommendations for JAXP Security
Appendix A: Glossary of Java API for XML Processing Terms and Definitions
Appendix B: Java and JDK XML Features and Properties Naming Convention

ORACLE

12-17
12-17
12-17
12-18
12-18
12-19
12-19
12-19
12-20
12-20
12-20
12-21
12-25
12-25
12-26

XiX

Preface

Preface

This guide provides information about the Java security technology, tools, and implementations
of commonly used security algorithms, mechanisms, and protocols on the Java Platform,
Standard Edition (Java SE).

Audience

This document is intended for experienced developers who build applications using the
comprehensive Java security framework. It is also intended for the user or administrator with a
set of tools to securely manage applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

e Serialization Filtering in Java Platform, Standard Edition Core Libraries

* RMI Security Recommendations in Java Platform, Standard Edition Java Remote Method
Invocation User's Guide

Conventions

The following text conventions are used in this document:

ORACLE Yx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE XXi

General Security

Terms and Definitions list commonly used cryptography terms and their definitions.

Java Security Overview provides an overview of the motivation of major security features, an
introduction to security classes and their usage, a discussion of the impact of the security
architecture on code, and thoughts on writing security-sensitive code.

Certain aspects of Java security may be customized by setting security properties in the
securities properties file. The Security Properties File describes this file.

Java Security Standard Algorithm Names Specification describes the set of standard names
for algorithms, certificate and keystore types that Java SE requires and uses.

Troubleshooting Security lists options for the java.security.debug system property that
enable you to monitor security access.

Terms and Definitions

ORACLE

The following are commonly used cryptography terms and their definitions.

authentication
The process of confirming the identity of a party with whom one is communicating.

certificate

A digitally signed statement vouching for the identity and public key of an entity (person,
company, and so on). Certificates can either be self-signed or issued by a Certificate Authority
(CA) an entity that is trusted to issue valid certificates for other entities. Well-known CAs
include Comodo, DigiCert, and GoDaddy. X509 is a common certificate format that can be
managed by the JDK's keytool.

cipher suite
A combination of cryptographic parameters that define the security algorithms and key sizes
used for authentication, key agreement, encryption, and integrity protection.

cryptographic hash function

An algorithm that is used to produce a relatively small fixed-size string of bits (called a hash)
from an arbitrary block of data. A cryptographic hash function is similar to a checksum and has
three primary characteristics: it's a one-way function, meaning that it is not possible to produce
the original data from the hash; a small change in the original data produces a large change in
the resulting hash; and it doesn’t require a cryptographic key.

Cryptographic Service Provider (CSP)

Sometimes referred to simply as providers for short, the Java Cryptography Architecture (JCA)
defines it as a package (or set of packages) that implements one or more engine classes for
specific cryptographic algorithms. An engine class defines a cryptographic service in an
abstract fashion without a concrete implementation.

1-1

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

ORACLE

Chapter 1
Terms and Definitions

Datagram Transport Layer Security (DTLS) Protocol

A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server based on an unreliable transport channel such
as UDP.

decryption
See encryption/decryption.

digital signature

A digital equivalent of a handwritten signature. It is used to ensure that data transmitted over a
network was sent by whoever claims to have sent it and that the data has not been modified in
transit. For example, an RSA-based digital signature is calculated by first computing a
cryptographic hash of the data and then encrypting the hash with the sender's private key.

encryption/decryption

Encryption is the process of using a complex algorithm to convert an original message
(cleartext) to an encoded message (ciphertext) that is unintelligible unless it is decrypted.
Decryption is the inverse process of producing cleartext from ciphertext.

The algorithms used to encrypt and decrypt data typically come in two categories: secret key
(symmetric) cryptography and public key (asymmetric) cryptography.

endpoint identification
An IPv4 or IPv6 address used to identify an endpoint on the network.
Endpoint identification procedures are handled during SSL/TLS handshake.

handshake protocol

The negotiation phase during which the two socket peers agree to use a new or existing
session. The handshake protocol is a series of messages exchanged over the record protocol.
At the end of the handshake, new connection-specific encryption and integrity protection keys
are generated based on the key agreement secrets in the session.

java-home
Variable placeholder used throughout this document to refer to the directory where the Java
Development Kit (JDK) is installed.

key agreement

A method by which two parties cooperate to establish a common key. Each side generates
some data, which is exchanged. These two pieces of data are then combined to generate a
key. Only those holding the proper private initialization data can obtain the final key. Diffie-
Hellman (DH) is the most common example of a key agreement algorithm.

Key Encapsulation Mechanism (KEM)

An encryption technique for securing symmetric keys using public key cryptography. In the
encapsulation process, the sender reads in the receiver's public key and generates a secret
key and a key encapsulation message. The key encapsulation message is sent to the
receiver. In the decapsulation process, the receiver uses its own private key to recover the
same secret key from the key encapsulation message.

key exchange

A method by which keys are exchanged. One side generates a private key and encrypts it
using the peer's public key (typically RSA). The data is transmitted to the peer, who decrypts
the key using the corresponding private key.

key manager/trust manager
Key managers and trust managers use keystores for their key material. A key manager
manages a keystore and supplies public keys to others as needed (for example, for use in

1-2

ORACLE

Chapter 1
Terms and Definitions

authenticating the user to others). A trust manager decides who to trust based on information
in the truststore it manages.

Keyed-Hash Message Code (HMAC)
A specific type of message authentication code that involves a cryptographic hash function
and a secret cryptographic key.

Keyed-Hash Message Code (HMAC)-based Extract-and-Expand Key Derivation Function
(HKDF)

A function used for key generation and validation.

keystoreltruststore

A keystore is a database of key material. Key material is used for a variety of purposes,
including authentication and data integrity. Various types of keystores are available, including
PKCS12 and Oracle's JKS.

Generally speaking, keystore information can be grouped into two categories: key entries and
trusted certificate entries. A key entry consists of an entity's identity and its private key, and
can be used for a variety of cryptographic purposes. In contrast, a trusted certificate entry
contains only a public key in addition to the entity's identity. Thus, a trusted certificate entry
can’t be used where a private key is required, such as in a javax.net.ssl.KeyManager. In the
JDK implementation of JKS, a keystore may contain both key entries and trusted certificate
entries.

A truststore is a keystore that is used when making decisions about what to trust. If you
receive data from an entity that you already trust, and if you can verify that the entity is the one
that it claims to be, then you can assume that the data really came from that entity.

An entry should only be added to a truststore if the user trusts that entity. By either generating
a key pair or by importing a certificate, the user gives trust to that entry. Any entry in the
truststore is considered a trusted entry.

It may be useful to have two different keystore files: one containing just your key entries, and
the other containing your trusted certificate entries, including CA certificates. The former
contains private information, whereas the latter does not. Using two files instead of a single
keystore file provides a cleaner separation of the logical distinction between your own
certificates (and corresponding private keys) and others' certificates. To provide more
protection for your private keys, store them in a keystore with restricted access, and provide
the trusted certificates in a more publicly accessible keystore if needed.

message authentication code (MAC)

Provides a way to check the integrity of information transmitted over or stored in an unreliable
medium, based on a secret key. Typically, MACs are used between two parties that share a
secret key in order to validate information transmitted between these parties.

A MAC mechanism that is based on cryptographic hash functions is referred to as HMAC.
HMAC can be used with any cryptographic hash function, such as Message Digest 5 (MD5)
and the Secure Hash Algorithm (SHA-256), in combination with a secret shared key. HMAC is
specified in RFC 2104.

public-key cryptography

A cryptographic system that uses an encryption algorithm in which two keys are produced.
One key is made public, whereas the other is kept private. The public key and the private key
are cryptographic inverses; what one key encrypts only the other key can decrypt. Public-key
cryptography is also called asymmetric cryptography.

Record Protocol

A protocol that packages all data (whether application-level or as part of the handshake
process) into discrete records of data much like a TCP stream socket converts an application
byte stream into network packets. The individual records are then protected by the current
encryption and integrity protection keys.

1-3

Chapter 1
Java Security Overview

secret-key cryptography
A cryptographic system that uses an encryption algorithm in which the same key is used both
to encrypt and decrypt the data. Secret-key cryptography is also called symmetric

cryptography.

Secure Sockets Layer (SSL) Protocol

A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server. SSL has been renamed to Transport Layer
Security (TLS).

session

A named collection of state information including authenticated peer identity, cipher suite, and
key agreement secrets that are negotiated through a secure socket handshake and that can
be shared among multiple secure socket instances.

Transport Layer Security (TLS) Protocol

A protocol that manages client and server authentication, data integrity, and encrypted
communication between the client and server based on a reliable transport channel such as
TCP.

trust manager
See key manager/trust manager.

truststore
See keystore/truststore.

Java Security Overview

Java security includes a large set of APls, tools, and implementations of commonly-used
security algorithms, mechanisms, and protocols. The Java security APIs span a wide range of
areas, including cryptography, public key infrastructure, secure communication, authentication,
and access control. Java security technology provides the developer with a comprehensive
security framework for writing applications, and also provides the user or administrator with a
set of tools to securely manage applications.

Introduction to Java Security

ORACLE

The JDK is designed with a strong emphasis on security. At its core, the Java language itself is
type-safe and provides automatic garbage collection, enhancing the robustness of application
code. A secure class loading and verification mechanism ensures that only legitimate Java
code is executed. The Java security architecture includes a large set of application
programming interfaces (APIs), tools, and implementations of commonly-used security
algorithms, mechanisms, and protocols.

The Java security APIs span a wide range of areas. Cryptographic and public key
infrastructure (PKI) interfaces provide the underlying basis for developing secure applications.

The APIs allow for multiple interoperable implementations of algorithms and other security
services. Services are implemented in providers, which are plugged into the JDK through a
standard interface that makes it easy for applications to obtain security services without having
to know anything about their implementations. This allows developers to focus on how to
integrate security into their applications, rather than on how to actually implement complex
security mechanisms.

The JDK includes a number of providers that implement a core set of security services. It also
allows for additional custom providers to be installed. This enables developers to extend the
platform with new security mechanisms.

1-4

Chapter 1
Java Security Overview

The JDK is divided into modules. Modules that contain security APIs include the following:

Table 1-1 Modules That Contain Security APIs

___|
Module Description

java.base Defines the foundational APIs of Java SE.
Contained packages include java.security,
javax.crypto, javax.net.ssl, and
javax.security.auth.

java.security.jgss Defines the Java binding of the IETF Generic
Security Services APl (GSS-API). This module also
contains GSS-API mechanisms including Kerberos
v5 and SPNEGO.

java.security.sasl Defines Java support for the IETF Simple
Authentication and Security Layer (SASL). This
module also contains SASL mechanisms including
DIGEST-MD5, CRAM-MD5, and NTLM,

java.smartcardio Defines the Java Smart Card 1/O API.
java.xml.crypto Defines the API for XML cryptography.
jdk.jartool Defines APIs for signing JAR files.
jdk.security.auth Provides implementations of the

javax.security.auth. * interfaces and
various authentication modules.

jdk.security.jgss Defines Java extensions to the GSS-API and an
implementation of the SASL GSS-API mechanism.

Java Language Security and Bytecode Verification

ORACLE

The Java language is designed to be type-safe and easy to use. It provides automatic memory
management, garbage collection, and range-checking on arrays. This reduces the overall
programming burden placed on developers, leading to fewer subtle programming errors and to
safer, more robust code.

A compiler translates Java programs into a machine-independent bytecode representation. A
bytecode verifier is invoked to ensure that only legitimate bytecodes are executed in the Java
runtime. It checks that the bytecodes conform to the Java Language Specification and do not
violate Java language rules or namespace restrictions. The verifier also checks for memory
management violations, stack underflows or overflows, and illegal data typecasts. Once
bytecodes have been verified, the Java runtime prepares them for execution.

In addition, the Java language defines different access modifiers that can be assigned to Java
classes, methods, and fields, enabling developers to restrict access to their class
implementations as appropriate. The language defines four distinct access levels:

* private: Most restrictive modifier; access is not allowed outside the particular class in
which the private member (a method, for example) is defined.

* protected: Allows access to any subclass or to other classes within the same package.

« Package-private: If not specified, then this is the default access level; allows access to
classes within the same package.

* public: No longer guarantees that the element is accessible everywhere; accessibility
depends upon whether the package containing that element is exported by its defining
module and whether that module is readable by the module containing the code that is
attempting to access it.

1-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.smartcardio/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/module-summary.html

Chapter 1
Java Security Overview

Basic Security Architecture

The JDK defines a set of APIs spanning major security areas, including cryptography, public
key infrastructure, authentication, secure communication, and access control. The APIs allow
developers to easily integrate security into their application code.

The APIs are designed around the following principles:

Implementation independence

Applications do not need to implement security themselves. Rather, they can request security
services from the JDK. Security services are implemented in providers (see the section
Security Providers), which are plugged into the JDK via a standard interface. An application
may rely on multiple independent providers for security functionality.

Implementation interoperability
Providers are interoperable across applications. Specifically, an application is not bound to a
specific provider if it does not rely on default values from the provider.

Algorithm extensibility

The JDK includes a number of built-in providers that implement a basic set of security services
that are widely used today. However, some applications may rely on emerging standards not
yet implemented, or on proprietary services. The JDK supports the installation of custom
providers that implement such services.

Security Providers

The java.security.Provider class encapsulates the notion of a security provider in the Java
platform. It specifies the provider's name and lists the security services it implements. Multiple
providers may be configured at the same time and are listed in order of preference. When a
security service is requested, the highest priority provider that implements that service is
selected.

Applications rely on the relevant getInstance method to request a security service from an
underlying provider.

For example, message digest creation represents one type of service available from providers.
To request an implementation of a specific message digest algorithm, call the method
java.security.MessageDigest.getInstance. The following statement requests a
SHA-256 message digest implementation without specifying a provider name:

MessageDigest md = MessageDigest.getInstance ("SHA-256");

The following figure illustrates how this statement obtains a SHA-256 message digest
implementation. The providers are searched in preference order, and the implementation from
the first provider supplying that particular algorithm, ProviderB, is returned.

ORACLE 6

ORACLE

Figure 1-1 Request SHA-256 Message Digest Implementation Without Specifying

A
SHA-256 MessageDigest
from ProviderB

Provider
Application
|
MessageDigest.getinstance
("SHA-256")
Y |
; Provider Framework ;
1. ProviderA 2. ProviderB
MessageDigest MessageDigest
SHA-384 SHA-256
SHA-512 SHA-384

You can optionally request an implementation from a specific provider by specifying the

3. ProviderC
MessageDigest

Chapter 1
Java Security Overview

provider's name. The following statement requests a SHA-256 message digest implementation

from a specific provider, ProviderC:

MessageDigest md = MessageDigest.getInstance ("SHA-256",

The following figure illustrates how this statement requests a SHA-256 message digest

"ProviderC");

implementation from a specific provider, ProviderC. In this case, the implementation from that

provider is returned, even though a provider with a higher preference order, providerB, also
supplies a SHA-256 implementation.

1-7

Chapter 1
Java Security Overview

Figure 1-2 Request SHA-256 Message Digest Implementation from Specific Provider

Application
| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256", “ProviderC”) from ProviderC

E Provider Framework

; _.
. ! e
(:
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

For more information about cryptographic services, such as message digest algorithms, see
the section Java Cryptography.

Oracle's implementation of the Java platform includes a number of built-in default providers
that implement a basic set of security services that can be used by applications. Note that
other vendor implementations of the Java platform may include different sets of providers that
encapsulate vendor-specific sets of security services. The term built-in default providers refers
to the providers available in Oracle's implementation.

Java Cryptography

The Java cryptography architecture is a framework for accessing and developing cryptographic
functionality for the Java platform.

It includes APIs for a large variety of cryptographic services, including the following:

e Message digest algorithms

- Digital signature algorithms

e Symmetric bulk and stream encryption

e Asymmetric encryption

e Password-based encryption (PBE)

e Elliptic Curve Cryptography (ECC)

« Key agreement algorithms

¢ Key generators

e Key Encapsulation Mechanisms (KEMSs)

e Message Authentication Codes (MACS)

ORACLE 18

Chapter 1
Java Security Overview

* Secure Random Number Generators

For historical (export control) reasons, the cryptography APIs are organized into two distinct
packages:

e The java.security and java.security.* packages contains classes that are not subject
to export controls (like Signature and MessageDigest)

e The javax.crypto package contains classes that are subject to export controls (like
Cipher, KeyAgreement, and KEM)

The cryptographic interfaces are provider-based, allowing for multiple and interoperable
cryptography implementations. Some providers may perform cryptographic operations in
software; others may perform the operations on a hardware token (for example, on a smart
card device or on a hardware cryptographic accelerator). Providers that implement export-
controlled services must be digitally signed by a certificate issued by the Oracle JCE Certificate
Authority.

The Java platform includes built-in providers for many of the most commonly used
cryptographic algorithms, including the RSA, DSA, and ECDSA signature algorithms, the AES
encryption algorithm, the SHA-2 message digest algorithms, and the Diffie-Hellman (DH) and
Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithms. Most of the built-in providers
implement cryptographic algorithms in Java code.

The Java platform also includes a built-in provider that acts as a bridge to a native PKCS#11
(v2.x) token. This provider, named sunPKCS11, allows Java applications to seamlessly access
cryptographic services located on PKCS#11-compliant tokens.

On Windows, the Java platform includes a built-in provider that acts as a bridge to the native
Microsoft CryptoAPI. This provider, named sunMSCAPI, allows Java applications to seamlessly
access cryptographic services on Windows through the CryptoAPI.

On macOS, the Java platform includes a built-in provider named Apple that implements a
java.security.KeyStore that provides access to the macOS Keychain.

Public Key Infrastructure

Public Key Infrastructure (PKI) is a term used for a framework that enables secure exchange of
information based on public key cryptography. It allows identities (of people, organizations,
etc.) to be bound to digital certificates and provides a means of verifying the authenticity of
certificates. PKI encompasses keys, certificates, public key encryption, and trusted
Certification Authorities (CAs) who generate and digitally sign certificates.

The Java platform includes APIs and provider support for X.509 digital certificates and
Certificate Revocation Lists (CRLSs), as well as PKIX-compliant certification path building and
validation. The classes related to PKI are located in the java.security and
java.security.cert packages.

Key and Certificate Storage

ORACLE

The Java platform provides for long-term persistent storage of cryptographic keys and
certificates via key and certificate stores. Specifically, the java.security.KeyStore class
represents a key store, a secure repository of cryptographic keys and/or trusted certificates (to
be used, for example, during certification path validation), and the
java.security.cert.CertStore class represents a certificate store, a public and potentially
vast repository of unrelated and typically untrusted certificates. A CertStore may also store
CRLs.

1-9

Chapter 1
Java Security Overview

KeyStore and CertStore implementations are distinguished by types. The Java platform
includes the standard PKCS11 and PKCS12 key store types (whose implementations are
compliant with the corresponding PKCS specifications from the Internet Engineering Task
Force (IETF)). It also contains a proprietary file-based key store type called JKS (which stands
for Java Key Store), and a type called DKS (Domain Key Store) which is a collection of
keystores that are presented as a single logical keystore.

The Java platform includes a special built-in key store, cacerts, that contains a number of
certificates for well-known, trusted CAs. The keytool utility is able to list the certificates included
in cacerts. See keytool in Java Development Kit Tool Specifications.

The SunPKCS11 provider mentioned in the section Java Cryptography includes a PKCS11
KeyStore implementation. This means that keys and certificates residing in secure hardware
(such as a smart card) can be accessed and used by Java applications via the KeyStore API.
Note that smart card keys may not be permitted to leave the device. In such cases, the
java.security.Key object returned by the KeyStore APl may simply be a reference to the key
(that is, it would not contain the actual key material). Such a Xey object can only be used to
perform cryptographic operations on the device where the actual key resides.

The Java platform also includes an LDAP certificate store type (for accessing certificates
stored in an LDAP directory), as well as an in-memory Collection certificate store type (for
accessing certificates managed in a java.util.Collection object).

The Java platform supports native Microsoft Windows keystore types. See the algorithm
names for the KeyStore engine class in The SUNMSCAPI Provider. The Java platform also
includes a KeyStore implementation that proivdes access to the macOS Keychain. See the
algorithm names for the KeyStore engine class in The Apple Provider.

Public Key Infrastructure Tools

There are two built-in tools for working with keys, certificates, and key stores:

e keytool creates and manages key stores. Use it to perform the following tasks:
— Create public/private key pairs
— Display, import, and export X.509 v1, v2, and v3 certificates stored as files
— Create X.509 certificates
— Issue certificate (PKCS#10) requests to be sent to CAs
— Create certificates based on certificate requests
— Import certificate replies (obtained from the CAs sent certificate requests)
— Designate public key certificates as trusted
— Accept a password and store it securely as a secret key

* jarsigner signs JAR files and verifies signatures on signed JAR files. The Java ARchive
(JAR) file format enables the bundling of multiple files into a single file. Typically, a JAR file
contains the class files and auxiliary resources associated with applets and applications.

To digitally sign code, perform the following:

1. Use keytool to generate or import appropriate keys and certificates into your key store (if
they are not there already).

2. Use the jar tool to package the code in a JAR file.

ORACLE 110

Chapter 1
Java Security Overview

3. Use the jarsigner tool (or the jdk.security.jarsigner API) to sign the JAR file. The

jarsigner tool accesses a key store to find any keys and certificates needed to sign a JAR
file or to verify the signature of a signed JAR file.

Note:

jarsigner can optionally generate signatures that include a timestamp. Systems
that verify JAR file signatures can check the timestamp and accept a JAR file that
was signed while the signing certificate was valid rather than requiring the
certificate to be current. (Certificates typically expire annually, and it is not
reasonable to expect JAR file creators to re-sign deployed JAR files annually.)

See keytool and jarsigner in Java Development Kit Tool Specifications.

Authentication

ORACLE

Authentication is the process of determining the identity of a user. In the context of the Java
runtime environment, it is the process of identifying the user of an executing Java program. In
certain cases, this process may rely on the services described in the section Java
Cryptography.

The Java platform provides APIs that enable an application to perform user authentication via
pluggable login modules. Applications call into the LoginContext class (in the
javax.security.auth.login package), which in turn references a configuration. The
configuration specifies which login module (an implementation of the
javax.security.auth.spi.LoginModule interface) is to be used to perform the actual
authentication.

Since applications solely talk to the standard LoginContext API, they can remain independent
from the underlying plug-in modules. New or updated modules can be plugged in for an
application without having to modify the application itself. The following figure illustrates the
independence between applications and underlying login modules:

Figure 1-3 Authentication Login Modules Plugging into the Authentication Framework

Application

Authentication Framework

(Configuration

Smartcard Kerberos Username/
Password

1-11

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

Chapter 1
Java Security Overview

It is important to note that although login modules are pluggable components that can be
configured into the Java platform, they are not plugged in via security providers. Therefore,
they do not follow the provider searching model as described in the section Security Providers.
Instead, as is shown in Figure 1-3, login modules are administered by their own unique
configuration.

The Java platform provides the following built-in login modules, all in the
com.sun.security.auth.module package:

* JndiLoginModule for username/password authentication using LDAP or NIS databases

* KeyStoreLoginModule for logging into any type of key store, including a PKCS#11 token
key store

° Krb5LoginModule for authentication using Kerberos protocols

e LdapLoginModule for LDAP-based authentication

° NTLoginModule for authentication using a user's Windows NT security information

* UnixLoginModule for authentication using a user's UNIX Principal information

Authentication can also be achieved during the process of establishing a secure
communication channel between two peers. The Java platform provides implementations of a
number of standard communication protocols, which are discussed in the section Secure
Communication.

Secure Communication

The data that travels across a network can be accessed by someone who is not the intended
recipient. When the data includes private information, such as passwords and credit card
numbers, steps must be taken to make the data unintelligible to unauthorized parties. It is also
important to ensure that you are sending the data to the appropriate party, and that the data
has not been modified, either intentionally or unintentionally, during transport.

Cryptography forms the basis required for secure communication; see the section Java
Cryptography. The Java platform also provides API support and provider implementations for a
number of standard secure communication protocols.

TLS and DTLS Protocols

ORACLE

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols which provide a secure channel between two communication peers.
TLS uses a combination of cryptographic processes by providing authentication, confidentiality
and integrity properties for communication over a untrusted or potential hostile network. TLS
runs over a reliable, stream-oriented transport channel, typically Transport Control Protocol
(TCP). TLS is application protocol independent. Higher-level protocols, for example Hypertext
Transfer Protocol (HTTP), can layer on top of TLS transparently.

The Datagram Transport Layer Security (DTLS) protocols are based on the stream-oriented
TLS protocols and are intended to provider similar security properties for datagram transport,
like User Datagram Protocol (UDP), which does not provide reliable or in-order delivery of
data.

The JDK provides APIs and an implementation of the SSL, TLS, and DTLS protocols that
includes functionality for data encryption, message integrity, and server and client
authentication. Applications can use (D)TLS to provide for the secure passage of data between
two peers over any application protocol, such as HTTP on top of TCP/IP.

1-12

Chapter 1
Java Security Overview

The javax.net.ssl.SSLSocket class represents a network socket that encapsulates TLS
support on top of a normal stream socket (java.net.Socket). Some applications might want to
use alternate data transport abstractions (for example, New-1/0); the
javax.net.ssl.SSLEngine class is available to produce and consume TLS/DTLS packets.

The JDK also includes APIs that support the notion of pluggable (provider-based) key
managers and trust managers. A key manager is encapsulated by the
javax.net.ssl.KeyManager class, and manages the keys used to perform authentication. A
trust manager is encapsulated by the TrustManager class (in the same package), and makes
decisions about who to trust based on certificates in the key store it manages.

The JDK includes a built-in provider that implements the SSL/TLS/DTLS protocols:

e SSL3.0
« TLS1.0
« TLS11
e TLS12
« TLS13
« DTLS 1.0
- DTLS1.2

Simple Authentication and Security Layer (SASL)

Simple Authentication and Security Layer (SASL) is an Internet standard that specifies a
protocol for authentication and optional establishment of a security layer between client and
server applications. SASL defines how authentication data is to be exchanged, but does not
itself specify the contents of that data. It is a framework into which specific authentication
mechanisms that specify the contents and semantics of the authentication data can fit. There
are a number of standard SASL mechanisms defined by the Internet community for various
security levels and deployment scenarios.

The Java SASL API, which is in the java.security.sasl module, defines classes and
interfaces for applications that use SASL mechanisms. It is defined to be mechanism-neutral;
an application that uses the API need not be hardwired into using any particular SASL
mechanism. Applications can select the mechanism to use based on desired security features.
The API supports both client and server applications. The javax.security.sasl.Sasl class is
used to create SaslClient and SaslServer objects.

SASL mechanism implementations are supplied in provider packages. Each provider may
support one or more SASL mechanisms and is registered and invoked via the standard
provider architecture.

The Java platform includes a built-in provider that implements the following SASL
mechanisms:

e CRAM-MD5, DIGEST-MD5, EXTERNAL, GSSAPI, NTLM, and PLAIN client mechanisms
e CRAM-MD5, DIGEST-MD5, GSSAPI, and NTLM server mechanisms

Generic Security Service APl and Kerberos

The Java platform contains an API with the Java language bindings for the Generic Security
Service Application Programming Interface (GSS-API), which is in the java.security.jgss module.
GSS-API offers application programmers uniform access to security services atop a variety of

ORACLE 112

https://www.rfc-editor.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc4346.txt
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc4347.txt
https://tools.ietf.org/html/rfc6347.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.sasl/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/module-summary.html

Chapter 1
Java Security Overview

underlying security mechanisms. The Java GSS-API currently requires use of a Kerberos v5
mechanism, and the Java platform includes a built-in implementation of this mechanism. At this
time, it is not possible to plug in additional mechanisms.

Note:

The Krb5LoginModule mentioned in the section Authentication can be used in
conjunction with the GSS Kerberos mechanism.

The Java platform also includes a built-in implementation of the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO) GSS-API mechanism.

Before two applications can use GSS-API to securely exchange messages between them, they
must establish a joint security context. The context encapsulates shared state information that
might include, for example, cryptographic keys. Both applications create and use an
org.ietf.jgss.GSSContext object to establish and maintain the shared information that
makes up the security context. Once a security context has been established, it can be used to
prepare secure messages for exchange.

The Java GSS APIs are in the org.ietf.jgss package. The Java platform also defines basic
Kerberos classes, like KerberosPrincipal, KerberosTicket, KerberosKey, and KeyTab, which
are located in the javax.security.auth.kerberos package.

Access Control

Permissions

ORACLE

The access control architecture in the Java platform protects access to sensitive resources (for
example, local files) or sensitive application code (for example, methods in a class). All access
control decisions are mediated by a security manager, represented by the
java.lang.SecurityManager class. A SecurityManager must be installed into the Java runtime
in order to activate the access control checks.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

Local applications executed via the java command are by default not run with a
SecurityManager installed. In order to run local applications with a SecurityManager, either the
application itself must programmatically set one via the setSecurityManager method (in the
java.lang.System class), or java must be invoked with a -Djava.security.manager argument
on the command line.

A permission represents access to a system resource. In order for a resource access to be
allowed for an applet (or an application running with a security manager), the corresponding
permission must be explicitly granted to the code attempting the access.

When Java code is loaded by a class loader into the Java runtime, the class loader
automatically associates the following information with that code:

1-14

https://openjdk.java.net/jeps/411

Chapter 1
Java Security Overview

* Where the code was loaded from
* Who signed the code (if anyone)
» Default permissions granted to the code

This information is associated with the code regardless of whether the code is downloaded
over an untrusted network (e.g., an applet) or loaded from the filesystem (e.g., a local
application). The location from which the code was loaded is represented by a URL, the code
signer is represented by the signer's certificate chain, and default permissions are represented
by java.security.Permission objects.

The default permissions automatically granted to downloaded code include the ability to make
network connections back to the host from which it originated. The default permissions
automatically granted to code loaded from the local filesystem include the ability to read files
from the directory it came from, and also from subdirectories of that directory.

Note that the identity of the user executing the code is not available at class loading time. It is
the responsibility of application code to authenticate the end user if necessary (see the section
Authentication). Once the user has been authenticated, the application can dynamically
associate that user with executing code by invoking the doas method in the
javax.security.auth.Subject class.

Security Policy

A limited set of default permissions are granted to code by class loaders. Administrators have
the ability to flexibly manage additional code permissions via a security policy.

Java SE encapsulates the notion of a security policy in the java.security.Policy class.
There is only one Policy object installed into the Java runtime at any given time. The basic
responsibility of the Policy object is to determine whether access to a protected resource is
permitted to code (characterized by where it was loaded from, who signed it, and who is
executing it). How a Policy object makes this determination is implementation-dependent. For
example, it may consult a database containing authorization data, or it may contact another
service.

Java SE includes a default Policy implementation that reads its authorization data from one or
more ASCII (UTF-8) files configured in the security properties file. These policy files contain
the exact sets of permissions granted to code: specifically, the exact sets of permissions
granted to code loaded from particular locations, signed by particular entities, and executing as
particular users. The policy entries in each file must conform to a documented proprietary
syntax and may be composed via a simple text editor.

Access Control Enforcement

ORACLE

The Java runtime keeps track of the sequence of Java calls that are made as a program
executes. When access to a protected resource is requested, the entire call stack, by default,
is evaluated to determine whether the requested access is permitted.

As mentioned previously, resources are protected by the SecurityManager. Security-sensitive
code in the JDK and in applications protects access to resources via code like the following:

SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission (perm) ;

1-15

ORACLE

Chapter 1
Java Security Overview

The Permission object perm corresponds to the requested access. For example, if an
attempt is made to read the file /tmp/abc, the permission may be constructed as follows:

Permission perm = new java.io.FilePermission("/tmp/abc", "read");

The default implementation of SecurityManager delegates its decision to the
java.security.AccessController implementation. The AccessController traverses the call
stack, passing to the installed security Policy each code element in the stack, along with the
requested permission (for example, the FilePermission in the previous example). The Policy
determines whether the requested access is granted, based on the permissions configured by
the administrator. If access is not granted, the AccessController throws a
java.lang.SecurityException.

Figure 1-4 illustrates access control enforcement. In this particular example, there are initially
two elements on the call stack, ClassA and ClassB. ClassA invokes a method in ClassB, which
then attempts to access the file /tmp/abc by creating an instance of
java.io.FileInputStream. The FileInputStream constructor creates a FilePermission,
perm, as shown previously, and then passes perm to the SecurityManager class's
checkPermission method. In this particular case, only the permissions for Classa and ClassB
need to be checked, because all classes in the java.base module, including FileInputStrean,
SecurityManager, and AccessController, automatically receives all permissions.

In this example, ClassA and ClassB have different code characteristics — they come from
different locations and have different signers. Each may have been granted a different set of
permissions. The AccessController only grants access to the requested file if the Policy
indicates that both classes have been granted the required FilePermission.

1-16

Chapter 1

Java Security Overview
Figure 1-4 Controlling Access to Resources
9 ClassA
Location Who Signers
9 ClassB
/4
Location Who Signers
FileInputStream
Permission perm = new java.io.FilePermission ("/tmp/abc", "read");
SecurityManager
SecurityManager sm = System.getSecurityManager () ;
if (sm != null) {
sm.checkPermission (perm) ;
}
AccessController
Policy
0 -
M2
Authorization
| Data
Access granted
or denied
/tmp/abc

XML Signature

The Java XML Digital Signature APl is a standard Java API for generating and validating XML
Signatures.

ORACLE 1-17

Chapter 1
Java Security Overview

XML Signatures can be applied to data of any type, XML or binary (see XML Signature Syntax
and Processing). The resulting signature is represented in XML. An XML Signature can be
used to secure your data and provide data integrity, message authentication, and signer
authentication.

The API is designed to support all of the required or recommended features of the W3C
Recommendation for XML-Signature Syntax and Processing. The API is extensible and
pluggable and is based on the Java Cryptography Service Provider Architecture.

The Java XML Digital Signature API, which is in the java.xml.crypto module, consists of
six packages:

* Jjavax.xml.crypto

* Jjavax.xml.crypto.dsig

e Jjavax.xml.crypto.dsig.keyinfo
* javax.xml.crypto.dsig.spec

* javax.xml.crypto.dom

°* javax.xml.crypto.dsig.dom

Java API for XML Processing (JAXP)

Java API for XML Processing (JAXP) is for processing XML data using Java applications. It
includes support for Simple API for XML (SAX), Document Object Models (DOM) and
Streaming API for XML (StAX) parsers, XML Schema Validation, and Extensible Stylesheet
Language Transformations (XSLT). In addition, JAXP provides secure processing features that
can help safeguard your applications and system from XML-related attacks. See the Java API
for XML Processing (JAXP) Security Guide.

Note:

Secure Coding Guidelines for Java SE contains additional recommendations that can
help defend against XML-related attacks.

Security Tools Summary

ORACLE

The following tables describe Java security and Kerberos-related tools.

Table 1-2 Java Security Tools
|

Tool Usage

jar Creates Java Archive (JAR) files
jarsigner Signs and verifies signatures on JAR files
keytool Creates and manages key stores

There are also three Kerberos-related tools that are shipped with the JDK for Windows.
Equivalent functionality is provided in tools of the same name that are automatically part of
Linux and macOS.

1-18

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
https://docs.oracle.com/en/java/javase/11/docs/api/java.xml.crypto/module-summary.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Chapter 1
The Security Properties File

Table 1-3 Kerberos-related Tools

Tool Usage
kinit Obtains and caches Kerberos ticket-granting tickets
klist Lists entries in the local Kerberos credentials cache

and key table

ktab Manages the names and service keys stored in the
local Kerberos key table

Built-In Providers

The Java SE implementation from Oracle includes a number of built-in provider packages. See
JDK Providers Documentation.

The Security Properties File

ORACLE

A security properties file is a text file that contains names of security properties and their
values. You can customize certain aspects of Java security by setting these properties.

When you launch a Java application from a JDK located in $JAVA HOME, by default, the JVM
will set the set the security properties to the values specified in $JAVA HOME/conf/security/
java.security, which is known as the master security properties file. It's possible to specify
another security properties file; see Specifying an Alternative Security Properties File.

A security property set in a security properties file is statically set. You can dynamically set
security properties by setting their values in your application's code. See Statically Setting a
Security Property in a Security Properties File and Dynamically Setting a Security Property in
Application Code.

See Troubleshooting Security Properties for information about enabling logging for security
properties and viewing them.

By default, the master security properties file sets security properties that customize certain
aspects of Java, which include the following:

e Registering a security provider: A security provider is a package or set of packages that
supply a concrete implementation of a subset of the cryptography aspects of the Java
Security API. The master security properties file sets several security properties in the form
security.provider.n, where n is the provider's preference order. The preference order is
the order in which providers are searched for requested algorithms (when no specific
provider is requested).

See Step 8.1: Configure the Provider for more information.

» Algorithm restrictions: This covers restricted and legacy algorithms for certificate path
validation, TLS, signed JAR files, and XML signature validations. For example,
jdk.certpath.disabledAlgorithms and jdk.tls.disabledAlgorithm list which
algorithms to disable during certification path validation and TLS/DTLS protocol
negotiation.

e Java Secure Socket Extension (JSSE): JSSE enables secure Internet communications. It
provides a framework and an implementation for a Java version of the TLS and DTLS
protocols and includes functionality for data encryption, server authentication, message
integrity, and optional client authentication. Related security properties include:

1-19

Chapter 1
The Security Properties File

— jdk.tls.keyLimits, which limits the amount of data algorithms may encrypt with a set
of keys

— ssl.KeyManagerFactory and ssl.TrustManagerFactory, which specify the default key
and trust manager factory algorithms for the javax.net.ss1 package

See Customizing JSSE for more information.

e Other aspects of Java security: This includes default keystore type, configuration of
SecureRandom implementations, and Kerberos.

Specifying an Alternative Security Properties File

You can specify an alternate java.security properties file from the command line with the
system property java.security.properties=<URL>. This properties file is appended to the
master security properties file. If you specify a properties file with
java.security.properties==<URL> (Using two equals signs), then that properties file will
completely override the master security properties file.

Statically Setting a Security Property in a Security Properties File

To statically set a security property value in a security properties file, add or modify an existing
line in the following form:

propertyName=propertyValue

For example, suppose that you want to specify a different key manager factory algorithm name
than the default SunX509. You do this by specifying the algorithm name as the value of a
security property named ss1.KeyManagerFactory.algorithm. For example, to set the value to
MyX509, add the following line:

ssl.KeyManagerFactory.algorithm=MyX509

To comment out a line in a security properties file, which means the JVM ignores it when it sets
security properties from a security properties file, insert the number sign (#) at the beginning of
the line.

By default, the master security properties file contains many comments that describe in detail
the security properties specified in it. Sometimes, these security properties themselves are
commented out. These security properties that are commented out might have a value
specified or no value at all.

Note:

A security property that has been set to no value is set to the empty string. A security
property that has been commented out is set to a null value. In this case, the security
property might be assigned a default value. The comments in the master security
properties file should specify whether a security property has a default value.

ORACLE 190

Chapter 1
Java SE Platform Security Architecture

Dynamically Setting a Security Property in Application Code

To set a security property dynamically in application code, call the
java.security.Security.setProperty method:

Security.setProperty ("propertyName," "propertyValue");

For example, a call to the setProperty () method corresponding to the previous example for
specifying the key manager factory algorithm name would be:

Security.setProperty("ssl.KeyManagerFactory.algorithm", "MyX509");

Note:

Some security properties cannot be set dynamically if they have already been read
from a security properties file and cached, which happens when the
java.security.Security class is initialized. No exception will be thrown if your
code attempts to do this.

Troubleshooting Security Properties

Enable logging for security properties by specifying the command-line option -
Djava.security.debug=properties. Messages prefixed by properties contain the final
values for all security properties and information on how include directives have been
processed. See The java.security.debug System Property.

The command-line option -XshowSettings:security prints an overview of the security settings
that are effective in the JDK. See The java -XshowSettings:security Option.

You can use the Java Flight Recorder (JFR) event jdk.InitialSecurityProperty to obtain
the initial values for security properties on a running JDK.

Java SE Platform Security Architecture

ORACLE

This document gives an overview of the motivation of the major security features implemented
for the JDK, describes the classes that are part of the Java security architecture, discusses the
impact of this architecture on existing code, and gives thoughts on writing security-sensitive
code.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

1-21

https://openjdk.java.net/jeps/411

Introduction

Chapter 1
Java SE Platform Security Architecture

Since the inception of Java technology, there has been strong and growing interest around the
security of the Java platform as well as new security issues raised by the deployment of Java
technology.

From a technology provider's point of view, Java security includes two aspects:

* Provide the Java platform as a secure, ready-built platform on which to run Java-enabled
applications in a secure fashion.

* Provide security tools and services implemented in the Java programming language that
enable a wider range of security-sensitive applications, for example, in the enterprise
world.

This document discusses issues related to the first aspect, where the customers for such
technologies include vendors that bundle or embed Java technology in their products (such as
browsers and operating systems).

The Original Sandbox Model

ORACLE

The original security model provided by the Java platform is known as the sandbox model,
which existed in order to provide a very restricted environment in which to run untrusted code
obtained from the open network. The essence of the sandbox model is that local code is
trusted to have full access to vital system resources (such as the file system) while
downloaded remote code (an applet) is not trusted and can access only the limited resources
provided inside the sandbox. This sandbox model is illustrated in Figure 1-5.

Figure 1-5 Original Java Platform Security Model

local code remote code

JVM

sandbox

valuable resources
(files, etc.)

The sandbox model was deployed through the Java Development Kit (JDK), and was generally
adopted by applications built with JDK 1.0, including Java-enabled web browsers.

Overall security is enforced through a number of mechanisms. First of all, the language is
designed to be type-safe and easy to use. The hope is that the burden on the programmer is
such that the likelihood of making subtle mistakes is lessened compared with using other
programming languages such as C or C++. Language features such as automatic memory

1-22

Chapter 1
Java SE Platform Security Architecture

management, garbage collection, and range checking on strings and arrays are examples of
how the language helps the programmer to write safe code.

Second, compilers and a bytecode verifier ensure that only legitimate Java bytecodes are
executed. The bytecode verifier, together with the Java Virtual Machine, guarantees language
safety at run time.

Moreover, a classloader defines a local name space, which can be used to ensure that an
untrusted applet cannot interfere with the running of other programs.

Finally, access to crucial system resources is mediated by the Java Virtual Machine and is
checked in advance by a SecurityManager class that restricts the actions of a piece of
untrusted code to the bare minimum.

JDK 1.1 introduced the concept of a "signed applet”, as illustrated in Figure 1-6. In that
release, a correctly digitally signed applet is treated as if it is trusted local code if the signature
key is recognized as trusted by the end system that receives the applet. Signed applets,
together with their signatures, are delivered in the JAR (Java Archive) format. In JDK 1.1,
unsigned applets still run in the sandbox.

Figure 1-6 JDK 1.1 Security Model

local code remoti code
JVM |
trusted
sandbox
valuable resources
(files, etc.)
Evolving the Sandbox Model

ORACLE

The new Java SE Platform Security Architecture, illustrated in Figure 1-7, is introduced
primarily for the following purposes.

1-23

ORACLE

Chapter 1
Java SE Platform Security Architecture

Figure 1-7 Java SE Security Architecture

local or remote
code (signed or not)

-ﬂ-
-— _— mput
security pollcy class loader
JVM

codes run

with different
permissions, no
built-in notion of
trusted code

sandbox

valuable resources
(files, etc.)

Fine-grained access control.

This capability existed in the JDK from the beginning, but to use it, the application writer
had to do substantial programming (e.g., by subclassing and customizing the
SecurityManager and ClassLoader classes). The HotJava browser 1.0 is such an
application, as it allows the browser user to choose from a small number of different
security levels.

However, such programming is extremely security-sensitive and requires sophisticated
skills and in-depth knowledge of computer security. The new architecture will make this
exercise simpler and safer.

Easily configurable security policy.

Once again, this capability existed previously in the JDK but was not easy to use.
Moreover, writing security code is not straightforward, so it is desirable to allow application
builders and users to configure security policies without having to program.

Easily extensible access control structure.

Up to JDK 1.1, in order to create a new access permission, you had to add a new check
method to the SecurityManager class. The new architecture allows typed permissions
(each representing an access to a system resource) and automatic handling of all
permissions (including yet-to-be-defined permissions) of the correct type. No new method
in the SecurityManager class needs to be created in most cases. (In fact, we have so
far not encountered a situation where a new method must be created.)

Extension of security checks to all Java programs, including applications as well as
applets.

1-24

Chapter 1
Java SE Platform Security Architecture

There is no longer a built-in concept that all local code is trusted. Instead, local code (e.g.,
non-system code, application packages installed on the local file system) is subjected to
the same security control as applets, although it is possible, if desired, to declare that the
policy on local code (or remote code) be the most liberal, thus enabling such code to
effectively run as totally trusted. The same principle applies to signed applets and any Java
application.

Finally, an implicit goal is to make internal adjustment to the design of security classes
(including the SecurityManager and ClassLoader classes) to reduce the risks of
creating subtle security holes in future programming.

Protection Mechanisms — Overview of Basic Concepts

We now go over, in some detail, the new protection architecture and give a brief explanation of
its functionality. We start with an overview of the basic concepts behind the new architecture.
We then introduce the major new classes in a natural order, starting with permission
specifications, going on to the policy and related features, followed by access control and its
usage, and then covering secure class loading and resolution.

A fundamental concept and important building block of system security is the protection
domain [Saltzer and Schroeder 75]. A domain can be scoped by the set of objects that are
currently directly accessible by a principal, where a principal is an entity in the computer
system to which permissions (and as a result, accountability) are granted. The sandbox utilized
in JDK 1.0 is one example of a protection domain with a fixed boundary.

The protection domain concept serves as a convenient mechanism for grouping and isolation
between units of protection. For example, it is possible (but not yet provided as a built-in
feature) to separate protection domains from interacting with each other so that any permitted
interaction must be either through trusted system code or explicitly allowed by the domains
concerned. Note that existing object accessibility rules remain valid under the new security
architecture.

Protection domains generally fall into two distinct categories: system domain and application
domain. It is important that all protected external resources, such as the file system, the
networking facility, and the screen and keyboard, be accessible only via system domains.
Figure 1-8 illustrates the domain composition of a Java application environment.

Figure 1-8 Domain Composition of a Java Application Environment

App-1 App-2 F----------- App-n

system domain

v v v v

net 1/0 file I/0O AWT printer

A domain conceptually encloses a set of classes whose instances are granted the same set of
permissions. Protection domains are determined by the policy currently in effect. The Java
application environment maintains a mapping from code (classes and instances) to their
protection domains and then to their permissions, as illustrated in Figure 1-9.

ORACLE Loe

ORACLE

Chapter 1
Java SE Platform Security Architecture

Figure 1-9 Mapping from Code to Domains and to Permissions

Class ---- » Domain +» Permissions

classes in
Java runtime

eclass -+-]--;
security polic

d.class ‘ y policy

b o . .

*---1% domain A [-->{ permissions
c.class ;

*1'71% domain B ---» permissions
b.class r+---*
a.class r+-----

A thread of execution (which is often, but not necessarily tied to, a single Java thread, which in
turn is not necessarily tied to the thread concept of the underlying operation system) may occur
completely within a single protection domain or may involve an application domain and also the
system domain. For example, an application that prints a message out will have to interact with
the system domain that is the only access point to an output stream. In this case, it is crucial
that at any time the application domain does not gain additional permissions by calling the
system domain. Otherwise, there can be serious security implications.

In the reverse situation where a system domain invokes a method from an application domain,
such as when the AWT system domain calls an applet's paint method to display the applet, it is
again crucial that at any time the effective access rights are the same as current rights enabled
in the application domain.

In other words, a less "powerful” domain cannot gain additional permissions as a result of
calling or being called by a more powerful domain.

This discussion of one thread involving two protection domains naturally generalizes to a
thread that traverses multiple protection domains. A simple and prudent rule of thumb for
calculating permissions is the following:

e The permission set of an execution thread is considered to be the intersection of the
permissions of all protection domains traversed by the execution thread.

e When a piece of code calls the doPrivileged method, the permission set of the
execution thread is considered to include a permission if it is allowed by the said code's
protection domain and by all protection domains that are called or entered directly or
indirectly subsequently.

As you can see, the doPrivileged method enables a piece of trusted code to temporarily
enable access to more resources than are available directly to the application that called it.
This is necessary in some situations. For example, an application may not be allowed direct
access to files that contain fonts, but the system utility to display a document must obtain those
fonts, on behalf of the user. We provide the doPrivileged method for the system domain to
deal with this situation, and the method is in fact available to all domains.

During execution, when access to a critical system resource (such as file I/O and network I/O)
is requested, the resource-handling code directly or indirectly invokes a special
AccessController class method that evaluates the request and decides if the request
should be granted or denied.

Such an evaluation follows and generalizes the "rule of thumb" given previously. The actual
way in which the evaluation is conducted can vary between implementations. The basic

1-26

Chapter 1
Java SE Platform Security Architecture

principle is to examine the call history and the permissions granted to the relevant protection
domains, and to return silently if the request is granted or throw a security exception if the
request is denied.

Finally, each domain (system or application) may also implement additional protection of its
internal resources within its own domain boundary. For example, a banking application may
need to support and protect internal concepts such as checking accounts, deposits and
withdrawals. Because the semantics of such protection is unlikely to be predictable or
enforceable by the JDK, the protection system at this level is best left to the system or
application developers. Nevertheless, whenever appropriate, we provide helpful primitives to
simplify developers' tasks. One such primitive is the SignedObject class, whose detail we
will describe later.

Permissions and Security Policy

The Permission Classes

The permission classes represent access to system resources. The
java.security.Permission class is an abstract class and is subclassed, as appropriate,
to represent specific accesses.

As an example of a permission, the following code can be used to produce a permission to
read the file named abc in the /tmp directory:

perm = new java.io.FilePermission ("/tmp/abc", "read");

New permissions are subclassed either from the Permission class or one of its subclasses,
such as java.security.BasicPermission. Subclassed permissions (other than
BasicPermission) generally belong to their own packages. Thus, FilePermission is
found in the java.io package.

A crucial abstract method that needs to be implemented for each new class of permission is
the implies method. Basically, "a implies b" means that if one is granted permission "a", one is
naturally granted permission "b". This is important when making access control decisions.

Associated with the abstract class java.security.Permission are the abstract class
named java.security.PermissionCollection and the final class
java.security.Permissions.

Class java.security.PermissionCollection represents a collection (i.e., a set that
allows duplicates) of Permission objects for a single category (such as file permissions), for
ease of grouping. In cases where permissions can be added to the PermissionCollection
object in any order, such as for file permissions, it is crucial that the PermissionCollection
object ensure that the correct semantics are followed when the implies method is called.

Class java.security.Permissions represents a collection of collections of Permission
objects, or in other words, a super collection of heterogeneous permissions.

Applications are free to add new categories of permissions that the system supports. How to
add such application-specific permissions is discussed later in this document.

Now we describe the syntax and semantics of all built-in permissions.

ORACLE 1-27

Chapter 1
Java SE Platform Security Architecture

java.security.Permission

This abstract class is the ancestor of all permissions. It defines the essential functionalities
required for all permissions.

Each permission instance is typically generated by passing one or more string parameters to
the constructor. In a common case with two parameters, the first parameter is usually "the
name of the target" (such as the name of a file for which the permission is aimed), and the
second parameter is the action (such as "read" action on a file). Generally, a set of actions can
be specified together as a comma-separated composite string.

java.security.PermissionCollection

This class holds a homogeneous collection of permissions. In other words, each instance of
the class holds only permissions of the same type.

java.security.Permissions

This class is designed to hold a heterogeneous collection of permissions. Basically, it is a
collection of java.security.PermissionCollection objects.

java.security.UnresolvedPermission

Recall that the internal state of a security policy is normally expressed by the permission
objects that are associated with each code source. Given the dynamic nature of Java
technology, however, it is possible that when the policy is initialized the actual code that
implements a particular permission class has not yet been loaded and defined in the Java
application environment. For example, a referenced permission class may be in a JAR file that
will later be loaded.

The UnresolvedPermission class is used to hold such "unresolved" permissions. Similarly,
the class java.security.UnresolvedPermissionCollection stores a collection of
UnresolvedPermission permissions.

During access control checking on a permission of a type that was previously unresolved, but
whose class has since been loaded, the unresolved permission is "resolved" and the
appropriate access control decision is made. That is, a new object of the appropriate class type
is instantiated, if possible, based on the information in the UnresolvedPermission. This
new object replaces the UnresolvedPermission, which is removed. If the permission is still
unresolvable at this time, the permission is considered invalid, as if it is never granted in a
security policy.

java.io.FilePermission

ORACLE

The targets for this class can be specified in the following ways, where directory and file names
are strings that cannot contain white spaces.

file

directory (same as directory/)

directory/file

directory/* (all files in this directory)

* (all files in the current directory)

directory/- (all files in the file system under this directory)
- (all files in the file system under the current directory)
"<<ALL FILES>>" (all files in the file system)

1-28

ORACLE

Chapter 1
Java SE Platform Security Architecture

Note that <<ALL FILES>> is a special string denoting all files in the system. On Linux or
macOS, this includes all files under the root directory. On Windows, this includes all files on all

drives.

The actions are: read, write, delete, and execute. Therefore, the following are valid code
samples for creating file permissions:

import java.io.

FilePermission
FilePermission
FilePermission
FilePermission
FilePermission
FilePermission
FilePermission
FilePermission

FilePermission;

' ' ‘s ' 'O ‘T 'O 'O

new
new
new
new
new
new
new
new

FilePermission("myfile", "read,write");
FilePermission ("/home/gong/", "read");
FilePermission ("/tmp/mytmp", "read,delete");
FilePermission ("/bin/*", "execute");
FilePermission ("*", "read");
FilePermission("/-", "read,execute");
FilePermission("-", "read,execute");
FilePermission ("<<ALL FILES>>", "read");

The implies method in this class correctly interprets the file system. For example,
FilePermission("/-", "read,execute") implies FilePermission ("/home/gong/

public html/index.html", "read"), and FilePermission("bin/*", "execute") implies
FilePermission ("bin/emacs19.31", "execute").

1-29

Chapter 1
Java SE Platform Security Architecture

Note:

Most of these strings are given in platform-dependent format. For example, to
represent read access to the file named foo in the temp directory on the C drive of a
Windows system, you would use

FilePermission p = new FilePermission ("c:\\temp\\foo", "read");

The double backslashes are necessary to represent a single backslash because the
strings are processed by a tokenizer (java.io.StreamTokenizer), which allows \
to be used as an escape string (e.g., \n to indicate a new line) and which thus
requires two backslashes to indicate a single backslash. After the tokenizer has
processed the FilePermission target string, converting double backslashes to
single backslashes, the end result is the actual path:

"c:\temp\foo"

It is necessary that the strings be given in platform-dependent format until there is a
universal file description language. Note also that the use of meta symbols such as *
and - prevents the use of specific file names. We think this is a small limitation that
can be tolerated for the moment. Finally, note that -/ and <<ALL FILES>> are the
same target on Linux and macOS in that they both refer to the entire file system.
(They can refer to multiple file systems if they are all available). The two targets are
potentially different on other operating systems, such as Windows and macOS.

Also note that a target name that specifies just a directory, with a "read" action, as in

FilePermission p = new FilePermission ("/home/gong/", "read");

means you are only giving permission to list the files in that directory, not read any of
them. To allow read access to files, you must specify either an explicit file name, or
an * or -, as in

FilePermission p = new FilePermission ("/home/gong/myfile", "read");
FilePermission p = new FilePermission ("/home/gong/*", "read");
FilePermission p = new FilePermission ("/home/gong/-", "read");

And finally, note that code always automatically has permission to read files from its
same (URL) location, and subdirectories of that location; it does not need explicit
permission to do so.

java.net.SocketPermission

ORACLE

This class represents access to a hetwork via sockets. The target for this class can be given as
hostname:port range, where hostname can be given in the following ways:

hostname (a single host)

IP address (a single host)
localhost (the local machine)
"" (equivalent to "localhost")

1-30

Chapter 1
Java SE Platform Security Architecture

hostname.domain (a single host within the domain)
hostname.subdomain.domain

*.domain (all hosts in the domain)
*.subdomain.domain

* (all hosts)

That is, the host is expressed as a DNS name, as a numerical IP address, as "localhost" (for
the local machine) or as "" (which is equivalent to specifying "localhost™").

The wildcard * may be included once in a DNS name host specification. If it is included, it must
be in the leftmost position, as in *.sun.com.

The port range can be given as follows:

N (a single port)

N- (all ports numbered N and above)

-N (all ports numbered N and below)

N1-N2 (all ports between N1 and N2, inclusive)

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535 (216-1),

The actions on sockets are accept, connect, listen, and resolve (which is basically DNS
lookup). Note that implicitly, the action "resolve" is implied by "accept”, "connect”, and "listen" —
i.e., those who can listen or accept incoming connections from or initiate out-going connections

to a host should be able to look up the name of the remote host.

The following are some examples of socket permissions.

import java.net.SocketPermission;

SocketPermission p = new SocketPermission("java.example.com","accept");
= new SocketPermission("192.0.2.99","accept");
= new SocketPermission("*.com","connect");
= new SocketPermission ("*.example.com:80","accept");
= new SocketPermission ("*.example.com:-1023","accept");
= new SocketPermission ("*.example.com:1024-","connect");
= new SocketPermission("java.example.com:8000-9000",
"connect,accept");
p = new SocketPermission("localhost:1024-",
"accept,connect, listen");

' 'O 'O 'O 'O 'O

Note:

SocketPermission ("java.example.com:80,8080", "accept") and
SocketPermission ("java.example.com, javasun.example.com", "accept") are not
valid socket permissions.

Moreover, because listen is an action that applies only to ports on the local host,
whereas accept is an action that applies to ports on both the local and remote host,
both actions are necessary.

ORACLE L3

Chapter 1
Java SE Platform Security Architecture

java.security.BasicPermission

The BasicPermission class extends the Permission class. It can be used as the base
class for permissions that want to follow the same naming convention as BasicPermission.

The name for a BasicPermission is the name of the given permission (for example,
"exitVM", "setFactory", "queuePrintJob", etc). The naming convention follows the hierarchical
property naming convention. An asterisk may appear at the end of the name, following a ".", or
by itself, to signify a wildcard match. For example: "java.*" or "*" is valid, "*java" or "a*b" is not

valid.

The action string (inherited from Permission) is unused. Thus, BasicPermission is
commonly used as the base class for "named" permissions (ones that contain a name but no
actions list; you either have the named permission or you don't.) Subclasses may implement
actions on top of BasicPermission, if desired.

Some of the BasicPermission subclasses are java.lang.RuntimePermission
java.security.SecurityPermission, java.util.PropertyPermission, and
java.net.NetPermission.

java.util.PropertyPermission

The targets for this class are basically the names of Java properties as set in various property
files. Examples are the java.home and os.name properties. Targets can be specified as "*" (any
property), "a.*" (any property whose name has a prefix "a."), "a.b.*", and so on. Note that the
wildcard can occur only once and can only be at the rightmost position.

This is one of the BasicPermission subclasses that implements actions on top of
BasicPermission. The actions are read and write. Their meaning is defined as follows:
"read" permission allows the getProperty method in java.lang.System to be called to get
the property value, and "write" permission allows the setProperty method to be called to set
the property value.

java.lang.RuntimePermission

ORACLE

The target for a RuntimePermission can be represented by any string, and there is no
action associated with the targets. For example, RuntimePermission ("exitVM") denotes the
permission to exit the Java Virtual Machine.

The target names are:

createClassLoader
getClassLoader
setContextClassLoader
setSecurityManager
createSecurityManager
exitVM

setFactory

setIO

modifyThread
stopThread
modifyThreadGroup
getProtectionDomain
readFileDescriptor
writeFileDescriptor

1-32

Chapter 1
Java SE Platform Security Architecture

loadLibrary. {library name}
accessClassInPackage. {package name}
defineClassInPackage. {package name}
accessDeclaredMembers. {class name}
queuePrintJob

java.awt. AWTPermission

This is in the same spirit as the RuntimePermission; it's a permission without actions. The
targets for this class are:

accessClipboard
accessEventQueue
listenToAllAWTEvents
showlWindowWithoutWarningBanner

java.net.NetPermission

This class contains the following targets and no actions:

requestPasswordAuthentication
setDefaultAuthenticator
specifyStreamHandler

java.lang.reflect.ReflectPermission

This is the Permission class for reflective operations. AReflectPermission is a named
permission (like RuntimePermission) and has no actions. The only name currently defined
is suppressAccessChecks, which allows suppressing the standard Java programming language
access checks — for public, default (package) access, protected, and private members —
performed by reflected objects at their point of use.

java.io.SerializablePermission

This class contains the following targets and no actions:

enableSubclassImplementation
enableSubstitution

java.security.SecurityPermission

ORACLE

SecurityPermissions control access to security-related objects, such as Security,
Policy, Provider, Signer, and Identity objects. This class contains the following targets
and no actions:

getPolicy

setPolicy

getProperty.{key}

setProperty. {key}
insertProvider. {provider name}
removeProvider. {provider name}
setSystemScope
setIdentityPublicKey

1-33

Chapter 1
Java SE Platform Security Architecture

setIdentityInfo

printIdentity

addIdentityCertificate
removelIdentityCertificate
clearProviderProperties. {provider name}
putProviderProperty. {provider name}
removeProviderProperty. {provider name}
getSignerPrivateKey

setSignerKeyPair

java.security.AllPermission

This permission implies all permissions. It is introduced to simplify the work of system
administrators who might need to perform multiple tasks that require all (or numerous)
permissions. It would be inconvenient to require the security policy to iterate through all
permissions. Note that A11Permission also implies new permissions that are defined in the
future.

Clearly, much caution is necessary when considering granting this permission.

javax.security.auth.AuthPermission

AuthPermission handles authentication permissions and authentication-related object such
as Subject, SubjectDomainCombiner, LoginContext, and Configuration. This class
contains the following targets and no actions:

doAs

doAsPrivileged

getSubject
getSubjectFromDomainCombiner
setReadOnly
modifyPrincipals
modifyPublicCredentials
modifyPrivateCredentials
refreshCredential
destroyCredential
createlLoginContext. {name}
getLoginConfiguration
setLoginConfiguration
refreshLoginConfiguration

Discussion of Permission Implications

Recall that permissions are often compared against each other, and to facilitate such
comparisons, we require that each permission class defines an implies method that
represents how the particular permission class relates to other permission classes. For
example, java.io.FilePermission ("/tmp/*", "read") implies
java.io.FilePermission("/tmp/a.txt", "read") but does notimply any
java.net.NetPermission.

There is another layer of implication that may not be immediately obvious to some readers.
Suppose that one applet has been granted the permission to write to the entire file system.
This presumably allows the applet to replace the system binary, including the JVM runtime
environment. This effectively means that the applet has been granted all permissions.

ORACLE L3

Chapter 1
Java SE Platform Security Architecture

Another example is that if an applet is granted the runtime permission to create class loaders,
it is effectively granted many more permissions, as a class loader can perform sensitive
operations.

Other permissions that are "dangerous" to give out include those that allow the setting of

system properties, runtime permissions for defining packages and for loading native code
libraries (because the Java security architecture is not designed to and does not prevent

malicious behavior at the level of native code), and of course the A11Permission.

For more information about permissions, including tables enumerating the risks of assigning
specific permissions as well as a table of all the JDK built-in methods that require permissions,
see Permissions in the JDK.

How To Create New Types of Permissions

ORACLE

It is essential that no one except Oracle should extend the permissions that are built into the
JDK, either by adding new functionality or by introducing additional target keywords into a
class such as java.lang.RuntimePermission. This maintains consistency.

To create a new permission, the following steps are recommended, as shown by an example.
Suppose an application developer from company ABC wants to create a customized
permission to "watch TV".

First, create a new class com.abc.Permission that extends the abstract class
java.security.Permission (or one of its subclasses), and another new class
com.abc.TVPermission that extends the com. abc.Permission. Make sure that the implies
method, among others, is correctly implemented. (Of course, com.abc.TVPermission can
directly extend java.security.Permission; the intermediate com.abc.Permission is not
required.)

public class com.abc.Permission extends java.security.Permission

public class com.abc.TVPermission extends com.abc.Permission

Figure 1-10 shows the subclass relationship.

Figure 1-10 Subclass Relationship of com.abc.TV.Permission

Permission | _______________ » _com.abc
(abstract class) Permission
v v v
File Net com.abc.TV.
Permission Permission Permission

Second, include these new classes with the application package.

Each user that wants to allow this new type of permission for specific code does so by adding
an entry in a policy file. (Details of the policy file syntax are given in a later section.) An
example of a policy file entry granting code from http://example.com/ permission to watch
channel 5 would be:

grant codeBase "http://example.com/" {
permission com.abc.TVPermission "channel-5", "watch";

}

1-35

Chapter 1
Java SE Platform Security Architecture

In the application's resource management code, when checking to see if a permission should
be granted, call AccessController's checkPermission method using a
com.abc.TVPermission object as the parameter.

com.abc.TVPermission tvperm = new
com.abc.TVPermission ("channel-5", "watch");
AccessController.checkPermission (tvperm) ;

Note that, when adding a new permission, one should create a new (permission) class and not
add a new method to the security manager. (In the past, in order to enable checking of a new
type of access, you had to add a new method to the SecurityManager class.)

If more elaborate TvPermissions such as "channel-1:13" or "channel-*" are allowed, then it
may be necessary to implement a TvPermissionCollection object that knows how to deal with
the semantics of these pseudo names.

New code should always invoke a permission check by calling the checkPermission method of
the AccessController class in order to exercise the built-in access control algorithm. There
is no essential need to examine whether there is a ClassLoader Or a SecurityManager.
On the other hand, if the algorithm should be left to the installed security manager class, then
the method SecurityManager.checkPermission should be invoked instead.

java.security.CodeSource

This class extends the concept of a codebase within HTML to encapsulate not only the code
location (URL) but also the certificate(s) containing public keys that should be used to verify
signed code originating from that location. Note that this is not the equivalent of the CodeBase
tag in HTML files. Each certificate is represented as a
java.security.cert.Certificate, and each URL as a java.net.URL.

java.security.Policy

ORACLE

The system security policy for a Java application environment, specifying which permissions
are available for code from various sources, is represented by a Po11icy object. More
specifically, it is represented by a Pol1icy subclass providing an implementation of the abstract
methods in the Policy class.

In order for an applet (or an application running under a SecurityManager) to be allowed to
perform secured actions, such as reading or writing a file, the applet (or application) must be
granted permission for that particular action. The only exception is that code always
automatically has permission to read files from its same CodeSource, and subdirectories of
that CodeSource; it does not need explicit permission to do so.

There could be multiple instances of the Policy object, although only one is "in effect" at any
time. The currently-installed Po11icy object can be obtained by calling the getPolicy method,
and it can be changed by a call to the setPolicy method (by code with permission to reset the
Policy).

The source location for the policy information utilized by the Policy objectis up to the Policy
implementation. The policy configuration may be stored, for example, as a flat ASCII file, as a
serialized binary file of the Policy class, or as a database. There is a Policy reference
implementation that obtains its information from static policy configuration files.

1-36

Chapter 1
Java SE Platform Security Architecture

Policy File Format

ORACLE

In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration files indicate what permissions are allowed for code from
specified code sources. Each configuration file must be encoded in UTF-8.

A policy configuration file essentially contains a list of entries. It may contain a keystore entry,
and contains zero or more grant entries.

A keystore is a database of private keys and their associated digital certificates such as X.509
certificate chains authenticating the corresponding public keys. The keytool utility is used to
create and administer keystores. The keystore specified in a policy configuration file is used to
look up the public keys of the signers specified in the grant entries of the file. A keystore entry
must appear in a policy configuration file if any grant entries specify signer aliases, or if any
grant entries specify a principal alias.

At this time, there can be only one keystore entry in the policy file (others after the first one are
ignored), and it can appear anywhere outside the file's grant entries . It has the following
syntax:

keystore "some keystore url", "keystore type";

Here, some keystore url specifies the URL location of the keystore, and keystore type
specifies the keystore type. The latter is optional. If not specified, the type is assumed to be
that specified by the keystore. type property in the security properties file.

The URL is relative to the policy file location. Thus if the policy file is specified in the security
properties file as:

policy.url.l=http://foo.bar.example.com/blah/some.policy

and that policy file has an entry:

keystore ".keystore";

then the keystore will be loaded from:

http://foo.bar.example.com/blah/.keystore

The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and the
algorithms used to protect private keys in the keystore and the integrity of the keystore itself.
The Oracle JDK's default keystore type is PKCS12.

Each grant entry in a policy file essentially consists of a CodeSource and its permissions.
Actually, a CodeSource consists of a URL and a set of certificates, while a policy file entry
includes a URL and a list of signer names. The system creates the corresponding
CodeSource after consulting the keystore to determine the certificate(s) of the specified
signers.

Each grant entry in the policy file is of the following format, where the leading grant is a
reserved word that signifies the beginning of a new entry and optional items appear in
brackets. Within each entry, a leading permission is another reserved word that marks the

1-37

Chapter 1
Java SE Platform Security Architecture

beginning of a new permission in the entry. Each grant entry grants a set of permissions to a
specified code source and principals.

grant [SignedBy "signer names"] [, CodeBase "URL"]
[, Principal [principal class name] "principal name"]
[, Principal [principal class name] "principal name"] ... {
permission permission class name ["target name"]
[, "action"] [, SignedBy "signer names"];
permission ...

}i

White spaces are allowed immediately before or after any comma. The name of the permission
class must be a fully qualified class name, such as java.io.FilePermission, and cannot
be abbreviated (for example, to FilePermission).

Note that the action field is optional in that it can be omitted if the permission class does not
require it. If it is present, then it must come immediately after the target field.

The exact meaning of a CodeBase URL value depends on the characters at the end. A
CodeBase with a trailing "/" matches all class files (not JAR files) in the specified directory. A
CodeBase with a trailing "/*" matches all files (both class and JAR files) contained in that
directory. A CodeBase with a trailing "/-" matches all files (both class and JAR files) in the
directory and recursively all files in subdirectories contained in that directory.

The CodeBase field (URL) is optional in that, if it is omitted, it signifies "any code base".

The first signer name field is a string alias that is mapped, via a separate mechanism, to a set
of public keys (within certificates in the keystore) that are associated with the signers. These
keys are used to verify that certain signed classes are really signed by these signers.

This signer field can be a comma-separated string containing names of multiple signers, an
example of which is Adam, Eve, Charles, which means signed by Adam and Eve and Charles
(i.e., the relationship is AND, not OR).

This field is optional in that, if it is omitted, it signifies "any signer", or in other words, "It doesn't
matter whether the code is signed or not".

The second signer field, inside a permission entry, represents the alias to the keystore entry
containing the public key corresponding to the private key used to sign the bytecodes that
implemented the said permission class. This permission entry is effective (i.e., access control
permission will be granted based on this entry) only if the bytecode implementation is verified
to be correctly signed by the said alias.

A principal value specifies a class_name/principal_name pair which must be present within the
executing threads principal set. The principal set is associated with the executing code by way
of a Subject. The principal field is optional in that, if it is omitted, it signifies "any principals".

ORACLE a8

Chapter 1
Java SE Platform Security Architecture

Note:

Regarding keystore alias replacement: If the principal class_name/principal_name
pair is specified as a single quoted string, it is treated as a keystore alias. The
keystore is consulted and queried (via the alias) for an X509 Certificate. If one is
found, the principal_class is automatically treated as
javax.security.auth.x500.X500Principal, and the principal_name is
automatically treated as the subject distinguished name from the certificate. If an
X509 Certificate mapping is not found, the entire grant entry is ignored.

The order between the CodeBase, SignedBy, and Principal fields does not matter.

The following is an informal BNF grammar for the policy file format, where non-capitalized
terms are terminals:

PolicyFile -> PolicyEntry | PolicyEntry; PolicyFile

PolicyEntry -> grant {PermissionEntry}; |
grant SignerEntry {PermissionEntry} |
grant CodebaseEntry {PermissionEntry} |
grant PrincipalEntry {PermissionEntry} |
grant SignerEntry, CodebaseEntry {PermissionEntry} |
grant CodebaseEntry, SignerEntry {PermissionEntry} |
grant SignerEntry, PrincipalEntry {PermissionEntry} |
grant PrincipalEntry, SignerEntry {PermissionEntry} |
grant CodebaseEntry, PrincipalEntry {PermissionEntry} |
grant PrincipalEntry, CodebaseEntry {PermissionEntry} |
grant SignerEntry, CodebaseEntry, PrincipalEntry {PermissionEntry}

grant CodebaseEntry, SignerEntry, PrincipalEntry {PermissionEntry}
grant SignerEntry, PrincipalEntry, CodebaseEntry {PermissionEntry}
grant CodebaseEntry, PrincipalEntry, SignerEntry {PermissionEntry}
grant PrincipalEntry, CodebaseEntry, SignerEntry {PermissionEntry}
grant PrincipalEntry, SignerEntry, CodebaseEntry {PermissionEntry}

keystore "url"

SignerEntry -> signedby (a comma-separated list of strings)
CodebaseEntry -> codebase (a string representation of a URL)
PrincipalEntry -> OnePrincipal | OnePrincipal, PrincipalEntry
OnePrincipal -> principal [principal class name] "principal name" (a
principal)
PermissionEntry -> OnePermission | OnePermission PermissionEntry
OnePermission -> permission permission class name

["target name"] [, "action list"]

[, SignerEntry];

ORACLE 130

ORACLE

Chapter 1
Java SE Platform Security Architecture

Now we give some examples. The following policy grants permission a.b.Foo to code signed
by Roland:

grant signedBy "Roland" {
permission a.b.Foo;

}s

The following grants a FilePermission to all code (regardless of the signer and/or
CodeBase):

grant {
permission java.io.FilePermission ".tmp", "read";

bi

The following grants two permissions to code that is signed by both Li and Roland:

grant signedBy "Roland,Li" {
permission java.io.FilePermission "/tmp/*", "read";
permission java.util.PropertyPermission "user.*";

}s

The following grants two permissions to code that is signed by Li and that comes from http://
example.com!

grant codeBase "http://example.com/*", signedBy "Li" {
permission java.io.FilePermission "/tmp/*", "read";
permission java.io.SocketPermission "*", "connect";

}i

The following grants two permissions to code that is signed by both 1L.i and Roland, and only if
the bytecodes implementing com.abc. TVPermission are genuinely signed by Li.

grant signedBy "Roland,Li" {
permission java.io.FilePermission "/tmp/*", "read";
permission com.abc.TVPermission "channel-5", "watch",
signedBy "Li";
i

The reason for including the second signer field is to prevent spoofing when a permission class
does not reside with the Java runtime installation. For example, a copy of the
com.abc.TVPermission class can be downloaded as part of a remote JAR archive, and the
user policy might include an entry that refers to it. Because the archive is not long-lived, the
second time the com.abc.TVPermission class is downloaded, possibly from a different web
site, it is crucial that the second copy is authentic, as the presence of the permission entry in
the user policy might reflect the user's confidence or belief in the first copy of the class
bytecode.

The reason we chose to use digital signatures to ensure authenticity, rather than storing (a
hash value of) the first copy of the bytecodes and using it to compare with the second copy, is
because the author of the permission class can legitimately update the class file to reflect a
new design or implementation.

1-40

ORACLE

Chapter 1
Java SE Platform Security Architecture

Note:

The strings for a file path must be specified in a platform-dependent format; this is
necessary until there is a universal file description language. The previous examples
have shown strings appropriate on Linux or macOS. On Windows, when you directly
specify a file path in a string, you need to include two backslashes for each actual
single backslash in the path, as in

grant signedBy "Roland" {
permission java.io.FilePermission "C:\\users\\Cathy*", "read";

}i

This is because the strings are processed by a tokenizer
(java.io.StreamTokenizer), which allows "\" to be used as an escape string
(e.g., "\n" to indicate a new line) and which thus requires two backslashes to indicate
a single backslash. After the tokenizer has processed the previous
FilePermission target string, converting double backslashes to single
backslashes, the end result is the actual path:

"C:\users\Cathy*"

Finally, here are some principal-based grant entries:

grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
permission java.io.FilePermission "/home/Alice", "read, write";

}i

This permits any code executing as the X500Principal, cn=Alice, permission to read and
write to /home/Alice.

The following example shows a grant statement with both codesource and principal
information.

grant codebase "http://www.games.example.com",
signedBy "Duke",
principal javax.security.auth.x500.X500Principal "cn=Alice" {
permission java.io.FilePermission "/tmp/games", "read, write";

}i

This allows code downloaded from www.games.example.con, signed by Duke, and executed by
cn=Alice, permission to read and write into the /tmp/games directory.

he following example shows a grant statement with KeyStore alias replacement:
keystore "http://foo.bar.example.com/blah/.keystore";
grant principal "alice" {

permission java.io.FilePermission "/tmp/games", "read, write";

}i

1-41

Chapter 1
Java SE Platform Security Architecture

alice will be replaced by javax.security.auth.x500.X500Principal cn=Alice
assuming the X.509 certificate associated with the keystore alias, alice, has a subject
distinguished name of cn=Alice. This allows code executed by the X500Principal cn=Alice
permission to read and write into the /tmp/games directory.

Property Expansion in Policy Files

ORACLE

Property expansion is possible in policy files and in the security properties file. Property
expansion is similar to expanding variables in a shell. That is, when a string like $
{some.property} appears in a policy file, or in the security properties file, it will be expanded to
the value of the specified system property. For example,

permission java.io.FilePermission "${user.home}", "read";

will expand ${user.home} to use the value of the user.home system property. If that property's
value is /home/cathy, then the previous example is equivalent to

permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special notation of $
{/}, which is a shortcut for ${file.separator}. This allows permission designations such as

permission java.io.FilePermission "${user.home}${/}*", "read";

If user.home is /home/cathy, and you are on Linux, the previous example gets converted to:

permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand user.home is C: \users\cathy and you are on a Windows system, the
previous example gets converted to:

permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:/${java.home}/lib/ext/"

then any file.separator characters will be automatically converted to slashes (/), which is
desirable since codebases are URLs. Thus on a Windows system, even if java.home is set to
C:\j2sdkl. 2, the previous example would get converted to

grant codeBase "file:/C:/j2sdkl.2/1ib/ext/"

Thus you don't need to use ${/} in codebase strings (and you shouldn't).

Property expansion takes place anywhere a double quoted string is allowed in the policy file.
This includes the signedby, codebase, target names, and action fields.

Whether or not property expansion is allowed is controlled by the value of the
policy.expandProperties property in the Security Properties file. If the value of this Security
Property is true (the default), expansion is allowed.

1-42

Chapter 1
Java SE Platform Security Architecture

Please note: You can't use nested properties; they will not work. For example,

"S{user.S${foo}}"

doesn't work, even if the foo property is set to home. The reason is the property parser doesn't
recognize nested properties; it simply looks for the first ${, and then keeps looking until it finds
the first } and tries to interpret the result ${user.$foo} as a property, but fails if there is no
such property.

Also note: If a property can't be expanded in a grant entry, permission entry, or keystore entry,
that entry is ignored. For example, if the system property foo is not defined and you have:

grant codeBase "${foo}" {
permission ...;
permission ...;

}s

then all the permissions in this grant entry are ignored. If you have

grant {
permission Foo "${foo}";
permission Bar;

i
then only the permission Foo "${foo}"; entry is ignored. And finally, if you have
keystore "${foo}";

then the keystore entry is ignored.

One final note: On Windows systems, when you directly specify a file path in a string, you need
to include two backslashes for each actual single backslash in the path, as in

"C:\\users\\cathy\\foo.bat"

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer),
which allows the backslash (\) to be used as an escape string (e.g., \n to indicate a new line)
and which thus requires two backslashes to indicate a single backslash. After the tokenizer has
processed the previous string, converting double backslashes to single backslashes, the end
result is

"C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed the string.
Thus if you have the string

"S{user.home}\\foo.bat"

ORACLE e

Chapter 1
Java SE Platform Security Architecture

then first the tokenizer processes the string, converting the double backslashes to a single
backslash, and the result is

"S{user.home}\foo.bat"

Then the ${user.home} property is expanded and the end result is

"C:\users\cathy\foo.bat"

assuming the user.home value is C: \users\cathy. Of course, for platform independence, it
would be better if the string was initially specified without any explicit slashes, i.e., using the $
{/} property instead, as in

"S{user.home}${/}foo.bat"

General Expansion in Policy Files

ORACLE

Generalized forms of expansion are also supported in policy files. For example, permission
names may contain a string of the form: ${ {protocol:protocol data}} If such a string occurs
in a permission name, then the value in protocol determines the exact type of expansion that
should occur, and protocol data is used to help perform the expansion. protocol data may
be empty, in which case the this string should simply take the form:

${{protocol}}
There are two protocols supported in the default policy file implementation:

1. ${{self}}

The protocol, self, denotes a replacement of the entire string, ${{self}}, with one or
more principal class/name pairs. The exact replacement performed depends upon the
contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will be
ignored (permissions containing ${{self}} in their target names are only valid in the
context of a principal-based grant clause). For example, BarPermission will always be
ignored in the following grant clause:

grant codebase "www.foo.example.com", signedby "duke" {
permission BarPermission "... ${{self}} ...";

}i

If the grant clause contains principal information, ${{self}} will be replaced with that
same principal information. For example, ${{self}} in BarPermission will be replaced by
javax.security.auth.x500.X500Principal "cn=Duke" in the following grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" {
permission BarPermission "... ${{self}} ...";

bi

If there is a comma-separated list of principals in the grant clause, then ${{self}} will be
replaced by the same comma-separated list or principals. In the case where both the
principal class and name are wildcarded in the grant clause, ${{self}} is replaced with all
the principals associated with the subject in the current AccessControlContext.

1-44

Chapter 1
Java SE Platform Security Architecture

The following example describes a scenario involving both self and KeyStore alias
replacement together:

keystore "http://foo.bar.example.com/blah/.keystore";

grant principal "duke" {
permission BarPermission "... ${{self}} ...";

i

In the previous example, "duke" will first be expanded into
javax.security.auth.x500.X500Principal "cn=Duke" assuming the X.509 certificate
associated with the KeyStore alias, "duke", has a subject distinguished name of
"cn=Duke". Next, ${{self}} will be replaced with the same principal information that just
got expanded in the grant clause: javax.security.auth.x500.X500Principal "cn=Duke".

${{alias:alias name}}

The protocol, alias, denotes a java.security.KeyStore alias substitution. The
KeyStore used is the one specified in the KeyStore entry; see Policy File Format.

alias name represents an alias into the KeyStore. ${{alias:alias name}} is replaced
with javax.security.auth.x500.X500Principal "DN", where DN represents the subject
distinguished name of the certificate belonging to alias name. For example:

keystore "http://foo.bar.example.com/blah/.keystore";

grant codebase "www.foo.example.com" {
permission BarPermission "... ${{alias:duke}} ...";

i

In the previous example the X.509 certificate associated with the alias, duke, is retrieved
from the KeyStore, foo.bar.example.com/blah/.keystore. Assuming duke's certificate
specifies "o=dukeOrg, cn=duke" as the subject distinguished name, then $
{{alias:duke}} is replaced with javax.security.auth.x500.X500Principal
"o=dukeOrg, cn=duke".

The permission entry is ignored under the following error conditions:

e The keystore entry is unspecified
* The alias name is not provided
* The certificate for alias name cannot be retrieved

¢ The certificate retrieved is not an X.509 certificate

Assigning Permissions

ORACLE

When a principal executes a class that originated from a particular CodeSource, the security
mechanism consults the policy object to determine what permissions to grant. This is done by
invoking the getPermissions or implies method on the Policy object that is installed in the

Clearly, a given code source in a ProtectionDomain can match the code source given in
multiple entries in the policy, for example because the wildcard (*) is allowed.

The following algorithm is used to locate the appropriate set of permissions in the policy.

Match the public keys, if code is signed.

1-45

Chapter 1
Java SE Platform Security Architecture

2. If akey is not recognized in the policy, then ignore the key.
If every key is ignored, then treat the code as unsigned.

3. If the keys are matched or no signer was specified, then try to match all URLs in the policy
for the keys.

4. |If the keys are matched (or no signer was specified) and the URLs are matched (or no
codebase was specified), then try to match all principals in the policy with the principals
associated with the current executing thread.

5. If either key, URL, or principals are not matched, then use the built-in default permission,
which is the original sandbox permission.

The exact meaning of a policy entry codeBase URL value depends on the characters at the
end. A codeBase with a trailing "/" matches all class files (not JAR files) in the specified
directory. A codeBase with a trailing "/*" matches all files (both class and JAR files) contained
in that directory. A codeBase with a trailing "/-" matches all files (both class and JAR files) in
the directory and recursively all files in subdirectories contained in that directory.

As an example, given "http://example.com/-" in the policy, then any code base that is on
this web site matches the policy entry. Matching code bases include "http://example.com/
j2se/sdk/" and "http://example.com/people/gong/appl.jar"

If multiple entries are matched, then all the permissions given in those entries are granted. In
other words, permission assignment is additive. For example, if code signed with key A gets
permission X and code signed by key B gets permission Y and no particular codebase is
specified, then code signed by both A and B gets permissions X and Y. Similarly, if code with
codeBase "http://example.com/-" is given permission X, and "http://example.com/
people/*" is given permission Y, and no particular signers are specified, then an applet from
"http://example.com/people/applet.jar" gets both X and Y.

Note that URL matching here is purely syntactic. For example, a policy can give an entry that
specifies a URL "ftp://ftp.example.com". Such an entry is useful only when one can obtain
Java code directly from ftp for execution.

To specify URLSs for the local file system, a file URL can be used. For example, to specify files
in the /home/cathy/temp directory on Linux, you'd use

"file:/home/cathy/temp/*"

To specify files in the temp directory on the C drive on Windows, use

"file:/c:/temp/*"

Note: codeBase URLs always use slashes (no backlashes), regardless of the platform they
apply to.

You can also use an absolute path name such as

"/home/gong/bin/MyWonderfulJava"

Default System and User Policy Files

In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration files specify what permissions are allowed for code from
specified code sources. A policy file can be composed via a simple text editor. There is by

ORACLE o

ORACLE

Chapter 1
Java SE Platform Security Architecture

default a single system-wide policy file, and a single user policy file. The system policy file is by
default located at

e {java.home}/conf/security/java.policy (Linux and macOS)
e {java.home}\conf\security\java.policy (Windows)

Here, java.home is a system property specifying the directory into which the JDK was installed.
The user policy file is by default located at

e {user.home}/.java.policy (Linux and macOS)
e {user.home}\.java.policy (Windows)

Here, user.home is a system property specifying the user's home directory.

When the Policy is initialized, the system policy is loaded in first, and then the user policy is
added to it. If neither policy is present, a built-in policy is used. This built-in policy is the same
as the original sandbox policy. Policy file locations are specified in the security properties file,
which is located at

* {java.home}/conf/security/java.security (Linux and macOS)
e {java.home}\conf\security\java.security (Windows)

The policy file locations are specified as the values of properties whose names are of the form

policy.url.n

Here, n is a number. You specify each such property value in a line of the following form:

policy.url.n=URL

Here, URL is a URL specification. For example, the default system and user policy files are
defined in the security properties file as

policy.url.l=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

You can actually specify a number of URLSs, including ones of the form "http://", and all the
designated policy files will get loaded. You can also comment out or change the second one to
disable reading the default user policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not find a URL.
Thus if you have policy.url.1 and policy.url.3, policy.url.3 will never be read.

It is also possible to specify an additional or a different policy file when invoking execution of an
application. This can be done via the -Djava.security.policy command-line argument, which
sets the value of the java.security.policy property. For example, consider the following
example:

java -Djava.security.manager -Djava.security.policy=pURL SomeApp

Here, pURL is a URL specifying the location of a policy file, then the specified policy file will be
loaded in addition to all the policy files that are specified in the security properties file. (The -
Djava.security.manager argument ensures that the default security manager is installed, and

1-47

Chapter 1
Java SE Platform Security Architecture

thus the application is subject to policy checks, as described in Managing Applets and
Applications. It is not required if the application SomeApp installs a security manager.)

If you use the following, with a double equals sign (==), then just the specified policy file will be
used; all others will be ignored.

java -Djava.security.manager -Djava.security.policy==pURL SomeApp

Note:

e Properties in the java.security file are typically parsed only once. If you have
modified any property in this file, restart your applications to ensure that the
changes are properly reflected.

* Use the double equals sign (==) with the java.security.policy property with
care as it overrides the built-in JDK policy file, which grants a set of default
permissions that are designed to provide a secure, out-of-the-box configuration
for the JDK. Overriding this policy may result in unexpected behavior (JDK code
may not be granted the right permissions) and should only be done by
experienced users.

* The -Djava.security.policy policy file value will be ignored (for both java and
appletviewer commands) if the policy.allowSystemProperty property in the
security properties file is set to false. The default is true.

Customizing Policy Evaluation

ORACLE

The current design of the Policy class is not as comprehensive as it could be. We have given
the issues much thought and are progressing cautiously, partly to ensure that we define
method calls that are appropriate for the most common cases. For the meantime, an
alternative policy class can be given to replace the default policy class, as long as the former is
a subclass of the abstract Policy class and implements the getPermissions method (and
other methods as necessary).

The Policy reference implementation can be changed by resetting the value of the
policy.provider Security Property (in the Security Properties file, <java-home>/conf/
security/Jjava.security) to the fully qualified name of the desired Policy
implementation class.

The Security Property policy.provider specifies the name of the policy class, and the
default is the following:

policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

policy.provider=com.mycom.MyPolicy

Note that the MyPo1icy class must be a subclass of java.security.Policy. Itis perhaps
worth emphasizing that such an override of the policy class is a temporary solution and a more
comprehensive policy APl will probably make this unnecessary.

1-48

Chapter 1
Java SE Platform Security Architecture

java.security.GeneralSecurityException

This is an exception class that is a subclass of java.lang.Exception. The intention is that
there should be two types of exceptions associated with security and the security packages.

e Jjava.lang.SecurityException and its subclasses should be runtime exceptions
(unchecked, not declared) that are likely to cause the execution of a program to stop.

Such an exception is thrown only when some sort of security violation is detected. For
example, such an exception is thrown when some code attempts to access a file, but it
does not have permission for the access. Application developers may catch these
exceptions, if they want.

°* Jjava.security.GeneralSecurityException, which is a subclass of
java.lang.Exception (must be declared or caught) that is thrown in all other cases
from within the security packages.

Such an exception is security related but non-vital. For example, passing in an invalid key
is probably not a security violation and should be caught and dealt with by a developer.

There are currently still two exceptions within the java.security package that are
subclasses from RuntimeException. We at this moment cannot change these due to
backward compatibility requirements. We will revisit this issue in the future.

Access Control Mechanisms and Algorithms

java.security.ProtectionDomain

ORACLE

The ProtectionDomain class encapsulates the characteristics of a domain. Such a domain
encloses a set of classes whose instances are granted a set of permissions when being
executed on behalf of a given set of Principals.

A ProtectionDomain is constructed with a CodeSource, a ClassLoader, an array of
Principals, and a collection of Permissions. The CodeSource encapsulates the codebase
(Java.net.URL) for all classes in this domain, as well as a set of certificates (of type
java.security.cert.Certificate) for public keys that correspond to the private keys
that signed all code in this domain. The Principals represent the user on whose behalf the
code is running.

The permissions passed in at ProtectionDomain construction time represent a static set of
permissions bound to the domain regardless of the Policy in force. The ProtectionDomain
subsequently consults the current policy during each security check to retrieve dynamic
permissions granted to the domain.

Classes from different CodeSources, or that are being executed on behalf of different
principals, belong to different domains.

Today all code shipped as part of the JDK is considered system code and run inside the unique
system domain. Each applet or application runs in its appropriate domain, determined by

policy.

It is possible to ensure that objects in any non-system domain cannot automatically discover
objects in another non-system domain. This partition can be achieved by careful class
resolution and loading, for example, using different classloaders for different domains.
However, SecureClassLoader (Or its subclasses) can, at its choice, load classes from
different domains, thus allowing these classes to co-exist within the same name space (as
partitioned by a classloader).

1-49

Chapter 1
Java SE Platform Security Architecture

java.security.AccessController

ORACLE

The AccessController class is used for the following three purposes:

e To decide whether an access to a critical system resource is to be allowed or denied,
based on the security policy currently in effect

e To mark code as being "privileged," thus affecting subsequent access determinations

« To obtain a "snapshot" of the current calling context so access-control decisions from a
different context can be made with respect to the saved context

Any code that controls access to system resources should invoke AccessController
methods if it wishes to use the specific security model and access control algorithm utilized by
these methods. If, on the other hand, the application wishes to defer the security model to that
of the SecurityManager installed at runtime, then it should instead invoke corresponding
methods in the SecurityManager class.

For example, the typical way to invoke access control has been the following code (taken from
an earlier version of the JDK):

ClassLoader loader = this.getClass().getClassLoader();

if (loader != null) {
SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkRead ("path/file");
}

Under the current architecture, the check typically should be invoked whether or not there is a
classloader associated with a calling class. It could be simply, for example:

FilePermission perm = new FilePermission ("path/file", "read");
AccessController.checkPermission (perm) ;

The AccessController checkPermission method examines the current execution context
and makes the right decision as to whether or not the requested access is allowed. If it is, this
check returns quietly. Otherwise, an AccessControlException (a subclass of
java.lang.SecurityException) is thrown.

Note that there are (legacy) cases, for example, in some browsers, where whether there is a
SecurityManager installed signifies one or the other security state that may result in
different actions being taken. For backward compatibility, the checkPermission method on
SecurityManager can be used.

SecurityManager security = System.getSecurityManager();

if (security != null) {
FilePermission perm = new FilePermission("path/file", "read");
security.checkPermission (perm);

We currently do not change this aspect of the SecurityManager usage, but would
encourage application developers to use new techniques introduced in the JDK in their future
programming when the built-in access control algorithm is appropriate.

1-50

Chapter 1
Java SE Platform Security Architecture

The default behavior of the SecurityManager checkPermission method is actually to call the
AccessController checkPermission method. A different SecurityManager
implementation may implement its own security management approach, possibly including the
addition of further constraints used in determining whether or not an access is permitted.

Algorithm for Checking Permissions

Suppose access control checking occurs in a thread of computation that has a chain of
multiple callers (think of this as multiple method calls that cross the protection domain
boundaries), as illustrated in Figure 1-11.

Figure 1-11 Multiple Method Calls that Cross Protection Domain Boundaries

AccessController.check.Permission(Permission p)

classes in

Java runtime

AC.class ; ;

security policy

File.class r- 1> domain A --->» permissions
\

cclass 4--* -+» domain B ---»{ permissions
:

aclass -1---*

When the checkPermission method of the AccessController is invoked by the most recent
caller (e.g., a method in the File class), the basic algorithm for deciding whether to allow or
deny the requested access is as follows.

If any caller in the call chain does not have the requested permission,
AccessControlException is thrown, unless the following is true — a caller whose domain is
granted the said permission has been marked as "privileged" (see the next section) and all
parties subsequently called by this caller (directly or indirectly) all have the said permission.

There are obviously two implementation strategies:

* In an "eager evaluation" implementation, whenever a thread enters a new protection
domain or exits from one, the set of effective permissions is updated dynamically.

The benefit is that checking whether a permission is allowed is simplified and can be faster
in many cases. The disadvantage is that, because permission checking occurs much less
frequently than cross-domain calls, a large percentage of permission updates are likely to
be useless effort.

¢ In a"lazy evaluation" implementation, whenever permission checking is requested, the
thread state (as reflected by the current state, including the current thread's call stack or its
equivalent) is examined and a decision is reached to either deny or grant the particular
access requested.

One potential downside of this approach is performance penalty at permission checking
time, although this penalty would have been incurred anyway in the "eager evaluation”
approach (albeit at earlier times and spread out among each cross-domain call). Our
implementation so far has yielded acceptable performance, so we feel that lazy evaluation
is the most economical approach overall.

Therefore, the algorithm for checking permissions is currently implemented as "lazy
evaluation”. Suppose the current thread traversed m callers, in the order of caller 1 to caller 2

ORACLE L

Chapter 1
Java SE Platform Security Architecture

to caller m. Then caller m invoked the checkPermission method. The basic algorithm
checkPermission uses to determine whether access is granted or denied is the following (see
subsequent sections for refinements):

for (int 1 =m; 1 > 0; 1i--) {

if (caller i's domain does not have the permission)
throw AccessControlException

else if (caller i is marked as privileged) {
if (a context was specified in the call to doPrivileged)
context.checkPermission (permission)
if (limited permissions were specified in the call to

doPrivileged) {

for (each limited permission) {

if (the limited permission implies the requested
permission)
return;
}
} else
return;

// Next, check the context inherited when the thread was created.
// Whenever a new thread is created, the AccessControlContext at
// that time is stored and associated with the new thread, as the
// "inherited" context.

inheritedContext.checkPermission (permission);

Handling Privileges

A static method in the AccessController class allows code in a class instance to inform the
AccessController that a body of its code is "privileged" in that it is solely responsible for
requesting access to its available resources, no matter what code caused it to do so.

That is, a caller can be marked as being "privileged" when it calls the doPrivileged method.
When making access control decisions, the checkPermission method stops checking if it
reaches a caller that was marked as "privileged" via a doPrivileged call without a context
argument (see a subsequent section for information about a context argument). If that caller's
domain has the specified permission, no further checking is done and checkPermission
returns quietly, indicating that the requested access is allowed. If that domain does not have
the specified permission, an exception is thrown, as usual.

The normal use of the "privileged" feature is as follows:

If you don't need to return a value from within the "privileged" block, do the following:

somemethod () {
...normal code here...
AccessController.doPrivileged (new PrivilegedAction() {
public Object run() {
// privileged code goes here, for example:
System.loadLibrary("awt");
return null; // nothing to return

ORACLE Lo

Chapter 1
Java SE Platform Security Architecture

});

...normal code here...

PrivilegedAction is an interface with a single method, named run, that returns an Object.
This example shows creation of an anonymous inner class implementing that interface; a
concrete implementation of the run method is supplied. When the call to doPrivileged is
made, an instance of the PrivilegedAction implementation is passed to it. The doPrivileged
method calls the run method from the PrivilegedAction implementation after enabling
privileges, and returns the run method's return value as the doPrivileged return value, which
is ignored in this example. (For more information about inner classes, see Nested Classes in
the Java Tutorials.

If you need to return a value, you can do something like the following:

somemethod () {
...normal code here...
String user = (String) AccessController.doPrivileged(
new PrivilegedAction() {
public Object run() {
return System.getProperty("user.name");

}
)i

...normal code here...

If the action performed in your run method could throw a "checked" exception (one listed in the
throws clause of a method), then you need to use the PrivilegedExceptionAction interface
instead of the PrivilegedAction interface:

somemethod () throws FileNotFoundException ({

...normal code here...

try {
FileInputStream fis = (FileInputStream)
AccessController.doPrivileged(
new PrivilegedExceptionAction() {
public Object run() throws FileNotFoundException {
return new FileInputStream("someFile");

}
)
} catch (PrivilegedActionException e) {
// e.getException() should be an instance of
// FileNotFoundException,
// as only "checked" exceptions will be "wrapped" in a
// <code>PrivilegedActionException</code>.
throw (FileNotFoundException) e.getException();

...normal code here...

ORACLE Lea

http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Chapter 1
Java SE Platform Security Architecture

Some important points about being privileged: Firstly, this concept only exists within a single
thread. As soon as the privileged code completes, the privilege is guaranteed to be erased or
revoked.

Secondly, in this example, the body of code in the run method is privileged. However, if it calls
less trustworthy code that is less privileged, that code will not gain any privileges as a result; a
permission is only granted if the privileged code has the permission and so do all the
subsequent callers in the call chain up to the checkPermission call.

A variant of AccessController.doPrivileged enables code to assert a subset of its
privileges without preventing the full traversal of the stack to check for other permissions. See
Asserting a Subset of Privileges.

For more information about marking code as "privileged," see Appendix A: API for Privileged
Blocks.

Inheritance of Access Control Context

When a thread creates a new thread, a new stack is created. If the current security context
was not retained when this new thread was created, then when
AccessController.checkPermission was called inside the new thread, a security decision
would be made based solely upon the new thread's context, not taking into consideration that
of the parent thread.

This clean stack issue would not be a security problem per se, but it would make the writing of
secure code, and especially system code, more prone to subtle errors. For example, a non-
expert developer might assume, quite reasonably, that a child thread (e.g., one that does not
involve untrusted code) inherits the same security context from the parent thread (e.g., one
that involves untrusted code). This would cause unintended security holes when accessing
controlled resources from inside the new thread (and then passing the resources along to less
trusted code), if the parent context was not in fact saved.

Thus, when a new thread is created, we actually ensure (via thread creation and other code)
that it automatically inherits the parent thread's security context at the time of creation of the
child thread, in such a way that subsequent checkPermission calls in the child thread will take
into consideration the inherited parent context.

In other words, the logical thread context is expanded to include both the parent context (in the
form of an AccessControlContext, described in the next section) and the current context,
and the algorithm for checking permissions is expanded to the following. (Recall there are m
callers up to the call to checkPermission, and see the next section for information about the
AccessControlContext checkPermission method.)

for (int 1 =m; i > 0; i--) {

if (caller i's domain does not have the permission)
throw AccessControlException

else if (caller i is marked as privileged) {
if (a context was specified in the call to doPrivileged)
context.checkPermission (permission)
if (Iimited permissions were specified in the call to
doPrivileged) {
for (each limited permission) ({
if (the limited permission implies the requested
permission)
return;

ORACLE Lea

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction,java.security.AccessControlContext,java.security.Permission...)

Chapter 1
Java SE Platform Security Architecture

}
} else
return;

}

// Next, check the context inherited when the thread was created.
// Whenever a new thread is created, the AccessControlContext at
// that time is stored and associated with the new thread, as the
// "inherited" context.

inheritedContext.checkPermission (permission);

Note that this inheritance is transitive so that, for example, a grandchild inherits both from the
parent and the grandparent. Also note that the inherited context snapshot is taken when the
new child is created, and not when the child is first run. There is no public API change for the
inheritance feature.

java.security.AccessControlContext

ORACLE

Recall that the AccessController checkPermission method performs security checks
within the context of the current execution thread (including the inherited context). A difficulty
arises when such a security check can only be done in a different context. That is, sometimes
a security check that should be made within a given context will actually need to be done from
within a different context. For example, when one thread posts an event to another thread, the
second thread serving the requesting event would not have the proper context to complete
access control, if the service requests access to controller resources.

To address this issue, we provide the AccessController getContext method and
AccessControlContext class. The getContext method takes a "snapshot” of the current
calling context, and places it in an AccessControlContext object, which it returns. A
sample call is the following:

AccessControlContext acc = AccessController.getContext();

This context captures relevant information so that an access control decision can be made by
checking, from within a different context, against this context information. For example, one
thread can post a request event to a second thread, while also supplying this context
information. AccessControlContext itself has a checkPermission method that makes
access decisions based on the context it encapsulates, rather than that of the current
execution thread. Thus, the second thread can perform an appropriate security check if
necessary by invoking the following:

acc.checkPermission (permission) ;

This method call is equivalent to performing the same security check in the context of the first
thread, even though it is done in the second thread.

There are also times where one or more permissions must be checked against an access
control context, but it is unclear a priori which permissions are to be checked. In these cases
you can use the doPrivileged method that takes a context:

somemethod () {
AccessController.doPrivileged(new PrivilegedAction () {

1-55

Chapter 1
Java SE Platform Security Architecture

public Object run() {
// Code goes here. Any permission checks from
// this point forward require both the current
// context and the snapshot's context to have
// the desired permission.

1)

...normal code here...

Now the complete algorithm utilized by the AccessController checkPermission method
can be given. Suppose the current thread traversed m callers, in the order of caller 1 to caller 2
to caller m. Then caller m invoked the checkPermission method. The algorithm
checkPermission uses to determine whether access is granted or denied is the following

for (int 1 = m; 1 > 0; i--) {

if (caller i's domain does not have the permission)
throw AccessControlException

else if (caller i is marked as privileged) {
if (a context was specified in the call to doPrivileged)
context.checkPermission (permission)
if (limited permissions were specified in the call to
doPrivileged) {
for (each limited permission) {
if (the limited permission implies the requested
permission)
return;
}
} else
return;

// Next, check the context inherited when the thread was created.
// Whenever a new thread is created, the AccessControlContext at
// that time is stored and associated with the new thread, as the
// "inherited" context.

inheritedContext.checkPermission (permission);

Secure Class Loading

ORACLE

Dynamic class loading is an important feature of the Java Virtual Machine because it provides
the Java platform with the ability to install software components at run-time. It has a number of
unigue characteristics. First of all, lazy loading means that classes are loaded on demand and
at the last moment possible. Second, dynamic class loading maintains the type safety of the
Java Virtual Machine by adding link-time checks, which replace certain run-time checks and
are performed only once. Moreover, programmers can define their own class loaders that, for
example, specify the remote location from which certain classes are loaded, or assign
appropriate security attributes to them. Finally, class loaders can be used to provide separate
name spaces for various software components. For example, a browser can load applets from
different web pages using separate class loaders, thus maintaining a degree of isolation

1-56

Chapter 1
Java SE Platform Security Architecture

between those applet classes. In fact, these applets can contain classes of the same name —
these classes are treated as distinct types by the Java Virtual Machine.

The class loading mechanism is not only central to the dynamic nature of the Java
programming language. It also plays a critical role in providing security because the class
loader is responsible for locating and fetching the class file, consulting the security policy, and
defining the class object with the appropriate permissions.

Class Loader Class Hierarchies

When loading a class, because there can be multiple instances of class loader objects in one
Java Virtual Machine, an important question is how do we determine which class loader to use.
The JDK has introduced multiple class loader classes are introduced that have distinct
properties, so another important question is what type of class loader we should use.

The root of the class loader class hierarchy is an abstract class called
java.lang.ClassLoader. Class java.security.SecureClassLoader is a subclass
and a concrete implementation of the abstract ClassLoader class. Class
java.net.URLClassLoader is a subclass of SecureClassLoader.

When creating a custom class loader class, one can subclass from any of the previous class
loader classes, depending on the particular needs of the custom class loader.

The Primordial Class Loader

Because each class is loaded by its class loader, and each class loader itself is a class and
must be loaded by another class loader, we seem to have the obvious chicken-and-egg
problem, i.e., where does the first class loader come from? There is a "primordial" class loader
that bootstraps the class loading process. The primordial class loader is generally written in a
native language, such as C, and does not manifest itself within the Java context. The
primordial class loader often loads classes from the local file system in a platform-dependent
manner.

Some classes, such as those defined in the java. * package, are essential for the correct
functioning of the Java Virtual Machine and runtime system. They are often referred to as base
classes. Due to historical reasons, all such classes have a class loader that is a null. This null
class loader is perhaps the only sign of the existence of a primordial class loader. In fact, it is
easier to simply view the null class loader as the primordial class loader.

Given all classes in one Java application environment, we can easily form a class loading tree
to reflect the class loading relationship. Each class that is not a class loader is a leaf node.
Each class's parent node is its class loader, with the null class loader being the root class.
Such a structure is a tree because there cannot be cycles — a class loader cannot have loaded
its own ancestor class loader.

Class Loader Delegation

ORACLE

When one class loader is asked to load a class, this class loader either loads the class itself or
it can ask another class loader to do so. In other words, the first class loader can delegate to
the second class loader. The delegation relationship is virtual in the sense that it has nothing to
do with which class loader loads which other class loader. Instead, the delegation relationship
is formed when class loader objects are created, and in the form of a parent-child relationship.
Nevertheless, the system class loader is the delegation root ancestor of all class loaders. Care
must be taken to ensure that the delegation relationship does not contain cycles. Otherwise,
the delegation process may enter into an infinite loop.

1-57

Chapter 1
Java SE Platform Security Architecture

Class Resolution Algorithm

The default implementation of the JDK ClassLoader method for loading a class searches for
classes in the following order:

1. Check if the class has already been loaded.

2. If the current class loader has a specified delegation parent, delegate to the parent to try to
load this class. If there is no parent, delegate to the primordial class loader.

3. Call a customizable method to find the class elsewhere.

Here, the first step looks into the class loader's local cache (or its functional equivalent, such
as a global cache) to see if a loaded class matches the target class. The last step provides a
way to customize the mechanism for looking for classes; thus a custom class loader can
override this method to specify how a class should be looked up. For example, an applet class
loader can override this method to go back to the applet host and try to locate the class file and
load it over the network.

If at any step a class is located, it is returned. If the class is not found using these steps, a
ClassNotFound exception is thrown.

Observe that it is critical for type safety that the same class not be loaded more than once by
the same class loader. If the class is hot among those already loaded, the current class loader
attempts to delegate the task to the parent class loader. This can occur recursively. This
ensures that the appropriate class loader is used. For example, when locating a system class,
the delegation process continues until the system class loader is reached.

We have seen the delegation algorithm earlier. But, given the name of any class, which class
loader do we start with in trying to load the class? The rules for determining the class loader
are the following:

* When loading the first class of an application, a new instance of the URLClassLoader is
used.

* When loading the first class of an applet, a new instance of the AppletClassLoader is
used.

e When java.lang.Class.ForName is directly called, the primordial class loader is used.

e Ifthe request to load a class is triggered by a reference to it from an existing class, the
class loader for the existing class is asked to load the class.

Note that rules about the use of URLClassLoader and AppletClassLoader instances have
exceptions and can vary depending on the particular system environment. For example, a web
browser may choose to reuse an existing AppletClassLoader to load applet classes from
the same web page.

Due to the power of class loaders, we severely restrict who can create class loader instances.
On the other hand, it is desirable to provide a convenient mechanism for applications or
applets to specify URL locations and load classes from them. We provide static methods to
allow any program to create instances of the URLClassLoader class, although not other
types of class loaders.

ORACLE Lea

Chapter 1
Java SE Platform Security Architecture

Security Management

Managing Applets and Applications

ORACLE

Currently, all JDK system code invokes SecurityManager methods to check the policy
currently in effect and perform access control checks. There is typically a security manager
(SecurityManager implementation) installed whenever an applet is running; the
appletviewer and most browsers install a security manager.

A security manager is not automatically installed when an application is running. To apply the
same security policy to an application found on the local file system as to downloaded applets,
either the user running the application must invoke the Java Virtual Machine with the -
Djava.security.manager command-line argument (which sets the value of the
java.security.manager property), asin

java -Djava.security.manager SomeApp

or the application itself must call the setSecurityManager method in the java.lang.System
class to install a security manager.

It is possible to specify on the command line a particular security manager to be utilized, by
following -Djava.security.manager with an equals and the name of the class to be used as
the security manager, as in

java -Djava.security.manager=COM.abc.MySecMgr SomeApp

If no security manager is specified, the built-in default security manager is utilized (unless the
application installs a different security manager). All of the following are equivalent and result in
usage of the default security manager:

java -Djava.security.manager SomeApp
java -Djava.security.manager="" SomeApp
java -Djava.security.manager=default SomeApp

The JDK includes a property named java.class.path. Classes that are stored on the local file
system but should not be treated as base classes (e.g., classes built into the SDK) should be
on this path. Classes on this path are loaded with a secure class loader and are thus subjected
to the security policy being enforced.

There is also a -Djava.security.policy command-line argument whose usage determines
what policy files are utilized. This command-line argument is described in detail in Default
Policy Implementation and Policy File Syntax. Basically, if you don't include -
Djava.security.policy on the command line, then the policy files specified in the security
properties file will be used.

You can use a -Djava.security.policy command-line argument to specify an additional or a
different policy file when invoking execution of an application. For example, if you type the
following, where pURL is a URL specifying the location of a policy file, then the specified policy
file will be loaded in addition to all the policy files specified in the security properties file:

java -Djava.security.manager -Djava.security.policy=pURL SomeApp

1-59

Chapter 1
Java SE Platform Security Architecture

If you instead type the following command, using a double equals, then just the specified policy
file will be used; all others will be ignored:

java -Djava.security.manager -Djava.security.policy==pURL SomeApp

SecurityManager versus AccessController

The new access control mechanism is fully backward compatible. For example, all check
methods in SecurityManager are still supported, although most of their implementations are
changed to call the new SecurityManager checkPermission method, whose default
implementation calls the AccessController checkPermission method. Note that certain
internal security checks may stay in the SecurityManager class, unless it can be
parameterized.

We have not at this time revised any system code to call AccessController instead of
calling securityManager (and checking for the existence of a classloader), because of the
potential of existing third-party applications that subclass the SecurityManager and
customize the check methods. In fact, we added a new method
SecurityManager.checkPermission that by default simply invokes
AccessController.checkPermission.

To understand the relationship between SecurityManager and AccessController,itis
sufficient to note that SecurityManager represents the concept of a central point of access
control, while AccessController implements a particular access control algorithm, with
special features such as the doPrivileged method. By keeping SecurityManager up to
date, we maintain backward compatibility (e.g., for those applications that have written their
own security manager classes based on earlier versions of the JDK) and flexibility (e.qg., for
someone wanting to customize the security model to implement mandatory access control or
multilevel security). By providing AccessController, we build in the algorithm that we
believe is the most restrictive and that relieves the typical programmer from the burden of
having to write extensive security code in most scenarios.

We encourage the use of AccessController in application code, while customization of a
security manager (via subclassing) should be the last resort and should be done with extreme
care. Moreover, a customized security manager, such as one that always checks the time of
the day before invoking standard security checks, could and should utilize the algorithm
provided by AccessController whenever appropriate.

One thing to remember is that, when you implement your own SecurityManager, you should
install it as trusted software and grant it java.security.AllPermission. You can do this by
adjusting the policy file to grant Al11Permission to your SecurityManager. For more
information, see Default Policy Implementation and Policy File Syntax.

Auxiliary Tools

This section briefly describes the usage of two tools that assist in the deployment of security
features.

The Key and Certificate Management Tool

ORACLE

keytool is a key and certificate management utility. It enables users to administer their own
public/private key pairs and associated certificates for use in self-authentication (where the
user authenticates himself/herself to other users/services) or data integrity and authentication
services, using digital signatures. The authentication information includes both a sequence
(chain) of X.509 certificates, and an associated private key, which can be referenced by a so-

1-60

Chapter 1
Java SE Platform Security Architecture

called "alias". This tool also manages certificates (that are "trusted" by the user), which are
stored in the same database as the authentication information, and can be referenced by an
"alias".

keytool stores the keys and certificates in a so-called keystore. The default keystore
implementation implements the keystore as a file. It protects private keys with a password.

The chains of X.509 certificates are provided by organizations called Certification Authorities,
or CAs. Identities (including CAs) use their private keys to authenticate their association with
objects (such as with channels which are secured using SSL), with archives of code they
signed, or (for CAs) with X.509 certificates they have issued. As a bootstrapping tool,
certificates generated using the -gencert option may be used until a Certification Authority
returns a certificate chain.

The private keys in this database are always stored in encrypted form, to make it difficult to
disclose these private keys inappropriately. A password is required to access or modify the
database. These private keys are encrypted using the "password", which should be several
words long. If the password is lost, those authentication keys cannot be recovered.

In fact, each private key in the keystore can be protected using its own individual password,
which may or may not be the same as the password that protects the keystore's overall
integrity.

This tool is (currently) intended to be used from the command line, where one simply types
keytool as a shell prompt. keytool is a script that executes the appropriate Java classes and
is built together with the SDK.

The command line options for each command may be provided in any order. Typing an
incorrect option or typing keytool -help will cause the tool's usage to be summarized on the
output device (such as a shell window).

The JAR Signing and Verification Tool

The jarsigner tool can be used to digitally sign Java archives (JAR files), and to verify such
signatures. This tool depends on the keystore that is managed by keytool.

Note:

You can also use the jdk.security.jarsigner API to sign JAR files.

GuardedObiject and SignedObject

java.security.GuardedObject and java.security.Guard

Recall that the class AccessControlContext is useful when an access control decision has
to be made in a different context. There is another such scenario, where the supplier of a
resource is not in the same thread as the consumer of that resource, and the consumer thread
cannot provide the supplier thread the access control context information (because the context
is security-sensitive, or the context is too large to pass, or for other reasons). For this case, we
provide a class called GuardedObject to protect access to the resource, illustrated in

Figure 1-12.

ORACLE et

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jartool/jdk/security/jarsigner/package-summary.html

ORACLE

Chapter 1
Java SE Platform Security Architecture

Figure 1-12 How a Guarded Object Protects Access to a Resource

Guarded Object

request access <— 1 — requestor
2 — check guard T

return reference ——(3
to resource

protected object
Guard embedding
object resource

The basic idea is that the supplier of the resource can create an object representing the
resource, create a GuardedObject that embeds the resource object inside, and then provide
the GuardedObject to the consumer. In creating the GuardedObject, the supplier also
specifies a Guard object such that anyone (including the consumer) can only obtain the
resource object if certain (security) checks inside the Guard are satisfied.

Guard is an interface, so any object can choose to become a Guard. The only method in this
interface is called checkGuard. It takes an Object argument and it performs certain (security)
checks. The Permission class in java.security implements the Guard interface.

For example, suppose a system thread is asked to open afile /a/b/c. txt for read access,
but the system thread does not know who the requestor is or under what circumstances the
request is made. Therefore, the correct access control decision cannot be made at the server
side. The system thread can use GuardedObject to delay the access control checking, as
follows.

FileInputStream f = new FileInputStream("/a/b/c.txt");
FilePermission p = new FilePermission("/a/b/c.txt", "read");
GuardedObject g = new GuardedObject (f, p);

Now the system thread can pass g to the consumer thread. For that thread to obtain the file
input stream, it has to call

FileInputStream fis = (FileInputStream) g.getObject();

This method in turn invokes the checkGuard method on the Guard object p, and because p is a
Permission, its checkGuard method is in fact:

SecurityManager sm = System.getSecurityManager () ;
if (sm != null) sm.checkPermission (this);

This ensures that a proper access control check takes place within the consumer context. In
fact, one can replace often-used hash tables and access control lists in many cases and simply
store a hash table of GuardedObjects.

This basic pattern of GuardedObject and Guard is very general, and we expect that by
extending the basic Guard and GuardedObject classes, developers can easily obtain quite
powerful access control tools. For example, per-method invocation can be achieved with an
appropriate Guard for each method, and a Guard can check the time of the day, the signer or
other identification of the caller, or any other relevant information.

1-62

Chapter 1
Java SE Platform Security Architecture

Note that certain typing information is lost because GuardedObject returns an Object.
GuardedObject is intended to be used between cooperating parties so that the receiving
party should know what type of object to expect (and to cast for). In fact, we envision that most
usage of GuardedObject involves subclassing it (say to form a
GuardedFileInputStream class), thus encapsulating typing information, and casting can
happen suitably in the subclass.

java.security.SignedObject

ORACLE

This class is an essential building block for other security primitives. SignedObject contains
another serializable object, the (to-be-)signed object and its signature. If the signature is
not null, it contains a valid digital signature of the signed object. This is illustrated in

Figure 1-13.

Figure 1-13 Signed Object Contents

Signed Object

signature

original | _ o
object snapshot ><:::>

The underlying signing algorithm is set through a Signature object as a parameter to the sign
method call, and the algorithm can be, among others, the NIST standard DSA, using DSA and
SHA-256. The algorithm is specified using the same convention for signatures, such as "SHA/
DSA".

The signed object is a "deep copy" (in serialized form) of an original object. Once the copy is
made, further manipulation of the original object has no side effect on the copy. A signed object
is immutable.

A typical example of creating a signed object is the following:

Signature signingEngine = Signature.getInstance (algorithm,provider);
SignedObject so = new SignedObject (myobject, signingKey, signingEngine);

A typical example of verification is the following (having received SignedObject so), where
the first line is not needed if the name of the algorithm is known:

String algorithm = so.getAlgorithm();
Signature verificationEngine = Signature.getInstance(algorithm, provider);
so.verify(verificationEngine);

Potential applications of SignedObject include:

e It can be used internally to any Java application environment as an unforgeable
authorization token — one that can be passed around without the fear that the token can be
maliciously modified without being detected.

e |t can be used to sign and serialize data/object for storage outside the Java runtime (e.qg.,
storing critical access control data on disk).

* Nested signedObjects can be used to construct a logical sequence of signatures,
resembling a chain of authorization and delegation.

1-63

Chapter 1
Java SE Platform Security Architecture

It is intended that this class can be subclassed in the future to allow multiple signatures on the
same signed object. In that case, existing method calls in this base class will be fully
compatible in semantics. In particular, any get method will return the unique value if there is
only one signature, and will return an arbitrary one from the set of signatures if there is more
than one signature.

Discussion and Future Directions

Resource Consumption Management

Resource consumption management is relatively easy to implement in some cases (e.g., to
limit the number of windows any application can pop up at any one time), while it can be quite
hard to implement efficiently in other cases (e.g., to limit memory or file system usage). We
plan to coherently address such issues in the future.

Arbitrary Grouping of Permissions

Sometimes it is convenient to group a number of permissions together and use a short-hand
name to refer to them. For example, if we would like to have a permission called
SuperPermission to include (and imply) both FilePermission("-", "read,write") and
SocketPermission ("*", "connect,accept"), technically we can use the class Permissions
or a similar class to implement this super permission by using the add methods to add the
required permissions. And such grouping can be arbitrarily complicated.

The more difficult issues are the following. First, to understand what actual permissions one is
granting when giving out such a super permission, either a fixed and named permission class
is created to denote a statically specified group of permissions, or the member permissions
need to be spelled out in the policy file. Second, processing the policy (file) can become more
complicated because the grouped permissions may need to be expanded. Moreover, nesting
of grouped permission increases complexity even more.

Object-Level Protection

Given the object-oriented nature of the Java programming language, it is conceivable that
developers will benefit from a set of appropriate object-level protection mechanisms that (1)
goes beyond the natural protection provided by the Java programming language and that (2)
supplements the thread-based access control mechanism.

One such mechanism is SignedObject. Another is the SealedObject class, which uses
encryption to hide the content of an object.

GuardedObject is a general way to enforce access control at a per class/object per method
level. This method, however, should be used only selectively, partly because this type of
control can be difficult to administer at a high level.

Subdividing Protection Domains

ORACLE

A potentially useful concept not currently implemented is that of "subdomains.” A subdomain is
one that is enclosed in another. A subdomain would not have more permissions or privileges
than the domain of which it is a subpart. A domain could be created, for example, to selectively
further limit what a program can do.

Often a domain is thought of as supporting inheritance: a subdomain would automatically
inherit the parent domain's security attributes, except in certain cases where the parent further

1-64

Chapter 1
Java SE Platform Security Architecture

restricts the subdomain explicitly. Relaxing a subdomain by right amplification is a possibility
with the notion of trusted code.

For convenience, we can think of the system domain as a single, big collection of all system
code. For better protection, though, system code should be run in multiple system domains,
where each domain protects a particular type of resource and is given a special set of rights.
For example, if file system code and network system code run in separate domains, where the
former has no rights to the networking resources and the latter has no rights to the file system
resources, the risks and consequence of an error or security flaw in one system domain is
more likely to be confined within its boundary.

Running Applets with Signed Content

The JAR and Manifest specifications on code signing allow a very flexible format. Classes
within the same archive can be signed with different keys, and a class can be unsigned, signed
with one key, or signed with multiple keys. Other resources within the archive, such as audio
clips and graphic images, can also be signed or unsigned, just like classes can.

This flexibility brings about the issue of interpretation. The following questions need to be
answered, especially when keys are treated differently:

1. Should images and audios be required to be signed with the same key if any class in the
archive is signed?

2. If images and audios are signed with different keys, can they be placed in the same
appletviewer (Or browser page), or should they be sent to different viewers for
processing?

These questions are not easy to answer, and require consistency across platforms and
products to be the most effective. Our intermediate approach is to provide a simple answer —
all images and audio clips are forwarded to be processed within the same applet classloader,
whether they are signed or not. This temporary solution will be improved once a consensus is
reached.

Moreover, if a digital signature cannot be verified because the bytecode content of a class file
does not match the signed hash value in the JAR, a security exception is thrown, as the
original intention of the JAR author is clearly altered. Previously, there was a suggestion to run
such code as untrusted. This idea is undesirable because the applet classloader allows the
loading of code signed by multiple parties. This means that accepting a partially modified JAR
file would allow an untrusted piece of code to run together with and access other code through
the same classloader.

Appendix A: API for Privileged Blocks

This section explains what privileged code is and what it is used for. It also shows you how to
use the doPrivileged API.

* Using the doPrivileged API
* What It Means to Have Privileged Code

* Reflection

Using the doPrivileged API

This section describes the doPrivileged APl and the use of the privileged feature.

* No Return Value, No Exception Thrown

e Accessing Local Variables

ORACLE Les

Chapter 1
Java SE Platform Security Architecture

e Handling Exceptions
e Asserting a Subset of Privileges
e Least Privilege

e More Privilege

No Return Value, No Exception Thrown

ORACLE

If you do not need to return a value from within the privileged block, your call to doPrivileged
can look like Example 1-1.

Note that the invocation of doPrivileged with a lambda expression explicitly casts the lambda
expression as of type PrivilegedAction<Void>. Another version of the method doPrivileged
exists that takes an object of type PrivilegedExceptionAction; see Handling Exceptions.

PrivilegedAction is a functional interface with a single abstract method, named run, that
returns a value of type specified by its type parameter.

Note that this example ignores the return value of the run method. Also, depending on what
privileged code actually consists of, you might have to make some changes due to the way
inner classes work. For example, if privileged code throws an exception or attempts to access
local variables, then you will have to make some changes, which is described later.

Be very careful in your use of the privileged construct, and always remember to make the
privileged code section as small as possible. That is, try to limit the code within the run method
to only what needs to be run with privileges, and do more general things outside the run
method. Also note that the call to doPrivileged should be made in the code that wants to
enable its privileges. Do not be tempted to write a utility class that itself calls doPrivileged as
that could lead to security holes. You can write utility classes for PrivilegedAction classes
though, as shown in the preceding example. See Guideline 9-3: Safely invoke
java.security.AccessController.doPrivileged in Secure Coding Guidelines for the Java
Programming Language.

Example 1-1 Sample Code for Privileged Block
* Inaclass that implements the interface PrivilegedAction.

e In an anonymous class.
e In alambda expression.
import java.security.*;
public class NoReturnNoException {
class MyAction implements PrivilegedAction<Void> {
public Void run() {
// Privileged code goes here, for example:

System.loadLibrary("awt");
return null; // nothing to return

}
public void somemethod() {
MyAction mya = new MyAction();

// Become privileged:

1-66

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedExceptionAction.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html#9
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivilegedAction.html

Chapter 1
Java SE Platform Security Architecture

AccessController.doPrivileged (mya) ;

// Anonymous class
AccessController.doPrivileged (new PrivilegedAction<Void>() {
public Void run() {
// Privileged code goes here, for example:
System.loadLibrary ("awt");
return null; // nothing to return

1)

// Lambda expression
AccessController.doPrivileged((PrivilegedAction<Void>)
0 > {
// Privileged code goes here, for example:
System.loadLibrary ("awt");
return null; // nothing to return

public static void main(String... args) {
NoReturnNoException myApplication = new NoReturnNoException();
myApplication.somemethod() ;

Returning Values

If you need to return a value, then you can do something like the following:

System.out.println
AccessController.doPrivileged((PrivilegedAction<String>)
() -> System.getProperty("user.name")

)

Accessing Local Variables

If you are using a lambda expression or anonymous inner class, then any local variables you
access must be final or effectively final.

For example:

String lib = "awt";
AccessController.doPrivileged((PrivilegedAction<Void>)
0 =>{
System.loadLibrary(lib);
return null; // nothing to return

);

AccessController.doPrivileged (new PrivilegedAction<Void>() {
public Object run() {

ORACLE 1-67

Chapter 1
Java SE Platform Security Architecture

System.loadLibrary(lib);
return null; // nothing to return

1)

The variable 1ib is effectively final because its value has not been modified. For example,
suppose you add the following assignment statement after the declaration of the variable 1ib:

lib = "swing";

The compiler generates the following errors when it encounters the invocation
System.loadLibrary both in the lambda expression and the anonymous class:

e error: local variables referenced from a lambda expression must be final or
effectively final

o error: local variables referenced from an inner class must be final or
effectively final

See Accessing Members of an Enclosing Class in Local Classes for more information.

If there are cases where you cannot make an existing variable effectively final (because it gets
set multiple times), then you can create a new f£inal variable right before invoking the
doPrivileged method, and set that variable equal to the other variable. For example:

String lib;

// The 1lib variable gets set multiple times so you can't make it
// effectively final.

// Create a final String that you can use inside of the run method
final String fLib = lib;

AccessController.doPrivileged((PrivilegedAction<Void>)
0 > {
System.loadLibrary (fLib) ;
return null; // nothing to return

)i

Handling Exceptions

ORACLE

If the action performed in your run method could throw a checked exception (one that must be
listed in the throws clause of a method), then you need to use the
PrivilegedExceptionAction interface instead of the PrivilegedAction interface.

Example 1-2 Sample for Handling Exceptions

If a checked exception is thrown during execution of the run method, then it is placed in a
PrivilegedActionException wrapper exception that is then thrown and should be caught by
your code, as illustrated in the following example:

public void processSomefile() throws IOException {

try {
Path path = FileSystems.getDefault().getPath ("somefile");

1-68

http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html#accessing-members-of-an-enclosing-class
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html

Chapter 1
Java SE Platform Security Architecture

BufferedReader br = AccessController.doPrivileged(
(PrivilegedExceptionAction<BufferedReader>)
() -> Files.newBufferedReader (path)
)
// ... read from file and do something
} catch (PrivilegedActionException e) {

// e.getException() should be an instance of IOException
// as only checked exceptions will be wrapped in a

// PrivilegedActionException.

throw (IOException) e.getException();

Asserting a Subset of Privileges

ORACLE

As of JDK 8, a variant of doPrivileged is available that enables code to assert a subset of
its privileges, without preventing the full traversal of the stack to check for other permissions.
This variant of the doPrivileged variant has three parameters, one of which you use to specify
this subset of privileges. For example, the following excerpt asserts a privilege to retrieve
system properties:

// Returns the value of the specified property. All code
// is allowed to read the app.version and app.vendor
// properties.

public String getProperty(final String prop) {
return AccessController.doPrivileged(

(PrivilegedAction<String>) () -> System.getProperty (prop),
null,

new java.util.PropertyPermission("app.version", "read"),
new java.util.PropertyPermission ("app.vendor", "read")

)7
}

The first parameter of this version of doPrivileged is of type
java.security.PrivilegedAction. In this example, the first parameter is a lambda expression
that implements the functional interface PrivilegedAction whose run method returns the
value of the system property specified by the parameter prop.

The second parameter of this version of doPrivileged is of type AccessControlContext.
Sometimes you need to perform an additional security check within a different context, such as
a worker thread. You can obtain an AccessControlContext instance from a particular calling
context with the method AccessControlContext.getContext. If you specify null for this
parameter (as in this example), then the invocation of doPrivileged does not perform any
additional security checks.

The third parameter of this version of doPrivileged is of type Permission..., whichis a
varargs parameter. This means that you can specify one or more Permission parameters or an
array of Permission objects, as in Permission[]. In this example, the invocation of
doPrivileged can retrieve the properties app.version and app.vendor.

You can use this three parameter variant of doPrivileged in a mode of least privilege or a
mode of more privilege.

1-69

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedAction,java.security.AccessControlContext,java.security.Permission...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessControlContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Permission.html

Least Privilege

More Privilege

ORACLE

Chapter 1
Java SE Platform Security Architecture

The typical use case of the doPrivileged method is to enable the method that invokes it to
perform one or more actions that require permission checks without requiring the callers of the
current method to have all the necessary permissions.

For example, the current method might need to open a file or make a network request for its
own internal implementation purposes.

Before JDK 8, calls to doPrivileged methods had only two parameters. They worked by
granting temporary privileges to the calling method and stopping the normal full traversal of the
stack for access checking when it reached that class, rather than continuing up the call stack
where it might reach a method whose defining class does not have the required permission.
Typically, the class that is calling doPrivileged might have additional permissions that are not
required in that code path and which might also be missing from some caller classes.

Normally, these extra permissions are not exercised at runtime. Not elevating them through
use of doPrivileged helps to block exploitation of any incorrect code that could perform
unintended actions. This is especially true when the PrivilegedAction iS more complex than
usual, or when it calls code outside the class or package boundary that might evolve
independently over time.

The three-parameter variant of doPrivileged is generally safer to use because it avoids
unnecessarily elevating permissions that are not intended to be required. However, it executes
less efficiently so simple or performance-critical code paths might choose not to use it.

When coding the current method, you want to temporarily extend the permission of the calling
method to perform an action.

For example, a framework 1/0 API might have a general purpose method for opening files of a
particular data format. This API would take a normal file path parameter and use it to open an
underlying FileInputStream using the calling code's permissions. However, this might also
allow any caller to open the data files in a special directory that contains some standard
demonstration samples.

The callers of this API could be directly granted a FilePermission for read access. However, it
might not be convenient or possible for the security policy of the calling code to be updated.
For example, the calling code could be a sandboxed applet.

One way to implement this is for the code to check the incoming path and determine if it refers
to a file in the special directory. If it does, then it would call doPrivileged, enabling all
permissions, then open the file inside the PrivilegedAction. If the file was not in the special
directory, the code would open the file without using doPrivileged.

This technique requires the implementation to carefully handle the requested file path to
determine if it refers to the special shared directory. The file path must be canonicalized before
calling doPrivileged so that any relative path will be processed (and permission to read the
user.dir system property will be checked) prior to determining if the path refers to a file in the
special directory. It must also prevent malicious "../" path elements meant to escape out of the
special directory.

A simpler and better implementation would use the variant of doPrivileged with the third
parameter. It would pass a FilePermission with read access to the special directory as the
third parameter. Then any manipulation of the file would be inside the PrivilegedAction. This
implementation is simpler and much less prone to contain a security flaw.

1-70

Chapter 1
Java SE Platform Security Architecture

What It Means to Have Privileged Code

Marking code as privileged enables a piece of trusted code to temporarily enable access to
more resources than are available directly to the code that called it.

The policy for a JDK installation specifies what permissions which types of system resource
accesses — are allowed for code from specified code sources. A code source (of type
CodeSource) essentially consists of the code location (URL) and a reference to the
certificates containing the public keys corresponding to the private keys used to sign the code
(if it was signed).

The policy is represented by a Policy object. More specifically, it is represented by a Policy
subclass providing an implementation of the abstract methods in the pPolicy class (which is in
the java.security package).

The source location for the policy information used by the Policy object depends on the
Policy implementation. The Policy reference implementation obtains its information from
policy configuration files. See Default Policy Implementation and Policy File Syntax for
information about the Policy reference implementation and the syntax that must be used in
policy files it reads.

A protection domain encompasses a CodeSource instance and the permissions granted to
code from that CodeSource, as determined by the security policy currently in effect. Thus,
classes signed by the same keys and from the same URL are typically placed in the same
domain, and a class belongs to one and only one protection domain. (However, classes sighed
by the same keys and from the same URL but loaded by separate class loader instances are
typically placed in separate domains.) Classes that have the same permissions but are from
different code sources belong to different domains.

Classes shipped with the JDK run-time image and loaded by the bootstrap class loader are
granted A11Permission. However, classes shipped with the JDK run-time image and loaded
by the platform class loader are granted permissions as specified by the default policy of the
JDK. Each module's classes are assigned a unigue protection domain using the jrt URL
scheme and may only be granted the permissions necessary for them to function correctly, and
not necessarily Al1Permission.

Each applet or application runs in its appropriate domain, determined by its code source. For
an applet (or an application running under a security manager) to be allowed to perform a
secured action (such as reading or writing a file), the applet or application must be granted
permission for that particular action.

More specifically, whenever a resource access is attempted, all code traversed by the
execution thread up to that point must have permission for that resource access, unless some
code on the thread has been marked as privileged. That is, suppose that access control
checking occurs in a thread of execution that has a chain of multiple callers. (Think of this as
multiple method calls that potentially cross the protection domain boundaries.) When the
AccessController.checkPermission method is invoked by the most recent caller, the
basic algorithm for deciding whether to allow or deny the requested access is as follows: If the
code for any caller in the call chain does not have the requested permission, then an
AccessControlException is thrown, unless the following is true: a caller whose code is
granted the said permission has been marked as privileged, and all parties subsequently called
by this caller (directly or indirectly) have the said permission.

ORACLE L

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/CodeSource.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Policy.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission-java.security.Permission-
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessControlException.html

Chapter 1
Java SE Platform Security Architecture

Note:

The method AccessController.checkPermission is normally invoked indirectly
through invocations of specific SecurityManager methods that begin with the word
check such as checkConnect or through the method
SecurityManager.checkPermission. Normally, these checks only occur if a
SecurityManager has been installed; code checked by the
AccessController.checkPermission method first checks if the method
System.getSecurityManager returns null.

Marking code as privileged enables a piece of trusted code to temporarily enable access to
more resources than are available directly to the code that called it. This is necessary in some
situations. For example, an application might not be allowed direct access to files that contain
fonts, but the system utility to display a document must obtain those fonts, on behalf of the
user. The system utility must become privileged in order to obtain the fonts.

Reflection

The doPrivileged method can be invoked reflectively using the
java.lang.reflect.Method. invoke method.

One subtlety that must be considered is the interaction of this API with reflection. The
doPrivileged method can be invoked reflectively using the
java.lang.reflect.Method.invoke method. In this case, the privileges granted in
privileged mode are not those of Method. invoke but of the non-reflective code that invoked it.
Otherwise, system privileges could erroneously (or maliciously) be conferred on user code.
Note that similar requirements exist when using reflection in the existing API.

Appendix B: Acknowledgments

The design and implementation of new security features in Java 2 SDK is the work of primarily
members of the JavaSoft security group. Other (past and present) members of the JavaSoft
community provided invaluable insight, detailed reviews, and much needed technical
assistance. Significant contributors, in alphabetical order, include but are not limited to: Gigi
Ankeny, Josh Bloch, Satya Dodda, Charlie Lai, Sheng Liang, Jan Luehe, Marianne Mueller,
Jeff Nisewanger, Hemma Prafullchandra, Roger Riggs, Nakul Saraiya, Bill Shannon, Roland
Schemers, and Vijay Srinivasan.

This work is not possible without strong support from JavaSoft management (our thanks go to
Dick Neiss, Jon Kannegaard, and Alan Baratz), and the testing and documentation groups
(especially Mary Dageforde). We are grateful for technical guidance from James Gosling,
Graham Hamilton, and Jim Mitchell.

We received numerous suggestions from our corporate partners and licensees, whom we
could not fully list here.

Appendix C: References

M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co., New York, 1988.
L. Gong, "Java Security: Present and Near Future". IEEE Micro, 17(3):14--19, May/June 1997.

ORACLE L7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/reflect/Method.html#invoke(java.lang.Object,java.lang.Object...)

Chapter 1
Standard Algorithm Names

L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer, "Protecting Poorly Chosen Secrets
from Guessing Attacks". IEEE Journal on Selected Areas in Communications, 11(5):648--656,
June, 1993.

J. Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley, Menlo
Park, California, August 1996.

A.K. Jones. Protection in Programmed Systems. Ph.D. dissertation, Carnegie-Mellon
University, Pittsburgh, PA 15213, June 1973.

B.W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Information
Sciences and Systems, Princeton University, March 1971. Reprinted in ACM Operating
Systems Review, 8(1):18--24, January, 1974.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Menlo
Park, California, 1997.

P.G. Neumann. Computer-Related Risks. Addison-Wesley, Menlo Park, California, 1995.

U.S. General Accounting Office. Information Security: Computer Attacks at Department of
Defense Pose Increasing Risks. Technical Report GAO/AIMD-96-84, Washington, D.C. 20548,
May 1996.

J.H. Saltzer. Protection and the Control of Information Sharing in Multics. Communications of
the ACM, 17(7):388--402, July 1974.

J.H. Saltzer and M.D. Schroeder. The Protection of Information in Computer Systems}.
Proceedings of the IEEE, 63(9):1278--1308, September 1975.

M.D. Schroeder. Cooperation of Mutually Suspicious Subsystems in a Computer Utility. Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA 02139, September 1972.

W.A. Wulf, R. Levin, and S.P. Harbison. HYDRA/C.mmp -- An Experimental Computer System.
McGraw-Hill, 1981.

Standard Algorithm Names

See Java Security Standard Algorithm Names Specification for information about the set of
standard names for algorithms, certificate and keystore types that Java SE requires and uses.

Permissions in the JDK

A permission represents access to a system resource. In order for a resource access to be
allowed for an applet (or an application running with a security manager), the corresponding
permission must be explicitly granted to the code attempting the access.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

ORACLE e

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://openjdk.java.net/jeps/411

Permission

ORACLE

Chapter 1
Permissions in the JDK

A permission typically has a name (often referred to as a "target name") and, in some cases, a
comma-separated list of one or more actions. For example, the following code creates a
FilePermission object representing read access to the file named abc in the /tmp directory:

perm = new java.io.FilePermission ("/tmp/abc", "read");

Here, the target name is "/tmp/abc" and the action string is "read".

@ Important:

The previous statement creates a permission object. A permission object represents,
but does not grant access to, a system resource. Permission objects are constructed
and assigned ("granted") to code based on the policy in effect. When a permission
object is assigned to some code, that code is granted the permission to access the
system resource specified in the permission object, in the specified manner. A
permission object may also be constructed by the current security manager when
making access decisions. In this case, the (target) permission object is created based
on the requested access, and checked against the permission objects granted to and
held by the code making the request.

The policy for a Java application environment is represented by a Policy object. In the
"JavaPolicy" Policy implementation, the policy can be specified within one or more policy
configuration files. The policy file(s) specify what permissions are allowed for code from
specified code sources. The following is a sample policy file entry that grants code from the /
home/sysadmin directory read access to the file /tmp/abc:

grant codeBase "file:/home/sysadmin/" {
permission java.io.FilePermission "/tmp/abc", "read";

bi

To know more about policy file locations and granting permissions in policy files, see Default
Policy Implementation and Policy File Syntax.

Technically, whenever a resource access is attempted, all code traversed by the execution
thread up to that point must have permission for that resource access, unless some code on
the thread has been marked as "privileged." See Appendix A: API for Privileged Blocks.

Descriptions and Risks

The following is a list of all built-in JDK permission types. The class summary for each
permission type discusses the risks of granting each permission.

* Java.awt.AWTPermission

* Java.io.FilePermission

* Java.io.SerializablePermission

* Jjava.lang.RuntimePermission

* Jjava.lang.management.ManagementPermission
* Jjava.lang.reflect.ReflectPermission

* Java.net.NetPermission

1-74

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/AWTPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/FilePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/SerializablePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/RuntimePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ManagementPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/reflect/ReflectPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/NetPermission.html

Chapter 1
Permissions in the JDK

* Jjava.net.URLPermission

* Java.net.SocketPermission

* Java.nio.file.LinkPermission

* Jjava.security.AllPermission

* Jjava.security.SecurityPermission

* Java.security.UnresolvedPermission

* Jjava.sgl.SQLPermission

* Jjava.util.logging.LoggingPermission

* Java.util.PropertyPermission

* javax.management.MBeanPermission

°* javax.management.MBeanServerPermission

* Jjavax.management.MBeanTrustPermission

* Jjavax.management.remote.SubjectDelegationPermission
* Javax.net.ssl.SSLPermission

* Javax.security.auth.AuthPermission

* Jjavax.security.auth.PrivateCredentialPermission

* javax.security.auth.kerberos.DelegationPermission
* Javax.security.auth.kerberos.ServicePermission

* Javax.smartcardio.CardPermission

* Jjavax.sound.sampled.AudioPermission

Note:

See Appendix A: FilePermission Path Name Canonicalization Disabled By Default for
important information about a change in how FilePermission path names are
canonicalized.

Methods and the Permissions They Require

The following table is a list of methods that require permissions, which SecurityManager
method they call, and which permission is checked by the default implementation of that
SecurityManager method

Note:

This list is not complete; other methods exist that require permissions. See the Java
SE and JDK API Specification for additional information on methods that throw
SecurityException and the permissions that are required.

ORACLE 1-75

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/URLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/SocketPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/LinkPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AllPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecurityPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/UnresolvedPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/SQLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/LoggingPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanServerPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/MBeanTrustPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/remote/SubjectDelegationPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/AuthPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/PrivateCredentialPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/DelegationPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.security.jgss/javax/security/auth/kerberos/ServicePermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.smartcardio/javax/smartcardio/CardPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/sound/sampled/AudioPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Chapter 1
Permissions in the JDK

In the default securityManager method implementations, a call to a method in the Method
column can only be successful if the permission specified in the corresponding entry in the
SecurityManager Method column is allowed by the policy currently in effect. For example,
consider the following table row:

Method SecurityManager Method Called Permission
checkPermission java.awt.AWTPermission
java.awt.Toolkit "accessEventQueue";

public final EventQueue
getSystemEventQueue ()

This table row specifies that a call to the getSystemEventQueue method in the
java.awt.Toolkit class results in a call to the checkPermission SecurityManager

method, which can only be successful if the following permission is granted to code on the call
stack:

java.awt.AWTPermission "accessEventQueue";

The table rows have the following format, where the runtime value of foo replaces the string
{foo} in the permission hame.

Method SecurityManager Method Called Permission

checkXXX SomePermission "{foo}";
some.package.class
public static void
someMethod (String foo);

As an example, here is one table entry:

Method SecurityManager Method Permission

Called

checkRead (String) java.io.FilePermission
java.io.FileInputStream "{name}", "read";

FileInputStream(String
name)

If the FileInputStream method (in this case, a constructor) is called with " /test/
MyTestFile" as the name argument, as in

FileInputStream("/test/MyTestFile");

then in order for the call to succeed, the following permission must be set in the current policy,
allowing read access to the file " /test/MyTestFile":

java.io.FilePermission "/test/MyTestFile", "read";

ORACLE 1-76

Chapter 1
Permissions in the JDK

More specifically, the permission must either be explicitly set, as in this example, or implied by
another permission, such as the following:

java.io.FilePermission "/test/*", "read";

which allows read access to any files in the "/test" directory.

In some cases, a term in braces is not exactly the same as the name of a specific method
argument but is meant to represent the relevant value. Here is an example:

Method SecurityManager Method Called Permission

java.net.DatagramSocket public checkAccept ({host},
synchronized void {port})
receive (DatagramPacket p);

java.net.SocketPermission
"{host}:{port}", "accept";

Here, the appropriate host and port values are calculated by the receive method and passed
to checkAccept

In most cases, just the name of the SecurityManager method called is listed. Where the
method is one of multiple methods of the same name, the argument types are also listed, for
example for checkRead (String) and checkRead (FileDescriptor). In other cases where
arguments may be relevant, they are also listed.

The following table is ordered by package name; the methods in classes in the java.awt
package are listed first, followed by methods in classes in the java.beans package, and so on:

Table 1-4 Methods and the Permissions

- ___|]
Method SecurityManager Method Permission

checkPermission java.awt.AWTPermission

java.awt.Graphics2d
public abstract void
setComposite (Composite
comp)

"readDisplayPixels" if this
Graphics2D context is drawing to a
Component on the display screen and
the Composite is a custom object
rather than an instance of the
AlphaComposite class. Note: The
setComposite method is actually
abstract and thus can't invoke security
checks. Each actual implementation of
the method should call the
java.lang.SecurityManager
checkPermission method with a
java.awt.AWTPermission ("re
adDisplayPixels") permission
under the conditions noted.

checkPermission
java.awt.Robot
public Robot ()
public
Robot (GraphicsDevice screen)

java.awt.AWTPermission
"createRobot"

ORACLE

1-77

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPermission
java.awt.Toolkit
public void
addAWTEventListener (
AWTEventListener
listener,
long eventMask)
public void
removeAWTEventListener (
AWTEventListener
listener)

java.awt.AWTPermission
"listenToAllAWTEvents"

checkPrintJobAccess

java.awt.Toolkit
public abstract PrintJob
getPrintJob (
Frame frame, String
jobtitle,
Properties props)

java.lang.RuntimePermission
"queuePrintJob"

Note: The getPrintJob method is
actually abstract and thus can't invoke
security checks. Each actual
implementation of the method should
call the
java.lang.SecurityManager
checkPrintJobAccess method,
which is successful only if the
java.lang.RuntimePermission
"queuePrintJob" permission is
currently allowed.

checkPermission
java.awt.Toolkit
public abstract Clipboard
getSystemClipboard ()

java.awt.AWTPermission
"accessClipboard"

Note: The getSystemClipboard
method is actually abstract and thus
can't invoke security checks. Each
actual implementation of the method
should call the checkPermission
method, which is successful only if the
java.awt.AWTPermission
"accessClipboard" permission is
currently allowed.

checkPermission
java.awt.Toolkit
public final EventQueue
getSystemEventQueue ()

java.awt.AWTPermission
"accessEventQueue"

checkPermission
java.awt.Window Window ()

If java.awt.AWTPermission
"showWindowWithoutWarningBanner
" is set, the window will be displayed
without a banner warning that the
window was created by an applet. It it's
not set, such a banner will be displayed.

ORACLE

1-78

Chapter 1
Permissions in the JDK

Table 1-4 (Cont.) Methods and the Permissions
|

Method SecurityManager Method Permission
checkPropertiesAccess java.util.PropertyPermission
java.beans.Beans "x" "read,write"
public static void
setDesignTime (

boolean isDesignTime)
public static void
setGuiAvailable (
boolean isGuiAvailable)

java.beans.Introspector
public static synchronized
void

setBeanInfoSearchPath (String
pathl])

java.beans.PropertyEditorMana
ger
public static void
registerEditor (
Class targetType,
Class editorClass)
public static synchronized
void

setEditorSearchPath (String

pathl])
checkDelete (String) java.io.FilePermission
java.io.File "{name}", "delete"
public boolean delete()
public void deleteOnExit ()
checkRead (FileDescriptor) java.lang.RuntimePermission
java.io.FileInputStream "readFileDescriptor"

FileInputStream(FileDescripto
r £d0bj)

ORACLE 1-79

Chapter 1
Permissions in the JDK

Table 1-4 (Cont.) Methods and the Permissions

Method SecurityManager Method Permission
checkRead (String) java.io.FilePermission
java.io.FileInputStream "{name}", "read"
FileInputStream(String
name)

FileInputStream(File file)

java.io.File
public boolean exists()
public boolean canRead /()
public boolean isFile()
public boolean
isDirectory()
public boolean isHidden ()
public long lastModified()
public long length()
public String[] list()
public String[] list(
FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(
FilenameFilter filter)
public File[] listFiles(
FileFilter filter)

java.io.RandomAccessFile
RandomAccessFile (String
name, String mode)
RandomAccessFile (File
file, String mode)

(where mode is "r" in both
RandomAccessFile constructurs)

checkWrite (FileDescriptor) Jjava.lang.RuntimePermission
java.io.FileOutputStream "writeFileDescriptor"

FileOutputStream(FileDescript
or f£dObj)

ORACLE 180

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkWrite (String)

java.io.FileOutputStream
FileOutputStream(File file)
FileOutputStream(String
name)
FileOutputStream (
String name,
boolean append)

java.io.File

public boolean canWrite ()

public boolean
createNewFile ()

public static File
createTempFile (

String prefix, String

suffix)
public static File
createTempFile (

String prefix,

String suffix,

File directory)
public boolean mkdir ()
public boolean mkdirs ()
public boolean

renameTo (File dest)
public boolean
setLastModified(long time)
public boolean
setReadOnly ()

java.io.FilePermission
"{name}", "write"

checkPermission
java.io.0ObjectInputStreanm
protected final boolean

enableResolveObject (boolean
enable);

java.io.0ObjectOutputStream
protected final boolean

enableReplaceObject (boolean
enable)

java.io.SerializablePermission
"enableSubstitution"

ORACLE

1-81

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method Permission
checkPermission java.io.SerializablePermission
java.io.0ObjectInputStream "enableSubclassImplementation"
protected
ObjectInputStream()

java.io.0bjectOutputStream
protected
ObjectOutputStream()

checkRead (String) and
checkWrite (String)

java.io.RandomAccessFile
RandomAccessFile (String
name, String mode)

(where mode is "rw")

java.io.FilePermission
"{name}", "read,write"

checkPermission If loader is null, and the caller's class
java.lang.Class loader is not null, then
public static Class java.lang.RuntimePermissio
forName (n("getClassLoader")
String name,
boolean initialize,
ClassLoader loader)
checkPermission If the caller's class loader is null, or is

java.lang.Class
public ClassLoader

the same as or an ancestor of the class
loader for the class whose class loader
is being requested, no permission is

getClassLoader ()
needed. Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required
ORACLE

1-82

Table 1-4 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

java.lang.Class
public Class|[]
getDeclaredClasses ()
public Field[]
getDeclaredFields ()
public Method[]
getDeclaredMethods ()
public Constructor(]
getDeclaredConstructors ()
public Field
getDeclaredField (
String name)
public Method
getDeclaredMethod(...)
public Constructor

getDeclaredConstructor(...)

checkMemberAccess (this,
Member .DECLARED) and, if this
class is in a package,
checkPackageAccess ({pkgNam
e})

Default checkMemberAccess does
not require any permissions if "this"
class's class loader is the same as that
of the caller. Otherwise, it requires
java.lang.RuntimePermission
"accessDeclaredMembers". If this
class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is also required.

java.lang.Class

public Class[] getClasses()

public Field[] getFields()

public Method[]
getMethods ()

public Constructor(]
getConstructors ()

public Field
getField (String name)

public Method
getMethod(...)

public Constructor
getConstructor(...)

checkMemberAccess (this,
Member.PUBLIC) and, if classisin a
package,

checkPackageAccess ({pkgNam
el})

Default checkMemberAccess does
not require any permissions when the
access type is Member . PUBLIC. If
this class is in a package,
java.lang.RuntimePermission
"accessClassInPackage.
{pkgName}" is required.

java.lang.Class
public ProtectionDomain
getProtectionDomain ()

checkPermission

java.lang.RuntimePermission
"getProtectionDomain"

java.lang.ClassLoader
ClassLoader ()
ClassLoader (ClassLoader
parent)

checkCreateClassLoader

java.lang.RuntimePermission
"createClassLoader"

ORACLE

1-83

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPermission
java.lang.ClassLoader
public static ClassLoader
getSystemClassLoader ()
public ClassLoader
getParent ()

If the caller's class loader is null, or is
the same as or an ancestor of the class
loader for the class whose class loader
is being requested, no permission is
needed. Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required

checkExec

java.lang.Runtime
public Process exec(String
command)
public Process exec
String command,
String envpl])
public Process exec(String
cmdarrayl[])
public Process exec
String cmdarrayl[],
String envpl])

java.io.FilePermission
"{command}", "execute"

checkPermission

java.lang.Runtime
public void
addShutdownHook (Thread hook)
public boolean
removeShutdownHook (Thread
hook)

java.lang.RuntimePermission
"shutdownHooks"

checkLink ({1ibName}) where
{1libName} is the lib, filename or

java.lang.Runtime
public void load(String libname argument
1lib)
public void
loadLibrary(String 1lib)

java.lang.System
public static void
load(String filename)
public static void
loadLibrary (
String libname)

java.lang.RuntimePermission
"loadLibrary.{libName}"

java.lang.SecurityManager checkPermission
methods

See Table 1-5.

ORACLE

1-84

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPropertiesAccess

java.lang.System
public static Properties
getProperties|()
public static void
setProperties (Properties
props)

java.util.PropertyPermission
"k "read,write"

checkPropertyAccess
java.lang.System
public static String
getProperty (String key)
public static String
getProperty (String key,
String def)

java.util.PropertyPermission
"{key}", "read"

checkPermission java.lang.RuntimePermission
java.lang.System "setIO"
public static void
setIn(InputStream in)
public static void
setOut (PrintStream out)
public static void
setErr (PrintStream err)
checkPermission java.util.PropertyPermission
java.lang.System "{key}", "write"
public static String
setProperty (String key,
String value)
checkPermission java.lang.RuntimePermission
java.lang.System "setSecurityManager"
public static synchronized
void
setSecurityManager (SecurityMa
nager s)
checkPermission If the caller's class loader is null, or is

java.lang.Thread
public ClassLoader
getContextClassLoader ()

the same as or an ancestor of the
context class loader for the thread
whose context class loader is being
requested, no permission is needed.
Otherwise,
java.lang.RuntimePermission
"getClassLoader" is required

ORACLE

1-85

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPermission
java.lang.Thread
public void
setContextClassLoader (
ClassLoader cl)

java.lang.RuntimePermission
"setContextClassLoader"

checkAccess (this)
java.lang.Thread
public final void
checkAccess ()
public void interrupt ()
public final void suspend()
public final void resume ()
public final void
setPriority(
int newPriority)
public final void setName (
String name)
public final void
setDaemon (
boolean on)

java.lang.RuntimePermission
"modifyThread"

checkAccess ({threadGroup})
java.lang.Thread
public static int
enumerate (Thread
tarrayl[])

java.lang.RuntimePermission
"modifyThreadGroup"

checkAccess (this). Also
checkPermission if the current
thread is trying to stop a thread other
than itself.

java.lang.Thread
public final void stop ()

java.lang.RuntimePermission
"modifyThread".

Also java.lang.RuntimePermission
"stopThread" if the current thread is
trying to stop a thread other than itself.

checkAccess (this). Also
checkPermission if the current
thread is trying to stop a thread other
than itself or obj is not an instance of
ThreadDeath

java.lang.Thread
public final synchronized
void
stop (Throwable obj)

java.lang.RuntimePermission
"modifyThread".

Also java.lang.RuntimePermission
"stopThread" if the current thread is
trying to stop a thread other than itself
or ob7j is not an instance of
ThreadDeath.

ORACLE

1-86

Chapter 1
Permissions in the JDK

Table 1-4 (Cont.) Methods and the Permissions
|

Method SecurityManager Method Permission
checkAccess ({parentThreadG java.lang.RuntimePermission
java.lang.Thread roup}) "modifyThreadGroup"
Thread ()
Thread (Runnable target)
Thread(String name)
Thread (Runnable target,
String name)
java.lang.ThreadGroup
ThreadGroup (String name)
ThreadGroup (
ThreadGroup parent,
String name)
checkAccess (this) for java.lang.RuntimePermission
java.lang.Thread ThreadGroup methods, or "modifyThreadGroup"
Thread (ThreadGroup checkAccess (group) for Thread
group, ...) methods

java.lang.ThreadGroup
public final void
checkAccess ()
public int
enumerate (Thread 1list[])
public int enumerate (
Thread list[],
boolean recurse)
public int
enumerate (ThreadGroup list[])
public int enumerate (
ThreadGroup list[],
boolean recurse)
public final ThreadGroup
getParent ()
public final void
setDaemon (
boolean daemon)
public final void
setMaxPriority(int pri)
public final void suspend()
public final void resume ()
public final void destroy()

ORACLE

1-87

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkAccess (this)
java.lang.ThreadGroup
public final void
interrupt ()

Requires
java.lang.RuntimePermission
"modifyThreadGroup". Also requires
java.lang.RuntimePermission
"modifyThread", since the
java.lang.Thread

interrupt () method is called for
each thread in the thread group and in
all of its subgroups. See the Thread
interrupt () method

checkAccess (this)
java.lang.ThreadGroup
public final void stop()

Requires
java.lang.RuntimePermission
"modifyThreadGroup". Also requires
java.lang.RuntimePermission
"modifyThread" and possibly
java.lang.RuntimePermission
"stopThread", since the
java.lang.Thread stop()
method is called for each thread in the
thread group and in all of its subgroups.
See the Thread stop () method.

checkPermission
java.lang.reflect.AccessibleO
bject
public static void
setAccessible(...)
public void
setAccessible(...)

java.lang.reflect.ReflectPermis
sion "suppressAccessChecks"

checkPermission
java.net.Authenticator
public static
PasswordAuthentication

requestPasswordAuthenticatio
n(
InetAddress addr,
int port,
String protocol,
String prompt,
String scheme)

java.net.NetPermission
"requestPasswordAuthentication"

checkPermission
java.net.Authenticator
public static void
setDefault (Authenticator
a)

java.net.NetPermission
"setDefaultAuthenticator"

ORACLE

1-88

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#interrupt()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#interrupt()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.html#stop()

Table 1-4 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

java.net.MulticastSocket
public void
joinGroup (InetAddress
mcastaddr)
public void
leaveGroup (InetAddress
mcastaddr)

checkMulticast (InetAddress
)

java.net.SocketPermission(mcas
taddr.getHostAddress (),
"accept, connect")

java.net.DatagramSocket
public void
send (DatagramPacket p)

checkMulticast (p.getAddres
s()) or

checkConnect (p.getAddres
s () .getHostAddress (),
p.getPort())

if

(p.getAddress () .isMulticastAd

dress()) {
java.net.SocketPermission (

(p.getAddress()) .getHostAddre
ss (),
"accept, connect")

} else {

port = p.getPort();

host =
p.getAddress () .getHostAddres
s()i

if (port == -1)
java.net.SocketPermission
"{host}", "resolve";

else

java.net.SocketPermission
"{host}:{port}","connect";

}

ORACLE

1-89

Table 1-4 (Cont.) Methods and the Permissions
|

Chapter 1
Permissions in the JDK

Method SecurityManager Method Permission
checkMulticast (p.getAddres
java.net.MulticastSocket s(), ttl) or if

public synchronized void
send (DatagramPacket p,
byte ttl)

checkConnect (p.getAddres
s () .getHostAddress (),
p.getPort())

(p.getAddress () .isMulticastAd
dress()) {
java.net.SocketPermission (

(p.getAddress ()) .getHostAddre
ss(),
"accept, connect")

} else {

port = p.getPort();

host =
p.getAddress () .getHostAddres
s()7

if (port == -1)
java.net.SocketPermission
"{host}", "resolve";

else

java.net.SocketPermission
"{host}:{port}", "connect"

}

java.net.InetAddress

public String getHostName ()

public static InetAddress[]
getAllByName (String host)

public static InetAddress

getLocalHost ()

java.net.DatagramSocket
public InetAddress
getLocalAddress ()

checkConnect ({host}, -1)

java.net.SocketPermission
"{host}", "resolve"

java.net.ServerSocket
ServerSocket (...)

java.net.DatagramSocket
DatagramSocket (...)

java.net.MulticastSocket
MulticastSocket(...)

checkListen ({port})

java.net.SocketPermission
"localhost: {port}","listen";

ORACLE

1-90

Chapter 1
Permissions in the JDK

Table 1-4 (Cont.) Methods and the Permissions
|

Method SecurityManager Method Permission
checkAccept ({host}, java.net.SocketPermission
java.net.ServerSocket {port}) "{host}:{port}", "accept"

public Socket accept ()
protected final void
implAccept (Socket s)

ORACLE Lot

Chapter 1
Permissions in the JDK

Table 1-4 (Cont.) Methods and the Permissions
|

Method SecurityManager Method Permission
checkSetFactory java.lang.RuntimePermission
java.net.ServerSocket "setFactory"
public static synchronized
void
setSocketFactory(...)

java.net.Socket
public static synchronized
void
setSocketImplFactory(...)

java.net.URL
public static synchronized
void

setURLStreamHandlerFactory (..
.)

java.net.URLConnection
public static synchronized
void

setContentHandlerFactory(...)
public static void

setFileNameMap (FileNameMap
map)

java.net.HttpURLConnection
public static void

setFollowRedirects (boolean
set)

java.rmi.activation.Activatio
nGroup
public static synchronized
ActivationGroup
createGroup(...)
public static synchronized
void

setSystem (ActivationSystem
system)

java.rmi.server.RMISocketFact
ory
public synchronized static

ORACLE Loo

Table 1-4 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

void
setSocketFactory(...)

java.net.Socket
Socket (...)

checkConnect ({host},
{port})

java.net.SocketPermission
"{host}:{port}", "connect"

checkAccept ({host},

java.net.SocketPermission

java.net.DatagramSocket {port}) "{host}:{port}", "accept"
public synchronized void
receive (DatagramPacket p)
checkPermission java.net.NetPermission

java.net.URL URL(...)

"specifyStreamHandler"

java.net.URLClassLoader
URLClassLoader(...)

checkCreateClassLoader

java.lang.RuntimePermission
"createClassLoader"

java.security.AccessControlCo
ntext
public
AccessControlContext (
AccessControlContext acc,
DomainCombiner combiner)
public DomainCombiner
getDomainCombiner ()

checkPermission

java.security.SecurityPermissio
n "createAccessControlContext"

java.security.Identity
public void
addCertificate(...)

checkSecurityAccess ("addId
entityCertificate")

java.security.SecurityPermissio
n "addIdentityCertificate"

java.security.Identity
public void
removeCertificate(...)

checkSecurityAccess ("remov
eldentityCertificate")

java.security.SecurityPermissio
n "removeldentityCertificate"

java.security.Identity
public void setInfo(String
info)

checkSecurityAccess ("setId
entityInfo")

java.security.SecurityPermissio
n "setIdentityInfo"

ORACLE

1-93

Table 1-4 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

java.security.Identity
public void
setPublicKey (PublicKey key)

checkSecurityAccess ("setId
entityPublicKey")

java.security.SecurityPermissio
n "setIdentityPublicKey"

java.security.Identity
public String toString(...)

checkSecurityAccess ("print
Identity")

java.security.SecurityPermissio
n "printIdentity"

java.security.IdentityScope
protected static void
setSystemScope ()

checkSecurityAccess ("setSy
stemScope")

java.security.SecurityPermissio
n "setSystemScope"

java.security.Permission
public void
checkGuard (Object object)

checkPermission (this)

This Permission objectis the
permission checked.

checkPermission java.security.SecurityPermissio
java.security.Policy n "getPolicy"
public static Policy
getPolicy()
checkPermission java.security.SecurityPermissio
java.security.Policy n "setPolicy"
public static void
setPolicy(Policy policy)
checkPermission java.security.SecurityPermissio

java.security.Policy
public static Policy
getInstance(
String type,
SpiParameter params)
getInstance(
String type,
SpiParameter params,
String provider)
getInstance(
String type,
SpiParameter params,
Provider provider)

n "createPolicy.{type}"

ORACLE

1-94

Table 1-4 (Cont.) Methods and the Permissions

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

java.security.Provider
public synchronized void
clear ()

checkSecurityAccess ("clear
ProviderProperties."+
{name})

java.security.SecurityPermissio
n "clearProviderProperties.
{name}" where name is the provider
name.

java.security.Provider
public synchronized Object
put (Object key, Object
value)

checkSecurityAccess ("putPr
oviderProperty."+{name})

java.security.SecurityPermissio
n "putProviderProperty. {name}"
where name is the provider name.

java.security.Provider
public synchronized Object
remove (Object key)

checkSecurityAccess ("remov
eProviderProperty."+
{name})

java.security.SecurityPermissio
n "removeProviderProperty.
{name}" where name is the provider
name.

java.security.SecureClassLoad
er
SecureClassLoader(...)

checkCreateClassLoader

java.lang.RuntimePermission
"createClassLoader"

java.security.Security
public static void
getProperty (String key)

checkPermission

java.security.SecurityPermissio
n "getProperty.{key}"

java.security.Security
public static int
addProvider (Provider
provider)
public static int
insertProviderAt (
Provider provider,
int position);

checkSecurityAccess ("inser
tProvider."+provider.getNa
me ())

java.security.SecurityPermissio
n "insertProvider. {name}"

java.security.Security
public static void
removeProvider (String
name)

checkSecurityAccess ("remov
eProvider."+name)

java.security.SecurityPermissio
n "removeProvider. {name}"

ORACLE

1-95

Table 1-4 (Cont.) Methods and the Permissions
|

Method

SecurityManager Method

Chapter 1
Permissions in the JDK

Permission

java.security.Security
public static void
setProperty(String key,
String datum)

checkSecurityAccess ("setPr
operty."+key)

java.security.SecurityPermissio
n "setProperty.{key}"

java.security.Signer
public PrivateKey
getPrivateKey ()

checkSecurityAccess ("getSi
gnerPrivateKey")

java.security.SecurityPermissio
n "getSignerPrivateKey"

java.security.Signer
public final void
setKeyPair (KeyPair pair)

checkSecurityAccess ("setSi
gnerKeypair")

java.security.SecurityPermissio
n "setSignerKeypair"

java.sgl.DriverManager
public static synchronized
void
setLogWriter (PrintWriter
out)

checkPermission

java.sql.SQLPermission "setLog"

java.sqgl.DriverManager
public static synchronized
void
setLogStream (PrintWriter
out)

checkPermission

java.sql.SQLPermission "setLog"

java.util.Locale
public static synchronized
void
setDefault (Locale
newLocale)

checkPermission

java.util.PropertyPermission

non

"user.language", "write"

java.util.zip.ZipFile
ZipFile (String name)

checkRead

java.io.FilePermission
" {name } n , "read"

ORACLE

1-96

Table 1-4 (Cont.) Methods and the Permissions
|

Chapter 1
Permissions in the JDK

Method SecurityManager Method Permission
checkPermission javax.security.auth.AuthPermiss
javax.security.auth.Subject ion "getSubject"
public static Subject
getSubject (
final
AccessControlContext acc)
checkPermission javax.security.auth.AuthPermiss
javax.security.auth.Subject ion "setReadOnly"
public void setReadOnly ()
checkPermission javax.security.auth.AuthPermiss
javax.security.auth.Subject ion "doAs"
public static Object doAs(
final Subject subject,
final PrivilegedAction
action)
checkPermission javax.security.auth.AuthPermiss
javax.security.auth.Subject ion "doAs"
public static Object doAs(
final Subject subject,
final
PrivilegedExceptionAction
action)
throws
java.security.PrivilegedActio
nException
checkPermission javax.security.auth.AuthPermiss

javax.security.auth.Subject
public static Object

doAsPrivileged (

final Subject subject,

final PrivilegedAction
action,

final
AccessControlContext acc)

ion "doAsPrivileged"

ORACLE

1-97

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPermission
javax.security.auth.Subject
public static Object

doAsPrivileged(

final Subject subject,

final
PrivilegedExceptionAction
action,

final
AccessControlContext acc)

throws

java.security.PrivilegedActio
nException

javax.security.auth.AuthPermiss
ion "doAsPrivileged"

checkPermission javax.security.auth.AuthPermiss
javax.security.auth.SubjectDo ion
mainCombiner "getSubjectFromDomainCombiner"
public Subject getSubject ()
checkPermission javax.security.auth.AuthPermiss
ion
javax.security.auth.SubjectDo "getSubjectFromDomainCombiner"
mainCombiner
public Subject getSubject()
checkPermission javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"
javax.security.auth.login.Log
inContext
public LoginContext (String
name)
throws LoginException
checkPermission javax.security.auth.AuthPermiss

javax.security.auth.login.Log
inContext
public LoginContext (
String name,
Subject subject)
throws LoginException

ion "createLoginContext.{name}"

ORACLE

1-98

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method

Permission

checkPermission
javax.security.auth.login.Log
inContext
public LoginContext (

String name,

CallbackHandler
callbackHandler)

throws LoginException

javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

checkPermission
javax.security.auth.login.Log
inContext
public LoginContext (
String name,
Subject subject,
CallbackHandler
callbackHandler)
throws LoginException

javax.security.auth.AuthPermiss
ion "createLoginContext.{name}"

checkPermission
javax.security.auth.login.Con
figuration
public static Configuration
getConfiguration()

javax.security.auth.AuthPermiss
ion "getLoginConfiguration"

checkPermission
javax.security.auth.login.Con
figuration
public static void
setConfiguration (
Configuration
configuration)

javax.security.auth.AuthPermiss
ion "setLoginConfiguration"

checkPermission
javax.security.auth.login.Con
figuration
public static void
refresh ()

javax.security.auth.AuthPermiss
ion "refreshLoginConfiguration"

ORACLE

1-99

Table 1-4 (Cont.) Methods and the Permissions

Chapter 1
Permissions in the JDK

Method SecurityManager Method Permission
checkPermission javax.security.auth.AuthPermiss
javax.security.auth.login.Con ion "createloginConfiguration.
figuration {typel}l"
public static Configuration
getInstance (

String type,
SpiParameter params)
getInstance (
String type,
SpiParameter params,
String provider)
getInstance (String type,
SpiParameter params,
Provider provider)

java.lang.SecurityManager Method Permission Checks

The following table shows which permissions are checked by the default implementations of
the java.lang.SecurityManager methods.

Each of the specified check methods calls the SecurityManager checkPermission method with
the specified permission, except for the checkConnect and checkRead methods that take a
context argument. Those methods expect the context to be an AccessControlContext and
they call the context's checkPermission method with the specified permission.

Table 1-5 java.lang.SecurityManager Methods and Permissions

Method

Permission

public void checkAccept (String host, int
port);

java.net.SocketPermission "{host}:{port}",
"accept";

public void checkAccess (Thread t);

java.lang.RuntimePermission "modifyThread";

public void checkAccess (ThreadGroup g);

java.lang.RuntimePermission
"modifyThreadGroup";

ORACLE

1-100

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Chapter 1
Permissions in the JDK

Method

Permission

public void checkAwtEventQueueAccess () ;

Note:

This method is deprecated; use
instead public void
checkPermission (Perm
ission perm);

java.awt.AWTPermission "accessEventQueue";

public void checkConnect (String host, int
port);

if (port == -1)
java.net.SocketPermission

"{host}","resolve";

else

java.net.SocketPermission "{host}:
{port}", "connect";
public void checkConnect (if (port == -1)
String host, java.net.SocketPermission
int port, "{host}", "resolve";
Object context); else
java.net.SocketPermission "{host}:

{port}", "connect";

public void checkCreateClassLoader () ;

java.lang.RuntimePermission
"createClassLoader";

public void checkDelete (String file);

java.io.FilePermission "{file}", "delete";

public void checkExec (String cmd);

if cmd is an absolute path:

java.io.FilePermission "{cmd}", "execute";

else

java.io.FilePermission "<<ALL FILES>>",

"execute";

ORACLE

1-101

Chapter 1
Permissions in the JDK

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method

Permission

public void checkExit (int status);

java.lang.RuntimePermission "exitVM.
{status}";

public void checkLink (String 1lib);

java.lang.RuntimePermission "loadLibrary.
{1ib}";

public void checkListen (int port);

java.net.SocketPermission "localhost:
{port}","listen";

public void checkMemberAccess (Class clazz,
int which);

Note:

This method is deprecated; use
instead public void
checkPermission (Perm
ission perm);

if (which != Member.PUBLIC) {
if (currentClassLoader() !=
clazz.getClassLoader()) {
checkPermission (
new java.lang.RuntimePermission (
"accessDeclaredMembers")) ;

public void checkMulticast (InetAddress
maddr) ;

java.net.SocketPermission (
maddr.getHostAddress (), "accept, connect") ;

public void checkMulticast (InetAddress
maddr, byte ttl);

Note:

This method is deprecated; use
instead public void
checkPermission (Perm
ission perm) ;

java.net.SocketPermission (
maddr.getHostAddress (), "accept, connect");

public void checkPackageAccess (String pkg);

java.lang.RuntimePermission
"accessClassInPackage. {pkg}";

ORACLE

1-102

Chapter 1
Permissions in the JDK

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method Permission

public void checkPackageDefinition (String java.lang.RuntimePermission

pkg) ; "defineClassInPackage. {pkg}";

public void checkPrintJobAccess(); java.lang.RuntimePermission "queuePrintJob";

public void checkPropertiesAccess|(); java.util.PropertyPermission "*",
"read,write";

public void checkPropertyAccess (String key); java.util.PropertyPermission "{key}",
"read,write";

public void checkRead(FileDescriptor fd); java.lang.RuntimePermission
"readFileDescriptor";

public void checkRead (String file); java.io.FilePermission "{file}", "read";

public void checkRead(String file, Object java.io.FilePermission "{file}", "read";

context);

public void checkSecurityAccess (String java.security.SecurityPermission "{target}";

target);

public void checkSetFactory(); java.lang.RuntimePermission "setFactory";

ORACLE

1-103

Permissions in the JDK

Table 1-5 (Cont.) java.lang.SecurityManager Methods and Permissions

Method

Permission

public void checkSystemClipboardAccess () ;

Note:

This method is deprecated; use
instead public void
checkPermission (Perm
ission perm);

java.awt.AWTPermission "accessClipboard";

public boolean checkTopLevelWindow (Object
window) ;

Note:

This method is deprecated; use
instead public void
checkPermission (Perm
ission perm);

java.awt.AWTPermission
"showWindowWithoutWarningBanner";

public void checkWrite (FileDescriptor fd);

java.lang.RuntimePermission
"writeFileDescriptor";

public void checkWrite (String file);

java.io.FilePermission "{file}", "write";

public SecurityManager();

java.lang.RuntimePermission
"createSecurityManager";

JDK Supported Permissions

The following permissions are not standard but the JDK supports them; you may need to grant

them in policy files.

* jdk.net.NetworkPermission "setOption.SO FLOW SLA";

o com.sun.tools.attach.AttachPermission "attachVirtualMachine";

e com.sun.jdi.JDIPermission "virtualMachineManager";

* com.sun.security.jgss.InquireSecContextPermission "*";

ORACLE

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.net/jdk/net/NetworkPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.attach/com/sun/tools/attach/AttachPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/com/sun/jdi/JDIPermission.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.jgss/com/sun/security/jgss/InquireSecContextPermission.html

Chapter 1
Permissions in the JDK

e jdk.jfr.FlightRecorderPermission "accessFlightRecorder", "registerEvent";

Default Policy Implementation and Policy File Syntax

The policy for a Java programming language application environment (specifying which
permissions are available for code from various sources, and executing as various principals)
is represented by a Policy object. More specifically, it is represented by a Policy subclass
providing an implementation of the abstract methods in the Policy class (which is in the
java.security package).

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

The source location for the policy information utilized by the Policy object is up to the Policy
implementation. The Policy reference implementation obtains its information from static policy
configuration files.

The rest of this document pertains to the Policy reference implementation and the syntax that
must be used in policy files it reads:

e Default Policy Implementation

« Default Policy File Locations

* Modifying the Policy Implementation

* Policy File Syntax

e Policy File Examples

* Property Expansion in Policy Files

e Windows Systems, File Paths, and Property Expansion

* General Expansion in Policy Files

Default Policy Implementation

In the Policy reference implementation, the policy can be specified within one or more policy
configuration files. The configuration file(s) specify what permissions are allowed for code from
a specified code source, and executed by a specified principal. Each configuration file must be
encoded in UTF-8.

There is by default a single system-wide policy file, and a single (optional) user policy file. By
default, permissions required by JDK modules that are loaded by the platform class loader or
its ancestors are always granted.

The Policy reference implementation is initialized the first time its getPermissions method is
called, or whenever its refresh method is called. Initialization involves parsing the policy
configuration file(s) (see Policy File Syntax), and then populating the Po1icy object.

Default Policy File Locations

There is by default a single system-wide policy file, and a single (optional) user policy file.
When the Policy is initialized, the system policy is loaded in first, and then the user policy is

ORACLE 1105

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jfr/jdk/jfr/FlightRecorderPermission.html
https://openjdk.java.net/jeps/411

ORACLE

Chapter 1
Permissions in the JDK

added to it. If neither policy is present, a built-in policy is used. This built-in policy is the same
as the java.policy file installed with the JDK.

System Policy File Locations
By default, the system policy file is <java-home>/conf/security/java.policy.

The system policy file is meant to grant system-wide code permissions. The java.policy file
installed with the JDK allows anyone to listen on dynamic ports, and allows any code to read
certain "standard" properties that are not security-sensitive, such as the os.name and
file.separator properties.

User Policy File Location

By default, the user policy file is <user-home>/.java.policy.

Policy File Location and Format

Policy file locations are specified in the security properties file <java-home>/conf/
security/java.security

The policy file locations are specified as the values of properties whose names are of the
following form:

policy.url.n

Here, n is a number. You specify each such property value in a line of the following form:

policy.url.n=URL

Here, URL is a URL specification. For example, the default system and user policy files are
defined in the security properties file as:

policy.url.l=file:${java.home}/conf/security/java.policy
policy.url.2=file:${user.home}/.java.policy

(See Property Expansion in Policy Files for information about specifying property values via a
special syntax, such as specifying the java.home property value via ${java.home}.)

You can actually specify a number of URLs (including ones of the form "http://"), and all the
designated policy files will get loaded. You can also comment out or change the second one to
disable reading the default user policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not find a URL.
Thus if you have policy.url.1 and policy.url.3, and policy.url.3 will never be read.

Specifying an Additional Policy File at Runtime

It is also possible to specify an additional or a different policy file when invoking execution of an
application. This can be done via the -Djava.security.policy command line argument, which
sets the value of the java.security.policy property. For example, if you use following
command, where someURL is a URL specifying the location of a policy file, then the specified

1-106

Chapter 1
Permissions in the JDK

policy file will be loaded in addition to all the policy files that are specified in the security
properties file.

java -Djava.security.manager -Djava.security.policy=someURL SomeApp

The URL can be any regular URL or simply the name of a policy file in the current directory, as
in:

java -Djava.security.manager -Djava.security.policy=mypolicy SomeApp

The -Djava.security.manager option ensures that the default security manager is installed,
and thus the application is subject to policy checks. It is not required if the application SomeApp
installs a security manager.

If you use the following command (note the double equals) then just the specified policy file will
be used; all the ones indicated in the security properties file will be ignored.

java -Djava.security.manager -Djava.security.policy==someURL SomeApp

Note:

The policy file value of the -Djava.security.policy option is ignored if the
policy.allowSystemProperty property in the security properties file is set to false.
The default is true.

Modifying the Policy Implementation

ORACLE

The Policy reference implementation can be modified by editing the security properties file,
which is the java.security file in the conf/security directory of the JDK.

An alternative policy class can be given to replace the Policy reference implementation class,
as long as the former is a subclass of the abstract Policy class and implements the
getPermissions method (and other methods as necessary).

One of the types of properties you can set in java.security is of the following form:

policy.provider=PolicyClassName

PolicyClassName must specify the fully qualified name of the desired Policy implementation
class.

The default security properties file entry for this property is the following:

policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

policy.provider=com.mycom.MyPolicy

1-107

Chapter 1
Permissions in the JDK

Policy File Syntax

Keystore Entry

ORACLE

The policy configuration file(s) for a JDK installation specifies what permissions (which types of
system resource accesses) are granted to code from a specified code source, and executed as
a specified principal.

For an applet (or an application running under a security manager) to be allowed to perform
secured actions (such as reading or writing a file), the applet (or application) must be granted
permission for that particular action. In the Policy reference implementation, that permission
must be granted by a grant entry in a policy configuration file. The only exception is that code
always automatically has permission to read files from its same (URL) location, and
subdirectories of that location; it does not need explicit permission to do so.

A policy configuration file essentially contains a list of entries. It may contain a "keystore" entry,
and contains zero or more "grant" entries.

A keystore is a database of private keys and their associated digital certificates such as X.509
certificate chains authenticating the corresponding public keys. The keytool utility is used to
create and administer keystores. The keystore specified in a policy configuration file is used to
look up the public keys of the signers specified in the grant entries of the file. A keystore entry
must appear in a policy configuration file if any grant entries specify signer aliases, or if any
grant entries specify principal aliases.

At this time, there can be only one keystore/keystorePasswordURL entry in the policy file
(other entries following the first one are ignored). This entry can appear anywhere outside the
file's grant entries. It has the following syntax:

keystore "some keystore url", "keystore type", "keystore provider";
keystorePasswordURL "some password url";

Here,

some_keystore_url
Specifies the URL location of the keystore.

some_password_url
Specifies the URL location of the keystore password.

keystore_type
Specifies the keystore type.

keystore_provider
Specifies the keystore provider.

1-108

Chapter 1
Permissions in the JDK

Note:

* The input stream from some keystore url is passed to the KeyStore.load
method.

» If NONE is specified as the URL, then a null stream is passed to the
KeyStore.load method. NONE should be specified in the URL if the KeyStore
is not file-based. For example, if it resides on a hardware token device.

e The URL is relative to the policy file location. If the policy file is specified in the
security properties file as:

policy.url.l=http://foo.example.com/fum/some.policy

and that policy file has an entry:

keystore ".keystore";

then the keystore will be loaded from:
http://foo.example.com/fum/.keystore

« The URL can also be absolute.

A keystore type defines the storage and data format of the keystore information, and the
algorithms used to protect private keys in the keystore and the integrity of the keystore itself.
The default type is "PKCS12". Thus, if the keystore type is "PKCS12", it does not need to be
specified in the keystore entry.

Grant Entries

Code being executed is always considered to come from a particular "code source"
(represented by an object of type Codesource). The code source includes not only the location
(URL) where the code originated from, but also a reference to the certificate(s) containing the
public key(s) corresponding to the private key(s) used to sign the code. Certificates in a code
source are referenced by symbolic alias names from the user's keystore. Code is also
considered to be executed as a particular principal (represented by an object of type
Principal), or group of principals.

Each grant entry includes one or more "permission entries" preceded by optional codeBase,
signedBy, and principal name/value pairs that specify which code you want to grant the
permissions. The basic format of a grant entry is the following:

grant signedBy "signer names", codeBase "URL",
principal principal class name "principal name",
principal principal class name "principal name",

{

permission permission class name "target name", "action",
signedBy "signer names";
permission permission class name "target name", "action",

signedBy "signer names";

ORACLE 1100

The SignedBy,

ORACLE

Chapter 1
Permissions in the JDK

}i

All non-italicized items must appear as-is (although case doesn't matter and some are
optional). Italicized items represent variable values.

A grant entry must begin with the word grant.

Principal, and CodeBase Fields

The signedBy, codeBase, and principal values are optional, and the order of these fields does
not matter.

signedBy Value

A signedBy value indicates the alias for a certificate stored in the keystore. The public key
within that certificate is used to verify the digital signature on the code; you grant the
permission(s) to code signed by the private key corresponding to the public key in the keystore
entry specified by the alias.

The signedBy value can be a comma-separated list of multiple aliases. An example is
"Adam,Eve,Charles", which means "signed by Adam and Eve and Charles"; the relationship is
AND, not OR. To be more exact, a statement like "Code signed by Adam" means "Code in a
class file contained in a JAR which is signed using the private key corresponding to the public
key certificate in the keystore whose entry is aliased by Adam".

The signedBy field is optional in that, if it is omitted, it signifies "any signer". It doesn't matter
whether the code is signed or not or by whom.

principal Value

A principal value specifies a class_name/principal name pair which must be present within the
executing thread's principal set. The principal set is associated with the executing code by way
of a Subject.

The principal class name may be set to the wildcard value, *, which allows it to match any
Principal class. In addition, the principal name may also be set to the wildcard value, *,
allowing it to match any Principal name. When setting the principal class name Or
principal name to *, do not surround the * with quotes. Also, if you specify a wildcard principal
class, you must also specify a wildcard principal name.

The principal field is optional in that, if it is omitted, it signifies "any principals".

Keystore Alias Replacement

If the principal class namefprincipal name pair is specified as a single quoted string, then it is
treated as a keystore alias. The keystore is consulted and queried (via the alias) for an X509
Certificate. If one is found, the principal class_name is automatically treated as
javax.security.auth.x500.X500Principal, and the principal name is automatically treated
as the subject distinguished name from the certificate. If an X509 Certificate mapping is not
found, the entire grant entry is ignored.

codeBase Value

A codeBase value indicates the code source location; you grant the permission(s) to code from
that location. An empty codeBase entry signifies "any code"; it doesn't matter where the code
originates from.

1-110

Chapter 1
Permissions in the JDK

Note:

A codeBase value is a URL and thus should always utilize slashes (never
backslashes) as the directory separator, even when the code source is actually on a
Windows system. Thus, if the source location for code on a Windows system is
actually C: \somepath\api\, then the policy codeBase entry should look like:

grant codeBase "file:/C:/somepath/api/" {

}i

The exact meaning of a codeBase value depends on the characters at the end. A codeBase with
a trailing "/" matches all class files (not JAR files) in the specified directory. A codeBase with a
trailing "/*" matches all files (both class and JAR files) contained in that directory. A codeBase

with a trailing "/-" matches all files (both class and JAR files) in the directory and recursively
all files in subdirectories contained in that directory. The following table illustrates the different

cases:

Table 1-6 How Codebase URLs in Downloaded Code Match Those in Policy Files

Codebase URL of Downloaded Code Codebase URL in Policy File Match?
www.example.com/usr/ann/ www.example.com/usr/ann Yes
www.example.com/usr/ann/ www.example.com/usr/ann/ Yes
www.example.com/usr/ann/ www.example.com/usr/ann/* Yes
www.example.com/usr/ann/ www.example.com/usr/ann/- Yes
www.example.com/usr/ann/appl.jar www.example.com/usr/ann/ No
www.example.com/usr/ann/appl.jar www.example.com/usr/ann/- Yes
www.example.com/usr/ann/appl.jar www.example.com/usr/ann/* Yes
www.example.com/usr/ann/appl.jar www.example.com/ust/- Yes
www.example.com/usr/ann/appl.jar www.example.com/usr/* No
www.example.com/usr/ann/ www.example.com/ust/- Yes
www.example.com/usr/ann/ www.example.com/usr/* No

If you are using a modular runtime image (see the jlink tool), you can grant permissions to
the application and library modules in the image by specifying a jrt URL as the codeBase
value in a policy file. See JEP 220: Modular Run-Time Images for more information about jrt

URLs.

The following example grants permission to read the foo property to the module

com.greetings:

grant codeBase "jrt:/com.greetings" {

permission java.util.PropertyPermission "foo",

}i

ORACLE

"read";

1-111

https://openjdk.java.net/jeps/220

Chapter 1
Permissions in the JDK

The Permission Entries

A permission entry must begin with the word permission. The word permission class name
in the template in the previous section would actually be a specific permission type, such as
java.io.FilePermission Or java.lang.RuntimePermission.

The "action" is required for many permission types, such as java.io.FilePermission (where it
specifies what type of file access is permitted). It is not required for categories such as
java.lang.RuntimePermission where it is not necessary, you either have the permission
specified by the "target name" value following the permission_class_name or you don't.

The signedBy name/value pair for a permission entry is optional. If present, it indicates a
signed permission. That is, the permission class itself must be signed by the given alias(es) in
order for the permission to be granted. For example, suppose you have the following grant
entry:

grant {
permission Foo "foobar", signedBy "FooSoft";

}i

Then this permission of type Foo is granted if the Foo.class permission was placed in a JAR
file and the JAR file was signed by the private key corresponding to the public key in the
certificate specified by the "FooSoft" alias, or if Foo.class is a system class, since system
classes are not subject to policy restrictions.

Items that appear in a permission entry must appear in the specified order (permission,
permission_class_name, "target_name", "action", and signedBy "signer_names"). An entry is

terminated with a semicolon.

Case is unimportant for the identifiers (permission, signedBy, codeBase, etc.) but is significant
for the permission_class_name or for any string that is passed in as a value.

< Note:

See Appendix A: FilePermission Path Name Canonicalization Disabled By Default for
important information about a change in how FilePermission path names are
canonicalized.

File Path Specifications on Windows Systems

ORACLE

When you are specifying a java.io.FilePermission, the "target_name" is a file path. On
Windows systems, whenever you directly specify a file path in a string (but not in a codebase
URL), you need to include two backslashes for each actual single backslash in the path, as in

grant {
permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";

i

The reason this is necessary is because the strings are processed by a tokenizer
(Java.io.StreamTokenizer), which allows "\" to be used as an escape string (for example, "\n"
to indicate a new line) and which thus requires two backslashes to indicate a single backslash.

1-112

Chapter 1
Permissions in the JDK

After the tokenizer has processed the previous file path string, converting double backslashes
to single backslashes, the end result is

"C:\users\cathy\foo.bat"

Policy File Examples

The following policy configuration file contains two entries:

// If the code is signed by "Duke", grant it read/write access to all
// files in /tmp:
grant signedBy "Duke" {

permission java.io.FilePermission "/tmp/*", "read,write";

}i

// Grant everyone the following permission:
grant {
permission java.util.PropertyPermission "java.vendor", "read";

}i

The following policy configuration file specifies that only code that satisfies the following
conditions can call methods in the Security class to add or remove providers or to set
Security Properties:

e The code was loaded from a signed JAR file that is in the "/home/sysadmin/" directory on
the local file system.

e The signature can be verified using the public key referenced by the alias name "sysadmin"
in the keystore.

grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*" {
permission java.security.SecurityPermission "Security.insertProvider.*";
permission java.security.SecurityPermission "Security.removeProvider.*";
permission java.security.SecurityPermission "Security.setProperty.*";

}i

Either component of the policy entry (or both) may be missing.

The following is a policy configuration file where codeBase is missing:

grant signedBy "sysadmin" {
permission java.security.SecurityPermission "Security.insertProvider.*";
permission java.security.SecurityPermission "Security.removeProvider.*";

}i

If this policy is in effect, then code that comes in a JAR file signed by "sysadmin" can add/
remove providers, regardless of where the JAR file originated from.

The following is a policy configuration file without a signer:

grant codeBase "file:/home/sysadmin/-" {
permission java.security.SecurityPermission "Security.insertProvider.*";

ORACLE 1113

Chapter 1
Permissions in the JDK

permission java.security.SecurityPermission "Security.removeProvider.*";

}i

In this case, code that comes from anywhere in the "home/sysadmin/" directory on the local
file system can add/remove providers. The code does not need to be signed.

The following is a policy configuration file where neither codeBase nor signedBy is included:

grant {
permission java.security.SecurityPermission "Security.insertProvider.*";
permission java.security.SecurityPermission "Security.removeProvider.*";

}i

Here, with both code source components missing, any code (regardless of where it originated
from, or whether or not it is signed, or who signed it) can add/remove providers.

The following represents a principal-based entry:

grant principal javax.security.auth.x500.X500Principal "cn=Alice" {
permission java.io.FilePermission "/home/Alice", "read, write";

}i

This permits any code executing as the X500Principal, "cn=Alice", permission to read and
write to "/home/Alice”.

The following represents a principal-based entry with a wildcard value:

grant principal javax.security.auth.x500.X500Principal * {
permission java.io.FilePermission "/tmp", "read, write";

}i

This permits any code executing as an X500Principal (regardless of the distinguished name),
permission to read and write to "'/ tmp”.

The following example shows a grant statement with both codesource and principal
information:

grant codebase "http://www.games.example.com",
signedBy "Duke",
principal javax.security.auth.x500.X500Principal "cn=Alice" {
permission java.io.FilePermission "/tmp/games", "read, write";

}i

This allows code downloaded from "www.games.example.com", signed by "Duke", and executed
by "cn=Alice", permission to read and write into the "/tmp/games" directory.

The following example shows a grant statement with KeyStore alias replacement:
keystore "http://foo.example.com/blah/.keystore";
grant principal "alice" {

permission java.io.FilePermission "/tmp/games", "read, write";

}i

ORACLE 1114

Chapter 1
Permissions in the JDK

"alice" will be replaced by the following:

javax.security.auth.x500.X500Principal "cn=Alice"

This assumes that X.509 certificate associated with the keystore alias, alice, has a subject
distinguished name of "cn=Alice". This allows code executed by the X500Principal "cn=Alice"
permission to read and write into the "/tmp/games" directory.

Property Expansion in Policy Files

Property expansion is possible in policy files and in the security properties file.

Property expansion is similar to expanding variables in a shell. That is, when a string like

${some.property}

appears in a policy file, or in the security properties file, it will be expanded to the value of the
system property. For example,

permission java.io.FilePermission "${user.home}", "read";

will expand "$ {user.home}" to use the value of the "user.home" system property. If that
property's value is "/home/cathy", then the previous example is equivalent to

permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the special notation of
"${/}", which is a shortcut for ${file.separator}". This allows things like

permission java.io.FilePermission "${user.home}$S{/}*", "read";

If the value of the "user.home " property is /home/cathy, and you are on Linux or macOS, the
previous example gets converted to:

permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand the "user.home" value is C:\users\cathy and you are on a Windows
system, the previous example gets converted to:

permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:${my.libraries}/api/"

ORACLE L11s

ORACLE

Chapter 1
Permissions in the JDK

then any file separator characters will be automatically converted to / characters. For example,
suppose the value of my.libraries is C:\Users\me\1lib. Thus on a Windows system, the
previous example would get converted to

grant

codeBase "file:C:/Users/me/lib/api/"

Thus you don't need to use ${/} in codebase strings (and you shouldn't). Property expansion
takes place anywhere a double quoted string is allowed in the policy file. This includes the
"signer_names", "URL", "target_name", and "action" fields. Whether or not property expansion
is allowed is controlled by the value of the "policy.expandProperties"” property in the security
properties file. If the value of this property is true (the default), expansion is allowed.

4

Note:

You can't use nested properties; they will not work. For example,

"S{user.S${foo}}"

doesn't work, even if the "foo" property is set to "home". The reason is the property
parser doesn't recognize nested properties; it simply looks for the first "s{", and then
keeps looking until it finds the first "}" and tries to interpret the result (in this case, "$
{user.$foo}") as a property, but fails if there is no such property.

Note:

If a property can't be expanded in a grant entry, permission entry, or keystore entry,
that entry is ignored. For example, if the system property "foo" is not defined and you
have:

grant codeBase "${foo}" {
permission ...;
permission ...;

}i

then all the permissions in this grant entry are ignored. If you have

grant {
permission Foo "${foo}";
permission Bar "barTarget";

b8

then only the "permission Foo..." entry is ignored. And finally, if you have

keystore "S${foo}";

then the keystore entry is ignored.

1-116

Chapter 1
Permissions in the JDK

Windows Systems, File Paths, and Property Expansion

The file path specifications on Windows systems should include two backslashes for each
actual single backslash.

As mentioned in File Path Specifications on Windows Systems, on Windows systems, when
you directly specify a file path in a string (but not in a codebase URL), you need to include two
backslashes for each actual single backslash in the path, as in

grant {

permission java.io.FilePermission "C:\\users\\cathy\\foo.bat", "read";

i

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer), which
allows "\" to be used as an escape string (e.g., "\n" to indicate a new line) and which thus
requires two backslashes to indicate a single backslash. After the tokenizer has processed the
previous file path string, converting double backslashes to single backslashes, the end result is

"C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed the string.
Thus if you have the string

"${user.home}\\foo.bat"

then first the tokenizer processes the string, converting the double backslashes to a single
backslash, and the result is

"S${user.home}\foo.bat"

Then the s{user.home} property is expanded and the end result is

"C:\users\cathy\foo.bat"

assuming the "user.home" value is C:\users\cathy. Of course, for platform independence, it
would be better if the string was initially specified without any explicit slashes, i.e., using the $
{/} property instead, as in

"S{user.home}${/}foo.bat"

General Expansion in Policy Files

Generalized forms of expansion are also supported in policy files. For example, permission
names may contain a string of the following form:

${{protocol:protocol data}}

ORACLE 1-117

ORACLE

Chapter 1
Permissions in the JDK

If such a string occurs in a permission name, then the value in protocol determines the exact
type of expansion that should occur, and protocol_data is used to help perform the expansion.
protocol_data may be empty, in which case the previous string should simply take the form:

${{protocol}}

There are two protocols supported in the default policy file implementation:

1.

S{{self}}

The protocol, self, denotes a replacement of the entire string, ${{self}}, with one or
more principal class/name pairs. The exact replacement performed depends upon the
contents of the grant clause to which the permission belongs.

If the grant clause does not contain any principal information, the permission will be
ignored (permissions containing ${{self}} in their target names are only valid in the
context of a principal-based grant clause). For example, BarPermission will always be
ignored in the following grant clause:

grant codebase "www.example.com", signedby "duke" {
permission BarPermission "... ${{self}} ...";

}i

If the grant clause contains principal information, ${{self}} will be replaced with that
same principal information. For example, ${{self}} in BarPermission will be replaced with
javax.security.auth.x500.X500Principal "cn=Duke" in the following grant clause:

grant principal javax.security.auth.x500.X500Principal "cn=Duke" ({
permission BarPermission "... ${{self}} ...";

}i

If there is a comma-separated list of principals in the grant clause, then ${{self}} will be
replaced by the same comma-separated list or principals. In the case where both the
principal class and name are wildcarded in the grant clause, ${{self}} is replaced with all
the principals associated with the Subject in the current AccessControlContext.

The following example describes a scenario involving both self and Keystore Alias
Replacement together:

keystore "http://foo.example.com/blah/.keystore";

grant principal "duke" {
permission BarPermission "... ${{self}} ...";

}i

In the previous example, "duke" will first be expanded into
javax.security.auth.x500.X500Principal "cn=Duke" assuming the X.509 certificate
associated with the KeyStore alias, "duke", has a subject distinguished name of "cn=Duke".
Next, s{{self}} will be replaced with the same principal information that was just
expanded in the grant clause: javax.security.auth.x500.X500Principal "cn=Duke".

${{alias:alias name}}

The protocol, alias, denotes a java.security.KeyStore alias substitution. The
KeyStore used is the one specified in the Keystore Entry. alias_name represents an alias

1-118

Chapter 1
Permissions in the JDK

into the KeyStore. ${{alias:alias name}} is replaced with
javax.security.auth.x500.X500Principal "DN", where DN represents the subject
distinguished name of the certificate belonging to alias_name. For example:

keystore "http://foo.example.com/blah/.keystore";

grant codebase "www.example.com" {
permission BarPermission "... ${{alias:duke}} ...";

}s

In the previous example the X.509 certificate associated with the alias, duke, is retrieved
from the KeyStore, foo.example.com/blah/.keystore. Assuming duke's certificate specifies
"o=dukeOrg, cn=duke" as the subject distinguished name, then ${{alias:duke}} is
replaced with javax.security.auth.x500.X500Principal "o=dukeOrg, cn=duke".

The permission entry is ignored under the following error conditions:
e The keystore entry is unspecified

e The alias_name is not provided

e The certificate for alias_name can not be retrieved

* The certificate retrieved is not an X.509 certificate

Appendix A: FilePermission Path Name Canonicalization Disabled By

Default

ORACLE

A canonical path is a path that doesn't contain any links or shortcuts. Performing path name
canonicalization in a FilePermission object can negatively affect performance.

Before JDK 9, path names were canonicalized when two FilePermission objects were
compared. This allowed a program to access a file using a different name than the name that
was granted to a FilePermission object in a policy file, as long as the object pointed to the
same file. Because the canonicalization had to access the underlying file system, it could be
quite slow.

In JDK 9, path name canonicalization is disabled by default. This means two FilePermission
objects aren’t equal to each other if one uses an absolute path and the other uses a relative
path, or one uses a symbolic link and the other uses a target, or one uses a Windows long
name and the other uses a DOS-style 8.3 name. This is true even if they all point to the same
file in the file system.

Therefore, if a path name is granted to a FilePermission object in a policy file, then the
program should also access that file using the same path name style. For example, if the path
name in the policy file is using a symbolic link, then the program should also use that symbolic
link. Accessing the file with the target path name will fail the permission check.

Compatibility Layer

A compatibility layer has been added to ensure that granting a FilePermission object for a
relative path will permit applications to access the file with an absolute path (and conversely).
This works for the default Policy provider and the Limited doPrivileged calls.

For example, a FilePermission object on a file with a relative path name of "a" no longer
implies a FilePermission object on the same file with an absolute path name as " /pwd/a"

1-119

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)

Chapter 1
Permissions in the JDK

("pwd" is the current working directory). Granting code a FilePermission oObject to read "a"
allows that code to also read "/pwd/a" when a Security Manager is enabled.

The compatibility layer doesn’t cover translations between symbolic links and targets, or
Windows long names and DOS-style 8.3 names, or any other different name forms that can be
canonicalized to the same name.

Customizing Path Name Canonicalization

The system properties in Table 1-7 can be used to customize the FilePermission path name
canonicalization. See How to Specify a java.lang.System Property.

Table 1-7 System Properties to Customize Path Name Canonicalization

System Property

Default Value

Description

jdk.io.permissionsUseCanonicalP false

ath

The system property can be used to
enable or disable path name
canonicalization in the
FilePermission object.

e Todisable FilePermission path
name canonicalization, set
jdk.io.permissionsUseCanoni
calPath=false.

e Toenable FilePermission path
name canonicalization, set
jdk.io.permissionsUseCanoni
calPath=true.

jdk.security.filePermCompat

false

The system property can be used to
extend the compatibility layer to support
third-party Policy implementations.

e To disable the system property, set
jdk.security.filePermCompat
=false.

The FilePermission for a relative
path will permit applications to
access the file with an absolute
path for the default Policy provider
and the Limited doPrivileged
method.

* To extend the compatibility layer to
support third-party Policy
implementations, set
jdk.security.filePermCompat
=true.

The FilePermission for a relative
path will permit applications to
access the file with an absolute
path for the default Policy provider,
the Limited doPrivileged
method, and for third-party Policy
implementations.

ORACLE

1-120

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#doPrivileged(java.security.PrivilegedExceptionAction,java.security.AccessControlContext,java.security.Permission...)

Chapter 1
Troubleshooting Security

Troubleshooting Security

To monitor security access, you can set the java.security.debug system property, which
determines what trace messages are printed during execution. To view security properties,
security providers, and TLS-related settings, specify the -XshowSettings:security option in
the java command.

Topics

e The java.security.debug System Property

e Printing Thread and Timestamp Information

* The java -XshowSettings:security Option

The java.security.debug System Property

To see a list of all debugging options, use the help option as follows. MyApp is any Java
application. The java command prints the debugging options and then exits before running

MyApp.

java -Djava.security.debug=help MyApp

< Note:

* To use more than one option, separate options with a comma.

e JSSE also provides dynamic debug tracing support for SSL/TLS/DTLS
troubleshooting. See Debugging Utilities.

The following table lists java.security.debug options and links to further information about
each option:

Table 1-8 java.security.debug Options

|
Option Description Further Information

all Turn on all the debugging options None

ORACLE 1101

Table 1-8 (Cont.) java.security.debug Options

Chapter 1
Troubleshooting Security

Option Description

Further Information

Print all results from the
AccessController.checkPermissio
n method.

access

You can use the following options with
the access option:

e stack: Include stack trace

* domain: Dump all domains in
context

e failure: Before throwing
exception, dump stack and domain
that do not have permission

You can use the following options with
the stack and domain options:

* permission=<classname>: Only
dump output if specified permission
is being checked

e codebase=<URL>: Only dump
output if specified codebase is being
checked

Permissions in the JDK

certpath Turns on debugging for the PKIX
CertPathvalidator and
CertPathBuilder implementations.
Use the ocsp option with the certpath
option for OCSP protocol tracing. A
hexadecimal dump of the OCSP request
and response bytes is displayed.

You can use the following options with
the certpath option:

e ocsp: Dump OCSP protocol
exchanges

e verbose: Print additional debugging
information

PKI Programmer's Guide Overview

combiner SubjectDomainCombiner debugging

Permissions in the JDK

configfile JAAS (Java Authentication and
Authorization Service) configuration file

loading

Java Authentication and Authorization
Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

configparser JAAS configuration file parsing

Java Authentication and Authorization
Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

ORACLE

1-122

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission(java.security.Permission)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/AccessController.html#checkPermission(java.security.Permission)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathValidator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/SubjectDomainCombiner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html

ORACLE

Table 1-8 (Cont.) java.security.debug Options

Chapter 1
Troubleshooting Security

Option Description

Further Information

gssloginconfig Java GSS (Generic Security Services)
login configuration file debugging

Java Generic Security Services: (Java
GSS) and Kerberos

JAAS and Java GSS-API Tutorial

javax.security.auth.login.Confi
guration: A Configuration object is
responsible for specifying which
javax.net.ssl.SSLEngine should be
used for a particular application, and in
what order the LoginModules should
be invoked.

Appendix B: JAAS Login Configuration
File

Advanced Security Programming in Java

SE Authentication, Secure
Communication and Single Sign-On

jar JAR file verification

Verifying Signed JAR Files from The
Java Tutorials

Note:

Use the
System
property
jdk.jar.
maxSigna
tureFile
Size to
specify the
maximum
size, in
bytes, of
signature
filesin a
signed
JAR. Its
default
value is
16000000
(16 MB).

jca JCA engine class debugging

Engine Classes and Algorithms

keystore Keystore debugging

Keystores
KeyStore

logincontext LoginContext results

Java Authentication and Authorization
Service (JAAS) Reference Guide

Use of JAAS Login Utility and Java
GSS-API for Secure Message
Exchanges

1-123

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/Configuration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLEngine.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/lab/
http://docs.oracle.com/javase/tutorial/deployment/jar/verify.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/login/LoginContext.html

ORACLE

Table 1-8 (Cont.) java.security.debug Options

Chapter 1
Troubleshooting Security

Option Description Further Information
pcsc Java Smart Card I/O and SunPCSC The SunPCSC Provider and the
provider debugging javax.smartcardio package
pkcsll PKCS11 session manager debugging PKCS#11 Reference Guide
pkcsllkeystore PKCS11 KeyStore debugging PKCS#11 Reference Guide
pkecsl2 PKCS12 KeyStore debugging None
policy Loading and granting permissions with Set up the Policy File to Grant the
policy file Required Permissions (Controlling
Applications) from The Java Tutorials
Default Policy Implementation and Policy
File Syntax
properties java.security configuration file None
debugging
provider Security provider debugging Java Cryptography Architecture (JCA)
The following options can be used with Reference Guide
the provider option:
engine=<engines>: The outputis
displayed only for a specified list of JCA
engines.
The supported values for <engines> are:
e Cipher
* KeyAgreement
* KeyGenerator
* KeyPairGenerator
* KeyStore
* Mac
* MessageDigest
* SecureRandom
e Signature
scl Permissions that SecureClassLoader Permissions in the JDK
assigns
securerandom SecureRandom debugging The SecureRandom Class
sunpkcsll SunPKCS11 provider debugging PKCS#11 Reference Guide
ts Timestamping debugging None
x509 X.509 certificate debugging X.509 Certificates and Certificate

Revocation Lists (CRLS)

Printing Thread and Timestamp Information

You can append the following strings to the value specified in the java.security.debug
system property to print additional information:

e +thread: Print thread and caller information

e +timestamp: Print timestamp information

1-124

http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
http://docs.oracle.com/javase/tutorial/security/tour2/step3.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/SecureClassLoader.html

Chapter 1
Troubleshooting Security

For example, to add thread, caller, and timestamp information to all debuging output, set the
java.security.debug system property on the command line as follows:

java -Djava.security.debug=all+thread+timestamp MyApp

The java -XshowSettings:security Option

ORACLE

You can specify the option -XshowSettings:security option in the java command to view
security properties, security providers, and TLS-related settings. The option shows third-party
security provider details if they are included in the application class path or module path and
such providers are configured in the java.security file.

In addition, you can specify -XshowSettings:security: <subcategory>where <subcategory>
is one of the following:

* all:show all security settings
° properties: show security properties
e providers: show static security provider settings

e tls: show TLS-related security settings

1-125

Java Cryptography Architecture (JCA)
Reference Guide

The Java Cryptography Architecture (JCA) is a major piece of the platform, and contains a
"provider" architecture and a set of APIs for digital signatures, message digests (hashes),
certificates and certificate validation, encryption (symmetric/asymmetric block/stream ciphers),
key generation and management, and secure random number generation, to name a few.

Introduction to Java Cryptography Architecture

The Java platform strongly emphasizes security, including language safety, cryptography,
public key infrastructure, authentication, secure communication, and access control.

The JCA is a major piece of the platform, and contains a "provider" architecture and a set of
APIs for digital signatures, message digests (hashes), certificates and certificate validation,
encryption (symmetric/asymmetric block/stream ciphers), key generation and management,
and secure random number generation, to name a few. These APIs allow developers to easily
integrate security into their application code. The architecture was designed around the
following principles:

* Implementation independence: Applications do not need to implement security
algorithms. Rather, they can request security services from the Java platform. Security
services are implemented in providers (see Cryptographic Service Providers), which are
plugged into the Java platform via a standard interface. An application may rely on multiple
independent providers for security functionality.

* Implementation interoperability: Providers are interoperable across applications.
Specifically, an application is not bound to a specific provider, and a provider is not bound
to a specific application.

* Algorithm extensibility: The Java platform includes a number of built-in providers that
implement a basic set of security services that are widely used today. However, some
applications may rely on emerging standards not yet implemented, or on proprietary
services. The Java platform supports the installation of custom providers that implement
such services.

Other cryptographic communication libraries available in the JDK use the JCA provider
architecture, but are described elsewhere. The JSSE components provides access to Secure
Socket Layer (SSL), Transport Layer Security (TLS), and Datagram Transport Layer Security
(DTLS) implementations; see Java Secure Socket Extension (JSSE) Reference Guide. You
can use Java Generic Security Services (JGSS) (via Kerberos) APIs, and Simple
Authentication and Security Layer (SASL) to securely exchange messages between
communicating applications; see Introduction to JAAS and Java GSS-API Tutorials and Java
SASL API Programming and Deployment Guide.

Notes on Terminology

e Priorto JDK 1.4, the JCE was an unbundled product, and as such, the JCA and JCE were
regularly referred to as separate, distinct components. As JCE is now bundled in the JDK,
the distinction is becoming less apparent. Since the JCE uses the same architecture as the
JCA, the JCE should be more properly thought of as a part of the JCA.

ORACLE o1

Chapter 2
Introduction to Java Cryptography Architecture

e The JCA within the JDK includes two software components:

— The framework that defines and supports cryptographic services for which providers
supply implementations. This framework includes packages such as java.security,
javax.crypto, javax.crypto.spec, and javax.crypto.interfaces.

— The actual providers such as Sun, SunRsaSign, SunJCE, which contain the actual
cryptographic implementations.

Whenever a specific JCA provider is mentioned, it will be referred to explicitly by the
provider's name.

WARNING:

The JCA makes it easy to incorporate security features into your application.
However, this document does not cover the theory of security/cryptography beyond
an elementary introduction to concepts necessary to discuss the APIs. This
document also does not cover the strengths/weaknesses of specific algorithms, not
does it cover protocol design. Cryptography is an advanced topic and one should
consult a solid, preferably recent, reference in order to make best use of these tools.
You should always understand what you are doing and why: DO NOT simply copy
random code and expect it to fully solve your usage scenario. Many applications
have been deployed that contain significant security or performance problems
because the wrong tool or algorithm was selected.

JCA Design Principles

ORACLE

The JCA was designed around these principles:

* Implementation independence and interoperability
* Algorithm independence and extensibility

Implementation independence and algorithm independence are complementary; you can use
cryptographic services, such as digital signatures and message digests, without worrying about
the implementation details or even the algorithms that form the basis for these concepts. While
complete algorithm-independence is not possible, the JCA provides standardized, algorithm-
specific APIs. When implementation-independence is not desirable, the JCA lets developers
indicate a specific implementation.

Algorithm independence is achieved by defining types of cryptographic "engines" (services),
and defining classes that provide the functionality of these cryptographic engines. These
classes are called engine classes, and examples are the MessageDigest, Signature,
KeyFactory, KeyPairGenerator, and Cipher classes.

Implementation independence is achieved using a "provider"-based architecture. The term
Cryptographic Service Provider (CSP), which is used interchangeably with the term "provider,"
(see Cryptographic Service Providers) refers to a package or set of packages that implement
one or more cryptographic services, such as digital signature algorithms, message digest
algorithms, and key conversion services. A program may simply request a particular type of
object (such as a signature object) implementing a particular service (such as the DSA
signature algorithm) and get an implementation from one of the installed providers. If desired, a
program may instead request an implementation from a specific provider. Providers may be
updated transparently to the application, for example when faster or more secure versions are
available.

2-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/KeyPairGenerator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html

Chapter 2
Introduction to Java Cryptography Architecture

Implementation interoperability means that various implementations can work with each other,
use each other's keys, or verify each other's signatures. This would mean, for example, that for
the same algorithms, a key generated by one provider would be usable by another, and a
signature generated by one provider would be verifiable by another.

Algorithm extensibility means that new algorithms that fit in one of the supported engine
classes can be added easily.

Provider Architecture

Providers contain a package (or a set of packages) that supply concrete implementations for
the advertised cryptographic algorithms.

Cryptographic Service Providers

java.security.Provider is the base class for all security providers. Each CSP contains an
instance of this class which contains the provider's name and lists all of the security services/
algorithms it implements. When an instance of a particular algorithm is needed, the JCA
framewaork consults the provider's database, and if a suitable match is found, the instance is
created.

Providers contain a package (or a set of packages) that supply concrete implementations for
the advertised cryptographic algorithms. Each JDK installation has one or more providers
installed and configured by default. Additional providers may be added statically or
dynamically. Clients may configure their runtime environment to specify the provider preference
order. The preference order is the order in which providers are searched for requested
services when no specific provider is requested.

To use the JCA, an application simply requests a particular type of object (such as a
MessageDigest) and a particular algorithm or service (such as the "SHA-256" algorithm), and
gets an implementation from one of the installed providers. For example, the following
statement requests a SHA-256 message digest from an installed provider:

md = MessageDigest.getInstance ("SHA-256");

Alternatively, the program can request the objects from a specific provider. Each provider has a
name used to refer to it. For example, the following statement requests a SHA-256 message
digest from the provider named ProviderC:

md = MessageDigest.getInstance ("SHA-256", "ProviderC");

The following figures illustrates requesting an SHA-256 message digest implementation. They
show three different providers that implement various message digest algorithms (SHA-256,
SHA-384, and SHA-512). The providers are ordered by preference from left to right (1-3). In
Figure 2-1, an application requests a SHA-256 algorithm implementation without specifying a
provider name. The providers are searched in preference order and the implementation from
the first provider supplying that particular algorithm, ProviderB, is returned. In Figure 2-2, the
application requests the SHA-256 algorithm implementation from a specific provider,
ProviderC. This time, the implementation from ProviderC is returned, even though a provider
with a higher preference order, ProviderB, also supplies an SHA-256 implementation.

ORACLE)3

ORACLE"

Chapter 2
Introduction to Java Cryptography Architecture

Figure 2-1 Request SHA-256 Message Digest Implementation Without Specifying
Provider

Application

| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256") from ProviderB

Provider Framework

i _.
! — % .
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

Figure 2-2 Request SHA-256 Message Digest with ProviderC

Application
| A
MessageDigest.getinstance SHA-256 MessageDigest
("SHA-256", “ProviderC”) from ProviderC

Provider Framework

|
: 9 :
1. ProviderA 2. ProviderB 3. ProviderC
MessageDigest MessageDigest MessageDigest
SHA-384 SHA-256 SHA-256
SHA-512 SHA-384 SHA-512

Cryptographic implementations in the JDK are distributed via several different providers (Sun,
SunJSSE, SunJCE, SunRsaSign) primarily for historical reasons, but to a lesser extent by the type

of functionality and algorithms they provide. Other Java runtime environments may not

2-4

Chapter 2
Introduction to Java Cryptography Architecture

necessarily contain these providers, so applications should not request a provider-specific
implementation unless it is known that a particular provider will be available.

The JCA offers a set of APIs that allow users to query which providers are installed and what
services they support.

This architecture also makes it easy for end-users to add additional providers. Many third party
provider implementations are already available. See The Provider Class for more information
on how providers are written, installed, and registered.

How Providers Are Actually Implemented

Algorithm independence is achieved by defining a generic high-level Application Programming
Interface (API) that all applications use to access a service type. Implementation independence
is achieved by having all provider implementations conform to well-defined interfaces.
Instances of engine classes are thus "backed" by implementation classes which have the
same method signatures. Application calls are routed through the engine class and are
delivered to the underlying backing implementation. The implementation handles the request
and returns the proper results.

The application API methods in each engine class are routed to the provider's implementations
through classes that implement the corresponding Service Provider Interface (SPI). That is, for
each engine class, there is a corresponding abstract SPI class which defines the methods that
each cryptographic service provider's algorithm must implement. The name of each SPI class
is the same as that of the corresponding engine class, followed by spi. For example, the
Signature engine class provides access to the functionality of a digital signature algorithm.
The actual provider implementation is supplied in a subclass of Signaturespi. Applications call
the engine class' APl methods, which in turn call the SPI methods in the actual implementation.

Each SPI class is abstract. To supply the implementation of a particular type of service for a
specific algorithm, a provider must subclass the corresponding SPI class and provide
implementations for all the abstract methods.

For each engine class in the API, implementation instances are requested and instantiated by
calling the getInstance () factory method in the engine class. A factory method is a static
method that returns an instance of a class. The engine classes use the framework provider
selection mechanism described previously to obtain the actual backing implementation (SPI),
and then creates the actual engine object. Each instance of the engine class encapsulates (as
a private field) the instance of the corresponding SPI class, known as the SPI object. All API
methods of an API object are declared final and their implementations invoke the
corresponding SPI methods of the encapsulated SPI object.

To make this clearer, review Example 2-1 and Figure 2-3:;

Example 2-1 Sample Code for Getting an Instance of an Engine Class

Cipher ¢ = Cipher.getInstance ("AES");
C.init (ENCRYPT MODE, key);

ORACLE oe

Keystores

ORACLE

Chapter 2
Introduction to Java Cryptography Architecture

Figure 2-3 Application Retrieves “AES” Cipher Instance

Application

c:Ciphar gatinstance(” AES™);

v

JCALCE
Signalur-c Cipher
Message Digest Hay Agresment
Ky Script Generatar ey Genaralor
Key Factory Secret key Factory
.ﬂ.lgurilhm Paramelers MALC

h J
CEP1 CE-F'2| CSFP3

Provider.class
“Ciphar.AES" —"com.foo AESCipher

com.foo.AESCipher.class

peckage com.foo:
class AESCiphar extende CipharSpi{

]

Here an application wants an "AES" javax.crypto.Cipher instance, and doesn't care which
provider is used. The application calls the getInstance () factory methods of the Cipher
engine class, which in turn asks the JCA framework to find the first provider instance that
supports "AES". The framework consults each installed provider, and obtains the provider's
instance of the Provider class. (Recall that the Provider class is a database of available
algorithms.) The framework searches each provider, finally finding a suitable entry in CSP3.
This database entry points to the implementation class com. foo.AESCipher which extends
CipherSpi, and is thus suitable for use by the Cipher engine class. An instance of

com. foo.AESCipher is created, and is encapsulated in a newly-created instance of
javax.crypto.Cipher, which is returned to the application. When the application now does the
init () operation on the Cipher instance, the Cipher engine class routes the request into the
corresponding engineInit () backing method in the com.foo.AESCipher class.

Java Security Standard Algorithm Names lists the Standard Names defined for the Java
environment. Other third-party providers may define their own implementations of these
services, or even additional services.

A database called a "keystore" can be used to manage a repository of keys and certificates.
Keystores are available to applications that need data for authentication, encryption, or signing
purposes.

Applications can access a keystore via an implementation of the KeyStore class, which is in
the java.security package. As of JDK 9, the default and recommended keystore type
(format) is "pkcs12", which is based on the RSA PKCS12 Personal Information Exchange
Syntax Standard. Previously, the default keystore type was "jks", which is a proprietary format.
Other keystore formats are available, such as "jceks", which is an alternate proprietary
keystore format, and "pkcs11", which is based on the RSA PKCS11 Standard and supports
access to cryptographic tokens such as hardware security modules and smartcards.

2-6

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Chapter 2
Introduction to Java Cryptography Architecture

Applications can choose different keystore implementations from different providers, using the
same provider mechanism described previously. See Key Management.

Engine Classes and Algorithms

An engine class provides the interface to a specific type of cryptographic service, independent
of a particular cryptographic algorithm or provider.

ORACLE

The engine classes provide one of the following:

cryptographic operations (for example, encryption, digital signatures, and message
digests),

generators or converters of cryptographic material (keys and algorithm parameters), or

objects (keystores or certificates) that encapsulate the cryptographic data and can be used
at higher layers of abstraction.

The following engine classes are available:

SecureRandom: Used to generate random or pseudo-random numbers.
MessageDigest: Used to calculate the message digest (hash) of specified data.
Signature: Initialized with keys, these are used to sign data and verify digital signatures.

Cipher: Initialized with keys, these used for encrypting/decrypting data. There are various
types of algorithms: symmetric bulk encryption (for example, AES), asymmetric encryption
(for example, RSA), and password-based encryption (for example, PBE).

Mac: Like MessageDigests, Message Authentication Codes (MACs) also generate hash
values, but are first initialized with keys to protect the integrity of messages.

KEM: Used by two parties to derive a shared secret key from a private/public key pair.

KeyFactory: Used to convert existing opaque cryptographic keys of type Key into key
specifications (transparent representations of the underlying key material) and the other
way around.

SecretKeyFactory: Used to convert existing opaque cryptographic keys of type SecretKey
into key specifications (transparent representations of the underlying key material) and the
other way around. SecretKeyFactorys are specialized KeyFactorys that create secret
(symmetric) keys only.

KeyPairGenerator: Used to generate a new pair of public and private keys suitable for use
with a specified algorithm.
KeyGenerator: Used to generate new secret keys for use with a specified algorithm.

KeyAgreement: Used by two or more parties to agree upon and establish a specific key to
use for a particular cryptographic operation.

AlgorithmParameters: Used to store the parameters for a particular algorithm, including
parameter encoding and decoding.

AlgorithmParameterGenerator: Used to generate a set of AlgorithmParameters
suitable for a specified algorithm.

KeyStore: Used to create and manage a keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate chain associated with them, which
authenticates the corresponding public key. A keystore also contains certificates from
trusted entities.

2-7

Chapter 2
Core Classes and Interfaces

e CertificateFactory: Used to create public key certificates and Certificate Revocation
Lists (CRLS).

° CertPathBuilder: Used to build certificate chains (also known as certification paths).
* CertPathvalidator: Used to validate certificate chains.

e CertStore: Used to retrieve Certificates and CRLS from a repository.

Note:

A generator creates objects with brand-new contents, whereas a factory creates
objects from existing material (for example, an encoding).

Core Classes and Interfaces

ORACLE

The following are the core classes and interfaces provided in the JCA.
e Provider and Security

* SecureRandom, MessageDigest, Signature, Cipher, Mac, KEM, KeyFactory,
SecretKeyFactory, KeyPairGenerator, KeyGenerator, KeyAgreement,
AlgorithmParameter, AlgorithmParameterGenerator, KeyStore, and CertificateFactory
engine classes

* Key interfaces and classes, KeyPair

* AlgorithmParameterSpec Interface, AlgorithmParameters,
AlgorithmParameterGenerator, and algorithm parameter specification interfaces and
classes in the java.security.spec and javax.crypto.spec packages.

e KeySpec Interface, EncodedKeySpec, PKCS8EncodedKeySpec, and X509EncodedKeySpec.

e SecretKeyFactory, KeyFactory, KeyPairGenerator, KeyGenerator, KeyAgreement, and
KeyStore.

Note:

See CertPathBuilder, CertPathValidator, and CertStore engine classes in the
Java PKI Programmer's Guide.

The guide will cover the most useful high-level classes first (Provider, Security,
SecureRandom, MessageDigest, Signature, Cipher, Mac, and KEM), then delve into the
various support classes. For now, it is sufficient to simply say that Keys (public, private, and
secret) are generated and represented by the various JCA classes, and are used by the high-
level classes as part of their operation.

This section shows the signatures of the main methods in each class and interface. Examples
for some of these classes (MessageDigest, Signature, KeyPairGenerator,
SecureRandom, KeyFactory, and key specification classes) are supplied in the
corresponding Code Examples sections.

The complete reference documentation for the relevant Security API packages can be found in
the package summaries:

2-8

Chapter 2
Core Classes and Interfaces

°* Jjava.security

o javax.crypto

°* java.security.cert

* Jjava.security.spec

°* javax.crypto.spec

* java.security.interfaces

* Jjavax.crypto.interfaces

The Provider Class

ORACLE

The term "Cryptographic Service Provider" (used interchangeably with "provider" in this
document) refers to a package or set of packages that supply a concrete implementation of a
subset of the JDK Security API cryptography features. The Provider class is the interface to
such a package or set of packages. It has methods for accessing the provider name, version
number, and other information. Please note that in addition to registering implementations of
cryptographic services, the provider class can also be used to register implementations of
other security services that might get defined as part of the JDK Security API or one of its
extensions.

To supply implementations of cryptographic services, an entity (e.g., a development group)
writes the implementation code and creates a subclass of the Provider class. The constructor
of the Provider subclass sets the values of various properties; the JDK Security API uses
these values to look up the services that the provider implements. In other words, the subclass
specifies the names of the classes implementing the services.

Figure 2-4 Provider Class

provider.java

public class fooJCA extends Provider {
ProviderC
put ("MessageDigest.SHA-256"."“com. foo.SHA256") ;

com.foo.SHA256.java

package com.foo;
public class SHA256 extends MessageDigestSpi {

There are several types of services that can be implemented by provider packages; See
Engine Classes and Algorithms.

The different implementations may have different characteristics. Some may be software-
based, while others may be hardware-based. Some may be platform-independent, while others
may be platform-specific. Some provider source code may be available for review and
evaluation, while some may not. The JCA lets both end-users and developers decide what
their needs are.

2-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/cert/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/package-summary.html

Chapter 2
Core Classes and Interfaces

You can find information about how end-users install the cryptography implementations that fit
their needs, and how developers request the implementations that fit theirs.

Note:

To implement a provider, see Steps to Implement and Integrate a Provider.

How Provider Implementations Are Requested and Supplied

ORACLE

For each engine class (see Engine Classes and Algorithms) in the API, a implementation
instance is requested and instantiated by calling one of the getInstance methods on the
engine class, specifying the name of the desired algorithm and, optionally, the name of the
provider (or the Provider class) whose implementation is desired.

static EngineClassName getInstance (String algorithm)
throws NoSuchAlgorithmException

static EngineClassName getInstance (String algorithm, String provider)
throws NoSuchAlgorithmException, NoSuchProviderException

static EngineClassName getInstance (String algorithm, Provider provider)
throws NoSuchAlgorithmException

where
EngineClassName

is the desired engine type (for example, Signature, MessageDigest, Or Cipher). For
example:

Signature sig = Signature.getInstance ("SHA256withRSA");
KeyAgreement ka = KeyAgreement.getInstance ("DH");

return an instance of the "SHA256withRSA" Signature and "DH" KeyAgreement objects,
respectively.

Java Security Standard Algorithm Names contains the list of names that have been
standardized for use with the Java environment. Some providers may choose to also include
alias names that also refer to the same algorithm. For example, the "SHA256" algorithm might
be referred to as "SHA-256". Applications should use standard names instead of an alias, as
not all providers may alias algorithm names in the same way.

Note:

The algorithm name is not case-sensitive. For example, all the following calls are
equivalent:

Signature.getInstance ("SHA256withRSA")
Signature.getInstance ("sha256withrsa")
Signature.getInstance ("Sha256WithRsa")

2-10

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Chapter 2
Core Classes and Interfaces

If no provider is specified, getInstance searches the registered providers for an
implementation of the requested cryptographic service associated with the named algorithm. In
any given Java Virtual Machine (JVM), providers are installed in a given preference order, the
order in which the provider list is searched if a specific provider is not requested. (See
Installing Providers.) For example, suppose there are two providers installed in a JVM,
PROVIDER 1 and PROVIDER 2. Assume that:

e PROVIDER_I implements SHA256withRSA and AES. PROVIDER 1 has preference order 1
(the highest priority).

* PROVIDER 2 implements SHA256withRSA, SHA256withDSA, and RC5. PROVIDER 2 has
preference order 2.

Now let's look at three scenarios:

1. We are looking for an SHA256withRSA implementation: Both providers supply such an
implementation. The PROVIDER 1 implementation is returned since PROVIDER 1 has the
highest priority and is searched first.

2. We are looking for an SHA256withDSA implementation: PROVIDER 1 is first searched for it.
No implementation is found, so PROVIDER 2 is searched. Because an implementation is
found, it is returned.

3. We are looking for a SHA256withECDSA implementation: Because no installed provider
implements it, a NoSuchAlgorithmException is thrown.

The getInstance methods that include a provider argument are for developers who want to
specify which provider they want an algorithm from. A federal agency, for example, will want to
use a provider implementation that has received federal certification. Let's assume that
PROVIDER 1 has not received such certification while PROVIDER 2 has received it.

A federal agency program would then have the following call, specifying PROVIDER 2 since it
has the certified implementation:

Signature s = Signature.getInstance ("SHA256withRSA", "PROVIDER 2");

In this case, if PROVIDER 2 was not installed, a NoSuchProviderException would be thrown,
even if another installed provider implements the algorithm requested.

A program also has the option of getting a list of all the installed providers (using the
getProviders method in The Security Class class) and choosing one from the list.

Note:

General purpose applications SHOULD NOT request cryptographic services from
specific providers. Otherwise, applications are tied to specific providers which may
not be available on other Java implementations. They also might not be able to take
advantage of available optimized providers (for example hardware accelerators via
PKCS11 or native OS implementations such as Microsoft's MSCAPI) that have a
higher preference order than the specific requested provider.

Installing Providers

In order to be used, a cryptographic provider must first be installed, then registered either
statically or dynamically. There are a variety of Sun providers shipped with this release (SUN,

ORACLE 11

Chapter 2
Core Classes and Interfaces

SunJCE, SunJSSE, SunRsaSign, etc.) that are already installed and registered. The following
sections describe how to install and register additional providers.

All JDK providers are already installed and registered. However, if you require any third-party
providers, see Step 8: Prepare for Testing from Steps to Implement and Integrate a Provider
for information about how to add providers to the class or module path, register providers
(statically or dynamically), and add any required permissions.

Provider Class Methods

Each provider class instance has a (currently case-sensitive) name, a version number, and a
string description of the provider and its services.

You can query the Provider instance for this information by calling the following methods:

public String getName ()
public double getVersion()
public String getInfo()

The Security Class

ORACLE

The security class manages installed providers and security-wide properties. It only
contains static methods and is never instantiated. The methods for adding or removing
providers, and for setting Security properties, can only be executed by a trusted program.
Currently, a "trusted program" one of the following:

e Alocal application not running under a security manager

e An applet or application with permission to execute the specified method

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

The determination that code is considered trusted to perform an attempted action (such as
adding a provider) requires that the applet is granted the proper permission(s) for that
particular action. The policy configuration file(s) for a JDK installation specify what permissions
(which types of system resource accesses) are allowed by code from specified code sources.
See Default Policy Implementation and Policy File Syntax and Java SE Platform Security
Architecture.)

Code being executed is always considered to come from a particular "code source". The code
source includes not only the location (URL) where the code originated from, but also a
reference to any public key(s) corresponding to the private key(s) that may have been used to
sign the code. Public keys in a code source are referenced by (symbolic) alias names from the
user's .

In a policy configuration file, a code source is represented by two components: a code base
(URL), and an alias name (preceded by signedBy), where the alias name identifies the
keystore entry containing the public key that must be used to verify the code's signature.

2-12

https://openjdk.java.net/jeps/411

Chapter 2
Core Classes and Interfaces

Each "grant" statement in such a file grants a specified code source a set of permissions,
specifying which actions are allowed.

Here is a sample policy configuration file:

grant codeBase "file:/home/sysadmin/", signedBy "sysadmin" {
permission java.security.SecurityPermission "insertProvider";
permission java.security.SecurityPermission "removeProvider";
permission java.security.SecurityPermission "putProviderProperty.*";

}i

This configuration file specifies that code loaded from a signed JAR file in the /home/
sysadmin/ directory on the local file system can add or remove providers or set provider
properties. (Note that the signature of the JAR file can be verified using the public key
referenced by the alias name sysadmin in the user's keystore.).

Either component of the code source (or both) may be missing. Here's an example of a
configuration file where the codeBase is omitted:

grant signedBy "sysadmin" {
permission java.security.SecurityPermission "insertProvider.*";
permission java.security.SecurityPermission "removeProvider.*";

}i

If this policy is in effect, code that comes in a JAR File signed by /home/sysadmin/ directory on
the local filesystem can add or remove providers. The code does not need to be signed.

An example where neither codeBase nor signedBy is included is:

grant {
permission java.security.SecurityPermission "insertProvider.*";
permission java.security.SecurityPermission "removeProvider.*";

}i

Here, with both code source components missing, any code (regardless of where it originates,
or whether or not it is signed, or who signed it) can add/remove providers. Obviously, this is
definitely not recommended, as this grant could open a security hole. Untrusted code could
install a Provider, thus affecting later code that is depending on a properly functioning
implementation. (For example, a rogue Cipher object might capture and store the sensitive
information it receives.)

Managing Providers

ORACLE

The following tables summarize the methods in the Security class you can use to query which
Providers are installed, as well as to install or remove providers at runtime.

Querying Providers

Method Description

static Provider[] getProviders() Returns an array containing all the installed
providers (technically, the Provider subclass for
each package provider). The order of the
Providers in the array is their preference order.

2-13

Chapter 2
Core Classes and Interfaces

Method

Description

static Provider getProvider (String
providerName)

Returns the Provider named providerName. It
returns null if the Provider is not found.

Adding Providers

Method

Description

static int addProvider (Provider
provider)

Adds a Provider to the end of the list of installed
Providers. It returns the preference position in
which the Provider was added, or -1 if the
Provider was not added because it was already
installed.

static int insertProviderAt (Provider

provider, int position)

Adds a new Provider at a specified position. If the
given provider is installed at the requested position,
the provider formerly at that position and all
providers with a position greater than position
are shifted up one position (towards the end of the
list). This method returns the preference position in
which the Provider was added, or -1 if the
Provider was not added because it was already
installed.

Removing Providers

Method

Description

static void removeProvider (String name)

Removes the Provider with the specified name. It
returns silently if the provider is not installed. When
the specified provider is removed, all providers
located at a position greater than where the
specified provider was are shifted down one
position (towards the head of the list of installed
providers).

Note:

If you want to change the preference position of a provider, you must first remove it,
and then insert it back in at the new preference position.

Security Properties

ORACLE

The Security class maintains a list of system-wide Security Properties. These properties are
similar to the System properties, but are security-related. These properties can be set statically
(through the <java-home>/conf/security/java.security file) or dynamically (using an
API). See Step 8.1: Configure the Provider from Steps to Implement and Integrate a Provider.
for an example of registering a provider statically with the security.provider.n Security
Property. If you want to set properties dynamically, trusted programs can use the following

methods:

static String getProperty(String key)

static void setProperty(String key, String datum)

2-14

Chapter 2
Core Classes and Interfaces

Note:

The list of security providers is established during VM startup; therefore, the methods
described previously must be used to alter the provider list.

The SecureRandom Class

The SecureRandom class is an engine class (see Engine Classes and Algorithms) that
provides cryptographically strong random numbers, either by accessing a pseudo-random
number generator (PRNG), a deterministic algorithm that produces a pseudo-random
sequence from an initial seed value, or by reading a native source of randomness (for
example, /dev/random or a true random number generator). One example of a PRNG is the
Deterministic Random Bits Generator (DRBG) as specified in NIST SP 800-90Ar1. Other
implementations may produce true random numbers, and yet others may use a combination of
both techniques. A cryptographically strong random number minimally complies with the
statistical random number generator tests specified in FIPS 140-2, Security Requirements for
Cryptographic Modules, section 4.9.1.

All Java SE implementations must indicate the strongest (most random) implementation of
SecureRandom that they provide in the securerandom. strongAlgorithms property of the
java.security.Security class. This implementation can be used when a particularly strong
random value is required.

The securerandom.drbg.config property is used to specify the DRBG SecureRandom
configuration and implementations in the SUN provider. The securerandom.drbg.configis a
property of the java.security.Security class. Other DRBG implementations can also use the
securerandom.drbg.config property.

Figure 2-5 SecureRandom class

SecureRandom
Seed — setseed () —> nextInt()

(optional) (DRGB) " nextBytes () > Data

Creating a SecureRandom Object

ORACLE

There are several ways to obtain an instance of SecureRandom:

* All Java SE implementations provide a default SecureRandom using the no-argument
constructor: new SecureRandom (). This constructor traverses the list of registered security
providers, starting with the most preferred provider, then returns a new SecureRandom
object from the first provider that supports a SecureRandom random number generator
(RNG) algorithm. If none of the providers support a RNG algorithm, then it returns a
SecureRandom object that uses SHALPRNG from the SUN provider.

* To get a specific implementation of SecureRandom, use one of the How Provider
Implementations Are Requested and Supplied.

* Usethe getInstanceStrong () method to obtain a strong SecureRandom implementation as
defined by the securerandom.strongAlgorithms property of the java.security.Security
class. This property lists platform implementations that are suitable for generating
important values.

2-15

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/2/final

Chapter 2
Core Classes and Interfaces

Seeding or Re-Seeding the SecureRandom Object

The SecureRandom object is initialized with a random seed unless the call to
getInstance () is followed by a call to one of the following setSeed methods.

void setSeed(byte[] seed)
void setSeed(long seed)

You must call setSeed before the first nextBytes call to prevent any environmental
randomness.

The randomness of the bits produced by the SecureRandom object depends on the
randomness of the seed bits

At any time a SecureRandom object may be re-seeded using one of the setSeed or reseed
methods. The given seed for setSeed supplements, rather than replaces, the existing seed;
therefore, repeated calls are guaranteed never to reduce randomness.

Using a SecureRandom Object

To get random bytes, a caller simply passes an array of any length, which is then filled with
random bytes:

void nextBytes (byte[] bytes)

Generating Seed Bytes

If desired, it is possible to invoke the generateSeed method to generate a given number of
seed bytes (to seed other random number generators, for example):

byte[] generateSeed(int numBytes)

The MessageDigest Class

The MessageDigest class is an engine class (see Engine Classes and Algorithms) designed to
provide the functionality of cryptographically secure message digests such as SHA-256 or
SHA-512. A cryptographically secure message digest takes arbitrary-sized input (a byte array),
and generates a fixed-size output, called a digest or hash.

Figure 2-6 MessageDigest Class

Message Digest

—update () —> —digest() — Di
Data P (SHA-256) g Digest/Hash

For example, the SHA-256 algorithm produces a 32-byte digest, and SHA-512's is 64 bytes.

A digest has two properties:

ORACLE 16

Chapter 2
Core Classes and Interfaces

It should be computationally infeasible to find two messages that hash to the same value.

The digest should not reveal anything about the input that was used to generate it.

Message digests are used to produce unique and reliable identifiers of data. They are
sometimes called "checksums" or the "digital fingerprints" of the data. Changes to just one bit
of the message should produce a different digest value.

Message digests have many uses and can determine when data has been modified,
intentionally or not. When selecting a digest algorithm, one should always consult a recent
reference to determine its status and appropriateness for the task at hand.

Creating a MessageDigest Object

Procedure to create a MessageDigest object.

To compute a digest, create a message digest instance. The MessageDigest objects are
obtained by using one of the getInstance () methods in the MessageDigest class. See
How Provider Implementations Are Requested and Supplied.

The factory method returns an initialized message digest object. It thus does not need
further initialization.

Updating a Message Digest Object

Procedure to update the Message Digest object.

To calculate the digest of some data, you have to supply the data to the initialized message
digest object. It can be provided all at once, or in chunks. Pieces can be fed to the
message digest by calling one of the update methods:

void update (byte input)
void update (byte[] input)
void update(byte[] input, int offset, int len)

Computing the Digest

ORACLE

Procedure to compute the digest using different types of digest () methods.

The data chunks have to be supplied by calls to update method. See Updating a Message
Digest Object.

The digest is computed using a call to one of the digest methods:

byte[] digest()
byte[] digest (byte[] input)
int digest(byte[] buf, int offset, int len)

1. Thebyte[] digest() method return the computed digest.

2. The byte[] digest (byte[] input) method does a final update (input) with the input
byte array before calling digest (), which returns the digest byte array.

3. The int digest(byte[] buf, int offset, int len) method stores the computed
digest in the provided buffer buf, starting at offset. len is the number of bytes in buf

2-17

Chapter 2
Core Classes and Interfaces

allotted for the digest, the method returns the number of bytes actually stored in buf. If
there is not enough room in the buffer, the method will throw an exception.

See Computing a MessageDigest Object.

The Signature Class

The Signature class is an engine class (see Engine Classes and Algorithms) designed to
provide the functionality of a cryptographic digital signature algorithm such as SHA256withDSA
or SHA512withRSA. A cryptographically secure signature algorithm takes arbitrary-sized input
and a private key and generates a relatively short (often fixed-size) string of bytes, called the
signature, with the following properties:

* Only the owner of a private/public key pair is able to create a signature. It should be
computationally infeasible for anyone having only the public key and a number of
signatures to recover the private key.

* Given the public key corresponding to the private key used to generate the signature, it
should be possible to verify the authenticity and integrity of the input.

Figure 2-7 Signature Class

Generated by a Key Pair Generator
Private Key / Public Key
|

v v
Signature Signat Signature
Data —update () —> (SHA256wWithRSA) — sign() — S'9NAWIE | yerify () — (SHA256withRSA) > Yes/No

Bytes

Sign Verify
update () T

A Signature object is initialized for signing with a Private Key and is given the data to be
signed. The resulting signature bytes are typically kept with the signed data. When verification
is needed, another Signature object is created and initialized for verification and given the
corresponding Public Key. The data and the signature bytes are fed to the signature object,
and if the data and signature match, the Signature object reports success.

Even though a signature seems similar to a message digest, they have very different purposes
in the type of protection they provide. In fact, algorithms such as "SHA256WithRSA" use the
message digest "SHA256" to initially "compress" the large data sets into a more manageable
form, then sign the resulting 32 byte message digest with the "RSA" algorithm.

For an example for signing and verifying data, see Generating and Verifying a Signature Using
Generated Keys.

Signature Object States

ORACLE

Signature objects are modal objects. This means that a Signature object is always in a given
state, where it may only do one type of operation.

States are represented as final integer constants defined in their respective classes.

The three states a Signature object may have are:

2-18

Chapter 2
Core Classes and Interfaces

e UNINITIALIZED
e SIGN
e VERIFY

When it is first created, a Signature object is in the UNINITIALIZED state. The Signature class
defines two initialization methods, initSign and initVerify, which change the state to SIGN
and VERIFY , respectively.

Creating a Signature Object

The first step for signing or verifying a signature is to create a Signature instance.

Signature Objects are obtained by using one of the Signature getInstance () Static factory
methods. See How Provider Implementations Are Requested and Supplied.

Initializing a Signature Object

A Signature object must be initialized before it is used. The initialization method depends on
whether the object is going to be used for signing or for verification.

If it is going to be used for signing, the object must first be initialized with the private key of the
entity whose signature is going to be generated. This initialization is done by calling the
method:

final void initSign(PrivateKey privateKey)

This method puts the Signature object in the SIGN state. If instead the Signature object is
going to be used for verification, it must first be initialized with the public key of the entity
whose signature is going to be verified. This initialization is done by calling either of these
methods:

final void initVerify (PublicKey publicKey)

final void initVerify(Certificate certificate)

This method puts the Signature object in the VERIFY state.

Signing with a Signature Object

ORACLE

If the signature object has been initialized for signing (if it is in the SIGN state), the data to be
signed can then be supplied to the object. This is done by making one or more calls to one of
the update methods:

final void update (byte b)
final void update (byte[] data)
final void update (byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be signed has been supplied
to the signature object.

2-19

Chapter 2
Core Classes and Interfaces

To generate the signature, simply call one of the sign methods:

final byte[] sign()
final int sign(byte[] outbuf, int offset, int len)

The first method returns the signature result in a byte array. The second stores the signature
result in the provided buffer outbuf, starting at offset. len is the number of bytes in outbuf
allotted for the signature. The method returns the number of bytes actually stored.

Signature encoding is algorithm specific. See Java Security Standard Algorithm Names to
know more about the use of ASN.1 encoding in the Java Cryptography Architecture.

A call to a sign method resets the signature object to the state it was in when previously
initialized for signing via a call to initSign. That is, the object is reset and available to
generate another signature with the same private key, if desired, via new calls to update and
sign.

Alternatively, a new call can be made to initSign specifying a different private key, or to
initVerify (to initialize the signature object to verify a signature).

Verifying with a Signature Object

ORACLE

If the signature object has been initialized for verification (if it is in the VERIFY state), it can
then verify if an alleged signature is in fact the authentic signature of the data associated with
it. To start the process, the data to be verified (as opposed to the signature itself) is supplied to
the object. The data is passed to the object by calling one of the update methods:

final void update (byte b)
final void update (byte[] data)
final void update (byte[] data, int off, int len)

Calls to the update method(s) should be made until all the data to be verified has been
supplied to the signature object. The signature can now be verified by calling one of the
verify methods:

final boolean verify(byte[] signature)

final boolean verify(byte[] signature, int offset, int length)
The argument must be a byte array containing the signature. This byte array would hold the
signature bytes which were returned by a previous call to one of the sign methods.

The verify method returns a boolean indicating whether or not the encoded signature is the
authentic signature of the data supplied to the update method(s).

A call to the verify method resets the signature object to its state when it was initialized for
verification via a call to initverify. Thatis, the object is reset and available to verify another
signature from the identity whose public key was specified in the call to initVerify.

2-20

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Chapter 2
Core Classes and Interfaces

Alternatively, a new call can be made to initverify specifying a different public key (to
initialize the signature object for verifying a signature from a different entity), or to initSign
(to initialize the Signature object for generating a signature).

The Cipher Class

ORACLE

The Cipher class provides the functionality of a cryptographic cipher used for encryption and
decryption. Encryption is the process of taking data (called cleartext) and a key, and producing
data (ciphertext) meaningless to a third-party who does not know the key. Decryption is the
inverse process: that of taking ciphertext and a key and producing cleartext.

Figure 2-8 The Cipher Class

Key
Secrat Key
|
v v
Cichar —’-I Algorithm Peramatars l—’ Cighar

{AES) update

() (AES)
Encrypt | doFinalf} Decrypt

Symmetric Versus Asymmetric Cryptography

Plairrtaxt

doFinalil

There are two major types of encryption: symmetric (also known as secret key), and
asymmetric (or public key cryptography). In symmetric cryptography, the same secret key to
both encrypt and decrypt the data. Keeping the key private is critical to keeping the data
confidential. On the other hand, asymmetric cryptography uses a public/private key pair to
encrypt data. Data encrypted with one key is decrypted with the other. A user first generates a
public/private key pair, and then publishes the public key in a trusted database that anyone can
access. A user who wishes to communicate securely with that user encrypts the data using the
retrieved public key. Only the holder of the private key will be able to decrypt. Keeping the
private key confidential is critical to this scheme.

Asymmetric algorithms (such as RSA) are generally much slower than symmetric ones. These
algorithms are not designed for efficiently protecting large amounts of data. In practice,
asymmetric algorithms are used to exchange smaller secret keys which are used to initialize
symmetric algorithms.

Stream versus Block Ciphers

There are two major types of ciphers: block and stream. Block ciphers process entire blocks at
a time, usually many bytes in length. If there is not enough data to make a complete input
block, the data must be padded: that is, before encryption, dummy bytes must be added to
make a multiple of the cipher's block size. These bytes are then stripped off during the
decryption phase. The padding can either be done by the application, or by initializing a cipher
to use a padding type such as "PKCS5PADDING". In contrast, stream ciphers process
incoming data one small unit (typically a byte or even a bhit) at a time. This allows for ciphers to
process an arbitrary amount of data without padding.

Modes Of Operation

When encrypting using a simple block cipher, two identical blocks of plaintext will always
produce an identical block of cipher text. Cryptanalysts trying to break the ciphertext will have
an easier job if they note blocks of repeating text. A cipher mode of operation makes the

2-21

ORACLE

Chapter 2
Core Classes and Interfaces

ciphertext less predictable with output block alterations based on block position or the values of
other ciphertext blocks. The first block will need an initial value, and this value is called the
initialization vector (I1V). Since the IV simply alters the data before any encryption, the IV should
be random but does not necessarily need to be kept secret. There are a variety of modes, such
as CBC (Cipher Block Chaining), CFB (Cipher Feedback Mode), and OFB (Output Feedback
Mode). ECB (Electronic Codebook Mode) is a mode in which there is no influence from block
position or other ciphertext blocks. Because ECB ciphertexts are the same if they use the
same plaintext/key, this mode is not typically suitable for cryptographic applications and should
not be used.

Some algorithms such as AES and RSA allow for keys of different lengths, but others are fixed,
such as 3DES. Encryption using a longer key generally implies a stronger resistance to
message recovery. As usual, there is a trade off between security and time, so choose the key
length appropriately.

Most algorithms use binary keys. Most humans do not have the ability to remember long
sequences of binary numbers, even when represented in hexadecimal. Character passwords
are much easier to recall. Because character passwords are generally chosen from a small
number of characters (for example, [a-zA-Z0-9]), protocols such as "Password-Based
Encryption" (PBE) have been defined which take character passwords and generate strong
binary keys. In order to make the task of getting from password to key very time-consuming for
an attacker (via so-called "rainbow table attacks" or "precomputed dictionary attacks" where
common dictionary word->value mappings are precomputed), most PBE implementations will
mix in a random number, known as a salt, to reduce the usefulness of precomputed tables.

Newer cipher modes such as Authenticated Encryption with Associated Data (AEAD) (for
example, Galois/Counter Mode (GCM)) encrypt data and authenticate the resulting message
simultaneously. Additional Associated Data (AAD) can be used during the calculation of the
resulting AEAD tag (MAC), but this AAD data is not output as ciphertext. (For example, some
data might not need to be kept confidential, but should figure into the tag calculation to detect
modifications.) The Cipher.updateAAD () methods can be used to include AAD in the tag
calculations.

Using an AES Cipher with GCM Mode

The AES cipher with GCM is an AEAD cipher which has different usage patterns than the non-
AEAD ciphers. Apart from the regular data, it also takes AAD which is optional for encryption/
decryption but AAD must be supplied before data for encryption/decryption. In addition, in
order to use GCM securely, callers should not re-use key and IV combinations for encryption.
This means that the Cipher object should be explicitly re-initialized with a different set of
parameters every time for each encryption operation.

Example 2-2 Sample Code for Using an AES Cipher with GCM Mode

SecretKey myKey = ...
byte[] myAAD = ...
byte[] plainText = ...
int myTLen = ...
byte[] myIv = ...

GCMParameterSpec myParams = new GCMParameterSpec (myTLen, myIv);
Cipher ¢ = Cipher.getInstance ("AES/GCM/NoPadding");
c.init (Cipher.ENCRYPT MODE, myKey, myParams);

// BAD 1is optional, if present, it must be supplied before any update/doFinal

calls.
c.updateAAD (myAAD); // if AAD is non-null

2-22

ORACLE

Chapter 2
Core Classes and Interfaces

byte[] cipherText = new byte[c.getOutputSize (plainText.length)];

// conclusion of encryption operation
int actualOutputlen = c.doFinal (plainText, 0, plainText.length, cipherText);

// To decrypt, same AAD and GCM parameters must be supplied
c.init (Cipher.DECRYPT MODE, myKey, myParams);

c.updateAAD (myAAD) ;

byte[] recoveredText = c.doFinal (cipherText, 0, actualOutputLen);

// MUST CHANGE IV VALUE if the same key were to be used again for encryption
byte[] newlv = ...;
myParams = new GCMParameterSpec (myTLen, newlv);

Creating a Cipher Object

Cipher objects are obtained by using one of the Cipher getInstance () static factory
methods. See How Provider Implementations Are Requested and Supplied. Here, the
algorithm name is slightly different than with other engine classes, in that it specifies not just an
algorithm name, but a "transformation”. A transformation is a string that describes the
operation (or set of operations) to be performed on the given input to produce some output. A
transformation always includes the name of a cryptographic algorithm (for example, AES), and
may be followed by a mode and padding scheme.

A transformation is of the form:

e "algorithm/mode/padding" or
e algorithm"

For example, the following are valid transformations:

"AES/CBC/PKCS5Padding"
n AES"

If just a transformation name is specified, the system will determine if there is an
implementation of the requested transformation available in the environment, and if there is
more than one, returns if there is a preferred one.

If both a transformation name and a package provider are specified, the system will determine
if there is an implementation of the requested transformation in the package requested, and
throw an exception if there is not.

It is recommended to use a transformation that fully specifies the algorithm, mode, and
padding. By not doing so, the provider will use a default. For example, the SunJCE and
SunPKCS11 providers use ECB as the default mode, and PKCS5Padding as the default
padding for many symmetric ciphers.

This means that in the case of the SunJCE provider:

Cipher cl = Cipher.getInstance ("AES/ECB/PKCS5Padding") ;

and

Cipher cl = Cipher.getInstance ("AES");

2-23

ORACLE

Chapter 2
Core Classes and Interfaces

are equivalent statements.

Note:

ECB mode is the easiest block cipher mode to use and is the default cipher mode.
ECB works well for single blocks of data and can be parallelized but generally should
not be used for encrypting multiple data blocks due to characteristics of the mode.
This could result in trivial and full disclosure of confidential data. While this mode is
available for use, it should only be used with an understanding of the cryptographic
risks involved.

Using modes such as CFB and OFB, block ciphers can encrypt data in units smaller than the
cipher's actual block size. When requesting such a mode, you may optionally specify the
number of bits to be processed at a time by appending this number to the mode name as
shown in the "AES/CFB8/NoPadding" and "AES/OFB32/PKCS5Padding" transformations. If no
such number is specified, a provider-specific default is used. (For example, the SunJCE provider
uses a default of 256 bits for AES.) Thus, block ciphers can be turned into byte-oriented
stream ciphers by using an 8 bit mode such as CFB8 or OFB8.

Java Security Standard Algorithm Names contains a list of standard names that can be used to
specify the algorithm name, mode, and padding scheme components of a transformation.

The objects returned by factory methods are uninitialized, and must be initialized before they
become usable.

Initializing a Cipher Object

A Cipher object obtained through getInstance must be initialized for one of four modes,
which are defined as final integer constants in the Cipher class. The modes can be referenced
by their symbolic names:

ENCRYPT_MODE
Encryption of data.

DECRYPT_MODE
Decryption of data.

WRAP_MODE
Wrapping a java.security.Key into bytes so that the key can be securely transported.

UNWRAP_MODE
Unwrapping of a previously wrapped key into a java.security.Key object.

Each of the Cipher initialization methods takes an operational mode parameter (opmode), and
initializes the Cipher object for that mode. Other parameters include the key (key) or

certificate containing the key (certificate), algorithm parameters (params), and a source of
randomness (random).

To initialize a Cipher object, call one of the following init methods:
public void init (int opmode, Key key);
public void init (int opmode, Certificate certificate);

public void init (int opmode, Key key, SecureRandom random) ;

2-24

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

Chapter 2
Core Classes and Interfaces

public void init(int opmode, Certificate certificate,
SecureRandom random) ;

public void init (int opmode, Key key,
AlgorithmParameterSpec params) ;

public void init (int opmode, Key key,
AlgorithmParameterSpec params, SecureRandom random);

public void init (int opmode, Key key,
AlgorithmParameters params);

public void init (int opmode, Key key,
AlgorithmParameters params, SecureRandom random);

If a Cipher object that requires parameters (for example, an initialization vector) is initialized
for encryption, and no parameters are supplied to the init method, the underlying cipher
implementation is supposed to supply the required parameters itself, either by generating
random parameters or by using a default, provider-specific set of parameters.

However, if a Cipher object that requires parameters is initialized for decryption, and no
parameters are supplied to the init method, an InvalidKeyException Or
InvalidAlgorithmParameterException exception will be raised, depending on the init
method that has been used.

See Managing Algorithm Parameters.
The same parameters that were used for encryption must be used for decryption.

Note that when a Cipher object is initialized, it loses all previously-acquired state. In other
words, initializing a Cipher is equivalent to creating a new instance of that Cipher, and
initializing it. For example, if a Cipher is first initialized for decryption with a given key, and
then initialized for encryption, it will lose any state acquired while in decryption mode.

Encrypting and Decrypting Data

Data can be encrypted or decrypted in one step (single-part operation) or in multiple steps
(multiple-part operation). A multiple-part operation is useful if you do not know in advance how
long the data is going to be, or if the data is too long to be stored in memory all at once.

To encrypt or decrypt data in a single step, call one of the doFinal methods:
public byte[] doFinal (byte[] input);
public byte[] doFinal (byte[] input, int inputOffset, int inputLen);

public int doFinal (byte[] input, int inputOffset,
int inputlLen, byte[] output);

public int doFinal (byte[] input, int inputOffset,
int inputlLen, byte[] output, int outputOffset)

ORACLE o

ORACLE

Chapter 2
Core Classes and Interfaces

To encrypt or decrypt data in multiple steps, call one of the update methods:
public byte[] update (byte[] input);
public byte[] update(byte[] input, int inputOffset, int inputLen);

public int update (byte[] input, int inputOffset, int inputLen,
byte[] output);

public int update (byte[] input, int inputOffset, int inputLen,
byte[] output, int outputOffset)

A multiple-part operation must be terminated by one of the these doFinal methods (if there is
still some input data left for the last step), or by one of the following doFinal methods (if there
is no input data left for the last step):

public byte[] doFinal();

public int doFinal (byte[] output, int outputOffset);

All the doFinal methods take care of any necessary padding (or unpadding), if padding (or
unpadding) has been requested as part of the specified transformation.

A call to doFinal resets the Cipher object to the state it was in when initialized via a call to
init. Thatis, the Cipher object is reset and available to encrypt or decrypt (depending on the
operation mode that was specified in the call to init) more data.

Wrapping and Unwrapping Keys
Wrapping a key enables secure transfer of the key from one place to another.

The wrap and unwrap methods make it more convenient to write code since they work with
key objects directly. These methods also enable the possibility of secure transfer of hardware-
based keys.

To wrap a Key, first initialize the Cipher object for WRAP_MODE, and then call the following:

public final byte[] wrap (Key key);

If you are supplying the wrapped key bytes (the result of calling wrap) to someone else who will
unwrap them, be sure to also send additional information the recipient will need in order to do
the unwrap:

e The name of the key algorithm.

* The type of the wrapped key (one of Cipher.SECRET KEY, Cipher.PRIVATE KEY, Of
Cipher.PUBLIC KEY).

The key algorithm name can be determined by calling the getAlgorithm method from the Key
interface:

public String getAlgorithm();

2-26

Chapter 2
Core Classes and Interfaces

To unwrap the bytes returned by a previous call to wrap, first initialize a Cipher object for
UNWRAP_MODE, then call the following:

public final Key unwrap (byte[] wrappedKey,
String wrappedKeyAlgorithm,
int wrappedKeyType));

Here, wrappedKey is the bytes returned from the previous call to wrap, wrappedKeyAlgorithm is
the algorithm associated with the wrapped key, and wrappedKeyType is the type of the wrapped
key. This must be one of Cipher.SECRET KEY, Cipher.PRIVATE KEY, Or Cipher.PUBLIC KEY.

Managing Algorithm Parameters

The parameters being used by the underlying Cipher implementation, which were either
explicitly passed to the init method by the application or generated by the underlying
implementation itself, can be retrieved from the Cipher object by calling its getParameters
method, which returns the parameters as a java.security.AlgorithmParameters object (or
null if no parameters are being used). If the parameter is an initialization vector (1V), it can
also be retrieved by calling the getIv method.

In the following example, a Cipher object implementing password-based encryption (PBE) is
initialized with just a key and no parameters. However, the selected algorithm for password-
based encryption requires two parameters - a salt and an iteration count. Those will be
generated by the underlying algorithm implementation itself. The application can retrieve the
generated parameters from the Cipher object, see Example 2-3.

The same parameters that were used for encryption must be used for decryption. They can be
instantiated from their encoding and used to initialize the corresponding Cipher object for
decryption, see Example 2-4.

If you did not specify any parameters when you initialized a Cipher object, and you are not
sure whether or not the underlying implementation uses any parameters, you can find out by
simply calling the getParameters method of your Cipher object and checking the value
returned. A return value of null indicates that no parameters were used.

The following cipher algorithms implemented by the SunJCE provider use parameters:

* AES, DES-EDE, and Blowfish, when used in feedback (i.e., CBC, CFB, OFB, or PCBC)
mode, use an initialization vector (IV). The javax.crypto.spec.IvParameterSpec class
can be used to initialize a Cipher object with a given IV. In addition, CTR and GCM
modes require an IV.

* PBE Ccipher algorithms use a set of parameters, comprising a salt and an iteration count.
The javax.crypto.spec.PBEParameterSpec class can be used to initialize a Cipher
object implementing a PBE algorithm (for example: PBEWithHmacSHA256ANdAES_256)
with a given salt and iteration count.

Note that you do not have to worry about storing or transferring any algorithm parameters for
use by the decryption operation if you use the SealedObject class. This class attaches the
parameters used for sealing (encryption) to the encrypted object contents, and uses the same
parameters for unsealing (decryption).

ORACLE 2-27

Chapter 2
Core Classes and Interfaces

Example 2-3 Sample Code for Retrieving Parameters from the Cipher Object

The application can retrieve the generated parameters for encryption from the Cipher object
as follows:

// get cipher object for password-based encryption
Cipher ¢ = Cipher.getInstance ("PBEWithHmacSHA256AndAES 256");

// initialize cipher for encryption, without supplying
// any parameters. Here, "myKey" is assumed to refer
// to an already-generated key.

c.init (Cipher.ENCRYPT MODE, myKey);

// encrypt some data and store away ciphertext
// for later decryption
byte[] cipherText = c.doFinal ("This is just an example".getBytes());

// retrieve parameters generated by underlying cipher
// implementation
AlgorithmParameters algParams = c.getParameters();

// get parameter encoding and store it away
byte[] encodedAlgParams = algParams.getEncoded();

Example 2-4 Sample Code for Initializing the Cipher Object for Decryption

The same parameters that were used for encryption must be used for decryption. They can be
instantiated from their encoding and used to initialize the corresponding Cipher object for
decryption as follows:

// get parameter object for password-based encryption
AlgorithmParameters algParams;
algParams = AlgorithmParameters.getInstance ("PBEWithHmacSHA256AndAES 256");

// initialize with parameter encoding from the previous example
algParams.init (encodedAlgParams) ;

// get cipher object for password-based encryption
Cipher ¢ = Cipher.getInstance ("PBEWithHmacSHA256AndAES 256");

// initialize cipher for decryption, using one of the

// init() methods that takes an AlgorithmParameters

// object, and pass it the algParams object from the previous example
c.init (Cipher.DECRYPT MODE, myKey, algParams);

Cipher Output Considerations

Some of the update and doFinal methods of Cipher allow the caller to specify the output
buffer into which to encrypt or decrypt the data. In these cases, it is important to pass a buffer
that is large enough to hold the result of the encryption or decryption operation.

The following method in Cipher can be used to determine how big the output buffer should
be:

public int getOutputSize (int inputLen)

ORACLE 508

Chapter 2
Core Classes and Interfaces

Other Cipher-based Classes

There are some helper classes which internally use Ciphers to provide easy access to
common cipher uses.

Topics
The Cipher Stream Classes

The SealedObject Class

The Cipher Stream Classes

ORACLE

The CipherInputStream and CipherOutputStream classes are Cipher stream classes.

The CipherinputStream Class

This class is a FilterInputStream that encrypts or decrypts the data passing through it. It is
composed of an InputStream. CipherInputStream represents a secure input stream into
which a Cipher object has been interposed. The read methods of CipherInputStream
return data that are read from the underlying InputStream but have additionally been
processed by the embedded Cipher object. The Cipher object must be fully initialized before
being used by a CipherlnputStream.

For example, if the embedded Cipher has been initialized for decryption, the
CipherInputStream will attempt to decrypt the data it reads from the underlying
InputStream before returning them to the application.

This class adheres strictly to the semantics, especially the failure semantics, of its ancestor
classes java.io.FilterInputStream and java.io.InputStream. This class has exactly those
methods specified in its ancestor classes, and overrides them all, so that the data are
additionally processed by the embedded cipher. Moreover, this class catches all exceptions
that are not thrown by its ancestor classes. In particular, the skip (1ong) method skips only
data that has been processed by the Cipher.

Itis crucial for a programmer using this class not to use methods that are not defined or
overridden in this class (such as a new method or constructor that is later added to one of the
super classes), because the design and implementation of those methods are unlikely to have
considered security impact with regard to CipherInputStream. See Example 2-5 for its
usage, suppose cipherl has been initialized for encryption. The program reads and encrypts
the content from the file /tmp/a.txt and then stores the result (the encrypted bytes) in /tmp/
b.txt.

Example 2-6 demonstrates how to easily connect several instances of CipherInputStream and
FileInputStream. In this example, assume that cipherl and cipher2 have been initialized for
encryption and decryption (with corresponding keys), respectively. The program copies the
content from file /tmp/a.txt to /tmp/b.txt, except that the content is first encrypted and then
decrypted back when it is read from /tmp/a.txt. Of course since this program simply encrypts
text and decrypts it back right away, it's actually not very useful except as a simple way of
illustrating chaining of CipherInputStreams.

Note that the read methods of the CipherInputStream will block until data is returned from the
underlying cipher. If a block cipher is used, a full block of cipher text will have to be obtained
from the underlying InputStream.

2-29

ORACLE

Chapter 2
Core Classes and Interfaces

Example 2-5 Sample Code for Using CipherinputStream and FilelInputStream

The following code demonstrates how to use a CipherInputStream containing that cipher and
a FileInputStream in order to encrypt input stream data:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");

CipherInputStream cis = new CipherInputStream(fis, cipherl);
FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {

byte[] b = new byte[8];

int 1 = cis.read(b);

while (1 != -1) {
fos.write(b, 0, 1);
i = cis.read(b);

Example 2-6 Sample Code for Connecting CipherlnputStream and FilelnputStream

The following example demonstrates how to easily connect several instances of
CipherInputStream and FileInputStream. In this example, assume that cipherl and
cipher?2 have been initialized for encryption and decryption (with corresponding keys),
respectively:

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");

CipherInputStream cisl = new CipherInputStream(fis, cipherl);
CipherInputStream cis2 = new CipherInputStream(cisl, cipher?2);
FileOutputStream fos = new FileOutputStream("/tmp/b.txt")) {

byte[] b = new byte[8];

int 1 = cis2.read(b);

while (i != -1) {
fos.write(b, 0, 1);
i = cis2.read(b);

The CipherOutputStream Class

This class is a FilterOutputStream that encrypts or decrypts the data passing through it. It is
composed of an OutputStream, or one of its subclasses, and a Cipher.
CipherOutputStream represents a secure output stream into which a Cipher object has
been interposed. The write methods of CipherOutputStream first process the data with the
embedded Cipher object before writing them out to the underlying OutputStream. The
Cipher object must be fully initialized before being used by a CipherOutputStream.

For example, if the embedded Cipher has been initialized for encryption, the
CipherOutputStream will encrypt its data, before writing them out to the underlying output
stream.

This class adheres strictly to the semantics, especially the failure semantics, of its ancestor
classes java.io.OutputStream and java.io.FilterOutputStream. This class has exactly
those methods specified in its ancestor classes, and overrides them all, so that all data are
additionally processed by the embedded cipher. Moreover, this class catches all exceptions
that are not thrown by its ancestor classes.

Itis crucial for a programmer using this class not to use methods that are not defined or
overridden in this class (such as a new method or constructor that is later added to one of the

2-30

ORACLE

Chapter 2
Core Classes and Interfaces

super classes), because the design and implementation of those methods are unlikely to have
considered security impact with regard to CipherOutputStream.

See Example 2-7 , for its usage, suppose cipherl has been initialized for encryption. The
program reads the content from the file /tmp/a. txt, then encrypts and stores the result (the
encrypted bytes) in /tmp/b. txt.

Example 2-7 demonstrates how to easily connect several instances of CipherOutputStream
and FileOutputStream. In this example, assume that cipherl and cipher2 have been
initialized for decryption and encryption (with corresponding keys), respectively. The program
copies the content from file /tmp/a.txt to /tmp/b.txt, except that the content is first
encrypted and then decrypted back before it is written to /tmp/b. txt.

One thing to keep in mind when using block cipher algorithms is that a full block of plaintext
data must be given to the CipherOutputStream before the data will be encrypted and sent to
the underlying output stream.

There is one other important difference between the f1ush and close methods of this class,
which becomes even more relevant if the encapsulated Cipher object implements a block
cipher algorithm with padding turned on:

e flush flushes the underlying OutputStream by forcing any buffered output bytes that
have already been processed by the encapsulated Cipher object to be written out. Any
bytes buffered by the encapsulated Cipher object and waiting to be processed by it will
not be written out.

* close closes the underlying OutputStream and releases any system resources
associated with it. It invokes the doFinal method of the encapsulated Cipher object,
causing any bytes buffered by it to be processed and written out to the underlying stream
by calling its f1ush method.

Example 2-7 Sample Code for Using CipherOutputStream and FileOutputStream

CipherOutputStreamFileOutputStream

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");

FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
CipherOutputStream cos = new CipherOutputStream(fos, cipherl)) {

byte[] b = new byte[8];

int 1 = fis.read(b);

while (i != -1) {
cos.write(b, 0, 1i);
i = fis.read(b);

}

cos.flush();

Example 2-8 Sample Code for Connecting CipherOutputStream and FileOutputStream

CipherOutputStreamFileOutputStreamcipherlcipher?

try (FileInputStream fis = new FileInputStream("/tmp/a.txt");
FileOutputStream fos = new FileOutputStream("/tmp/b.txt");
CipherOutputStream cosl = new CipherOutputStream(fos, cipherl);
CipherOutputStream cos2 = new CipherOutputStream(cosl, cipher2)) {
byte[] b = new byte[8];
int 1 = fis.read(b);
while (i != -1) {

2-31

Chapter 2
Core Classes and Interfaces

cos2.write(b, 0, 1i);
i = fis.read(b);

}

cos2.flush();

The SealedObject Class

This class enables a programmer to create an object and protect its confidentiality with a
cryptographic algorithm.

Given any object that implements the java.io.Serializable interface, one can create a
SealedObject that encapsulates the original object, in serialized format (i.e., a "deep copy"),
and seals (encrypts) its serialized contents, using a cryptographic algorithm such as AES, to
protect its confidentiality. The encrypted content can later be decrypted (with the corresponding
algorithm using the correct decryption key) and de-serialized, yielding the original object.

A typical usage is illustrated in the following code segment: In order to seal an object, you
create a SealedObject from the object to be sealed and a fully initialized Cipher object that will
encrypt the serialized object contents. In this example, the String "This is a secret" is sealed
using the AES algorithm. Note that any algorithm parameters that may be used in the sealing
operation are stored inside of SealedObject:

// create Cipher object

// NOTE: sKey is assumed to refer to an already-generated
// secret AES key.

Cipher ¢ = Cipher.getInstance ("AES");

c.init (Cipher.ENCRYPT MODE, sKey);

// do the sealing
SealedObject so = new SealedObject ("This is a secret", c);

The original object that was sealed can be recovered in two different ways:

e by using a Cipher object that has been initialized with the exact same algorithm, key,
padding scheme, etc., that were used to seal the object:

c.init (Cipher.DECRYPT MODE, sKey);
try {
String s = (String)so.getObject(c);
} catch (Exception e) {
// do something
bi

This approach has the advantage that the party who unseals the sealed object does not
require knowledge of the decryption key. For example, after one party has initialized the
cipher object with the required decryption key, it could hand over the cipher object to
another party who then unseals the sealed object.

ORACLE 539

Chapter 2
Core Classes and Interfaces

* by using the appropriate decryption key (since AES is a symmetric encryption algorithm,
we use the same key for sealing and unsealing):

try {

String s = (String)so.getObject (sKey);
} catch (Exception e) {

// do something
i

In this approach, the getObject method creates a cipher object for the appropriate
decryption algorithm and initializes it with the given decryption key and the algorithm
parameters (if any) that were stored in the sealed object. This approach has the advantage
that the party who unseals the object does not need to keep track of the parameters (e.g.,
the 1V) that were used to seal the object.

The Mac Class

ORACLE

Similar to a MessageDigest, a Message Authentication Code (MAC) provides a way to check
the integrity of information transmitted over or stored in an unreliable medium, but includes a
secret key in the calculation.

Only someone with the proper key will be able to verify the received message. Typically,
message authentication codes are used between two parties that share a secret key in order to
validate information transmitted between these parties.

Figure 2-9 The Mac Class

— update () —> \AC Signed
Data | oFinal() —» (HmacSHA256) > Digest Hash
If data was the
Egared Secret same, hash is
y the same

v
Data |~ 2Pdate) = maAC Signed

__ doFinal () —» (HmacSHA256) ~ Digest Hash

A MAC mechanism that is based on cryptographic hash functions is referred to as HMAC.
HMAC can be used with any cryptographic hash function, e.g., SHA-256, in combination with a
secret shared key.

The Mac class provides the functionality of a Message Authentication Code (MAC). See HMAC-
SHA256 Example.

Creating a Mac Object

Mac objects are obtained by using one of the Mac getInstance () static factory methods.
See How Provider Implementations Are Requested and Supplied.

Initializing a Mac Object

A Mac object is always initialized with a (secret) key and may optionally be initialized with a set
of parameters, depending on the underlying MAC algorithm.

2-33

Chapter 2
Core Classes and Interfaces

To initialize a Mac object, call one of its init methods:
public void init (Key key);

public void init (Key key, AlgorithmParameterSpec params);

You can initialize your Mac object with any (secret-)key object that implements the
javax.crypto.SecretKey interface. This could be an object returned by
javax.crypto.KeyGenerator.generateKey (), or one that is the result of a key
agreement protocol, as returned by javax.crypto.KeyAgreement.generateSecret (),
or an instance of javax.crypto.spec.SecretKeySpec.

With some MAC algorithms, the (secret-)key algorithm associated with the (secret-)key object
used to initialize the Mac object does not matter (this is the case with the HMAC-MD5 and
HMAC-SHA1 implementations of the sunJCE provider). With others, however, the (secret-)key
algorithm does matter, and an InvalidKeyException is thrown if a (secret-)key object with an
inappropriate (secret-)key algorithm is used.

Computing a MAC

A MAC can be computed in one step (single-part operation) or in multiple steps (multiple-part
operation). A multiple-part operation is useful if you do not know in advance how long the data
is going to be, or if the data is too long to be stored in memory all at once.

To compute the MAC of some data in a single step, call the following doFinal method:

public byte[] doFinal (byte[] input);

To compute the MAC of some data in multiple steps, call one of the update methods:
public void update (byte input);
public void update (byte[] input);

public void update (byte[] input, int inputOffset, int inputlen);

A multiple-part operation must be terminated by the doFinal method (if there is still some input
data left for the last step), or by one of the following doFinal methods (if there is no input data
left for the last step):

public byte[] doFinal();

public void doFinal (byte[] output, int outOffset);

The KEM Class

ORACLE

The KEM class is an engine class (see Engine Classes and Algorithms) that provides the
functionality of a Key Encapsulation Mechanism (KEM).

You can use the KEM to secure symmetric keys using asymmetric or public key cryptography
between two parties. The sender calls the encapsulate method to generate a secret key and
a key encapsulation message, and the receiver calls the decapsulate method to recover the
same secret key from the key encapsulation message.

2-34

Chapter 2
Core Classes and Interfaces

Preparation

The receiver needs to create a key pair using a KeyPairGenerator. The public key is
published and made avaiable to the sender, and the private key is kept in secret.

Creating KEM Objects

Each party needs to create a KEM object. KEM objects are created by using one of the KEM
getInstance () static factory methods. See How Provider Implementations Are Requested
and Supplied.

Creating an Encapsulator and a Decapsulator

On the sender side, call one of the newEncapsulator methods of the KEM object to create an
encapsulator. The receiver's public key is used in the process. On the receiver side, call
one of the newDecapsulator methods of the KEM object to create a decapsulator. The
receiver's private key is used in the process.

Encapsulation and Decapsulation

The sender calls one of the encapsulate methods in the newly created
KEM.Encapsulator object, which returns a KEM. Encapsulated object. The secret key
inside the KEM.Encapsulated object is kept in secret, and the key encapsulation message
inside it is sent to the receiver.

The receiver passes the key encapsulation message from the sender to one of the
decapsulate methods in the newly created KEM. Decapsulator object, which returns a
SecretKey object. This secret key is identical to the secret key on the sender's side.

The sender can use the key for future secure communications with the receiver.

See Encapsulating and Decapsulating Keys for a code example.

Key Interfaces

ORACLE

The java.security.Key interface is the top-level interface for all opaque keys. It defines the
functionality shared by all opaque key objects.

To this point, we have focused the high-level uses of the JCA without getting lost in the details
of what keys are and how they are generated/represented. It is now time to turn our attention
to keys.

An opaque key representation is one in which you have no direct access to the key material
that constitutes a key. In other words: "opaque" gives you limited access to the key--just the
three methods defined by the Key interface: getAlgorithm, getFormat, and getEncoded.

This is in contrast to a transparent representation, in which you can access each key material
value individually, through one of the get methods defined in the corresponding KeySpec
interface (see The KeySpec Interface).

All opaque keys have three characteristics:

An Algorithm
The key algorithm for that key. The key algorithm is usually an encryption or asymmetric
operation algorithm (such as AEs, DSA or RS2), which will work with those algorithms and with

2-35

ORACLE

Chapter 2
Core Classes and Interfaces

related algorithms (such as sHA256withRSA). The name of the algorithm of a key is obtained
using this method:

String getAlgorithm()

An Encoded Form

The external encoded form for the key used when a standard representation of the key is
needed outside the Java Virtual Machine, as when transmitting the key to some other party.
The key is encoded according to a standard format (such as X.509 or PKCS8), and is returned
using the method:

byte[] getEncoded()

A Format
The name of the format of the encoded key. It is returned by the method:

String getFormat ()

Keys are generally obtained through key generators such as the KeyGenerator class and the
KeyPairGenerator class, certificates, key specifications (see the The KeySpec Interface)
using a KeyFactory, or a Keystore implementation accessing a keystore database used to
manage keys. It is possible to parse encoded keys, in an algorithm-dependent manner, using a
KeyFactory.

It is also possible to parse certificates, using a CertificateFactory.

Here is a list of interfaces which extend the Key interface in the java.security.interfaces
and javax.crypto.interfaces packages:

e SecretKey
— PBEKey
* PrivateKey
— DHPrivateKey
— DSAPrivateKey
— ECPrivateKey
— RSAMultiPrimePrivateCrtKey
— RSAPrivateCrtKey
— RSAPrivateKey
* PublicKey
— DHPublicKey
— DSAPublicKey
— ECPublicKey

— RSAPublicKey

2-36

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/SecretKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/PBEKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/DHPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/DSAPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/ECPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAMultiPrimePrivateCrtKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPrivateCrtKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPrivateKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/PublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/interfaces/DHPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/DSAPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/ECPublicKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/interfaces/RSAPublicKey.html

Chapter 2
Core Classes and Interfaces

The PublicKey and PrivateKey Interfaces

The PublicKey and PrivateKey interfaces (which both extend the Xey interface) are
methodless interfaces, used for type-safety and type-identification.

The KeyPair Class

The KeyPair class is a simple holder for a key pair (a public key and a private key).

It has two public methods, one for returning the private key, and the other for returning the
public key:

PrivateKey getPrivate()
PublicKey getPublic()

Key Specification Interfaces and Classes

Key objects and key specifications (KeySpecs) are two different representations of key data.
Ciphers use Key objects to initialize their encryption algorithms, but keys may need to be
converted into a more portable format for transmission or storage.

A transparent representation of keys means that you can access each key material value
individually, through one of the get methods defined in the corresponding specification class.
For example, DSAPrivateKeySpec defines getX, getP, getQ, and getG methods, to access the
private key x, and the DSA algorithm parameters used to calculate the key: the prime p, the
sub-prime q, and the base g. If the key is stored on a hardware device, its specification may
contain information that helps identify the key on the device.

This representation is contrasted with an opaque representation, as defined by the Key
Interfaces interface, in which you have no direct access to the key material fields. In other
words, an "opaque" representation gives you limited access to the key—ijust the three methods
defined by the Key interface: getAlgorithm, getFormat, and getEncoded.

A key may be specified in an algorithm-specific way, or in an algorithm-independent encoding
format (such as ASN.1). For example, a DSA private key may be specified by its components
X, p, 9, and g (see DSAPrivateKeySpec), or it may be specified using its DER encoding (see
PKCS8EncodedKeySpec).

The KeyFactory and SecretKeyFactory classes can be used to convert between opaque
and transparent key representations (that is, between Keys and KeySpecs, assuming that the
operation is possible. (For example, private keys on smart cards might not be able leave the
card. Such Keys are not convertible.)

In the following sections, we discuss the key specification interfaces and classes in the
java.security.spec package.

The KeySpec Interface

This interface contains no methods or constants. Its only purpose is to group and provide type
safety for all key specifications. All key specifications must implement this interface.

ORACLE 2-37

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html

The KeySpec Subinterfaces

Like the Key interface, there are a similar set of KeySpec interfaces.

* SecretKeySpec

* EncodedKeySpec

— PKCS8EncodedKeySpec

— X509EncodedKeySpec

. DESKeySpec
* DESedeKeySpec

e PBEKeySpec

e DHPrivateKeySpec
e DSAPrivateKeySpec
* ECPrivateKeySpec
°* RSAPrivateKeySpec
— RSAMultiPrimePrivateCrtKeySpec

— RSAPrivateCrtKeySpec

e DHPublicKeySpec

e DSAPublicKeySpec

* ECPublicKeySpec

* RSAPublicKeySpec

The EncodedKeySpec Class

Chapter 2
Core Classes and Interfaces

This abstract class (which implements the The KeySpec Interface interface) represents a
public or private key in encoded format. Its getEncoded method returns the encoded key:

abstract byte[] getEncoded();

and its getFormat method returns the name of the encoding format:

abstract String getFormat();

See the next sections for the concrete implementations PKCS8EncodedKeySpec and

X509EncodedKeySpec.

The PKCS8EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a private

key, according to the format specified in the PKCS8 standard.

ORACLE

2-38

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/SecretKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/X509EncodedKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DESKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DESedeKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/PBEKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPrivateKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAMultiPrimePrivateCrtKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPrivateCrtKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/DHPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/DSAPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/ECPublicKeySpec.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/spec/RSAPublicKeySpec.html

Chapter 2
Core Classes and Interfaces

Its getEncoded method returns the key bytes, encoded according to the PKCS8 standard. Its
getFormat method returns the string "PKCS#8".

The X509EncodedKeySpec Class

This class, which is a subclass of EncodedKeySpec, represents the DER encoding of a public
key, according to the format specified in the X.509 standard.

Its getEncoded method returns the key bytes, encoded according to the X.509 standard. Its
getFormat method returns the string "X.509".

Generators and Factories

Newcomers to Java and the JCA APIs in particular sometimes do not grasp the distinction
between generators and factories.
Figure 2-10 Generators and Factories

Generators — Generabs new objesls bassd on
initialization parameatans

Cibjiact
Initialization

Paramaters [Senerator —

(Key Langth) Sacret Key

Factories — Translorm axisling spealic objects
inta cther object types

Typea 1 Typa 2

[sl

Key Spec Searal Key

Generators are used to generate brand new objects. Generators can be initialized in either
an algorithm-dependent or algorithm-independent way. For example, to create a Diffie-Hellman
(DH) keypair, an application could specify the necessary P and G values, or the generator
could simply be initialized with the appropriate key length, and the generator will select
appropriate P and G values. In both cases, the generator will produce brand new keys based
on the parameters.

On the other hand, factories are used to convert data from one existing object type to
another. For example, an application might have available the components of a DH private
key and can package them as a The KeySpec Interface, but needs to convert them into a
PrivateKey object that can be used by a KeyAgreement object, or vice-versa. Or they might
have the byte array of a certificate, but need to use a CertificateFactory to convertitinto a
X509Certificate object. Applications use factory objects to do the conversion.

The KeyFactory Class

The KeyFactory class is an Engine Classes and Algorithms designed to perform conversions

between opaque cryptographic Key Interfaces and Key Specification Interfaces and Classes
(transparent representations of the underlying key material).

ORACLE 539

ORACLE

Chapter 2
Core Classes and Interfaces

Figure 2-11 KeyFactory Class

generatefrivate()

| Private Key

ey Fact
Kay Spac E:EIREEMDW

generabePublia] |

P Fublic Kay

Kay Fact getBeyEp=ci |
Koy W “Tlaea | Key Spec

Key factories are bi-directional. They allow you to build an opaque key object from a given key
specification (key material), or to retrieve the underlying key material of a key object in a
suitable format.

Multiple compatible key specifications can exist for the same key. For example, a DSA public
key may be specified by its components vy, p, g, and g (see
java.security.spec.DSAPublicKeySpec), or it may be specified using its DER encoding
according to the X.509 standard (see The X509EncodedKeySpec Class).

A key factory can be used to translate between compatible key specifications. Key parsing can
be achieved through translation between compatible key specifications, e.g., when you
translate from x509EncodedKeySpec to DSAPublicKeySpec, you basically parse the encoded key
into its components. For an example, see the end of the Generating/Verifying Signatures Using
Key Specifications and KeyFactory section.

Creating a KeyFactory Object

KeyFactory objects are obtained by using one of the KeyFactorygetinstance() static factory
methods. See How Provider Implementations Are Requested and Supplied.

Converting Between a Key Specification and a Key Object

If you have a key specification for a public key, you can obtain an opaque PublicKey object
from the specification by using the generatePublic method:

PublicKey generatePublic (KeySpec keySpec)

Similarly, if you have a key specification for a private key, you can obtain an opaque
PrivateKey object from the specification by using the generatePrivate method:

PrivateKey generatePrivate (KeySpec keySpec)

Converting Between a Key Object and a Key Specification

If you have a Key object, you can get a corresponding key specification object by calling the
getKeySpec method:

KeySpec getKeySpec (Key key, Class keySpec)

2-40

Chapter 2
Core Classes and Interfaces

keySpec identifies the specification class in which the key material should be returned. It could,
for example, be DSAPublicKeySpec.class , to indicate that the key material should be returned
in an instance of the DSAPublicKeySpec class. See Generating/Verifying Signatures Using Key
Specifications and KeyFactory.

The SecretKeyFactory Class

ORACLE

The SecretKeyFactory class represents a factory for secret keys. Unlike the KeyFactory
class (see The KeyFactory Class), a javax.crypto.SecretKeyFactory object operates only on
secret (symmetric) keys, whereas a java.security.KeyFactory object processes the public
and private key components of a key pair.

Figure 2-12 SecretKeyFactory Class

Secret Key Factory
(AES)

Key Spec —> —> Secret Key
generateSecret ()

Secret Key Factory
(AES)
Secret Key —> —> Key Spec

getKeySpec ()

Key factories are used to convert Key Interfaces (opaque cryptographic keys of type
java.security.Key) into Key Specification Interfaces and Classes (transparent
representations of the underlying key material in a suitable format), and vice versa.

Objects of type java.security.Key, of which java.security.PublicKey,
java.security.PrivateKey, and javax.crypto.SecretKey are subclasses, are opaque key
objects, because you cannot tell how they are implemented. The underlying implementation is
provider-dependent, and may be software or hardware based. Key factories allow providers to
supply their own implementations of cryptographic keys.

For example, if you have a key specification for a Diffie-Hellman public key, consisting of the
public value y, the prime modulus p, and the base g, and you feed the same specification to
Diffie-Hellman key factories from different providers, the resulting PublicKey objects will most
likely have different underlying implementations.

A provider should document the key specifications supported by its secret key factory. For
example, the SecretKeyFactory for DES keys supplied by the sunJCE provider supports
DESKeySpec as a transparent representation of DES keys, the SecretKeyFactory for DES-EDE
keys supports DESedeKeySpec as a transparent representation of DES-EDE keys, and the
SecretKeyFactory for PBE supports PBEKeySpec as a transparent representation of the
underlying password.

The following is an example of how to use a SecretKeyFactory to convert secret key data into
a SecretKey object, which can be used for a subsequent Cipher operation:

// Note the following bytes are not realistic secret key data
// bytes but are simply supplied as an illustration of using data
// bytes (key material) you already have to build a DESedeKeySpec.

byte[] desEdeKeyData = getKeyData();
DESedeKeySpec desEdeKeySpec = new DESedeKeySpec (desEdeKeyData) ;

2-41

Chapter 2
Core Classes and Interfaces

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance ("DESede");
SecretKey secretKey = keyFactory.generateSecret (desEdeKeySpec) ;

In this case, the underlying implementation of SecretKey is based on the provider of
KeyFactory.

An alternative, provider-independent way of creating a functionally equivalent secretkey object
from the same key material is to use the javax.crypto.spec.SecretKeySpec class, which
implements the javax.crypto.SecretKey interface:

byte[] aesKeyData = getKeyDatal();
SecretKeySpec secretKey = new SecretKeySpec (aesKeyData, "AES");

Creating a SecretKeyFactory Object

SecretKeyFactory objects are obtained by using one of the SecretKeyFactory
getInstance () static factory methods. See How Provider Implementations Are Requested
and Supplied.

Converting Between a Key Specification and a Secret Key Object

If you have a key specification for a secret key, you can obtain an opague SecretKey object
from the specification by using the generateSecret method:

SecretKey generateSecret (KeySpec keySpec)

Converting Between a Secret Key Object and a Key Specification

If you have a SecretKey object, you can get a corresponding key specification object by
calling the getKeySpec method:

KeySpec getKeySpec (Key key, Class keySpec)

keySpec identifies the specification class in which the key material should be returned. It
could, for example, be DESKeySpec.class, to indicate that the key material should be returned
in an instance of the DESKeySpec class.

The KeyPairGenerator Class

ORACLE

The KeyPairGenerator class is an engine class (see Engine Classes and Algorithms) used to
generate pairs of public and private keys.

2-42

ORACLE

Chapter 2
Core Classes and Interfaces

Figure 2-13 KeyPairGenerator Class

Private Key

C getPrivatall
1miles
kay langth
Ky Pair genkeyPailrl)
ar Generator | =— ALLL Key Palr
AlgorithmParametarSpac &h CH)

getPubklicl)

Public Key

There are two ways to generate a key pair: in an algorithm-independent manner, and in an
algorithm-specific manner. The only difference between the two is the initialization of the
object.

See Generating a Pair of Keys for examples of calls to the methods of KeyPairGenerator.

Creating a KeyPairGenerator

All key pair generation starts with a KeyPairGenerator. KeyPairGenerator objects are
obtained by using one of the KeyPairGenerator getInstance () static factory methods. See
How Provider Implementations Are Requested and Supplied.

Initializing a KeyPairGenerator

A key pair generator for a particular algorithm creates a public/private key pair that can be
used with this algorithm. It also associates algorithm-specific parameters with each of the
generated keys.

A key pair generator needs to be initialized before it can generate keys. In most cases,
algorithm-independent initialization is sufficient. But in other cases, algorithm-specific
initialization can be used.

Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of randomness. The
keysize is interpreted differently for different algorithms. For example, in the case of the DSA
algorithm, the keysize corresponds to the length of the modulus. (See Java Security Standard
Algorithm Names for information about the keysizes for specific algorithms.)

An initialize method takes two universally shared types of arguments:

void initialize(int keysize, SecureRandom random)

Another initialize method takes only a key