Java Platform, Standard Edition
Core Libraries

Release 25
(G29144-01
September 2025

ORACLE"

Java Platform, Standard Edition Core Libraries, Release 25
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documents i
Conventions i

1 Java Core Libraries

2 Serialization Filtering

Addressing Deserialization Vulnerabilities

Java Serialization Filters

Filter Factories

Allow-Lists and Reject-Lists

Creating Pattern-Based Filters

Creating Custom Filters
Reading a Stream of Serialized Objects
Setting a Custom Filter for an Individual Stream
Setting a JVM-Wide Custom Filter
Setting a Custom Filter Using a Pattern
Setting a Custom Filter as a Class
Setting a Custom Filter as a Method

© © 0 N N N O o P~ wWww DN PP

Creating a Filter with ObjectinputFilter Methods

=
o

Setting a Filter Factory

=
=

Setting a Filter Factory with setSerialFilterFactory

=Y
w

Specifying a Filter Factory in a System or Security Property

=
w

Built-in Filters

=
ol

Logging Filter Actions

3 Enhanced Deprecation

Deprecation in the JDK 1

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page i of vi

How to Deprecate APIs 1
Notifications and Warnings
Running jdeprscan

4 XML Catalog API

Purpose of XML Catalog API 1
XML Catalog API Interfaces 2
Using the XML Catalog API 3
System Reference 3
Public Reference 5
URI Reference 5
Java XML Processors Support 6
Enable Catalog Support 7
Use Catalog with XML Processors 8
Calling Order for Resolvers 12
Detecting Errors 12
5 Java Collections Framework

Creating Unmaodifiable Lists, Sets, and Maps 2
Use Cases 2
Syntax 3
Unmodifiable List Static Factory Methods 3
Unmodifiable Set Static Factory Methods 3
Unmodifiable Map Static Factory Methods 4
Creating Unmaodifiable Copies of Collections 5
Creating Unmaodifiable Collections from Streams 5
Randomized Iteration Order 6
About Unmodifiable Collections 7
Space Efficiency 8
Thread Safety 9
Creating Sequenced Collections, Sets, and Maps 10
SequencedCollection 12
SequencedSet 13
SequencedMap 14
Demonstrating ArrayList and LinkedHashMap Reversed Views 15
Demonstrating a Reverse-Ordered View of a Collection 15
Demonstrating Composition of LinkedHashMap Views 16
Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map 17

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page ii of vi

3) Process API

Process API Classes and Interfaces
ProcessBuilder Class
Process Class
ProcessHandle Interface
ProcessHandle.Info Interface
Creating a Process
Getting Information About a Process
Redirecting Output from a Process
Filtering Processes with Streams

N o o o~ B W DNDN P

Handling Processes When They Terminate with the onExit Method

=
o

Controlling Access to Sensitive Process Information

7 Preferences API

Comparing the Preferences API to Other Mechanisms
Usage Notes
Obtain Preferences Objects for an Enclosing Class
Obtain Preferences Objects for a Static Method
Atomic Updates
Determine Backing Store Status
Design FAQ

A AW OWDNNDNDPRE

8 Java Logging Overview

Java Logging Examples 7
Appendix A: DTD for XMLFormatter Output

0 Java NIO

Grep NIO Example
Checksum NIO Example
Time Query NIO Example
Time Server NIO Example

© 0 o O b

Non-Blocking Time Server NIO Example
Internet Protocol and UNIX Domain Sockets NIO Example 10
Chmod File NIO Example 17
Copy File NIO Example 22
Disk Usage File NIO Example 26
User-Defined File Attributes File NIO Example 26

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page iii of vi

10 Java Networking

Networking System Properties

HTTP Client Properties

HTTP Server Properties

IPv4 and IPv6 Protocol Properties

HTTP Proxy Properties

HTTPS Proxy Properties

FTP Proxy Properties

SOCKS Proxy Properties 10
Acquiring the SOCKS User Name and Password 11

Other Proxy-Related Properties 11

© © 00 N O - B

UNIX Domain Sockets Properties 12
Other HTTP URL Stream Protocol Handler Properties 13

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism 18

Specify Mappings from Host Names to IP Addresses 18
Address Cache Properties 19
Enhanced Exception Messages 20

11 Pseudorandom Number Generators

Characteristics of PRNGs
Generating Pseudorandom Numbers with RandomGenerator Interface
Generating Pseudorandom Numbers in Multithreaded Applications
Dynamically Creating New Generators
Creating Stream of Generators
Choosing a PRNG Algorithm

AW W WDN P

12 Foreign Function and Memory API

On-Heap and Off-Heap Memory
Memory Segments and Arenas
Allocating a Memory Segment with an Arena and Storing a String in It
Printing the Contents of Off-Heap Memory
Closing an Arena
Calling a C Library Function with the Foreign Function and Memory API
Obtaining an Instance of the Native Linker
Locating the Address of the C Function
Describing the C Function Signature
Creating the Downcall Handle for the C Function
Calling the C Function Directly from Java

0 00 N O OO0 b~ bW WE P

Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page iv of vi

13

14

Core Librar
G29144-01

Defining the Java Method That Compares Two Elements 10
Creating a Downcall Method Handle for the gsort Function 11
Creating a Method Handle to Represent the Comparison Method gsortCompare 11
Creating a Function Pointer from the Method Handle compareHandle 12
Allocating Off-Heap Memory to Store the int Array 12
Calling the gsort Function 12
Copying the Sorted Array Values from Off-Heap to On-Heap Memory 13
Foreign Functions That Return Pointers 13
Memory Layouts and Structured Access 15
Backing a Memory Segment with a Memory Region Inside a File 19
Checking for Native Errors Using errno 23
Slicing Allocators and Slicing Memory Segments 26
Slicing Allocators 26
Slicing Memory Segments 28
Restricted Methods 29
Calling Native Functions with jextract 31
Run a Python Script in a Java Application 32
Call the gsort Function from a Java Application 33
Scoped Values
Concurrency
Virtual Threads 3
What is a Platform Thread? 4
What is a Virtual Thread? 4
Why Use Virtual Threads? 4
Creating and Running a Virtual Thread 4
Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface 5
Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method 6
Multithreaded Client Server Example 6
Scheduling Virtual Threads and Pinned Virtual Threads 8
Debugging Virtual Threads 8
JDK Flight Recorder Events for Virtual Threads 8
Viewing Virtual Threads in jcmd Thread Dumps 9
Virtual Threads: An Adoption Guide 9
Write Simple, Synchronous Code Employing Blocking I/O APIs in the Thread-Per-
Request Style 9
Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads 10
Use Semaphores to Limit Concurrency 12

ies

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates.

Page v of vi

Don't Cache Expensive Reusable Objects in Thread-Local Variables 13

Structured Concurrency 14
Basic Usage of the StructuredTaskScope Class 15
Joiners 17
Custom Joiners 19
Configuring StructuredTaskScope 21
Scope Hierarchies and Observability 21

Thread-Local Variables 25
Inheriting Thread-Local Variables 27
Issues with Thread-Local Variables 29

15 Stream Gatherers

What Is a Gatherer?

Creating a Gatherer

Creating Gatherers with Factory Methods
Built-In Gatherers

O N OO N -

Composing Gatherers

16 Stable Values

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page vi of vi

ORACLE’

Preface

This guide provides information about the Java core libraries.

Audience

This document is for Java developers who develop applications that require functionality such
as threading, process control, I/0O, monitoring and management of the Java Virtual Machine
(JVM), serialization, concurrency, and other functionality close to the JVM.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

See JDK 25 Documentation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/pls/topic/lookup?ctx=javase25&id=homepage

ORACLE’

Preface
Convention Meaning
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page ii of ii

Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK. They include
functionality which is close to the VM and is not explicitly included in other areas, such as
security. Here you will find current information that will help you use some of the core libraries.

Topics in this Guide

Serialization Filtering

Enhanced Deprecation
XML Catalog API

Java Collections Framework

Process API

Preferences API

Java Logging Overview
Java NIO

Java Networking

Pseudorandom Number Generators

Foreign Function and Memory API

Scoped Values

Concurrency
Stream Gatherers

Stable Values

Other Core Libraries Guides

Internationalization Overview in Java Platform, Standard Edition Internationalization Guide

Security Related Topics

Core Libraries
G29144-01
Copyright © 2017, 2025

Serialization Filtering
RMI:

— RMI Security Recommendations in Java Platform, Standard Edition Java Remote

Method Invocation User's Guide

— Using Custom Socket Factories with Java RMI in the Java Tutorials

JAXP:

— JAXP Processing Limits in the Java Tutorials

— External Access Restriction Properties in the Java Tutorials

, Oracle and/or its affiliates.

September 3, 2025
Page 1 of 1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.

Topics:

« Addressing Deserialization Vulnerabilities

e Java Serialization Filters

e Filter Factories

» Allow-Lists and Reject-Lists

e Creating Pattern-Based Filters

e Creating Custom Filters

e Setting a Filter Factory

e Built-in Filters

e Logging Filter Actions

Addressing Deserialization Vulnerabilities

Core Libraries
G29144-01

An application that accepts untrusted data and deserializes it is vulnerable to attacks. You can
create filters to screen incoming streams of serialized objects before they are deserialized.

Inherent Dangers of Deserialization

Deserializing untrusted data, especially from an unknown, untrusted, or unauthenticated client,
is an inherently dangerous activity because the content of the incoming data stream
determines the objects that are created, the values of their fields, and the references between
them. By careful construction of the stream, an adversary can run code in arbitrary classes
with malicious intent.

For example, if object construction has side effects that change state or invoke other actions,
then those actions can compromise the integrity of application objects, library objects, and
even the Java runtime. "Gadget classes,” which can perform arbitrary reflective actions such
as create classes and invoke methods on them, can be deserialized maliciously to cause a
denial of service or remote code execution.

The key to disabling deserialization attacks is to prevent instances of arbitrary classes from
being deserialized, thereby preventing the direct or indirect execution of their methods. You
can do this through serialization filters.

Java Serialization and Deserialization Overview

An object is serialized when its state is converted to a byte stream. That stream can be sent to
a file, to a database, or over a network. A Java object is serializable if its class or any of its
superclasses implements either the j ava. i 0. Seri al i zabl e interface or the

j ava.i o. Ext er nal i zabl e subinterface. In the JDK, serialization is used in many areas,

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE’

Chapter 2
Java Serialization Filters

including Remote Method Invocation (RMI), custom RMI for interprocess communication (IPC)
protocols (such as the Spring HTTP invoker), and Java Management Extensions (JMX).

An object is deserialized when its serialized form is converted to a copy of the object. It is
important to ensure the security of this conversion. Deserialization is code execution because
the r eadObj ect method of the class that is being deserialized can contain custom code.

Serialization Filters

A serialization filter enables you to specify which classes are acceptable to an application and
which should be rejected. Filters also enable you to control the object graph size and
complexity during deserialization so that the object graph doesn’t exceed reasonable limits.
You can configure filters as properties or implement them programmatically.

® Note

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the Obj ect | nput Fi | t er class.

Besides creating filters, you can take the following actions to help prevent deserialization
vulnerabilities:

* Do not deserialize untrusted data.
* Use SSL to encrypt and authenticate the connections between applications.

* Validate field values before assignment, for example, checking object invariants by using
the r eadObj ect method.

@® Note

Built-in filters are provided for RMI. However, you should use these built-in filters as
starting points only. Configure reject-lists and/or extend the allow-list to add additional
protection for your application that uses RMI. See Built-in Filters.

For more information about these and other strategies, see "Serialization and Deserialization"
in Secure Coding Guidelines for Java SE.

Java Serialization Filters

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

The Java serialization filtering mechanism screens incoming streams of serialized objects to
help improve security and robustness. Filters can validate incoming instances of classes
before they are deserialized.

As stated in JEP 290 and JEP 415, the goals of the Java serialization filtering mechanism are
to:

* Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

* Provide metrics to the filter for graph size and complexity during deserialization to validate
normal graph behaviors.

« Allow RMI-exported objects to validate the classes expected in invocations.

September 3, 2025
Page 2 of 15

https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://openjdk.java.net/jeps/290
https://openjdk.java.net/jeps/415

ORACLE’

Chapter 2
Filter Factories

There are two kinds of filters:

« JVM-wide filter: Is applied to every deserialization in the JVM. However, whether and how
a JVM-wide filter validates classes in a particular deserialization depends on how it's
combined with other filters.

- Stream-specific filter: Validates classes from one specific Obj ect | nput St r eam

You can implement a serialization filter in the following ways:

* Specify a JVM-wide, pattern-based filter with the j dk. serial Fi | ter property: A
pattern-based filter consists of a sequence of patterns that can accept or reject the name
of specific classes, packages, or modules. It can place limits on array sizes, graph depth,
total references, and stream size. A typical use case is to add classes that have been
identified as potentially compromising the Java runtime to a reject-list. If you specify a
pattern-based filter with the j dk. seri al Fi | t er property, then you don't have to modify
your application.

« Implement a custom or pattern-based stream-specific filter with the
oj ect I nput Fi | ter API: You can implement a filter with the Cbj ect | nput Fi | t er API,
which you then set on an Obj ect | nput St r eam You can create a pattern-based filter with
the bj ect I nput Fi | t er API by calling the Confi g.createFilter(String) method.

@® Note

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the Obj ect | nput Fi | t er class.

For every new object in the stream, the filter mechanism applies only one filter to it. However,
this filter might be a combination of filters.

In most cases, a stream-specific filter should check if a JVM-wide filter is set, especially if you
haven't specified a filter factory. If a JVM-wide filter does exist, then the stream-specific filter
should invoke it and use the JVM-wide filter’s result unless the status is UNDECI DED.

Filter Factories

A filter factory selects, chooses, or combines filters into a single filter to be used for a stream.
When you specify one, a deserialization operation uses it when it encounters a class for the
first time to determine whether to allow it. (Subsequent instances of the same class aren't
filtered.) It's implemented as a Bi nar yOper at or <Obj ect | nput Fi | t er > and specified with
the Cbj ectInputFilter. Config.setSerial FilterFactory method orin a system or
Security property; see Setting a Filter Factory. Whenever an Obj ect | nput St r eamis created,
the filter factory selects an Obj ect | nput Fi | t er . However, you can have a different filter
created based on the characteristics of the stream and the filter that the filter factory previously
created.

Allow-Lists and Reject-Lists

Core Libraries
G29144-01

Allow-lists and reject-lists can be implemented using pattern-based filters or custom filters.
These lists allow you to take proactive and defensive approaches to protect your applications.

The proactive approach uses allow-lists to allow only class names that are recognized and
trusted and to reject all others. You can implement allow-lists in your code when you develop

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE Chapter 2
Creating Pattern-Based Filters

your application, or later by defining pattern-based filters. If your application only deals with a
small set of classes then this approach can work very well. You can implement allow-lists by
specifying the names of classes, packages, or modules that are allowed.

The defensive approach uses reject-lists to reject instances of classes that are not trusted.
Usually, reject-lists are implemented after an attack that reveals that a class is a problem. A
class name can be added to a reject-list, without a code change, by adding it to a pattern-
based filter that's specified in the j dk. seri al Fi | t er property.

Creating Pattern-Based Filters

Pattern-based filters are filters that you define without changing your application code. You add
JVM-wide filters in properties files or application-specific filters on the j ava command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against the name of a
class in the stream or a resource limit. Class-based and resource limit patterns can be
combined in one filter string, with each pattern separated by a semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

e Separate patterns by semicolons. For example:
patternl.*;pattern2. *

* White space is significant and is considered part of the pattern.

e Put the limits first in the string. They are evaluated first regardless of where they are in the
string, so putting them first reinforces the ordering. Otherwise, patterns are evaluated from
left to right.

« A class name that matches a pattern that is preceded by ! is rejected. A class name that
matches a pattern without ! is allowed. The following filter rejects patternl. Myd ass but
allows pattern2. MC ass:

I'patternl. *;pattern2. *
« Use the wildcard symbol (*) to represent unspecified class names in a pattern as shown in
the following examples:
— To match every class name, use *
— To match every class name in nypackage, use nypackage. *
— To match every class name in nypackage and its subpackages, use nypackage. **

— To match every class name that starts with t ext, use t ext *

If a class nhame doesn’t match any filter, then it is allowed. If you want to allow only certain
class names, then your filter must reject everything that doesn’t match. To reject all class
names other than those specified, include ! * as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see JEP 290.

Pattern-Based Filter Limitations
The following are some of the limitations of pattern-based filters:

« Patterns can't allow different sizes of arrays based on the class name.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 15

http://openjdk.java.net/jeps/290

ORACLE’

Core Libraries
G29144-01

Chapter 2
Creating Pattern-Based Filters

< Patterns can’t match classes based on the supertype or interfaces of the class name.

« Patterns have no state and can’t make choices depending on the class instances
deserialized earlier in the stream.

® Note

A pattern-based filter doesn't check interfaces that are implemented by classes being
deserialized. The filter is invoked for interfaces explicitly referenced in the stream; it
isn't invoked for interfaces implemented by classes for objects being deserialized.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A system
property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of Java,
define the j dk. seri al Fi | t er system property in the command line.

The following example shows how to limit resource usage for an individual application:
java -

Dj dk. seri al Fi | t er=maxarr ay=100000; maxdept h=20; naxr ef =500 com exanpl e. t est. App
l'ication

Define a Pattern-Based Filter for All Applications

You can define a pattern-based, JVM-wide filter that affects every application run with a Java

runtime from $JAVA_HOME by specifying it as a Security Property. (Note that a system property
supersedes a Security Property value.) Edit the file $JAVA HOVE/ conf/ security/

j ava. security and add the pattern-based filter to the j dk. seri al Fi | t er Security Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the pattern
might be a class nhame or a package with wildcard.

In the following example, the filter rejects one class nhame from a package (!
exanpl e. somepackage. Somred ass), and allows all other class names in the package:

j dk.serial Filter=!exanpl e. sonepackage. Soned ass; exanpl e. sonepackage. *;

The previous example filter allows all other class hames, not just those in
exanpl e. somepackage. *. To reject all other class names, add ! *:

jdk.serial Filter=!exanpl e. sonepackage. Soned ass; exanpl e. somepackage. *; ! *

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the following
parameters to control the resource usage for each application:

* Maximum allowed array size. For example: maxar r ay=100000;

* Maximum depth of a graph. For example: maxdept h=20;

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE Chapter 2
Creating Custom Filters

e Maximum references in a graph between objects. For example: maxr ef s=500;

e Maximum number of bytes in a stream. For example: maxbyt es=500000;

Creating Custom Filters

Custom filters are filters you specify in your application’s code. They are set on an individual
stream or on all streams in a process. You can implement a custom filter as a pattern, a
method, a lambda expression, or a class.

Topics

» Reading a Stream of Serialized Objects

e Setting a Custom Filter for an Individual Stream
e Setting a JVM-Wide Custom Filter

e Setting a Custom Filter Using a Pattern

e Setting a Custom Filter as a Class

e Setting a Custom Filter as a Method

e Creating a Filter with ObjectinputFilter Methods

Reading a Stream of Serialized Objects

You can set a custom filter on one Obj ect | nput St r eam or, to apply the same filter to every
stream, set a JVM-wide filter. If an Cbj ect | nput St r eamdoesn’t have a filter defined for it, the
JVM-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

* For each new object in the stream and before the object is instantiated and deserialized,
the filter is called when it encounters a class for the first time. (Subsequent instances of the
same class aren't filtered.)

e For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

* The filter can examine each class referenced in the stream, including the class of objects
to be created, supertypes of those classes, and their interfaces.

* For each array in the stream, whether it is an array of primitives, array of strings, or array
of objects, the filter is called with the array class and the array length.

* For each reference to an object already read from the stream, the filter is called so it can
check the depth, number of references, and stream length. The depth starts at 1 and
increases for each nested object and decreases when each nested call returns.

* The filter is not called for primitives or for j ava. | ang. St ri ng instances that are encoded
concretely in the stream.

e The filter returns a status of accept, reject, or undecided.
» Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE’

Chapter 2
Creating Custom Filters

Setting a Custom Filter for an Individual Stream

You can set a filter on an individual Qbj ect | nput St r eamwhen the input to the stream is
untrusted and the filter has a limited set of classes or constraints to enforce. For example, you
could ensure that a stream only contains numbers, strings, and other application-specified

types.

A custom filter is set using the set Obj ect | nput Fi | t er method. The custom filter must be
set before objects are read from the stream.

In the following example, the set Cbj ect | nput Fi | t er method is invoked with the
dat eTi meFi | t er method. This filter only accepts classes from the j ava. t i ne package. The
dat eTi meFi | t er method is defined in a code sample in Setting a Custom Filter as a Method.

Local Dat eTi me readDat eTi me(| nput Streamis) throws | CException {

try (ObjectlnputStreamois = new ObjectInputStrean(is)) {
ois.setCbjectInputFilter(FilterC ass::dateTimeFilter);
return (Local DateTime) ois.readQbject();

} catch (O assNot FoundException ex) {
| CException ioe = new StreanCorruptedException("class nissing");
i 0e.initCause(ex);
throw i oe;

Setting a JVM-Wide Custom Filter

You can set a JVM-wide filter that applies to every use of bj ect | nput St r eamunless it is
overridden on a specific stream. If you can identify every type and condition that is needed by
the entire application, the filter can allow those and reject the rest. Typically, JVM-wide filters
are used to reject specific classes or packages, or to limit array sizes, graph depth, or total
graph size.

A JVM-wide filter is set once using the methods of the Obj ect | nput Fi | t er. Confi g class.
The filter can be an instance of a class, a lambda expression, a method reference, or a pattern.

ojectInputFilter filter = ...
QojectInputFilter.Config.setSerial Filter(filter);

In the following example, the JVM-wide filter is set by using a lambda expression.

bj ectInputFilter.Config.setSerial Filter(
info ->info.depth() > 10 ? Status. REJECTED : Status. UNDECI DED);

In the following example, the JVM-wide filter is set by using a method reference:

oj ectInputFilter.Config.setSerial Filter(FilterClass::dateTineFilter);

Setting a Custom Filter Using a Pattern

Core Libraries
G29144-01

A pattern-based custom filter, which is convenient for simple cases, can be created by using
the Gbj ect I nput Fil ter. Confi g. createFil ter method. You can create a pattern-based

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE Chapter 2
Creating Custom Filters

filter as a system property or Security Property. Implementing a pattern-based filter as a
method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific names of classes, packages, and modules and
can place limits on array sizes, graph depth, total references, and stream size. Patterns cannot
match the names of the supertype or interfaces of the class.

In the following example, the filter allows exanpl e. Fi | e and rejects exanpl e. Directory.

ojectinputFilter filesOnlyFilter =
QbjectinputFilter.Config.createFilter("exanple.File;!exanple.Directory");

This example allows only exanpl e. Fi | e. All other class names are rejected.

ojectinputFilter filesOnlyFilter =
QbjectinputFilter.Config.createFilter("example.File;!*");

Setting a Custom Filter as a Class

A custom filter can be implemented as a class implementing the
java.io. jectlnputFilter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input parameters. However, you
may implement a filter that, for example, maintains state between calls to the checkl nput
method to count artifacts in the stream.

In the following example, the Fi | t er Nunber class allows any object that is an instance of the
Nunber class and rejects all others.

class FilterNunmber inplenents ObjectlnputFilter {
public Status checklnput(Filterinfo filterlnfo) {
C ass<?> clazz = filterInfo.serial Oass();
if (clazz !'=null) {
return (Nunber. cl ass. i sAssi gnabl eFrom(cl azz))
? CbjectinputFilter. Status. ALLOAED
Obj ectInput Fil ter. Status. REJECTED;

}
return ObjectlnputFilter. Status. UNDECI DED,

In the example:

e The checkl nput method accepts an Obj ect I nput Filter. Filterlnfo object. The object’s
methods provide access to the class to be checked, array size, current depth, number of
references to existing objects, and stream size read so far.

« Ifserial dass is not null, then the value is checked to see if the class of the object is
Nurber . If so, it is accepted and returns Chj ect | nput Fi | t er. St at us. ALLOAED. Otherwise, it
is rejected and returns (oj ect I nput Fi | t er. St at us. REJECTED.

* Any other combination of arguments returns Qbj ect | nput Fi | t er. St at us. UNDECI DED.
Deserialization continues, and any remaining filters are run until the object is accepted or
rejected. If there are no other filters, the object is accepted.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE Chapter 2
Creating Custom Filters

Setting a Custom Filter as a Method

A custom filter can also be implemented as a method. The method reference is used instead of
an inline lambda expression.

The dat eTi meFi | t er method that is defined in the following example is used by the code
sample in Setting a Custom Filter for an Individual Stream.

public class Filterdass {
static ObjectinputFilter. Status
dateTimeFilter(QojectinputFilter.Filterinfo info) {
O ass<?> serial Cass = info.serial Cass();
if (serialClass !'=null) {
return serial O ass. get PackageNanme() . equal s("j ava. time")
? QbjectinputFilter. Status. ALLONED
bj ect I nput Fi | ter. Status. REJECTED;

}
return OojectlnputFilter. Status. UNDECI DED,;

This custom filter allows only the classes found in the base module of the JDK:

static ObjectlnputFilter. Status
baseFilter(CbjectinputFilter.Filterlnfo info) {
O ass<?> serial Cass = info.serial Cass();
if (serialCass !'=null) {
return serial O ass. get Modul e(). get Name() . equal s("j ava. base")
? QbjectinputFilter. Status. ALLONED
Qbj ect I nput Fi | ter. Status. REJECTED;

}
return QojectlnputFilter. Status. UNDECI DED;

Creating a Filter with ObjectinputFilter Methods

The oj ect | nput Fi | t er interface includes the following static methods that enable you to
quickly create filters:

e allowFilter(Predicate<d ass<?>> bjectlnputFilter.Status)
e rejectFilter(Predicate<d ass<?>> (bjectlnputFilter. Status)
e rejectUndeci dedd ass(Cbj ectlnputFilter)

e nerge(ojectlnputFilter, QojectlnputFilter)

The al | owFi | t er method creates a filter based on a Pr edi cat e that takes a Cl ass as its
argument. The created filter returns Obj ect I nput Fi | t er. St at us. ALLOVED if the predicate is
true. Otherwise, it returns the value of the al | owFi | t er method’s second argument. The

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE’

Chapter 2
Setting a Filter Factory

following creates a filter that accepts the | nt eger class. All other classes are considered
undecided:

QojectinputFilter intFilter = QbjectinputFilter.allowrilter(
cl -> cl.equal s(Integer.class), ojectlnputFilter.Status. UNDECI DED);

The rej ect Fi | t er method is the inverse of al | owFi | t er: It creates a filter based on a

Pr edi cat e that takes a Cl ass as its argument. The created filter returns

oj ect I nput Fi l ter. Status. REJECTEDIf the predicate is true. Otherwise, it returns the
value of the r ej ect Fi | t er method’s second argument. The following creates a filter that
rejects any class loaded from the application class loader:

ojectinputFilter f = QojectinputFilter.rejectFilter(cl ->
cl.get G assLoader () == C assLoader. get Syst enCl assLoader (),
St at us. UNDEC!I DED) ;

The r ej ect Undeci dedCl ass method creates a new filter based on an existing filter by rejecting
any class that the existing filter considers as undecided. The following creates a filter based on
intFilter.Itacceptsthe | nteger class but rejects all other (undecided) classes:

oj ectInputFilter rejectUndecidedFilter =
QbjectInputFilter.rejectUndeci dedC ass(intFilter);

The ner ge method creates a new filter by merging two filters. The following merges the filters
intFilter andf. It accepts the | nt eger class but rejects any class loaded from the application
class loader:

ojectinputFilter mergedFilter = ChjectinputFilter.nmerge(intFilter, f);

A merged filter follows these steps when it filters a class:

1. Return St at us. REJECTEDif either of its filters return St at us. REJECTED.
2. Return St at us. ACCEPTED if either of its filters return St at us. ACCEPTED.
3. Return St at us. UNDECI DED (both of its filters return St at us. UNDECI DED).

The mer ge method is useful in filter factories. Every time a filter is set on a stream, you can
append that filter to the one that the filter factory creates with the ner ge method. See the
Qoj ect I nput Fi | t er API documentation for an example.

@® Note

It's a good idea to merge the JVM-wide filter with the requested, stream-specific filter
in your filter factory. If you just return the requested filter, then you effectively disable
the JVM-wide filter, which will lead to security gaps.

Setting a Filter Factory

Core Libraries
G29144-01

A filter factory is a Bi nar yOper at or , which is a function of two operands that chooses the
filter for a stream. You can set a filter factory by calling the method

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE Chapter 2
Setting a Filter Factory

oj ectlnputFilter. Config.setSerialFilterFactory or specifying it in a system or
Security property.

@® Note

You can set a filter factory exactly once, either with the method
set Seri al Fi |l t er Fact ory, in the system property j dk. seri al Fil terFactory, orin
the Security Property j dk. serial Fi | terFactory.

Topics:

» Setting a Filter Factory with setSerialFilterFactory

» Specifying a Filter Factory in a System or Security Property

Setting a Filter Factory with setSerialFilterFactory

When you set a filter factory by calling the method

oj ectlnputFilter. Config.setSerialFilterFactory, the filter factory's method

Bi nar yQper at or <Qbj ect I nput Fi | t er>. appl y(Cbj ectInputFilter t, ObjectInputFilter u)
will be invoked when an Obj ect | nput St r eamis constructed and when a stream-specific filter is
set on an oj ect | nput St ream The parameter t is the current filter and u is the requested filter.
When appl vy is first invoked, t will be null. If a JVM-wide filter has been set, then when appl y
is first invoked, u will be the JVM-wide filter. Otherwise, u will be null. The appl y method
(which you must implement yourself) returns the filter to be used for the stream. If appl y is
invoked again, then the parameter t will be this returned filter. When you set a filter with the
method Obj ect | nput St ream set Cbj ect I nput Fi l ter(QbjectlnputFilter),then
parameter u will be this filter.

The following example implements a simple filter factory that prints its Cbj ect | nput Fi | t er
parameters every time its appl y method is invoked, merges these parameters into one
combined filter, then returns this merged filter.

public class SinpleFilterFactory {

static class MySinpleFilterFactory inplenents
Bi nar yQper at or <Qbj ect I nput Fi l ter> {
public ObjectlnputFilter apply(
Qbj ectlnputFilter curr, CbjectlnputFilter next) {
Systemout.printin("Current filter: " + curr);
Systemout.println("Requested filter: " + next);
return QbjectlnputFilter.merge(next, curr);

}

private static byte[] createSinpleStream bject obj) {

Byt eArrayQut put St ream boas = new Byt eArrayQut put Strean();

try (CbjectQutputStreamois = new (bject Qut put Stream boas)) {
oi s.witeChject(obj);
return boas.toByteArray();

} catch (I CException ioe) {
i oe.printStackTrace();

}

t hrow new Runti neException();
Core Libraries

G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 2
Setting a Filter Factory

}
public static void main(String[] args) throws |CException {
/1 Set a filter factory

MySi npl eFi | terFactory contextFilterFactory = new
M/Si npl eFi | ter Fact ory();

Qoj ectInputFilter.Config.setSerial FilterFactory(contextFilterFactory);

/] Set a streamspecific filter

ojectinputFilter filterl =
bj ectlnputFilter.Config.createFilter("exanple.*;java. base/*;!*");
ojectInputFilter.Config.setSerial Filter(filterl);

|/l Create another filter

QojectinputFilter intFilter = CbjectinputFilter.allowrilter(
cl -> cl.equal s(Integer.class),
bj ect I nput Fi | ter. Status. UNDECI DED) ;

/] Create input stream

byte[] intByteStream = createSinpl eStrean(42);

I nput Streamis = new Byt eArrayl nput Strean(intByteStrean;
bj ect I nput Stream oi s = new Chj ect I nput Strean(is);
ois.setCbjectinputFilter(intFilter);

try {
(bj ect obj = ois.readOhject();
Systemout. printin("Read obj: " + obj);

} catch (C assNot FoundException e) {
e.printStackTrace();

}

This example prints output similar to the following (line breaks have been added for clarity):

Current filter: null
Requested filter: exanple.*;java. base/*;!*
Current filter: exanple.*;java.base/*;!*
Requested filter:
mer ge(
predi cat e(
Si npl eFi | t er Fact or y$$Lanbda$8/ 0x0000000800c00c60@ 6ed5528,
i fTrue: ALLOWED, ifFal se: UNDECI DED),
predi cat e(
Si npl eFi | t er Fact or y$$Lanbda$9/ 0x0000000800c01800@c7b84de,
i f True: REJECTED, ifFal se: UNDECI DED))
Read obj: 42

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE’

Chapter 2
Built-in Filters

The appl y method is invoked twice: when the Cbj ect | nput St r eamoi s is created and when
the method set Obj ect I nput Fi | t er is called.

@® Note

* You can set a filter on an Obj ect | nput St r eamonly once. An
I'11egal StateException will be thrown otherwise.

e To protect against unexpected deserializations, ensure that security experts
thoroughly review how your filter factories select and combine filters.

Specifying a Filter Factory in a System or Security Property

You can set a filter factory that applies to only one application and to only a single invocation of
Java by specifying it in the j dk. seri al Fi | t er Fact ory system property in the command line:

java -Djdk.serial FilterFactory=FilterFactoryCd assName YourApplication

The value of j dk. seri al Fil ter Fact ory is the class name of the filter factory to be set before
the first deserialization. The class must be public and accessible to the application class loader
(which the method j ava. | ang. O assLoader . get Syst enCl assLoader () returns).

You can set a JVM-wide filter factory that affects every application run with a Java runtime
from $JAVA HOME by specifying it in a Security Property. Note that a system property
supersedes a Security Property value. Edit the file $JAVA_HOVE/ conf / security/

j ava. securi ty and specify the filter factory's class name in the j dk. seri al Fi | ter Fact ory
Security Property.

Built-in Filters

Core Libraries
G29144-01

The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage Collector,
and Java Management Extensions (JMX) all have filters that are included in the JDK. You
should specify your own filters for the RMI Registry and the RMI Distributed Garbage Collector
to add additional protection.

Filters for RMI Registry

@® Note

Use these built-in filters as starting points only. Edit the
sun.rm.registry.registryFilter system property to configure reject-lists and/or
extend the allow-list to add additional protection for the RMI Registry. To protect the
whole application, add the patterns to the j dk. seri al Fi | t er global system property to
increase protection for other serialization users that do not have their own custom
filters.

The RMI Registry has a built-in allow-list filter that allows objects to be bound in the registry. It
includes instances of the j ava. rmi . Renot e, j ava. | ang. Nunber, j ava. | ang. refl ect. Proxy,
java.rm.server. UnicastRef,java.rm.server. U D,

java.rm.server. RM dient Socket Factory, and java.rni.server.RM Server Socket Fact ory
classes.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE’

Core Libraries
G29144-01

Chapter 2
Built-in Filters

The built-in filter includes size limits:

maxar r ay=1000000; maxdept h=20

Supersede the built-in filter by defining a filter using the sun. rmi . regi stry.registryFilter
system property with a pattern. If the filter that you define either accepts classes passed to the
filter, or rejects classes or sizes, the built-in filter is not invoked. If your filter does not accept or
reject anything, the built-filter is invoked.

Filters for RMI Distributed Garbage Collector

@® Note

Use these built-in filters as starting points only. Edit the
sun.rm.transport.dgcFilter system property to configure reject-lists and/or extend
the allow-list to add additional protection for Distributed Garbage Collector. To protect
the whole application, add the patterns to the j dk. seri al Fi | t er global system
property to increase protection for other serialization users that do not have their own
custom filters.

The RMI Distributed Garbage Collector has a built-in allow-list filter that accepts a limited set of
classes. It includes instances of the j ava. rmi . server. Qj | D, java. rni. server. U D,
java.rm.dgc. VM D, and j ava. rni . dgc. Lease classes.

The built-in filter includes size limits:

maxar r ay=1000000; maxdept h=20

Supersede the built-in filter by defining a filter using the sun. rmi . transport. dgcFil ter system
property with a pattern. If the filter accepts classes passed to the filter, or rejects classes or
sizes, the built-in filter is not invoked. If the superseding filter does not accept or reject
anything, the built-filter is invoked.

Filters for IMX

@® Note

Use these built-in filters as starting points only. Edit the

com sun. managenent . j mxrenot e. serial . filter. pattern management property to
configure reject-lists and/or extend the allow-list to add additional protection for JIMX.
To protect the whole application, add the patterns to the j dk. seri al Fi | t er global
system property to increase protection for other serialization users that do not have
their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. The filter's pattern must include the types that are allowed
to be sent as parameters over RMI to the server and all types that they depend on, plus

j avax. managenent . Cbj ect Name and j ava. rm . Mar shal | edObj ect types. The default filter
covers any type that Open MBeans and MXBeans might use. Applications that register their
own MBeans in the platform MBean server may need to extend the filter to support any
additional types that their MBeans accept as parameters. Specify the filter's pattern with the

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE Chapter 2
Logging Filter Actions

com sun. managenent . j nkrenote. serial . filter. pattern management property in

the $JAVA_HOVE/ conf / managenent / managenent . properti es file. You can override the
value of this property with the j ava command-line option -

Dcom sun. managenent . j nkrenote. serial . filter.pattern=<pattern>.

Logging Filter Actions

You can turn on logging to record the initialization, rejections, and acceptances of calls to
serialization filters. Use the log output as a diagnostic tool to see what's being deserialized,
and to confirm your settings when you configure allow-lists and reject-lists.

When logging is enabled, filter actions are logged to the j ava. i 0. seri al i zat i on logger.
To enable serialization filter logging, edit the $JDK_HOVE/ conf/ | oggi ng. properti es file.

To log calls that are rejected, add

FI' NE

java.io.serialization.level

To log all filter results, add

java.io.serialization.level = FINEST

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 15 of 15

Enhanced Deprecation

The semantics of what deprecation means includes whether an APl may be removed in the
near future.

If you are a library maintainer, you can take advantage of the updated deprecation syntax to
inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the j depr scan tool to find uses of
deprecated JDK API elements in your applications or libraries.

Topics

e Deprecation in the JDK

e How to Deprecate APls

* Notifications and Warnings

* Running jdeprscan

Deprecation in the JDK

Deprecation is a natification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:
e The APl is dangerous (for example, the Thr ead. st op method).

e There is a simple rename (for example, AWT Conponent . show hi de replaced by
set Vi si bl e).

A newer, better APl can be used instead.

e The APl is going to be removed.

In prior releases, APIs were deprecated but rarely ever removed. Starting with JDK 9, APIs
may be marked as deprecated for removal. This indicates that the API is eligible to be removed
in the next release of the JDK platform. If your application or library consumes any of these
APIs, then you should plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated APl page in
the API specification.

How to Deprecate APIs

Deprecating an API requires using two different mechanisms: the @epr ecat ed annotation
and the @epr ecat ed JavaDoc tag.

The @epr ecat ed annotation marks an API in a way that is recorded in the class file and is
available at runtime. This allows various tools, such as j avac and j depr scan, to detect and flag
usage of deprecated APIs. The @epr ecat ed JavaDoc tag is used in documentation of
deprecated APIs, for example, to describe the reason for deprecation, and to suggest
alternative APIs.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

ORACLE’

Core Libraries
G29144-01

Chapter 3
How to Deprecate APIs

Note the capitalization: the annotation starts with an uppercase D and the JavaDoc tag starts
with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration with
@epr ecat ed. The annotation contains these elements:

e (@eprecated(si nce="<version>")

— <version> identifies the version in which the API was deprecated. This is for
informational purposes. The default is the empty string ("").

° (@eprecat ed(for Renmoval =<bool ean>)
— forRenoval =t r ue indicates that the API is subject to removal in a future release.

— forRenoval =f al se recommends that code should no longer use this API; however,
there is no current intent to remove the API. This is the default value.

For example: @epr ecat ed(si nce="9", forRenoval =true)

The @epr ecat ed annotation causes the JavaDoc-generated documentation to be marked
with one of the following, wherever that program element appears:

e Deprecated.

- Deprecated, for removal: This API element is subject to removal in a future version.

The j avadoc tool generates a page named depr ecat ed- | i st. ht ml containing the list of
deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @epr ecat ed annotation from the
j ava. | ang. Thr ead class:

public class Thread inplenments Runnable {

@eprecat ed(since="1.2")
public final void stop() {

}

Semantics of Deprecation

The two elements of the @epr ecat ed annotation give developers the opportunity to clarify
what deprecation means for their exported APIs (which are APIs that are provided by a library
that are accessible to code outside of that library, such as applications or other libraries).

For the JDK platform:

 (@eprecated(forRenoval =t rue) indicates that the API is eligible to be removed in a
future release of the JDK platform.

e (@eprecated(si nce="<version>") contains the JDK version string that indicates when
the API element was deprecated, for those deprecated in JDK 9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the @epr ecat ed
annotation. You should determine and communicate your policy around API removals. For
example, if you release a new library every six weeks, then you may choose to deprecate an
API for removal, but not remove it for several months to give your customers time to migrate.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 3
Notifications and Warnings

Using the @deprecated JavaDoc Tag

Use the @lepr ecat ed tag in the JavaDoc comment of any deprecated program element to
indicate that it should no longer be used (even though it may continue to work). This tag is
valid in all class, method, or field documentation comments. The @epr ecat ed tag must be
followed by a space or a newline. In the paragraph following the @lepr ecat ed tag, explain
why the item was deprecated, and suggest what to use instead. Mark the text that refers to
new versions of the same functionality with an @i nk tag.

When it encounters an @lepr ecat ed tag, the j avadoc tool moves the text following the
@lepr ecat ed tag to the front of the description and precedes it with a warning. For example,
this source:

/**

* PR

* @eprecated This nethod does not properly convert bytes into

* characters. As of JDK 1.1, the preferred way to do this is via the
* {@ode String} constructors that take a {@ink

* java.nio.charset. Charset}, charset nane, or that use the platforms
* default charset.

*/. o
@eprecated(since="1.1")
public String(byte ascii[], int hibyte) {

generates the following output:

@eprecat ed(since="1.1")
public String(byte[] ascii,
int hibyte)
Deprecated. This nmethod does not properly convert bytes into characters. As
of
JDK 1.1, the preferred way to do this is via the String constructors that
take a
Charset, charset nane, or that use the platforms default charset.

If you use the @lepr ecat ed JavaDoc tag without the corresponding @epr ecat ed
annotation, a warning is generated.

Notifications and Warnings

Core Libraries
G29144-01

When an APl is deprecated, developers must be notified. The deprecated APl may cause
problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APls. There are options to generate
more information about warnings, and you can also suppress deprecation warnings.

Compiler Deprecation Warnings

If the deprecation is f or Renoval =f al se, the Java compiler generates an "ordinary deprecation
warning". If the deprecation is f or Renoval =t r ue, the compiler generates a "removal warning".

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE’

Core Libraries
G29144-01

Chapter 3
Notifications and Warnings

The two kinds of warnings are controlled by separate - Xl i nt flags: - Xl i nt: deprecation and -
Xint:renoval . Thejavac - Xl int:renoval option is enabled by default, so removal warnings
are shown.

The warnings can also be turned off independently (note the "—"): - Xl i nt : - deprecati on and -
Xint:-renoval .

This is an example of an ordinary deprecation warning.

$ javac src/exanpl e/ Deprecati onExanpl e. j ava

Not e: src/exanpl e/ Deprecati onExanpl e.java uses or overrides a deprecated
APl .

Note: Reconpile with -Xlint:deprecation for details.

Use the javac - Xlint: deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/exanpl e/ DeprecationExanpl e.] ava
src/ exanpl e/ Deprecati onExanpl e. j ava: 12: warni ng: [deprecation]
get Sel ect edVal ues() in JList has been deprecated
oj ect[] values = jlist.getSelectedVal ues();
N

1 warning

Here is an example of a removal warning.

public class Rermoval Exanpl e {
public static void main(String[] args) {
System runFinal i zersOnExit (true);
}
}

$ javac Renpval Exanpl e.] ava
Rermoval Exanpl e. java: 3: warning: [renoval] runFinalizersOnExit(boolean) in
System
has been deprecated and marked for renoval
System runFinal i zersOnExit (true);

N

1 warni ng

Suppressing Deprecation Warnings

The javac - X int options control warnings for all files compiled in a particular run of j avac.
You may have identified specific locations in source code that generate warnings that you no
longer want to see. You can use the @uppr essWar ni ngs annotation to suppress warnings
whenever that code is compiled. Place the @uppr essWar ni ngs annotation at the declaration of
the class, method, field, or local variable that uses a deprecated API.

The @uppr essVar ni ngs options are:

e @uppress\Warni ngs("deprecation") — Suppresses only the ordinary deprecation
warnings.

e @uppressWarni ngs("renmoval ") — Suppresses only the removal warnings.

° @uppressWarni ngs({"deprecation","renoval "}) — Suppresses both types of
warnings.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE’

Chapter 3
Running jdeprscan

Here’s an example of suppressing a warning.

@uppr essWar ni ngs("deprecation")
oj ect[] values = jlist.getSelectedVal ues();

With the @uppr essWar ni ngs annotation, no warnings are issued for this line, even if warnings
are enabled on the command line.

Running jdeprscan

Core Libraries
G29144-01

j depr scan is a static analysis tool that reports on an application’s use of deprecated JDK API
elements. Run j depr scan to help identify possible issues in compiled class files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However, if you
don’t recompile with every JDK release, or if the warnings were suppressed, or if you depend
on third-party libraries that are distributed as binary artifacts, then you should run j depr scan.

It's important to discover dependencies on deprecated APIs before the APIs are removed from
the JDK. If the binary uses an API that is deprecated for removal in the current JDK release,
and you don’t recompile, then you won't get any notifications. When the APl is removed in a
future JDK release, then the binary will simply fail at runtime. j depr scan lets you detect such
usage now, well before the APl is removed.

For the complete syntax of how to run the tool and how to interpret the output, see The

jdeprscan Command in the Java Development Kit Tool Specifications.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 5

XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduced a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS Standard
V1.1, 7 October 2005. This chapter of the Core Libraries Guide describes the API, its support
by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and the
support by the JDK XML processors makes it easier to configure your processors or the entire
environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see XML Catalogs, OASIS Standard V1.1, 7 October 2005.
The XML catalogs under the directory / et ¢/ xni / cat al og on some Linux distributions can also
be a good reference for creating a local catalog.

Purpose of XML Catalog API

The XML Catalog API and the Java XML processors provide an option for developers and
system administrators to manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a standard
designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that Java XML
processors need to retrieve to process the documents. External resources can cause a
problem for the applications or the system. The Catalog API and the Java XML processors
provide an option for developers and system administrators to manage these external
resources.

External resources can cause a problem for the application or the system in these areas:

e Availability: If a resource is remote, then XML processors must be able to connect to the
remote server hosting the resource. Even though connectivity is rarely an issue, it's still a
factor in the stability of an application. Too many connections can be a hazard to servers
that hold the resources, and this in turn could affect your applications. See Use Catalog
with XML Processors for an example that solves this issue using the XML Catalog API.

- Performance. Although in most cases connectivity isn’'t an issue, a remote fetch can
still cause a performance issue for an application. Furthermore, there may be multiple
applications on the same system attempting to resolve the same resource, and this would
be a waste of system resources.

e Security: Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

* Manageability: If a system processes a large number of XML documents, then externally
referenced documents, whether local or remote, can become a maintenance hassle.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 13

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

ORACLE’

Chapter 4
XML Catalog API Interfaces

How XML Catalog API Addresses Problems Caused by External Resources

Application developers can create a local catalog of all external references for the application,
and let the Catalog API resolve them for the application. This not only avoids remote
connections but also makes it easier to manage these resources.

System administrators can establish a local catalog for the system and configure the Java VM
to use the catalog. Then, all of the applications on the system may share the same catalog
without any code changes to the applications, assuming that they’re compatible with Java SE
9. To establish a catalog, you may take advantage of existing catalogs such as those included
with some Linux distributions.

XML Catalog API Interfaces

Core Libraries
G29144-01

Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces
The XML Catalog API defines the following interfaces:

e The Cat al og interface represents an entity catalog as defined by XML Catalogs, OASIS
Standard V1.1, 7 October 2005. A Cat al og object is immutable. After it's created, the
Cat al og object can be used to find matches in a system public, oruri entry. A custom
resolver implementation may find it useful to locate local resources through a catalog.

e The Cat al ogFeat ur es class provides the features and properties the Catalog API supports,
including javax. xm . catal og.files, javax.xm . catal og. defer,
javax. xnl . catal og. prefer, andjavax.xm . catal og. resol ve.

e The Cat al ogManager class manages the creation of XML catalogs and catalog resolvers.

e The Cat al ogResol ver interface is a catalog resolver that implements
SAX EntityResol ver, StAX XM.Resol ver, DOM LS LSResour ceResol ver used by schema
validation, and transform URI Resol ver . This interface resolves external references using
catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the Cat al ogFeat ur es class. The features are
defined at the API and system levels, which means that they can be set through the API,
system properties, and JAXP properties. To set a feature through the API, use the

Cat al ogFeat ur es class.

The following code sets j avax. xnl . cat al og. resol ve to conti nue so that the process
continues even if no match is found by the Cat al ogResol ver:

Cat al ogFeatures f = Catal ogFeatures. buil der().w th(Feature. RESOLVE,
“continue").build();

To set this cont i nue functionality system-wide, use the Java command line or
Syst em set Property method:

Syst em set Propert y(Feat ure. RESOLVE. get PropertyNane(), "continue");

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 13

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

ORACLE’

Using the

Chapter 4
Using the XML Catalog API

To set this cont i nue functionality for the whole JVM instance, enter a line in the
j axp. properti es file:

javax. xm . cat al og. resol ve = "conti nue"

The j axp. properti es file is typically in the $JAVA_HOVE/ conf directory.

The resol ve property, as well as the pref er and def er properties, can be set as an attribute of
the catalog or group entry in a catalog file. For example, in the following catalog, the r esol ve
attribute is set with the value cont i nue. The attribute can also be set on the gr oup entry as
follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<catal og
xm ns="urn: oasi s: names:tc:entity: xn ns:xn : catal og"
resol ve="conti nue"
xm : base="http://local / base/dtd/">
<group resol ve="continue">
<system
system d="http://renote/dtd/alice/docAlice.dtd"
uri="http://local/dtd/docAliceSys.dtd"/>
</ group>
</ cat al og>

Properties set in a narrower scope override those that are set in a wider one. Therefore, a
property set through the API always takes preference.

XML Catalog API

Resolve DTD, entity, and alternate URI references in XML source documents using the various
entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system entries,
including system rew it eSystem and syst enfuf fi x entries, are used for resolving DTD and
entity references in XML source documents, whereas uri entries are for alternate URI
references.

System Reference

Core Libraries
G29144-01

Use a Cat al ogResol ver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a Cat al ogResol ver object to locate a local
resource.

Consider the following XML file:

<?xm version="1.0"?7>

<! DOCTYPE cat al ogt est PUBLIC "-//OPENJDK// XML CATALOG DTDY/ 1. 0"
"http://openjdk.java.net/xm/catal og/ dtd/ exanpl e. dtd">

<cat al ogt est >

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE’

Core Libraries
G29144-01

Chapter 4
Using the XML Catalog API

Test &exanple; entry
</ cat al ogt est >

The exanpl e. dt d file defines an entity exanpl e:

<IENTITY exanple "systen'>

However, the URI to the exanpl e. dt d file in the XML file doesn't need to exist. The purpose is
to provide a unique identifier for the Cat al ogResol ver object to locate a local resource. To do
this, create a catalog entry file called cat al og. xm with a syst ementry to refer to the local
resource:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<catal og xm ns="urn: oasi s: nanes:tc:entity:xnns:xnl:catal og">
<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>
</ cat al og>

With this catalog entry file and the syst ementry, all you need to do is get a default
Cat al ogFeat ur es object and set the URI to the catalog entry file to create a Cat al ogResol ver
object:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(), catal ogUri);

cat al ogUri must be a valid URI. For example:

URI . create("file:///users/auser/catal og/catal og. xm")

The Cat al ogResol ver object can now be used as a JDK XML resolver. In the following
example, it's used as a SAX Enti t yResol ver:

SAXPar ser Factory factory = SAXParser Fact ory. newl nstance();
factory. set NanespaceAwar e(true);

XM_.Reader reader = factory.newSAXParser (). get XM_Reader ();
reader. set EntityResol ver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes it easy
for the resolver to find the match with exactly the same syst em d in the catalog's syst ementry.

If the syst emidentifier in the XML is relative, then it may complicate the matching process
because the XML processor may have made it absolute with a specified base URI or the
source file's URI. In that situation, the syst em d of the system entry would need to match the
anticipated absolute URI. An easier solution is to use the syst entuf f i x entry, for example:

<systentuffix system dSuffix="exanpl e.dtd" uri="exanple.dtd"/>

The syst enuf fi X entry matches any reference that ends with exanpl e. dt d in an XML source
and resolves it to a local exanpl e. dt d file as specified in the uri attribute. You may add more
to the syst en d to ensure that it's unique or the correct reference. For example, you may set

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE’

Chapter 4
Using the XML Catalog API

the system dSuf fi x to xm / cat al og/ dt d/ exanpl e. dt d, or rename the i d in both the XML
source file and the syst enfuf f i x entry to make it a unique match, for example
my_exanpl e. dtd.

The URI of the syst ementry can be absolute or relative. If the external resources have a fixed
location, then an absolute URI is more likely to guarantee uniqueness. If the external resources
are placed relative to your application or the catalog entry file, then a relative URI may be more
effective, allowing the deployment of your application without knowing where it's installed. Such
a relative URI then is resolved using the base URI or the catalog file’s URI if the base URI isn’t
specified. In the previous example, exanpl e. dt d is assumed to have been placed in the same
directory as the catalog file.

Public Reference

Use a publ i c entry instead of a syst ementry to find a desired resource.

If no syst ementry matches the desired resource, and the PREFER property is specified to match
publ i c, then a publ i ¢c entry can do the same as a syst ementry. Note that publ i ¢ is the default
setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as "-//
OPENJDK/ / XML CATALOG DTD/ / 1. 0", a publ i ¢ entry can be written as follows in the catalog
entry file:

<public publicld="-//OPENJDK// XML CATALOG DTD//1.0" uri="exanpl e.dtd"/>

When you create and use a Cat al ogResol ver object with this entry file, the exanpl e. dt d
resolves through the publ i cl d property. See System Reference for an example of creating a
Cat al ogResol ver object.

URI Reference

Core Libraries
G29144-01

Use auri entry to find a desired resource.

The URI type entries, including uri, rewiteURl, and uri Suffi x, can be used in a similar way
as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the syst emtype entries for resolving
DTD references, and uri type entries for everything else, the Java XML Catalog API doesn't
make that distinction. This is because the specifications for the existing Java XML Resolvers,
such as XM_Resol ver and LSResour ceResol ver, doesn't give a preference. The uri type
entries, including uri, rewiteURl, and uri Suffi x, can be used in a similar way as the syst em
type entries. The uri elements are defined to associate an alternate URI reference with a URI
reference. In the case of syst emreference, this is the syst em d property.

You may therefore replace the syst ementry with a uri entry in the following example, although
syst ementries are more generally used for DTD references.

<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ exanpl e. dtd"
uri ="exanple.dtd"/>

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE’

Chapter 4
Java XML Processors Support

A uri entry would look like the following:

<uri nane="http://openjdk.java.net/xn/catal og/dtd/ exanpl e. dtd"
uri ="exanple.dtd"/>

While syst ementries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri entry to
resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines the

Cat al ogResol ver interface that extends Java XML Resolvers including Enti t yResol ver,
XM.Resol ver, URI Resol ver, and LSResol ver . Therefore, a Cat al ogResol ver object can be
used by SAX, DOM, StAX, Schema Validation, as well as XSLT Transform. The following code
creates a Cat al ogResol ver object with default feature settings:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(), catal ogUri);

The code then registers this Cat al ogResol ver object on a Transf or mer Fact ory class where a
URI Resol ver object is expected:

TransfornerFactory factory = Transforner Factory. new nstance();
factory. set URI Resol ver(cr);

Alternatively the code can register the Cat al ogResol ver object on the Tr ansf or ner object:

Transforner transformer = factory. newlransformer(xsl Source);
t ransf orner. set URI Resol ver (cur);

Assuming the XSL source file contains an i mport element to import the xsl | mport . xsl file into
the XSL source:

<xsl:inmport href="pathto/xsl|nport.xsl"/>

To resolve the i nport reference to where the import file is actually located, a Cat al ogResol ver
object should be set on the Tr ansf or ner Fact ory class before creating the Transf or mer object,
and a uri entry such as the following must be added to the catalog entry file:

<uri nane="pathto/xslInport.xsl" uri="xsllnmport.xsl"/>

The discussion about absolute or relative URIs and the use of syst enSuf fi x or uri Suffi x
entries with the system reference applies to the uri entries as well.

Java XML Processors Support

Core Libraries
G29144-01

Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors, including SAX
and DOM (j avax. xn . par ser s), and StAX parsers (j avax. xnl . strean), schema validation
(j avax. xm . val i dati on), and XML transformation (j avax. xnl . t r ansf or nj.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE’

Chapter 4
Java XML Processors Support

This means that you don’t need to create a Cat al ogResol ver object outside an XML
processor. Catalog files can be registered directly to the Java XML processor, or specified
through system properties, or in the j axp. properti es file. The XML processors perform the
mappings through the catalogs automatically.

Enable Catalog Support

Core Libraries
G29144-01

To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG feature
must be set to t rue, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported based on
the value of the USE_CATALOGfeature. By default, USE_CATALOG is set to t r ue for all JIDK XML
Processors. The Java XML processor further checks for the availability of a catalog file, and
attempts to use the XML Catalog API only when the USE_CATALOG feature is t r ue and a catalog
is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property, and the

j axp. properti es file. For example, if USE_CATALOG s set to t rue and it's desirable to disable
the catalog support for a particular processor, then this can be done by setting the

USE CATALOGfeature to f al se through the processor's set Feat ur e method. The following code
sets the USE_CATALOG feature to the specified value useCat al og for an XM_LReader object:

SAXPar ser Factory spf = SAXParser Factory. new nstance();
spf. set NamespaceAwar e(true);
XM_.Reader reader = spf.newSAXParser().get XM_Reader();
if (setUseCatal og) {
reader. set Feat ur e(XMLConst ant s. USE_CATALOG, useCat al og) ;
}

On the other hand, if the entire environment must have the catalog turned off, then this can be
done by configuring the j axp. properti es file with a line:

javax. xm . useCatal og = fal se;

javax.xml.catalog.files

The javax. xm . catal og. fil es property is defined by the XML Catalog API and supported by
the JDK XML processors, along with other catalog features. To employ the catalog feature on a
parsing, validating, or transforming process, all that's needed is to set the FI LES property on
the processor, through its system property or using the j axp. properti es file.

Catalog URI

The catalog file reference must be a valid URI, such asfile:///users/auser/catal og/
catal og. xn .

The URI reference in a system or a URI entry in the catalog file can be absolute or relative. If
they're relative, then they are resolved using the catalog file's URI or a base URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an example),
systemand uri entries both work when using the JDK XML Processors' native support of the
Cat al ogFeat ures class. In general, syst ementries are searched first, then publ i ¢ entries, and

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE’

Chapter 4
Java XML Processors Support

if no match is found then the processor continues searching uri entries. Because both syst em
and uri entries are supported, it's recommended that you follow the custom of XML
specifications when selecting between using a syst emor uri entry. For example, DTDs are
defined with a syst enl d and therefore syst ementries are preferable.

Use Catalog with XML Processors

Core Libraries
G29144-01

Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following sections
describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FI LES property on a Docunent Bui | der Fact ory instance as
demonstrated in the following code:

static final String CATALOG FILE =
Cat al ogFeat ures. Feat ur e. FI LES. get Propert yNane() ;
Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance();
dbf . set NanmespaceAwar e(true);
if (catalog !'= null) {
dbf . set Attri but e(CATALOG FI LE, catal og);
}

Note that cat al og is a URI to a catalog file. For example, it could be something like "file:///
user s/ auser/catal og/ catal og. xm ".

It's best to deploy resolving target files along with the catalog entry file, so that the files can be
resolved relative to the catalog file. For example, if the following is a uri entry in the catalog
file, then the XSLInmport _htm . xsl file will be located at / user s/ auser/ cat al og/

XSLInport _htm . xsl.

<uri nanme="pathto/ XSLI nport_htm . xsl" uri="XSLI nport_htm .xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXPar ser instance:

SAXPar ser Factory spf = SAXParser Factory. new nstance();
spf. set NamespaceAwar e(true);

spf. set Xl ncl udeAwar e(true);

SAXPar ser parser = spf.newSAXParser();

par ser. set Property(CATALOG FI LE, catal og);

In the prior sample code, note the statement spf . set XI ncl udeAwar e(t r ue) . When this is
enabled, any Xl ncl ude is resolved using the catalog as well.

Given an XML file XI _si npl e. xn :

<si mpl e>
<test xnlns:xinclude="http://ww. w3.org/ 2001/ Xl ncl ude" >
<l atinl>
<firstEl enent/>
<xi ncl ude:include href="pathto/ Xl _text.xm " parse="text"/>

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE’

Core Libraries
G29144-01

Chapter 4
Java XML Processors Support

<insideChildren/>
<anot her >
<deeper >t ext </ deeper >
</ anot her >
</latinl>
<t est 2>
<xi ncl ude:include href="pathto/ Xl _test2.xm"/>
</test2>
</test>
</ si npl e>

Additionally, given another XML file XI _test2.xm :

<?xm version="1.0"?7>
<l-- conment before root -->
<! DOCTYPE red SYSTEM "pathto/ Xl _red. dtd">
<red xm ns: xincl ude="http://ww.w3. or g/ 2001/ Xl ncl ude" >
<bl ue>
<xi ncl ude:include href="pathto/ Xl _text.xm " parse="text"/>
</ bl ue>
</red>

Assume another text file, XI _t ext. xm , contains a simple string, and the file XI _red. dtd is as
follows:

<IENTITY red "it is read">

In these XML files, there is an Xl ncl ude element inside an Xl ncl ude element, and a reference
to a DTD. Assuming they are located in the same folder along with the catalog file
Cat al ogSupport . xm , add the following catalog entries to map them:

<uri nane="pathto/ Xl text.xm" uri="X _text.xm"/>
<uri nane="pathto/ Xl test2.xm" uri="X test2.xm"/>
<system system d="pathto/ Xl red.dtd" uri="X _red.dtd"/>

When the par ser. par se method is called to parse the Xl _si npl e. xnl file, it's able to locate the
Xl _test2.xm file in the XI _si npl e. xnl file, and the Xl _text. xnl file and the Xl _red. dt d file
in the XI _test2.xm file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the XM.I nput Fact ory
instance before creating the XM_St r eanReader object:

XM.I nput Factory factory = XM.I nput Fact ory. newl nst ance();
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNane(), catal og);
XML.St r eanReader streanReader =

factory. createXM St reanReader (xm, new Fil el nput Strean(xm));

When the XMLSt r eanReader streanReader object is used to parse the XML source, external
references in the source are then resolved in accordance with the specified entries in the
catalog.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE’

Core Libraries
G29144-01

Chapter 4
Java XML Processors Support

Note that unlike the Docunent Bui | der Fact ory class that has both set Feat ur e and

set Attri but e methods, the XMLI nput Fact ory class defines only a set Property method. The
XML Catalog API features including XM_Const ant s. USE_CATALQOG are all set through this

set Property method. For example, to disable USE_CATALOG on a XMLSt r eanReader object, you
can do the following:

factory. set Property(XM.Const ants. USE_CATALOG fal se);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD i nport and
i ncl ude, set the catalog on the SchemaFact ory object:

SchemaFactory factory =

SchemaFact ory. newl nst ance(XM_.Const ant s. WBC_XM._SCHEMA NS URI) ;
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNane(), catal og);
Schema schema = factory. newSchena(schenaFil e);

The XMLSchema schema document contains references to external DTD:

<! DOCTYPE xs:schema PUBLIC "-//WBC// DTD XMLSCHEMA 200102/ /EN' "pat ht o/
XM.Schema. dtd" [

1>
And to xsd import:

<xs:inport
namespace="http://ww. w3. or g/ XM/ 1998/ nanespace"
schemalLocation="http://ww:. w3. org/ 2001/ pat ht o/ xm . xsd" >
<xs:annot ation>
<xs: docunent ati on>
Get access to the xm: attribute groups for xm:lang
as declared on 'schena' and 'docurentation' bel ow
</ xs: docunent ati on>
</ xs:annot ati on>
</ xs:inmport>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

* Include these entries in the catalog set on the SchemaFact ory object:

<public publicld="-//WC//DTD XM_.SCHEMA 200102//EN' uri="XM.Schera. dtd"/>
<I-- XM.Schena.dtd refers to datatypes.dtd -->

<systentuf fix system dSuffix="datatypes. dtd" uri="datatypes.dtd"/>

<uri name="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm .xsd"/>

* Download the source files XM_Schena. dt d, dat at ypes. dtd, and xm . xsd and save them
along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that you prefer.
In the prior case, instead of the uri entry, you could also use either one of the following:

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 13

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

ORACLE’

Core Libraries
G29144-01

Chapter 4
Java XML Processors Support

* Apublic entry, because the nanespace attribute in the i nport element is treated as the
publicld element:

<public publicld="http://ww:.w3.org/ XM./ 1998/ namespace" uri="xm .xsd"/>

e Asystementry:

<system system d="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm . xsd"/>

@® Note

When experimenting with the XML Catalog API, it might be useful to ensure that none
of the URIs or system IDs used in your sample files points to any actual resources on
the internet, and especially not to the W3C server. This lets you catch mistakes early
should the catalog resolution fail, and avoids putting a burden on W3C servers, thus
freeing them from any unnecessary connections. All the examples in this topic and
other related topics about the XML Catalog API, have an arbitrary string " pat ht 0"
added to any URI for that purpose, so that no URI could possibly resolve to an
external W3C resource.

To use the catalog to resolve any external resources in an XML source to be validated, set the
catalog on the Val i dat or object:

SchemaFact ory schemaFactory =
SchemaFact ory. newl nst ance(XMLConst ant s. WBC_XM__SCHEMA_NS_UR!) ;
Schema schema = schemaFact ory. newSchema() ;
Val i dat or validator = schema. newvalidator();
val i dat or. set Property(Cat al ogFeat ures. Feat ure. FI LES. get Propert yNane(),
catal og);
StreanBSource source = new StreanfSource(new File(xn));
val i dat or.val i dat e(source);

Use Catalog with Transform

To use the XML Catalog APl in a XSLT transform process, set the catalog file on the
Transf or ner Fact ory object.

TransfornerFactory factory = TransfornerFactory. new nstance();
factory.setAttribute(Catal ogFeat ures. Feature. FI LES. get PropertyName(),
catal og);

Transforner transforner = factory. newlransformer(xsl Source);

If the XSL source that the factory is using to create the Transf or mer object contains DTD,
import, and include statements similar to these:

<! DOCTYPE HTM.l at 1 SYSTEM "http://openj dk.java. net/xm /catal og/ dt d/
XSLDTD. dt d" >

<xsl:inport href="pathto/ XSLI nport_htm .xsl"/>

<xsl:include href="patht o/ XSLI ncl ude_header. xsl "/ >

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE’

Chapter 4
Calling Order for Resolvers

Then the following catalog entries can be used to resolve these references:

<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ XSLDTD. dt d"
uri ="XSLDTD. dtd"/ >
<uri nane="pathto/ XSLI nport_htm .xsl" uri="XSLI nport_htm .xsl"/>
<uri nane="pat ht o/ XSLI ncl ude_header. xsl " uri="XSLI ncl ude_header. xsl "/>

Calling Order for Resolvers

Detecting

Core Libraries
G29144-01

The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the Cat al ogResol ver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set. However,
if a custom resolver is also provided, then it's always be placed ahead of the catalog resolver.
This means that a JDK XML processor first calls a custom resolver to attempt to resolve
external resources. If the resolution is successful, then the processor skips the catalog resolver
and continues. Only when there’s no custom resolver or if the resolution by a custom resolver
returns null, does the processor then call the catalog resolver.

For applications that use custom resolvers, it’s therefore safe to set an additional catalog to
resolve any resources that the custom resolvers don't handle. For existing applications, if
changing the code isn't feasible, then you may set a catalog through the system property or
j axp. properti es file to redirect external references to local resources knowing that such a
setting won't interfere with existing processes that are handled by custom resolvers.

Errors

Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry files
without issuing an error, which makes it harder to detect configuration issues.

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time, setting the
RESOLVE value to stri ct, and checking for a Cat al ogExcept i on exception when no match is
found.

Table 4-1 RESOLVE Settings
]

RESOLVE Value Cat al ogResol ver Behavior Description

strict (default) Throws a Cat al ogExceptionif An unmatched reference may
no match is found with a specified indicate a possible error in the
reference catalog or in setting the catalog.

continue Returns quietly This is useful in a production

environment where you want the
XML processors to continue
resolving any external references
not covered by the catalog.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 4
Detecting Errors

Table 4-1 (Cont.) RESOLVE Settings

]
RESCLVE value Cat al ogResol ver Behavior Description

i gnore Returns quietly For processors such as SAX, that
allow skipping the external
references, the i gnor e value
instructs the
Cat al ogResol ver object to
return an empty | nput Sour ce
object, thus skipping the external
reference.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 13

Java Collections Framework

The Java platform includes a collections framework that provides developers with a unified
architecture for representing and manipulating collections, enabling them to be manipulated
independently of the details of their representation. A collection is an object that represents a
group of objects (such as the classic ArraylLi st class).

The Java Collections Framework enables interoperability among unrelated APIs, reduces effort
in designing and learning new APIs, and fosters software reuse. The framework is based on
more than a dozen collection interfaces, and includes implementations of these interfaces with
the algorithms to manipulate them.

Overview
The Java Collections Framework consists of:

e Collection interfaces: Represent different types of collections, such as sets, lists, and
maps. These interfaces form the basis of the framework.

e General-purpose implementations: Primary implementations of the collection interfaces.

* Legacy implementations: The collection classes from earlier releases, Vector and
Hashtable, were retrofitted to implement the collection interfaces.

e Special-purpose implementations: Implementations designed for use in special
situations. These implementations display nonstandard performance characteristics, usage
restrictions, or behavior.

e Concurrent implementations: Implementations designed for highly concurrent use.

* Wrapper implementations: Add functionality, such as synchronization, to other
implementations.

e Convenience implementations: High-performance "mini-implementations" of the
collection interfaces.

* Abstract implementations: Partial implementations of the collection interfaces to facilitate
custom implementations.

» Algorithms: Static methods that perform useful functions on collections, such as sorting a
list.

« Infrastructure: Interfaces that provide essential support for the collection interfaces.

e Array Utilities: Utility functions for arrays of primitive types and reference objects. Not,
strictly speaking, a part of the collections framework, this feature was added to the Java
platform at the same time as the collections framework and relies on some of the same
infrastructure.

See Java Collections Framework for detailed information about the interfaces and
implementations contained in the Java Collections Framework.

See The Java™ Tutorials for basic information about using the Java Collections Framework.

Topics

¢ Creating Unmodifiable Lists, Sets, and Maps

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 18

https://docs.oracle.com/javase/tutorial/collections/

ORACLE’

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

» Creating Sequenced Collections, Sets, and Maps

Creating Unmodifiable Lists, Sets, and Maps

Use Cases

Core Libraries
G29144-01

Convenience static factory methods on the Li st , Set , and Map interfaces let you easily create
unmodifiable lists, sets, and maps.

A collection is considered unmaodifiable if elements cannot be added, removed, or replaced.
After you create an unmodifiable instance of a collection, it holds the same data as long as a
reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future modifications.
This adds overhead to the data that is stored in the modifiable collection. A collection that is
unmodifiable does not need this extra bookkeeping data. Because the collection never needs
to be modified, the data contained in the collection can be packed much more densely.
Unmodifiable collection instances generally consume much less memory than modifiable
collection instances that contain the same data.

Topics
¢ Use Cases

e Syntax
e Creating Unmodifiable Copies of Collections

e Creating Unmodifiable Collections from Streams

 Randomized Iteration Order

e About Unmodifiable Collections

» Space Efficiency

e Thread Safety

Whether to use an unmodifiable collection or a modifiable collection depends on the data in the
collection.

An unmodifiable collection provides space efficiency benefits and prevents the collection from
accidentally being modified, which might cause the program to work incorrectly. An
unmodifiable collection is recommended for the following cases:

* Collections that are initialized from constants that are known when the program is written

« Collections that are initialized at the beginning of a program from data that is computed or
is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program, a
modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were done
with an unmodifiable collection, a complete copy would have to be made to add or remove a
single element, which usually has unacceptable overhead.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 18

ORACLE Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

Syntax
The API for these collections is simple, especially for small numbers of elements.
Topics

* Unmodifiable List Static Factory Methods

* Unmodifiable Set Static Factory Methods

e Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods

The Li st . of static factory methods provide a convenient way to create unmodifiable lists.

A list is an ordered collection in which duplicate elements are allowed. Null values are not
allowed.

The syntax of these methods is:

Li st. of ()
Li st.of (el)
List.of (el, e2) /] fixed-argunent formoverloads up to 10 el ements

List.of (elenents...) // varargs formsupports an arbitrary number of
el ements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c¢");
stringList = Collections.unnodifiableList(stringList);

In JDK 9 and later:

List<String> stringList = List.of("a", "b", "c");

See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods

The Set . of static factory methods provide a convenient way to create unmodifiable sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is detected,
then an | | | egal Argunent Except i on is thrown. Null values are not allowed.

The syntax of these methods is:

Set . of ()
Set . of (el)
Set.of (el, e2) /1 fixed-argunent form overloads up to 10 el ements
Set.of (el ements...) [/ varargs formsupports an arbitrary nunber of

el ements or an array

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

ORACLE’

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Col | ections.unmodifiableSet(stringSet);

In JDK 9 and later:

Set<String> stringSet = Set.of("a", "b", "c¢");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods

Core Libraries
G29144-01

The Map. of and Map. of Ent ri es static factory methods provide a convenient way to create
unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
|1l egal Argunent Excepti on is thrown. Each key is associated with one value. Null cannot be
used for either Map keys or values.

The syntax of these methods is:

Map. of ()

Map. of (k1, v1)

Map. of (k1, v1, k2, v2) /1 fixed-argunent formoverloads up to 10 key-val ue
pairs

Map. of Entries(entry(kl, v1), entry(k2, v2),...)

/1 varargs formsupports an arbitrary number of Entry objects or an array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, |nteger>();
stringMap. put("a", 1);

stringMap. put ("b", 2);

stringMap. put("c", 3);
stringMap = Col | ections. unmodi fiabl eMap(stringMap);

In JDK 9 and later:

Map<String, Integer> stringhvap = Map.of("a", 1, "b", 2, "c", 3);

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the Map. entry
method, and pass those objects to the Map. of Ent ri es method. For example:

inport static java.util.Mp.entry;

Map <Integer, String> friendMap = Map. of Entries(
entry(l, "Tonl'),
entry(2, "Dick"),

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

ORACLE Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

entry(3, "Harry"),

entry(99, "Mathilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections

Let's consider the case where you create a collection by adding elements and modifying it, and
then at some point, you want an unmodifiable snapshot of that collection. Create the copy
using the copy O family of methods.

For example, suppose you have some code that gathers elements from several places:

List<Iten> list = new ArrayList<>();
list.addAll (getltensFronSonewhere());
|ist.addAll (getltensFronkl sewhere())
l'ist.addAl | (getltensFronyet Anot her Pl ace());

It's inconvenient to create an unmodifiable collection using the Li st . of method. Doing this
would require creating an array of the right size, copying elements from the list into the array,
and then calling Li st. of (array) to create the unmodifiable snapshot. Instead, do it in one
step using the copyf static factory method:

Li st<Iten> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set . copyOf and
Map. copy O . Because the parameter of Li st. copyOf and Set . copyOf is Col | ecti on,
you can create an unmodifiable Li st that contains the elements of a Set and an unmodifiable
Set that contains the elements of a Li st . If you use Set . copyF to create a Set from a

Li st, and the Li st contains duplicate elements, an exception is not thrown. Instead, an
arbitrary one of the duplicate elements is included in the resulting Set .

If the collection you want to copy is modifiable, then the copyOf method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the same
elements as the original. If elements are added to or removed from the original collection, that
won't affect the copy.

If the original collection is already unmodifiable, then the copyOf method simply returns a
reference to the original collection. The point of making a copy is to isolate the returned
collection from changes to the original one. But if the original collection cannot be changed,
there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that change
causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams

The Streams library includes a set of terminal operations known as Col | ect ors. A Col | ect or
is most often used to create a new collection that contains the elements of the stream. The
java.util.stream Col | ect ors class has Col | ect or s that create new unmaodifiable
collections from the elements of the streams.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

ORACLE’

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

If you want to guarantee that the returned collection is unmodifiable, you should use one of the
t oUnnodi fi abl e- collectors. These collectors are:

Col I ectors. t oUnnodi fi abl eLi st ()

Col I ect ors. t oUnnodi fi abl eSet ()

Col I ectors. t oUnmodi f i abl eMap(keyMapper, val ueMapper)

Col | ectors. t oUnnodi fi abl eMap(keyMapper, val ueMapper, mergeFunction)

For example, to transform the elements of a source collection and place the results into an
unmodifiable set, you can do the following:

Set<Itenm> unnodi fiabl eSet =
sour ceCol | ection. stream()

.map(...)
.coll ect(Col |l ectors.toUnnodifiableSet());

If the stream contains duplicate elements, the t oUnnodi fi abl eSet collector chooses an
arbitrary one of the duplicates to include in the resulting Set . For the

t oUnnodi fi abl eMap(keyMapper, val ueMapper) collector, if the keyMapper function
produces duplicate keys, an | | | egal St at eExcepti on is thrown. If duplicate keys are a
possibility, use the t oUnnodi fi abl eMap(keyMapper, val ueMapper, mergeFuncti on)
collector instead. If duplicate keys occur, the ner geFunct i on is called to merge the values of
each duplicate key into a single value.

The t oUnnodi f i abl e- collectors are conceptually similar to their counterparts t oLi st ,

t 0Set , and the corresponding two t oMap methods, but they have different characteristics.
Specifically, the t oLi st, t 0Set, and t oMap methods make no guarantee about the
modifiablilty of the returned collection, however, the t oUnnodi f i abl e- collectors guarantee
that the result is unmodifiable.

Randomized Iteration Order

Core Libraries
G29144-01

Iteration order for Set elements and Map keys is randomized and likely to be different from one
JVM run to the next. This is intentional and makes it easier to identify code that depends on
iteration order. Inadvertent dependencies on iteration order can cause problems that are
difficult to debug.

The following example shows how the iteration order is different after j shel | is restarted.

Map. of ("a", 1, "b", 2, "c", 3);

jshell > var stringMp =
c=3, a=1}

stringMap ==> {b=2,

jshell> [exit
| Goodbye

C.\Program Fi | es\ Java\j dk\ bi n>j shel |

jshell > var stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the Set . of ,

Map. of , and Map. of Ent ri es methods and the t oUnnodi f i abl eSet and t oUnmodi f i abl eMap
collectors. The iteration ordering of collection implementations such as Hashiap and HashSet
is unchanged.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 18

ORACLE Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

About Unmodifiable Collections

The collections returned by the convenience factory methods added in JDK 9 are unmodifiable.
Any attempt to add, set, or remove elements from these collections causes an
Unsupport edQper ati onExcepti on to be thrown.

However, if the contained elements are mutable, then this may cause the collection to behave
inconsistently or make its contents to appear to change.

Let's look at an example where an unmodifiable collection contains mutable elements. Using
j shel |, create two lists of St ri ng objects using the ArrayLi st class, where the second list
is a copy of the first. Trivial j shel | output was removed.

jshel > List<String> listl = new ArrayList<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell> listl

listl ==> [a, b]

jshell > List<String> list2 = new ArraylList<>(listl);
list2 ==> [a, b]

Next, using the Li st . of method, create unnodl i st 1 and unnodl i st 2 that point to the first
lists. If you try to modify unnodl i st 1, then you see an exception error because unnodl i st 1 is
unmodifiable. Any modification attempt throws an exception.

jshel I > List<List<String>> unnmodlistl = List.of (listl, listl);
unnodlistl ==> [[a, b], [a, b]]

jshel I > List<List<String>> unnmodlist2 = List.of (list2, list2);
unnodl ist2 ==> [[a, b], [a, b]]

j shel I > unnodl i st 1. add(new ArrayList<String>())

| java.lang. UnsupportedQperationException thrown:

| at | mut abl eCol | ections.uoe (I mutabl eCollections.java:71)
| at | mut abl eCol | ecti ons$Abst ract | mut abl eLi st. add

(I mrut abl eCol | ecti ons

.java: 75)

| at (#8:1)

But if you modify the original | i st 1, the contents of unnodl i st 1 changes, even though
unmodl i st 1 is unmodifiable.

jshell> listl. add("c")

jshell> listl

listl ==>[a, b, c]

j shel I > unmodlist1

ilistl ==>[[a, b, c], [a, b, c]]

jshel I > unmodlist2
ilist2 ==> [[a, b], [a, Db]]

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 18

ORACLE’

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

j shel I > unnodl i st 1. equal s(unmodl i st 2)
$14 ==> fal se

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views returned by
the Col | ecti ons. unnodi fi abl e. .. methods. (See Unmodifiable View Collections in the
Col I ecti on interface JavaDoc API documentation). However, the unmodifiable collections are
not views — these are data structures implemented by classes where any attempt to modify
the data causes an exception to be thrown.

If you create a Li st and pass it to the Col | ecti ons. unnodi fi abl eLi st method, then you
get an unmodifiable view. The underlying list is still modifiable, and modifications to it are
visible through the Li st that is returned, so it is not actually immutable.

To demonstrate this behavior, create a Li st and pass itto
Col I ecti ons. unnodi fi abl eLi st . If you try to add to that Li st directly, then an exception
is thrown.

jshel > List<String> listl = new ArrayList<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell>listl

listl ==> [a, b]

jshell > List<String> unnodlistl = Collections.unnodifiableList(listl);
unnodlistl ==> [a, b]

j shel I > unmodlist1. add("c")

| Exception java.lang. UnsupportedQOperationException

| at Col | ections$Unnodi fi abl eCol | ection.add (Collections.java: 1058)
| at (#8:1)

Note that unnmodl i st 1 is a view of | i st 1. You cannot change the view directly, but you can
change the original list, which changes the view. If you change the original | i st 1, no error is
generated, and the unnodl i st 1 list has been modified.

jshell> listl. add("c")
$19 ==> true

jshell> listl

listl ==>[a, b, c]

j shell > unmodlist1
unnmodlistl ==>[a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection, and the
ability to modify it, can cause the unmodifiable view to change.

Space Efficiency

Core Libraries
G29144-01

The collections returned by the convenience factory methods are more space efficient than
their modifiable equivalents.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 18

ORACLE’

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

All of the implementations of these collections are private classes hidden behind a static
factory method. When it is called, the static factory method chooses the implementation class
based on the size of the collection. The data may be stored in a compact field-based or array-
based layout.

Let's look at the heap space consumed by two alternative implementations. First, here’s an
unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); /'l 3 buckets
set.add("silly");

set.add("string");

set = Coll ections.unnodifiabl eSet (set);

The set includes six objects: the unmodifiable wrapper; the HashSet , which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each element). On
a typical VM, with a 12-byte header per object, the total overhead comes to 96 bytes + 28 * 2
= 152 bytes for the set. This is a large amount of overhead compared to the amount of data
stored. Plus, access to the data unavoidably requires multiple method calls and pointer
dereferences.

Instead, we can implement the set using Set . of :

Set<String> set = Set.of ("silly", "string");

Because this is a field-based implementation, the set contains one object and two fields. The
overhead is 20 bytes. The new collections consume less heap space, both in terms of fixed
overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the locality of
reference is improved, because there are fewer objects required to hold the data.

Thread Safety

Core Libraries
G29144-01

If multiple threads share a modifiable data structure, steps must be taken to ensure that
modifications made by one thread do not cause unexpected side effects for other threads.
However, because an immutable object cannot be changed, it is considered thread safe
without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure made by
one part of the program is visible to the other parts. If the other parts of the program aren't
prepared for changes to the data, then bugs, crashes, or other unexpected behavior could
occur. However, if different parts of a program share an immutable data structure, such
unexpected behavior can never happen, because the shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take precautions
when modifying that data structure. Typically, threads must hold a lock while reading from or
writing to any shared data structure. Failing to lock properly can lead to race conditions or
inconsistencies in the data structure, which can result in bugs, crashes, or other unexpected
behavior. However, if multiple threads share an immutable data structure, these problems
cannot occur, even in the absence of locking. Therefore, an immutable data structure is said to
be thread safe without requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
However, an unmodifiable collection is only immutable if the elements contained in the
collection are immutable. To be considered thread safe, collections created using the static
factory methods and t oUnnodi fi abl e- collectors must contain only immutable elements.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 18

ORACLE Chapter 5
Creating Sequenced Collections, Sets, and Maps

Creating Sequenced Collections, Sets, and Maps

Three interfaces introduced in JDK 21 represent collections with a defined encounter order.
Each collection has a well-defined first element, second element, and so forth, up to the last
element. They provide uniform APIs for accessing their first and last elements, and processing
their elements in forward and reverse order.

Prior to JDK 21, the Java Collections Framework lacked a collection type that represented a
sequence of elements with a defined encounter order. For example, Li st and Deque defined
an encounter order but their common supertype, Col | ect i on, did not. Similarly, Set and
subtypes such as HashSet do not define an encounter order, while subtypes such as

Sort edSet and Li nkedHashSet do. Given the lack of a collection type with a defined
encounter order, there is no uniform set of operations that respect encounter order. While there
are operations that respect encounter order, they're not uniform.

An example of where a common order-significant operation is missing in the Collections
Framework is to get the first element of a Deque and of a Li st . To get the first element of a
Deque, you use the get Fi rst () method. However, to get the first element of a Li st , you use

get(0).

Support for encounter order was spread across the type hierarchy, making it difficult to express
certain useful concepts in APIs. Neither Col | ecti on nor Li st could describe a parameter or
return value that had an encounter order. Col | ect i on was too general, relegating such
constraints to the specification, and possibly leading to hard-to-debug errors. If an APl wanted
to receive a collection with a defined encounter order, then using Li st was too specific,
because it excluded Sort edSet and Li nkedHashSet . A related problem was that view
collections were often forced to downgrade to weaker semantics. For example, wrapping a

Li nkedHashSet with Col | ections:: unnodi fi abl eSet yields a Set that discards the
information about encounter order.

Without interfaces to define them, operations related to encounter order were either
inconsistent or missing. Many implementations support getting the first or last element, but
each collection defines its own approach, and some are not obvious or are missing entirely.

Retrofitting the Collections Framework with Sequenced Interfaces

Beginning with JDK 21, JEP 431 introduces three Java Collections Framework interfaces for
creating sequenced collections, sequenced sets, and sequenced maps:

e SequencedCol | ection

e SequencedSet

« SequencedMap

These three interfaces provide the Java Collections Framework with a collection type that
represents a sequence of elements with a defined encounter order and with a uniform set of
operations applied across the collections. The interfaces fit into the collections type hierarchy
as shown in the following diagram.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 18

https://openjdk.org/jeps/431

ORACLE’

Chapter 5
Creating Sequenced Collections, Sets, and Maps

Figure 5-1 Collections Framework with Sequenced Interfaces

Collection Map
|
Set ‘ SequencedCollection Queue ‘ SequencedMap
| |
SortetIiSet SortedMap
NavigableSet <<I|r_?£'l(irgl’1§2;ﬂtsiz?>> List Deque NavigableMap «II.?:&]:(;T-Ieanstt?ISIgB»

The diagram shows the following adjustments that integrated the SequencedCol | ecti on,
SequencedSet , and SequencedMap interfaces into the Java Collections Framework
hierarchy of classes and interfaces:

Li st has SequencedCol | ecti on as its immediate superinterface.
Deque has SequencedCol | ect i on as its immediate superinterface.
Li nkedHashSet implements SequencedSet .

Sort edSet has SequencedSet as its immediate superinterface.

Li nkedHashMap implements SequencedMap.

Sor t edMap has SequencedMap as its immediate superinterface.

Covariant overrides for the r ever sed() method are defined in the appropriate places. For
example, Li st::reversed is overridden to return a value of type Li st rather than a value
of type SequencedCol | ecti on.

Methods added to the Col | ect i ons utility class create unmodifiable wrappers for three
new types:

— Col I ections.unmodifiabl eSequencedCol | ecti on(sequencedCol | ecti on)
— Col lections.unmodi fi abl eSequencedSet (sequencedSet)

— Col I ections.unnmodi fiabl eSequencedMap(sequencedMap)

See JEP 431 for background information about the interfaces for sequenced collections,
sequenced sets, and sequenced maps.

Topics

Core Libraries
G29144-01
Copyright © 2017, 2025

SequencedCollection

SequencedSet
SequencedMap

September 3, 2025

, Oracle and/or its affiliates. Page 11 of 18

https://openjdk.org/jeps/431

ORACLE’

Chapter 5
Creating Sequenced Collections, Sets, and Maps

SequencedCollection

A SequencedCol | ecti on is a collection type added in JDK 21 that represents a sequence of
elements with a defined encounter order.

A SequencedCol | ect i on has first and last elements with the elements between them
having successors and predecessors. A SequencedCol | ect i on supports common
operations at either end, and it supports processing the elements from first to last and from last
to first (such as, forward and reverse).

interface SequencedCol | ecti on<E> extends Col | ecti on<E> {

SequencedCol | ection<E> reversed();
/1 nethods pronoted from Deque
voi d addFirst(E);

voi d addLast (E);

E getFirst();

E getlLast();

E renoveFirst();

E renovelast();

The rever sed() method provides a reverse-ordered view of the original collection. Any
modifications to the original collection are visible in the view.

The encounter order of elements in the returned view is the inverse of the encounter order of
elements in this collection. The reverse ordering affects all order-sensitive operations, including
those on the view collections of the returned view.

Changes to the underlying collection might or might not be visible in the reversed view,
depending upon the implementation. If permitted, modifications to the view "write through" to
the original collection. The reverse-ordered view enables all the different sequenced types to
process elements in both directions, using all the usual iteration mechanisms:

Enhanced f or loops
Explicititerator() loops
forEach()

stream()

paral | el Stream()
toArray()

For example, obtaining a reverse-ordered stream from a Li nkedHashSet was previously quite
difficult; now it is simply:

I i nkedHashSet . reversed(). stream()

Core Libraries
G29144-01

@® Note

The reversed() method is essentially a renamed Navi gabl eSet : : descendi ngSet ,
promoted to SequencedCol | ecti on.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 18

ORACLE’

Chapter 5
Creating Sequenced Collections, Sets, and Maps

The following methods of SequencedCol | ect i on are promoted from Deque. They support
adding, getting, and removing elements at both ends:

e void addFirst(E)
e void addLast (E)
e EgetFirst()

e E getlast()

e E renoveFirst()
e E renovelast ()

The add*(E) and renove* () methods are optional, primarily to support the case of
unmodifiable collections. The get *() and r enove* () methods throw a

NoSuchEl enent Except i on if the collection is empty. There are no definitions of equal s()
and hashCode() in SequencedCol | ect i on because its subinterfaces have conflicting
definitions.

SequencedSet

Core Libraries
G29144-01

A SequencedSet is both a SequencedCol | ecti on and a Set .

A SequencedSet can be thought of either as a Set that also has a well-defined encounter
order, or as a SequencedCol | ect i on that also has unique elements.

interface SequencedSet <E> extends Set<E>, SequencedCol | ection<BE> {
SequencedSet <E> reversed(); /1 covariant override

}

This interface has the same requirements on the equal s and hashCode methods as defined by
Set . equal s and Set . hashCode. A Set and a SequencedSet compare equal s if and only if
they have equal elements, irrespective of ordering.

SequencedSet defines the reversed() method, which provides a reverse-ordered view of this
set. The only difference from the SequencedCol | ecti on. rever sed method is that the return
type of SequencedSet . reversed is SequencedSet .

In SequencedSet , the add* (E) methods of the SequencedCol | ect i on perform the
following:

e addFirst(E) - Adds an element as the first element of the collection.

e addLast (E) - Adds an element as the last element of the collection.

The add*(E) methods of the SequencedCol | ect i on also have the following special-case
behaviors for Li nkedHashSet and Sort edSet .

Special-case behaviors for Li nkedHashSet :

* The addFirst(E) and addLast (E) methods have special-case semantics for collections
such as Li nkedHashSet . Li nkedHashSet repositions the entry if it is already present in
the set. If the element is already present in the set then it is moved to the appropriate
position. This remedies a long-standing deficiency in Li nkedHashSet , namely the
inability to reposition elements.

Special-case behaviors for Sor t edSet :

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 18

ORACLE’

Chapter 5
Creating Sequenced Collections, Sets, and Maps

e Collections such as Sor t edSet , which position elements by relative comparison, cannot
support explicit-positioning operations such as the addFi r st (E) and addLast (E) methods
declared in the SequencedCol | ect i on superinterface. These methods throw an
Unsuppor t edOper at i onExcepti on.

SequencedMap

Core Libraries
G29144-01

A SequencedMap provides methods to add mappings, to retrieve mappings, and to remove
mappings at either end of the map's encounter order. This interface also defines the
reversed() nethod, which provides a reverse-ordered view of this map.

A SequencedMap has a well-defined encounter order that supports operations at both ends
and is reversible. A map's reverse-ordered view is generally not serializable, even if the original
map is serializable. The encounter order of a SequencedMap is similar to that of the elements
of a SequencedCol | ecti on, but the ordering applies to mappings instead of individual
elements:

interface SequencedMap<K, V> extends Mp<K, V> {
SequencedMap<K, V> reversed();
SequencedSet <K> sequencedKeySet () ;
SequencedCol | ecti on<V> sequencedVal ues();
SequencedSet <Ent ry<K, V>> sequencedEntrySet () ;
V putFirst(K, V);
V put Last (K, V);
/1 methods pronoted from Navi gabl eMap
Entry<K, V> firstEntry();
Entry<K, V> lastEntry();
Entry<K, V> pollFirstEntry();
Entry<K, V> pollLastEntry();

The sequencedKeySet (), sequencedVal ues(), and sequencedEnt r ySet () methods
are exactly analogous to the keySet (), val ues(), and ent r ySet () methods of Map
interface. All of these methods return views of the underlying collection; where modifications to
the view are visible in the underlying collection and vice versa. The encounter order of these
views exactly corresponds to the encounter order of the underlying map.

The difference between the SequencedMap interface methods and the methods of Map is that
the sequenced* () methods have a sequenced return type:

e In SequencedSet <K> sequencedKeySet (), the implemention returns a SequencedSet view
of the map's keySet and behaves as follows:

— add and addAl | methods throw Unsuppor t edOper at i onExcepti on.
— reversed method returns the sequencedKeySet view of the reversed view of the map.
— Its other methods call the corresponding methods of the keySet view of the map.

e In SequencedCol | ecti on<V> sequencedVal ues(), the implemention returns a
SequencedCol | ect i on view of the map's val ues collection and behaves as follows:

— add and addAl | methods throw Unsupport edOper at i onExcepti on.
— reversed method returns the sequencedVal ues view of the reversed view of the map.

— equal s and hashCode methods are inherited from Cbj ect .

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 18

ORACLE Chapter 5
Creating Sequenced Collections, Sets, and Maps

— Its other methods call the corresponding methods of the val ues view of the map.

* In SequencedSet <Ent ry<K, V>> sequencedEntrySet (), the implemention returns a
SequencedSet view of the map's ent r ySet and behaves as follows:

— add and addAl | methods throw Unsupport edOper at i onExcept i on.

— reversed method returns the sequencedEnt r ySet view of the reversed view of the
map.

— Its other methods call the corresponding methods of the ent rySet view of the map.

The put * (K, V) methods have special-case semantics, similar to the corresponding add* (E)
methods of SequencedSet :

* For maps such as Li nkedHashMap, they have the additional effect of repositioning the
entry if it is already present in the map.

* For maps such as Sor t edMap, these methods throw Unsupport edOper at i onExcept i on.

The following methods of SequencedMap are promoted from Navi gabl eMap. They support
getting and removing entries at both ends:

e Entry<K, V> firstEntry()

e Entry<K, V> lastEntry()

e Entry<K, V> pollFirstEntry()
e Entry<K, V> pollLastEntry()

The methods firstEntry(),lastEntry(), pollFirstEntry(), and pollLastEntry() return
Map. Ent ry instances that represent snapshots of mappings as of the time of the call. They do
not support mutation of the underlying map via the optional set Val ue method.

Demonstrating ArrayList and LinkedHashMap Reversed Views

Several scenarios are provided of using the sequenced interfaces in the Collections
Framework.

Topics

« Demonstrating a Reverse-Ordered View of a Collection

Demonstrating Composition of LinkedHashMap Views

» Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

Demonstrating a Reverse-Ordered View of a Collection

The following example demonstrates how the r ever sed() method of the sequenced interfaces
produces a reverse-ordered view of a collection, how modifications to a reversed view affect
the original collection, and how modifications to the original collection are visible in the
reversed view.

The reversed view is "live" and not a snapshot of a collection. This characteristic is illustrated
in the following examples by using an ArrayLi st and its reversed view.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 15 of 18

ORACLE Chapter 5
Creating Sequenced Collections, Sets, and Maps

@® Note

Unessential j shel | output is not included in the following example code.

Start aj shel | session and use the ArrayLi st class to create a list of St ri ng objects.
jshell > var list = new ArrayList<>(Arrays.asList("a", "b", "c", "d", "e"))
list ==>[a, b, ¢, d, €]

Next, use the reversed() method to produce a reverse-ordered view of the collection.

jshell> var rev = list.reversed()
rev ==>[e, d, ¢, b, a]

When you modify the reversed view, it affects the original collection. Add f as an entry to the
reverse-ordered view and then verify that it is added to the original collection.

jshell> rev.add(1, "f")
jshell> rev

rev ==>[e, f, d, ¢, b, a]
jshell> 1list

list ==>[a, b, ¢, d, f, €]

When you modify the original collection, your modifications are visible in the reversed view. Set
the element at index 2 to X, verify it is added to the collection, and then produce a reverse-
ordered view of the modified collection.

jshell> list.set(2, "X")
jshell> 1list

list ==>1[a, b, X d, f, €]
jshell> rev

rev ==>[e, f, d, X b, 3]

Demonstrating Composition of LinkedHashMap Views

In addition to using ArrayLi st, areversed() view can also be composed of other views such
as Li st.subList().reversed() or SequencedMap. sequencedKeySet (). reversed() and
SequencedMap. rever sed() . sequencedKeySet () .

The SequencedMap. sequencedKeySet (). reversed() and
SequencedMap. rever sed() . sequencedKeySet () views are functionally equivalent and are
illustrated by using the Li nkedHashMap class in the following example code.

Start aj shel | session and use the Li nkedHashMap class to create a map of St ri ng objects.

jshell > var map = new Li nkedHashMap<String, |nteger>()

jshell> map. put("a", 1)
jshell > map. put("b", 2)
jshell > map.put("c", 3)
jshel |l > map. put("d", 4)

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 16 of 18

ORACLE Chapter 5
Creating Sequenced Collections, Sets, and Maps

jshell> map.put("e", 5)
map ==> {a=1, b=2, c=3, d=4, e=5}

Next, use the reversed() method to produce a reverse-ordered view of the keySet view of the
original collection.

j shel | > map. sequencedKeySet (). reversed()
$17 ==> [e, d, ¢, b, a]

Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

This demonstration illustrates the final statement in the SequencedMap section that
firstEntry(),lastEntry(), pollFirstEntry(), and pollLastEntry() methods do not
support mutation of the underlying map through use of the optional set Val ue method.

Attempting to change an entry in the underlying map by using set Val ue() with these methods
will throw an Unsuppor t edOper at i onExcepti on. This is in contrast to changing a map entry
obtained by iterating the entrySet . If you call seqmap. entrySet().iterator().next() to
return a map entry and then call set Val ue() on the entry, it will modify the original map.

Open aj shel | session and use the map produced in Demonstrating Composition of
LinkedHashMap Views.

Call map. entrySet().iterator().next() to return the first map entry.

jshell> var entry = map.entrySet().iterator().next()
entry ==> a=1

Use set Val ue() to change the value of the map entry to 77. The entry was obtained by
iterating the ent rySet so it can be modified in the original map. Verify that the value in map
changed to 77.

jshell > entry.set Val ue(77)

$19 ==> 1

j shel | > map

map ==> {a=77, b=2, c¢=3, d=4, e=5}

@ Note

The ability to call set Val ue() on the entry returned by the iterator is not a new
behavior introduced in JDK 21.

Use set Val ue() to try and change the map entry to 999. Because the map entry was not
obtained by iterating with ent rySet , it throws an Unsupport edOper at i onExcepti on.

jshell> entry = map.firstEntry()

entry ==> a=77

jshell > entry. set Val ue(999)
| Exception java.lang. UnsupportedQperati onException: not supported
| at Null abl eKeyVal ueHol der. set Val ue (Nul | abl eKeyVal ueHol der . j ava: 126)
| at (#22:1)

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 17 of 18

ORACLE Chapter 5
Creating Sequenced Collections, Sets, and Maps

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 18 of 18

Process API

The Process API lets you start, retrieve information about, and manage native operating
system processes.

With this API, you can work with operating system processes as follows:

* Run arbitrary commands:
— Filter running processes
— Redirect output

— Connect heterogeneous commands and shells by scheduling tasks to start when
another ends

— Clean up leftover processes
e Test the running of commands:
— Run a series of tests
— Log output
* Monitor commands:
— Monitor long-running processes and restart them if they terminate

— Collect usage statistics

Topics

* Process API Classes and Interfaces

e Creating a Process

e Getting Information About a Process

* Redirecting Output from a Process

* Filtering Processes with Streams

 Handling Processes When They Terminate with the onExit Method

* Controlling Access to Sensitive Process Information

Process API Classes and Interfaces

The Process API consists of the classes and interfaces ProcessBui | der, Process,
ProcessHandl e, and ProcessHandl e. | nf o.

Topics

* ProcessBuilder Class

e Process Class

* ProcessHandle Interface

* ProcessHandle.Info Interface

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE’

ProcessBuilder Class

The Pr ocessBui | der class lets you create and start operating system processes.

Chapter 6
Process API Classes and Interfaces

See Creating a Process for examples on how to create and start a process. The
Pr ocessBui | der class manages various process attributes, which the following table

summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods
]

Process Attribute

Description

Related Methods

Command

Environment

Working directory

Standard input source

Standard output and standard
error destinations

redi rect Error Stream
property

Strings that specify the external
program file to call and its
arguments, if any.

The environment variables (and
their values). This is initially a
copy of the system environment
of the current process (see the
Syst em get Env() method).

By default, the current working
directory of the current process.

By default, a process reads
standard input from a pipe;
access this through the output
stream returned by the
Process. get Qut put Strea
mmethod.

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the

Process. get |l nput Stream
and

Process. getErrorStream
methods. See Redirecting Output
from a Process for an example.

Specifies whether to send
standard output and error output
as two separate streams (with a
value of false) or merge any error
output with standard output (with
a value of true).

e ProcessBuil der
constructor

e conmmnd(String...
comand)

- environnent()

e directory()
« directory(File
directory)

- redirectlnput
(ProcessBui | der. Red
irect source)

« redirectQutput(Proc
essBui | der. Redi rect
desti nati on)

« redirectError(Proce
ssBui | der. Redi r ect
destinati on)

e redirectErrorStream

Q

« redirectErrorStream

(bool ean

redirect Error Stream

)

Process Class

The methods in the Pr ocess class let you to control processes started by the methods
ProcessBui | der. start and Runti ne. exec. The following table summarizes these

Core Libraries
G29144-01

methods:

The following table summarizes the methods of the Pr ocess class.

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 2 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html

ORACLE Chapter 6
Process API Classes and Interfaces

Table 6-2 Process Class Methods

Method Type Related Methods
Wait for the process to complete. e waitfor()
e waitFor(long tinmeout, TinmeUnit
unit)
Retrieve information about the process. e IsAlive()
o pid()
- info()
« exitValue()
Retrieve input, output, and error streams. See « getlnputStream)

Handling Processes When They Terminate with the . et Qut put St r eam()
onExit Method for an example. . getErrorStrean)

Retrieve direct and indirect child processes. « children()
+ descendants()
Destroy or terminate the process. e destroy()

« destroyForcibly()

« supportsNornmal Term nation()
Return a Conpl et abl eFut ur e instance that e onExit()
will be completed when the process exits. See

Handling Processes When They Terminate with the
onExit Method for an example.

ProcessHandle Interface

The Pr ocessHandl e interface lets you identify and control native processes. The Process
class is different from Pr ocessHandl e because it lets you control processes started only by
the methods ProcessBui | der. start and Runti me. exec; however, the Pr ocess class

lets you access process input, output, and error streams.

See Filtering Processes with Streams for an example of the Pr ocessHandl e interface. The
following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

Method Type Related Methods
Retrieve all operating system processes. « allProcesses()
Retrieve process handle. e current()

- of (1 ong pid)

 parent()
Retrieve information about the process. e IsAlive()

e pid()

- info()
Retrieve stream of direct and indirect child e children()
processes. + descendant s()
Destroy process. « destroy()

« destroyForcibly()

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()

ORACLE Chapter 6
Creating a Process

Table 6-3 (Cont.) ProcessHandle Interface Methods

___|
Method Type Related Methods

Return a Conpl et abl eFut ur e instance that « onExit()
will be completed when the process exits. See

Handling Processes When They Terminate with the

onExit Method for an example.

ProcessHandle.Info Interface

The ProcessHandl e. | nf o interface lets you retrieve information about a process, including
processes created by the Pr ocessBui | der. st art method and native processes.

See Getting Information About a Process for an example of the Pr ocessHandl e. I nf o
interface. The following table summarizes the methods in this interface:

Table 6-4 ProcessHandle.Info Interface Methods

Method Description

argunment s Returns the arguments of the process as a
String array.

command() Returns the executable path name of the process.

commandLi ne() Returns the command line of the process.

startlnstant () Returns the start time of the process.

t ot al CpubDur ati on() Returns the process's total accumulated CPU time.

user () Returns the user of the process.

Creating a Process

To create a process, first specify the attributes of the process, such as the command's name
and its arguments, with the Pr ocessBui | der class. Then, start the process with the
ProcessBui | der. st art method, which returns a Pr ocess instance.

The following lines create and start a process:

ProcessBui | der pb = new ProcessBui | der ("echo", "Hello World!'");
Process p = ph.start();

In the following excerpt, the set EnvTest method sets two environment variables, hor se and
doc, then prints the value of these environment variables (as well as the system environment
variable HOVE) with the echo command:

public static void setEnvTest() throws | OException, InterruptedException {
ProcessBui | der pb =
new ProcessBuil der("/bin/sh", "-c",
"echo $horse $dog $HOMVE").inheritlQ();
pb. environnent (). put ("horse", "oats");
pb. environnent (). put ("dog", "treats");
pb.start().waitFor();

}

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

ORACLE’

Chapter 6
Getting Information About a Process

This method prints the following (assuming that your home directory is / hore/ adni n):

oats treats /hone/admn

Getting Information About a Process

The method Pr ocess. pi d returns the native process ID of the process. The method
Process. i nf o returns a ProcessHandl e. | nf o instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method get | nf oTest starts a process and then prints information

about it:

public static void getlnfoTest() throws |CException {
ProcessBui | der pb = new ProcessBui | der ("echo", "Hello World!");

String na = "<not avail abl e>";
Process p = pb.start();
ProcessHandl e.Info info = p.info();

Systemout.printf("Process ID. %%", p.pid());
"Command name: % %",
"Conmand |ine: %%",

System out . printf(
System out . printf(
i nf o. conmandLi ne(). or El se(na));

Systemout.printf("Start tinme: %%",

info.startlnstant().map((Instant i) ->i

i nfo. conmand() . or El se(na));

. at Zone(Zonel d. systenmDefaul t ()).toLocal DateTi me().toString())

.0orEl se(na));

Systemout . printf("Arguments: %%",
i nfo.argunents().map(

(String[] a)

.orEl se(na));

-> Stream of (a). col I ect (Col | ectors.joining(" ")))

Systemout . printf("User: %%", info.user().orEl se(na));

This method prints output similar to the following:

Process ID. 18761

Command nane: /usr/bin/echo

Command |ine: echo Hello Wrld!
Start time: 2017-05-30T18:52: 15. 577
Argunents: <not avail abl e>

User: administrator

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 5 of 10

ORACLE Chapter 6
Redirecting Output from a Process

@® Note

* The attributes of a process vary by operating system and are not available in all
implementations. In addition, information about processes is limited by the
operating system privileges of the process making the request.

« All the methods in the interface Pr ocessHandl e. | nf o return instances of
Opt i onal <T>; always check if the returned value is empty.

Redirecting Output from a Process

By default, a process writes standard output and standard error to pipes. In your application,
you can access these pipes through the input streams returned by the methods

Pr ocess. get Qut put St r eamand Pr ocess. get Er r or St r eam However, before starting
the process, you can redirect standard output and standard error to other destinations, such as
a file, with the methods r edi r ect Qut put and redi rectError.

In the following excerpt, the method r edi r ect ToFi | eTest redirects standard input to a file,
out . t np, then prints this file:

public static void redirectToFileTest() throws | CException,
I nterruptedException {

File outFile = new File("out.tnp");

Process p = new ProcessBuilder("ls", "-la")
.redirectQutput (outFile)
.redirectError(Redirect.|NHERI T)
.start();

int status = p.waitFor();

if (status == 0) {

p = new ProcessBuilder("cat" , outFile.toString())
.inheritl Q)
.start();

p. wai t For ();

}
}

The excerpt redirects standard output to the file out . t np. It redirects standard error to the
standard error of the invoking process; the value Redi r ect . | NHERI T specifies that the
subprocess I/O source or destination is the same as that of the current process. The call to the
i nheritl Q) method is equivalent to

redirectlnput (Redirect. I NHERIT).redirectQuput (Redirect. INHERIT).redire
CtError(Redirect. INHERIT).

Filtering Processes with Streams

The method ProcessHandl e. al | Processes returns a stream of all processes visible to the
current process. You can filter the Pr ocessHandl e instances of this stream the same way
that you filter elements from a collection.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE’

Chapter 6
Handling Processes When They Terminate with the onExit Method

In the following excerpt, the method fi | t er ProcessesTest prints information about all the
processes owned by the current user, sorted by the process ID of their parent's process:

public class ProcessTest {
...

public static void main(String[] args) {
ProcessTest.filterProcessesTest();

}

static void filterProcessesTest() {
Optional <String> currUser = ProcessHandl e.current().info().user();
ProcessHandl e. al | Processes()
filter(pl -> pl.info().user().equal s(currUser))
.sorted(ProcessTest: : parent Conpar at or)
. forEach(ProcessTest:: showProcess);

}

static int parentConparator(ProcessHandl e pl, ProcessHandl e p2) {
long pidl = pl.parent().map(ph -> ph.pid()).orE se(-1L);
[ong pid2 = p2.parent().map(ph -> ph.pid()).orE se(-1L);
return Long. conpare(pidl, pid2);

}

static void showProcess(ProcessHandl e ph) {
ProcessHandl e. Info info = ph.info();
Systemout.printf("pid: %, user: %, cnd: %%",
ph. pid(), info.user().orEl se("none"), info.command().orEl se("none"));

...

Note that the al | Pr ocesses method is limited by native operating system access controls.
Also, because all processes are created and terminated asynchronously, there is no guarantee
that a process in the stream is alive or that no other processes may have been created since
the call to the al | Pr ocesses method.

Handling Processes When They Terminate with the onExit

Method

Core Libraries
G29144-01

The Process. onExi t and Pr ocessHandl e. onExi t methods return a

Conpl et abl eFut ur e instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate, then
you can call onExi t (). get ().

In the following excerpt, the method st art ProcessesTest creates three processes and then
starts them. Afterward, it calls onExi t ().t henAccept (onExi t Met hod) on each of the
processes; onExi t Met hod prints the process ID (PID), exit status, and output of the process.

public class ProcessTest {

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE Chapter 6
Handling Processes When They Terminate with the onExit Method

...

static public void startProcessesTest() throws | OCException,

I nterruptedException {
Li st <ProcessBui | der> greps = new ArrayList<>();
greps. add(new ProcessBuil der("/bin/sh", "-c", "grep -c \"java\" *"));
greps. add(new ProcessBuil der ("/bin/sh", "-c", "grep -c \"Process\" *"));
greps. add(new ProcessBuil der ("/bin/sh", "-c", "grep -c \"onExit\" *"));
ProcessTest. start Several Processes (greps,

ProcessTest:: printGepResults);
Systemout. printin("\nPress enter to continue ...\n");
Systemin.read();

}

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st
Consumer <Pr ocess> onExi t Met hod)
throws InterruptedException {
Systemout. println("Nurber of processes: " + pBList.size());
pBLi st . stream() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, Y%%",
p.pid(), p.info().conmmandLine().orEl se("<na>"));
p.onExit().thenAccept (onExit Met hod) ;
} catch (I OCException e) {
Systemerr.println("Exception caught");
e.printStackTrace();

}
}
)
}

static void printGepResults(Process p) {
Systemout.printf("Exit %l, status %% %% %",
p.pid(), p.exitValue(), output(p.getlnputStrean()));
}

private static String output(lnputStreaminputStream {
String s ="";
try (BufferedReader br = new BufferedReader(new
I nput St reanReader (i nput Stream)) {
S =
br.lines().collect(Collectors.joining(SystemgetProperty("line.separator")));
} catch (I CException e) {
Systemerr. println("Caught | CException");
e.printStackTrace();
}

return s;

}

/1
}

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE Chapter 6
Handling Processes When They Terminate with the onExit Method

The output of the method st art ProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Nunber of processes: 3

Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c¢ "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status O
ProcessTest.cl ass: 0
ProcessTest.java: 16

Exit 12404, status O
ProcessTest.cl ass: 0
ProcessTest.java: 8

Exit 12403, status O
ProcessTest.cl ass: 0
ProcessTest. java: 38

This method calls the Syst em i n. r ead() method to prevent the program from terminating
before all the processes have exited (and have run the method specified by the t henAccept
method).

If you want to wait for a process to terminate before proceeding with the rest of the program,
then call onExi t (). get():

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st, Consumer <Process> onExit Met hod)
throws InterruptedException {
Systemout. println("Nunber of processes: " + pBList.size());
pBLi st . strean() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().comandLine().orElse("<na>"));
p.onExit().get();
print GrepResul ts(p);
} catch (I CException|InterruptedException|ExecutionException e) {
Systemerr.println("Exception caught");
e.printStackTrace();

The Conput abl eFut ur e class contains a variety of methods that you can call to schedule tasks
when a process exits including the following:

e thenAppl y: Similar to t henAccept , except that it takes a lambda expression of type
Functi on (a lambda expression that returns a value).

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 6
Controlling Access to Sensitive Process Information

* thenRun: Takes a lambda expression of type Runnabl e (no formal parameters or return
value).

* thenAppl yAsyc: Runs the specified Funct i on with a thread from
For kJoi nPool . conmonPool ().

Because Conput abl eFut ur e implements the Fut ur e interface, this class also contains
synchronous methods:

e get(long tineout, TinmeUnit unit):Waits, if necessary, at most the time specified
by its arguments for the process to complete.

e i sDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information

Process information may contain sensitive information such as user IDs, paths, and arguments
to commands. Control access to process information with a security manager.

When running as a normal application, a Pr ocessHandl e has the same operating system
privileges to information about other processes as a native application; however, information
about system processes may not be available.

If your application uses the Securi t yManager class to implement a security policy, then to
enable it to access process information, the security policy must grant

Runt i nePer m ssi on(" managePr ocess") . This permission enables native process
termination and access to the process Pr ocessHandl e information. Note that this permission
enables code to identify and terminate processes that it did not create.

A\ Warning

The Security Manager and APIs related to it have been deprecated and will be
removed in a future release. See JEP 411 for more information.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 10

https://openjdk.java.net/jeps/411

Preferences API

The Preferences API enables applications to manage preference and configuration data.

Applications require preference and configuration data to adapt to the needs of different users
and environments. The j ava. uti | . pr ef s package provides a way for applications to store
and retrieve user and system preference and configuration data. The data is stored persistently
in an implementation-dependent backing store. There are two separate trees of preference
nodes: one for user preferences and one for system preferences.

All of the methods that modify preference data are permitted to operate asynchronously. They
may return immediately, and changes will eventually propagate to the persistent backing store.
The f 1 ush method can be used to force changes to the backing store.

The methods in the Pr ef er ences class may be invoked concurrently by multiple threads in a
single JVM without the need for external synchronization, and the results will be equivalent to
some serial execution. If this class is used concurrently by multiple JVMs that store their
preference data in the same backing store, the data store will not be corrupted, but no other
guarantees are made concerning the consistency of the preference data.

Topics:

e Comparing the Preferences API to Other Mechanisms

e Usage Notes
e Design FAQ

Comparing the Preferences API to Other Mechanisms

Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in a dynamic fashion by using the Properties API or the Java
Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed through the
java. util. Properties API. However, there are no standards as to where such files
should reside on disk, or what they should be called. Using this mechanism, it is extremely
difficult to back up a user's preference data, or transfer it from one machine to another.
Furthermore, as the number of applications increases, the possibility of file name conflicts
increases. Also, this mechanism is of no help on platforms that lack a local disk, or where it is
desirable that the data be stored in an external data store, such as an enterprise-wide LDAP
directory service.

Less frequently, developers stored user preference and configuration data in a directory
service accessed through the JNDI API. Unlike the Properties API, JNDI allows the use of
arbitrary data stores (back-end neutrality). While JNDI is extremely powerful, it is also rather
large, consisting of 5 packages and 83 classes. JNDI provides no policy as to where in the
directory name space the preference data should be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral preferences
management facility. The Preferences API does provide such a facility, combining the simplicity
of Properties with the back-end neutrality of INDI. It provides sufficient built-in policy to prevent

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 6

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

ORACLE Chapter 7
Usage Notes

name clashes, foster consistency, and encourage robustness in the face of inaccessibility of
the backing data store.

Usage Notes

The information in this section is not part of the Preferences API specification. It is intended to
provide some examples of how the Preferences API might be used.

Topics:

* Obtain Preferences Objects for an Enclosing Class

e Obtain Preferences Objects for a Static Method

e Atomic Updates
 Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class

The examples in this section show how you can obtain the system and user Preferences
objects pertaining to the enclosing class. These examples only work inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are provided for
each of the preference values obtained. These defaults are returned if no preference value has
been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline St r i ng literals, are used for the key names
(NUM_ROWS and NUM COLS). This reduces the likelihood of runtime bugs from typographical
errors in key names.

package com greencorp.w dget;
inport java.util.prefs.*;

public class Gadget {
/'l Preference keys for this package
private static final String NUM ROAS
private static final String NUM COLS

"num.rows";
"num col s";

void getPrefs() {
Preferences prefs = Preferences. user NodeFor Package(Gadget . cl ass);

i nt nunRows
i nt nunCol s

prefs. getlnt(NUM RON5, 40);
prefs. getlnt(NUMCOLS, 80);

The previous example obtains per-user preferences. If a single, per-system value is desired,
replace the first line in get Pr ef s with the following:

Preferences prefs = Preferences. systemNodeFor Package(Gadget . cl ass);

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 7
Usage Notes

Obtain Preferences Objects for a Static Method

The examples in this section show how you can obtain the system and user Preferences
objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the package:

static String ourNodeName = "/cont greencorp/ wi dget";
static void getPrefs() {
Preferences prefs = Preferences. userRoot (). node(our NodeNane) ;

It is always acceptable to obtain a system preferences object once, in a static initializer, and
use it whenever system preferences are required:

static Preferences prefs = Preferences. systenRoot (). node(our NodeNane);

In general, it is acceptable to do the same thing for a user preferences object, but not if the
code in question is to be used in a server, wherein multiple users are running concurrently or
serially. In such a system, user NodeFor Package and user Root return the appropriate node for
the calling user, thus it's critical that calls to user NodeFor Package or user Root be made from
the appropriate thread at the appropriate time. If a piece of code may eventually be used in
such a server environment, it is a good, conservative practice to obtain user preferences
objects immediately before they are used, as in the prior example.

Atomic Updates

The Preferences API does not provide database-like "transactions" wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or more
preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is to be placed.
The only way to achieve atomicity is to store both values in a single preference. Many
encodings are possible. Here's a simple one:

int x, vy;

prefs.put (POSITION, x + "," +y);

When such a "compound preference" is read, it must be decoded. For robustness, allowances
should be made for a corrupt (unparseable) value:

static int X DEFAULT = 50, Y _DEFAULT = 25;
voi d parsePrefs() {
String position = prefs.get(PCSITION, X DEFAULT + "," + Y_DEFAULT);
int x,vy;
try {
int i = position.indexOr(',");
X = Integer. parselnt(coordinates.substring(0, i));
y = Integer.parselnt(position.substring(i + 1));
} catch(Exception e) {

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE Chapter 7
Design FAQ

/1 Value was corrupt, just use defaults
x = X_DEFAULT;
y = Y_DEFAULT;

Determine Backing Store Status

Typical application code has no need to know whether the backing store is available. It should
almost always be available, but if it isn't, the code should continue to execute using default
values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse to run, if
the backing store is unavailable. Following is a method that determines whether the backing
store is available by attempting to modify a preference value and flush the result to the backing
store.

private static final String BACKI NG STORE _AVAIL = "Backi ngStoreAvail";

private static bool ean backi ngStoreAvail abl e() {

Preferences prefs = Preferences. userRoot (). node("<tenporary>");

try {
bool ean ol dVal ue = prefs. get Bool ean(BACKI NG_STORE_AVAI L, fal se);
prefs. put Bool ean(BACKI NG_STORE_AVAI L, !ol dVal ue);
prefs.flush();

} catch(Backi ngSt oreException e) {
return fal se;

}

return true;

Design FAQ

This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

* How does this Preferences API relate to the Properties API?

 How does the Preferences API relate to JNDI?

* Why do all of the get methods require the caller to pass in a default?

 How was it decided which methods should throw BackingStoreException?

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction", with all or nothing semantics?

* Why does this API have case-sensitive keys and node-names, while other APIs playing in
a similar space (such as the Microsoft Windows Registry and LDAP) do not?

Why doesn't this API use the Java 2 Collections Framework?

Why don't the put and remove methods return the old values?

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE’

Core Libraries
G29144-01

Chapter 7
Design FAQ

Why does the API permit, but not require, stored defaults?

* Why doesn't this API contain methods to read and write arbitrary serializable objects?

« Why is Preferences an abstract class rather than an interface?

Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its deficiencies,
while retaining its light weight. When using Properties, the programmer must explicitly specify a
path name for each properties file, but there is no standard location or naming convention.
Properties files are "brittle”, as they are hand-editable but easily corrupted by careless editing.
Support for non-string data types in properties is non-existent. Properties cannot easily be
used with a persistence mechanism other than the file system. In sum, the Properties facility
does not scale.

How does the Preferences API relate to JNDI?

Like JNDI, it provides back-end neutral access to persistent key-value data. JNDI, however, is
far more powerful, and correspondingly heavyweight. JNDI is appropriate for enterprise
applications that need its power. The Preferences API is intended as a simple, ubiquitous,
back-end neutral preferences-management facility, enabling any Java application to easily
tailor its behavior to user preferences and maintain small amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that applications
have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the backing
store throw this exception. Typical applications will have no need to call these methods. As
long as these methods are avoided, applications will be able to run even if the backing store is
unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction”, with all or nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended as a
substitute for a database. It is critical that it be possible to implement this API atop standard
preference/configuration repositories, most of which do not provide database-like guarantees
and functionality. Such repositories have proven adequate for the purposes for which this API
is intended.

Why does this APl have case-sensitive keys and node-names, while other APIs playing
in a similar space (such as the Microsoft Windows Registry and LDAP) do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In particular, they
are provided by the Properties class, which this API is intended to replace. It is not uncommon
for people to use Properties in a fashion that demands case-sensitivity. For example, Java
package names (which are case-sensitive) are sometimes used as keys. It is recognized that
this design decision complicates the life of the systems programmer who implements
Preferences atop a backing store with case-insensitive keys, but this is considered an
acceptable price to pay, as far more programmers will use the Preferences API than will
implement it.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE’

Core Libraries
G29144-01

Chapter 7
Design FAQ

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose. In the
absence of generic types (see JSR-14), the API would be less convenient for typical users. It
would lack compile-time type safety, if forced to conform to the Map API. Also, it is not
anticipated that interoperability with other Map implementations will be required (though it
would be straightforward to implement an adapter class if this assumption turned out to be
wrong). The Preferences APl is, by design, so similar to Map that programmers familiar with
the latter should have no difficulties using the former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value. Further, it
would have negative performance impact if the APl were implemented atop some common
back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective administration of
preferences across the enterprise, but would be overkill in a self-administered single-user
setting.

Why doesn't this API contain methods to read and write arbitrary serializable objects?

Serialized objects are somewhat fragile: if the version of the program that reads such a
property differs from the version that wrote it, the object may not deserialize properly (or at all).
It is not impossible to store serialized objects using this API, but we do not encourage it, and
have not provided a convenience method.

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is to say,
arbitrary classes cannot also be made to serve as Preferences objects. Also, this obviates the
need for a separate class for the static methods. Interfaces cannot contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-dependent

backing store. Typical implementations include flat files, OS-specific registries, directory

servers and SQL databases. For example, on Windows systems the data is stored in the
Windows registry.

On Linux systems, the system preferences are typically stored at j ava-

hone/ . syst enPr ef s in a network installation, or / et ¢/ . j ava/ . syst enPref s in alocal
installation. If both are present, / et ¢/ . j ava/ . syst enPr ef s takes precedence. The system
preferences location can be overridden by setting the system property

java. util.prefs.systenRoot. The user preferences are typically stored at user -

home/ . j aval . user Pr ef s. The user preferences location can be overridden by setting the
system property j ava. util. prefs. userRoot.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 6

Java Logging Overview

The Java Logging APls, contained in the package j ava. uti | . | oggi ng, facilitate software
servicing and maintenance at customer sites by producing log reports suitable for analysis by
end users, system administrators, field service engineers, and software development teams.
The Logging APIs capture information such as security failures, configuration errors,

performance bottlenecks, and/or bugs in the application or platform.

The core package includes support for delivering plain text or XML-formatted log records to
memory, output streams, consoles, files, and sockets. In addition, the logging APIs are capable
of interacting with logging services that already exist on the host operating system.

Topics

Overview of Control Flow

Log Levels

Loggers
Logging Methods

Handlers
Formatters

The LogManager

Configuration File

Default Configuration

Dynamic Configuration Updates
Native Methods
XML DTD

Unique Message IDs

Security
Configuration Management

Packaging
Localization

Remote Access and Serialization

Java Logging Examples

Appendix A: DTD for XMLFormatter Output

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized in a
hierarchical namespace and child Logger objects may inherit some logging properties from
their parents in the namespace.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 1 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

ORACLE’

Core Libraries
G29144-01

Chapter 8

These Logger objects allocate LogRecor d objects which are passed to Handl er objects for
publication. Both Logger and Handl er objects may use logging Level objects and
(optionally) Fi | t er objects to decide if they are interested in a particular LogRecor d object.
When it is necessary to publish a LogRecor d object externally, a Handl er object can
(optionally) use a For nmat t er object to localize and format the message before publishing it to
an I/O stream.

Figure 8-1 Java Logging Control Flow

Application ——> Logger ——— > Handler ——— > Outside World

Filter Filter Formatter

Each Logger object keeps track of a set of output Handl er objects. By default all Logger
objects also send their output to their parent Logger . But Logger objects may also be
configured to ignore Handl er objects higher up the tree.

Some Handl er objects may direct output to other Handl er objects. For example, the
Menor yHandl er maintains an internal ring buffer of LogRecor d objects, and on trigger
events, it publishes its LogRecor d object through a target Handl er . In such cases, any
formatting is done by the last Handl er in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

Applicaton ——> Logger ——> MemoryHandler ———>| Handler = ——> Outside World

Filter Filter Filter Formatter

The APIs are structured so that calls on the Logger APIs can be cheap when logging is
disabled. If logging is disabled for a given log level, then the Logger can make a cheap
comparison test and return. If logging is enabled for a given log level, the Logger is still careful
to minimize costs before passing the LogRecor d to the Handl er . In particular, localization
and formatting (which are relatively expensive) are deferred until the Handl er requests them.
For example, a Menor yHand| er can maintain a circular buffer of LogRecor d objects without
having to pay formatting costs.

Log Levels

Each log message has an associated log Level object. The Level gives a rough guide to the
importance and urgency of a log message. Log Level objects encapsulate an integer value,
with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FI NEST (the lowest priority,
with the lowest value) to SEVERE (the highest priority, with the highest value).

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger keeps track of
a log level that it is interested in, and discards log requests that are below this level.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8

Logger objects are normally named entities, using dot-separated names such as j ava. awt .
The namespace is hierarchical and is managed by the LogManager . The namespace should
typically be aligned with the Java packaging namespace, but is not required to follow it exactly.
For example, a Logger called j ava. awt might handle logging requests for classes in the

j ava. awt package, but it might also handle logging for classes in sun. awt that support the
client-visible abstractions defined in the j ava. awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger objects
that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent is its

nearest extant ancestor in the logging namespace. The root logger (hamed ") has no parent.
Anonymous loggers are all given the root logger as their parent. Loggers may inherit various
attributes from their parents in the logger namespace. In particular, a logger may inherit:

* Logging level: If a logger's level is set to be null, then the logger will use an effective
Level that will be obtained by walking up the parent tree and using the first non-null
Level .

* Handlers: By default, a Logger will log any output messages to its parent's handlers, and
S0 on recursively up the tree.

* Resource bundle names: If a logger has a null resource bundle name, then it will inherit
any resource bundle name defined for its parent, and so on recursively up the tree.

Logging Methods

The Logger class provides a large set of convenience methods for generating log messages.
For convenience, there are methods for each logging level, corresponding to the logging level
name. Thus rather than calling | ogger . | og(Level . WARNI NG, ...), a developer can
simply call the convenience method | ogger . warni ng(...).

There are two different styles of logging methods, to meet the needs of different communities
of users.

First, there are methods that take an explicit source class hame and source method name.
These methods are intended for developers who want to be able to quickly locate the source of
any given logging message. An example of this style is:

void warning(String sourceC ass, String sourceMethod, String nsg);

Second, there are a set of methods that do not take explicit source class or source method
names. These are intended for developers who want easy-to-use logging and do not require
detailed source information.

voi d warning(String msg);

For this second set of methods, the Logging framework will make a "best effort" to determine
which class and method called into the logging framework and will add this information into the
LogRecor d. However, it is important to realize that this automatically inferred information may
only be approximate. Virtual machines perform extensive optimizations when just-in-time
compiling and may entirely remove stack frames, making it impossible to reliably locate the
calling class and method.

Handlers

Java SE provides the following Handl er classes:

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8

e StreanHandl er: A simple handler for writing formatted records to an Qut put St r eam
e Consol eHandl er: A simple handler for writing formatted records to System err .

« Fil eHandl er: A handler that writes formatted log records either to a single file, or to a set
of rotating log files.

e Socket Handl er : A handler that writes formatted log records to remote TCP ports.
e Menor yHandl er: A handler that buffers log records in memory.

It is fairly straightforward to develop new Handl er classes. Developers requiring specific
functionality can either develop a handler from scratch or subclass one of the provided
handlers.

Formatters

Java SE also includes two standard For mat t er classes:

e Si npl eFor nat t er : Writes brief "human-readable" summaries of log records.
XM.For mat t er : Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information. This
includes:

* A hierarchical namespace of named Loggers.

* A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static

LogManager . get LogManager method. This is created during LogManager initialization,
based on a system property. This property allows container applications (such as EJB
containers) to substitute their own subclass of LogManager in place of the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file that will be read at
startup. This logging configuration file is in standard j ava. uti | . Properti es format.

Alternatively, the logging configuration can be initialized by specifying a class that can be used
for reading initialization properties. This mechanism allows configuration data to be read from
arbitrary sources, such as LDAP and JDBC.

There is a small set of global configuration information. This is specified in the description of
the LogManager class and includes a list of root-level handlers to install during startup.

The initial configuration may specify levels for particular loggers. These levels are applied to
the named logger and any loggers below it in the naming hierarchy. The levels are applied in
the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by handlers or by subsystems
doing logging. By convention, these properties should use names starting with the name of the
handler class or the name of the main Logger for the subsystem.

For example, the Menor yHandl er uses a property
java. util.loggi ng. MenoryHandl er . si ze to determine the default size for its ring
buffer.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8

Default Configuration

The default logging configuration that ships with the JDK is only a default and can be
overridden by ISVs, system administrators, and end users. This file is located at j ava- home/
conf /1 oggi ng. properties.

The default configuration makes only limited use of disk space. It doesn't flood the user with
information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending output to
the console.

Dynamic Configuration Updates
Programmers can update the logging configuration at run time in a variety of ways:

* Fil eHandl er, Menor yHandl er, and Consol eHandl| er objects can all be created with
various attributes.

* New Handl er objects can be added and old ones removed.
« New Logger object can be created and can be supplied with specific Handlers.

* Level objects can be set on target Handl er objects.

Native Methods
There are no native APlIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal JNI calls
into the Java Logging APlIs.

XML DTD

The XML DTD used by the XM_For mat t er is specified in Appendix A: DTD for XMLFormatter
Output.

The DTD is designed with a <l og> element as the top-level document. Individual log records
are then written as <r ecor d> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XML_For mat t er stream with the appropriate closing </ | og>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs. Those
applications or subsystems requiring unique message IDs should define their own conventions
and include the unique IDs in the message strings as appropriate.

Security

The principal security requirement is that untrusted code should not be able to change the
logging configuration. Specifically, if the logging configuration has been set up to log a
particular category of information to a particular Handler, then untrusted code should not be
able to prevent or disrupt that logging.

The security permission Loggi ngPer mi ssi on controls updates to the logging configuration.

Trusted applications are given the appropriate Loggi ngPer mi ssi on so they can call any of
the logging configuration APIs. Untrusted applets are a different story. Untrusted applets can

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8

create and use named loggers in the normal way, but they are not allowed to change logging
control settings, such as adding or removing handlers, or changing log levels. However,
untrusted applets are able to create and use their own "anonymous" loggers, using

Logger . get AnonynmouslLogger . These anonymous loggers are not registered in the global
namespace, and their methods are not access-checked, allowing even untrusted code to
change their logging control settings.

The logging framework does not attempt to prevent spoofing. The sources of logging calls
cannot be determined reliably, so when a LogRecor d is published that claims to be from a
particular source class and source method, it may be a fabrication. Similarly, formatters such
as the XMLFor mat t er do not attempt to protect themselves against nested log messages
inside message strings. Thus, a spoof LogRecor d might contain a spoof set of XML inside its
message string to make it look as if there was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial of service
attacks. Any given logging client can flood the logging framework with meaningless messages
in an attempt to conceal some important log message.

Configuration Management

The APIs are structured so that an initial set of configuration information is read as properties
from a configuration file. The configuration information may then be changed programatically
by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be re-read.
When this happens, the configuration file values will override any changes that have been
made programatically.

Packaging

All of the logging class are in the j ava. * part of the namespace, inthe j ava. uti |l .| oggi ng
package.

Localization
Log messages may need to be localized.

Each logger may have a Resour ceBundl e hame associated with it. The corresponding
Resour ceBundl e can be used to map between raw message strings and localized message
strings.

Normally, formatters perform localization. As a convenience, the For mat t er class provides a
f or mat Message method that provides some basic localization and formatting support.

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single address
space. All calls are intended to be local. However, it is expected that some handlers will want
to forward their output to other systems. There are a variety of ways of doing this:

Some handlers (such as the Socket Handl er) may write data to other systems using the
XM_For mat t er . This provides a simple, standard, inter-change format that can be parsed and
processed on a variety of systems.

Some handlers may wish to pass LogRecor d objects over RMI. The LogRecor d class is
therefore serializable. However, there is a problem in how to deal with the LogRecor d
parameters. Some parameters may not be serializable and other parameters may have been
designed to serialize much more state than is required for logging. To avoid these problems,

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 8
Java Logging Examples

the LogRecor d class has a custom wr i t eObj ect method that converts the parameters to
strings (using Cbj ect . t oSt ri ng()) before writing them out.

Most of the logging classes are not intended to be serializable. Both loggers and handlers are
stateful classes that are tied into a specific virtual machine. In this respect they are analogous
to the j ava. i o classes, which are also not serializable.

Java Logging Examples

Simple Use
The following is a small program that performs logging using the default configuration.

This program relies on the root handlers that were established by the LogManager based on
the configuration file. It creates its own Logger object and then makes calls to that Logger
object to report various events.

package com wonbat ;
inport java.util.logging.*;

public class Nose {
/1 Obtain a suitable |ogger.
private static Logger |ogger = Logger.getLogger("comwonbat.nose");
public static void main(String argv[]) {
/1 Log a FINE tracing nessage
| ogger.fine("doing stuff");
try {
Wnbat . sneeze();
} catch (Exception ex) {
/'l Log the exception
I ogger.log(Level . WARNING, "troubl e sneezing", ex);
}

| ogger. fine("done");

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send output to a
specific file and to get lots of information on wombats. The pattern % means the system
temporary directory.

public static void main(String[] args) {
Handl er fh = new Fi | eHandl er ("% /wonbat .| 0g");
Logger. get Logger ("") . addHandl er (f h);
Logger . get Logger ("com wonbat ") . set Level (Level . FI NEST) ;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8
Java Logging Examples

Simple Use, Ignhoring Global Configuration

Here's a small program that sets up its own logging Handl er and ignores the global
configuration.

package com wonbat ;
inport java.util.logging.*;

public class Nose {
private static Logger |ogger = Logger.getLogger("com wonbat.nose");
private static FileHandl er fh = new Fil eHandl er ("nyl og. txt");
public static void main(String argv[]) {
/1 Send | ogger output to our FileHandl er.
| ogger . addHandl er (f h);
/1 Request that every detail gets |ogged.
| ogger . set Level (Level . ALL);
/1 Log a sinple INFO message.
| ogger.info("doing stuff");
try {
Wnbat . sneeze();
} catch (Exception ex) {
I ogger.log(Level . WARNING, "troubl e sneezing", ex);
}

| ogger.fine("done");

Sample XML Output

Here's a small sample of what some XMLFor mat t er XML output looks like:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE | og SYSTEM "l ogger.dtd">
<l og>
<record>
<dat e>2015- 02- 27T09: 35: 44. 885562Z</ dat e>
<m|1is>1425029744885</m|lis>
<nanos>562000</ nanos>
<sequence>1256</ sequence>
<l ogger >kgh. test . fred</| ogger >
<l evel > NFC</ | evel >
<cl ass>kgh. test. XM.Test </ cl ass>
<met hod>wr i t eLog</ et hod>
<t hread>10</t hr ead>
<message>Hel | o worl d! </ message>
</record>
</l og>

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 8

Appendix A: DTD for XMLFormatter Output

Appendix A: DTD for XMLFormatter Output

Core Libraries
G29144-01

<I-- DID used by the java.util.logging. XM_.Formatter -->
<I-- This provides an XM. fornatted | og message. -->

<l-- The document type is "log" which consists of a sequence
of record el enents -->
<! ELEMENT | og (record*)>

<I-- Each logging call is described by a record elenment. -->
< ELEMENT record (date, nillis, nanos?, sequence, |ogger?, |evel,
class?, method?, thread?, nessage, key?, catal og?, parant, exception?)>

<I-- Date and time when LogRecord was created in | SO 8601 format -->
<! ELEMENT date (#PCDATA) >

<I-- Tine when LogRecord was created in mlliseconds since
m dni ght January 1st, 1970, UTC. -->
<IELEMENT millis (#PCDATA) >

<I'-- Nano second adjustenent to add to the tine in mlliseconds.
This is an optional element, added since JDK 9, which adds further
precision to the time when LogRecord was created.

-->

<! ELEMENT nanos (#PCDATA) >

<I'-- Uni que sequence nunmber within source VM -->
<! ELEMENT sequence (#PCDATA)>

<I-- Nane of source Logger object. -->
<! ELEMENT | ogger (#PCDATA) >

<I-- Logging level, may be either one of the constant
nanes fromjava.util.logging.Level (such as "SEVERE"
or "WARNING') or an integer value such as "20". -->

<! ELEMENT | evel (#PCDATA) >

<I-- Fully qualified name of class that issued
logging call, e.g. "javax.narsupial.Wnbat". -->
<! ELEMENT cl ass (#PCDATA) >

<I-- Nane of nethod that issued |ogging call.

It may be either an unqualified nethod name such as
“fred" or it may include argunent type information
in parenthesis, for exanple "fred(int,String)". -->
<! ELEMENT net hod (#PCDATA) >

<I-- Integer thread ID. -->
<! ELEMENT thread (#PCDATA) >

<I-- The nessage el ement contains the text string of a |og message. -->
<! ELEMENT nessage (#PCDATA) >

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates.

Page 9 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 8
Appendix A: DTD for XMLFormatter Output

<I-- If the nmessage string was localized, the key el enent provides
the original localization nessage key. -->
<! ELEMENT key (#PCDATA) >

<I-- If the nessage string was |ocalized, the catalog el ement provides
the logger's localization resource bundle nane. -->
<! ELEMENT cat al og (#PCDATA) >

<I-- If the nessage string was localized, each of the param el enents
provi des the String val ue (obtained using Object.toString())
of the correspondi ng LogRecord paraneter. -->

<! ELEMENT par am (#PCDATA) >

<I'-- An exception consists of an optional message string followed
by a series of StackFranes. Exception el ements are used

for Java exceptions and other java Throwables. -->

< ELEMENT exception (nessage?, frame+)>

<l-- A frame describes one line in a Throwabl e backtrace. -->
<IELEMENT frame (class, nethod, |ine?)>

<I-- an integer line number within a class's source file. -->
<! ELEMENT |ine (#PCDATA) >

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 10

Java NIO

The Java NIO (New Input/Output) API defines buffers, which are containers for data, and other
structures, such as charsets, channels, and selectable channels. Charsets are mappings
between bytes and Unicode characters. Channels represent connections to entities capable of
performing I/O operations. Selectable channels are those that can be multiplexed, which
means that they can process multiple I/O operations in one channel.

Java NIO Examples
The following code examples demonstrate the Java NIO API:

* Grep NIO Example

e Checksum NIO Example

e Time Query NIO Example

e Time Server NIO Example

* Non-Blocking Time Server NIO Example

* Internet Protocol and UNIX Domain Sockets NIO Example

e File NIO examples:
— Chmod File NIO Example

— Copy File NIO Example

— Disk Usage File NIO Example

— User-Defined File Attributes File NIO Example

Buffers
They are containers for a fixed amount of data of a specific primitive type. See the | ava. ni o
package and Table 9-1.

Table 9-1 Buffer Classes
]

Buffer Class Description

Buf f er Base class for buffer classes.

Byt eBuf f er Buffer for bytes.

MappedByt eBuf f er Buffer for bytes that is mapped to a file.
Char Buf f er Buffer for the char data type.

Doubl eBuf f er Buffer for the doubl e data type.

Fl oat Buf f er Buffer for the f | oat data type.

| nt Buf f er Buffer for the i nt data type.

LongBuf f er Buffer for the | ong data type.

Shor t Buf f er Buffer for the short data type.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 28

ORACLE’

Core Libraries
G29144-01

Chapter 9

Charsets

They are named mappings between sequences of 16-bit Unicode characters and sequences of
bytes. Support for charsets include decoders and encoders, which translate between bytes and
Unicode characters. See the j ava. ni 0. char set package and Table 9-2.

Table 9-2 Charset Classes
]

Charset Class Description

Char set Named mapping between characters and bytes, for
example, US- ASCl | and UTF- 8.

Char set Decoder Decodes bytes into characters.

Char set Encoder Encodes characters into bytes.

Coder Resul t Describes the result state of an decoder or
encoder.

Codi ngErrorAction Describes actions to take when coding errors are
detected.

Channels

They represent an open connection to an entity such as a hardware device, a file, a network
socket, or a program component that is capable of performing one or more distinct 1/0
operations, for example reading or writing. See the j ava. ni 0. channel s package and
Table 9-3.

Table 9-3 Channel Interfaces and Classes
]

Channel Interface or Class Description

Channel Base interface for channel interfaces and classes.
Readabl eByt eChannel A channel that can read bytes.

Scat t eri ngByt eChannel A channel that can read bytes into a sequence of

buffers. A scattering read operation reads, in a
single invocation, a sequence of bytes into one or
more of a given sequence of buffers.

Wit abl eByt eChannel A channel that can write bytes.

Gat heri ngByt eChannel A channel that can write bytes from a sequence of
buffers. A gathering write operation writes, in a
single invocation, a sequence of bytes from one or
more of a given sequence of buffers.

Byt eChannel A channel that can read and write bytes. It unifies
Readabl eByt eChannel and
Wit abl eByt eChannel .

Seekabl eByt eChannel A byte channel that maintains a current position
and allows the position to be changed. A seekable
byte channel is connected to an entity, typically a
file, that contains a variable-length sequence of
bytes that can be read and written.

Asynchr onousChannel A channel that supports asynchronous 1/0
operations.

Asynchr onousByt eChannel An asynchronous channel that can read and write
bytes.

Net wor kChannel A channel to a network socket.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 28

ORACLE
Chapter 9

Table 9-3 (Cont.) Channel Interfaces and Classes

___|
Channel Interface or Class Description

Mul ti cast Channel A network channel that supports Internet Protocol
(IP) multicasting. IP multicasting is the transmission
of IP datagrams to members of a group that is zero
or more hosts identified by a single destination
address.

Fi | eChannel A channel for reading, writing, mapping, and
manipulating a file. It's a
Seekabl eByt eChannel thatis connected to a
file.

Sel ect abl eChannel A channel that can be multiplexed through a
Sel ect or.

Multiplexing is the ability to process multiple 1/0
operations in one channel. A selectable channel
can be put into blocking or non-blocking mode. In
blocking mode, every /O operation invoked upon
the channel will block until it completes. In non-
blocking mode, an 1/0O operation will never block
and may transfer fewer bytes than were requested
or possibly no bytes at all.

Dat agr anChannel A selectable channel that can send and receive
UDP (User Datagram Protocol) packets.

You can create datagram channels with different
protocol families:

* Create channels for Internet Protocol sockets
with the | NET or | NET6 protocol families.
These channels support network
communication using TCL and UDP. Their
addresses are of type
| net Socket Addr ess, which encapsulates
an IP address and port number.

* Create channels for UNIX Domain sockets with
the UNI X protocol family. These sockets
support local interprocess communication on
the same host. Their addresses are of type
Uni xDomai nSocket Addr ess, which
encapsulate a file system path name on the
local system.

Pi pe. Si nkChannel A channel representing the writable end of a pipe.
A Pi pe is a pair of channels: A writable sink
channel and a readable source channel.

Pi pe. Sour ceChannel A channel representing the readable end of a pipe.
Ser ver Socket Channel A selectable channel for stream-oriented listening
sockets.

Like datagram channels, you can create server
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

Socket Channel A selectable channel for stream-oriented
connecting sockets.

Like datagram channels, you can create socket
channels that are for Internet Protocol sockets or
Unix Domain sockets.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 28

ORACLE Chapter 9

Grep NIO Example
Table 9-3 (Cont.) Channel Interfaces and Classes
Channel Interface or Class Description
Asynchr onousFi | eChannel An asynchronous channel for reading, writing, and
manipulating a file.
Asynchr onousSocket Channel An asynchronous channel for stream-oriented
connecting sockets.
Asynchr onousSer ver Socket Channel An asynchronous channel for stream-oriented

listening sockets.

Grep NIO Example

This example searches a list of files for lines that match a given regular expression pattern. It
demonstrates NIO-mapped byte buffers, charsets, and regular expressions.

public class Gep {

/1 Charset and decoder for |SO 8859-15
private static Charset charset = Charset.forName("| SO 8859-15");
private static CharsetDecoder decoder = charset.newDecoder();

/1 Pattern used to parse lines
private static Pattern |inePattern = Pattern.compile(".*\r?\n");

/1 The input pattern that we're | ooking for
private static Pattern pattern;

/1 Conpile the pattern fromthe comuand |ine
private static void conmpile(String pat) {
try {
pattern = Pattern. conpile(pat);
} catch (PatternSyntaxException x) {
Systemerr. println(x.getMssage());
Systemexit(1);

}

Il Use the linePattern to break the given CharBuffer into |ines, applying
/1 the input pattern to each line to see if we have a match
private static void grep(File f, CharBuffer ch) {

Mat cher | m = linePattern. matcher(ch); // Line matcher

Mat cher pm = null; // Pattern matcher

int lines = 0;

while (Imfind()) {

| i nes++;
Char Sequence ¢s = Imgroup(); // The current line
if (pm==null)
pm = pattern. matcher(cs);
el se

pmreset(cs);
if (pmfind())

Systemout.print(f + ":" +lines +":" + ¢s);
if (Imend() ==cb.linmit())

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 28

ORACLE Chapter 9
Checksum NIO Example

break;

}

Il Search for occurrences of the input pattern in the given file
private static void grep(File f) throws |CException {

/1 Open the file and then get a channel fromthe stream
try (FilelnputStreamfis = new Fil el nputStrean(f);
Fi | eChannel fc = fis.getChannel ()) {

Il Get the file's size and then map it into nenory

int sz = (int) fc.size();

MappedByt eBuf fer bb = fc. map(Fi | eChannel . MapMode. READ ONLY, O,
sz);

/1 Decode the file into a char buffer
CharBuffer cb = decoder. decode(bb);

/] Performthe search
grep(f, cb);

}

public static void main(String[] args) {
if (args.length < 2) {
Systemerr.printin("Usage: java Gep pattern file...");
return;
}
conpi l e(args[0]);
for (int i 1, i < args.length; i++) {
File f new File(args[i]);
try {
grep(f);
} catch (I OException x) {
Systemerr.printin(f +": " + x);
}

Checksum NIO Example

This example computes 16-bit checksums for a list of files. It uses NIO-mapped byte buffers for
speed.

public class Sum {

[l Conpute a 16-bit checksumfor all the remaining bytes
/1 in the given byte buffer

private static int sum(ByteBuffer bb) {
int sum= 0;
whi | e (bb. hasRenaining()) {
if ((sumé& 1) !'=0)

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 28

ORACLE Chapter 9
Time Query NIO Example

sum = (sum>> 1) + 0x8000;
el se
sum >>= 1;
sum += bb.get() & Oxff;
sum &= Oxffff;
}

return sum

}

/1 Conpute and print a checksumfor the given file
private static void sumFile f) throws | CException {

/1 Open the file and then get a channel fromthe stream
try (

FilelnputStreamfis = new Filel nput Strean(f);

Fi | eChannel fc = fis.getChannel ()) {

Il Get the file's size and then map it into nenory

int sz = (int) fc.size();

MappedByt eBuf fer bb = fc. map(Fi | eChannel . MapMode. READ ONLY, O,
sz);

/1 Conpute and print the checksum

int sum= sum bb);

int kb = (sz + 1023) / 1024,

String s = Integer.toString(sun;
Systemout.printin(s + "\t" + kb + "\t" + f);

}

public static void main(String[] args) {
if (args.length < 1) {
Systemerr.println("Usage: java Sumfile...");
return;
}
for (int i
File f
try {
sun(f);
} catch (I CException e) {
Systemerr.printin(f +": " + e);
}

0; i <args.length; i++) {
new File(args[i]);

Time Query NIO Example

This example asks a list of hosts what time it is. It's a simple, blocking program that
demonstrates NIO socket channels (connection and reading), buffer handling, charsets, and
regular expressions.

public class TimeQuery {

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 28

ORACLE’

Core Libraries
G29144-01

Chapter 9
Time Query NIO Example

Il The standard daytine port
private static int DAYTI ME_PORT = 13;

/1 The port we'll actually use
private static int port = DAYTI ME PORT

/1 Charset and decoder for US-ASCl|
private static Charset charset = Charset.forName("US-ASCII");
private static CharsetDecoder decoder = charset.newDecoder();

[l Direct byte buffer for reading
private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

/'l Ask the given host what time it is
private static void query(String host) throws |CException {

try (Socket Channel sc = Socket Channel . open()) {
I net Socket Address isa = new | net Socket Addr ess(
| net Addr ess. get ByName(host), port);

/1 Connect
sc. connect (isa);

/1 Read the time fromthe remote host. For sinplicity we assune
/1 that the time comes back to us in a single packet, so that we
/1 only need to read once

dbuf . cl ear();

sc. read(dbuf);

[l Print the renpte address and the received tine

dbuf. flip();
CharBuffer cb = decoder. decode(dbuf);
Systemout.print(isa +" : " + ch);

}

public static void main(String[] args) {
if (args.length < 1) {
Systemerr.println("Usage: java TimeQuery [port] host...");
return;

}
int firstArg =20

/1 1f the first argunent is a string of digits then we take that
/1 to be the port nunber
if (Pattern.matches("[0-9]+", args[0])) {

port = Integer.parselnt(args[0]);

firstArg = 1;
}
for (int i =firstArg; i < args.length; i++) {
String host = args[i];
try {
query(host);

} catch (I OCException e) {

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 28

ORACLE Chapter 9
Time Server NIO Example

Systemerr.printin(host + ": " + e);
e.printStackTrace();

Time Server NIO Example

This example listens for connections and tells callers what time it is. Is a simple, blocking
program that demonstrates NIO socket channels (accepting and writing), buffer handling,
charsets, and regular expressions.

public class TimeServer {

/1 W can't use the normal daytinme port (unless we're running as root,
[l which is unlikely), so we use this one instead
private static int PORT = 8013;

/1 The port we'll actually use
private static int port = PORT,;

/'l Charset and encoder for US-ASCl|
private static Charset charset = Charset.forName("US-ASCI1");
private static CharsetEncoder encoder = charset.newEncoder();

/1 Direct byte buffer for witing
private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

/1 Open and bind the server-socket channel

private static ServerSocket Channel setup() throws |OException {
Server Socket Channel ssc = Server Socket Channel . open();
[net Socket Address isa = new | net Socket Addr ess(
I net Addr ess. get Local Host (), port);
ssc. socket (). bind(isa);
return ssc;

}

[l Service the next request to come in on the given channel

private static void serve(ServerSocket Channel ssc) throws | OException {
try (Socket Channel sc = ssc.accept()) {
String now = new Date().toString();
Systemout. println("now. " + now;
sc.wite(encoder.encode(CharBuffer.wap(now + "\r\n")));
Systemout. println(sc.socket().getlnetAddress() + " : " + now);

}

public static void main(String[] args) {
if (args.length > 1) {
Systemerr.println("Usage: java TineServer [port]");
return;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 28

ORACLE

Chapter 9
Non-Blocking Time Server NIO Example

/1 1f the first argunent is a string of digits then we take that

/1 to be the port nunber

if ((args.length == 1) && Pattern. matches("[0-9]+", args[0]))
port = Integer.parselnt(args[0]);

try {
Server Socket Channel ssc = setup();

for (;;) {

serve(ssc);
}

} catch (I OException e) {
e.printStackTrace();
}

Non-Blocking Time Server NIO Example

Core Libraries
G29144-01

This example implements a non-blocking internet time server.

public class NBTi meServer {

private static final int DEFAULT_TI ME_PORT = 8900;

[l Constructor with no argunents creates a time server on default port.
publ ic NBTi neServer() throws Exception {
accept Connecti ons(thi s. DEFAULT_TI ME_PORT) ;

}

/1 Constructor with port argument creates a tinme server on specified port.
publ ic NBTi neServer(int port) throws Exception {
accept Connecti ons(port);

}

/1 Accept connections for current time. Lazy Exception thrown.
private static void acceptConnections(int port) throws Exception {
/] Selector for incomng time requests
Sel ector accept Sel ector = Sel ector Provider. provider().openSel ector();

/] Create a new server socket and set to non bl ocking node
Server Socket Channel ssc = Server Socket Channel . open();
ssc. confi gureBl ocki ng(fal se);

/] Bind the server socket to the local host and port

I net Address | h = Inet Address. get Local Host () ;
I net Socket Address isa = new | net Socket Address(lh, port);
ssc. socket (). bind(isa);

/] Register accepts on the server socket with the selector. This
/] step tells the selector that the socket wants to be put on the
/] ready list when accept operations occur, so allow ng nultiplexed
/1 non-blocking 1/Oto take place.
Sel ectionKey acceptKey = ssc.register(accept Sel ector,

Sel ecti onKey. OP_ACCEPT) ;

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 28

ORACLE’

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

int keysAdded = 0;

/1 Here's where everything happens. The select nethod will
/1 return when any operations registered above have occurred, the
/1 thread has been interrupted, etc.
whil e ((keysAdded = accept Sel ector.select()) > 0) {
/1 Someone is ready for I/Q get the ready keys
Set <Sel ecti onKey> readyKeys = accept Sel ect or. sel ect edKeys();
I terator<Sel ectionKey> i = readyKeys.iterator();

/1 Walk through the ready keys collection and process date

requests.

}

while (i.hasNext()) {
Sel ectionKey sk = (SelectionKey) i.next();
i.remove();
/1 The key indexes into the selector so you
/1 can retrieve the socket that's ready for 1/0
Server Socket Channel next Ready = (Server Socket Channel) sk

. channel ();

/1 Accept the date request and send back the date string
Socket s = next Ready. accept().socket();
/I Wite the current tine to the socket
PrintWiter out = new PrintWiter(s.getQutputStream(), true);
Date now = new Date();
out. println(now;
out.cl ose();

}

}

[l Entry point.
public static void main(String[] args) {

/] Parse command |ine arguments and
/] create a new tine server (no arguments yet)
try {
NBTi meServer nbt = new NBTi neServer();
} catch (Exception e) {
e.printStackTrace();
}

Internet Protocol and UNIX Domain Sockets NIO Example

Core Libraries
G29144-01

This example illustrates how to intermix AF_UNIX and AF_INET/6 channels with the
Socket Channel and Ser ver Socket Channel classes in a hon-blocking client/server single-
threaded application.

This example mimics some of the capabilities of the socat command-line utility. It can create
listeners or clients and connect them to listeners and perform various different types of binding.
Run this command with the - h option to print usage information.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 28

ORACLE Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

Special handling is only required for the different address types at initialization. For the server
side, once a listener is created and bound to an address, the code managing the selector can
handle the different address families identically.

i nport java.io.lCException;

i nport java.io.Uncheckedl CExcepti on;
i nport java.net.*;

i nport java.nio.ByteBuffer;

i nport java.nio.channels.*;

i nport java.util.HashMap;

inport java.util.LinkedList;

inport java.util.List;

i nport java.util.Map;

i nport jdk.net.ExtendedSocket Opti ons;
i nport jdk. net. Uni xDonai nPrinci pal ;

inport static java.net.StandardProtocol Fam |y. UN X;
inport static java.net.StandardProtocol Fam |y. | NET;
inport static java.net.StandardProtocol Fam |y. | NET6;

public class Socat {
static void usage() {
String ustring =

usage: java Socat -s <baddr>...
java Socat -c [-bind <baddr>] <daddr> N [del ay]
java Socat -h

-S means create one or nore |istening servers bound to addresses <baddr>...,
then accept all inconing connections and display (counts of) received data. If
more than one <baddr> is supplied, then nultiple channels are created, each
bound to one of the supplied addresses. All channel s are non-bl ocking and
managed by one Sel ector.

-Cc means create a client, connect it to <daddr> and send N (16 Kb) buffers.
The

client may optionally bind to a given address <baddr>. |f a delay is
specified,

then the program pauses for the specified nunber of mlliseconds between each
send. After sending, the client reads until EOF and then exits.

Note: AF_UNI X client sockets do not bind to an address by default. Therefore,
the renote address seen on the server side (and the client's local address) is
an enpty path. This is slightly different from AF_INET/6 sockets, which, if

t he

user does not choose a local port, then a randomy chosen one is assigned.

-h means print this message and exit.
<baddr> and <daddr> are addresses specified as follows:

UNI X: { pat h}

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 28

ORACLE Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

I NET: {host}: port
| NET6: { host }: port

{path} is the name of a socket file surrounded by curly brackets,

{}, which can be enpty when binding a server signifying a randomy chosen
| ocal

addr ess.

{host}:port is an internet address conprising a domain name or |Pv4/v6 literal
surrounded by curly brackets, {}, which can be enpty when binding (signifying
any local address) and a port number, which can be zero when binding.

(LTI
1

}

Systemout. println(ustring);

static boolean isCient;

static boolean initialized = fal se;

static final int BUFSIZE = 8 * 1024;

static int N /1 Nunber of buffers to send

static int DELAY = 0; /1 MI1liseconds to delay between sends

static List<AddressAndFanily> |ocals = new Li nkedLi st <>();
static AddressAndFanily renote;

/I famly is only needed in cases where address is null.
Il 1t could be a Record type.

static class AddressAndFami |y {
Socket Addr ess address;
Protocol Fam |y family;
Addr essAndFami | y(Protocol Fam |y fam |y, Socket Address address) {
this.address = address;
this.famly = fanily;

}

static AddressAndFanm |y parseAddress(String addr) throws
UnknownHost Exception {
char c¢ = addr.charAt(0);
if (c!'='U &&c!="1")
throw new |11 egal Argunent Exception("invalid address");

String fam |y = addr. substring(0, addr.indexOF(':"')).toUpperCase();

return switch (famly) {
case "UNI X' -> parseUni xAddress(addr);
case "I NET" -> parsel net Socket Address(| NET, addr);
case "I NET6" -> parsel net Socket Address(|NET6, addr);
default -> throw new Il egal Argunent Exception();
b
}

static AddressAndFanily parseUni xAddress(String token) {
String path = get Pat hDomai n(t oken);
Uni xDomai nSocket Addr ess addr ess;

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 28

ORACLE Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

if (path.isEnpty())
address = nul | ;
el se
address = Uni xDomai nSocket Addr ess. of (pat h);
return new AddressAndFam | y(UNI X, address);

}

static AddressAndFani |y parsel net Socket Addr ess(St andar dPr ot ocol Fami |y
famly, String token) throws UnknownHost Exception {

String domain = get Pat hDomai n(t oken);
| net Addr ess addr ess;
if (domain.isEnpty()) {

address = (fanily == StandardProtocol Fani|y. | NET)

? I net Addr ess. get ByName("0. 0. 0. 0")
| net Addr ess. get ByName("::0");

} else {

address = | net Address. get ByName(domai n) ;
}
int cp = token.lastlndexOfi(':") + 1;
int port = Integer.parselnt(token.substring(cp));
var isa = new |netSocket Address(address, port);
return new AddressAndFanily(fanmily, isa);

}
Il Return the token between braces, that is, a domain name or UNI X path.

static String getPathDomain(String s) {
int start = s.indexOf("{") + 1;
int end = s.indexOF('}');
if (start == -1]| end == -1 || (start > end))
throw new |11 egal Argunent Exception(s);
return s.substring(start, end);

}

Il Return false if the program nust exit.

static void parseArgs(String[] args) throws UnknownHost Exception {
if (args[0].equals("-h")) {
usage();
} elseif (args[0].equals("-c")) {
isClient = true;
int nextArg;
AddressAndFanmi |y local = null;
if (args[1].equals("-bind")) {
l ocal = parseAddress(args[2]);
| ocal s. add(! ocal);

nextArg = 3;
} else {
nextArg = 1;

}

renote = parseAddress(args[nextArg++]);
N = Integer. parselnt(args[nextArg++]);
if (nextArg == args.length - 1) {
DELAY = Integer. parselnt(args[nextArg]);
}

initialized = true;
Core Libraries

G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 28

ORACLE Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

} else if (args[0].equals("-s")) {
isCient = fal se;
for (int i =1; i <args.length; i++) {
| ocal s. add(parseAddress(args[i]));

}
initialized = true
} else
throw new I |1 egal Argunent Exception();
}
public static void main(String[] args) throws Exception {
try {
parseArgs(args);

} catch (Exception e) {
Systemout. printf("\nlnvalid argunents supplied. See the
followi ng for usage information\n");

usage();

}

if (!initialized)
return;

if (isCient) {
dodient();

} else {
doServer ()

}

}

static Map<Socket Channel, | nteger> byt eCounter = new HashMap<>();

private static void initListener(AddressAndFanm |y aaf, Selector selector)

try {
Protocol Fanily famly = aaf.famly;

Socket Address address = aaf.address
Server Socket Channel server = Server Socket Channel . open(fanily)
server. bi nd(address);
server. configureBl ocki ng(fal se);
post Bi nd(addr ess) ;
server.register(selector, SelectionKey. O°P_ACCEPT, null);
Systemout.println("Server: Listening on " +
server. get Local Address());

} catch (I CException e) {
t hrow new Uncheckedl OException(e);

}

}

private static void doServer() throws | OException {

Byt eBuf fer readBuf = ByteBuffer.allocate(64 * 1024);
final Selector selector = Sel ector.open();
| ocal s. forEach(l ocal Address -> initListener(local Address, selector));
i nt next Connectionld =1
while (true) {

sel ector.select();

var keys = sel ector. sel ect edKeys();

for (SelectionKey key : keys) {

try {

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 28

ORACLE Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

Sel ect abl eChannel c¢ = key. channel ();
if (c instanceof ServerSocketChannel) {
var server = (Server Socket Channel)c;
var ch = server.accept();
var userid = "";
if (server.getlLocal Address() instanceof

Uni xDonai nSocket Addr ess) {

[l An illustration of additional capability of
UNI X
/'l channels; it's not required behavior

Uni xDomai nPrinci pal pr =
ch. get Opt i on(Ext endedSocket Opti ons. SO _PEERCRED) ;
userid = "user: " + pr.user().toString() + "
group: " +
pr.group().toString();
}

ch. confi gureBl ocki ng(fal se);
byt eCounter. put(ch, 0);
Systemout . printf("Server: new connection\n\tfrom{%]}
\n", ch. get Renot eAddress());
Systemout. printf("\tConnection id: %\n",
next Connectionl d);
if (userid.length() > 0) {
Systemout. printf("\tpeer credentials: %\n"
userid);
}
Systemout . printf("\tConnection count: %\ n"
byt eCount er. si ze());
ch.register(selector, SelectionKey. OP_READ,
next Connecti onl d++);
} else {
var ch = (Socket Channel) c;
int id = (Integer)key.attachnent();
int bytes = byteCounter.get(ch);
readBuf. clear();
int n = ch.read(readBuf);
if (n<0) {
String renote = ch. get Renot eAddress().toString();
Systemout. printf("Server: closing
connection\n\tfrom {%} Id: %\n", renote, id);
Systemout. printf("\tBytes received: %\ n"

byt es);
byt eCount er. remove(ch);
ch.close();
} else {
readBuf . flip();
bytes += n;

byt eCounter. put (ch, bytes);
di spl ay(ch, readBuf, id);
}
}
} catch (I CException e) {
t hrow new Uncheckedl OException(e);

}

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 15 of 28

ORACLE’

Core Libraries
G29144-01

when

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

b

keys.clear();

}

private static void postBind(Socket Address address) {
i f (address instanceof UnixDomai nSocket Address) {
var usa = (Uni xDomai nSocket Addr ess) addr ess
usa.getPath().toFile().deleteOnExit();

}

private static void display(SocketChannel ch, ByteBuffer readBuf, int id)
throws | CException
{
Systemout.printf("Server: received %l bytes from {%} 1d: %l\n",
readBuf. remai ning(), ch.get RenoteAddress(), id);

}

private static void doClient() throws Exception {
Socket Channel client;
if (locals.isEnpty())
client = Socket Channel . open(renote. address);
el se {
AddressAndFani | y aaf = local s.get(0);
client = Socket Channel . open(aaf.fanily)
client.bind(aaf.address);
post Bi nd(aaf . addr ess);
client.connect(renote. address);
}
Byt eBuf f er sendBuf = ByteBuffer.all ocat e(BUFSI ZE)
for (int i=0; i<N i++) {
fill(sendBuf);
client.wite(sendBuf);
Thr ead. sl eep(DELAY) ;

}
client.shut downQut put ();
ByteBuffer rxb = ByteBuffer.allocate(64 * 1024);

int c;

while ((c = client.read(rxb)) > 0) {
rxb. flip();
Systemout.printf("Cient: received %l bytes\n", rxb.remining());
rxb.clear();

}

client.close();

}

private static void fill(ByteBuffer sendBuf) {

/1 Because this exanple is for demonstration purposes, this nethod

/1 doesn't fill the ByteBuffer sendBuf with data. Instead, it sets the
/1 limts of sendBuf to its capacity and its position to zero

/1 Consequently, when the exanple wites the contents of sendBuf, it
/1 wites the entire contents of whatever happened to be in nmenory

/1 sendBuf was all ocated

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 16 of 28

ORACLE’

Chapter 9
Chmod File NIO Example

sendBuf.|imt(sendBuf.capacity());
sendBuf . posi tion(0);

Example of Running the Socat Example
The following is an example of running the Socat example:

1. In a command-line shell, run Socat as follows:

$ java Socat -s UNIX: {/tnp/uds.sock}
Server: Listening on /tnp/uds.sock

2. In another command-line shell, run Socat as follows:

$ java Socat -c UNI X {/tnp/uds.sock} 1

In the first command-line shell, you'll see output similar to the following:

Server: new connection
from{}
Connection id: 1
peer credentials: user: yourusername group: yourgroup
Connection count: 1
Server: received 8192 bytes from {} Id: 1
Server: closing connection
from {} Id: 1
Byt es received: 8192

If you don't specify a file name when you create a UNIX domain socket, then the JVM creates
a socket file and automatically binds the socket to it:

$ java Socat -s UNI X {}
Server: Listening on /tnp/socket 837668026

This is the same as calling Ser ver Socket Channel . bi nd(nul |). You can change the default
directory where the JVM saves automatically generated socket files by setting the
j dk. net. uni xdonai n. t mpdi r system property. See Networking System Properties.

Chmod File NIO Example

Core Libraries
G29144-01

This example compiles a list of one or more symbolic mode expressions that can change a set
of file permissions in a manner similar to the UNIX chmod command.

The synbol i c- node- | i st parameter is a comma-separated list of expressions where each
expression has the following form:

who operator [perm ssions]

e who: One or more of the following characters: u, g, 0, or a, meaning owner (user), group,
others, or all (owner, group, and others), respectively.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 17 of 28

ORACLE’

Core Libraries
G29144-01

Chapter 9
Chmod File NIO Example

oper at or : The character +, -, or =, signifying how to change the permissions:
— +: Permissions are added

— -:Permissions are removed

— =: Permissions are assigned absolutely

per ni ssi ons: A sequence of zero or more of the following:

— r: Read permission

— w. Write permission

— X: Execute permission

If per m ssi ons is omitted when permissions are assigned absolutely (with the = operator),
then the permissions are cleared for the owner, group or others as identified by who. When
per ni ssi ons is omitted, then the operators + and - are ignored.

The following are examples of the synbol i c- node- | i st parameter:

u=rw: Sets the owner permissions to read and write.
ug+w. Sets the owner write and group write permissions.

u+w, o- rwx: Sets the owner write permission and removes the others read, others write,
and others execute permissions.

0=: Sets the others permission to none (others read, others write, and others executed
permissions are removed if set).

public class Chmod {

public static Changer conpile(String exprs) {
/1 minimumis who and operator (u= for exanple)
if (exprs.length() < 2)
throw new |11 egal Argunent Exception("lnvalid node");

/1 pernissions that the changer will add or remove
final Set<PosixFilePernission> toAdd = new

HashSet <Posi xFi | ePer mi ssi on>();

final Set<Posi xFil ePerm ssion> toRenbve = new

HashSet <Posi xFi | ePer ni ssi on>();

/] iterate over each of expression nodes
for (String expr: exprs.split(",")) {
/1 mni mum of who and operator
if (expr.length() < 2)
throw new I |1 egal Argunment Exception("Invalid node");

int pos = 0;

/'l who

bool ean u = fal se;

bool ean g = fal se;

bool ean o = fal se;

bool ean done = fal se;

for (;5) {

switch (expr.charAt(pos)) {

case 'u u = true; break;
case 'g' : g =true; break;

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 18 of 28

ORACLE’

Core Libraries
G29144-01

Chapter 9
Chmod File NIO Example

case '0' : o0 = true; break;
case 'a' : u =true; g =true; o = true; break;
default : done = true;

}
if (done)
br eak;
pos++;
}
if ('ué&k!g && !0)
t hrow new |1l egal Argunment Exception("lnvalid nmode");

/1 get operator and pernissions
char op = expr.char At (pos++);

String mask = (expr.length() == pos) ? "" : expr.substring(pos);
/'l operator

bool ean add = (op == "'+');

bool ean remove = (op == "'-');

bool ean assign = (op == "=");

if (ladd && !'rermove && !assign)
throw new |11 egal Argunent Exception("lInvalid nmode");

/1 who= neans renove all

if (assign & mask.length() == 0) {
assign = fal se;
renove = true;
mask = "rw";

}

/'l pernissions

bool ean r = fal se;

bool ean w = fal se;

bool ean x = fal se;

for (int i=0; i<mask.length(); i++) {

switch (mask.charAt(i)) {
case 'r' : r true; break;
case 'wW : w = true; break;
case 'x' : X = true; break;
defaul t:
throw new |11 egal Argument Exception("lnvalid nmode");

}

/'l update pernissions set
if (add) {
if (u

if

if

if

t oAdd. add(OANER_READ) ;
t oAdd. add(O\NER_WRI TE) ;
t oAdd. add(OWNER_EXECUTE) ;

=

—~ o~ o~ ——
-
~

>
=

}

it (g)
i f
i f
i f

t oAdd. add(GROUP_READ) ;
t oAdd. add(GROUP_WRI TE) ;
t 0Add. add(GROUP_EXECUTE) ;

=

—~ o~ o~ ——
-
~

>
=

}
if (0) {

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 19 of 28

ORACLE’

it (g)
i f
i f
i f

—~ o~ o~ ——
-
~

if (0)
if
if
if

=

—~ o~ o~ ——
-
~

>
=

}
1
if (assign) {
if (u) {
if (r)
el se
if (w
el se
if (x)
el se
}
if (9) {
if (r)
el se
if (w
el se
if (x)
el se
}
if (o) {
if (r)
el se
if (w
el se
if (x)
el se

}

/1 return changer

t oAdd. add(OTHERS_READ) ;
t 0Add. add(OTHERS W\RI TE) ;
t 0Add. add(OTHERS EXECUTE) ;

t oRenove.
t oRenove.
t oRenove.

t oRenove.
t oRenove.
t oRenove.

t oRenove.
t oRenove.
t oRenove.

add(OANER_READ) ;
add(OAKER_WRI TE) ;
add(OMKER_EXECUTE) ;

add(GROUP_READ) ;
add(GROUP_WRI TE) ;
add(GROUP_EXECUTE) ;

add(OTHERS_READ) :
add(OTHERS_WRI TE) :
add(OTHERS_EXECUTE) ;

t 0Add. add(OANER_READ) ;

t oRenove. add(OANER_READ) ;

t 0Add. add(OMNER_WRI TE) ;

t oRenove. add(OANER_V\RI TE) ;

t 0Add. add(OANER_EXECUTE) ;

t oRenove. add(OANER_EXECUTE) ;

t 0Add. add(GROUP_READ) ;

t oRenove. add(GROUP_READ) ;

t 0Add. add(GROUP_WRI TE) ;

t oRenove. add(GROUP_VRI TE) ;

t oAdd. add(GROUP_EXECUTE) ;

t oRenove. add(GROUP_EXECUTE) ;

t oAdd. add(OTHERS_READ) ;

t oRenove. add(OTHERS_READ) ;

t 0Add. add(OTHERS_V\RI TE) ;

t oRenove. add(OTHERS_WRI TE) ;

t 0Add. add(OTHERS_EXECUTE) ;

t oRenove. add(OTHERS_EXECUTE) ;

return new Changer () {

@verride

Chapter 9
Chmod File NIO Example

public Set<Posi xFi | ePerni ssi on> change(Set <Posi xFi | ePer mi ssi on>

perms) {

per ms. addAl | (t oAdd);

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 20 of 28

ORACLE Chapter 9
Chmod File NIO Example

per ms. removeAl | (t oRenmove) ;
return perns;

}
b
}
/**
* A task that <i>changes</i> a set of {@ink PosixFilePerni ssion}
el enent s.
*/
public interface Changer {
/**
* Applies the changes to the given set of permi ssions.
*
* @aram perms
* The set of pernissions to change
*
* @eturn The {@ode perms} paraneter
*/
Set <Posi xFi | ePer m ssi on> change(Set <Posi xFi | ePer m ssi on> perns) ;
}
/**

* Changes the pernissions of the file using the given Changer.
*/
static void chmod(Path file, Changer changer) {
try {
Set <Posi xFi | ePer mi ssion> perns = Files
. get Posi xFi | ePerni ssions(file);
Fi | es. set Posi xFi | ePermi ssions(file, changer.change(perns));
} catch (I OException x) {
Systemerr.println(x);
}

}

/**

* Changes the permssion of each file and directory visited

*/

static class TreeVisitor inplenments FileVisitor<Path> {
private final Changer changer;

TreeVi sitor(Changer changer) {
this. changer = changer;

}

@verride
public FileVisitResult preVisitDirectory(Path dir,
Basi cFil eAttributes attrs) {
chnod(dir, changer);
return CONTI NUE;

}

@verride

public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {

chnod(file, changer);

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 21 of 28

ORACLE’

return CONTI NUE;
}

@verride

Chapter 9
Copy File NIO Example

public FileVisitResult postVisitDirectory(Path dir, |OException exc) {

if (exc I=null)
Systemerr.printIn("WARNING " + exc);
return CONTI NUE;

}
@verride

public FileVisitResult visitFileFailed(Path file, 10OException exc) {

Systemerr.printIn("WARNING " + exc);
return CONTI NUE;

}

static void usage() {

Systemerr.printin("java Chrod [-R] synbolic-node-list file...");

Systemexit(-1);
}

public static void main(String[] args) throws |CException {

if (args.length < 2)

usage() ;
int argi = 0;
int maxDepth = 0;
if (args[argi].equals("-R")) {

if (args.length < 3)

usage();

argi ++;

maxDept h = | nteger. MAX_VALUE;
}

/1 conpile the symbolic node expressions
Changer changer = conpile(args[argi ++]);
TreeVisitor visitor = new TreeVisitor(changer);

Set<FileVisitOption> opts = Col |l ections.enptySet();
while (argi < args.length) {
Path file = Paths.get(args[argi]);
Files.wal kFil eTree(file, opts, maxDepth, visitor);
argi ++;

Copy File NIO Example

Core Libraries
G29144-01

This example copies files in a similar manner to the copy command.

public class Copy {

/**

* Returns {@ode true} if okay to overwite a file ("cp -i"

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 22 of 28

ORACLE Chapter 9
Copy File NIO Example

*/
static bool ean okayToOverwrite(Path file) {
String answer = System consol e().readLine("overwite % (yes/no)? "
file);
return (answer.equal sl gnoreCase("y") ||
answer . equal sl gnoreCase("yes"));

}
/**

* Copy source file to target location. If {@ode pronpt} is true then
* pronpt user to overwite target if it exists. The {@ode preserve}
* paraneter deternmines if file attributes shoul d be copied/ preserved
*/
static void copyFile(Path source, Path target, bool ean pronpt, bool ean
preserve) {
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY_ATTRI BUTES, REPLACE EXI STING }
new CopyOption[] { REPLACE EXI STING };
if (!pronmpt || Files.notExists(target) || okayToOverwite(target)) {
try {
Fil es.copy(source, target, options);
} catch (I OException x) {
Systemerr.format ("Unable to copy: %: %%", source, Xx);

}
}
}
/**
* A{@ode FileVisitor} that copies a file-tree ("cp -r")
*/

static class TreeCopier inplenments FileVisitor<Path> {
private final Path source
private final Path target;
private final bool ean pronpt;
private final bool ean preserve

TreeCopi er (Path source, Path target, bool ean pronpt, bool ean
preserve) {

this.source = source
this.target = target;
this.pronpt = pronpt;
this. preserve = preserve;
}
@verride

public FileVisitResult preVisitDirectory(Path dir,
Basi cFil eAttributes attrs) {
Il before visiting entries in a directory we copy the directory
/1 (okay if directory already exists).
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY_ATTRIBUTES } : new CopyOption[0];

Path newdir = target.resolve(source.relativize(dir));
try {

Files.copy(dir, newdir, options);
} catch (FileAlreadyExi stsException x) {

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 23 of 28

ORACLE Chapter 9
Copy File NIO Example

/] ignore

} catch (I OException x) {
Systemerr.format ("Unable to create: %: %%", newdir, Xx);
return SKI P_SUBTREE;

}
return CONTI NUE;
}
@verride
public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
copyFile(file, target.resolve(source.relativize(file)),
pronpt, preserve);
return CONTI NUE;
}
@verride

public FileVisitResult postVisitDirectory(Path dir, |OException exc) {
[l fix up nodification tinme of directory when done
if (exc == null && preserve) {
Path newdir = target.resolve(source.relativize(dir));
try {
FileTime time = Files.getLastMdifiedTinme(dir);
Fil es.setLast ModifiedTi ne(newdir, time);
} catch (I OException x) {
Systemerr.format("Unable to copy all attributes to: %:
%%", newdir, Xx);

}

}

return CONTI NUE;
}
@verride

public FileVisitResult visitFileFailed(Path file, 10OException exc) {
if (exc instanceof FileSystenmlioopException) {
Systemerr.printin("cycle detected: " + file);
} else {
Systemerr.format ("Unable to copy: %: %%", file, exc);
}

return CONTI NUE;

}

static void usage() {
Systemerr.printin("java Copy [-ip] source... target");
Systemerr.printin("java Copy -r [-ip] source-dir... target");
Systemexit(-1);

}

public static void main(String[] args) throws |CException {
bool ean recursive = fal se;
bool ean pronpt = fal se;
bool ean preserve = fal se;

/1 process options
int argi = 0;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 24 of 28

ORACLE’

target;

Chapter 9
Copy File NIO Example

while (argi < args.length) {

String arg = args[argi];

if (larg.startsWth("-"))
br eak;

if (arg.length() < 2)
usage();

for (int i=1; i<arg.length(); i++) {
char ¢ = arg.charAt(i);

switch (c) {
case 'r' recursive = true; break;
case "i' prompt = true; break;

case 'p' : preserve = true; break;
default : usage();
}
} .
argi ++;

}

/1 remaining arguments are the source files(s) and the target |ocation
int remaining = args.length - argi;
if (remaining < 2)
usage();
Path[] source = new Path[remaining-1];
int i=0;
while (remaining > 1) {
source[i++] = Paths.get(args[argi++]);
remai ni ng- - ;
}
Path target = Paths.get(args[argi]);

/1 check if target is a directory
boolean isDir = Files.isDirectory(target);

/1 copy each source file/directory to target
for (i=0; i<source.length; i++) {
Path dest = (isDir) ? target.resolve(source[i].getFileName()) :

if (recursive) {
/1 follow links when copying files
Enuntet <Fi | eVi sitOption> opts =

Enuntet . of (Fi | eVisit Option. FOLLOWN LI NKS) ;

TreeCopier tc = new TreeCopi er(source[i], dest, pronpt,

preserve);
Files.wal kFil eTree(source[i], opts, Integer. MAX VALUE, tc);
} else {
/1 not recursive so source nust not be a directory
if (Files.isDirectory(source[i])) {
Systemerr.format("%: is a directory%", source[i]);
conti nue;
}
copyFil e(source[i], dest, pronpt, preserve);
}
}
}
}

Core Libraries
G29144-01

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 25 of 28

ORACLE Chapter 9
Disk Usage File NIO Example

Disk Usage File NIO Example

This example prints disk space information in a similar manner to the df command.

public class DiskUsage {
static final long K = 1024;

static void printFileStore(FileStore store) throws |CException {
long total = store.getTotal Space() / K;
| ong used = (store.get Total Space() - store.getUnallocatedSpace()) / K
long avail = store.getUsabl eSpace() / K

String s = store.toString();
if (s.length() > 20) {
System out. println(s);
s =""
}
Systemout . format ("% 20s %2d %2d %d2d\n", s, total, used, avail);

}

public static void main(String[] args) throws | CException {
Systemout.format ("% 20s %2s 9d2s %2s\n", "Filesysten, "kbytes",
"used", "avail");
if (args.length == 0) {
FileSystemfs = FileSystens.getDefault();
for (FileStore store: fs.getFileStores()) {
printFileStore(store);
}
} else {
for (String file: args) {
FileStore store = Files.getFileStore(Paths.get(file));
printFileStore(store);

User-Defined File Attributes File NIO Example

This example lists, sets, retrieves, and deletes user-defined file attributes.

public class Xdd {

static void usage() {
Systemout. println("Usage: java Xdd <file>");
Systemout. println(" java Xdd -set <name>=<val ue> <file>");
Systemout. println(" java Xdd -get <name> <file>");
Systemout. println(" java Xdd -del <name> <file>");
Systemexit(-1);

}

public static void main(String[] args) throws | CException {

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 26 of 28

ORACLE Chapter 9
User-Defined File Attributes File NIO Example

/1 one or three paraneters
if (args.length =1 & args.length != 3)
usage() ;

Path file = (args.length == 1) ? Paths. get(args[0])
Pat hs. get (args[2]);

/1 check that user defined attributes are supported by the file store
FileStore store = Files.getFileStore(file);
if (!store
. supportsFileAttributeViewUserDefinedFileAttributeViewclass)) {
Systemerr. format (
"User DefinedFil eAttributeView not supported on %\n", store);
Systemexit(-1);

}
UserDefinedFil eAttributeView view = Files.getFileAttributeView(file,

User Def i nedFi | eAttri but eVi ew. cl ass);

/1 list user defined attributes
if (args.length == 1) {
Systemout. println(" Size Name");
Syst em out
AL [");
for (String name : view list()) {
Systemout.format ("98d %\n", view. size(nane), nane);

}

return;

}

/1 Add/replace a file's user defined attribute
if (args[0].equals("-set")) {
Il name=val ue
String[] s = args[1].split("=");
if (s.length 1= 2)
usage();
String nane = s[0];
String value = s[1];
view wite(nane, Charset.defaultCharset().encode(value));
return;

/1 Print out the value of a file's user defined attribute
if (args[0].equals("-get")) {

String name = args[1];

int size = view size(name);

Byt eBuffer buf = ByteBuffer.allocateDirect(size);

vi ew. read(name, buf);

buf . flip();

System out . println(Charset. defaul t Charset (). decode(buf).toString());
return;

}

/Il Delete a file's user defined attribute
if (args[0].equals("-del")) {

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 27 of 28

ORACLE Chapter 9
User-Defined File Attributes File NIO Example

view del ete(args[1]);
return;

}

/1 option not recognized
usage();

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 28 of 28

Java Networking

The Java networking API provides classes for networking functionality, including addressing,
classes for using URLs and URIs, socket classes for connecting to servers, networking
security functionality, and more. It consists of these packages and modules:

j ava. net : Classes for implementing networking applications.

j ava. net . ht t p: Contains the API for the HTTP Client, which provides high-level client
interfaces to HTTP (versions 1.1 and 2) and low-level client interfaces to WebSocket
instances. See Java HTTP Client for more information about this API, including videos and
sample code.

@® Note

You can use the j webser ver tool for testing and debugging your client application.

j avax. net : Classes for creating sockets.

j avax. net . ssl : Secure socket classes.

j dk. ht t pser ver : Platform-specific APIs for building HTTP servers for educational and
testing purposes, as well as the | webser ver tool for running a minimal HTTP server.

j dk. net : Platform-specific socket options for the j ava. net and j ava. ni 0. channel s
socket classes.

Networking System Properties

You can set the following networking system properties in one of three ways:

Core Libraries
G29144-01

Using the - D option of the java command
Using the Syst em set Property(String, String) method

Specifying them in the $JAVA HOVE/ conf/ net. properti es file. Note that you can
specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties and the | ava. net . http and j dk. ht t pser ver modules in the
Java SE API Specification for more information.

HTTP Client Properties

Some of the following properties are subject to predefined minimum and maximum values that
override any user-specified values. Note that the default value of boolean values is true if the
property exists but has no value.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 21

https://openjdk.java.net/groups/net/httpclient/

ORACLE’

Table 10-1 HTTP Client Properties
]

Property

Default Value

Chapter 10
Networking System Properties

Description

jdk. httpclient.

ct edHeader s

al | owRestri No default value

A comma-separated list of
normally restricted HTTP header
names that users may set in
HTTP requests or by user code in
Ht t pRequest instances.

By default, user code cannot set
the following request headers:
connection, content -1 ength,
expect, host, and upgr ade. You
can override this behavior with
this property.

Header names specified in this
property are case-insensitive, and
whitespace is ignored. Note that
this property is intended for
testing and not for real-world
deployments. Protocol errors or
other undefined behavior are
likely to occur when using this
property.

There may be other headers that
are restricted from being set
depending on the context. This
includes the Aut hori zati on
header when the relevant

H t pC i ent has an
authenticator set. These
restrictions cannot be overridden
by this property.

jdk. httpclient.

imt

auth.retryl 3

The number of attempts the Basic
authentication filter will attempt to
retry a failed authentication.

jdk.httpclient.

buf si ze 16384 (16 kB)

The size to use for internal
allocated buffers in bytes.

jdk.httpclient.

ool Si ze

connectionP 0

The maximum number of
connections to keep in the
HTTP/1.1 keep alive cache. A
value of 0 means that the cache
is unbounded.

jdk.httpclient.

i ndowSi ze

connecti onW 2726

The HTTP/2 client connection
window size in bytes.

The maximum size is 2°31-1.
This value cannot be smaller than
the stream window size.

jdk.httpclient.

yConnect

di sabl eRetr fal se

Whether automatic retry of
connection failures is disabled. If
false, then retries are attempted
(subject to the retry limit).

jdk.httpclient.

thodRetry

enabl eAl | Me fal se

Whether it is permitted to
automatically retry non-
idempotent HTTP requests.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 2 of 21

ORACLE’

Table 10-1 (Cont.) HTTP Client Properties

Chapter 10
Networking System Properties

Property Default Value

Description

jdk. httpclient.enabl epush 1

Whether HTTP/2 push promise is
enabled. A value of 1 enables
push promise; a value of 0
disables it.

jdk. httpclient.hpack. maxhe 16384 (16 kB)
adertabl esi ze

The HTTP/2 client maximum
HPACK header table size in
bytes.

jdk.httpclient. Htpdient. No defaultvalue
| og

Enables high-level logging of
various events through the Java
Logging API (which is contained
in the package
java.util.logging).

The value contains a comma-

separated list of any of the
following items:

e errors
e requests
« headers
- content
« franes

« ssl

- trace

« channel

You can append the f r anes item
with a colon-separated list of any
of the following items:

- control
-« data

e Wi ndow
« all

Specifying an item adds it to the
HTTP client's log. For example, if
you specify the following value,
then the Java Logging API logs
all possible HTTP Client events:

errors, requests, headers, fr
ames: control : data: w ndow, s
sl , trace, channel

Note that you can replace
control : dat a: wi ndow with
all.

The name of the logger is
jdk.httpclient. Htpdient,
and all logging is at level | NFO.

jdk. httpclient.keepalive.t 30
i meout

The number of seconds to keep
idle HTTP/1.1 connections alive
in the keep alive cache.

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 3 of 21

ORACLE’

Core Libraries
G29144-01

Table 10-1 (Cont.) HTTP Client Properties

Chapter 10
Networking System Properties

Property Default Value

Description

jdk. httpclient.keepalive.t See the description
i meout . h2

The number of seconds to keep
idle HTTP/2 connections alive. If
not set, then the

jdk. httpclient.keepalive.t
i meout setting is used.

jdk. httpclient.maxframesiz 16384 (16 kB)
e

The HTTP/2 client maximum
frame size in bytes. The server is
not permitted to send a frame
larger than this.

jdk. httpclient.maxLiteral W512
i t hl ndexi ng

The number of additions a server
may request a client to make to
the HPack dynamic table when
decoding a set of headers.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

jdk. httpclient.maxNonFinal 8
Responses

The number of interim responses
the client will accept before
receiving a final response. An
interim response is considered
informational and is a response
whose status is in the range [100,
199]. These responses are
typically either handled internally
or simply discarded by the
implementation.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

jdk. httpclient.maxstreans 100

The maximum number of
concurrent HTTP/2 streams per
connection.

jdk. httpclient.receiveBuff The operating system's default
erSize value

The HTTP client socket receive
buffer size in bytes. See

St andar dSocket Opt i ons.
SO RCVBUF.

jdk.httpclient.redirects.r 5
etrylimt

The maximum number of
attempts to send a HTTP request
when redirected or any failure
occurs for any reason.

jdk. httpclient.sendBufferS Operating system default
ize

The HTTP client socket send
buffer size. See

St andar dSocket Opt i ons.
SO SNDBUF. Values less than or
equal to zero are ignored.

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 4 of 21

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_RCVBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_RCVBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_SNDBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_SNDBUF

ORACLE Chapter 10
Networking System Properties

Table 10-1 (Cont.) HTTP Client Properties

Property Default Value Description

jdk. httpclient.websocket.w 16384 (16 kB) The buffer size used by the web

riteBufferSize socket implementation for socket
writes.

jdk.httpclient.w ndowsize 16777216 (16 MB) The HTTP/2 client stream window
size in bytes.

jdk.internal.httpclient.di false Ift rue (or set to an empty

sabl eHost naneVeri fication string), hostname verification in

SSL certificates is disabled. This
is a system property only and not
available in conf /

net. properties.ltis
provided for testing purposes
only.

® Note

The properties j dk. ht t p. aut h. proxyi ng. di sabl edSchenes and
jdk. http.auth. tunneling.di sabl edSchenes, described in Other Proxy-Related
Properties, are also taken into account by Ht t pCl i ent .

HTTP Server Properties

The following are JDK-specific system properties used by the default HTTP server
implementation in the JDK. Any of these properties that take a numeric value assume the
default value if given a string that does not parse as a number.

Table 10-2 HTTP Server Properties

|
Property Default Value Description

j dk. htt p. maxHeader Si ze 393216 (384 kB) The maximum response header
size that the JDK built-in
implementation of the legacy URL
protocol handler for HTTP,

j ava. net . Ht t pURLConnec
t i on and the newer HTTP
client,

java.net.http. HtpCie
nt , will accept from a remote
party. This limit is computed as
the cumulative size of all header
names and header values plus an
overhead of 32 bytes per header
name-value pair.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 21

ORACLE

Core Libraries
G29144-01

Table 10-2 (Cont.) HTTP Server Properties

Chapter 10
Networking System Properties

Property Default Value

Description

j dk. htt pserver. maxConnecti -1
ons

The maximum number of open
connections at a time. This
includes active and idle
connections. If this property has a
zero or negative value, then no
limit is enforced.

sun. net. htt pserver. drai nAm 65536
ount

The maximum number of bytes
that will be automatically read
and discarded from a request
body that has not been
completely consumed by its

Ht t pHandl er . If the number of
remaining unread bytes are less
than this limit, then the
connection will be put in the idle
connection cache. If not, then it
will be closed.

sun. net. httpserver.idlelnt 30
erval

The maximum duration in
seconds which an idle connection
is kept open. This timer has an
implementation-specific
granularity that may mean that
idle connections are closed later
than the specified interval. If this
property has a zero or negative
value, then the default value is
used.

sun. net. httpserver. maxl dl e 200
Connecti ons

The maximum number of idle
connections that may exist at the
same time. If this property has a
zero or negative value, then
connections are closed after use.

sun. net. htt pserver. maxRegqH 200
eaders

The maximum number of header
fields accepted in a request. If
this limit is exceeded while the
headers are being read, then the
connection is terminated and the
request ignored. If this property
has a zero or negative value, then
the default value is used.

sun. net. httpserver. maxReqH 393216 (384 kB)
eader Si ze

The maximum request header
size that the JDK built-in
implementation of

com sun. net. httpserver
. Ht t pSer ver will accept. This
limit is computed the same way
asj dk. htt p. naxHeader Si ze.
If the limit is exceeded. then the
connection is closed. If this
property has a zero or negative
value, then there's no limit.

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 6 of 21

ORACLE’

Table 10-2 (Cont.) HTTP Server Properties

Chapter 10
Networking System Properties

Property Default Value

Description

sun. net. httpserver. mxReqT -1
i me

The maximum time in
milliseconds allowed to receive a
request headers and body. In
practice, the actual time is a
function of request size, network
speed, and handler processing
delays. If this property has a zero
or negative value, then the time is
not limited. If the limit is
exceeded, then the connection is
terminated and the handler will
receive an | OExcept i on. This
timer has an implementation-
specific granularity that may
mean requests are aborted later
than the specified interval.

sun. net. htt pserver. mxRspT -1
i me

The maximum time in
milliseconds allowed to receive a
response headers and body. In
practice, the actual time is a
function of response size,
network speed, and handler
processing delays. If this property
has a zero or negative value, then
the time is not limited. If the limit
is exceeded then the connection
is terminated and the handler will
receive an | OExcept i on. This
timer has an implementation-
specific granularity that may
mean responses are aborted
later than the specified interval.

sun. net. httpserver. nodel ay fal se

A boolean value, which if true,
sets the TCP_NODELAY socket
option on all incoming
connections.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 7 of 21

ORACLE Chapter 10
Networking System Properties

Table 10-3 IPv4 and IPv6 Protocol Properties

. ___|
Property Default Value Description

java.net.preferlPv4Stack false If IPV6 is available on the
operating system, then the
underlying native socket will be,
by default, an IPv6 socket, which
lets applications connect to, and
accept connections from, both
IPv4 and IPv6 hosts.

Set this property to t r ue if you
want your application use IPv4-
only sockets. This implies that it
won't be possible for the
application to communicate with
IPv6-only hosts.

java. net. preferl Pv6Address false When dealing with a host which

es has both IPv4 and IPv6
addresses, and if IPv6 is
available on the operating
system, the default behavior is to
prefer using IPv4 addresses over
IPv6 ones. This is to ensure
backward compatibility, for
example, for applications that
depend on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to t r ue to
change this preference and use
IPv6 addresses over IPv4 ones
where possible.

Set this property to Syst emto
preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler and the default proxy
selector.

Table 10-4 HTTP Proxy Properties
]

Property Default Value Description

http. proxyHost No default value Proxy server that the HTTP
protocol handler will use.

http. proxyPort 80 Port that the HTTP protocol

handler will use.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE’

Table 10-4 (Cont.) HTTP Proxy Properties

Chapter 10
Networking System Properties

Property

Default Value

Description

ht t p. nonPr oxyHost s

| ocal host | 127.*|[:: 1]

Indicates the hosts that should be
accessed without going through
the proxy. Typically, this defines
internal hosts. The value of this
property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every host
in the exmapl e. comdomain and
| ocal host should be accessed
directly even if a proxy server is
specified:

Dht t p. nonPr oxyHost s="*. exa
mpl e. conj | ocal host "

The default value excludes all
common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality is
needed (such as payment web sites). The following proxy settings are used by the HTTPS

protocol handler and the default proxy selector.

@ Note

The HTTPS protocol handler uses the same htt p. nonPr oxyHost s property as the

HTTP protocol.

Table 10-5 HTTPS Proxy Properties

Property

Default Value

Description

htt ps. pr oxyHost

No default value

Proxy server that the HTTPS
protocol handler will use.

htt ps. proxyPort

Port that the HTTPS protocol
handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 9 of 21

ORACLE’

Table 10-6 FTP Proxy Properties
]

System Property

Default Value

Chapter 10
Networking System Properties

Description

ftp. proxyHost

No default value

Proxy server that the FTP
protocol handler will use.

ftp. proxyPort

80

Port that the FTP protocol
handler will use.

ftp. nonProxyHost s

| ocal host| 127.*|[:: 1]

Similar to

htt p. nonPr oxyHost s, this
property indicates the hosts that
should be accessed without going
through the proxy. Typically, this
defines internal hosts. The value
of this property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every host
in the exmapl e. comdomain and
| ocal host should be accessed
directly even if a proxy server is
specified:

Df t p. nonPr oxyHost s="*. exam
pl e. con| | ocal host"
The default value excludes all

common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP level.
Specifying a SOCKS proxy server results in all TCP connections going through that proxy
server unless other proxies are specified. The following proxy settings are used by the SOCKS

protocol handler.

Table 10-7 SOCKS Proxy Properties
]

Property

Default Value

Description

j ava. net . socks. user name

No default value

See Acquiring the SOCKS User
Name and Password

j ava. net . socks. password

No default value

See Acquiring the SOCKS User
Name and Password

socksPr oxyHost

No default value

SOCKS proxy server that the
SOCKS protocol handler will use.

socksProxyPort

1080

Port that the SOCKS protocol
handler will use.

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 10 of 21

ORACLE Chapter 10
Networking System Properties

Table 10-7 (Cont.) SOCKS Proxy Properties

. ___|
Property Default Value Description

socksProxyVersi on 5 The version of the SOCKS
protocol supported by the server.
The default is 5 indicating
SOCKS V5; alternatively 4 can
be specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered a j ava. net . Aut hent i cat or default instance,
then this will be queried with the protocol set to the string SOCKS5, and the prompt set to the
string SOCKS aut henti cati on.

2. If the authenticator does not return a user name/password or if no authenticator is
registered, then the system checks the values of properties j ava. net . socks. user name and
j ava. net. socks. passwor d.

3. If these values don't exist, then the system property user . name is checked for a user name.
In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-8 Other Proxy-Related Properties

|
Property Default Value Description

jdk. http.auth. proxying.dis Seeconf/net. properties Liststhe authentication schemes
abl edSchenes that will be disabled when
proxying HTTP.
The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basi c, Di gest, NTLM
Ker ber 0s, and Negoti ate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may be
undesirable when proxying HTTP
or HTTPS. For example, Basi ¢
results in effectively the cleartext
transmission of the user's
password over the physical
network.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 21

ORACLE Chapter 10
Networking System Properties

Table 10-8 (Cont.) Other Proxy-Related Properties

. ___|
Property Default Value Description

jdk. http.auth.tunneling.di Seeconf/net.properties Liststhe authentication schemes

sabl edSchemes that will be disabled when
tunneling HTTPS over a proxy
with the HTTP CONNECT
method.

The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basi c, Di gest, NTLM

Ker ber 0s, and Negoti ate. A
scheme that is not known or
supported is ignored.

j ava. net.useSyst enProxi es false If t r ue, then the operating
system's proxy settings are used.

Note that the system properties
that explicitly set proxies like
htt p. proxyHost take
precedence over the system
settings even if

j ava. net . useSyst enPr oxi es
is set to true.

This property is checked only
once, at startup.

UNIX Domain Sockets Properties

Calling Ser ver Socket Channel . bi nd with a nul | address parameter will bind the channel's
socket to an automatically assigned socket address. For UNIX domain sockets, this means a
unigue path in some predefined system temporary directory.

Use these properties to control the selection of this directory:

Table 10-9 UNIX Doman Sockets Properties
]

Property Default Value Description
java.io.tnpdir Dependent on the operating If the temporary directory can't be
system determined with the

j dk. net . uni xdomai n. t mpdi r
system property, then the
directory specified by the
java.io.tnpdir system
property is used.

j dk. net . uni xdomai n.tnpdir On some platforms, (for example, Specifies the directory to use for
some UNIX systems) this will automatically bound server
have a predefined default value. socket addresses.

On others, (for example,
Windows) there is no default
value.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE’

Chapter 10
Networking System Properties

On Linux and macOS, the search order to determine this directory is as follows:

1. The system property j dk. net. uni xdoni n. t npdi r (set on the command line or by
System set Property(String, String))

2. The same property set in the $JAVA_HOVE/ conf/ net . properti es file
3. The system property j ava.io.tnpdir

On Windows, the search order to determine this directory is as follows:

1. The system property j dk. net. uni xdomai n. t npdi r (set on the command line or by
System set Property(String, String))

2. The same property set in the %9 AVA_HOVE% conf \ net . properti es file
3. The TEMP environment variable
4. The system property j ava.io.tnpdir

Because UNIX domain socket addresses are limited in length to approximately 100 bytes
(depending on the platform), it is important to ensure that the temporary directory's name
together with the file name used for the socket does not exceed this limit.

® Note

If a client socket is connected to a remote destination without calling bi nd first, then
the socket is implicitly bound. In this case, UNIX domain sockets are unnamed (that is,
their path is empty). This behavior is not affected by any system or networking
properties.

Other HTTP URL Stream Protocol Handler Properties

Core Libraries
G29144-01

These properties are checked only once, at startup.

Table 10-10 Other HTTP URL Stream Protocol Handler Properties

. ___|
Property Default Value Description

http. agent Java/ <versi on> Defines the string sent in the
User-Agent request header in
HTTP requests. Note that the
string Javal <ver si on> will be
appended to the one provided in
the property.
For example, if -
Dhtt p. agent =" exanpl e" is
specified, the User-Agent header
will contain exanpl e Java/
1. 8. O if the version of the JVM is

1.8.0).
http. aut h. di gest. cnonceRep 5 See System Properties That
eat Modify the Behavior of HTTP
Digest Authentication
Mechanism.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE’

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property

Default Value

Description

http. aut h. di gest. reEnabl ed No default value

Al gorithns

By default, certain message
digest algorithms are disabled for
use in HTTP Digest
authentication due to their proven
security limitations. This only
applies to proxy authentication
and plain-text HTTP server
authentication. Disabled
algorithms are still usable for
HTTPS server authentication.
The default list of disabled
algorithms is specified in the

j ava. security properties file
and currently comprises MD5 and
SHA- 1. If it is still required to use
one of these algorithms, then
they can be re-enabled by setting
this property to a comma-
separated list of the algorithm
names.

http. auth. di gest.validateP false

r oxy

See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth. digest.validateS fal se

erver

See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 14 of 21

ORACLE’

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property

Default Value

Description

http.auth.ntl mdonain

No default value

Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the

j ava. net . Aut henti cat or
class to acquire user names and
passwords when they are
needed. However, NTLM also
needs the NT domain name.
There are three options for
specifying the domain:

1. Do not specify it. In some
environments, the domain is
not actually required and the
application does not have to
specify it.

2. The domain name can be
encoded within the user
name by prefixing the
domain name followed by a
backslash (\) before the user
name. With this method,
existing applications that use
the Aut hent i cat or class
do not need to be modified,
as long as users are made
aware that this notation must
be used.

3. If adomain name is not
specified as in the second
option and the system
property
http.auth.ntl mdonain
is defined, then the value of
this property will be used as
the domain name.

http. keepAlive

Indicates if persistent (keep-alive)
connections should be supported.
They improve performance by
allowing the underlying socket
connection to be reused for
multiple HTTP requests. If this is
settot rue, then persistent
connections will be requested
with HTTP 1.1 servers.

Set this property to f al se to

disable the use of persistent
connections.

http. KeepAlive. queuedConne 10

ctions

The maximum number of keep-
alive connections to be on the
gueue for clean up.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 15 of 21

ORACLE’

Core Libraries
G29144-01

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property

Default Value

Description

http. KeepAlive. renai ningDa 512

ta

The maximum amount of data in
kilobytes that will be cleaned off
the underlying socket so that it
can be reused.

http. keepAlive.tine.server 5

and
http. keepAl ive. tine. proxy

These properties modify the
behavior of the HTTP keepalive
cache in the case where the
server (or proxy) has not
specified a keepalive time. If the
property is set in this case, then
idle connections will be closed
after the specified number of
seconds. If the property is set,
and the server does specify a
keepalive time in a "Keep-Alive"
response header, then the time
specified by the server is used. If
the property is not set and also
the server does not specify a
keepalive time, then connections
are kept alive for an
implementation defined time,
assuming htt p. keepAl i ve is
true.

htt p. maxConnecti ons

If HTTP persistent connections
(see the htt p. keepAl i ve
property) are enabled, then this
value determines the maximum
number of idle connections that
will be simultaneously kept alive
per destination.

http. maxRedirects

20

Integer value that determines the
maximum number, for a given
request, of HTTP redirects that
will be automatically followed by
the protocol handler.

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 16 of 21

ORACLE’

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property

Default Value

Description

j dk. https. negotiate. cht

Controls the generation and
sending of TLS channel binding
tokens (CBT) when Kerberos or
the Negotiate authentication
scheme using Kerberos are
employed over HTTPS with

Ht t psURLConnect i on.
There are three possible settings:

* never: Thisis also the
default value if the property
is not set. In this case, CBTs
are never sent.

« always: CBTs are sent for
all Kerberos authentication
attempts over HTTPS.

e domai n: <conma-
separated domain |ist>:
Each domain in the list
specifies the destination host
or hosts for which a CBT is
sent. Domains can be:

— Single hosts like
exanpl e or
exanpl e. com

— Literal IP addresses as
specified in RFC 2732

— Hostnames that contain
wildcards like
*, exanpl e. com this
example matches all
hosts under
exanpl e. comand its
subdomains.

The channel binding tokens

generated are of the type t | s-

server - end- poi nt as defined

in RFC 5929.

Core Libraries
G29144-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 17 of 21

ORACLE’

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property Default Value Description

jdk. http.ntl mtransparent A No default value Enables transparent New

uth Technology LAN Manager
(NTLM) HTTP authentication on
Windows.

Transparent authentication can
be used for the NTLM scheme,
where the security credentials
based on the currently logged in
user's name and password can
be obtained directly from the
operating system, without
prompting the user.

If this value is not set, then
transparent authentication is
never used.

This property has three possible
values:

« di sabl ed: Transparent
authentication is never used.
e al | Host s: Transparent.
authentication is used for all
hosts
e trustedHosts: Transparent
authentication is enabled for
hosts that are trusted in
Windows Internet settings.
Note that NTLM is not a strongly
secure authentication scheme;
care should be taken before
enabling it.

System Properties That Modify the Behavior of HTTP Digest Authentication

Mechanism

The system properties ht t p. aut h. di gest . val i dat eSer ver and

http. aut h. di gest. val i dat ePr oxy modify the behavior of the HTTP digest authentication
mechanism. Digest authentication provides a limited ability for the server to authenticate itself
to the client (that is, by proving that it knows the user's password). However, not all servers
support this capability and by default the check is switched off. To enforce this check for
authentication with an origin, set htt p. aut h. di gest . val i dat eSer ver totrue; with a proxy
server, set http. aut h. di gest . val i dat eProxy to true.

It is usually not necessary to set the system property ht t p. aut h. di gest. cnonceRepeat . This
determines how many times a cnonce value is reused. This can be useful when the MD5-sess
algorithm is being used. Increasing the value reduces the computational overhead on both the
client and the server by reducing the amount of material that has to be hashed for each HTTP
request.

Specify Mappings from Host Names to IP Addresses

Core Libraries
G29144-01

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE’

Chapter 10
Networking System Properties

You can customize the mapping from host names to IP addresses by deploying a system-wide
resolver. See the | net Addr essResol ver Provi der class in the Java SE API Specification
for more information. In cases where this is not practical, such as testing, you can configure

I net Addr ess to use a specific host s file, rather than the system-wide resolver, to map host
names to IP addresses. Specify this host s file with the system property j dk. net . hosts.file.

@ Note

Use a specific host s file for testing; it's not intended as a general purpose solution
because the complete list of host names is not always known in advance.

By default, the system property j dk. net . hosts. fil e is not set. If it's set, then name service
lookups are obtained from the file specified by this system property. If this system property
specifies a file that doesn't exist, then it treats it as an empty file, and a name/address lookup
throws an UnknownHost Except i on.

The structure of the host s file is similar to a Linux or macOS / et ¢/ host s file. Each line of
this text file has the following syntax:

| PAddress hostname [host aliases...]

e | PAddress: IP address
e host nane: Host name to which the IP address is mapped

— A host name should have the syntax and structure of a fully qualified domain name
(FQDN), composed of alphanumeric characters, hyphens (-), and periods (.). It should
begin and end with an alphanumeric character.

— Note that no syntax checking or host name validation is performed.
 [host aliases...]:An optional list of host aliases

The fields of an entry are separated by any humber of whitespace (spaces and tabs).

A comment, which starts with a number sign (#) and followed by text until the end of the line, is
ignored.

The following is an example of a host s file:

sanple jdk.net.hosts.file entries
127.0.0.1 | ocal host

127.0.0.1 host.rabbit. hole
127.0.0.1 cl.this.domain

192.0. 2.0 testhost.testdomin
192. 0. 2. 255 testhost 2. testdomai n

Address Cache Properties

Core Libraries
G29144-01

The j ava. net package, when performing name resolution, uses an address cache for both
security and performance reasons. Any address resolution attempt, be it forward (name to IP
address) or reverse (IP address to name), will have its result cached, whether it was
successful or not, so that subsequent identical requests will not have to access the naming
service. These properties enable you to tune how the address cache operates.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 19 of 21

ORACLE Chapter 10
Networking System Properties

@® Note

The following properties are part of the security policy. They are not set by the - D
option or the Syst em set Propert y() method. Instead, they are set as Security
Properties.

Table 10-11 Address Cache Properties

]
Property Default Value Description

net wor kaddr ess. cache. t t| 30 Specified in the $JAVA HOVE/
conf/security/
j ava. security fileto
indicate the caching policy for
successful name lookups from
the name service. The value is an
integer corresponding to the
number of seconds successful
name lookups will be kept in the
cache.

A value of - 1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no

caching.
net wor kaddr ess. cache. negat 10 Specified in the $JAVA_HOVE/
ive.ttl conf/security/

java. security file to
indicate the caching policy for
unsuccessful name lookups from
the name service.

The value is an integer
corresponding to the number of
seconds an unsuccessful name
lookup will be kept in the cache.
A value of - 1 (or any negative
value) means “cache forever,”
while a value of 0 (zero) means
no caching.

Enhanced Exception Messages

By default, for security reasons, exception messages do not include potentially sensitive
security information such as hostnames or UNIX domain socket address paths. Use the
j dk.incl udel nExcepti ons to relax this restriction for debugging and other purposes.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 20 of 21

ORACLE’

Table 10-12 Enhanced Exception Messages Property

Chapter 10
Networking System Properties

Property Default Value

Description

j dk. i ncl udel nExcepti ons No default value

The value is a omma-separated
list of keywords that refer to
exception types whose messages
may be enhanced with more
detailed information.

In particular, if the value includes
the string host | nf 0, then socket
addresses will be included in
exception message texts (for
example, hostnames and UNIX
domain socket address paths).

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 21 of 21

Pseudorandom Number Generators

Random number generators included in Java SE are more accurately called pseudorandom
number generators (PRNGS). They create a series of numbers based on a deterministic
algorithm.

The most important interfaces and classes are Randonfzener at or , which enables you to
generate random numbers of various primitive types given a PRNG algorithm, and
Randonteener at or Fact or y, which enables you to create PRNGs based on characteristics
other than the algorithm's name.

See the j ava. util . randompackage for more detailed information about the PRNGs
implemented in Java SE.

Topics

e Characteristics of PRNGs

¢ Generating Pseudorandom Numbers with RandomGenerator Interface

¢ Generating Pseudorandom Numbers in Multithreaded Applications

— Dynamically Creating New Generators

— Creating Stream of Generators
¢ Choosing a PRNG Algorithm

Characteristics of PRNGs

Because PRNGs generate a sequence of values based on an algorithm instead of a “random”
physical source, this sequence will eventually restart. The number of values a PRNG
generates before it restarts is called a period.

The state cycle of a PRNG consists of the sequence of all possible values a PRNG can
generate. The state of a PRNG is the position of the last generated value in its state cycle.

In general, to generate a value, the PRNG bases it on the previously generated value.
However, some PRNGSs can generate a value many values further down the sequence without
calculating any intermediate values. These are called jumpable PRNGs because they could
jump far ahead in the sequence of values, usually by a fixed distance, typically 264. A leapable
PRNG can jump even further, typically 2128 values. An arbitrarily jumpable PRNG can jump to
any value in the generated sequence of values.

The java.util.Random Class Compared to Other PRNGs

The j ava. util.random RandonGener at or Fact or y class enables you to create various
PRNGs, many of which are in the j dk. r andompackage. The most significant difference
between the PRNGs inj dk. randomand the j ava. uti | . Randomclass is that Randomhas a
very short period: only 248 values.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 11
Generating Pseudorandom Numbers with RandomGenerator Interface

Generating Pseudorandom Numbers with RandomGenerator

Interface

Core Libraries
G29144-01

The following example demonstrates the basic way to create a PRNG and use it to generate a
random number:

Randontener at or randoml = RandontGener at or. of (" Randoni') ;
| ong val uel = randoml. next Long();
Systemout . println(val uel);

It uses the method RandontGener at or . of (St ri ng) . The argument of this method is the
algorithm name of the PRNG. Java SE contains many PRNG classes. Unlike Random
however, most of them are in the j dk. r andompackage.

The Randontener at or interface contains many methods such as next Long(),
next I nt (), next Doubl e(), and next Bool ean() to generate a random number of various
primitive data types.

The following example demonstrates how to create a PRNG using the
RandontGener at or Fact ory class:

RandonGener at or Fact or y<RandontCener at or> factory2 =
Randontener at or Fact ory. of (" Secur eRandont') ;

Randontener at or randon? = factory?2.create();

l ong val ue2 = randon®. next Long();

System out . println(val ue2);

To obtain a list of PRNGs implemented by Java SE, call the
RandontGener at or Fact ory. al | () method:

Randontener at or Factory. al | ()
.map(f -> f.nane())
.sorted()
.forEach(n -> Systemout.printin(n));

This method returns a stream of all the available RandomGener at or Fact or y instances
available.

You can use the RandonmGener at or Fact or y class to create PRNGs based on
characteristics other than an algorithm’s name. The following example finds the PRNG with the
longest period, and creates a Randonener at or Fact or y based on this characteristic:

Randontener at or Fact or y<RandonGener at or > greatest =
RandontGener at or Fact ory
Lall()
.sorted((f, g) -> g.period().conmpareTo(f.period()))
findFirst()
. or El se(Randontener at or Fact ory. of (" Randont')) ;
Systemout . println(greatest.name());
Systemout. println(greatest.group());
Systemout. println(greatest.create().nextLong());

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 11
Generating Pseudorandom Numbers in Multithreaded Applications

Generating Pseudorandom Numbers in Multithreaded
Applications

If multiple threads in your application are generating sequences of values using PRNGs, then
you want to ensure that there’s no chance that these sequences contain values that coincide
with each other, especially if they’re using the same PRNG algorithm. (You would want to use
the same PRNG algorithm to ensure that all your application’s pseudorandom number
sequences have the same statistical properties.) Splittable, jumpable, and leapable PRNGs
are ideal for this; they can create a stream of generators that have the same statistical
properties and are statistically independent.

There are two techniques you can use to incorporate PRNGs into your applications. You can
dynamically create a new generator when an application needs to fork a new thread.
Alternatively, you can create a stream of RandonmGener at or objects based on an initial
Randontener at or , then map each Randontzener at or object from the stream to its own
thread.

Dynamically Creating New Generators

If you're using a PRNG that implements the RandomCGener at or . Spl i tt abl eGener at or
interface, then when a thread running in your application needs to fork a new thread, call the
split () method. It creates a new generator with the same properties as the original
generator. It does this by partitioning the original generator’s period into two; each partition is
for the exclusive use of either the original or new generator.

The following example uses the L128X1024MixRandom PRNG, which implements the
RandontGener at or. Spl i tt abl eGener at or interface. The | nt St r eampr ocesses stream
represents tasks intended to be run on different threads.

i nt NUM PROCESSES = 100;

Randontener at or Fact ory<Spli ttabl eGenerator> factory =
Randontener at or Fact ory. of ("L128X1024M xRandon') ;
Splittabl eGenerator random = factory.create();

I nt Stream processes = IntStream rangeC osed(1, NUM PROCESSES);

processes. paral l el ().forEach(p -> {
RandonCenerator r = randomsplit();
Systemout.printin(p +": " + r.nextLong());

1)

Splittable PRNGs generally have large periods to ensure that new objects resulting from a split
use different state cycles. But even if two instances "accidentally" use the same state cycle,
they are highly likely to traverse different regions of that shared state cycle.

Creating Stream of Generators

If the initial generator implements the interface

Randontener at or . St r eanabl eGener at or, then call the method r ngs(), j unps() (for
jumpable generators), or | eaps() (for leapable generators) to create a stream of generators.
Call the map() method on the stream to assign each generator to its own thread.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 11
Choosing a PRNG Algorithm

When you call the j unps() method, the generator changes its state by jumping forward a
large fixed distance within its state cycle, then creates a new generator based on the

generator’s new state. The generator repeatedly jumps and creates generators, creating a
stream of generators. The | eaps() method is similar; the size of the jump is much larger.

The following example creates a jumpable generator, then creates a stream of generators
based on this initial generator by calling the j unps() method. The first several generators in
the stream (defined by NUM_TASKS) are wrapped in a Task instance, then each Task is run in its
own thread.

i nt NUM TASKS = 10;

Randontener at or Fact or y<Junpabl eGenerator> factory =
Randontener at or Fact ory. of (" Xoshi r 0256PI usPl us");
Junpabl eGenerator random = factory.create();

cl ass Task inplements Runnable {
private int p;
private RandonCenerator r;
public Task(RandomGenerator prng) {

r = prng,

}
public void run() {

Systemout. println(r.nextLong());
}

}

Li st <Thread> taskLi st = random
-j unps()
.1 im t (NUM TASKS)
.map(prng -> new Thread(new Task(prng)))
.collect(Collectors.toList());
taskList.stream().forEach(t -> t.start());

Choosing a PRNG Algorithm

For applications (such as physical simulation, machine learning, and games) that don't require
a cryptographically secure algorithm, the j ava. uti | . randompackage provides multiple
implementations of interface Randontzener at or that focus on one or more PRNG properties,
which include speed, space, period, accidental correlation, and equidistribution.

@® Note

As PRNG algorithms evolve, Java SE may add new PRNG algorithms and deprecate
older ones. It's recommended that you don't use deprecated algorithms; they may be
removed from a future Java SE release. Check if an algorithm has been deprecated
by calling either the RandontGener at or . i sDepr ecat ed() or

Randontener at or Fact ory. i sDepr ecat ed() method.

Cryptographically Secure

For applications that require a random number generator algorithm that is cryptographically
secure, use the Secur eRandomclass in the j ava. securi ty package.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE’

Core Libraries
G29144-01

Chapter 11
Choosing a PRNG Algorithm

See The SecureRandom Class in Java Platform, Standard Edition Security Developer's Guide
for more information.

General Purpose

For applications with no special requirements, L64X128MixRandom balances speed, space,
and period well. It's suitable for both single-threaded and multithreaded applications when used
properly (a separate instance for each thread).

Single-Threaded, High Performance

For single-threaded applications, Xoroshiro128PlusPlus is small, fast, and has a sufficiently
long period.

32-Bit Applications

For applications running in a 32-bit environment and using only one or a small number of
threads, L32X64StarStarRandom or L32X64MixRandom are good choices.

Multithreaded Applications with Static Threads

For applications that use many threads that are allocated in one batch at the start of
computation, consider a jumpable generator such as Xoroshiro128PlusPlus or
Xoshiro256PlusPlus or a splittable generator such as L64X128MixRandom or
L64X256MixRandom. If your application uses only floating-point values from a uniform
distribution where no more than 32 bits of floating-point precision is required and exact
equidistribution is not required, then MRG32k3a, a classic and well-studied algorithm, may be
appropriate.

Multithreaded Applications with Dynamic Threads

For applications that create many threads dynamically, perhaps through the use of spliterators,
a splittable generator such as L64X128MixRandom or L64X256MixRandom is recommended.

If the number of generators created dynamically may be very large (millions or more), then
using generators such as L128X128MixRandom or L128X256MixRandom will make it much
less likely that two instances use the same state cycle.

Tuples of Consecutively Generated Values

For applications that use tuples of consecutively generated values, consider a generator that is
k-equidistributed such that k is at least as large as the length of the tuples being generated.
For example, the generator L64X256MixRandom is shown to be 4-equidistributed, which
means that you can have a sequence of tuples that contain four values, and these tuples will
be uniformly distributed (there’s an equal chance that any 4-tuple will appear in the sequence).
It's also shown that L64X1024MixRandom is 16-equidistributed.

Large Permutations

For applications that generate large permutations, consider a generator whose period is much
larger than the total number of possible permutations; otherwise, it will be impossible to
generate some of the intended permutations. For example, if the goal is to shuffle a deck of 52
cards, the number of possible permutations is 52! (52 factorial), which is approximately 222558,
so it may be best to use a generator whose period is roughly 2256 or larger, such as
L64X256MixRandom, L64X1024MixRandom, L128X256MixRandom, or
L128X1024MixRandom.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 5

Foreign Function and Memory API

The Foreign Function and Memory (FFM) API enables Java programs to interoperate with
code and data outside the Java runtime. This API enables Java programs to call native
libraries and process native data without the brittleness and danger of JNI. The API invokes
foreign functions, code outside the JVM, and safely accesses foreign memory, memory not
managed by the JVM.

For background information about the FFM API, see JEP 454.

The FFM API is contained in the package j ava. | ang. f or ei gn.

Topics

* On-Heap and Off-Heap Memory

« Memory Segments and Arenas

e Calling a C Library Function with the Foreign Function and Memory API

« Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

* Foreign Functions That Return Pointers

« Memory Layouts and Structured Access

» Backing a Memory Segment with a Memory Region Inside a File

e Checking for Native Errors Using errno

» Slicing Allocators and Slicing Memory Segments

* Restricted Methods

» Calling Native Functions with jextract

On-Heap and Off-Heap Memory

On-heap memory is memory in the Java heap, which is a region of memory managed by the
garbage collector. Java objects reside in the heap. The heap can grow or shrink while the
application runs. When the heap becomes full, garbage collection is performed: The JVM
identifies the objects that are no longer being used (unreachable objects) and recycles their
memory, making space for new allocations.

Off-heap memory is memory outside the Java heap. To invoke a function or method from a
different language such as C from a Java application, its arguments must be in off-heap
memory. Unlike heap memory, off-heap memory is not subject to garbage collection when no
longer needed. You can control how and when off-heap memory is deallocated.

You interact with off-heap memory through a Menor ySegnent object. You allocate a
Mermor ySegment object with an arena, which enables you to specify when the off-heap
memory associated with the Menor ySegnent object is deallocated.

Memory Segments and Arenas

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 35

https://openjdk.java.net/jeps/454
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html

ORACLE’

Core Libraries
G29144-01

Chapter 12
Memory Segments and Arenas

You can access off-heap or on-heap memory with the Foreign Function and Memory (FFM)
API through the Menor ySegnent interface. Each memory segment is associated with, or
backed by, a contiguous region of memory. There are two kinds of memory segments:

* Heap segment: This is a memory segment backed by a region of memory inside the Java
heap, an on-heap region.

* Native segment: This is a memory segment backed by a region of memory outside the
Java heap, an off-heap region. The examples in this chapter demonstrate how to allocate
and access native segments.

An arena controls the lifecycle of native memory segments. To create an arena, use one of the
methods in the Ar ena interface, such as Ar ena. of Confi ned() . You use an arena to
allocate a memory segment. Each arena has a scope, which specifies when the region of
memory that backs the memory segment will be deallocated and is no longer valid. A memory
segment can only be accessed if the scope associated with it is still valid or alive.

Most of the examples described in this chapter use a confined arena, which is created with
Ar ena: : of Confi ned. A confined arena provides a bounded and deterministic lifetime. Its
scope is alive from when it's created to when it's closed. A confined arena has an owner
thread. This is typically the thread that created it. Only the owner thread can access the
memory segments allocated in a confined arena. You'll get an exception if you try to close a
confined arena with a thread other than the owner thread.

There are other kinds of arenas:

* A shared arena, which is created with Ar ena: : of Shar ed, has no owner thread. Multiple
threads may access the memory segments allocated in a shared arena. In addition, any
thread may close a shared arena, and the closure is guaranteed to be safe and atomic.
See Slicing Memory Segments for an example of a shared arena.

e An automatic arena, which is created with Ar ena: : of Aut 0. This is an area that's
managed, automatically, by the garbage collector. Any thread can access memory
segments allocated by an automatic arena. If you call Ar ena: : cl ose on an automatic
arena, you'll get a Unsupport edQper at i onExcept i on.

e Aglobal arena, which is created with Ar ena: : gl obal . Any thread can access memory
segments allocated with this arena. In addition, the region of memory of these memory
segments is never deallocated; if you call Ar ena: : cl ose on a global arena, you'll get a
Unsupport edOper at i onExcept i on.

The following example allocates a memory segment with an arena, stores a Java St ri ng in
the off-heap memory associated with the memory segment, and then prints the contents of the
off-heap memory. At the end of the t r y-with-resources block, the arena is closed, and the off-
heap memory associated with the memory segment is deallocated.

String s ="M string";
try (Arena arena = Arena. of Confined()) {

Il Allocate off-heap nmenory
MenorySegnent nativeText = arena. al | ocateFrom(s);

/'l Access of f-heap menory
for (int i =0; i <s.length(); i++) {

Systemout. print((char)nativeText.get(Val ueLayout.JAVA BYTE, i));
}

} /] Of-heap nenory is deallocated

The following sections describe this example in detail:

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Arena.html

ORACLE Chapter 12
Memory Segments and Arenas

» Allocating a Memory Segment with an Arena and Storing a String in It

* Printing the Contents of Off-Heap Memory

e Closing an Arena

Allocating a Memory Segment with an Arena and Storing a String in It

The Ar ena interface extends the Segnent Al | ocat or interface, which contains methods that
both allocate off-heap memory and copy Java data into it. The previous example calls the
method Segnent Al | ocat or. al | ocat eFron(Stri ng), which allocates a memory segment
with an arena, converts a string into a UTF-8 encoded, null-terminated C string, and then
stores the string into the memory segment.

String s = "MW string";
try (Arena arena = Arena.of Confined()) {

Il Alocate off-heap nenory
MerorySegnment nativeText = arena. al | ocateFron(s);
...

@ Tip

You can call Segnent Al | ocator. al |l ocateFrom(String, Charset) to store a
string with a different charset. The Segnent Al | ocat or interface contains several

al | ocat eFr ommethods that enable you to store data of various data types in a
memory segment.

See Memory Layouts and Structured Access for information about allocating and accessing
more complicated native data types such as C structures.

Printing the Contents of Off-Heap Memory

The following code prints the characters stored in the Menor ySegnment named nati veText :

/1 Access of f-heap nmenory
for (int i =0; i <s.length(); i++) {

Systemout. print((char)nativeText.get(Val ueLayout.JAVA BYTE, i));
}

The Menor ySegnent interface contains various access methods that enable you to read from
or write to memory segments. Each access method takes as an argument a value layout,
which models the memory layout associated with values of basic data types such as primitives.
A value layout encodes the size, the endianness or byte order, the bit alignment of the piece of
memory to be accessed, and the Java type to be used for the access operation.

For example, Menor yLayout . get (Val ueLayout . O Byt e, | ong) takes as an argument
Val ueLayout . JAVA BYTE. This value layout has the following characteristics:

e The same size as a Java byt e

e Byte alignment set to 1: This means that the memory layout is stored at a memory address
that's a multiple of 8 bits.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 35

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/Arena.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/SegmentAllocator.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#allocateFrom(java.lang.String)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#allocateFrom(java.lang.String,java.nio.charset.Charset)

ORACLE Chapter 12
Calling a C Library Function with the Foreign Function and Memory API

* Byte order set to Byt eOrder. nativeOrder(): A system can order the bytes of a multibyte
value from most significant to least significant (big-endian) or from least significant to most
significant (little-endian).

Closing an Arena

When an arena is closed, such as through a t r y-with-resources statement, then the arena's
scope is no longer alive: All memory segments associated with its scope are invalidated, and
the memory regions backing them are deallocated.

If you try to access a memory segment associated with an arena scope that's closed, you'll get
anl || egal St at eExcept i on, which the following example demonstrates:

String s ="My String";

Menor ySegnent nativeText;

try (Arena arena = Arena.of Confined()) {
/1 Al'locate off-heap menory
nativeText = arena.al |l ocateFron(s);

}
for (int i =0; i <s.length(); i++) {
/1 Exception in thread "main" java.lang. ||| egal StateException: Al ready
cl osed
System out. print((char)nativeText.get(Val ueLayout.JAVA BYTE, i));
}

Calling a C Library Function with the Foreign Function and
Memory API

The following example calls st r | en with the Foreign Function and Memory API:

public class StrlenExanple {

/] Create a downcall handle for the C function strlen
static final MethodHandl e strlen = strlenMH();

public static void main(String[] args) {
StrlenExanpl e nyApp = new StrlenExanpl e();
try {
System out . println(nyApp.invokeStrlen(args[0]));
} catch (Throwable t) {
t.printStackTrace();
}
}

static MethodHandl e strlenMH() {

/] obtain an instance of the native |inker
Li nker linker = Linker.nativeLinker();

/] Locate the address of the C function signature
Synbol Lookup stdLib = linker.defaul t Lookup();
MenorySegnent strlen_addr = stdLib.findO Throw("strlen");

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 35

ORACLE Chapter 12
Calling a C Library Function with the Foreign Function and Memory API

/I Create a description of the C function
FunctionDescriptor strlen_sig =
FunctionDescri ptor. of (Val ueLayout. JAVA LONG Val ueLayout . ADDRESS) ;

/1 Return a downcall handle for the C function
return |inker.downcal | Handl e(strlen_addr, strlen_sig);

}

static long invokeStrlen(String s) throws Throwable {
try (Arena arena = Arena.of Confined()) {

/1 Al'locate off-heap nmermory and
/1 copy the argument, a Java string, into off-heap nenory
MerorySegment nativeString = arena. al |l ocat eFron(s);

[l Call the C function directly fromJava
return (long)strlen.invokeExact(nativeString);

The following is the declaration of the st r| en C standard library function:

size_t strlen(const char *s);

It takes one argument, a string, and returns the length of the string. To call this function from a
Java application, you would follow these steps:

1. Allocate off-heap memory, which is memory outside the Java runtime, for the strl en
function's argument.

2. Store the Java string in the off-heap memory that you allocated.
The i nvokeSt rl en example performs the previous step and this step with the following
statement:

MenorySegnent nativeString = arena. al |l ocat eFron(s);

3. Build and then call a method handle that points to the st r | en function. The topics in this
section show you how to do this.

The following sections describe this example in detail:

¢ Obtaining an Instance of the Native Linker

e Locating the Address of the C Function

e Describing the C Function Signature

e Creating the Downcall Handle for the C Function

¢ Calling the C Function Directly from Java

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 35

ORACLE Chapter 12
Calling a C Library Function with the Foreign Function and Memory API

Obtaining an Instance of the Native Linker

The following statement obtains an instance of the native linker, which provides access to the
libraries that adhere to the calling conventions of the platform in which the Java runtime is
running. These libraries are referred to as "native" libraries.

/1 Obtain an instance of the native |inker
Li nker linker = Linker.nativeLinker();

Locating the Address of the C Function

To call a native method such as strl en, you need a downcall method handle, which is a
Met hodHandl e instance that points to a native function. This instance requires the native
function's address. To obtain this address, you use a symbol lookup, which enables you to
retrieve the address of a symbol (such as the st rl en function) in one or more libraries.

The following statements obtain the address of the st rl en function:

/] Locate the address of the C function signature
Symbol Lookup stdLib = linker. defaul t Lookup();
MenorySegnent strlen_addr = stdLib.findO Throw("strlen");

Because st r | en is part of the C standard library, this example uses the native linker's default
lookup by calling Li nker . def aul t Lookup() . A default lookup is a symbol lookup for
symbols in a set of commonly used libraries (including the C standard library).

@® Note

Call the method Synbol Lookup. I i brarylLookup(String, Arena) tocreate a
symbol lookup from the name of a library. This method loads the specified library and
associates it with an arena, which controls the symbol lookup's lifetime. The following
example specifies | i bc. so. 6, which is the name of the C standard library for many
Linux systems.

static final Synbol Lookup stdLib =
Synbol Lookup. | i braryLookup("libc. so.6", arena);
static final MenorySegnent strlen_addr = stdLib.findO Throw("strlen");

@ Tip
Call Synbol Lookup. | oader Lookup() to find symbols in libraries that are loaded
with System | oadLi brary(String).

Describing the C Function Signature

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 35

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#defaultLookup()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/SymbolLookup.html#loaderLookup()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/System.html#loadLibrary(java.lang.String)

ORACLE’

Chapter 12
Calling a C Library Function with the Foreign Function and Memory API

A downcall method handle also requires a description of the native function's signature, which
is represented by a Funct i onDescri pt or instance. A function descriptor describes the
layouts of the native function's arguments and its return value, if any.

Each layout in a function descriptor maps to a Java type, which is the type that should be used
when invoking the resulting downcall method handle. Most value layouts map to a Java
primitive type. For example, Val ueLayout . JAVA | NT maps to an i nt value. However,

Val uelLayout . ADDRESS maps to a pointer.

Composite types such as struct and uni on types are modeled with the Gr ouplLayout
interface, which is a supertype of St ruct Layout and Uni onLayout . See Memory Layouts
and Structured Access for an example of how to initialize and access a C structure.

The following creates a function descriptor for the st r | en function:

/] Create a description of the C function
Functi onDescriptor strlen_sig =
FunctionDescri ptor. of (Val ueLayout . JAVA LONG Val ueLayout . ADDRESS) ;

The first argument of the Funct i onDescri pt or: : of method is the layout of the native
function's return value. Native primitive types are modeled using value layouts whose size
matches that of such types. This means that a function descriptor is platform-specific. For
example, si ze_t has a layout of JAVA _LONG on 64-hit or x64 platforms but a layout of
JAVA | NT on 32-bit or x86 platforms.

@ Tip

To determine the layout of a native primitive type that the native linker uses for your
platform, call the method Li nker : : canoni cal Layout s.

The subsequent arguments of Funct i onDescri pt or: : of are the layouts of the native
function's arguments. In this example, there's only one subsequent argument, a
Val uelLayout . ADDRESS. This represents the only argument for st r | en, a pointer to a string.

Creating the Downcall Handle for the C Function

Core Libraries
G29144-01

The following excerpt creates a downcall method handle for the st r | en function with its
address and function descriptor.

/! Create a downcall handle for the C function strlen
static final MethodHandl e strlen = strlenMd();

...
static MethodHandl e strlenVH() {
/1
/! Return a downcall handle for the C function
return linker.downcal | Handl e(strlen_addr, strlen_sig);
}
@ Tip
It is recommend that you declare method handles as stati ¢ final for performance
reasons.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 35

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#ADDRESS
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/GroupLayout.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/StructLayout.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/UnionLayout.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html#of(java.lang.foreign.MemoryLayout,java.lang.foreign.MemoryLayout...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_LONG
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/Linker.html#canonicalLayouts()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#ADDRESS

ORACLE’

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

Calling the C Function Directly from Java

The following highlighted statement calls the st r | en function with a memory segment that
contains the function's argument:

static long invokeStrien(String s) throws Throwable {
try (Arena arena = Arena.of Confined()) {
/1 Alocate off-heap menory and
/1 copy the argument, a Java string, into off-heap nmenmory

MenorySegnent nativeString = arena.al |l ocat eFron(s);

/1 Call the Cfunction directly from Java
return (long)strlen.invokeExact(nativeString);

You need to cast a method handle invocation with the expected return type; in this case, it's
| ong.

Upcalls: Passing Java Code as a Function Pointer to a Foreign

Function

Core Libraries
G29144-01

An upcall is a call from native code back to Java code. An upcall stub enables you to pass
Java code as a function pointer to a foreign function.

Consider the standard C library function gsort , which sorts the elements of an array:

void gsort(void *base, size_t nmenb, size_t size,
int (*compar)(const void *, const void *));

It takes four arguments:

e base: Pointer to the first element of the array to be sorted

e nbenb: Number of elements in the array

e size: Size, in bytes, of each element in the array

e conpar: Pointer to the function that compares two elements

The following example calls the gsort function to sort an i nt array. However, this method
requires a pointer to a function that compares two array elements. The example defines a
comparison method named Qsort: : gsort Conpar e, creates a method handle to represent this
comparison method, and then creates a function pointer from this method handle.

public class Invoke@ort {

class sort {
static int gsortConpare(MenorySegment el endl, MenorySegnent el en?) {
return Integer.conpare(el eml. get (Val ueLayout.JAVA I NT, 0),
el en?. get (Val ueLayout . JAVA INT, 0));

}

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 35

ORALCLE Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

}

[l Obtain instance of native |inker
final static Linker linker = Linker.nativeLinker();

Il Create downcall handle for gsort
static final MethodHandl e gsort = Iinker.downcal | Handl e(
l'inker.defaul t Lookup().findO Throw("gsort"),
Functi onDescri pt or. of Voi d(Val ueLayout . ADDRESS,
Val ueLayout . JAVA_LONG
Val ueLayout . JAVA_LONG
Val ueLayout . ADDRESS)) ;

Il Create method handl e for gsort Conpare
static final MethodHandl e conpareHandl e = init ConpareHandl e();

static MethodHandl e initConpareHandl e() {
Met hodHandl e ch = nul | ;

try {
ch = Met hodHandl es. | ookup()
.findStatic(Qsort.class,
"qsort Conmpare",
Met hodType. net hodType(i nt. cl ass,
Menor ySegnent . cl ass,
Menor ySegnent . cl ass));
} catch (NoSuchMet hodException | |11l egal AccessException e) {
e.printStackTrace();
}

return ch;

}
static int[] qsortTest(int[] unsortedArray) throws Throwable {

int[] sorted = null;

/1 Create a Java description of a C function inplenented by a Java
met hod

Functi onDescriptor qsort ConpareDesc = FunctionDescri ptor. of (
Val ueLayout . JAVA | NT,
Val ueLayout . ADDRESS. wi t hTar get Layout (Val ueLayout . JAVA | NT),
Val ueLayout . ADDRESS. wi t hTar get Layout (Val ueLayout . JAVA I NT));

/] Create function pointer for gsortConpare

Menor ySegnent conpar eFunc = |inker. upcal | St ub(conpar eHandl e,
gsort Conpar eDesc,
Arena. of Auto());

try (Arena arena = Arena.of Confined()) {
/1 Al'locate off-heap menory and store unsortedArray in

MenorySegment array = arena. al | ocat eFront(Val ueLayout . JAVA_| NT,
unsortedArray);

[l Call gsort
gsort.invoke(array,

Core Libraries

G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 35

ORACLE’

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

(long)unsortedArray. | ength,
Val ueLayout . JAVA | NT. byt eSi ze(),
conpar eFunc) ;

Il Access off-heap nenory
sorted = array.toArray(Val ueLayout.JAVA | NT);
}

return sorted;

}

public static void main(String[] args) {
try {
int[] sortedArray = InvokeQsort.qgsortTest(newint[] { 0, 9, 3, 4,
6, 5, 1, 8 2, 71});
for (int num: sortedArray) {
Systemout.print(num+ " ");
}
Systemout. printin();
} catch (Throwable t) {
t.printStackTrace();

}

The following sections describe this example in detail:

» Defining the Java Method That Compares Two Elements

e Creating a Downcall Method Handle for the gsort Function

e Creating a Method Handle to Represent the Comparison Method gsortCompare

e Creating a Function Pointer from the Method Handle compareHandle

« Allocating Off-Heap Memory to Store the int Array

e Calling the gsort Function

e Copying the Sorted Array Values from Off-Heap to On-Heap Memory

Defining the Java Method That Compares Two Elements

Core Libraries
G29144-01

The following class defines the Java method that compares two elements, in this case two i nt
values:

class @sort {
static int gsortConpare(MenorySegment el enl, MenorySegment el enR) {
return Integer.conpare(el eml. get (Val ueLayout.JAVA INT, 0),
el en?. get (Val ueLayout. JAVA INT, 0));

}
}

In this method, the i nt values are represented by Menor ySegnent objects. A memory
segment provides access to a contiguous region of memory. To obtain a value from a memory
segment, call one of its get methods. This example calls the get (Val ueLayout . X I nt ,

| ong) , where the second argument is the offset in bytes relative to the memory address's
location. The second argument is 0 because the memory segments in this example store only
one value.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 35

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html#get(java.lang.foreign.ValueLayout.OfInt,long)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html#get(java.lang.foreign.ValueLayout.OfInt,long)

ORALCLE Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

Creating a Downcall Method Handle for the gsort Function

The following statements create a downcall method handle for the gsort function:

/1 Ootain instance of native |inker
final static Linker |inker = Linker.nativeLinker();

/1 Create downcall handle for gsort
static final MethodHandl e gsort = linker.downcal | Handl e(
I'i nker.defaul t Lookup().findO Throw("qgsort"),
Funct i onDescri pt or. of Voi d(Val ueLayout . ADDRESS,
Val ueLayout . JAVA_ LONG,
Val ueLayout . JAVA_ LONG,
Val ueLayout . ADDRESS)) ;

@ Tip

It is recommend that you declare method handles as static final for performance
reasons.

Creating a Method Handle to Represent the Comparison Method
gsortCompare

The following statement creates a method handle to represent the comparison method
Qsort::qgsort Conpare:

/1 Create method handle for gsort Conpare
static final MethodHandl e conpareHandl e = init ConpareHandl e();

static MethodHandl e init ConpareHandl e() {
Met hodHandl e ch = nul | ;
try {
ch = Met hodHandl es. | ookup()
.findStatic(Qsort.class,
"gsort Conpare",
Met hodType. met hodType(int. cl ass,
Menor ySegnent . ¢l ass,
Menor ySegnent . cl ass)) ;
} catch (NoSuchMet hodException | |1l egal AccessException e) {
e.printStackTrace();
}

return ch;

The Met hodHandl es. Lookup. findStatic(C ass, String, MethodType) method
creates a method handle for a static method. It takes three arguments:

* The method's class

* The method's name

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 35

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodHandles.Lookup.html#findStatic(java.lang.Class,java.lang.String,java.lang.invoke.MethodType)

ORALCLE Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

* The method's type: The first argument of Met hodType: : net hodType is the method's
return value's type. The rest are the types of the method's arguments.

Creating a Function Pointer from the Method Handle compareHandle

The following statement creates a function pointer from the method handle conpar eHandl e:

/1 Create a Java description of a C function inplenented by a Java net hod
FunctionDescriptor gsort ConpareDesc = FunctionDescri ptor. of (

Val ueLayout . JAVA | NT,

Val ueLayout . ADDRESS. wi t hTar get Layout (Val ueLayout . JAVA | NT),

Val ueLayout . ADDRESS. wi t hTar get Layout (Val ueLayout. JAVA I NT));

/1 Create function pointer for gsortConpare

MenorySegnent conpareFunc = |inker. upcal | St ub(conpar eHandl e,
gsort Conpar eDesc,
Arena. of Auto());

The Li nker: : upcal | St ub method takes three arguments:

e The method handle from which to create a function pointer

e The function pointer's function descriptor; in this example, the arguments for
Functi onDescri pt or. of correspond to the return value type and arguments of
Qsort::qgsort Conpare

* The arena to associate with the function pointer. The static method Ar ena. of Aut o()
creates a new arena that is managed, automatically, by the garbage collector.

Allocating Off-Heap Memory to Store the int Array

The following statements allocate off-heap memory, then store the i nt array to be sorted in it:

int[] sorted = null;
...
try (Arena arena = Arena.of Confined()) {

/1 Al'locate off-heap memory and store unsortedArray in it
MenorySegment array = arena. al | ocat eFrom(Val ueLayout . JAVA_| NT,
unsortedArray);

Calling the gsort Function

The following statement calls the gsort function:

/1 Call gsort

gsort.invoke(array,
(long)unsortedArray. | ength,
Val ueLayout . JAVA | NT. byt eSi ze(),
conpar eFunc) ;

In this example, the arguments of Met hodHandl e: : i nvoke correspond to those of the
standard C library gsort function.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 35

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodType.html#methodType(java.lang.Class,java.lang.Class,java.lang.Class...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.MemorySession)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html#of(java.lang.foreign.MemoryLayout,java.lang.foreign.MemoryLayout...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodHandle.html#invoke(java.lang.Object...)

ORACLE Chapter 12
Foreign Functions That Return Pointers

Copying the Sorted Array Values from Off-Heap to On-Heap Memory

Finally, the following statement copies the sorted array values from off-heap to on-heap
memory:

/1 Access of f-heap nmenory
sorted = array.toArray(Val ueLayout.JAVA INT);

Foreign Functions That Return Pointers

Sometimes foreign functions allocate a region of memory, then return a pointer to that region.
For example, the C standard library function voi d *mal | oc(si ze_t) allocates the
requested amount of memory, in bytes, and returns a pointer to it. However, when you invoke a
native function that returns a pointer, like mal | oc, the Java runtime has no insight into the size
or the lifetime of the memory segment the pointer points to. Consequently, the FFM API uses a
zero-length memory segment to represent this kind of pointer.

The following example invokes the C standard library function mal | oc. It prints a diagnostic
message immediately after, which demonstrates that the pointer returned by mal | oc is a zero-
length memory segment.

public class Ml locExanmple {

/1 Cbtain an instance of the native |inker
static final Linker linker = Linker.nativeLinker();

Il Create a downcall handle for nmalloc()
static final MethodHandl e malloc = |inker.downcal | Handl e(
l'i nker. defaul t Lookup().findO Throw"mal | oc"),
Functi onDescri ptor. of (Val ueLayout . ADDRESS, Val ueLayout.JAVA LONG

);

Il Create a downcall handle for free()

static final MethodHandl e free = |inker.downcal | Handl e(
l'i nker. defaul t Lookup().findO Throw"free"),
Funct i onDescri pt or. of Voi d(Val ueLayout . ADDRESS)

);

static MenorySegnment al |l ocateMenory(long byteSize, Arena arena) throws
Throwabl e {

/1 Invoke malloc(), which returns a pointer
Menor ySegnent segment = (MenorySegment) nal | oc. i nvokeExact (byt eSi ze) ;

/] The size of the menmory segment created by malloc() is zero bytes!
System out . printl n(
"Size, in bytes, of menory segment created by calling
mal | oc. i nvokeExact (" +
byteSize + "): " + segment.byteSize());

Consuner <Menor ySegment > cl eanup = s -> {

try {
free.invokeExact (s);

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 35

ORACLE’

Core Libraries
G29144-01

Chapter 12
Foreign Functions That Return Pointers

} catch (Throwable e) {
t hrow new Runti neException(e);
}
b

/1 This reintepret method:

/1 1. Resizes the nenory segment so that it's equal to byteSi ze

/1 2. Associates it with an existing arena

/1 3. Invokes free() to deallocate the menmory allocated by nmalloc()
/1 when its arena is closed

return segment.reinterpret(byteSize, arena, cleanup);

}

public static void main(String[] args) {
try (Arena arena = Arena.of Confined()) {
al | ocat eMenory(100L, arena);
} catch (Throwable t) {
t.printStackTrace();

}

@ Tip

It is recommended that you declare method handles as static final for performance
reasons.

The example prints a message similar to the following:

Size, in bytes, of nenory segnent created by calling nmalloc.invokeExact(100):
0

The FFM API uses zero-length memory segments to represent the following:

e Pointers returned from a foreign function
» Pointers passed by a foreign function to an upcall
* Pointers read from a memory segment

If you try to access a zero-length memory segment, the Java runtime will throw an

I ndexQut OF BoundsExcept i on because the Java runtime can't safely access or validate
any access operation of a region of memory whose size is unknown. In addition, zero-length
memory segments are associated with a fresh scope that's always alive. Consequently, even
though you can't directly access zero-length memory segments, you can pass them to other
pointer-accepting foreign functions.

However, the Menor ySegnent : : r ei nt er pr et method enables you to work with zero length
memory segments so that you can safely access them and attach them to an existing arena so
that the lifetime of the region of memory backing the segment can be managed automatically.
This method takes three arguments:

e The number of bytes to resize the memory segment: The example resizes it to the value of
the parameter byt eSi ze.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 35

ORACLE’

Chapter 12
Memory Layouts and Structured Access

* The arena with which to associate the memory segment: The example associates it to the
arena specified by the parameter ar ena.

e The action to perform when the arena is closed: The example deallocates the memory
allocated by mal | oc by invoking the C standard library function voi d free(void
*pt r), which deallocates the memory referenced by a pointer returned by mal | oc. Note
that this is an example of passing a pointer pointing to a zero-length memory segment to a
foreign function.

@ Note

Menor ySegment @ : rei nt er pret is a restricted method, which, if used incorrectly,
might crash the JVM or silently result in memory corruption. See Restricted Methods
for more information.

The following example calls al | ocat eMenory(| ong, Arena) to allocate a Java string with
mal | oc:

String s ="M string!";
try (Arena arena = Arena.of Confined()) {

/1 Al'locate off-heap memory with malloc()
var nativeText = allocateMenory(
Val ueLayout . JAVA CHAR. byt eSi ze() * (s.length() + 1), arena);

Il Access of f-heap nenory
for (int i =0; i <s.length(); i++) {

nativeText. set At | ndex(Val ueLayout.JAVA CHAR i, s.charAt(i));
}

/1 Add the string terminator at the end
nativeText.set At | ndex(
Val ueLayout . JAVA CHAR, s.length(), Character.M N_VALUE);

[l Print the string
for (int i =0; i <s.length(); i++) {
System out . print((char)nativeText.get Atlndex(Val ueLayout.JAVA CHAR,

i));

}

Systemout. println();
} catch (Throwable t) {

t.printStackTrace();

}

See Zero-length memory segments in the j ava. | ang. f or ei gn. Menor ySegnent API
specification and Functions returning pointers in the j ava. | ang. f or ei gn. Li nker API
specification for more information.

Memory Layouts and Structured Access

Core Libraries
G29144-01

Accessing structured data using only basic operations can lead to hard-to-read code that's
difficult to maintain. Instead, you can use memory layouts to more efficiently initialize and
access more complicated native data types such as C structures.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 15 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#wrapping-addresses
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#by-ref

ORACLE’

Core Libraries
G29144-01

Chapter 12
Memory Layouts and Structured Access

For example, consider the following C declaration, which defines an array of Poi nt structures,
where each Poi nt structure has two members, Poi nt. x and Poi nt . y:

struct Point {
int x;
int y;

} pts[10];

You can initialize and access such a native array as follows:

public class InitializeNativeArrayExanple {

public static void main(String[] args) {
InitializeNativeArrayExanmple nyApp =
InitializeNativeArrayExanple();
try {
nmyApp.initialize();
} catch (Exception e) {
e.printStackTrace();

new

}
}

void initialize() throws Exception {
try (Arena arena = Arena.of Confined()) {

MenorySegnent segment =
arena. al l ocate((long)(2 * 4 * 10), 1);

for (int i =0; i <10; i++) {
int xValue =i;
int yvalue =i * 10;
segment . set At | ndex(Val ueLayout. JAVA_INT, (i * 2), xVal ue) ;
segment . set At | ndex(Val ueLayout . JAVA_INT, (i * 2) + 1, yValue);
}
for (int i =0; i <10; i++) {
int xVal = segnent.getAtlndex(Val ueLayout.JAVA_INT, (i * 2));
int yVal = segnent.getAtlndex(Val ueLayout.JAVA_INT, (i * 2) +
1);
Systemout.printin("(" + xVal + ", " + yval +")");
}
}
}
}

The first argument in the call to the Ar ena: : al | ocat e method calculates the number of
bytes required for the array. The arguments in the calls to the

Menor ySegnent : : set At | ndex method calculate which memory address offsets to write into
each member of a Poi nt structure. Similar arguments perform the same calculations for the
Menor ySegnent : : get At | ndex method. To avoid these calculations, you can use a memory
layout.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 16 of 35

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#setAtIndex(java.lang.foreign.ValueLayout.OfInt,long,int)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#getAtIndex(java.lang.foreign.ValueLayout.OfInt,long)

ORACLE’

Core Libraries
G29144-01

Chapter 12

Memory Layouts and Structured Access

ublic class MenoryLayout Exanpl e {

public static void main(String[] args) {
Meror yLayout Exanpl e nyApp = new MenoryLayout Exanpl e() ;
try {
nmyApp.initialize();
} catch (Exception e) {
e.printStackTrace();
}
}

static final SequencelLayout ptsLayout
= MenoryLayout . sequencelayout (10,
Menor yLayout . struct Layout (
Val ueLayout . JAVA | NT. wi t hName("x")
Val ueLayout . JAVA | NT. wi t hNanme("y")));

static final VarHandl e xHandl e
= ptsLayout . var Handl e(Pat hEl ement . sequenceEl enent (),
Pat hEl emrent . gr oupEl ement ("x"));
static final VarHandl e yHandl e
= ptsLayout . var Handl e(Pat hEl ement . sequenceEl enent (),
Pat hEl emrent . gr oupEl ement ("y"));
void initialize() throws Exception {

try (Arena arena = Arena.of Confined()) {

MenorySegment segnment = arena. al | ocat e(pt sLayout) ;

for (int i =0; i < ptsLayout.elenmentCount(); i++) {
int xValue = i;
int yvalue =i * 10;
xHandl e. set (segnent, OL, (long) i, xValue);
yHandl e. set (segnent, OL, (long) i, yValue);
}
for (int i =0; i < ptsLayout.elenmentCount(); i++) {
int xVal = (int) xHandl e.get(segment, OL, (long) i);
int yval = (int) yHandl e.get(segment, OL, (long) i);
Systemout.printIn("(" + xval +", " + yval +")");
}

static final SequencelLayout ptsLayout

= Menorylayout . sequencelayout (10,

Copyright © 2017, 2025, Oracle and/or its affiliates.

To represent the array of Poi nt structures, the following example uses a sequence memory
layout:

The following statement creates a sequence memory layout, which is represented by a
Sequencelayout object:

September 3, 2025
Page 17 of 35

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/SequenceLayout.html

ORACLE’

Core Libraries
G29144-01

Chapter 12
Memory Layouts and Structured Access

Menor yLayout . st ruct Layout (
Val ueLayout . JAVA | NT. wi t hNane("x"),
Val ueLayout . JAVA | NT. wi t hNanme("y")));

It contains a sequence of ten structure layouts, which are represented by St r uct Layout
objects. The method MenorylLayout : : struct Layout returns a St ruct Layout object.
Each structure layout contains two JAVA | NT value layouts hamed x and y:

The predefined value Val uelLayout . JAVA | NT contains information about how many bytes a
Java i nt value requires.

The next statements create two memory-access VarHandles that obtain memory address
offsets. A VarHandle is a dynamically strongly typed reference to a variable or to a
parametrically-defined family of variables, including static fields, non-static fields, array
elements, or components of an off-heap data structure.

static final VarHandl e xHandl e
= ptsLayout. var Handl e(Pat hEl ement . sequenceEl enent (),
Pat hEl ement . gr oupEl enent ("x"));

static final VarHandl e yHandl e
= ptsLayout. var Handl e(Pat hEl ement . sequenceEl enent (),
Pat hEl ement . gr oupEl enent ("y"));

@ Tip
It is recommend that you declare VarHandles as stati ¢ final for performance
reasons.

The method Pat hEl enent . sequenceEl enent () retrieves a memory layout from a
sequence layout. In this example, it retrieves one of the structure layouts from pt sLayout . The
method call Pat hEl enent . gr oupEl enent (" x") retrieves a memory layout named x. You
can create a memory layout with a name with the wi t hNane(St ri ng) method.

The f or statements call Var Handl e: : set and Var Handl e: : get to access memory like
Menor ySegnent : : set At | ndex and Menor ySegnent : : get At | ndex.

MenorySegnent segment = arena. al | ocat e(pt sLayout);

for (int i =0; i < ptsLayout.elenmentCount(); i++) {
int xValue =i;
int yvalue =i * 10;
xHandl e. set (segnent, OL, (long) i, xValue);
yHandl e. set (segnent, OL, (long) i, yValue);

}

for (int i =0; i < ptsLayout.elenentCount(); i++) {
int xVal = (int) xHandle.get(segnment, OL, (long) i);
int yval = (int) yHandle.get(segment, OL, (long) i);
Systemout.printin("(" + xval +", " +yval +")");

}

In this example, the set method uses four arguments:

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 18 of 35

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/StructLayout.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.html#structLayout(java.lang.foreign.MemoryLayout...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.PathElement.html#sequenceElement()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.PathElement.html#groupElement(java.lang.String)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.html#withName(java.lang.String)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/VarHandle.html#set(java.lang.Object...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/VarHandle.html#get(java.lang.Object...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#setAtIndex(java.lang.foreign.ValueLayout.OfInt,long,int)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#getAtIndex(java.lang.foreign.ValueLayout.OfInt,long)

ORACLE’

Chapter 12

Backing a Memory Segment with a Memory Region Inside a File

segnent : the memory segment in which to set the value

OL: the base offset, which is a | ong coordinate that points to the start of the array

1
2
3. (long) i:asecondl ong coordinate that indicates the array index in which to set the value
4

xVal ue and yVal ue: the actual value to set

The VarHandles xHandl e and yHandl e know the size of the Poi nt structure (8 bytes) and the
size of its i nt members (4 bytes). This means you don't have to calculate the number of bytes
required for the array's elements or the memory address offsets like in the set At | ndex

method.

@ Tip

The base offset enables you to express complex access operations by injecting
additional offset computation into the VarHandle. In particular, you can use memory
segments and base offsets to model variable-length arrays. These are arrays whose
size are not known statically and that cannot be represented using a sequence layout.

You can access such memory segments with the

MenorylLayout : : arrayEl enent Var Handl e method. See the section Working with
variable-length arrays in the JavaDoc API documentation for the Menor yLayout

interface for examples.

Backing a Memory Segment with a Memory Region Inside a File

A memory region inside a file can back a memory segment. To do this, you map a region of a

Core Libraries
G29144-01

file channel into a memory segment with the Fi | eChannel : : map method.

The following example is similar to the one described in Memory Layouts and Structured

Access. It creates a memory segment and then populates it with a native array of 10 Poi nt
structures. The difference is that the memory segment is mapped to a region in a file channel.
The example creates a file named poi nt - arr ay. dat a, and then populates it. It then opens
poi nt - arr ay. dat a with a read-only file channel and uses the FFM API to retrieve its

contents.
public class MenoryMappi ngExanmpl e {

static final SequencelLayout ptsLayout
= MenoryLayout . sequencelayout (10,
Meror yLayout . st ruct Layout (
Val ueLayout . JAVA | NT. wi t hNang("x"),
Val ueLayout . JAVA | NT. wi t hNane("y")));

static final VarHandl e xHandl e
= ptslLayout. var Handl e(
Pat hEl emrent . sequenceEl enent ()
Pat hEl ement . gr oupEl ement ("x"));

static final VarHandl e yHandl e
= ptslLayout. var Handl e(
Pat hEl emrent . sequenceEl enent ()
Pat hEl ement . gr oupEl ement ("y"));

public static void main(String[] args) {

Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 19 of 35

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#arrayElementVarHandle(java.lang.foreign.MemoryLayout.PathElement...)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#variable-length
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#variable-length

ORACLE’

Core Libraries
G29144-01

Chapter 12
Backing a Memory Segment with a Memory Region Inside a File

Menor yMappi ngExanpl e nyApp = new Menor yMappi ngExanpl e() ;
try {
Fil es. del etel f Exi sts(Paths. get ("point-array.data"));
myApp. createFil e();

nmyApp. readFil e();
} catch (Exception e) {

e.printStackTrace();
}
}
void createFile() throws Exception {
try (var fc = FileChannel.open(Path. of ("point-array.data"),
Set . of (CREATE, READ, WRITE));
Arena arena = Arena. of Confined()) {

MerorySegnent mapped = fc. map(READ_ WRI TE, OL,

pt sLayout . byt eSi ze(), arena);

Systemout. println("Enpty mapped segnent:");
System out . println(toHex(mpped));

for (int i =0; i < ptsLayout.elementCount(); i++) {
int xValue = i;
int yvalue =i * 10;

xHandl e. set (mapped, OL, (long) i, xValue);
yHandl e. set (mapped, OL, (long) i, yValue);
}

System out . println("Popul ated mapped segnent:");
Systemout. println(toString(mpped));

System out . println("Popul ated mapped segnment in hex:");
System out . println(toHex(mpped));

void readFile() throws Exception {
try (var fc = FileChannel.open(Path. of ("point-array.data"),
Set . of (SPARSE, READ));
Arena arena = Arena. of Confined()) {

MerorySegnment mapped = fc. map(READ_O\NLY, OL,

pt sLayout . byt eSi ze(), arena);

Systemout. println("Contents of point-array.data:");
Systemout . println(toString(mapped));

}

static String toString(MenorySegnent seg) {
String outputString = "";

for (int i =0; i < ptsLayout.elenentCount(); i++) {

int xVal = (int) xHandl e.get(seg, OL, (long) i);

int yVal = (int) yHandle.get(seg, OL, (long) i);

outputString += "(" + xVval + ", " + yVal +")";

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 20 of 35

ORACLE’

Chapter 12

Backing a Memory Segment with a Memory Region Inside a File

if ((i+1 !'= ptsLayout.elementCount())) outputString += "\n";

}

return outputString;

}

static String toHex(MenorySegnent seg) {

String outputString = "";
HexFormat formatter = HexFornmat.of ();

byte[] byteArray

seg.toArray(java.lang. foreign. Val ueLayout. JAVA BYTE);

for (int i =0; i

}

if ((i+1) %16 == 0 && (i +1) < byteArray.length) {
outputString += "\n";

}
}

return outputString;

@ Tip

< byteArray.length; i++) {
outputString += formatter.toHexDigits(byteArray[i]) +
if ((i+l) %8 == 0 && (i+1) %16 I=0) {

output String +=

"o,
1

It is recommended that you declare VarHandles as stati c final for performance

reasons.

It prints the following output:

Enpty mapped segnent:

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
Popul at ed mapped segnent:
(0, 0)

(1, 10)
(2, 20)
(3, 30)
(4, 40)
(5, 50)
(6, 60)
(7, 70)
(8, 80)
(9, 90)

Popul at ed mapped segment
00 00 00 00 00 00 00 00
02 00 00 00 14 00 00 00
04 00 00 00 28 00 00 00
06 00 00 00 3c 00 00 00

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

00
00
00
00
00

in
01
03
05
07

00 00
00 00
00 00
00 00
00 00

hex:

00 00
00 00
00 00
00 00

00
00
00
00
00

00
00
00
00

00
00
00
00
00

Oa
le
32
46

00
00
00
00
00

00
00
00
00

00
00
00
00
00

00
00
00
00

00
00
00
00
00

00
00
00
00

September 3, 2025
Page 21 of 35

ORACLE’

Core Libraries
G29144-01

Chapter 12
Backing a Memory Segment with a Memory Region Inside a File

08 00 00 00 50 00 00 00 09 00 00 00 5a 00 00 00
Contents of point-array.data:

(0, 0)

(1, 10)
(2, 20)
(3, 30)
(4, 40)
(5, 50)
(6, 60)
(7, 70)
(8, 80)
(9, 90)

You can verify the contents of poi nt - ar r ay. dat a with another application, such as the
UNIX command-line tool hexdunp:

$ hexdunmp -C point-array. data
00000000 00 00 00 00 00 00 00 OO 01 00 00 00 O0a 00 00 00 |..........vvunn. |
00000010 02 00 00 00 14 00 00 OO 03 00 00 00 1e 00 00 00 |.......vvvvrunnn |

00000020 04 00 00 00 28 00 00 00 05 00 00 00 32 00 00 00 | (vt 2.
00000030 06 00 00 00 3c 00 00 00 07 00 00 OO 46 00 00 00 | oo F.o.o.|
00000040 08 00 00 00 50 00 00 00 09 00 00 00 5a 00 00 00 | Po...... Z . .|

00000050

The following highlighted statement creates a Fi | eChannel that's open for reading and
writing:

try (var fc = FileChannel.open(Path. of ("point-array.data"),
Set . of (CREATE, READ, WRITE));
Arena arena = Arena. of Confined()) {

The statement specifies the following St andar dOpenQpt i on options:

* CREATE: Creates a new file if it does not exist
* READ: Opens the file for read access
VRl TE: Opens the file for write access

The following statement creates a new memory segment and maps it a region in a file channel:

Menor ySegment napped = fc. map(READ WRI TE, OL, ptsLayout.byteSize(), arena);

The statement calls the method Fi | eChannel . map(Fi | eChannel . MapMbde, | ong,
| ong, Arena) and creates a memory segment with the following characteristics:

e Can both read from and write to the file poi nt - arr ay. dat a

e Starts at the beginning of the file

* Has the same size as the file

e lts lifecycle is controlled by the previously declared confined arena

The example populates the mapped memory segment the same way as the example
described in Memory Layouts and Structured Access.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 22 of 35

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/nio/channels/FileChannel.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/nio/file/StandardOpenOption.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/nio/channels/FileChannel.html#map(java.nio.channels.FileChannel.MapMode,long,long,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/nio/channels/FileChannel.html#map(java.nio.channels.FileChannel.MapMode,long,long,java.lang.foreign.Arena)

ORACLE’

Chapter 12
Checking for Native Errors Using errno

To read the contents of poi nt - arr ay. dat a, the example creates a read-only file channel:

var fc = FileChannel . open(Path. of ("point-array.data"),
Set . of (READ)

The example then creates a read-only memory segment that's mapped to poi nt -
array. dat a:

Menor ySegment napped = fc. map(READ ONLY, OL, ptsLayout.byteSize(), arena);

Checking for Native Errors Using errno

Core Libraries
G29144-01

Some C standard library functions indicate errors by setting the value of the C standard library
macro er r no. You can access this value with a FFM API linker option.

The Li nker : : downcal | Handl e method contains a varargs parameter that enables you to
specify additional linker options. These parameters are of type Li nker. Opti on.

One linker option is Li nker . Opti on. captureCal | State(String. ..), which you use to
save portions of the execution state immediately after calling a foreign function associated with
a downcall method handle. You can use it to capture certain thread-local variables. When used
with the "errno" string, it captures the er r no value as defined by the C standard library.
Specify this linker option (with the "errno" string) when creating a downcall handle for a native
function that sets errno.

An example of a C standard library function that sets er r no is f open(const char

*fil ename, const char *node), which opens a file using the give mode. Examples of
modes include r, which opens a file for reading and w, which opens the file for writing. If f open
attempts to open a file that doesn't exist, then er r no is set to the value 2, which means that
the file doesn't exist. As most users won't know this, you can invoke the C standard library
function st r er r or, which returns a textual description of the er r no value.

The following example opens and reads a file with the following C standard library functions:

e FILE *fopen(const char *filenanme, const char *node):As mentioned
previously, opens the file fi | enane with the mode node (in this example, the mode is r)
and returns a pointer to a FILE object, which is represented by a Menor ySegnent .

e char *strerror(int errnun):As mentioned previously, returns a pointer to an error
message string that corresponds to the value of errnum

e char *fgets(char *str, int n, FILE *strean):Reads n-1 characters from a
pointer to a FILE object st r eamand stores it in an array pointed to by str.

e int feof (FILE *strean): Returns a non-zero value if the FILE pointer st reamhas
encountered the end-of-file indicator. Otherwise, it returns zero.

e int fclose(FILE *strean): Closes the file to which st r eampoints.

The example reads a file that should exist, ReadFi | eW t hFopen. j ava, and a file that
shouldn't exist, f i | e- doesnot - exi st . t xt . When the example invokes the f open function,
it uses captureCal | State("errno") to obtain error messages set by it:

public class ReadFi| eWthFopen {

static int BUFFER_SI ZE = 1024;

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 23 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.Option.html

ORACLE Chapter 12
Checking for Native Errors Using erro

/1 Setup handl es
static final Linker.Qption ccs = Linker.Option.captureCall State("errno");
static final StructlLayout capturedStatelayout =
Li nker. Opti on. capt ureStat eLayout () ;
static final VarHandl e errnoHandl e =
capt uredSt at eLayout . var Handl e(Pat hEl ement . gr oupEl enent ("errno"));

/'l Linker and symbol |ookup for C Standard Library functions
static final Linker linker = Linker.nativeLinker();
static final Synbol Lookup stdLib = |inker.defaultLookup();

[l char *strerror(int errnum
static final MethodHandl e strerror = linker.downcal | Handl e(
stdLib.find("strerror").orEl seThrow(),
FunctionDescri ptor. of (Val ueLayout . ADDRESS,
Val ueLayout . JAVA_INT));

Il FILE *fopen(const char *filename, const char *node)
static final MethodHandl e fopen =
l'i nker. downcal | Handl e(stdLib. find("fopen").orE seThrow),
Functi onDescri ptor. of (
Val ueLayout . ADDRESS,
Val ueLayout . ADDRESS,
Val ueLayout . ADDRESS) ,
ccs);

/1 char *fgets(char *str, int n, FILE *strean
static final MethodHandl e fgets =
['inker. downcal | Handl e(stdLib.find("fgets").orE seThrow),
Functi onDescri ptor. of (

Val ueLayout . ADDRESS,
Val ueLayout . ADDRESS,
Val ueLayout . JAVA | NT,
Val ueLayout . ADDRESS)) ;

Il int feof (FILE *stream
static final MethodHandl e feof =
l'i nker. downcal | Handl e(stdLib. find("feof").orEl seThrow(),
Functi onDescri ptor. of (
Val ueLayout . JAVA | NT,
Val ueLayout . ADDRESS)) ;

/1 int fclose(FILE *stream
static final MethodHandl e fclose =
['i nker. downcal | Handl e(stdLib. find("fclose").orEl seThrow(),
Functi onDescri ptor. of (
Val ueLayout . JAVA | NT,
Val ueLayout . ADDRESS)) ;

static void readFile(String path) throws Throwabl e {
Systemout. println("Reading " + path);
/1 Actual invocation

try (Arena arena = Arena.of Confined()) {
MerorySegnent capturedState = arena. al | ocat e(capt uredSt at eLayout) ;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 24 of 35

ORACLE Chapter 12
Checking for Native Errors Using errno

MerorySegnment | ocati on
Menor ySegnent openMbde

arena. al | ocat eFron{ pat h);
arena. al | ocateFronm("r");

var filePointer = (MenorySegment)
fopen. i nvokeExact (capturedState, |ocation, openhbde);

if (filePointer.address() == 0) {
print ErrnoCode(errnoHandl e, capturedState, strerror);
return;

}

var buffer = arena.allocate(Val ueLayout.JAVA BYTE, BUFFER S| ZE);
var eof = (int) feof.invokeExact(filePointer);

while (eof == 0) {
Systemout . print (buffer.getString(0));
var read = (MenorySegnent) fgets.invokeExact (buffer,
BUFFER _SI ZE, filePointer);
eof = (int) feof.invokeExact(filePointer);

}

var close = (int) fclose.invokeExact(filePointer);

}

private static void printErrnoCode(
Var Handl e errnoHandl e,
Menor ySegnent capt uredSt at e,
Met hodHandl e strerror) throws Throwabl e {

/1 Get nmore information by consulting the value of errno:
int errno = (int) errnoHandl e. get (capturedState, 0);

/1 An errno value of 2 (ENCENT) is "No such file or directory"
Systemout.printin("errno: " + errno);

/1 Convert errno code to a string nessage:

String errrorString = ((MenorySegnent) strerror.invokeExact (errno))
.reinterpret(Long. MAX_VALUE) . get String(0);

Systemout.printin("errno string: " + errrorString);

}
public static void main(String[] args) {
try {
readFil e(" ReadFi | eWt hFopen.java");
readFile("file-does-not-exist.txt");
} catch (Throwable t) {
Systemout. println(t.getMessage());
}
}

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 25 of 35

ORACLE Chapter 12
Slicing Allocators and Slicing Memory Segments

@ Tip

It is recommend that you declare VarHandles and method handles as static fi nal
for performance reasons.

The example prints the following output:

Readi ng ReadFi | eWt hFopen. j ava

inport java.lang.foreign.*;

i nport java.lang.foreign. Menorylayout. *;
i nport java.lang.invoke. *;

Readi ng fil e-does-not-exist.txt
errno: 2
errno string: No such file or directory

In this example, the method capt ur eSt at eLayout () returns a structure layout of the errno
function. See Memory Layouts and Structured Access for more information.

@ Tip

Use the following code to obtain the names of the supported captured value layouts
for the Li nker . Opti on. captureCal | State(String...) option for your
operating system:

Li st<String> capturedNanmes = Linker. Option. captureStatelayout ()
. menber Layout s()
.stream()
. map(Menor yLayout : : nane)
.flat Map(Optional ::stream
.toList();

Slicing Allocators and Slicing Memory Segments

A slicing allocator returns a segment allocator that responds to allocation requests by returning
consecutive contiguous regions of memory, or slices, obtained from an existing memory
segment. You can also obtain a slice of a memory segment of any location within a memory
segment with the method Menor ySegnent : : asSl i ce.

Topics

¢ Slicing Allocators

¢ Slicing Memory Segments

Slicing Allocators

The following example allocates a memory segment named segnent that can hold 60 Java i nt
values. It then uses a slicing allocator by calling
Segnent Al | ocat or. sl i ci ngAl'l ocat or (Menor ySegnent) to obtain ten consecutive

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 26 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#slicingAllocator(java.lang.foreign.MemorySegment)

ORACLE’

Core Libraries
G29144-01

Chapter 12
Slicing Allocators and Slicing Memory Segments

slices from segnent . The example allocates an array of five integers in each slice. After, it
prints the contents of each slice.

voi d al l ocate60lnt() {

try (Arena arena = Arena.of Confined()) {
SequencelLayout SEQUENCE LAYQOUT =
MenoryLayout . sequencelLayout (60L, Val ueLayout.JAVA | NT);
MenorySegnent segment = arena. al | ocat e(SEQUENCE_LAYQUT) ;
Segment Al | ocat or al l ocator =
Segnent Al | ocat or. sli ci ngAl | ocat or (segnent);

MenorySegnent s[] = new MenorySegnent [10] ;
for (int i =0; i <10 ; i++) {

s[i] = allocator.allocateFromn
Val ueLayout. JAVA INT, 1, 2, 3, 4, 5);

}

for (int i =0 ; i <10 ; i++) {
int[] intArray = s[i].toArray(Val ueLayout.JAVA | NT);
Systemout. printIn(Arrays.toString(intArray));

}

} catch (Exception e) {
e.printStackTrace();
}

You can use segment allocators as building blocks to create arenas that support custom
allocation strategies. For example, if a large number of native segments will share the same
bounded lifetime, then a custom arena could use a slicing allocator to allocate the segments
efficiently. This lets clients enjoy both scalable allocation (thanks to slicing) and deterministic
deallocation (thanks to the arena).

The following example defines a slicing arena that behaves like a confined arena but internally
uses a slicing allocator to respond to allocation requests. When the slicing arena is closed, the
underlying confined arena is closed, invalidating all segments allocated in the slicing arena.

To keep this example short, it implements only a subset of the methods of Ar ena and
Segnent Al | ocat or (which is a superinterface of Ar ena).

public class SlicingArena inplenents Arena {
final Arena arena = Arena. of Confined();
final SegmentAllocator slicingAllocator;

Slici ngArena(MenorylLayout m) {
slicingAllocator =
Segment Al | ocat or. slicingAllocator(arena.allocate(m);
}
public MenorySegnent allocate(long byteSize, long byteAlignment) {
return slicingAllocator.allocate(byteSize, byteAlignnent);
}

public MenorySegnent. Scope scope() {
return arena.scope();

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 27 of 35

ORACLE’

Chapter 12
Slicing Allocators and Slicing Memory Segments

}

public void close() {
arena. cl ose();
}

With this slicing arena, you can rewrite the first example in this section more succinctly:

void allocate60lntWthSlicingArena() {

SequencelLayout SEQUENCE LAYQUT =
Menor yLayout . sequencelayout (60L, Val ueLayout.JAVA | NT);
try (Arena slicingArena = new SlicingArena(SEQUENCE LAYQUT)) ({
MenorySegnent s[] = new MenorySegnent [10] ;

for (int i =0; i <10 ; i++) {
s[i] = slicingArena.all ocat eFron(
Val ueLayout. JAVA INT, 1, 2, 3, 4, 5);

}

for (int i =0 ; i <10 ; i++) {
int[] intArray = s[i].toArray(Val ueLayout.JAVA | NT);
Systemout. printin(Arrays.toString(intArray));

}

} catch (Exception e) {
e.printStackTrace();
}

Slicing Memory Segments

Core Libraries
G29144-01

When a slicing allocator returns a slice, the slice's starting address is right after the end of the
last slice that the slicing allocator returned. You can call

Menor ySegnent . asSl i ce(l ong, | ong) to obtain a slice of a memory segment of any
location within the memory segment and of any size, provided that slice's size stays within the
spatial bounds of the original memory segment. The following example obtains a slice of a
memory segment, then prints its contents:

String s
char c[]

"abcdef ghi j kI mopqgr st uvwxyz";
s.toCharArray();

Menor ySegnent t ext Segment = MenorySegnent . of Array(c);
long b = Val ueLayout.JAVA CHAR byt eSi ze();

long firstLetter = 5;

l ong size = 6;

Meror ySegment fghijk = textSegment.asSlice(firstLetter*b, size*b);
for (int i =0; i <size; i++) {

Systemout . print((char)fghijk.get(Val ueLayout.JAVA CHAR i*h));

}
Systemout. println();

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 28 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#asSlice(long,long)

ORACLE’

Chapter 12
Restricted Methods

This example prints the following output:
fghijk

The method Menor ySegnent . el enent s(Menorylayout) returns a stream of slices whose
size matches that of the specified layout. Multiple threads could work in parallel to access
these slices. To do this, however, the memory segment has to be accessible from multiple
threads. You can do this by associating the memory segment with a shared arena, which you
can create with Arena: : of Shar ed.

The following example sums all i nt values in a memory segment in parallel.

voi d addRandomNumber s(int nunEl enents) throws Throwabl e {
int[] nunmbers = new Randon().ints(nunEl enents, 0, 1000).toArray();

try (Arena arena = Arena.of Shared()) {
Sequencelayout SEQUENCE LAYOUT =
Menor yLayout . sequencelayout ((| ong) nunEl enent's, Val ueLayout. JAVA | NT);
MerorySegnent segment = arena. al | ocat e(SEQUENCE _LAYQUT) ;
MerorySegnent . copy(nunbers, 0, segment, ValuelLayout.JAVA INT, OL,
nunkl enents) ;

int sum = segnent.el enent s(Val ueLayout.JAVA I NT). parallel ()
.mapTolnt (s -> s.get(Val ueLayout.JAVA INT, 0))

.sum();

System out. println(sum;

Restricted Methods

Core Libraries
G29144-01

Some methods in the Foreign Function and Memory (FFM) API are unsafe and therefore
restricted. If used incorrectly, restricted methods can crash the JVM and may silently result in
memory corruption.

You must enable native access if an application calls any of the following restricted methods:

Table 12-1 Restricted Methods from the FFM API

Methods Reasoning Behind Restricting the Methods

java. | ang. Mbdul eLayer. Control | er. e The method enables native access for the specified

nabl eNat i veAccess(Mdul e) module if the caller's module has native access.
This method is restricted because it propagates
privileges to call restricted methods.

Addr esslLayout . wi t hTar get Layout (IMem Once you have an address layout with a given
orylayout) target layout, you can use it in a dereference
operation, for example,
Menor ySegrent . get (Addr essLayout
| ong) , to resize the segment being read, which is
unsafe.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 29 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#elements(java.lang.foreign.MemoryLayout)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ModuleLayer.Controller.html#enableNativeAccess(java.lang.Module)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ModuleLayer.Controller.html#enableNativeAccess(java.lang.Module)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/AddressLayout.html#withTargetLayout(java.lang.foreign.MemoryLayout)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/AddressLayout.html#withTargetLayout(java.lang.foreign.MemoryLayout)

ORACLE Chapter 12
Restricted Methods

Table 12-1 (Cont.) Restricted Methods from the FFM API

___|
Methods Reasoning Behind Restricting the Methods

Li nker. downcal | Handl e(Funct i onDesc Creating a downcall method handle is intrinsically
riptor, Linker.Option...) unsafe. A linker has no way to verify that the

Li nker . downcal | Handl e(Meror v Segnen provided function descriptor is compatible with the

t, FunctionDescriptor, fAU”C“Ot;‘ tl)gingfcall_ed.l_b . vicall
Li nker. Q)t| on. .) sSymbaol In a toreign liprary aoes not typically

contain enough signature information, such as arity
and the types of foreign function parameters, to
enable the linker at runtime to validate linkage
requests. When a client interacts with a downcall
method handle obtained through an invalid linkage
request, for example, by specifying a function
descriptor featuring too many argument layouts, the
result of such an interaction is unspecified and can
lead to JVM crashes.

Li nker . upcal | St ub(Met hodHand! e, As with creating downcall handles, the linker can't
Functi onDescri ptor, Arena, check whether the function pointer you are creating
Li nker. Option...) (like the gsort comparator in the example in

Upcalls: Passing Java Code as a Function Pointer
to a Foreign Function) is the correct one for the for
the downcall you are passing it to (like the gqsort
method handle in the same example).

Menor ySegnent . rei nterpret (1 ong) These methods allows you to change the size and

Menor vSeanent . r ei nt er pret (| ong. Iif(_etime of an existing_segment by creating a new

Arena. Consumer <Menor ySegnent >) alias t_o the same region o_f memory. See Foreign

. Functions That Return Pointers for more

MenorySegnent . rei nterpret (Arena, information.

Consuner <Menor y Segnent >) The spatial or temporal bounds associated with the
memory segment alias returned by these methods
might be incorrect. For example, consider a region
of memory that's 10 bytes long that's backing a
zero-length memory segment. An application might
overestimate the size of the region and use
Menor ySegment : : rei nt er pr et to obtain a
segment that's 100 bytes long. Later, this might
result in attempts to dereference memory outside
the bounds of the region, which might cause a JVM
crash or, even worse, result in silent memory

corruption.
Synbol Lookup. i brarylLookup(String, Loading a library can always cause execution of
Ar ena) native code. For example, on Linux, they can be
Symbol Lookup. | i br ar yLookup(Pat h. executed through dl open hooks.
Ar ena)

Enabling Native Access

To enable native access for specific modules on the module path, specify a comma-separated
list of module names:

java --enabl e-native-access=M., M, ... MApp

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 30 of 35

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long,java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long,java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.nio.file.Path,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.nio.file.Path,java.lang.foreign.Arena)

ORACLE’

Chapter 12
Calling Native Functions with jextract

To enable native access for all code on the class path, use the following command-line option:
java --enabl e-native-access=ALL- UNNAVED MyApp

You can also specify the - - enabl e- nat i ve- access option as follows:

e Setitin the environment variable JDK_JAVA OPTI ONS. See Using the
JDK_JAVA_OPTIONS Launcher Environment Variable.

* Specify it in a command-line argument file. See java Command-Line Argument Files.

 Add Enabl e- Nati ve- Access: ALL- UNNAMED to the manifest of an executable JAR file. See
JAR Manifest.

e If you have created a custom runtime for your application, specify it in the jlink command
through the - - add- opt i ons plugin. Run the command j | i nk -l i st-pl ugi ns for a list of
available plugins.

« If your code creates modules dynamically, enable native access for them with the
Mbdul eLayer. Controll er:: enabl eNati veAccess method. Code can dynamically
check if its module has native access with the Mbdul e: : i sNat i veAccessEnabl ed
method.

Enabling Native Access More Selectively

The - - enabl e- nat i ve- access=ALL- UNNAMED option lifts native access restrictions for all
classes on the class path. It's recommended that you enable native access more selectively by
moving JAR files that use the FFM API to the module path. This allows native access to be
enabled for those JAR files specifically, not for the entire class path. You can move a JAR file
from the class path to the module path without it being modularized. The Java runtime will treat
it as an automatic module whose name is based on its file name. See Incremental
Modularization with Automatic Modules.

Controlling the Effect of Native Access Restrictions

If native access is not enabled for a module, then it is illegal for code in that module to call a
restricted method. You can specify what happens when such a module calls a restricted
method by setting the --i | | egal - nati ve- access command-line option to one of the following
values:

« al | ow Allows the restricted operation to proceed.

< war n: Allows the restricted operation to proceed and issues a warning the first time that an
illegal native access occurs in a particular module. At most one warning per module is
issued. This is the default value in JDK 24 and later.

 deny: Throwsan ||| egal Cal | er Excepti on for every illegal native access operation.
This will be the default value in a future release of the JDK.

Calling Native Functions with jextract

Core Libraries
G29144-01

The j ext ract tool mechanically generates Java bindings from a native library header file.
The bindings that this tool generates depend on the Foreign Function and Memory (FFM) API.
With this tool, you don't have to create downcall and upcall handles for functions you want to
invoke; the j ext ract tool generates code that does this for you.

Obtain the tool from the following site:

https://jdk.java.net/jextract/

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 31 of 35

https://dev.java/learn/modules/automatic-module/
https://dev.java/learn/modules/automatic-module/
https://jdk.java.net/jextract/

ORACLE’

Chapter 12
Calling Native Functions with jextract

Obtain the source code for j ext r act from the following site:

htt ps://qgithub. com openj dk/j extract

This site also contains steps on how to compile and run j ext r act , additional documentation,
and samples.

Topics

Run a Python Script in a Java Application

Call the gsort Function from a Java Application

Run a Python Script in a Java Application

Core Libraries
G29144-01

The following steps show you how to generate Java bindings from the Python header file,
Pyt hon. h, then use the generated code to run a Python script in a Java application. The
Python script prints the length of a Java string.

Run the following command to generate Java bindings for Pyt hon. h:

jextract -l :<absolute path of Python shared library> \
--output <directory containing code generated by jextract> \
-1 <directory containing Python header files>\
-t org.python <absol ute path of Python. h>

For example:

jextract -1 :/1ib64/libpython3.6mso.1.0 \
--output gensrc \
-1 [usr/include/python3.6m\
-t org.python /usr/include/python3. 6m Python. h

On Linux, to obtain the path of the Python shared library, you can run the following
command:

I dconfig -p | grep libpython

Running this command prints output similar to the following:

l'i bpython3.6mso.1.0 (libc6,x86-64) => /1ib64/!libpython3. 6mso.1.0
l'i bpyt hon3. 6m so (libc6, x86-64) => /1ihb64/1ibpython3.6m so

l'i bpython3.so (libc6, x86-64) => [1ihb64/1ibpython3.so

l'i bpython2.7.s0.1.0 (libc6,x86-64) => /|ib64/1ibpython2.7.s0.1.0
l'ibpython2.7.s0 (libc6, x86-64) => /1ib64/Iibpython2.7.so

The value of the -1 option is a path or name of a shared library that the generated header
class should load. If it starts with a colon (:), then the value is interpreted as a library path.
Otherwise, it's a library name such as G for | i bG.. so.

The j extract tool can resolve any library specifier known by the dynamic linker.
Consequently, you can run this command as follows:

jextract -1 :libpython3.6mso.1.0 \
--output gensrc \

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 32 of 35

https://github.com/openjdk/jextract

ORACLE Chapter 12
Calling Native Functions with jextract

-1 [usr/include/python3.6m\
-t org.python /usr/include/python3. 6nm Pyt hon. h

On Linux systems, if you can't find Pyt hon. h or the directory containing the Python
header files, you might have to install the pyt hon- devel package.

2. Inthe same directory as cl asses, which should contain the Python Java bindings, create
the following file, Pyt honMai n. j ava:

i nport java.lang.foreign.Arena;

i nport java.lang. foreign. MenorySegment;

inport static java.lang.foreign. MemorySegment . NULL;
i nport static org.python.Python_h.*;

public class PythonMain {

public static void main(String[] args) {
String nyString = "Hello world!";
String script = """
string = "%"
print(string, , len(string), sep="")
""" formatted(nyString).striplndent();
Py Initialize();

try (Arena arena = Arena.of Confined()) {
MerorySegment nativeString = arena. al |l ocat eFromn(script);
PyRun_Si npl eSt ri ngFl ags(
nativeString,

NULL) ;
Py _Finalize();
}
Py_Exi t(0);

}
3. Compile Pyt honMai n. j ava with the following command:
javac -sourcepath gensrc PythonMin.|ava

4. Run Pyt honMai n with the following command:

java -cp gensrc:. --enable-native-access=ALL- UNNAMED Pyt honMai n

Call the gsort Function from a Java Application

As mentioned previously, gsort is a C library function that requires a pointer to a function that
compares two elements. The following steps create Java bindings for the C standard library
with j ext r act, create an upcall handle for the comparison function required by gsort , and
then call the gsort function.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 33 of 35

ORACLE Chapter 12
Calling Native Functions with jextract

1. Run the following command to create Java bindings for st dl i b. h, which is the header file
for the C standard library:

jextract --output <directory containing code generated by jextract> \
-t org.unix <absolute path to stdlib.h>

For example:

jextract --output gensrc -t org.unix /usr/include/stdlib.h

The generated Java bindings for st dl i b. h include a Java class named st dl i b_h, which
includes a Java method named gsort (Menor ySegnent, |ong, |ong, MenorySegment),
and a Java interface named __conpar _f n_t, which includes a method named

al | ocat e that creates a function pointer for the comparison function required by the
gsort function.

2. Inthe same directory where you generated the Java bindings for st dl i b. h, create the
following Java source file, Gsort Mai n. j ava:

inport static org.unix.stdlib_h.*;

i nport java.lang.foreign.Arena;

i nport java.lang. foreign. MenorySegment ;
i nport java.lang.foreign. Val ueLayout;

public class QsortMin {
public static void main(String[] args) {
int[] unsortedArray = newint[] { O, 9, 3, 4, 6, 5 1, 8, 2, 7};
try (Arena a = Arena. of Confined()) {

/1l Al'locate off-heap menmory and store unsortedArray in it
1
/1 stdlib_h.CINT is a constant generated by jextract

MermorySegnment array = a. al | ocat eFron{ C_I NT,
unsortedArray);

Il Create upcall stub for the conparison function

1

/1 MenorySegnent
org.unix.__conpar_fn_t.allocate(__conpar_fn_t, Arena)

/1 is from __conpar_fn_t.java, generated by jextract

Menor ySegment conpar Func = org. uni x. __conpar_fn_t.allocate(
(addrl, addr2) ->
I nt eger. conpar e(
addr1.get (C_INT, 0),
addr2.get (C_INT, 0)),
a);

[l Call gsort
gsort(array, (long) unsortedArray.length, C_INT.byteSize(),
conpar Func) ;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 34 of 35

ORACLE Chapter 12
Calling Native Functions with jextract

Il Copy off-heap nmenory into newint[]
int[] sortedArray = array.toArray(C_|INT);

for (int num: sortedArray) {
Systemout.print(num+ " ");

}
Systemout. println();

The following statement creates an upcall, conpar Func, from a lambda expression:

/1 Create upcall for comparison function

I

[l Memor ySegnent
org.unix.__conpar_fn_t.allocate(__conpar_fn_t, SegnentScope)

[l is from__conpar_fn-t.java, generated by jextract

MerorySegnment conpar Func = org. uni x. __conpar_fn_t.all ocate(
(addrl, addr2) ->
I nt eger. conpar e(
addr 1. get (C_INT, 0),
addr2. get (C_INT, 0)),
a);

Consequently, you don't have to create a method handle for the comparison function as
described in Upcalls: Passing Java Code as a Function Pointer to a Foreign Function .

3. Compile sort Mai n. j ava with the following command:

javac -sourcepath gensrc QsortMin.java

4. Run (sort Mi n with the following command:

java -cp gensrc:. --enable-native-access=ALL- UNNAMED (sort Mai n

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 35 of 35

Scoped Values

A scoped value is a value that may be safely and efficiently shared to methods without using
method parameters.

See the ScopedVal ue class in the Java SE API specification for more information.

For background information about scoped values, see JEP 506.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 1

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ScopedValue.html
https://openjdk.org/jeps/506

Concurrency

Core Libraries
G29144-01

Java SE's concurrency APIs provide a powerful, extensible framework of high-performance
threading utilities such as thread pools and blocking queues. This package frees the
programmer from the need to craft these utilities by hand, in much the same manner the
collections framework did for data structures. Additionally, these packages provide low-level
primitives for advanced concurrent programming.

The concurrency APIs, which are contained in the package | ava. uti | . concurrent, are
classes that are designed to be used as building blocks in building concurrent classes or
applications. Just as the collections framework simplified the organization and manipulation of
in-memory data by providing implementations of commonly used data structures, the
concurrency utilities simplify the development of concurrent classes by providing
implementations of building blocks commonly used in concurrent designs. The concurrency
utilities include a high-performance, flexible thread pool; a framework for asynchronous
execution of tasks; a host of collection classes optimized for concurrent access;
synchronization utilities such as counting semaphores; atomic variables; locks; and condition
variables.

Using the concurrency utilities, instead of developing components such as thread pools
yourself, offers a number of advantages:

* Reduced programming effort. It is easier to use a standard class than to develop it
yourself.

* Increased performance. The implementations in the concurrency utilities were developed
and peer-reviewed by concurrency and performance experts; these implementations are
likely to be faster and more scalable than a typical implementation, even by a skilled
developer.

* Increased reliability. Developing concurrent classes is difficult. The low-level concurrency
primitives provided by the Java language (synchroni zed, vol atil e, wait(), notify(), and
notifyAl | ()) are difficult to use correctly, and errors using these facilities can be difficult to
detect and debug. By using standardized, extensively tested concurrency building blocks,
many potential sources of threading hazards such as deadlock, starvation, race conditions,
or excessive context switching are eliminated. The concurrency utilities were carefully
audited for deadlock, starvation, and race conditions.

* Improved maintainability. Programs that use standard library classes are easier to
understand and maintain than those that rely on complicated, homegrown classes.

* Increased productivity. Developers are likely to already understand the standard library
classes, so there is no need to learn the API and behavior of ad hoc concurrent
components. Additionally, concurrent applications are simpler to debug when they are built
on reliable, well-tested components.

In short, using the concurrency APIs to implement a concurrent application can help your
program be clearer, shorter, faster, more reliable, more scalable, easier to write, easier to read,
and easier to maintain.

The concurrency APIs include the following:

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 29

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/package-summary.html

ORACLE’

Table 14-1 Concurrency APIs

Chapter 14

API

Description

Virtual threads

Virtual Threads are lightweight threads that reduce
the effort of writing, maintaining, and debugging
high-throughput concurrent applications.

Structured concurrency

Structured Concurrency treats groups of related
tasks running in different threads as a single unit of
work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing
observability.

Task scheduling framework

The Execut or interface standardizes invocation,
scheduling, execution, and control of asynchronous
tasks according to a set of execution policies.
Implementations are provided that enable tasks to
be executed within the submitting thread, in a
single background thread (see

Execut ors: : newSi ngl eThr eadExecut or
, as with events in Swing, in a newly created
thread, or in a thread pool (see

Execut ors: : newri xedThr eadPool), and
developers can create customized implementations
of Execut or that support arbitrary execution
policies. The built-in implementations offer
configurable policies such as queue length limits
and saturation policy (see

Rej ect edExecut i onHandl er) that can
improve the stability of applications by preventing
runaway resource use.

Fork/join framework

Based on the For kJoi nPool class, this
framework is an implementation of Execut or . It
is designed to efficiently run a large number of
tasks using a pool of worker threads. A work-
stealing technique is used to keep all the worker
threads busy, to take full advantage of multiple
processors.

Concurrent collections

Concurrent collections include Queue,
Bl ocki ngQueue and Bl ocki ngDeque.

Atomic variables

Utility classes are provided that atomically
manipulate single variables (primitive types or
references), providing high-performance atomic
arithmetic and compare-and-set methods. The
atomic variable implementations in the
java.util.concurrent. at om ¢ package offer
higher performance than would be available by
using synchronization (on most platforms), making
them useful for implementing high-performance
concurrent algorithms and conveniently
implementing counters and sequence number
generators.

Synchronizers

Synchronizers are general purpose synchronization
classes that facilitate coordination between
threads. These include Senaphor e,
CyclicBarrier, Count downlLat ch,
Phaser, and Exchanger .

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 2 of 29

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newSingleThreadExecutor--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/AbstractExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Exchanger.html

ORACLE’

Table 14-1 (Cont.) Concurrency APls

Chapter 14
Virtual Threads

API

Description

Locks

While locking is built into the Java language
through the synchronized keyword, there are a
number of limitations to built-in monitor locks. The
java. util.concurrent.| ocks package
provides a high-performance lock implementation
with the same memory semantics as
synchronization, and it also supports specifying a
timeout when attempting to acquire a lock, multiple
condition variables per lock, nonnested ("hand-
over-hand") holding of multiple locks, and support
for interrupting threads that are waiting to acquire a
lock

Nanosecond-granularity timing

The Syst em nanoTi me method enables access to
a nanosecond-granularity time source for making
relative time measurements and methods that
accept timeouts (such as the

Bl ocki ngQueue. of f er, Bl ocki ngQueue. pol |,
Lock. trylLock, Condi tion.await, and

Thr ead. sl eep) can take timeout values in
nanoseconds. The actual precision of the

Syst em nanoTi ne method is platform-dependent.

Thread-local variables

Thread-Local Variables are variables of type

Thr eadLocal . Unlike "regular" variables, each
thread that access a thread-local variable has its
own, independently initialized copy of the variable.

Virtual Threads

Virtual threads are lightweight threads that reduce the effort of writing, maintaining, and
debugging high-throughput concurrent applications.

For background information about virtual threads, see JEP 444.

A thread is the smallest unit of processing that can be scheduled. It runs concurrently with—
and largely independently of—other such units. It's an instance of | ava. | ang. Thr ead. There
are two kinds of threads, platform threads and virtual threads.

Topics

« Whatis a Platform Thread?

e Whatis a Virtual Thread?

e Why Use Virtual Threads?

e Creating and Running a Virtual Thread

e Scheduling Virtual Threads and Pinned Virtual Threads

* Debugging Virtual Threads

e Virtual Threads: An Adoption Guide

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 3 of 29

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html#offer-E-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html#poll-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#tryLock-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#await-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#sleep-long-int-
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/ThreadLocal.html
https://openjdk.java.net/jeps/444
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

ORACLE Chapter 14
Virtual Threads

What is a Platform Thread?

A platform thread is implemented as a thin wrapper around an operating system (OS) thread. A
platform thread runs Java code on its underlying OS thread, and the platform thread captures
its OS thread for the platform thread's entire lifetime. Consequently, the number of available
platform threads is limited to the number of OS threads.

Platform threads typically have a large thread stack and other resources that are maintained by
the operating system. They are suitable for running all types of tasks but may be a limited
resource.

What is a Virtual Thread?

Like a platform thread, a virtual thread is also an instance of j ava. | ang. Thr ead. However, a
virtual thread isn't tied to a specific OS thread. A virtual thread still runs code on an OS thread.
However, when code running in a virtual thread calls a blocking I/O operation, the Java runtime
suspends the virtual thread until it can be resumed. The OS thread associated with the
suspended virtual thread is now free to perform operations for other virtual threads.

Virtual threads are implemented in a similar way to virtual memory. To simulate a lot of
memory, an operating system maps a large virtual address space to a limited amount of RAM.
Similarly, to simulate a lot of threads, the Java runtime maps a large number of virtual threads
to a small number of OS threads.

Unlike platform threads, virtual threads typically have a shallow call stack, performing as few
as a single HTTP client call or a single JDBC query. Although virtual threads support thread-
local variables and inheritable thread-local variables, you should carefully consider using them
because a single JVM might support millions of virtual threads.

Virtual threads are suitable for running tasks that spend most of the time blocked, often waiting
for I/O operations to complete. However, they aren't intended for long-running CPU-intensive
operations.

Why Use Virtual Threads?

Use virtual threads in high-throughput concurrent applications, especially those that consist of
a great number of concurrent tasks that spend much of their time waiting. Server applications
are examples of high-throughput applications because they typically handle many client
requests that perform blocking 1/0 operations such as fetching resources.

Virtual threads are not faster threads; they do not run code any faster than platform threads.
They exist to provide scale (higher throughput), not speed (lower latency).

Creating and Running a Virtual Thread

The Thr ead and Thr ead. Bui | der APIs provide ways to create both platform and virtual
threads. The j ava. uti | . concurrent. Execut or s class also defines methods to create an
Execut or Ser vi ce that starts a new virtual thread for each task.

Topics

e Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface

e Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 29

ORACLE Chapter 14
Virtual Threads

e Multithreaded Client Server Example

Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface

Call the Thr ead. of Vi rt ual () method to create an instance of Thr ead. Bui | der for
creating virtual threads.

The following example creates and starts a virtual thread that prints a message. It calls the
j oi n method to wait for the virtual thread to terminate. (This enables you to see the printed
message before the main thread terminates.)

Thread thread = Thread.of Virtual ().start(() -> Systemout.println("Hello"));
thread.join();

The Thr ead. Bui | der interface lets you create threads with common Thr ead properties
such as the thread's name. The Thr ead. Bui | der . O Pl at f or msubinterface creates
platform threads while Thr ead. Bui | der. O Vi rt ual creates virtual threads.

The following example creates a virtual thread named MyThr ead with the Thr ead. Bui | der
interface:

Thread. Bui | der builder = Thread. of Virtual (). name("MWThread");
Runnabl e task = () -> {

System out. println("Running thread");
b
Thread t = builder.start(task);
Systemout. printIn("Thread t name: " + t.getName());
t.join();

The following example creates and starts two virtual threads with Thr ead. Bui | der:

Thread. Bui | der buil der = Thread. of Virtual (). nane("worker-", 0);
Runnabl e task = () -> {
Systemout.println("Thread ID: " + Thread. current Thread().threadl d());

b

/1 name "worker-Q"

Thread t1 = builder.start(task);

tl.join();

Systemout.printin(tl. getName() + " termnated");

/1 name "worKker-1"

Thread t2 = builder.start (task);

t2.join();

Systemout.printin(t2.getName() + " termnated");

This example prints output similar to the following:

Thread ID: 21
wor ker-0 term nated
Thread I D 24

worker-1 term nated

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 29

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.Builder.html

ORACLE Chapter 14
Virtual Threads

Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method

Executors let you to separate thread management and creation from the rest of your
application.

The following example creates an Execut or Ser vi ce with the

Execut ors. newVi rt ual Thr eadPer TaskExecut or () method. Whenever

Execut or Servi ce. subm t (Runnabl e) is called, a new virtual thread is created and
started to run the task. This method returns an instance of Fut ur e. Note that the method
Fut ur e. get () waits for the thread's task to complete. Consequently, this example prints a
message once the virtual thread's task is complete.

try (ExecutorService nyExecutor =
Execut ors. newVi rt ual Thr eadPer TaskExecutor ()) {

Future<?> future = nyExecutor.submt(() -> Systemout.println("Running
thread"));

future.get();

System out. println("Task conpleted");

...

Multithreaded Client Server Example

The following example consists of two classes. EchoSer ver is a server program that listens on
a port and starts a new virtual thread for each connection. Echod i ent is a client program that
connects to the server and sends messages entered on the command line.

EchoC i ent creates a socket, thereby getting a connection to EchoSer ver . It reads input from
the user on the standard input stream, and then forwards that text to EchoSer ver by writing the
text to the socket. EchoSer ver echoes the input back through the socket to the EchoC i ent .
EchoC i ent reads and displays the data passed back to it from the server. EchoServer can
service multiple clients simultaneously through virtual threads, one thread per each client
connection.

public class EchoServer {
public static void main(String[] args) throws | CException {

if (args.length I=1) {
Systemerr.println("Usage: java EchoServer <port>");
Systemexit(1);

}

int portNumber = Integer.parselnt(args[0]);
try (
Server Socket serverSocket =
new Server Socket (I nteger. parselnt(args[0]));
) {
while (true) {
Socket clientSocket = serverSocket.accept();
/1 Accept incom ng connections
[/ Start a service thread
Thread.of Virtual ().start(() -> {

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 29

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()

ORACLE Chapter 14
Virtual Threads

try (
PrintWiter out =

new PrintWiter(clientSocket.getQutputStreamn),

true);
Buf f er edReader in = new BufferedReader (
new
I nput St reanReader (cl i ent Socket . get I nput Strean()));
) {
String inputLine;
while ((inputLine = in.readLine()) !'= null) {
System out. println(inputLine);
out. println(inputLine);
}
} catch (I CException e) {
e.printStackTrace();
}
D
}
} catch (I OException e) {
Systemout. println("Exception caught when trying to listen on
port "
+ portNunmber + " or listening for a connection");
Systemout. println(e.get Message());
}
}
}

public class EchoCient {
public static void main(String[] args) throws | CException {
if (args.length '=2) {
Systemerr. println(
"Usage: java Echodient <hostnane> <port>");
Systemexit(1);
}
String hostName = args[0];
int portNunber = Integer.parselnt(args[1]);
try (
Socket echoSocket = new Socket (host Nane, port Nunber);
PrintWiter out =
new PrintWiter(echoSocket. get QutputStream), true);
Buf f eredReader in =
new Buf f er edReader (
new | nput St reanReader (echoSocket . get | nput Stream()));

Buf f eredReader stdin =

new Buf f er edReader (
new | nput St reanReader (Systemin));

String userlnput;

while ((userlnput = stdlin.readLine()) !'= null) {
out.println(userlnput);
Systemout. printin("echo: " + in.readLine());
i f (userlnput.equal s("bye")) break;

}

} catch (UnknownHost Exception e) {

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 29

ORACLE’

Chapter 14
Virtual Threads

Systemerr.printin("Don't know about host " + hostNane);
Systemexit(1);
} catch (I OCException e) {
Systemerr.printin("Couldn't get 1/O for the connection to " +
host Nane) ;
Systemexit(1);

Scheduling Virtual Threads and Pinned Virtual Threads

The operating system schedules when a platform thread is run. However, the Java runtime
schedules when a virtual thread is run. When the Java runtime schedules a virtual thread, it
assigns or mounts the virtual thread on a platform thread, then the operating system schedules
that platform thread as usual. This platform thread is called a carrier. After running some code,
the virtual thread can unmount from its carrier. This usually happens when the virtual thread
performs a blocking I/O operation. After a virtual thread unmounts from its carrier, the carrier is
free, which means that the Java runtime scheduler can mount a different virtual thread on it.

A virtual thread cannot be unmounted during blocking operations when it is pinned to its
carrier. A virtual thread is pinned when it runs a nat i ve method or a foreign function (see
Foreign Function and Memory API). Pinning does not make an application incorrect, but it
might hinder its scalability.

Debugging Virtual Threads

Virtual threads are still threads; debuggers can step through them like platform threads. JDK
Flight Recorder and the j cnd tool have additional features to help you observe virtual threads
in your applications.

Topics

 JDK Flight Recorder Events for Virtual Threads

¢ Viewing Virtual Threads in jcmd Thread Dumps

JDK Flight Recorder Events for Virtual Threads

Core Libraries
G29144-01

JDK Flight Recorder (JFR) can emit these events related to virtual threads:

e jdk.Virtual ThreadStart and | dk. Virtual Thr eadEnd indicate when a virtual thread starts
and ends. These events are disabled by default.

e jdk.Virtual ThreadPi nned indicates that a virtual thread was pinned (and its carrier thread
wasn't freed) for longer than the threshold duration. This event is enabled by default with a
threshold of 20 ms.

e jdk.Virtual ThreadSubnit Fai | ed indicates that starting or unparking a virtual thread
failed, probably due to a resource issue. Parking a virtual thread releases the underlying
carrier thread to do other work, and unparking a virtual thread schedules it to continue.
This event is enabled by default.

Enable the events j dk. Vi rt ual ThreadStart and j dk. Vi rt ual Thr eadEnd through JDK Mission
Control or with a custom JFR configuration as described in Flight Recorder Configurations in
Java Platform, Standard Edition Flight Recorder API Programmer’s Guide.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 29

ORACLE’

Chapter 14
Virtual Threads

To print these events, run the following command, where r ecor di ng. j f r is the file name of
your recording:

jfr print --events
jdk. Virtual ThreadStart,jdk. Virtual ThreadEnd, j dk. Vi rt ual Thr eadPi nned, j dk. Vi rtual Th
readSubnitFail ed recording.jfr

Viewing Virtual Threads in jcmd Thread Dumps

You can create a thread dump in plain text as well as JSON format:

jcmd <PID> Thread. dunp_to_file -format=text <file>
jcmd <PI D> Thread. dunp_to_file -format=json <file>

The j cmd thread dump lists all threads, including both platform and virtual threads. However, it
doesn't include object addresses, JNI statistics, heap statistics, and other information that
appears in traditional thread dumps.

Virtual Threads: An Adoption Guide

Virtual threads are Java threads that are implemented by the Java runtime rather than the OS.
The main difference between virtual threads and the traditional threads—which we've come to
call platform threads—is that we can easily have a great many active virtual threads, even
millions, running in the same Java process. It is their high number that gives virtual threads
their power: they can run server applications written in the thread-per-request style more
efficiently by allowing the server to process many more requests concurrently, leading to higher
throughput and less waste of hardware.

Because virtual threads are an implementation of j ava. | ang. Thr ead and conform to the
same rules that specified j ava. | ang. Thr ead since Java SE 1.0, developers don't need to
learn new concepts to use them. However, the inability to spawn very many platform threads—
the only implementation of threads available in Java for many years—has bred practices
designed to cope with their high cost. These practices are counterproductive when applied to
virtual threads, and must be unlearned. Moreover, the vast difference in cost informs a new
way of thinking about threads that may be foreign at first.

This guide is not intended to be comprehensive and cover every important detail of virtual
threads. It is meant but to provide an introductory set of guidelines to help those who wish to
start using virtual threads make the best of them.

Write Simple, Synchronous Code Employing Blocking 1/O APIs in the Thread-Per-
Request Style

Core Libraries
G29144-01

Virtual threads can significantly improve the throughput—not the latency—of servers written in
the thread-per-request style. In this style, the server dedicates a thread to processing each
incoming request for its entire duration. It dedicates at least one thread because, when
processing a single request, you may want to employ more threads to carry some tasks
concurrently.

Blocking a platform thread is expensive because it holds on to the thread—a relatively scarce
resource—while it is not doing much meaningful work. Because virtual threads can be plentiful,
blocking them is cheap and encouraged. Therefore, you should write code in the
straightforward synchronous style and use blocking 1/0 APIs.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 29

ORACLE’

Chapter 14
Virtual Threads

For example, the following code, written in the non-blocking, asynchronous style, won't benefit
much from virtual threads.

Conpl et abl eFut ure. suppl yAsync(info::getUl, pool)
. thenCompose(url -> getBodyAsync(url,
Ht t pResponse. BodyHandl ers. of String()))
.thenAppl y(info::findl mge)
.thenCompose(url -> getBodyAsync(url,
Ht t pResponse. BodyHandl ers. of Byt eArray()))
.thenAppl y(i nfo::setlnmageDat a)
.thenAccept (this:: process)
.exceptional ly(t -> { t.printStackTrace(); return null; });

On the other hand, the following code, written in the synchronous style and using simple
blocking 10, will benefit greatly:

try {
String page = getBody(info.getUl (), HttpResponse.BodyHandl ers.of String());
String i mgeUrl = info.findlnage(page);

byte[] data = getBody(inmagelrl,

Ht t pResponse. BodyHandl ers. of Byt eArray());
i nfo.setlnageDat a(dat a);
process(info);

} catch (Exception ex) {
t.printStackTrace();

}

Such code is also easier to debug in a debugger, profile in a profiler, or observe with thread-
dumps. To observe virtual threads, create a thread dump with the | cnd command:

jcmd <pid> Thread. dunp_to_file -format=json <file>

The more of the stack that's written in this style, the better virtual threads will be for both
performance and observability. Programs or frameworks written in other styles that don't
dedicate a thread per task should not expect to see a significant benefit from virtual threads.
Avoid mixing synchronous, blocking code with asynchronous frameworks.

Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads

Core Libraries
G29144-01

The hardest thing to internalize about virtual threads is that, while they have the same behavior
as platform threads they should not represent the same program concept.

Platform threads are scarce, and are therefore a precious resource. Precious resources need
to be managed, and the most common way to manage platform threads is with thread pools. A
guestion that you then need to answer is, how many threads should we have in the pool?

But virtual threads are plentiful, and so each should represent not some shared, pooled,
resource but a task. From a managed resource threads turn into application domain objects.
The question of how many virtual threads we should have becomes obvious, just as the
guestion of how many strings we should use to store a set of user names in memory is
obvious: The number of virtual threads is always equal to the number of concurrent tasks in
your application.

Converting n platform threads to n virtual threads would yield little benefit; rather, it's tasks that
need to be converted.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 29

https://docs.oracle.com/en/java/javase/20/docs/specs/man/jcmd.html

ORACLE’

Core Libraries
G29144-01

Chapter 14
Virtual Threads

To represent every application task as a thread, don't use a shared thread pool executor like in
the following example:

Fut ure<Resul tA> f1
Fut ure<Resul t B> f2
/1 ... use futures

shar edThr eadPool Execut or. submi t (taskl);
shar edThr eadPool Execut or. submi t (t ask2);

Instead, use a virtual thread executor like in the following example:

try (var executor = Executors.newVirtual ThreadPer TaskExecutor()) {
Fut ure<Resul t A> f1 = executor.submt(taskl);
Fut ure<Resul t B> f2 = executor.submt(task2);
Il ... use futures

The code still uses an Execut or Ser vi ce, but the one returned from
Execut ors. newVi rt ual Thr eadPer TaskExecut or () doesn't employ a thread pool.
Rather, it creates a new virtual thread for each submitted tasks.

Furthermore, that Execut or Ser vi ce itself is lightweight, and we can create a new one just
as we would with any simple object. That allows us to rely on the newly added

Execut or Servi ce. cl ose() method and the try-with-resources construct. The cl ose
method, that is implicitly called at the end of the try block will automatically wait for all tasks
submitted to the Execut or Ser vi ce—that is, all virtual threads spawned by the

Execut or Ser vi ce—to terminate.

This is a particularly useful pattern for fanout scenarios, where you wish to concurrently
perform multiple outgoing calls to different services like in the following example:

voi d handl e(Request request, Response response) {
var urll = ...
var url2 = ...

try (var executor = Executors.newvirtual ThreadPer TaskExecutor()) {
var futurel = executor.submt(() -> fetchURL(url1));
var future2 = executor.submt(() -> fetchURL(url2));
response. send(futurel.get() + future2.get());

} catch (ExecutionException | InterruptedException e) {
response.fail (e);

}

}

String fetchURL(URL url) throws |COException {
try (var in = url.openStrean()) {
return new String(in.readAllBytes(), StandardCharsets.UTF 8);
}

You should create a new virtual thread, as shown above, for even small, short-lived concurrent
tasks.

For even more help writing the fanout pattern and other common concurrency patterns, with
better observability, use structured concurrency.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 29

ORACLE Chapter 14
Virtual Threads

As a rule of thumb, if your application never has 10,000 virtual threads or more, it is unlikely to
benefit from virtual threads. Either it experiences too light a load to need better throughput, or
you have not represented sufficiently many tasks to virtual threads.

Use Semaphores to Limit Concurrency

Sometimes there is a need to limit the concurrency of a certain operation. For example, some
external service may not be able to handle more than ten concurrent requests. Because
platform threads are a precious resource that is usually managed in a pool, thread pools have
become so ubiquitious that they're used for this purpose of restricting concurrency, like in the
following example:

Execut or Servi ce es = Execut ors. newFi xedThr eadPool (10) ;

Result foo() {

try {
var fut = es.submt(() -> callLinitedService());

return f.get();
} catch (...) { ... }

This example ensures that there are at most ten concurrent requests to the limited service.

But restricting concurrency is only a side-effect of thread pools' operation. Pools are designed
to share scarce resources, and virtual threads aren’t scarce and therefore should never be
pooled!

When using virtual threads, if you want to limit the concurrency of accessing some service, you
should use a construct designed specifically for that purpose: the Semaphor e class. The
following example demonstrates this class:

Semaphore sem = new Semaphor e(10);

Result foo() {
sem acquire();

try {
return call LimtedService();
} finally {

semrel ease();

}

Threads that happen to call f oo will be throttled, that is, blocked, so that only ten of them can
make progress at a time, while others will go about their business unencumbered.

Simply blocking some virtual threads with a semaphore may appear to be substantially
different from submitting tasks to a fixed thread pool, but it isn't. Submitting tasks to a thread
pool queues them up for later execution, but the semaphore internally (or any other blocking
synchronization construct for that matter) creates a queue of threads that are blocked on it that
mirrors the queue of tasks waiting for a pooled thread to execute them. Because virtual threads
are tasks, the resulting structure is equivalent:

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 29

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Semaphore.html

ORACLE’

Chapter 14
Virtual Threads

Figure 14-1 Comparing a Thread Pool with a Semaphore

A queue of waiting tasks A queue of blocked threads
Semaphore
Thread Pool (or any blocking
construct)
3 tasks making progress 3 threads making progress

Even though you can think of a pool of platform threads as workers processing tasks that they
pull from a queue and of virtual threads as the tasks themselves, blocked until they may
continue, the underlying representation in the computer is virtually identical. Recognizing the
equivalence between queued tasks and blocked threads will help you make the most of virtual
threads.

Database connection pools themselves serve as a semaphore. A connection pool limited to ten
connections would block the eleventh thread attempting to acquire a connection. There is no
need to add an additional semaphore on top of the connection pool.

Don't Cache Expensive Reusable Objects in Thread-Local Variables

Core Libraries
G29144-01

Virtual threads support thread-local variables just as platform threads do. See Thread-Local
Variables for more information. Usually, thread-local variables are used to associate some
context-specific information with the currently running code, such as the current transaction
and user ID. This use of thread-local variables is perfectly reasonable with virtual threads.
However, consider using the safer and more efficient scoped values. See Scoped Values for
more information.

There is another use of thread-local variables which is fundamentally at odds with virtual
threads: caching reusable objects. These objects are typically expensive to create (and
consume a significant amount of memory), are mutable, and not thread-safe. They are cached
in a thread-local variable to reduce the number of times they are instantiated and their number
of instances in memory, but they are reused by the multiple tasks that run on the thread at
differerent times.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 29

ORACLE’

Chapter 14
Structured Concurrency

For example, an instance of Si npl eDat eFor nmat is expensive to create and isn't thread-safe.
A pattern that emerged is to cache such an instance in a Thr eadLocal like in the following
example:

static final ThreadLocal <Si npl eDat eFor mat > cachedFormatter =
ThreadLocal . wi thlnitial (Si npl eDat eFormat : : new) ;

void foo() {

cachedFormatter.get().format(...);

This kind of caching is helpful only when the thread—and therefore the expensive object
cached in the thread local—is shared and reused by multiple tasks, as would be the case when
platform threads are pooled. Many tasks may call f oo when running in the thread pool, but
because the pool only contains a few threads, the object will only be instantiated a few times—
once per pool thread—cached, and reused.

However, virtual threads are never pooled and never reused by unrelated tasks. Because
every task has its own virtual threads, every call to f oo from a different task would trigger the
instantiation of a new Si npl eDat eFor nat . Moreover, because there may be a great many
virtual threads running concurrently, the expensive object may consume quite a lot of memory.
These outcomes are the very opposite of what caching in thread locals intends to achieve.

There is no single general alternative to offer, but in the case of Si npl eDat eFor mat , you
should replace it with Dat eTi neFor nat t er . Dat eTi neFor nat t er is immutable, and so a
single instance can be shared by all threads:

static final DateTinmeFormatter formatter = DateTi neFormatter...;
void foo() {

formatter.format(...);

Note that using thread-local variables to cache shared expensive objects is sometimes done
behind the scenes by asynchronous frameworks, under their implicit assumption that they are
used by a very small number of pooled threads. This is one reason why mixing virtual threads
and asynchronous frameworks is not a good idea: a call to a method may result in instantiating
costly objects in thread-local variables that were intended to be cached and shared.

Structured Concurrency

Core Libraries
G29144-01

Structured concurrency treats groups of related tasks running in different threads as a single
unit of work, thereby streamlining error handling and cancellation, improving reliability, and
enhancing observability.

With structured concurrency, a task (a unit of work) is split into several concurrent subtasks.
These subtasks must complete before the task continues. Subtasks are grouped within a
scope, which is represented by the St r uct ur edTaskScope class in the

java. util.concurrent package. To run a subtask within a scope, you fork it, which
executes a value-returning method. By default, this starts a new virtual thread in the scope,
which runs the subtask. After you've forked your subtasks, you join them by calling the

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 29

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/ThreadLocal.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/StructuredTaskScope.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/package-summary.html

ORACLE’

Chapter 14
Structured Concurrency

Struct uredTaskScope: : j oi n method. As a result, the scope waits for all the forked
subtasks to complete. By default, the j oi n method returns null if all the subtasks complete
successfully; otherwise, it throws an exception. This is a scope's default policy. You can specify
a different policy by specifying a joiner. For example, there's a joiner that returns a stream of all
subtasks if they have all completed successfully.

A subtask can create its own scope to fork its own subtasks, thus creating a hierarchy of
scopes. The lifetime of a subtask is confined to the lifetime of its containing scope; all of a
subtask's threads are guaranteed to have terminated once its scope is closed. You can
observe this hierarchy of scopes by generating a thread dump with the j cnd command.

® Note

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options. See
Preview Language and VM Features.

For background information about structured concurrency, see JEP 505.

Basic Usage of the StructuredTaskScope Class

Core Libraries
G29144-01

To use the St ruct ur edTaskScope class, you follow these general steps:

1. Openanew StructuredTaskScope by calling one of its static open methods inatry-
with-resources statement. The thread that opens the scope is the scope's owner.

2. Define your subtasks as instances of Cal | abl e or Runnabl e.

3. Within the try block, fork each subtask in its own thread with
Struct uredTaskScope: : fork.

4. Call StructuredTaskScope: :j oi n to join all of the scope's subtasks as a unit. As a
result, the St r uct ur edTaskScope waits for all the subtasks to complete and then returns
the result, which may throw an exception.

5. Handle the result of St r uct ur edTaskScope: : j oi n.

6. Close the scope, usually implicitly through the t r y-with-resources statement. This cancels
the scope, if it's not already canceled. This prevents new threads from starting in the scope
and interrupts threads running unfinished subtasks.

The following figure illustrates these steps. Notice that the St r uct ur edTaskScope must wait
for all subtasks to finish execution because of the j oi n() method.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 15 of 29

https://openjdk.org/jeps/505

ORACLE Chapter 14
Structured Concurrency

Figure 14-2 Using the StructuredTaskScope Class

Open a StructuredTaskScope
in a try-with-resources statement

l

StructuredTaskScope

Subtask||/Subtask| Subtask||Subtask

U e

join ()

!

Handle outcome from join ()

l

In general, code that use the St r uct ur edTaskScope class has the following structure:

Cal l abl e<String> taskl = () -> { return "Hello Wrld"; };
Cal | abl e<Integer> task2 = () ->{ return Interlingual (42); };

/1 Open a new StructuredTaskScope

try (var scope = StructuredTaskScope. open()) {
Il Fork subtasks
Subt ask<String> subtaskl = scope. fork(taskl);
Subt ask<I nt eger > subt ask?2 = scope. fork(task2);

[l Join the scope's subtasks and propagate exceptions
scope.join();

Il Process the join method' s results
Systemout. println("subtaskl: " + subtaskl.get());
System out. println("subtask2: " + subtask2.get());
} catch (InterruptedException e) {

Systemout. println("InterruptedException");

}

The zero-parameter open() factory method creates and opens a St r uct ur edTaskScope
that implements the default policy, which is to return nul | if all subtasks complete successfully
or throw a St r uct ur edTaskScope. Fai | edExcept i on if any subtask fails. You can specify
another policy by calling one of the open factory methods that takes a

St ruct ur edTaskSope. Joi ner as a parameter.

To start a subtask, call the f or k(Cal | abl e) or f or k(Runnabl e) method. This starts a
thread to run a subtask, which by default is a virtual thread.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 16 of 29

ORACLE’

Joiners

Core Libraries
G29144-01

Chapter 14
Structured Concurrency

The scope's owner thread must call the j oi n method from within the scope. The j oi n method
waits for all subtasks started in this scope to complete or the scope to be canceled. According
to the default policy, if any subtask fails, then the j oi n method throws an exception, and the
scope is canceled. If all subtasks succeed, then the j oi n method completes normally and
returns nul | . If you open a St ruct ur edTaskScope with a Joi ner, then the j oi n method
can return a different type of value.

If a scope's block exits before joining, then the scope is canceled, and the owner will wait in its
cl ose method for all subtasks to terminate before throwing an exception.

After joining, the scope's owner can process the results of the subtasks by using the Subt ask
objects returned from the f or k methods. For example, call the Subt ask: : get method to
obtain the result of a successfully completed subtask. Note that this method throws an
exception if it's called before joining.

A joiner is an object used with a St r uct ur edTaskScope to handle subtask completion and
produce the result for the scope owner waiting in the j oi n method for subtasks to complete.
Depending on the joiner, the j oi n method may return a result, a stream of elements, or some
other object.

The St ruct ur edTaskScope. Joi ner interface defines the following static methods that
create joiners for commonly used policies:

Table 14-2 Static Methods for Policies

Static Method Result of the
Struct uredTaskScope: : j 0i n Method

al | Successful O Thr ow « Returns a stream of all subtasks of they have
all completed successfully

* Throws an exception if any subtask fails

anySuccessf ul Resul t Or Thr ow ¢ Returns the result of the first successful
subtask
e Throws an exception if all subtasks fail
awai t Al | Successf ul or Thr ow « Returns nul | once all subtasks are complete
* Throws the exception from the first subtask
that fails
awai t Al | e Returns nul | once all subtasks are complete

« Doesn't throw any exceptions

The following example opens a St r uct ur edTaskScope with a joiner returned by

al | Successful O Throw. The St ruct ur edTaskScope forks five subtasks, each of which
runs r andonmTask. The r andonTask method takes a maximum duration and a threshold as
parameters. The r andonirask method randomly generates a duration. If this duration is
greater than the threshold, it throws a TooS| owExcept i on.

cl ass TooS| owException extends Exception {
public TooSl owException(String s) {
super(s);
}
}

I nteger randonifask(int nmaxDuration, int threshold) throws

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 17 of 29

ORACLE’

Core Libraries
G29144-01

Chapter 14
Structured Concurrency

I nterruptedException, TooSlI owException {
int t = new Randon(). nextInt(maxDuration);
if (t > threshold) {
t hrow new TooSl owException("Duration " +t + " greater than threshold
" + threshol d);

}

Thread. sl eep(t);

Systemout. printin("Duration: " +t);
return Integer.valueOf(t);

}

voi d runConcurrent!|yRandonlasks() {

Li st <Cal | abl e<I nt eger >> subt asks = I nt Streamrange(0, 5)
.mapToQj (i -> (Callable<Integer>) () ->
randonirask(1000, 900))
.tolist();

try (var scope =
Struct uredTaskScope. open(Joi ner. <I nt eger>al | Successful O Throw())) {
subt asks. f or Each(scope: : fork);
scope.join().forEach(e -> Systemout.printin("Result: " + e.get()));
} catch (InterruptedException e) {
Systemout. println("InterruptedException");
} catch (StructuredTaskScope. Fai | edException e) {
Throwabl e cause = e. get Cause();
Systemout. println("Fail edException: " +
cause. get G ass().getSinpleName() + ": " + cause.get Message());

}
}

The example prints outputs similar to the following if all five subtasks don't throw any
exceptions:

Duration: 312
Duration: 635
Duration: 672
Duration: 816
Duration: 891
Result: 635
Result: 891
Result: 672
Result: 816
Result: 312

The example prints output similar to the following if one subtask throws an exception:

Fai | edExcepti on: TooSl| owException: Duration 966 greater than threshold 900

In this example, because the St r uct ur edTaskScope was opened with a joiner returned by
the al | Successf ul O Thr owmethod, its j oi n method returns a stream of the subtasks (if
all the subtasks complete successfully).

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 18 of 29

ORACLE’

Chapter 14
Structured Concurrency

@ Tip

If you want to fork a series of subtasks of the same type, you can use the following
pattern:

<T> List<T> runConcurrent!|y(Collection<Callabl e<T>> tasks) throws
I nterruptedException {
try (var scope =
Struct uredTaskScope. open(Joi ner. <T>al | Successful O Throw())) {
tasks. f or Each(scope: : fork);
return scope.join().mp(Subtask::get).toList();

How you handle the value that St r uct ur edTaskScope: : j oi n returns depends on
the joiner. For example, the j oi n method of a St r uct ur edTaskScope opened with
a joiner returned by the anySuccessf ul Resul t O Thr ow method returns the result
of the first successful subtask:

<T> T race(Col | ection<Cal | abl e<T>> tasks) throws InterruptedException {
try (var scope =
Struct uredTaskScope. open(Joi ner. <T>anySuccessf ul Resul t O Throw())) {
tasks. f or Each(scope: : fork);
return scope.join();

Custom Joiners

Core Libraries
G29144-01

You can create your own custom joiner by implementing the
Struct ur edTaskScope. Joi ner <T, R> interface:

public static interface Joiner<T, R> {
public default bool ean onFork(Subt ask<? extends T> subtask);
public default bool ean onConpl et e(Subt ask<? extends T> subtask);
public Rresult() throws Throwabl e;

The parameter T is the result type of the subtasks run in the scope, and Ris the result type of
the j oi n method.

The onFor k method is invoked when forking a subtask. The onConpl et e method is invoked
with a subtask completes.

The onFor k and onConpl et e methods return a bool ean value, which indicates if the scope
should be canceled.

The r esul t method is invoked to either produce the result for the j oi n method once all
subtasks have completed or throw an exception if the scope is canceled.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 19 of 29

ORACLE Chapter 14
Structured Concurrency

The following example, Col | ecti ngJoi ner, is a joiner that collects the results of subtasks that
complete successfully and ignores the subtasks that fail.

class Col | ectingJoi ner<T> inplenents Joiner<T, StreanxT>> {
private final Queue<T> results = new ConcurrentLinkedQueue<>();

public bool ean onConpl et e(Subt ask<? extends T> subtask) {
if (subtask.state() == Subtask. State. SUCCESS) {
resul ts. add(subtask.get());
}

return fal se;

}

public StreanxT> result() {
return results.stream);

}

Note that the onConpl et e method may be invoked by several threads concurrently;
consequently Col | ecti ngJoi ner is thread-safe; it stores the results of successful subtasks in a
Conccurrent Li nkedQueue. The method Subt ask: : st at e can return one of the following
values of type St ruct ur edTaskScope. Subt ask. St at e:

* FAI LED: The subtask failed with an exception.
e SUCCESS: The subtask completed successfully.

* UNAVAI LABLE: The subtask result or exception is not available. This state indicates that
the subtask was forked but has not completed, it completed after the scope was canceled,
or it was forked after the scoped was canceled.

The r esul t method returns a stream of successful subtask results.

The following example uses this custom policy:

<T> List<T> all Successful (Li st<Cal | abl e<T>> tasks) throws
I nterruptedException {
try (var scope = StructuredTaskScope. open(new Col | ectingJoi ner<T>())) {
t asks. f or Each(scope::fork);
return scope.join().toList();

}

voi d testColl ectingJdoiner() {
Li st <Cal | abl e<I nt eger >> subtasks = Int Stream
.range(0, 10)
.mapToQoj (i -> (Callable<lInteger>) () -> randoniTask(1000, 300))
.collect(Collectors.toList());

try {
al | Successful (subtasks).stream().forEach(r ->
Systemout.printin("Result: " +r));

} catch (InterruptedException e) {
Throwabl e cause = e. get Cause();
Systemout. println("Fail edException: " +
cause. get G ass().get Si npl eName() + ": " + cause. get Message());

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 20 of 29

ORACLE’

Chapter 14
Structured Concurrency

It prints output similar to the following:

Duration: 122
Duration: 238
Result: 122
Result: 238

Configuring StructuredTaskScope

One of the St ruct ur edTaskScope: : open methods, in addition to a Joi ner, accepts a
Struct ur edTaskScope. Confi g object as a parameter. This object enables you to:

e Set the scope's hame for monitoring and management purposes
e Set the scope's timeout
« Set the thread factory that the scope's fork methods use to create threads

The following example opens a St r uct ur edTaskScope with a configuration object that
specifies a timeout of 200 ms, which means that a Ti meout Except i on will be thrown if the
subtasks forked in the St r uct ur edTaskScope don't complete within 200 ms:

voi d runConcurrent|yConfiguredRandonirasks() {
var subtasks = IntStreamrange(0, 5)
.mapToQbj (i -> (Call abl e<Integer>) () ->
randonirask(1000, 900))
.collect(Collectors.toList());

try (var scope =
St ruct uredTaskScope. open(Joi ner. <l nt eger >al | Successf ul O Throw(),
cf ->
cf.withTi meout (Duration.of MI1is(200)))) {
subt asks. f or Each(scope: : fork);
St reanxSubt ask<l nt eger>> s = scope.join();
s.forEBach(r -> Systemout.printIn("Result: " + r.get()));
} catch (InterruptedException e) {
Systemout. println("InterruptedException");
} catch (StructuredTaskScope. Ti meout Exception e) {
System out . println("Ti meout Exception");
} catch (StructuredTaskScope. Fai | edException e) {
Throwabl e cause = e. get Cause();
Systemout. println("Fail edException: " +
cause. get G ass().getSinpleName() + ": " + cause. get Message());

Scope Hierarchies and Observability

Core Libraries

A Subt ask can create its own St r uct ur edTaskScope to fork its own subtasks, thus
creating a hierarchy of scopes. The lifetime of a subtask is confined to the lifetime of its
containing scope; all of a subtask's threads are guaranteed to have terminated once its scope

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 21 of 29

ORACLE’

Core Libraries
G29144-01

Chapter 14
Structured Concurrency

is closed. You can observe this hierarchy of scopes by generating a thread dump with the j cnd
command.

The following example has three scopes named RandonfaskScope,
RandontTaskScopel nsi deSubt ask, and RandonTaskSubscope. The scope named
RandoniTaskScopel nsi deSubt ask is a scope that has been opened within a subtask. The scope
named RandoniTaskSubscope is a scope opened within the scope named RandoniTaskScope.
These three scopes are opened with a St r uct ur edTaskScope. Confi g object that specifies
their name and a thread factory. This thread factory creates a virtual thread with a unique
name. The j cmd command uses these scope and virtual thread names when generating a
thread dump.

public class SCObservable {

ThreadFactory factory = Thread. of Virtual (). name("Randonirask-",
0).factory();

static String sl eepOneSecond(String s) throws InterruptedException {

long pid = ProcessHandl e. current (). pid();

String threadName = null;

for (int i =0; i <20; i++) {
t hreadNanme = Thread. current Thread() . get Nane();
Systemout.printin("PID. " + pid +", name: " + s + ", thread

name: " + Thread. current Thread().get Nane());

Thr ead. sl eep(1000);

}

return threadNane;

}

void handl e() throws InterruptedException {
try (var scope =
Struct uredTaskScope. open(Struct uredTaskScope. Joi ner. <String>al | Successful O Thr
ow(),
cf ->
cf.w thThreadFact ory(factory)
. Wi t hName(" Randonira
skScope”))) {
Suppl i er<String> task0 = scope.fork(() ->
sl eepOneSecond("t ask0"));
Supplier<String> taskl = scope.fork(() ->
sl eepOneSecond("taskl1"));

Call abl e<String>t = () -> {
String results = "Result in RandonTaskScopel nsi deSubt ask: ";
try (var subtaskscope = StructuredTaskScope. open(

Struct uredTaskScope. Joi ner. <String>al | Successful O Throw(),
cf -> cf.withThreadFactory(factory)
. Wi t hName(" RandoniraskScopel nsi deSubt ask"))) {

Suppl i er<String> task2a = subtaskscope.fork(() ->
sl eepOneSecond("t ask2a"));

Suppl i er<String> task2b = subtaskscope.fork(() ->
sl eepOneSecond("t ask2b"));

results +=
subt askscope. j oi n(). map(Subt ask: : get).collect(Coll ectors.joining(", "));

}

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 22 of 29

ORACLE’

Core Libraries
G29144-01

Chapter 14
Structured Concurrency

return results;

b
Supplier<String> task2 = scope.fork(t);

try (var childscope = StructuredTaskScope. open(
Struct uredTaskScope. Joi ner. <String>al | Successful O Throw(),
cf -> cf.withThreadFactory(factory)
. Wi t hName(" RandoniTaskSubscope"))) {
Supplier<String> task2a = childscope.fork(() ->
sl eepOneSecond("t ask3a"));
Supplier<String> task2b = childscope.fork(() ->
sl eepOneSecond("t ask3b"));
chil dscope.join().forEach(r -> Systemout.printin("Result in
RandoniraskSubscope: " + r.get()));
}
scope.join().forEach(r -> Systemout.println("Result in
RandoniTaskScope: " + r.get()));
}
}

public static void main(String[] args) {
try {
var myApp = new SChservabl e();
myApp. handl e() ;
} catch (Exception e) {
e.printStackTrace();
}

It prints output similar to the following:

PID. 13560, name: task3b, thread name: Randonirask-5
PID. 13560, name: task0O, thread nane: RandonTask-0
PID. 13560, name: taskl, thread nane: RandonTask-1
PID. 13560, name: task2b, thread name: RandoniTask-6
PID. 13560, name: task3a, thread name: Randonirask-3
PID. 13560, name: task2a, thread name: RandoniTask-4
PID. 13560, name: task0O, thread nane: RandonTask-0
PID. 13560, name: taskl, thread nane: RandonTask-1
PID. 13560, name: task3b, thread name: RandoniTask-5
PID. 13560, name: task2a, thread name: RandoniTask-4
PID. 13560, name: task2b, thread name: Randonirask-6
PID. 13560, name: task3a, thread name: Randonirask-3

Result in RandonfTaskSubscope: RandonfTask-3

Result in RandonfTaskSubscope: RandonfTask-5

Result in RandoniTaskScope: RandoniTask-0

Result in RandoniTaskScope: RandoniTask-1

Result in RandonfTaskScope: Result in RandonTaskScopel nsi deSubt ask:
Randonirask- 4, Randoniask- 6

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 23 of 29

ORACLE Chapter 14
Structured Concurrency

While the example SCObser vabl e is running, you can create a thread dump in JSON format by
running the following command:

jcmd <PI D> Thread. dunp_to_file -format=json <file>

The thread dump looks similar to the following. To better illustrate the subtask hierarchy of this
example, only information pertaining to the names of virtual threads and the JSON objects
representing the scopes have been included:

{
"t hreadDump": {
"processld": "13560",
"time": "2025-06-27T20: 31: 26. 1385493002",
"runtimeVersion": "25-ea+27-LTS-3363",
"threadContainers": [
{
“container": "<root>", "parent": null, "owner": null,
“threads": |
{ "tid": "3", "nane": "main" },
other threads onitted ..
1,
“threadCount": "8"
¥
... ForkJoinPool containers onitted ...
{
“container": "RandonTaskScope\/
jdk.internal.m sc. ThreadFl ock$Thr eadCont ai ner | npl @4c794f d"
"parent": "<root>",
"owner": "3",
“threads": |
{ "tid": "36", "virtual": true, "name": "RandonfTask-0" },
{ "tid": "38", "virtual": true, "name": "RandonfTask-1" },
{ "tid": "41", "virtual": true, "name": "RandonfTask-2" }
1,
“threadCount": "3"
¥
{

“container": "RandonTaskSubscope\/
jdk.internal.m sc. ThreadFl ock$Thr eadCont ai ner | npl @4af 33ca"
“parent": "RandonTaskScope\/
jdk.internal.m sc. ThreadFl ock$Thr eadCont ai ner | npl @4c794f d"
"owner": "3",
“threads": |
{ "tid": "43", "virtual": true, "name": "RandonfTask-3" },
{ "tid": "46", "virtual": true, "name": "RandonfTask-5" }

]1
"t hreadCount": "2"
}l

{
“container": "RandonTaskScopel nsi deSubt ask\/
jdk.internal.m sc. ThreadFl ock$Thr eadCont ai ner | npl @c3727de"
“parent": "RandonTaskScope\/
jdk.internal.m sc. ThreadFl ock$Thr eadCont ai ner | npl @4c794f d"
“owner": "41",
“threads": |

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 24 of 29

ORACLE Chapter 14
Thread-Local Variables

{ "tid": "48", "virtual": true, "name": "Randonifask-6" },
{ "tid": "44", “virtual": true, "name": "RandoniTask-4" }

]1
"t hreadCount": "2"

The JSON object for each scope contains an array of the threads forked in the scope. The
JSON object for a scope also has a reference to its parent so that the structure of the program
can be reconstituted from the thread dump.

Thread-Local Variables

A thread-local variable is a variable of type Thr eadLocal . Each thread that access a thread-
local variable has its own, independently initialized copy of the variable. To write or read a
thread-local variable's value, call its set or get method, respectively. Typically, a thread-local
variable is declared as a final static field so that many components can reach it easily.

In the following example, the class TLDBConn represents a database connection. The
TLBDBConn: : open method prints a string and the user's name. The class TLSer ver represents
the database itself. It contains one method, TLSer ver : : f et chOr der, which returns a string
containing the user's name. The class TLAppl i cat i on creates several TLDBConn objects, each
created with a different user and each in its own thread. The TLAppl i cati on: : t est Connection
randomly varies the duration of the thread so that the threads have a chance to run
concurrently.

Figure 14-3 User.java

public class User {
public String nane;
public User(String n) {

name = n;

}

Figure 14-4 TLDBConn.java

public class TLDBConn {
final static ThreadLocal <User> TLUSER = new ThreadLocal <>();

public static String open(String info) {
Systemout.printin(info + ": " + TLUSER get().nane);
return info + ": " + TLUSER get (). nane;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 25 of 29

ORACLE Chapter 14
Thread-Local Variables

Figure 14-5 TLServer.java

public class TLServer {
public static String fetchOrder() {
return "Fetching order for " + TLDBConn. TLUSER. get (). name;

}

Figure 14-6 TLApplication.java

inport java.util.*;
public class TLApplication {
public void testConnection(User u) {

Runnable r = () ->{
TLDBConn. TLUSER. set (u) ;
TLDBConn. open(" Thread " + Thread. current Thread().get Nane() + ",
t est Connection");
Systemout. println(TLServer.fetchOrder());

try {
Thr ead. sl eep(new Randon{) . next | nt (1000));

} catch (InterruptedException e) {
e.printStackTrace();

}

TLDBConn. TLUSER. set (new User (u. name + " renaned"));
TLDBConn. open(" Thread " + Thread. current Thread().get Nane() + ",
t est Connection");

b

Thread t = new Thread(r, u.nane);
t.start();

}

public static void main(String[] args) {

TLAppl i cation myApp = new TLApplication();

for(int i=0; i<5; i++) {
myApp. t est Connecti on(new User ("user" + i));
try {
Thr ead. sl eep(new Randon{) . next | nt (1000));
} catch (InterruptedException e) {
e.printStackTrace();

}

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 26 of 29

ORACLE Chapter 14
Thread-Local Variables

TLAppl i cati on prints output similar to the following:

Thread user0, testConnection: user0

Fet ching order for user0

Thread userl1, testConnection: userl
Fetching order for userl

Thread user?2, testConnection: user2
Fetching order for user2

Thread user0, testConnection: user0 renaned
Thread userl, testConnection: userl renamed
Thread user2, testConnection: user2 renaned
Thread user3, testConnection: user3

Fet ching order for user3

Thread user3, testConnection: user3 renaned
Thread user4, testConnection: user4

Fet ching order for user4

Thread user4, testConnection: user4 renaned

Note that even though the member variable TLDBConn. USERis declared as fi nal stati c, its
value is unique for each thread created by TLAppl i cati on.

Also, note that the TLSer ver: : f et chOr der method has no parameters. It doesn't require code,
in particular, TLAppl i cation: : test Connecti on to pass it a User parameter.

TLServer: : fetchOrder can directly access the TLDBConn. USER thread-local variable that
corresponds to the thread in which it's running:

return "Fetching order for " + TLDBConn. TLUSER. get (). nare;

Consequently, thread-local variables enable you to hide method arguments.

Inheriting Thread-Local Variables

When a parent thread starts a child thread, none of the values of the parent thread's thread-
local variables are inherited by the child thread. However, if you want a child thread to inherit
the values of its parent's thread-local values, then create a thread-local variable with the

I nheritabl eThreadLocal class instead.

The following example includes a | nheri t abl eThr eadLocal variabled named TLADM Nin
addition to the Thr eadLocal named TLUSER:

Figure 14-7 TLDBConn.java

public class TLDBConn {

final static ThreadLocal <User> TLUSER = new ThreadLocal <>();
final static InheritableThreadLocal <User> TLADM N = new
I nheritabl eThreadLocal <>();

public static String open(String info) {
Systemout.printin(info + ": " + TLUSER get().nane);
return info + ": " + TLUSER get (). nane;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 27 of 29

ORACLE’

Core Libraries
G29144-01

Chapter 14
Thread-Local Variables

The following method starts a thread named chi | dThr ead within a thread. The thread
chi | dThr ead retrieves the value of the | nheri t abl eThr eadLocal variable named TLADM N and
attempts to retrieve the value of the Thr eadLocal variable named TLUSER:

public void testConnectionWthlnheritabl eTL(User u) {

Runnable r = () -> {
TLDBConn. TLUSER. set (u);
TLDBConn. TLADM N. set (new User ("Adnmin"));
TLDBConn. open(" Thread " + Thread. current Thread().get Nane() + ",
t est Connection");
Systemout. println(TLServer.fetchOrder());

try {
Thread. sl eep(new Randon{) . next | nt(1000));
} catch (InterruptedException e) {
e.printStackTrace();

}

Thread childThread = new Thread(
(0 ->{
Systemout.printin("Child thread");
Systemout.printin("TLADMN. " +
TLDBConn. TLADM N. get () . name) ;
try {
Systemout.println("TLUSER " +
TLDBConn. TLUSER. get () . nanme) ;
} catch (Null Poi nterException e) {
Systemout . println("Null Poi nter Exception: TLUSER
hasn't beet set");

}
K
childThread. start();

TLDBConn. TLUSER. set (new User (u. name + " renanmed"));
TLDBConn. open(" Thread " + Thread. current Thread().get Nane() + ",
t est Connection");

b

Thread t = new Thread(r, u.nane);
t.start();

When you call this method, the following statement in the instantiation of chi | dThr ead throws a
Nul | Poi nt er Excepti on:

Systemout. println("TLUSER " + TLDBConn. TLUSER. get (). nane) ;

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 28 of 29

ORACLE’

Chapter 14
Thread-Local Variables

The value of the Thr eadLocal variable TLUSER hasn't been inherited by chi | dThr ead.
However, the value of the | nheri t abl eThr eadLocal variable TLADM N has been inherited
by chi | dThread. When chi | dThr ead is started, it prints the following output:

Child thread
TLADM N Admi n
Nul | Poi nt er Exception: TLUSER hasn't beet set

Issues with Thread-Local Variables

Core Libraries
G29144-01

Unfortunately, thread-local variables have some design flaws.

® Note
Scoped Values can address these issues with thread-local variables.

Unconstrained Mutability

Every thread-local variable is mutable. This might make it difficult to discern in your
application's code which components update the shared state and in what order. In the
example described in Thread-Local Variables, TLAppl i cati on: : t est Connect i on reassigns
TLDBConn. TLUSER with a new value:

Runnable r = () -> {

TLDBConn. TLUSER. set (u);

TLDBConn. open("Thread " + Thread. current Thread(). get Name() + ",
t est Connection");

Systemout. println(TLServer.fetchOrder());

...

TLDBConn. TLUSER. set (new User (u. name + " renaned"));

TLDBConn. open("Thread " + Thread. current Thread(). get Name() + ",
t est Connection");

b

Unbounded Lifetime

The Java runtime retains a thread's incarnation of a thread-local variable for the lifetime of the
thread or until code in the thread calls the thread local variable's r emove method. If you omit
calling this method, then the Java runtime might retain thread data longer than necessary. If
you're using a thread pool, then a value in a thread-local variable set in one task might leak
into another task. If you have set the value of a thread-local variable multiple times in a thread,
then there might not be a clear point when it's safe for the thread to call the r enove method,
which may cause a long-term memory leak.

Expensive Inheritance

The overhead of thread-local variables may be worse when using large numbers of threads
because thread-local variables of a parent thread can be inherited by child threads.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 29 of 29

Stream Gatherers

Stream gatherers enable you to create custom intermediate operations, which enables stream
pipelines to transform data in ways that aren't easily achievable with exisiting built-in
intermediate operations.

@® Note

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options. See
Preview Language and VM Features.

For background information about stream gatherers, see JEP 485.

Topics

« What Is a Gatherer?

e Creating a Gatherer

e Creating Gatherers with Factory Methods

e Built-In Gatherers

Composing Gatherers

What Is a Gatherer?

A gatherer is an intermediate operation that transforms a stream of input elements into a
stream of output elements, optionally applying a final action when it reaches the end of the
stream of input elements.

Remember that an intermediate operation, such as St r eam nap(Functi on), produces a
new stream, while a terminal operation, such as St r eam f or Each(Consuner), produces a
non-stream result. A non-stream result could be a primitive value (like a double value), a
collection, or in the case of f or Each, no value at all.

Gatherers can do the following:

* Transform elements in a one-to-one, one-to-many, many-to-one, or many-to-many fashion
* Track previously seen elements to influence the transformation of later elements
e Short-circuit, or stop processing input elements to transform infinite streams to finite ones

e Process a stream in parallel

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 10

https://openjdk.java.net/jeps/485

ORACLE Chapter 15
Creating a Gatherer

@® Note

A gather will process a stream in parallel only if you specify a combiner function
when you create the gatherer. See The Combiner Function in Creating a Gatherer.
A gatherer's default combiner turns parallelization off even if you call paral | el ().

Examples of gathering operations include the following:

e Grouping elements into batches
e Deduplicating consecutively similar elements
* Incremental accumulation functions

e Incremental reordering functions

Creating a Gatherer

To create a gatherer, implement the Gat her er interface.

The following example creates a gatherer that returns the largest integer from a stream of
integers. However, if the gatherer encounters an integer equal or larger to its argument linit,
then it returns that integer and stops processing the stream's integers.

record Biggestint(int limt) inplements Gatherer<Integer, List<Integer>,
I nteger> {

/1 The initializer creates a new private ArrayList to keep track of
t he
/1 largest integer across elenents.

@verride

public Supplier<List<integer>> initializer() {
return () -> new ArraylList<Integer>(1);

}

/1 The integrator

@verride
public Integrator<List<linteger> Integer, Integer> integrator() {
return Integrator. of (
(max, elenent, downstream) -> {

/1 Save the integer if it's the largest so far.
if (max.isEnpty()) max.addFirst(elenent);
else if (elenment > nax.getFirst()) max.set(0, element);

/1 1f the integer is equal or greater to the linit,
/1 "short-circuit": emt the current integer downstream
/1 and return false to stop processing stream el enents
if (elenent >= limt) {

downst ream push(el enent);

return fal se;

}

/1 Return true to continue processing stream el enments

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html

ORACLE Chapter 15
Creating a Gatherer

return true;

)
}

/1 The combiner, which is used during parallel evaluation

@verride
publ i ¢ Bi naryQperat or <Li st <I nt eger >> conbi ner () {
return (leftMx, rightMax) -> {

/1 1f either the "left" or "right" ArrayLists contain
/1 no value, then return the other

if (leftMax.isEnmpty()) return rightMax;

if (rightMax.isEnpty()) return |eftMx;

/1 Return the ArrayList that contains the larger integer
int leftval = leftMax.getFirst();

int rightVal = rightMax.getFirst();

if (leftval > rightVal) return |eftMx;

el se return right Max;

¥
}
@verride
public Bi Consuner<List<Integer>, Downstreanx? super |nteger>>
finisher() {
/1l Emt the largest integer, if there is one, downstream
return (max, downstream -> {
if ('max.isEmpty()) {
downst ream push(max. getFirst());
}
b
}

You can use this gather as follows:

Systemout. println(Streamof(5,4,2,1,6,12,8,9)
. gat her (new Bi ggestInt(11))
findFirst()

-get());

It prints the following output:

12

You can also use this gatherer in parallel:

Systemout. println(Streamof(5,4,2,1,6,12,8,9)
. gat her (new Bi ggest I nt(11))
.parallel()

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE’

Core Libraries
G29144-01

Chapter 15
Creating a Gatherer

findFirst()
-get());

The Gat herer <T, A, R> interface has three type parameters:

e T: The type of input elements to the gather operation. This example process a stream of
| nt eger elements.

* A The type of the gatherer's private state object, which the gatherer can use to track
previously seen elements to influence the transformation of later elements. This example
uses a Li st <l nt eger > to store the largest | nt eger it has encountered so far in the input
stream.

* R The type of output elements from the gatherer operation. This example returns an
I nt eger value.

You create a gatherer by defining four functions that work together that process input elements.
Some of these functions are optional depending on your gatherer's operation:

e initializer(): Creates the gatherer's private state object

e integrator():Integrates a new element from the input stream, possibly inspects the
private state object, and possibly emits elements to the output stream

e conbi ner () : Combines two private state objects into one when the gatherer is
processing the stream in parallel

e finisher(): Optionally performs an action after the gatherer has processed all input
elements; it could inspect the private state object or emit additional output elements

The Initializer Function

The optional initializer function creates the gatherer's private state object. This example
creates an empty Arrayli st with a capacity of only one I nt eger as its meant to store the
largest | nt eger the gatherer has encountered so far.

@verride
public Supplier<List<integer>> initializer() {
return () -> new ArraylList<Iinteger>(1);

}

The Integrator Function

Every gatherer requires an integrator function. To create an integrator function, call either
Gatherer.Integrator.of (Gatherer.Integrator) or

Gat herer. | ntegrator.of Geedy(Gatherer.|ntegrator). These methods take as an
argument a lambda expression that contains three parameters. This example uses the
following lamda expression:

(max, elenent, downstream) -> {

/1 Save the integer if it's the largest so far.
if (max.isEnpty()) nmax.addFirst(elenent);
else if (elenment > nmax.getFirst()) max.set(0, element);

/1 1f the integer is equal or greater to the linit,

/1 "short-circuit": emt the current integer downstream
/1 and return false to stop processing stream el enents
if (element >=limt) {

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#initializer()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#integrator()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#combiner()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#finisher()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Integrator.html#of(java.util.stream.Gatherer.Integrator)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Integrator.html#ofGreedy(java.util.stream.Gatherer.Integrator.Greedy)

ORACLE Chapter 15
Creating a Gatherer

downst ream push(el enent);
return fal se;

}

/1 Return true to continue processing stream el enments
return true;

The parameter nmax is the private state object.
The parameter el enent is the input element that the integrator function is currently processing.

The parameter downst r eamis a Gat her er . Downst r eamobject. When you call its push
method, it passes its argument to the next stage in the pipeline.

An integrator function returns a bool ean value. If it returns t r ue, then it will process the next
element of the input stream. if it returns f al se, then it will short-circuit and stop processing
input elements.

@ Tip

The Downst ream : push method returns t r ue if the downstream is willing to push
additional elements, so your integrator function can return its return value if you want
to continue processing stream elements.

In this example, if el enent is equal or greather than I'i mi t, the integrator function passes
el ement to the next stage in the pipeline, then returns f al se. The integrator won't process any
more input elements, and the Downst r eamobject can no longer push values.

@® Note

If you don't expect your integrator function to short-circuit and you want it to process all
elements of your input stream, use | nt egr at or : : of G eedy instead of
Integrator::of.

The Combiner Function

The optional combiner function is called only if you're running the gatherer in parallel. The
combiner function is a lambda expression that contains two parameters, which represent two
private state objects.

@verride
publ i c Bi naryQperat or<Li st <l nteger>> conbiner() {
return (leftMx, rightMx) -> {

[l If either the "left" or "right" ArrayLists contain
/1 no value, then return the other

if (leftMax.isEmpty()) return right Max;

if (rightMax.isEnpty()) return |eftMx;

/1 Return the ArraylList that contains the larger integer
int leftVal = |eftMax.getFirst();
int rightval = rightMax.getFirst();

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Downstream.html

ORACLE Chapter 15
Creating Gatherers with Factory Methods

if (leftval > rightVal) return |eftMx;
el se return right Max;

b

This example returns the private state object (an Arr ayLi st) that contains the largest integer.

The Finisher Function

The optional finisher function is a lambda expression that contains two parameters:

@verride

public Bi Consuner<List<Integer>, Downstreanx? super |nteger>>
finisher() {

/1l Emt the largest integer, if there is one, downstream
return (max, downstream -> {
if (!max.isEmpty()) {
downst ream push(max. getFirst());
}

b

The parameter max is the private state object and downst r eamis a Gat her er . Downst r eam
object.

In this example, the finisher function pushes the value contained in the private state object.
Note that this value won't be pushed if the integrator function returned f al se. You can check
whether a Downst r eamobject is no longer processing input elements by calling the method
Gat her er. Downstream : i sRej ecti ng. If it returns tr ue, it's no longer processing input
elements.

@ Note

If the finisher function pushes a value downstream, then that value is contained in an
Opti onal object.

Creating Gatherers with Factory Methods

Instead of implementing the Gat her er interface, you can call one of the factory methods in
the Gat her er interface to create a gatherer.

The following example is the same one as described in Creating a Gatherer except it calls the
Gat her er: : of method:

static Gatherer<integer, List<Integer>, Integer> biggestint(int limt) {
return Gatherer. of (
Il Supplier

() ->{ return new ArrayList<Integer>(1); },

Core Libraries
G29144-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 6 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Downstream.html#isRejecting()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#of(java.util.function.Supplier,java.util.stream.Gatherer.Integrator,java.util.function.BinaryOperator,java.util.function.BiConsumer)

ORACLE Chapter 15
Built-In Gatherers

/'l Integrator

Gat herer. I ntegrator. of (
(max, elenent, downstream) -> {
Systemout. printIn("Processing " + elenent);
if (max.isEnpty()) max.addFirst(elenment);
else if (element > max.getFirst()) max.set(0, elenent);

if (element >=1limt) {
downst ream push(el enent);
return fal se;

}
return true;
}
)1
/1 Conbi ner

(leftMax, rightMax) -> {
if (leftMax.isEnmpty()) return rightMax;
if (rightMax.isEnpty()) return |eftMx;
int leftval = leftMax.getFirst();
int rightVal = rightMax.getFirst();
if (leftval > rightVal) return |eftMx;
el se return right Max;

b

[l Finisher

(max, downstream) -> {

if (!'max.isEnpty()) {
downst ream push(max. getFirst());
}

You can call this gatherer as follows:

Systemout. println(Streamof(5,4,2,1,6,12,8,9)
. gat her (bi ggestInt(11))
.parallel()
findFirst()

-get());

Built-In Gatherers

The Gat her er s class contains the following built-in gatherers:

e fold(Supplier initial, BiFunction folder):Thisisan many-to-one gatherer
that constructs an aggregate incrementally until no more input elements exist. It has two
parameters:

— initial: This is the identity value or the value that the gatherer emits if the input
stream contains no elements.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#fold(java.util.function.Supplier,java.util.function.BiFunction)

ORACLE Chapter 15
Built-In Gatherers

— folder: This is a lambda expression that contains two parameters: the first is the
aggregate the gatherer is constructing and the second is the element that's currently
being processed.

The following example uses the f ol d gatherer to convert a stream of numbers to a
semicolon-separated string:

var senicol onSeparated =
Streamof(1,2,3,4,5,6,7,8,9)
. gat her (
Gat herers. fol d(

0 ->",
(result, elenment) -> {
if (result.equals("")) return
el ement.toString();

return result + ";" + elenent;

)
)
findFirst()
.get();

System out. println(senicol onSepar at ed) ;
It prints the following:
1,2;3;4,5,6;7,8,9
« mapConcurrent (i nt _maxConcurrency, Function nmapper): Thisis a one-to-one

gatherer that invokes napper for each input element in the stream concurrently, up to the
limit specified by maxConcurrency. You can use this limit for the following:

— As a rate-limiting construct to prevent the gatherer from issuing too many concurrent
requests to things like an external service or a database

— As a performance-enhancer to enable multiple, separate operations to be performed
concurrenty while avoiding converting the entire stream into a parallel stream

This gatherer preserves the ordering of the stream.

e scan(Supplier initial, BiFunction scanner): Thisis a one-to-one gatherer
that performs a prefix scan, which is an incremental accumulation. Starting with an initial
value obtained from the parameterini ti al , it obtains subsequent values by applying
scanner to the current value and the next input element. The gatherer then emits the value
downstream. The following example demonstrates this gatherer:

Streamof(1,2,3,4,5/6,7,8,9)
. gat her (Gat herers. scan(() -> 100,
(current, next) -> current + next))
.forEach(Systemout::println);

It prints the following output:

101
103
106
110

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#mapConcurrent(int,java.util.function.Function)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#scan(java.util.function.Supplier,java.util.function.BiFunction)

ORACLE Chapter 15
Composing Gatherers

115
121
128
136
145

e w ndowFi xed(i nt wi ndowSi ze) : This is a many-to-many gatherer that gathers
elements in windows, which are encounter-ordered groups of elements. The parameter
w ndowSi ze specifies the size of the windows. The following example demonstrates this
gatherer:

Li st <Li st<I nt eger>> wi ndows =

Streamof(1,2,3,4,5,6,7,8).gat her(Gat herers. w ndowFi xed(3)).toList();
wi ndows. f or Each(Systemout::println);

It prints the following output:

[1, 2, 3]
[4, 5, 6]
[7, 8]

e windowSliding(int w ndowSi ze) : Similar to wi ndowFi xed, this is a many-to-many
gatherer that gathers elements in windows. However, each subsequent window includes all
elements of the previous window except for its first element, and adds the next element in
the stream. The following example demonstrates this gatherer:

Li st <Li st <I nt eger >> noreW ndows =

Streamof(1,2,3,4,5,6,7,8).gat her (Gt herers.w ndowSl i ding(3)).toList();
mor eW ndows. f or Each(System out:: println);

It prints the following output:

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]

Composing Gatherers

You can compose two or more gatherers into a single gatherer with the
Gat her er. andThen(Gat herer).

The following example composes a new gatherer with the scan and f ol d gatherers examples
as described in the previous section Built-In Gatherers:

Gat herer<linteger, ?, Integer> sc =
Gat herers. scan(() -> 100,
(current, next) -> current + next);

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 10

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream//Gatherers.html#windowFixed(int)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#windowSliding(int)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#andThen(java.util.stream.Gatherer)

ORACLE’

Core Libraries
G29144-01

Chapter 15
Composing Gatherers

Gat herer<integer, ?, String> fo =
Gatherers.fold(() ->"",
(result, elenment) -> {
if (result.equals("")) return elenent.toString();
return result + ";" + elenent;

1

var t = Streamof(1,2,3,4,5,6,7,8,9)
. gat her (sc. andThen(fo))
findFirst()

-get();

Systemout. printin(t);

This example prints the following output:

101; 103; 106; 110; 115; 121; 128; 136; 145

Note that the following statement to generate the value of t is the same as the previous
example:

var t = Streamof(1,2,3,4,56,7,8,9)
. gat her (sc)
. gather (fo)
findFirst()
-get();

Successively calling the gat her method is the same as calling andThen(Gat herer). The
following two statements are equivalent, where a and b are gatherers:

stream gat her (a). gat her(b);
stream gat her (a. andThen(b));

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 10

Stable Values

A stable value is an object of type St abl eVal ue that holds a single data value, which is called
its contents. A stable value's contents are immutable. The JVM treats stable values as
constants, which enables the same performance optimizations as f i nal fields. However, you

have greater flexibility with regards to when you initialize a stable value's contents compared to
final fields.

@® Note

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options. See
Preview Language and VM Features.

For background information about stable values, see JEP 502.

Consider the following example that declares and initializes a Logger as a fi nal field:

public class Locations {
private final Logger |ogger =
Logger. get Logger (Locati ons. cl ass. get Nare()) ; ;

Logger get Logger () {
return | ogger;
1

public void printLocations() {
get Logger().info("Printing locations...");

}

Because | ogger is afinal field, it must be initialized when an instance of Locat i ons is
created. This is an example of eager initialization. However, the example doesn't use | ogger
until print Locati ons() is called. To initialize | ogger when this method is called, you can use
lazy initialization, which means that a result is produced (in this example, the | ogger field is
initialized) only when it's needed:

public class Custoners {
private Logger |ogger = null;

synchroni zed Logger getLogger() {
if (logger == null) {
| ogger = Logger. get Logger (Cust oners. cl ass. get Name());
}

return | ogger;

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 9

https://docs.oracle.com/en/java/javase/25/docs/api/java.base/java/lang/StableValue.html
https://openjdk.org/jeps/502

ORACLE’

Core Libraries
G29144-01

Chapter 16

}

public void printCustomers() {
get Logger().info("Printing custoners...");
}

In this example, | ogger is initialized only when get Logger () is called and only if | ogger hasn't
been initialized previously. However, there are several drawbacks with this approach:

* Code must access the | ogger field through the get Logger () method. If not, a
Nul | Poi nt er Except i on will be thrown if | ogger hasn't been initialized.

e Thread contention can occur when multiple threads try to simultaneously initialize | ogger .
This example declares get Logger () as synchroni zed. As a result, when a thread invokes
this method, all other threads are blocked from invoking it. This can create bottlenecks and
slow down your application. However, not declaring get Logger () as synchroni zed can
result in multiple logger objects being created.

* Because | ogger isn't declared as fi nal , the compiler can't apply performance
optimizations related to constants to it.

It would be ideal if | ogger were both lazily initialized and immutable once it has been
initialized. In other words, it would be ideal to defer immutability. You can do this by using a
stable value:

public class Orders {
private final StableVal ue<Logger> | ogger = Stabl eVal ue. of ();

Logger getLogger () {
return | ogger. or El seSet (

() -> Logger. getLogger(Orders.class.getName()));
}

public void printOders() {
getLogger().info("Printing orders...");
}

The static factory method St abl eFact ory. of () creates a stable value that holds no
contents:

private final StableVal ue<Logger> | ogger = Stabl eVal ue. of ();

The method St abl eVal ue: : or El seSet (Suppl i er) retrieves the contents of the stable value
| ogger . However, if the stable value contains no contents, or El seSet attempts to compute
and set the contents with the provided Suppl i er:

return | ogger. or El seSet (
() -> Logger. getLogger(Orders.class.getName()));

The Or der s example initializes a stable value when it's used, which is when get Logger is
invoked. However, like the Cust omer s example, code must access the | ogger stable value
through the get Logger () method.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE’

Core Libraries
G29144-01

Chapter 16

You can use a stable supplier, of type j ava. uti | . function. Suppl i er, to specify how to
initialize a stable value when you declare it without actually initializing it. Afterward, you can
access the stable value by invoking the supplier's get () method.

public class Products {
private final Supplier<Logger> |ogger =
St abl eVal ue. suppl i er (
() -> Logger. get Logger (Products. cl ass. get Nane()));

public void printProducts() {
l ogger.get().info("Printing products...");

The method St abl eVal ue. suppl i er (Suppl i er) returns a
java. util.function. Supplier:

private final Supplier<Logger> |ogger =
St abl eVal ue. suppl i er (
() -> Logger. get Logger (Products. cl ass. get Nane()));

In this example, the first invocation of | ogger . get () invokes the lambda expression provided
as an argument to St abl eVal ue. suppl i er (Supplier):

() -> Logger. get Logger (Products. cl ass. get Nane())

The St abl eVal ue. suppl i er (Suppl i er) method initializes the stable value's contents with the
resulting value of this lambda expression and then returns the value, which in this example is a
new Logger instance. Subsequent invocations of | ogger. get () return the stable value's
contents immediately.

Aggregating and Composing Stable Values

You can aggregate multiple stable values in an application, which can improve its startup time.
In addition, you can compose stable values from other stable values. The previous examples
Orders and Product s show you how to store a logger component in a stable value. The
following example stores an Or der s, Product s, Locat i ons, and Cust omer s component in their
own stable value.

public class Application {

static final StableVal ue<Locations> LOCATIONS = Stabl eVal ue. of ();
static final StableVal ue<Orders> ORDERS = Stabl eVal ue. of ();
static final StableVal ue<Customers> CUSTOMERS = Stabl eVal ue. of ();
static final StableVal ue<Products> PRODUCTS = Stabl eVal ue. of ();

public static Locations |ocations() {
return LOCATI ONS. or El seSet (Locations:: new);
}

public static Orders orders() {
return ORDERS. or El seSet (Orders: : new;
}

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE
Chapter 16

public static Customers customers() {
return CUSTOMERS. or El seSet (Cust omer s: : new) ;
}

public static Products products() {
return PRODUCTS. or El seSet (Product s: : new);
}

public void main(String[] args) {
l ocations().printLocations();
orders().printOrders();
custonmers(). print Customers();
products(). printProducts();

By storing an application's components in stable values, you can significantly improve its
startup time. The application no longer initializes all of its components up front. This example
initializes its components on demand through the stable value's or El seSet method.

Note that the Or der s and Product s components are using their own internal stable value for
the logger. In particular, the stable value ORDERS is dependent on the stable value

Orders. | ogger. The dependent O der s. | ogger will first be created if ORDERS does not already
exist. The same applies to the PRODUCTS and Pr oduct s. | ogger stable values.

If there's a circular dependency, then an | | | egal St at eExcept i on is thrown, which the
following example demonstrates:

public class Stabl eVal ueC rcul ar Dependency {

public static class A {
static final StableVal ue b = Stabl eVal ue. of ();
A() |
/'l 1llegal StateException: Recursive initialization
/1 is not supported
b. or El seSet (B: : new) ;

}

public static class B {
static final StableVal ue<A> a = Stabl eVal ue. of ();

B() {
a. orEl seSet (A:: new);
}

}

public void main(String[] args) {
A nmyA = new A();
1

An | |1 egal St at eExcepti on is thrown when the constructor of class A tries to initialize the
stable value A. b. This stable value depends on B. a, which is dependent on A. b.

Core Libraries
G29144-01 September 3, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE’

Core Libraries
G29144-01

Chapter 16

Stable Lists and Stable int Functions

A stable list is an unmodifiable list, backed by an array of stable values and associated with an
I nt Funct i on. When you first access an element in a list, it's initialized with a value computed
with the stable list's | nt Funct i on, which uses the element's index as its parameter. When
you access the element with the same index an additional time, its value is retrieved instead of
being computed again.

When you create a stable list with the St abl eVal ue. li st (i nt, |ntFunction) factory
method, you specify its size in the first argument, You specify how its elements are computed
in the second argument.

The following example creates a pool of Product s objects. This enables different Pr oduct s to
serve different application requests, distributing the load across the pool. Instead of creating a
stable value for each Product s object in the pool, the example creates a stable list. To simulate
different application requests, the example creates and starts two virtual threads. In each of
these threads, a Product s object is initialized in the stable list.

public class StableListExanple {
private final static int POOL_SIZE = 20;

final static Supplier<Logger> |ogger =
St abl eVal ue. suppl i er (
() -> Logger. get Logger (St abl eLi st Exanpl e. cl ass. get Nane()));

static final List<Products> PRODUCTS
= Stabl eVal ue. list(POOL_SIZE, _ -> new Products());

public static Products products() {
l ong index = Thread. current Thread().threadld() % POOL_SI ZE
 ogger.get().info("otaining Products fromstable list, index " +
i ndex) ;

}

public static void main(String[] args) {
Thread. Bui | der buil der = Thread. of Virtual (). nane("worker-", 0);
Runnable task = () ->{
Systemout.printin("Thread ID. " +
Thread. current Thread().threadl d());
products(). printProducts();

return PRODUCTS. get ((int)index);

b

try {
/1 name "worker-0"

Thread t1 = builder.start(task);
tl.join();
Systemout. println(tl. get Name() +

term nated");

/1 name "worker-1"

Thread t2 = builder.start(task);

t2.join();

Systemout. println(t2. get Name() +
} catch (InterruptedException e) {

e.printStackTrace();

term nated");

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE’

Core Libraries
G29144-01

Chapter 16

The example prints output similar to the following:

Thread ID: 22

Apr 24, 2025 6:59:16 PM Stabl eLi st Exanpl e products
I NFO. btaining Products fromstable list, index 2
Apr 24, 2025 6:59:16 PM Products printProducts
INFO. Printing products...

wor ker -0 terninated

Thread ID: 26

Apr 24, 2025 6:59:16 PM Stabl eLi st Exanpl e products
I NFO. btaining Products fromstable list, index 6
Apr 24, 2025 6:59:16 PM Products printProducts
INFO. Printing products...

wor ker- 1 terninated

The following statement creates a stable list that holds 20 Pr oduct s objects. Note that none of
the stable list's elements are initialized yet.

static final List<Products> PRODUCTS
= StableVal ue. list(POOL_SIZE, _ -> new Products());

The first invocation of PRODUCTS. get (i nt i ndex) initializes the stable value's contents located
at i ndex with the following lambda expression:

_ -> new Products()

@ Tip

The underscore character () is an unnamed variable, which represents a variable
that's being declared but it has no usable name. It helps to indicate that a variable is
not used after its declaration. See Unnamed Variables and Patterns in Java Platform,
Standard Edition Java Language Updates.

Subsequent invocations of PRODUCTS. get (i nt i ndex) with the same index retrieve the
element's contents immediately.

A stable i nt function works similarly to a stable list. A stable i nt function is a function that
takes an i nt parameter and uses it to compute a result, which is then cached by the backing
stable value storage for that parameter value. Consequently, when you call the stable function
with the same i nt parameter an additional time, its result is retrieved instead of being
computed again.

Like a stable list, when you create a stable i nt function with the
St abl eVal ue. i nt Function(int, |ntFunction) factory method, you specify its size in
the first argument. You specify how its elements are computed in the second argument.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 9

ORACLE
Chapter 16

The following example is just like St abl eLi st Exanpl e except that it uses a stable i nt function.
Significant changes in the code are highlighted:

public class Stabl el ntFunctionExanpl e {
private final static int POOL_SIZE = 20;

final static Supplier<Logger> |ogger =
St abl eVal ue. suppl i er (
() -> Logger. getLogger (St abl el nt Functi onExanpl e. cl ass. get Nane()));

static final |ntFunction<Products> PRODUCTS
= Stabl eVal ue. i nt Function(POOL_SI ZE, _ -> new Products());

public static Products products() {
long index = Thread. current Thread().threadld() % POOL_SI ZE;
| ogger.get().info("Qotaining Products fromstable int function, index
+ i ndex);
return PRODUCTS. appl y((int)index);

}

public static void main(String[] args) {
Thread. Bui | der builder = Thread. of Virtual ().nanme("worker-", 0);
Runnabl e task = () -> {
Systemout.printin("Thread ID: " +
Thread. current Thread().threadl d());
products(). printProducts();

b

try {
/1l name "worker-0Q"

Thread t1 = builder.start(task);
tl.join();
Systemout.println(tl. getName() + " terninated");

[l name "worker-1"

Thread t2 = builder.start(task);

t2.join();

Systemout.println(t2.getName() + " terninated");
} catch (InterruptedException e) {

e.printStackTrace();

}

The difference between a stable list and a stable i nt function is how you interact with it. You
interact with a stable map like a Li st . You access its values with the Map: : get (i nt)
method. In addition, you can call the Li st interface's methods that don't modify its values such
as List::subList andList::reversed(). You interact with a stable function like an

I nt Funct i on. You compute a value with the Funct i on: : appl y method. You can't obtain a
Li st view of the computed values stored in a stable i nt function, but you can use itin a
statement or as a parameter that requires a lambda expression of type | nt Funct i on<R>.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE’

Core Libraries
G29144-01

Chapter 16

Stable Maps and Stable Functions

A stable map is an unmodifiable map whose keys you specify when you create it. It's also
associated with a Funct i on. When you first access a key's value, it's initialized with a value
computed with the stable map's Funct i on, which uses the key as its parameter. When you
access the key's value an additional time, its value is retrieved instead of being computed
again.

The following example calculates the log base 2 of an integer by counting the number of
leading zeroes in its binary representation. Note that the example can only calculate the log
base 2 of the first six powers of 2. When you create a stable map with the

St abl eval ue. map(Set, Functi on) factory method, you must specify all of the possible
parameters that the stable map's Funct i on can accept in the first argument. You specify how
a key's value is computed in the second argument.

public class Log2Stabl eMap {

private static final Set<lnteger> KEYS =
Set.of (1, 2, 4, 8, 16, 32);

private static final Function<Integer, Integer> LOG_FUNCTION =
i -> 31 - Integer.nunberOf Leadi ngZeros(i);

private static final Map<Integer, Integer> LOR_SM =
St abl eVal ue. map(KEYS, LOG2_FUNCTI ON);

public static void main(String[] args) {
Systemout.printin("Log base 2 of 16 is " + LO&_SMget(16));
Systemout. printin();

LO&_SMentrySet ()
.stream)

.forEach(e -> Systemout.println(
"Log base 2 of " + e.getKey() +" is " + e.getValue()));

The example prints output similar to the following:

Log base 2 of 16 is 4

Log base 2 of 4 is 2
Log base 2 of 16 is 4
Log base 2 of 2 is 1
Log base 2 of 1is O
Log base 2 of 8is 3
Log base 2 of 32 is 5

A stable function works similarly to a stable map. A stable function is a function that takes a
parameter and uses it to compute a result, which is then cached by the backing stable value
storage for that parameter value. Consequently, when you call the stable function with the
same parameter an additional time, its result is retrieved instead of being computed again.

September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE
Chapter 16

The following example is just like Log2St abl eMap except it uses a stable function instead of a
stable map. Significant changes in the code are highlighted:

public class Log2Stabl eFunction {

private static final Set<lnteger> KEYS =
Set.of (1, 2, 4, 8, 16, 32);

private static final Function<Integer, Integer> LOG_FUNCTION =
i -> 31 - Integer.nunberOf Leadi ngZeros(i);

private static final Function<lInteger, Integer> LO&_SF =
St abl eVal ue. functi on(KEYS, LOG2_FUNCTI ON);

public static void main(String[] args) {
Systemout. println("Log base 2 of 16 is " + LOG_SF. apply(16));
Systemout. printin();

KEYS. st ream()
.forEach(e -> Systemout.println(
"Log base 2 of " + e + " is " + LO&_SF.apply(e)));

Again, note that the example can only calculate the log base 2 of the first six powers of 2.
When you create a stable function with the St abl eVal ue. f uncti on(Set, Functi on)
factory method, you must specify all of the possible parameters that the stable function's
Functi on can accept in the first argument. You specify how the stable function computes a
result in the second argument.

As with stable lists and stable i nt functions, the difference between a stable map and a stable
function is how you interact with it. You interact with a stable map like a Map. You access its
values with the Map: : get (Obj ect key) method. In addition, you can call the Map
interface's methods that don't modify its values such as Map: : val ues() and

Map: : entrySet (). You interact with a stable function like a Funct i on. You compute a value
with the Funct i on: : appl y method. You can't obtain a Col | ect i on view of the computed
values stored in a stable function, but you can use it in a statement or as a parameter that
requires a lambda expression of type Funct i on<T, R>.

Constant Folding

Constant folding is a compiler optimization in which constant expressions are evaluated at
compile time instead of run time. The JIT compiler sometimes performs constant folding for
fields declared fi nal , stable values that reside in static fields, records, and hidden classes.
Constant folding elides the need to load a value from memory because the value can instead
be embedded in the machine code emitted by the JIT compiler. Constant folding is often the
first step in a chain of optimizations that together can provide significant performance
improvements.

Thread Safety

As demonstrated in the example St abl eLi st Exanpl e and St abl el nt Funct i onExanpl e,
stable values are thread-safe. The contents of a stable value is guaranteed to be set at most
once. If competing threads are racing to set a stable value, only one update succeeds, while
other updates are blocked until the stable value becomes set.

Core Libraries
G29144-01 September 3, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Filter Factories
	Allow-Lists and Reject-Lists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Reading a Stream of Serialized Objects
	Setting a Custom Filter for an Individual Stream
	Setting a JVM-Wide Custom Filter
	Setting a Custom Filter Using a Pattern
	Setting a Custom Filter as a Class
	Setting a Custom Filter as a Method
	Creating a Filter with ObjectInputFilter Methods

	Setting a Filter Factory
	Setting a Filter Factory with setSerialFilterFactory
	Specifying a Filter Factory in a System or Security Property

	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Java Collections Framework
	Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	Creating Sequenced Collections, Sets, and Maps
	SequencedCollection
	SequencedSet
	SequencedMap
	Demonstrating ArrayList and LinkedHashMap Reversed Views
	Demonstrating a Reverse-Ordered View of a Collection
	Demonstrating Composition of LinkedHashMap Views
	Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java NIO
	Grep NIO Example
	Checksum NIO Example
	Time Query NIO Example
	Time Server NIO Example
	Non-Blocking Time Server NIO Example
	Internet Protocol and UNIX Domain Sockets NIO Example
	Chmod File NIO Example
	Copy File NIO Example
	Disk Usage File NIO Example
	User-Defined File Attributes File NIO Example

	10 Java Networking
	Networking System Properties
	HTTP Client Properties
	HTTP Server Properties
	IPv4 and IPv6 Protocol Properties
	HTTP Proxy Properties
	HTTPS Proxy Properties
	FTP Proxy Properties
	SOCKS Proxy Properties
	Acquiring the SOCKS User Name and Password

	Other Proxy-Related Properties
	UNIX Domain Sockets Properties
	Other HTTP URL Stream Protocol Handler Properties
	System Properties That Modify the Behavior of HTTP Digest Authentication Mechanism

	Specify Mappings from Host Names to IP Addresses
	Address Cache Properties
	Enhanced Exception Messages

	11 Pseudorandom Number Generators
	Characteristics of PRNGs
	Generating Pseudorandom Numbers with RandomGenerator Interface
	Generating Pseudorandom Numbers in Multithreaded Applications
	Dynamically Creating New Generators
	Creating Stream of Generators

	Choosing a PRNG Algorithm

	12 Foreign Function and Memory API
	On-Heap and Off-Heap Memory
	Memory Segments and Arenas
	Allocating a Memory Segment with an Arena and Storing a String in It
	Printing the Contents of Off-Heap Memory
	Closing an Arena

	Calling a C Library Function with the Foreign Function and Memory API
	Obtaining an Instance of the Native Linker
	Locating the Address of the C Function
	Describing the C Function Signature
	Creating the Downcall Handle for the C Function
	Calling the C Function Directly from Java

	Upcalls: Passing Java Code as a Function Pointer to a Foreign Function
	Defining the Java Method That Compares Two Elements
	Creating a Downcall Method Handle for the qsort Function
	Creating a Method Handle to Represent the Comparison Method qsortCompare
	Creating a Function Pointer from the Method Handle compareHandle
	Allocating Off-Heap Memory to Store the int Array
	Calling the qsort Function
	Copying the Sorted Array Values from Off-Heap to On-Heap Memory

	Foreign Functions That Return Pointers
	Memory Layouts and Structured Access
	Backing a Memory Segment with a Memory Region Inside a File
	Checking for Native Errors Using errno
	Slicing Allocators and Slicing Memory Segments
	Slicing Allocators
	Slicing Memory Segments

	Restricted Methods
	Calling Native Functions with jextract
	Run a Python Script in a Java Application
	Call the qsort Function from a Java Application

	13 Scoped Values
	14 Concurrency
	Virtual Threads
	What is a Platform Thread?
	What is a Virtual Thread?
	Why Use Virtual Threads?
	Creating and Running a Virtual Thread
	Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface
	Creating and Running a Virtual Thread with the Executors.newVirtualThreadPerTaskExecutor() Method
	Multithreaded Client Server Example

	Scheduling Virtual Threads and Pinned Virtual Threads
	Debugging Virtual Threads
	JDK Flight Recorder Events for Virtual Threads
	Viewing Virtual Threads in jcmd Thread Dumps

	Virtual Threads: An Adoption Guide
	Write Simple, Synchronous Code Employing Blocking I/O APIs in the Thread-Per-Request Style
	Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads
	Use Semaphores to Limit Concurrency
	Don't Cache Expensive Reusable Objects in Thread-Local Variables

	Structured Concurrency
	Basic Usage of the StructuredTaskScope Class
	Joiners
	Custom Joiners
	Configuring StructuredTaskScope
	Scope Hierarchies and Observability

	Thread-Local Variables
	Inheriting Thread-Local Variables
	Issues with Thread-Local Variables

	15 Stream Gatherers
	What Is a Gatherer?
	Creating a Gatherer
	Creating Gatherers with Factory Methods
	Built-In Gatherers
	Composing Gatherers

	16 Stable Values

