Java Platform, Standard Edition
Java Management Extensions Guide

Release 25
(G34653-02
September 2025

ORACLE"

Java Platform, Standard Edition Java Management Extensions Guide, Release 25
G34653-02
Copyright © 1993, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documents i
Conventions i

Part | Java Management Extensions Technology User’s Guide

1 Introduction to JMX Technology

What Is IMX Technology?
Why Use JMX Technology?

2 JMX Technology Architecture

Architecture Outline
Instrumenting Resources by Using MBeans
Creating a JMX Agent

N N

Managing Resources Remotely

3 Instrumenting Your Resources for JMX Technology

Manageable Resources
Managed Beans (MBeans)
JVM Instrumentation

4 Using JMX Agents

MBean Server
Agent Services
Protocol Adaptors and Connectors

N N

Protocol Adaptors

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page i of v

Connectors 2

5 Using JMX Connectors to Manage Resources Remotely

RMI Connector 1
User-Defined Protocols

6 Discovery and Lookup Services

Getting Started with Lookup Services 1

7 JMX Technology Versions

JMX Instrumentation and Agent Specification (JSR 3)
JMX Remote API Specification (JSR 160)

8 Java Management Extensions (JMX) API

Part || Java Management Extensions (JMX) Technology Tutorial

o Getting Started

Platform Information 1

10 Essentials of the IMX API

Standard MBeans 1
MBean Interface 1
MBean Implementation 2
Managing a Resource 3
Running the Standard MBean Example 4

Sending Notifications 5
NotificationBroadcaster Interface 6
Running the MBean Natification Example 8

Introducing MXBeans 9
QueueSamplerMXBean Interface 10
QueueSampler Class 10
QueueSample Class 11
Creating and Registering the MXBean in the MBean Server 12
Running the MXBean Example 12

MBean Descriptors 14

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page ii of v

DescriptorKey Annotations 15
Using MBean Descriptors 16
Running the MBean Descriptors Example 16

11 JMX Connectors

Accessing Standard and Dynamic MBeans By Using the RMI Connector
Server.java in the MBean Example
SimpleStandardMBean.java in the MBean Example
SimpleStandard.java in the MBean Example
SimpleDynamic.java in the MBean Example

© © N N DN -

ClientListener.java in the MBean Example
Client.java in the MBean Example 10
Running the MBean Example 12

12 Lookup Services

Initial Configuration
External RMI Registry
External LDAP Registry

Service Location Protocol (SLP) Lookup Service
Server.java in the SLP Lookup Example
Client.java in the SLP Lookup Example

© OO W W N =

Running the SLP Lookup Service Example
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service 12
Server.java in the INDI/LDAP Lookup Service Example 12
Client.java in the INDI/LDAP Lookup Service Example 16
jmx-schema.txt 17
60jmx-schema.ldif 17
Running the JINDI/LDAP Lookup Service Example 18

13 Security

Simple Security
Server.java in the Simple Security Example
SimpleStandardMBean.java in the Simple Security Example
SimpleStandard.java in the Simple Security Example
ClientListener.java in the Simple Security Example
Client.java in the Simple Security Example

AW W W WDN PR

Running the RMI Connector Example With Simple Security

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page iii of v

Part Il Java Management Extensions Examples

14

15

16

17

18

JMX Essentials

examples/Essentiall README
examples/Essential/com/example/mbeans/Main.java
examples/Essential/com/example/mbeans/Hello.java
examples/Essential/com/example/mbeans/HelloMBean.java

JMX MBean Notifications

A W N P

examples/Notification/README
examples/Natification/com/example/mbeans/Main.java
examples/Notification/com/example/mbeans/Hello.java
examples/Natification/com/example/mbeans/HelloMBean.java

MXBeans

a w N -

examples/MXBean/README
examples/MXBean/com/example/mxbeans/Main.java
examples/MXBean/com/example/mxbeans/QueueSamplerMXBean.java
examples/MXBean/com/example/mxbeans/QueueSampler.java
examples/MXBean/com/example/mxbeans/QueueSample.java

MBean Descriptors

A A W WP

examples/Descriptors/README
examples/Descriptors/com/example/mxbeans/Author.java
examples/Descriptors/com/example/mxbeans/DisplayName.java
examples/Descriptors/com/example/mxbeans/Main.java
examples/Descriptors/com/example/mxbeans/QueueSample.java
examples/Descriptors/com/example/mxbeans/QueueSampler.java
examples/Descriptors/com/example/mxbeans/QueueSamplerMXBean.java
examples/Descriptors/com/example/mxbeans/Version.java

JMX Connectors

O O 00~ W WN PP

examples/Basic/README
examples/Basic/Server.java
examples/Basic/SimpleStandardMBean.java
examples/Basic/SimpleStandard.java
examples/Basic/SimpleDynamic.java

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

© 0 N

12

September 15, 2025
Page iv of v

19

20

21

examples/Basic/ClientListener.java 20
examples/Basic/Client.java 21
Service Location Protocol (SLP) Lookup Service

examples/Lookup/sip/README

examples/Lookup/sip/Server.java

examples/Lookup/slp/Client.java 12
Java Naming and Directory Interface (JNDI)/LDAP Lookup Service
examples/Lookup/ldap/README

examples/Lookup/ldap/Server.java

examples/Lookup/ldap/Client.java 14
examples/Lookup/ldap/jmx-schema.txt 24
examples/Lookup/ldap/60jmx-schema.ldif 25
Simple Security

examples/Security/simple/README 1
examples/Security/simple/server/Server.java 2
examples/Security/simple/client/Client.java 4
examples/Security/simple/client/ClientListener.java 6
examples/Security/simple/config/access.properties 7
examples/Security/simple/config/password.properties 8
examples/Security/simple/mbeans/SimpleStandard.java 8
examples/Security/simple/mbeans/SimpleStandardMBean.java 11

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page v of v

ORACLE’

Preface

Audience

The Java Platform, Standard Edition Java Management Extensions Guide provides an
introduction to Java Management Extension technology.

This guide is intended for Java developers who use JMX technology to instrument Java code,
create smart Java agents, implement distributed management middleware and managers, and
smoothly integrate these solutions into existing management and monitoring systems.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

See JDK 25 Documentation for other JDK guides.

Conventions

The following text conventions are used in this guide:

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/java/javase/25/

ORACLE’

Preface
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page ii of ii

Java Management Extensions Technology
User’s Guide

JMX Technology Overview

Java Management Extensions (JMX) technology was originally developed through the Java
Community Process (JCP) as Java Specification Request (JSR) 3, Java Management
Extensions, and JSR 160, JMX Remote API. The JMX API is a standard API for management
and monitoring of resources such as applications, devices, services, and the Java Virtual
Machine.

Typical uses of JIMX technology include:

e Monitoring and changing application configuration
* Accumulating statistics about application behavior and making them available
* Sending notifications of state changes and erroneous conditions.

The JMX API includes remote access, so that a remote management application can interact
with a running application to perform these actions.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Introduction to JMX Technology

If you are already familiar with Java Management Extensions (JMX) technology, see JMX
Technology Versions for version information.

JMX technology provides a simple, standard way of managing resources such as applications,
devices, and services. Because JMX technology is dynamic, you can use it to monitor and
manage resources as they are created, installed and implemented. You can also use JMX
technology to monitor and manage the Java Virtual Machine (Java VM).

JMX technology was developed through the Java Community Process (JCP) as two closely
related Java Specification Requests (JSRs):

e JSR 3: Java Management Extensions (JMX) Specification
e JSR 160: Java Management Extensions (JMX) Remote API

The JSRs are defined by the API documentation that is generated by the JavaDoc tool, and in
the Java Management Extensions (JMX) Specification, version 1.4 (JMX Specification).

As its name indicates, the JMX Remote API adds remote capabilities to the JMX Specification,
enabling you to remotely monitor and manage applications, systems, and networks. In this
guide, the term JMX technology is used to describe both the JIMX Specification and the JIMX
Remote API.

This chapter introduces JMX technology in the following sections:

« What Is JMX Technology?
« Why Use JMX Technology?

What Is JMX Technology?

The JMX Specification defines in the Java programming language an architecture, the design
patterns, the APIs, and the services for application and network management and monitoring.
The Java Management Extensions (JMX) technology is a standard part of the Java Platform,
Standard Edition (Java SE platform).

When using JMX technology, one or more Java objects known as Managed Beans (MBeans)
will instrument a specified resource. These MBeans are registered in a core managed object
server, known as an MBean server. The MBean server acts as a management agent and can
run on most devices enabled for the Java programming language.

The specification defines JMX agents you can use to manage resources that are instrumented
in compliance with the specification. A JIMX agent consists of an MBean server, in which
MBeans are registered, and a set of services for handling MBeans. JMX agents directly control
resources and make them available to remote management applications.

The way in which resources are instrumented is completely independent from the management
infrastructure. Resources can therefore be rendered manageable regardless of how their
management applications are implemented.

JMX technology defines standard connectors (JMX connectors) that enable you to access JMX
agents from remote management applications. JMX connectors use different protocols to
provide the same management interface. A management application can manage resources

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 1
Why Use JMX Technology?

transparently, regardless of the communication protocol that is used. JMX agents can be used
by systems and applications that are not compliant with the JMX Specification but which
support JMX agents.

Why Use JMX Technology?

JMX technology provides Java developers with a flexible means to instrument Java code,
create smart Java agents, implement distributed management middleware and managers, and
smoothly integrate these solutions into existing management and monitoring systems.

JMX technology enables management of Java applications without heavy
investment: A JMX technology agent can run on most Java technology-enabled devices,
thus Java applications can become manageable with little impact on their design. A Java
application needs to embed a managed object server and make some of its functionality
available as one or several managed beans (MBeans) registered in the object server; that
is all it takes to benefit from the management infrastructure.

JMX technology provides a standard way to manage Java technology-based
applications, systems, and networks: For example, the Java Platform, Enterprise
Edition (Java EE) 5 Application Server conforms to the JMX architecture and consequently
can be managed using JMX technology.

JMX technology can be used for out-of-the-box management of the JVM: The JVM is
highly instrumented using JMX technology. You can start a JMX agent to access the built-
in JVM instrumentation, and to monitor and manage the JVM remotely.

JMX technology provides a scalable, dynamic, management architecture: Each JIMX
agent service is an independent module that can be plugged in to the management agent.
This component-based approach means that JMX solutions can scale from small-footprint
devices to large telecommunications switches and beyond. The JMX Specification
provides a set of core agent services. Additional services can be developed and
dynamically loaded, unloaded, or updated in the management infrastructure.

JMX technology takes advantage of existing standard Java technologies: When
needed, the JMX Specification references existing Java specifications, for example, the
Java Naming and Directory Interface (JNDI).

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

JMX Technology Architecture

Java Management Extensions (JMX) technology provides a standard API for the management
and monitoring of resources. The API includes remote access, so that a remote management
application can manage and monitor applications, systems, and networks.

This chapter outlines JMX architecture in the following sections:

e Architecture Outline

¢ Instrumenting Resources by Using MBeans

e Creating a JMX Agent

« Managing Resources Remotely

Architecture Outline

JMX technology was developed through the Java Community Process (JCP) as two closely
related Java Specification Requests (JSRs):

e JSR 3: Java Management Extensions (JMX) Specification- defines the instrumentation and
agent levels

* JSR 160: Java Management Extensions (JMX) Remote API - defines the remote
management level

The following table shows the levels in the management architecture.

Level Description

Instrumentation Resources, such as applications, devices, or
services, are instrumented using Java objects
called Managed Beans (MBeans). MBeans expose
their management interfaces, composed of
attributes and operations, through a JIMX agent for
remote management and monitoring.

Agent The main component of a JMX agent is the MBean
server. This is a core managed object server in
which MBeans are registered. A JMX agent also
includes a set of services for handling MBeans.
The JMX agent directly controls resources and
makes them available to remote management
agents.

Remote management Protocol adaptors and standard connectors make a
JMX agent accessible from remote management
applications outside the agent’s Java Virtual
Machine (JVM).

Instrumenting Resources by Using MBeans

To manage resources by using JMX technology, you must first instrument the resources in the
Java programming language. You can use Java objects known as MBeans to implement
access to the instrumentation of resources. MBeans must follow the design patterns and

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 2
Creating a JMX Agent

interfaces defined in the JMX Specification to ensure that all MBeans provide the
instrumentation of managed resources in a standardized way.

After a resource is instrumented by MBeans, it can be managed through a JMX agent. MBeans
do not require knowledge of the JMX agent with which they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of
applications, systems, and networks can make their products manageable in a standard way
without investing in complex management systems. Existing resources can be made
manageable with minimum effort.

In addition, the instrumentation level of JSR 3: Java Management Extensions (JMX)
Specification specifies a notification mechanism that enables MBeans to generate and
propagate notification events to components of the other levels.

Creating a JMX Agent

A JMX agent is a standard management agent that directly controls resources and makes
them available to remote management applications. A JIMX agent is usually located on the
same system as the resources that it controls, but this is not a requirement.

The core component of a JMX agent is the MBean server, a managed object server in which
MBeans are registered. A JMX agent also includes a set of services to manage MBeans, and
at least one communications adaptor or connector to enable access by a management
application.

When you implement a JIMX agent, you do not need to know the semantics or functions of the
resources that the agent will be used to manage. In fact, a JMX agent does not even need to

know which resources it will serve, because any resource instrumented in compliance with the
JMX Specification can use any JMX agent offering the services that it requires. In addition, the
agent does not need to know the functions of the management applications that will access it.

Managing Resources Remotely

The MBean server relies on protocol adaptors and connectors to make a JMX agent
accessible from management applications outside the agent's JVM. Each adaptor provides a
view through a specific protocol of all MBeans registered in the MBean server.

Connectors provide a manager-side interface that handles the communication between the
manager and the JMX agent. Each connector provides the same remote management
interface though a different protocol. When a remote management application uses this
interface, it can connect to a JMX agent transparently through the network, regardless of the
protocol.

JMX technology provides a standard solution for exporting JIMX APl instrumentation to remote
applications, based on Remote Method Invocation (RMI). See JMX Technology Versions for
further information.

The JMX Remote API section of the specification describes how you can advertise and find
JMX agents by using existing discovery and lookup infrastructures. For examples, see Java
Management Extensions (JMX) Technology Tutorial. The JMX Specification does not define its
own discovery and lookup service. The use of existing discovery and lookup services is
optional. Alternatively you can encode the addresses of your JMX agents in the form of URLSs,
and then communicate these URLs to the manager.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Instrumenting Your Resources for JIMX
Technology

This chapter outlines the concepts behind instrumenting resources for management by using
JMX technology in the following sections:

¢ Manageable Resources

¢ Managed Beans (MBeans)

¢ JVM Instrumentation

Manageable Resources

Different types of resources can be managed using JMX technology, for example an
application, an implementation of a service, a device, or a user. For a given resource to be
managed by JMX technology, it must be developed in the Java language, or at least offer a
Java language wrapper. The resource must also be instrumented by one or more Java objects
known as managed beans (MBeans), in compliance with the JMX Specification.

Developers of applications and devices can choose the granularity of objects that are
instrumented as MBeans. An MBean might represent the smallest object in an application, or it
could represent the entire application. Application components designed with their
management interface in mind can typically be written as MBeans. MBeans can be used as
wrappers for legacy code without a management interface or as proxies for code with a legacy
management interface.

Managed Beans (MBeans)

The Java objects that implement resources and their instrumentation are called managed
beans (MBeans). MBeans must follow the design patterns and interfaces defined in Java
Management Extensions (JMX) Specification, version 1.4 to ensure that all MBeans provide
the instrumentation of managed resources in a standardized way.

The instrumentation of a given resource is provided by one or more MBeans that are either
standard or dynamic. Standard MBeans are Java objects that conform to certain design
patterns derived from the JavaBeans component model. Dynamic MBeans conform to a
specific interface that offers more flexibility at runtime. MXBeans reference only a predefined
set of types.

The instrumentation of a resource allows it to be manageable through the agent level
described in Using JMX Agents. MBeans do not require knowledge of the JMX agent with
which they operate.

MBeans are designed to be flexible, simple, and easy to implement. Existing objects can easily
be evolved to produce standard MBeans or wrapped as dynamic MBeans, thus making
existing resources manageable with minimum effort. With MBeans, developers of applications,
services, or devices can make their products manageable in a standard way without having to
understand or invest in complex management systems.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf
https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf

ORACLE

Chapter 3
JVM Instrumentation

The instrumentation level specifies a notification mechanism which enables MBeans to
generate and propagate notification events to components of the other levels.

The management interface of an MBean consists of:

* Named and typed attributes that can be read and/or written
* Named and typed operations that can be invoked
* Typed notifications that can be emitted by the MBean

The Java class of a standard MBean exposes the resource to be managed directly through its
attributes and operations. Attributes are internal entities that are exposed through getter and
setter methods. Operations are the other methods of the class that are available to managers.
All these methods are static methods in the MBean interface and are visible to a IMX agent
through introspection. This is the most straightforward way of making a new resource
manageable.

A dynamic MBean defines its management interface at runtime. For example, a configuration
MBean could determine the names and types of the attributes it exposes by parsing an XML
file.

An MXBean is a type of MBean that provides a simple way to code an MBean that only
references a pre-defined set of types. In this way, you can be sure that your MBean will be
usable by any client, including remote clients, without any requirement that the client have
access to model-specific classes representing the types of your MBeans.

JVM Instrumentation

The JVM is highly instrumented using JMX technology. You can easily start a JMX agent to
access the built-in JVM instrumentation, and thereby monitor and manage the JVM remotely
by JMX technology.

To find out more about using JMX technology to monitor and manage the JVM, see the Java
Platform, Standard Edition Monitoring and Management Guide.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Using JMX Agents

A JMX agent is a management entity that runs in a JVM and acts as the liaison between the
managed beans (MBeans) and the management application. The various components of a
JMX agent are outlined in the following sections:

¢ MBean Server

e Agent Services
« Protocol Adaptors and Connectors

MBean Server

The MBean server is the core component of a JMX agent. It's a registry for objects in a IMX
agent that are exposed to management operations. An object that is registered with the MBean
server is visible to management applications. The MBean server exposes only the
management interface of an MBean, never its direct object reference.

Any resource that you want to manage from outside the agent’s JVM must be registered as an
MBean with the server. The MBean server provides a standardized interface for accessing
MBeans within the same JVM, giving local objects all the benefits of manipulating manageable
resources. MBeans can be instantiated and registered by:

e Another MBean
e The agent itself
* Aremote management application

When you register an MBean, you must assign it a unique object name. A management
application uses the object name to identify the object on which it is to perform a management
operation. The operations available on MBeans include:

e Discovering the management interface of MBeans
e Reading and writing their attribute values

e Performing operations defined by the MBeans

e Getting natifications emitted by MBeans

e Querying MBeans by using their object name or their attribute values

Agent Services

Agent services are objects that can perform management operations on the MBeans that are
registered with the MBean server. By including management intelligence within the agent, JIMX
enables you to build more powerful management solutions. Agent services can be provided by
MBeans as well, allowing them and their functionality to be controlled through the MBean
server. Java Management Extensions (JMX) Specification, version 1.4 defines the following
agent services:

* Monitors: Monitors the numerical or string value of MBean attributes and can notify other
objects of several types of changes.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf

ORACLE

Chapter 4
Protocol Adaptors and Connectors

e Timers: Timers provide a scheduling mechanism and can send notifications at
predetermined intervals.

+ Relation service: The relation service defines associations between MBeans and
maintains the consistency of the relation.

Protocol Adaptors and Connectors

Protocol adaptors and connectors make agents accessible from remote management
applications. They provide a view through a specific protocol of the MBeans that are
instantiated and registered with the MBean server. They enable a management application
outside the JVM to:

e Get or set attributes of existing MBeans

e Perform operations on existing MBeans

e Instantiate and register new MBeans

« Register for and receive notifications emitted by MBeans

Consequently, for a JIMX agent to be manageable, it must include at least one protocol adaptor
or connector. The Java SE platform includes the standard Remote Method Invocation (RMI)
connector. An agent can include one or more protocol adaptors and connectors, allowing it to
be managed and monitored remotely through different protocols simultaneously.

Protocol Adaptors

Connectors

Protocol adaptors provide a management view of the JMX agent through a given protocol.
They adapt the operations of MBeans and the MBean server into a representation in the given
protocol, and possibly into a different information model. The Java SE platform does not
include any protocol adaptors as standard.

Management applications that connect to a protocol adaptor are usually specific to the given
protocol. This is typically the case for legacy management solutions that rely on a specific
management protocol. They access the JMX agent not through a remote representation of the
MBean server, but through operations that are mapped to those of the MBean server.

Connectors are used to connect an agent with a remote management application enabled for
JMX technology, namely, a management application developed using the distributed services
of the JMX specification. This kind of communication involves a connector server in the agent
and a connector client in the manager.

These components convey management operations transparently point-to-point over a specific
protocol. The IMX Remote API provides a remote interface to the MBean server through which
the management application can perform operations. A connector is specific to a given
protocol, but the management application can use any connector indifferently because the
remote interface is the same.

See Using JMX Connectors to Manage Resources Remotely for more information on standard
JMX connectors.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Using JMX Connectors to Manage Resources
Remotely

The Java Management Extensions Instrument Specification and the Agent Specification
sections of Java Management Extensions (JMX) Specification, version 1.4 define the concept
of connectors. A connector makes a JMX technology MBean server accessible to remote Java
technology-based clients. The client end of a connector exports essentially the same interface
as the MBean server.

A connector consists of a connector client and a connector server. The connector server is
attached to an MBean server and listens for connection requests from clients. The connector
client establishes a connection with the connector server. A connector client is usually in a
different JVM from the connector server, and often runs on a different machine.

Many connector implementations are possible. In particular, there are many possibilities for the
protocol used to communicate over a connection between client and server.

A connector server usually has an address, used to establish connections between connector
clients and the connector server. Alternatively, some connectors can provide connection stubs
to establish connections. The way in which connections are established depends on the
discovery and lookup technology that you use. See Discovery and Lookup Services.

RMI Connector

The JMX Remote API defines a standard protocol based on RMI. The RMI connector must be
present in every implementation of the JMX Remote API.

The RMI connector supports the Java Remote Method Protocol (JRMP) transport.

The RMI connector over JRMP provides a simple mechanism for securing and authenticating
the connection between a client and a server. This mechanism provides a basic level of
security for environments using the RMI connector. Note that the generic JIMXMP connector
provides a more advanced level of security.

You can improve the security of the RMI connector over JRMP by using an RMI socket factory
so that the connection between the client and the server uses the Secure Socket Layer (SSL).

@® Note

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. Specify the filter's pattern with the

com sun. managenent . j mxrenote. serial . filter.pattern management property in
the $JAVA_HOVE/ conf / managenent / managenent . properti es file. See Built-in
Filters in Java Platform, Standard Edition Core Libraries for more information.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf

ORACLE Chapter 5
User-Defined Protocols

User-Defined Protocols

The JMX Remote API does not define a connector for every protocol. You can implement a
connector based on a protocol that is not defined in the IMX Remote API. For example, you
can implement connector based on a protocol that uses HTTP/S. The JMX Specification
describes how to implement a connector based on a user-defined protocol.

Java Management Extensions Guide

G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Discovery and Lookup Services

The Java Management Extensions (JMX) Specification, version 1.4 describes how you can
advertise and find JMX API agents by using existing discovery and lookup infrastructures. The
specification does not define any discovery and lookup APIs specific to JMX technology.

This chapter provides a brief outline of existing discovery and lookup infrastructures that you
can use with JMX technology.

Getting Started with Lookup Services

JMX agents and JMX clients can use lookup services. A single JVM can contain many JMX
agents and/or JMX clients.

A JMX agent is a logical server application composed of the following features:

e One managed bean (MBean) server

e One or more JMX connector servers that allow remote clients to access the MBeans
contained in that MBean server

A JMX client is a logical client application that opens a client connection with a JMX agent.

The Java Management Extensions (JMX) Technology Tutorial demonstrates how to use lookup
services to advertise and find JMX agents.

@® Note

The use of existing discovery and lookup services is optional. Alternatively, you can
encode the addresses of your JIMX API agents in the form of URLs, and communicate
these URLSs to the manager.

Using the Service Location Protocol (SLP)

The Service Location Protocol (SLP) provides a framework that allows networking applications
to discover the existence, location, and configuration of networked services in enterprise
networks.

The following steps summarize the procedure defined in the JMX Specification for using the
SLP lookup service to advertise and find JMX agents:

e The JMX agent creates one or more JMX connector servers.

* For each exposed connector, the JMX agent registers the address with the SLP lookup
service, possibly giving additional attributes that qualify the agent and/or the connector,
and can be used as filters.

* The JMX client queries the SLP lookup service, and retrieves one or more addresses that
match the query.

* Finally, the JMX client obtains a connector that is connected with the server that is
identified by a retrieved address.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf

ORACLE

Chapter 6
Getting Started with Lookup Services

In the JIMX Specification, the IMX Remote API Specification section defines URL schemes
which are compliant with the SLP protocol. The specification also defines mandatory and
optional SLP lookup attributes that are provided at registration time.

Using the Java Naming and Directory Interface (JNDI) APl With an LDAP Backend

The Java Naming and Directory Interface (JNDI) APl is a standard extension to the Java
platform. It provides Java technology-enabled applications with a unified interface to multiple
naming and directory services.

The JMX Specification describes how an LDAP server is used to store and retrieve information
about JMX connectors that are exposed by JMX agents.

The following steps summarize the procedure defined in the JMX Specification for using the
JNDI lookup service:

* The JMX agent creates one or more JMX connector servers.

* For each connector to expose, the JIMX agent registers the address with the JNDI lookup
service, possibly giving additional attributes that qualify the agent and/or the connector,
and can be used as filters.

e The JMX client queries the JNDI lookup service, and retrieves one or more addresses that
match the query.

* Finally, the JMX client obtains a connector that is connected to the server that is identified
by a retrieved address.

In the JIMX Specification, the IMX Remote API Specification section defines an LDAP schema
for registering addresses and explains how a client can discover a registered agent. The
specification also defines a lease mechanism.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

JMX Technology Versions

Java Management Extensions Technology (JMX) became a standard part of the Java platform
in the Java Platform Standard Edition (Java SE) 5.0. The JMX technology was developed
through the Java Community Process (JCP) as two closely related Java Specification
Requests (JSRs). The versions of the JSRs implemented in Java SE 5.0 are detailed in the
following sections.

JMX Instrumentation and Agent Specification (JSR 3)

The Java SE 9 and later platform implements version 1.4 of the JMX Specification
(Maintenance Release, October 2006). It incorporates the modifications that are listed in the
errata that is provided with the download.

JMX Remote API Specification (JSR 160)

The Java SE 9 and later platform implements version 1.4 of the JMX Remote API Specification
(Maintenance Release, October 2006).

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Java Management Extensions (JMX) API

The Java Management Extensions (JMX) APl is a standard API for management and

monitoring.

The following packages of documentation generated by the JavaDoc tool are provided for the
JMX API:

Java Management Extensions Guide

G34653-02

avax.

managenent

avax.

nmanagenent

. 1 oadi ng

avax.

nanagenent .

nodel nbean

avax

. managenent .

noni t or

avax.

nanagenent .

opennbean

avax.

managenent

.relation

avax.

nmanagenent

.renote

avax.

nmanagenent

Ltinmer

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 1 of 1

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/modelmbean/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/relation/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/package-summary.html

Java Management Extensions (JMX)
Technology Tutorial

JMX Technology Tutorial Overview
This tutorial provides examples of how to use the main features of the JMX technology.

This tutorial is intended to be read in order, from beginning to end, working through the
examples as you go. Actions you perform at the beginning of the tutorial might be required in
later parts of the tutorial. Consequently, starting mid-way through the tutorial might cause you
to skip actions that are required by certain examples.

Where you must perform a task, the instructions are marked with an action number and sub-
tasks are marked with a lower-case letter.

Before You Use This Tutorial

This tutorial demonstrates the concepts and technology introduced in the Java Management
Extensions Technology User’s Guide. You should, therefore, read the overview before you
attempt to work through this tutorial. To make full use of the information in this tutorial, you
should also be familiar with the following protocols and specifications:

e Remote Method Invocation (RMI)

e Lightweight Directory Access Protocol (LDAP)

e Service Location Protocol (SLP)

e Java Naming and Directory Interface (JNDI) API

e Java Secure Socket Extension (JSSE)

e Java Authentication and Authorization Service (JAAS)

e Java Management Extensions (JMX) Specification, version 1.4
How This Tutorial Is Organized

This tutorial provides examples in the broad categories presented in the following chapters.

» Getting Started gives you some initial configuration information.

« Essentials of the JIMX API introduces the core concepts of the JIMX Specification.

* JMX Connectors provides examples of how to implement the standard and dynamic types
of MBean, and perform operations on them both locally and remotely.

e Lookup Services demonstrates the lookup services that can be used in conjunction with
the JMX technology.

e Security shows some examples of security configurations.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Getting Started

This chapter explains what you need to do to get started with the Java Management

Extensions (JMX) examples. It provides instructions that apply to all examples described in the
following chapters.

Platform Information

All variable assignments and commands in the examples in this tutorial are defined using UNIX
Korn shell syntax. If you are running a shell other than the Korn shell on a Linux or macOS
platform, you must adapt these commands to your preferred shell environment.

If you are running a Microsoft Windows operating environment, in most cases, adapting
commands will simply involve replacing forward slashes (/) with backward slashes (\) and
replacing colons (:) with semi-colons (;) in the paths. A specific Microsoft Windows command
is given only when it differs significantly from the Linux or macOS command provided.

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Essentials of the IMX API

This chapter introduces managed beans (MBeans) which are a core component of the Java
Management Extensions (JMX) API.

An MBean is a managed Java object, similar to a JavaBean, that follows the design patterns
set forth in the instrumentation level of the JIMX Specification. An MBean can represent a
device, an application, or any resource that is managed. MBeans expose a management
interface, which is a set of readable and/or writable attributes and a set of invokable
operations, along with a self-description. The management interface does not change
throughout the life of an MBean instance. MBeans can also emit notifications when certain
defined events occur.

The JMX Specification defines four types of MBean: standard MBeans, dynamic MBeans,
open MBeans and model MBeans. The examples in this tutorial demonstrate the simplest type
of MBean, namely standard MBeans.

Standard MBeans

You can define a standard MBean by writing a Java interface called Sonet hi ngMBean and a
Java class called Sonet hi ng that implements that interface. Every method in the interface
defines either an attribute or an operation in the MBean. By default every method defines an
operation. Attributes and operations are simply methods which follow certain design patterns.
A standard MBean is composed of the MBean interface which lists the methods for all exposed
attributes and operations, and the class which implements this interface and provides the
functionality of the instrumented resource.

The following sections describe an example standard MBean, and a simple JMX agent that
manages the MBean. The code samples are provided in JMX Essentials. You can run the
examples from the directory wor k_di r/j mx_exanpl es/ Essenti al / con exanpl e/ nheans.

MBean Interface

An example of a basic MBean interface, named Hel | oMBean, is shown in the following code
example.

CODE EXAMPLE 10-1 MBean Interface, HelloMBean

package com exanpl e. mbeans;
public interface Hell oMBean {

public void sayHello();
public int add(int x, int y);

public String getName();

public int getCacheSize();

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE

Chapter 10
Standard MBeans

public void setCacheSize(int size);

An MBean interface takes the name of the Java class that implements it, with the suffix MBean
added. The interface is called Hel | oMBean. The Hel | o class that implements this interface is
described in MBean Implementation.

According to the JMX Specification, an MBean interface consists of named and typed
attributes that are readable and possibly writable, and hamed and typed operations that can be
invoked by the applications that are managed by the MBean. The Hel | oMBean interface shown
in CODE EXAMPLE 10-1 MBean Interface, HelloMBean, declares two operations: the Java
methods add() and sayHel | o() .

Of the two attributes that are declared by Hel | oMbean, Nane is a read-only string, and

CacheSi ze is an integer that can be both read and written. Getter and setter methods are
declared, to allow the managed application to access and possibly change the attribute values.
As defined by the JMX Specification, a getter is any public method whose name begins with
get and which does not return void. A getter enables a manager to read the value of the
attribute, whose type is that of the returned object. A setter is any public method whose name
begins with set and which takes a single parameter. A setter enables a manager to write a new
value in the attribute, whose type is the same as that of the parameter.

The implementation of these operations and attributes is shown in the following section.

MBean Implementation

The Hel | o class shown in the following code example implements Hel | oMBean.

CODE EXAMPLE 10-2 MBean Implementation Class, Hello

package com exanpl e. nbeans;

public class Hello inplements Hel |l oMBean {
public void sayHello() {
Systemout.printin("hello, world");

}

public int add(int x, int y) {
return x +vy;

}

public String getName() {
return this.name;

}

public int getCacheSize() {
return this.cacheSi ze;

}

public synchroni zed void set CacheSi ze(int size) {
t his. cacheSi ze = si ze;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE

Chapter 10
Standard MBeans

Systemout . println("Cache size now" + this.cacheSize);

}

private final String name = "Reginal d";
private int cacheSize = DEFAULT CACHE SI ZE;
private static final int DEFAULT_CACHE Sl ZE = 200;

In Example 10-2, the Java class Hel | o provides the definitions of the operations and attributes
declared by Hel | oMBean. As you can see, the example sayHel | o() and add() operations are
extremely simple, but real-life operations can be as simple or as sophisticated as you like.

Methods to get the Nane attribute and to get and set the cacheSi ze attribute are also defined.
In this example, the Nane attribute value never changes, but in a real scenario it might change
as the managed resource runs. For example, the attribute might represent statistics such as
uptime or memory usage. Here, it is merely the name “Reginald”.

Calling the set CacheSi ze method allows you to alter the cacheSi ze attribute from its declared
default value of 200. In reality, changing the cacheSi ze attribute could require other operations
to be performed, such as discarding entries or allocating new ones. This example merely prints
a message to confirm that the cache size is changed, but you can define more sophisticated
operations in the place of the call to println().

With the Hel | 0 MBean and its interface defined, they can be used to manage the resource they
represent, as shown in the following section.

Managing a Resource

As described in the Java Management Extensions Technology User’s Guide, after a resource
is instrumented by MBeans, the management of that resource is performed by a JMX agent.

The core component of a JMX agent is the MBean server, a managed object server in which
MBeans are registered. See the API documentation for the MBeanSer ver interface for details of
the MBean server implementation. A JMX agent also includes a set of services to manage
MBeans. The following code example presents a basic JMX agent, named Mai n.

CODE EXAMPLE 10-3 Creating a JMX Agent

package com exanpl e. mbeans;

i nport java.lang. managenent.*;
i nport javax. management. *;

public class Min {
public static void main(String[] args) throws Exception {

MBeanServer nbs

Managenent Fact ory. get Pl at f or mvBeanSer ver () ;
bj ect Narre name = new (bj ect Name(" com exanpl e. nbeans: t ype=Hel | 0");

Hel | o nbean = new Hel I o();

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE

Chapter 10
Standard MBeans

mbs. r egi st er MBean(nbean, name);

Systemout. printIn("Witing forever...");
Thread. sl eep(Long. MAX_VALUE) ;

In Example 10-3, the JMX agent Mai n begins by obtaining any MBean server that is running on
the platform, by calling the get Pl at f or mvBeanSer ver () method of the

j ava. | ang. managenent . Managenent Fact ory class. If no MBean server is already running on
the platform, then get Pl at f or mMVBeanSer ver () creates one automatically by calling the JIMX
method MBeanSer ver Fact ory. cr eat eMBeanSer ver () . The MBeanSer ver instance obtained by
Mai n is named nbs.

Next, Mai n defines an object name for the MBean instance it will create. Every JMX MBean
must have an object name. The object name is an instance of the JMX class Obj ect Nane, and
must conform to the syntax defined by the JMX Specification, namely it must comprise a
domain, and a list of key-properties. See the API documentation for the Obj ect Nare class for
details of this syntax. In the object name defined by Mai n, nane, the domain is

com exanpl e. mheans (the package in which the example MBeans are contained) and the key-
property declares that this object is of the type Hel | o.

An instance of a Hel | 0 object is created, named nbean. This Hel | o object is an instance of the
MBean Hel | o that was defined in MBean Implementation.

The Hel | 0 object named nhean is registered as an MBean in the MBean server nmbs with the
object name nane, by passing the object and the object name into a call to the JMX method
MBeanSer ver. regi st er MBean() .

With the Hel | 0 MBean registered in the MBean server, Mai n will simply wait for management
operations to be performed on Hel | 0. In the scope of this example, these management
operations are invoking sayHel | o(), and add() , and getting and setting the attribute values.

Running the Standard MBean Example

Having examined the example classes, you can run the example. The Java Platform, Standard
Edition includes a management and monitoring console, named JConsole, that is used to
interact with the MBean in this example. JConsole is located in JavaSE _HOVE bi n/j consol e, in
which JavaSE_HOME is the installation directory of the Java Platform, Standard Edition (Java SE
platform).

To run the example:

1. Copy the source code contained in the JMX Essentials section and create corresponding
files in the work_di r/j mk_exanpl es/ Essenti al directory.

2. Compile the example Java classes.
$ javac conl exanpl e/ nbeans/*. | ava

3. Start the Mai n application.
$ java com exanpl e. mheans. Mai n

You will see a confirmation that Mai n is waiting for something to happen.

4, Start JConsole in a different terminal window on the same machine.
$ jconsole

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE

Chapter 10
Sending Notifications

You will see the JConsole tool open, presenting a list of running JIMX agents that you can
connect to.

5. Select com exanpl e. mheans. Mai n from the list in the “New Connection” window, and click
on Connect.
You will see a summary of your platform’s current activity.

6. Click on the MBeans tab.
This panel shows you all the MBeans currently registered in the MBean server.

7. Inthe left-hand frame, expand the com exanpl e. mbeans node in the MBean tree.
You will see the example MBean Hel | o, that was created and registered by Mai n. If you
click Hel I o, you will see its associated Attributes and Operations nodes in the MBean tree.

8. Click on the Hel | o MBean node in the MBean tree to display the Hel | o0 MBean’'s metadata
and its associated Descriptor.

9. Click the Attribut es node of the Hel | o0 MBean in the MBean tree.
This displays the MBean attributes that were defined by the Hel | o class.

10. Change the value of the CacheSi ze attribute to 150.
In the terminal window in which you started Mai n, you will see confirmation of this change
of attribute.

11. Click the Qperati ons node of the Hello MBean in the MBean tree.
Here you will see the two operations declared by the Hel | o MBean, sayHel | o() and
add() .

12. Invoke the sayHel | o() operation, by clicking on the sayHel | o button.
A JConsole dialogue box will inform you that the method was invoked successfully, and
you will see the message “hello, world” in the terminal window in which Mai n is running.

13. Provide two integers for the add() operation to add , and click the add button.
You will be informed of the answer in a JConsole dialogue box.

14. Click Connection and then EXxit, to exit JConsole.

Sending Notifications

MBeans can generate notifications, for example to signal a state change, a detected event, or
a problem.

For an MBean to generate notifications, it must implement the interface

Noti fi cati onBroadcast er, or its subinterface Noti fi cati onEni tter. All you need to do to
send a notification is to construct an instance of the class j avax. managenent . Noti fi cati on or
a subclass (such as At tri but eChangedNot i fi cati on), and pass it to

Noti fi cati onBroadcast er Support.sendNotification.

Every notification has a source. The source is the object name of the MBean that emitted the
notification.

Every notification has a sequence number. This number can be used to order notifications
coming from the same source when order matters and there is a danger of the notifications
being handled in the wrong order. It is all right for the sequence number to be zero, but it is
better for it to increment for each notification from a given MBean.

There is an example of a standard MBean that emits natifications in the directory work_dir/

j m_exanpl es/ Noti fication/conf exanpl e/ mheans. This example is essentially the same as
the example in Standard MBeans, except that the Hel | o MBean implements the

Noti ficati onBroadcaster interface.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE Chapter 10
Sending Notifications

NotificationBroadcaster Interface

As previously stated, the only difference between this example and the one presented in
Standard MBeans is that the MBean implementation allows sending notifications. Notifications
are activated by implementing the Noti fi cati onBroadcast er interface, as shown in the
following code example.

CODE EXAMPLE 10-4 Implementing MBean Notifications

package com exanpl e. mbeans;
i nport javax.management. *;

public class Hello
extends NotificationBroadcasterSupport inplenments Hell oMBean {

public void sayHello() {
Systemout.printIn("hello, world");

}

public int add(int x, int y) {
return x +vy;
}

public String getName() {
return this.nane;
1

public int getCacheSize() {
return this.cacheSi ze;
1

public synchroni zed void setCacheSize(int size) {
int ol dSize = this.cacheSi ze;
t hi s. cacheSi ze = si ze;

Systemout . println("Cache size now" + this.cacheSize);

Notification n =
new AttributeChangeNotification(this,

sequenceNunber ++,
Systemcurrent TimeM I'1is(),
"CacheSi ze changed”,
"CacheSi ze",
“int",
ol dSi ze,
thi s. cacheSi ze);

sendNot i fication(n);

}
@verride

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 17

ORACLE

Chapter 10
Sending Notifications

public MBeanNotificationlnfo[] getNotificationlnfo() {

String[] types = new String[] {

AttributeChangeNotification. ATTRI BUTE_CHANGE
b
String name = AttributeChangeNotification.class.getNane();
String description = "An attribute of this MBean has changed";
MBeanNotificationinfo info =

new MBeanNoti fi cationlnfo(types, name, description);
return new MBeanNotificationlnfo[] {info};

}

private final String name = "Reginal d";
private int cacheSize = DEFAULT CACHE SI ZE;
private static final int DEFAULT_CACHE Sl ZE = 200;

private |ong sequenceNunber = 1;

As you can see in CODE EXAMPLE 10-4 Implementing MBean Notifications, this Hel | o
MBean implementation extends the Not i fi cati onBr oadcast er Support class, that itself
implements the Not i fi cationEnitter interface.

The operations and attributes are set in the same way as before, with the only exception that
the cacheSi ze attribute’s setter method now defines a new value ol dSi ze, which records the
cacheSi ze attribute’s value prior to the set operation.

The notification is constructed from an instance, n, of the JMX class

AttributeChangeNotification, which extends j avax. managenent. Noti fication. The
notification is constructed within the definition of the set CacheSi ze() method, from the
following information, that is passed to At t ri but eChangeNoti fi cati on as parameters:

e The object name of the source of the naotification, namely the Hel | o0 MBean, represented
simply by t hi s

e A sequence number, which in this example is a long named sequenceNunber, that is set at
1 and that increases incrementally

e Atimestamp

e The content of the notification message

* The name of the attribute that has changed, in this case cacheSi ze
e The type of attribute that has changed

* The old attribute value, in this case ol dSi ze

e The new attribute value, in this case t hi s. cacheSi ze

The notification n is then passed to the
Noti fi cati onBroadcast er Support.sendNotification() method.

Finally, the MBeanNot i fi cati on is defined to describe the characteristics of the different
notification instances emitted by the MBean for a given Java class of notification, which in this
case is Attribut eChangeNoti fi cati on notifications.

The MBean interface, Hel | oMBean, and the JMX agent Mai n are identical to those used in the
previous example.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE

Chapter 10
Sending Notifications

Running the MBean Notification Example

Having examined the example classes, you can now run the example. This example uses
JConsole to interact with the Hel | o MBean.To run the example:

1.

10.

11.

12.

Copy the source code examples contained in the JMX MBean Notifications section to
wor k_dir/jm_exanpl es/ Notification.

Compile the example Java classes.

$ javac coni exanpl e/ nbeans/ *. j ava

Start the Mai n application.

$ java com exanpl e. nbeans. Mai n

You will see confirmation that Mai n is waiting for something to happen.

Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

Select com exanpl e. nbeans. Mai n from the list in the New Connection window, and click on
Connect.

You will see a summary of your platform’s current activity.

Click on the MBeans tab.

This panel shows you all the MBeans currently registered in the MBean server.
In the left-hand frame, expand the com exanpl e. mheans node in the MBean tree.

You will see the example MBean Hel | o, that was created and registered by Mai n. If you
click on Hel | 0, you will see its associated Attri butes, Qperations and Noti fications
nodes in the MBean tree.

Click on the Hel | o MBean node in the MBean tree.

This displays the MBean’s metadata and its associated Descriptor.

Click on the Not i fi cati ons node of the Hello MBean in the MBean tree.
You will see that the panel is blank.

Click on the “Subscribe” button.

The current number of notifications received (0), will be displayed in the Notifications node
label.

Click on the At tri but es node of the Hel | o MBean in the MBean tree, and change the
value of the CacheSi ze attribute to 150.

In the terminal window in which you started Mai n, you will see confirmation of this change
of attribute. You will also see that the number of notifications received displayed in the
Notifications node has changed to 1.

Click on the Not i fi cati ons node of the Hel | o MBean in the MBean tree again.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE

Chapter 10
Introducing MXBeans

You will see the details of the notification that was sent.

13. Click on Connection and then EXxit, to exit JConsole.

Introducing MXBeans

An MXBean is a type of MBean that provides a simple way to code an MBean that only
references a pre-defined set of types. In this way, you can be sure that your MBean will be
usable by any client, including remote clients, without any requirement that the client have
access to model-specific classes representing the types of your MBeans. MXBeans provide a
convenient way to bundle related values together without requiring clients to be specially
configured to handle the bundles.

In the same way as for standard MBeans, an MXBean is defined by writing a Java interface
called SomethingMXBean and a Java class that implements that interface. However, unlike
standard MBeans, MXBeans do not require the Java class to be called Sonet hi ng. Every
method in the interface defines either an attribute or an operation in the MXBean. The
annotation @MXBean can be also used to annotate the Java interface instead of requiring the
interface’s name to be followed by the MXBean suffix.

MXBeans provide a convenient way to bundle related values together in an MBean without
requiring clients to be specially configured to handle the bundles when interacting with that
MBean. MXBeans exist in the Java 2 Platform, Standard Edition (J2SE) 5.0, in the package
j ava. | ang. managenent . With the Java SE 6 platform, users can now define their own
MXBeans, in addition to the standard set defined in j ava. | ang. managenent .

The key idea behind MXBeans is that types such as j ava. | ang. managenent . Menor yUsage that
are referenced in the MXBean interface, j ava. | ang. managenent . Menor yMXBean in this case,
are mapped into a standard set of types, the so-called Open Types that are defined in the
package j avax. managenent . openmbean. The exact mapping rules appear in the MXBean
specification, but to oversimplify we could say that simple types like i nt or String are
unchanged, while complex types like Menor yUsage get mapped to the standard type

Conposi t eDat aSupport .

The operation of MXBeans is demonstrated by example programs in MXBeans. The MXBean
example contains the following files:

e QueueSanpl er MXBean interface.
* QueueSanpl er class that implements the MXBean interface.

e QueueSanpl e Java type returned by the get QueueSanpl () method in the MXBean
interface.

e Min, the program that sets up and runs the example.

The MXBean example performs the following actions.

» Defines a simple MXBean that manages a resource of t ype Queue<String>.

« Declares a getter, get QueueSanpl e, in the MXBean that takes a snapshot of the queue
when invoked and returns a Java class QueueSanpl e that bundles the following values
together:

— The time the snapshot was taken.
— The queue size.
— The head of the queue at that given time.

* Registers the MXBean in an MBean server.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE Chapter 10
Introducing MXBeans

QueueSamplerMXBean Interface

The following code example shows the source code for the sample QueueSanpl er MXBean
interface.

CODE EXAMPLE 10-5 QueueSamplerMXBean interface

package com exanpl e. mxbeans;

public interface QueueSanpl er MXBean {
public QueueSanpl e get QueueSanpl e();
public void clearQeue();

As you can see, you declare an MXBean interface in exactly the same way as you declare a
standard MBean. The QueueSanpl er MXBean interface declares two operations, get QueueSanpl e
and cl ear Queue.

QueueSampler Class

The QueueSanpl er class implements the QueueSanpl er MXBean interface shown in the following
code example.

CODE EXAMPLE 10-6 QueueSampler Class

package com exanpl e. mxbeans;

inport java.util.Date;
inport java.util.Queue;

public class QueueSanpl er inplements QueueSanpl er MXBean {
private Queue<String> queue;

public QueueSanpl er (Queue<String> queue) {
t hi s. queue = queue;
}

public QueueSanpl e get QueueSanpl e() {
synchroni zed (queue) {

return new QueueSanpl e(new Date(), queue.size(), queue.peek());
}
}

public void clearQueue() {
synchroni zed (queue) {
queue. cl ear ();

}

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE

Chapter 10
Introducing MXBeans

The MXBean operations get QueueSanmpl e() and cl ear Queue() declared by the MXBean
interface are defined in QueueSanpl er. The get QueueSanpl e() operation simply returns an
instance of the QueueSanpl e Java type, created with the values returned by the

java. util .Queue methods peek() and si ze() and an instance of j ava. util . Date.

QueueSample Class

The QueueSanpl e instance returned by QueueSanpl er is defined in the QueueSanpl e class
shown in the following code example.

CODE EXAMPLE 10-7 QueueSample Class

package com exanpl e. mxbeans;

inport java.beans. ConstructorProperties;
inport java.util.Date;

public class QueueSanple {

private final Date date;
private final int size;
private final String head;

@onstructorProperties({"date", "size", "head"})
public QueueSanpl e(Date date, int size, String head) {
this.date = date;
this.size = size;
t his. head = head;

}

public Date getDate() {
return date;
1

public int getSize() {
return size,
}

public String getHead() {
return head;
}

In QueueSanpl e class, the MXBean framework calls all the getters in QueueSanpl e to convert
the given instance into a Conposi t eDat a and uses the @onst r uct or Properti es annotation to
reconstruct a QueueSanpl e instance from a Conposi t eDat a.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 17

ORACLE Chapter 10
Introducing MXBeans

Creating and Registering the MXBean in the MBean Server

Having defined an MXBean interface and the class that implements it, as well as the Java type
that is returned, the MXBean must now be created and registered in an MBean server. These
actions are performed by the following code example class Mai n.

CODE EXAMPLE 10-8 MXBean example Main class

package com exanpl e. mxbeans;

i nport java.lang. managenent. Management Fact ory;
inport java.util.Queue;

inport java.util.concurrent. ArrayBl ocki ngQueue;
i nport javax.managenment. MBeanServer;

i nport javax. management. Qoj ect Name;

public class Min {

public static void main(String[] args) throws Exception {
MBeanServer mbs = Management Fact ory. get Pl at f or mvBeanSer ver () ;

bj ect Name name =
new Cbj ect Name(" com exanpl e. nxbeans: t ype=QueueSanpl er");

Queue<String> queue = new ArrayBl ocki ngQueue<String>(10);
queue. add(" Request-1");

queue. add(" Request-2");

queue. add(" Request -3");

QueueSanpl er nxbean = new QueueSanpl er (queue);

mbs. r egi st er MBean(nxbean, nane);

Systemout.printIn("Vaiting...");
Thr ead. sl eep(Long. MAX_VALUE) ;

The Mai n class gets the platform MBean server, creates an object name for the MXBean
QueueSanpl er, creates a Queue instance for the QueueSanpl er MXBean to process, and feeds
this Queue instance to a newly created QueueSanpl er MXBean. The MXBean is then
registered in the MBean server in exactly the same way as a standard MBean.

Running the MXBean Example

To run the MXBean example:

1. Copy the source code contained in the MXBeans section to wor k_di r/j mx_exanpl es/
MXBean.

2. Compile the example Java classes.

$ javac conl exanpl e/ nxbeans/*.java

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE

10.

11.

12.

13.

Chapter 10
Introducing MXBeans

Start the Mai n application.

$ java com exanpl e. mxbeans. Mai n

You will see confirmation that Mai n is waiting for something to happen.

Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

Select com exanpl e. mxbeans. Mai n from the list in the New Connection window, and click
on Connect.

You will see a summary of your platform’s current activity.

Click on the MBeans tab.

This panel shows you all the MBeans currently registered in the MBean server.

In the left-hand frame, expand the com exanpl e. mxbeans node in the MBean tree.

You will see the example MBean QueueSanpl er, that was created and registered by Main.
If you click on QueueSanpl er, then you will see its associated Attributes and Operations
nodes in the MBean tree.

Select the Attri but es node.

You will see the QueueSanpl e attribute appear in the right-hand pane, with its value of
j avax. managenent . opennbean. Conposi t eDat aSupport .

Double-click on the Conposi t eDat aSupport value.

You can see the QueueSanpl e values dat e, head and si ze because the MXBean
framework has converted the QueueSanpl e instance into Conposi t eDat a. If you had defined
QueueSanpl er as a Standard MBean rather than as an MXBean, JConsole would not have
found the QueueSanpl e class because it would not be in its class path. If QueueSanpl er had
been a standard MBean, you would have received a C assNot FoundExcept i on when
retrieving the QueueSanpl e attribute value. This demonstrates the usefulness of using
MXBeans when connecting to JMX agents through generic JMX clients, like JConsole.

Select the Operations node.

You will see a button to invoke the cl ear Queue operation.

Click on the clearQueue button.

You will be informed that the method was invoked successfully.

Select the Attributes node again and double click on the Conposi t eDat aSupport value.
The queue has been reset now.

Click on Connection and then EXxit, to exit JConsole.

In this example JConsole has been used as the JMX client but if you were to access your
MXBean programmatically in a JMX client you write yourself, then you could do so in one of
two ways:

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 10
MBean Descriptors

e Generically, using the following code:

MBeanServer nbs = ...whatever...;

bj ect Name name = new (bj ect Name(" com exanpl e. nxbeans: t ype=QueueSanpl er");

Conposi teDat a queueSanpl e = (ConpositeData) mbs.getAttribute(nane,
"QueueSaml e");

int size = (Integer) queueSanple.get("size");

e Via a proxy, using the following code:

MBeanServer nbs = ...whatever...;
bj ect Namre name = new Obj ect Name(" com exanpl e. nkbeans: t ype=QueueSanpl er");
QueueSanpl er MXBean proxy = JMX. newMXBeanPr oxy(mbs, nane,

QueueSanpl er MXBean. cl ass) ;
QueueSanpl e queueSanpl e = proxy. get QueueSanpl e();
int size = queueSanpl e. get Si ze();

This code uses the newMXBeanProxy method to create the MXBean proxy. An equivalent
method, newMBeanPr oxy, exists to create proxies for other types of MBeans. The
newBeanPr oxy and newXBeanPr oxy methods are used in exactly the same way.

MBean Descriptors

Descriptors allow you to give additional information about MBeans to management clients. For
example, a Descriptor on an MBean attribute might say what units it is measured in, or what its
minimum and maximum possible values are. As of Java SE 6, Descriptors are an integrated
part of the IMX API and are available in all types of MBeans.

Descriptors give you a convenient way to attach arbitrary extra metadata to your MBeans.
Descriptors have always existed in the IMX API, but until Java SE 6 they were only available
in conjunction with Model MBeans.

For most constructors in the classes MBean* | nf o (MBean! nf o, MBeanAt t ri but el nf o, and so
on), a parallel constructor exists with the same parameters plus an additional

j avax. managenent . Descri pt or parameter. The same is true for QpenMBean* | nf oSupport . The
MBean* | nf o and OpenMBean* | nf oSupport classes contain a get Descri pt or () method.

Open MBeans return information about default and legal values from the get Def aul t Val ue(),
get Legal Val ues(), get MaxVal ue(), get M nVal ue() methods of QpenMBeanPar anet er | nf o0 and
OpenMBeanAt t ri but el nf 0. This information is now also present in the corresponding
Descriptors, and other types of MBean can also return the information in their Descriptors.

MBean Descriptors are demonstrated in the example classes you will find in the directory
work_dirl j mx_exanpl es/ Descri pt or s/ comf exanpl e/ nxbeans after you have downloaded and
unzipped the j mx_exanpl es. zi p file. The MBean Descriptor example contains the following
files.

e Aut hor, an annotation the supplies the name of the author of the MBean interface.

« Di spl ayName, an annotation that supplies a display name for methods in the MBean
interface.

e Mi n, the program that sets up and runs the example.
* QueueSanpl er MXBean interface.

e QueueSanpl er class that implements the MXBean interface.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 10
MBean Descriptors

e QueueSanpl e Java type returned by the get QueueSanpl () method in the MXBean
interface.

* Version, an annotation that supplies the current version of the MBean interface.

The QueueSanpl er MXBean in this example basically performs the same actions as the
MXBean example presented in Introducing MXBeans , except with the addition of MBean
Descriptors. This example shows how the Descri pt or Key meta-annotation can be used to add
new descriptor items to the Descriptors for a standard MBean (or an MXBean) via annotations
in the standard MBean (or MXBean) interface.

DescriptorKey Annotations

The Descri pt or Key annotation can be used to add information to the Descriptors for a
standard MBean or a MXBean through annotations in the Standard MBean or MXBean
interface. This makes it possible for a tool that generates standard MBeans from an existing
management model to include information from the model in the generated MBean interfaces,
rather than in separate files. The following code example demonstrates the definition of the
annotation Aut hor .

CODE EXAMPLE 10-9 Author Annotation

package com exanpl e. mxbeans;

i nport java.lang. annot ati on. Docunent ed,;

i nport java.lang.annotati on. El enent Type;
inport java.lang.annotation. Retention;

i nport java.lang.annotation. RetentionPolicy;
i nport java.lang.annotation. Target;

i nport javax. managenent. Descri pt or Key;

@ocunent ed
@rar get (El enent Type. TYPE)
@Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Author {
@escri pt or Key("aut hor")
String val ue();

This annotation supplies the name of the creator of the MBean interface. A new field aut hor
will be added to the MBeanl nf o Descriptor with the value defined by the @ut hor annotation.
The files Ver si on and Di spl ayNanme define annotations of those names in exactly the same way
as for Aut hor above. In each of Ver si on and Di spl ayNane, the @escr i pt or Key value is
“version” and “di spl aynane” respectively.

In the case of Version, a new field ver si on will be added to the MBeanl nf o Descriptor with the
value defined by the @/er si on annotation.

For Di spl ayNare, new field di spl ayNane will be added to the MBeanAt t ri but el nf o Descriptor
or the MBeanQper at i onl nf 0 Descriptor with the value defined by the @i spl ayNane annotation
depending on whether the annotated method is a getter/setter or an operation, respectively.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE Chapter 10
MBean Descriptors

Using MBean Descriptors

The QueueSanpl er MXBean interface used in the following code example is slightly different from
the one used in the MXBeans example. It implements MBean Descriptors to publish some of
its information.

CODE EXAMPLE 10-10 QueueSamplerMXBean with Descriptors

package com exanpl e. mxbeans;

@\ut hor ("M Bean")

@/ersion("1.0")

public interface QueueSanpl er MXBean {
@i spl ayName(" GETTER: QueueSanpl e")
public QueueSanpl e get QueueSanpl e();
@i spl ayName(" OPERATI ON: cl ear Queue")
public void clearQeue();

Here, the @\ut hor annotation is set to M. Bean, the @/er si on annotation is set to 1. 0, and the
@i spl ayNane is set to the names either of the attribute QueueSanpl e or the operation
cl ear Queue.

Running the MBean Descriptors Example

To run the example:

1. Copy the source code contained in the MBean Descriptors section to wor k_di r/
j mx_exanpl es/ Descriptors.

2. Compile the example Java classes.

$ javac conl exanpl e/ nxbeans/*.java

3. Start the Mai n application.

$ java com exanpl e. nxbeans. Mai n

You will see confirmation that Mai n is waiting for something to happen.

4, Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

5. Select com exanpl e. mxbeans. Mai n from the list in the New Connection window, and click
on Connect.

You will see a summary of your platform’s current activity.

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE Chapter 10
MBean Descriptors

6. Click on the MBeans tab.
This panel shows you all the MBeans currently registered in the MBean server.
7. Inthe left-hand frame, expand the com exanpl e. nxbeans node in the MBean tree.

You will see the example MBean QueueSanpl er, that was created and registered by Main.
If you click on QueueSanpl er, you will see its associated Attributes and Operations nodes
in the MBean tree. You will also see the fields aut hor and ver si on in the MBeanl nf o
Descriptor table.

8. Expandthe Attributes and Qperations nodes under the QueueSanpl er MBean node.
You will see the individual Attributes and Operations.

9. Select the QueueSanpl e node.
You will see the field di spl ayNanme in the MBeanAt t ri but el nf o Descriptor table.

10. Select the cl ear Queue node.
You will see the field di spl ayName in the MBeanQper at i onl nf o Descriptor table.

11. Click on Connection and then Exit , to exit JConsole.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 17

JMX Connectors

This chapter introduces the concepts of standard and dynamic management beans (MBeans)
and shows how to use JMX technology to perform operations on MBeans, locally and remotely.

Accessing Standard and Dynamic MBeans By Using the RMI
Connector

This example demonstrates standard and dynamic MBeans .

As seen in Essentials of the IMX API, a standard MBean statically defines its management
interface through the names of the methods it contains. A dynamic MBean implements a
specific Java interface and reveals its attributes and operations at run time.

The JMX technology defines a connector based on Remote Method Invocation (RMI). The RMI
connector supports the Java Remote Method Protocol (JRMP) transport. This connector allows
you to connect to an MBean in an MBean server from a remote location, and perform
operations on it, exactly as if the operations were performed locally.

The purpose of this example is to demonstrate the implementation of a standard MBean and a
dynamic MBean. It shows how to perform operations on them, both locally, and remotely
through an RMI connection between a server and a remote client.

When you run this example:
e The server:
— Creates an MBean server
— Registers a Si npl eSt andar d and a Si npl eDynani ¢ MBean in the local MBean server
— Performs local operations on the MBeans
— Creates an RMI connector server
e Theclient:
— Creates an RMI connector

— Registers a Si npl eSt andar d and a Si npl eDynani ¢ MBean on the remote MBean
server

— Performs remote operations on both MBeans

Analyzing the Classes Used in the Basic MBean Example

1. Copy the source code contained in the JMX Connectors section and create corresponding
files in the wor k_di r/j mx_exanpl es/ Basi ¢ directory. The files inside this directory should
then include the following:

e Server.java
e SinpleStandardMBean. j ava
e SinpleStandard.java

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE’

2.

Chapter 11

Accessing Standard and Dynamic MBeans By Using the RMI Connector

Si npl eDynami c. j ava
e (CientListener.java
e (Cdient.java
 README

Open each *. j ava file in your IDE or a text editor.

The following sections analyze each of the classes used in the basic MBean example, and
explain how the classes perform the operations described in the preceding section.

Server.java in the MBean Example

Due to its size, the Server . j ava class is analyzed in the following series of code excerpts:

CODE EXAMPLE 11-1 MBean Example Class Server.java (Excerpt 1)
CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2)
CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3)
CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4)
CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5)

CODE EXAMPLE 11-1 MBean Example Class Server.java (Excerpt 1)

public class Server {

public static void main(String[] args) {

try {

MBeanServer nbs = MBeanServer Factory. creat eMBeanServer();
wai t For Ent er Pressed() ;

String domain = nbs. get Def aul t Domai n() ;
wai t For Ent er Pressed() ;

String nbeand assNane = "Si npl eSt andard”;
String nbeanhj ect NameStr =
domain + ":type=" + nbeanCl assName + ", nane=1";
bj ect Namre nmbeanChj ect Nane =
creat eSi npl eMBean(nbs, nmbeanC assNanme, nbeanCbj ect NameStr);
wai t For Ent er Pressed() ;

print MBeanl nf o(nbs, nbeanCbj ect Nane, nbeanC assName);
wai t For Ent er Pressed() ;

manageSi npl eMBean(nbs, nbeanCbj ect Nanme, nbeanC assNane);
wai t For Ent er Pressed() ;

mbeanCl assNarme = " Si npl eDynani c";
mbeanObj ect NameStr =
domain + ":type=" + nbeanCl assName + ", nane=1";
mbeanCbj ect Nane =
creat eSi npl eMBean(nbs, nmbeanC assNanme, nbeanCbj ect NameStr);

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates.

Page 2 of 12

ORACLE

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

wai t For Ent er Pressed() ;

print MBeanl nf o(nbs, nbeanCbj ect Nane, nbeanC assName);
wai t For Ent er Pressed() ;

manageSi npl eMBean(nbs, nbeanCbj ect Nanme, nbeanC assNane);
wai t For Ent er Pressed() ;

[...]

Examining this class, you can see that the following occurs:

First, the Server. j ava class creates a new MBean server called nbs by calling the
creat eMBeanSer ver () method of the MBeanSer ver Fact ory class.

Then, the default domain in which the MBean server is registered is obtained with a call to the
get Def aul t Domai n() method of the MBeanSer ver interface. The domain is identified by the
string domai n.

The MBean class named Si npl eSt andar d is also identified by a variable, in this case the string
mbeanCl assNane. Si npl eSt andar d is the name of the Java class for the Java object of which
this MBean is an instance.

Another variable, the string mbean(hj ect NaneSt r, is defined as the combination of the domain,
plus the following key=value pairs:

e The type, which in this case is the nbeanC assName.

e A nane, to differentiate this MBean from other MBeans of the same type that might be
created subsequently. In this case the name number is 1.

The purpose of mheanChj ect NaneSt r is to give the MBean a human-readable identifier.

A call to createSimpleMBean() creates and registers the SimpleStandard MBean in the local
MBean server, with the given object name.

The operations pri nt MBeanl nf o(), and manageSi npl eMBean() are then performed on the

Si npl eSt andar d MBean. Like cr eat eSi npl eMBean() , these methods are defined later in the
Server . j ava code, and are shown in CODE EXAMPLE 11-4 MBean Example Class
Server.java (Excerpt 4) and CODE EXAMPLE 11-5 MBean Example Class Server.java

(Excerpt 5).

In code that is not shown here, a second MBean of the type Si npl eDynami ¢ is created and
registered in the MBean server in exactly the same way as the Si npl eSt andar d MBean. As the
name suggests, this MBean is an instance of the Si npl eDynami ¢ Java object, which is
examined in SimpleDynamic.java in the MBean Example.

CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2)

[]

JMXServiceURL url =

new JMXServiceURL("service:jmk:rm:///jndi/rm://local host:9999/server");
JMXConnect or Server cs =

JMXConnect or Ser ver Fact ory. newJMXConnect or Server (url, null, nbs);
cs.start();

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

wai t For Ent er Pressed() ;
cs.stop();

[...]

In CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2), an RMI connector
server is created so that operations can be performed on the MBeans remotely. A call to the
class JMXSer vi ceURL creates a new service URL called ur |, which serves as an address for
the connector server. In this example, the service URL is given in JNDI form, rather than in
encoded form (see the API documentation for the j avax. managenent. renmote. rm package for
an explanation of JNDI form). This service URL defines the following:

e The connector will use the default RMI transport, denoted by r ni .

e The RMI registry in which the RMI connector stub are stored will be running on port 9999
on the local host, and the server address will be registered under the name server. The
port 9999 specified in the example is arbitrary; you can use any available port.

An RMI connector server named cs is created by calling the constructor

JMXConnect or Ser ver Fact or y, with the service URL url, a nul | environment map, and the
MBean server nbs as parameters. The connector server cs is launched by calling the start ()
method of JMXConnect or Ser ver , whereupon RM Connect or Ser ver exports the RMI object
server to the RMI registry. The connection will remain open until the Enter key is pressed, as
instructed by the simple method wai t For Ent er Pr essed, that is defined later in the Server code.

CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3)

[]

private static ObjectNane createSi npl eMBean(MBeanServer nbs,
String nbeand assNane,
String nbeanhj ect NameStr) {
echo("\n>>> Create the " + nbeand assNane +
" MBean within the MBeanServer");
echo("Qbj ect Nane = " + nheanCbj ect NaneStr) ;
try {
bj ect Name nbeanChj ect Nane =
(bj ect Narre. get | nst ance(mheanCbj ect NaneStr) ;
nbs. cr eat eMBean(nbeand assNane, nheanCbj ect Nane);
return nbeanoj ect Nane;
} catch (Exception e) {
echo(“I''l Could not create the " +
nbeanC assNane + " MBean !!!");
e.printStackTrace();
echo("\nEXITING ..\n");
Systemexit(1);
}

return null;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 12

ORACLE

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3) shows the definition
of the creat eSi npl eMBean() method. In this method, the object name nmbeanhj ect NaneStr is
passed to the get | nst ance() method of the (bj ect Nare interface to create a new object name
used to register the MBean inside the MBean server. The resulting object name instance is
named nbeanhj ect Nane. A call to the MBeanSer ver method cr eat eMBean() instantiates an
MBean defined by the combination of the mheanC assName and the instance of

mbeanhj ect Nane, and then registers the MBean in the MBean server nbs.

CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4)

[...]

private static void printMeanl nfo(MeanServer nbs,
bj ect Narmre nmbeanQbj ect Nane,
String nbeand assNane) {
MBeanlnfo info = null;
try {
info = nbs. get MBeanl nf o(nheanChbj ect Nane) ;
} catch (Exception e) {

echo("!!! Could not get MBeanlnfo object for " +
mbeanCl assName +" 111");

e.printStackTrace();

return;

}

MBeanAttributelnfo[] attrinfo = info.getAttributes();
if (attrinfo.length > 0) {

for (int i =0; i <attrinfo.length; i++) {

echo(" ** NAME "+ attrinfo[i].getName());

echo(" DESCR: "+ attrinfo[i].getDescription());
echo(" TYPE: "+ attrinfo[i].getType() +

"READ: "+ attrinfo[i].isReadable() +
"WRITE: "+ attrinfo[i].isWitable());

}

} else echo(" ** No attributes **");

In CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4), we see the
definition of the method pri nt MBeanl nf o() . The pri nt MBeanl nf o() method calls the

MBeanSer ver method get MBeanl nf o() to obtain details of the attributes and operations that are
exposed by the MBean named by nbeanbj ect Narre. MBeanAttri but el nf o defines the
following methods, each of which is called in turn to obtain information about the MBean’s
attributes:

e get Name: Obtains the attribute’s name.

e getDescription: Obtains the human readable description of the attribute.
e get Type: Obtains the class name of the attribute.

* isReadabl e: Determines whether or not the attribute is readable.

* isWitabl e: Determines whether or not the attribute is writable.

In code that is not shown here, calls are made to obtain information about the MBean'’s
constructors, operations and notifications:

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 12

ORACLE

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

MBeanConst r uct or | nf o: Obtains information about the MBean’s Java class.

MBeanQper at i onl nf o: Learns what operations the MBean performs, and what parameters
the MBean takes.

MBeanNot i fi cati onl nf o: Finds out what notifications the MBean sends when its
operations are performed.

CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5)

.

private static void manageSi npl eMBean(MBeanServer nbs,

bj ect Nare mbeanCbj ect Nane,
String nbeanC assNane) {

try {
printSinpleAttributes(mbs, nmbeanCbj ect Nane);

Attribute stateAttribute = new Attribute("State",
"new state");
mbs. set Attri but e(mbeanChj ect Nane, stateAttribute);

printSinpleAttributes(mbs, nbeanCbj ect Nane);

echo("\n I nvoki ng reset operation...");
mbs. i nvoke(nbeanCbj ect Nane, "reset”, null, null);

printSinpleAttributes(nmbs, nmbeanCbj ect Nane);
} catch (Exception e) {
e.printStackTrace();
}
}

private static void printSinpleAttributes(
MBeanServer nbs,
(bj ect Namre nbeanQbj ect Nane) {
try {
String State =
(String) nbs.getAttribute(nbeanCbjectNane, "State");
I nteger NoChanges =
(I'nteger) nbs.getAttribute(nbeanObject Nane,
"NbChanges") ;
} catch (Exception e) {
echo("Il Could not read attributes I'l!I");
e.printStackTrace();

CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5) demonstrates a
method for managing a simple MBean.

The manageSi npl eMBean() method first of all calls the print Si npl eAttributes() method that
is also defined by Server. The print Si npl eAttri but es() method obtains an MBean attribute

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE’

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

called st at e from the MBean nmbeanChbj ect Nane, as well as another MBean attribute called
NbChanges.

The manageSi npl eMBean() method then defines an attribute called st at eAtt ri but e, which is
an instance of the Attri but e class. The stat eAttri but e attribute associates a value of new
st at e with the existing attribute st at e, defined by Si npl eSt andar d. A call to the MBeanSer ver
method set Attri but e() then sets the mheanChj ect Nane MBean'’s state to the new state
defined by stat eAttri bute.

Finally, a call to the MBeanSer ver method i nvoke() invokes the nbeanObj ect Name MBean'’s
reset operation. The reset operation is defined in the Si npl eSt andar d class.

SimpleStandardMBean.java in the MBean Example

The Si npl eSt andar dMBean. j ava class is shown in the following code example.

CODE EXAMPLE 11-6 MBean Example Class SimpleStandardMBean.java

public interface SinpleStandard©vBean {

public String getState();
public void setState(String s);
public int getNbChanges();
public void reset();

The Si npl eSt andar dMBean. j ava class is a straightforward JMX Specification management
interface for the MBean Si npl eSt andar d. This interface exposes the four operations defined by
Si npl eSt andar d for management through a JMX agent.

SimpleStandard.java in the MBean Example

The Si npl eSt andar d. j ava class is shown in the following code example.

CODE EXAMPLE 11-7 MBean Example Class SimpleStandard.java

public class SinpleStandard
extends NotificationBroadcaster Support
i mpl ement's Si npl eSt andar dMBean {
public String getState() {
return state;

public void setState(String s) {
state = s;
nbChanges++;

}

public int getNbChanges() {
return nbChanges;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE

Chapter 11

Accessing Standard and Dynamic MBeans By Using the RMI Connector

}

public void reset() {
AttributeChangeNotification acn =
new AttributeChangeNotification(this,

0,
0,
"NoChanges reset",
"NoChanges",
"Integer"”,
new | nt eger (nbChanges),
new | nteger(0));

state = "initial state";

nbChanges = 0;

nbReset s++;

sendNot i fication(acn);

}

public int getNbResets() {
return nbResets;
1

public MBeanNotificationlnfo[] getNotificationlnfo() {
return new MBeanNotificationlnfo[] {
new MBeanNot i fi cati onl nfo(
new String[] {
At tributeChangeNotification. ATTRI BUTE_CHANCE },
At tributeChangeNotification. class. get Nane(),
"This notification is enmtted when the reset()
method is called. ")
b
}

private String state = "initial state";
private int nbChanges = 0;
private int nbResets = 0;

The Si npl eSt andar d class defines a straightforward JMX Specification standard MBean. The
Si npl eSt andar d MBean exposes operations and attributes for management by implementing
the corresponding Si npl eSt andar dMBean interface.

The simple operations exposed by this MBean are to:

Define a state
Update this state

Count the number of times the state is updated

Reset the values of the state and the number of changes to their original value of zero

Send a notification whenever the reset operation is invoked

The notification emitted by the reset operation is an instance of the class
AttributeChangeNoti fication, which collects information about the number of changes

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 8 of 12

ORACLE’

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

carried out on the St at e attribute before calling reset. The content of the notification sent is
defined by the MBeanNot i f i cat i onl nf o instance.

SimpleDynamic.java in the MBean Example

The Si npl eDynani ¢ class is shown in the following code example.

CODE EXAMPLE 11-8 MBean Example Class SimpleDynamic.java

public class SinpleDynamnc
extends NotificationBroadcast er Support
i npl enents Dynani cMBean {

public SinpleDynamc() {
bui | dDynani cMBeanl nf o() ;
}

[...]

The Si npl eDynani ¢ dynamic MBean shows how to expose attributes and operations for
management at runtime, by implementing the Dynani cMBean interface. It starts by defining a
method, bui | dDynani cMBeanl nf o() , for obtaining information for the MBean dynamically. The
bui | dDynam cMBeanl nf o() method builds the MBeanl nf o for the dynamic MBean.

The rest of the code of Si npl eDynani ¢ corresponds to the implementation of the Dynam cMBean
interface. The attributes, operations and notifications exposed are identical to those exposed
by the Si npl eSt andar d MBean.

ClientListener.java in the MBean Example

The C i ent Li st ener. j ava class is shown in the following code example.

CODE EXAMPLE 11-9 MBean Example Class ClientListener.java

public class CientlListener inplenents NotificationListener {
public void handl eNotification(Notification notification, Qoject handback)

{
}

Systemout. println("\nReceived notification: " + notification);

The C i ent Li st ener class implements a straightforward JMX Specification notification listener.
The handl eNot i fi cation() method of the Noti fi cati onLi st ener interface is called upon
reception of a notification, and prints out a message to confirm that a notification has been
received.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

Chapter 11

Accessing Standard and Dynamic MBeans By Using the RMI Connector

Client.java in the MBean Example

The Cient.java class is shown in the following code example.

CODE EXAMPLE 11-10 MBean Example Class Client.java

public class Cient {

public static void main(String[] args) {
try {

Il Create an RM connector client

I

JMXServi ceURL url = new JMXServi ceURL(
"service:jm:rm:///jndi/rm://]ocal host:9999/server");

JMXConnect or jmxc = JMXConnect or Fact ory. connect (url, null);

CientListener listener = new ClientlListener();

MBeanSer ver Connection mbsc = j mxc. get MBeanSer ver Connection();

wai t For Ent er Pressed();

/] Get dommins from MBeanServer

I
String domains[] = nbsc. get Donai ns();
for (int i =0; i < domains.length; i++) {
Systemout. printIn("Domain[" +i + "] =" + domains[i]);
}

wai t For Ent er Pressed() ;
String domain = nbsc. get Def aul t Domai n() ;

Il Create SinpleStandard MBean
bj ect Name nbeanName =

new Cbj ect Nanme(domai n +":type=Si npl eSt andar d, name=2");
mbsc. cr eat eMBean(" Si npl eSt andard", stdMBeanNane, null, null);
wai t For Ent er Pressed();

Il Create SinpleDynanic MBean
(bj ect Name dynMBeanNane =

new Cbj ect Nane(domai n +":type=Si npl eDynami ¢, nanme=2");
echo("\nCreate SinpleDynamic MBean...");
mbsc. cr eat eMBean(" Si npl eDynanmi ¢", dynMBeanName, null, null);
wai t For Ent er Pressed();

Il Get MBean count
echo("\nMBean count =" + nbsc.get MBeanCount());

[l Query MBean nanes
echo("\ nQuery MBeanServer MBeans:");
Set names = nbsc. queryNanes(null, null);

for (lterator i = nanes.iterator(); i.hasNext();) {
echo("ObjectNane = " + (CbjectName) i.next());
}

wai t For Ent er Pressed();

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 10 of 12

ORACLE

Chapter 11
Accessing Standard and Dynamic MBeans By Using the RMI Connector

mbsc. set At t ri but e(st dMBeanNane,
new Attribute("State", "changed state"));

Si npl eSt andar dvBean proxy = JMX. newMBeanPr oxy(
mbsc, stdMBeanNane, SinpleStandardMBean. cl ass, true);
echo("\nState = " + proxy.getState());

CientListener listener = new OientListener();
mbsc. addNot i fi cati onLi st ener (st dMBeanNane, |istener, null, null);

mbsc. i nvoke(st dvBeanNare, "reset", null, null);

mbsc. renoveNoti ficationLi stener(stdMBeanNane, |istener);
mbsc. unr egi st er MBean(st dMBeanNane) ;

[...]

j mc. close();
} catch (Exception e) {
e.printStackTrace();

The d i ent. | ava class creates an RMI connector client that is configured to connect to the
RMI connector server created by Server.java. dient.java defines the same service URL
url as that defined by Server. j ava. This allows the connector client to retrieve the RMI
connector server stub named server from the RMI registry running on port 9999 of the local
host, and to connect to the RMI connector server.

With the RMI registry identified, the connector client can be created. The connector client,
j nxc, is an instance of the interface JMXConnect or, created by the connect () method of
JMXConnect or Fact ory. The connect () method is passed the parameters url and a nul |
environment map when it is called.

The Client also creates an instance of C i ent Li st ener, to listen for notifications, as shown in
ClientListener.java in the MBean Example.

An instance of a JMX Specification MBeanSer ver Connect i on, named nbsc, is then created by
calling the get MBeanSer ver Connect i on() method of the JMXConnect or instance j nmxc.

The connector client is now connected to the MBean server created by Server. j ava, and can
register MBeans and perform operations on them with the connection remaining completely
transparent to both ends.

The client creates and registers the Si npl eSt andar d MBean and the Si npl eDynani ¢ MBean in
the MBean server with a call to the cr eat eMBean() method of MBeanSer ver Connect i on, and
performs the operations defined by Si npl eSt andar d and Si npl eDynami ¢ as if they were local
JMX Specification MBean operations.

MBean proxies allow you to access an MBean through a Java interface, allowing you to make
calls on the proxy rather than having to write lengthy code to access a remote MBean. An
MBean proxy for Si npl eSt andar dMBean is created here by calling the method newivBeanPr oxy()
in the j avax. nanagenent . JMX class, passing it the MBean’s MBeanSer ver Connect i on object,
the class name of the MBean interface, and true to signify that the proxy must behave as a

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE

Chapter 11
Running the MBean Example

Noti fi cati onBroadcast er. You can make proxies for MXBeans in exactly the same way as for
standard MBeans, by simply calling newMXBeanPr oxy() instead of newiBeanPr oxy() .

The code for the different operations performed on Si npl eDynani ¢ is not shown here, because
the operations are the same as those performed on Si npl eSt andar d.

Finally, the client unregisters the Si npl eSt andar d MBean and closes the connection. The final
renmoveNoti ficati onLi stener is optional, as listeners registered by a remote client are
removed when that client is closed.

Running the MBean Example

Having examined the example classes, you can run the example. To run the example:

1.

Compile the Java classes.
$ javac *.java

Start an RMI registry on port 9999 of the local host.
The RMI registry is used by the Server class to register the RMI connector stub.

$ rmiregistry 9999 &

Start the Server class.

$ java -classpath . Server

You will see confirmation of the creation of the MBean server and the creation of the

Si npl eSt andar d MBean in the MBean server. You will then be prompted to press the Enter
key to obtain information about, and then to perform operations on, the Si npl eSt andar d
MBean.

After the operations on the Si npl eSt andar d are completed, the process is repeated for the
Si npl eDynani ¢ MBean.

After both the MBeans are created and their operations performed, you see the creation of
an RMI connector server, to allow operations to be performed on the MBeans from the
remote Cl i ent.

Start the i ent class in another terminal window.

$ java -classpath . dient

You will see confirmation of the creation of the RMI connector client and of the connection
with the connector server. You will also be informed of the domain name, and the creation
and registration of Si npl eSt andar d and SimpleDynamic MBeans. The client will perform
operations on Si npl eSt andar d and SimpleDynamic MBeans, before unregistering them.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 12

Lookup Services

The lookup services allow JMX technology clients to find and connect to connector servers that
have registered with the lookup services.

The JMX Specification defines three bindings to lookup services, using existing lookup
technologies, as described in the following sections:

» Initial Configuration provides configuration information that applies to all three types of
lookup service.

e Service Location Protocol (SLP) Lookup Service presents the SLP lookup example.

« Java Naming and Directory Interface (JNDI) / LDAP Lookup Service presents a JNDI/
LDAP lookup example.

Initial Configuration

As shown in Accessing Standard and Dynamic MBeans By Using the RMI Connector, if you
are using remote method invocation (RMI) connectors, you can use an external directory to
register the connector server stubs you want to look up. The following cases are presented in
the lookup service examples relating to RMI connectors:

* RMI connectors that use one of the following external directories:

— An RMI registry, for RMI connectors that implement the default Java Remote Method
Protocol (JRMP) transport

— Lightweight Directory Access Protocol (LDAP), for JRMP transports
« RMI connectors that do not use an external directory

If you register the RMI connector stubs in an external directory, some initial configuration is
required. You must set up your RMI registry or LDAP server. If you do not use an external
directory, the RMI connector stub is encoded into the JMX service URL.

The following sections describe the external directories that you can use in conjunction with the
lookup service examples that use RMI connectors. These external directories are referred to
when running the three examples of lookup services that are given in the subsequent sections
in this chapter.

External RMI Registry

To register the RMI connector server stubs in an external RMI registry, for use by connectors
implementing the JRMP transport, perform the following actions:

1. Start the RMI registry on port 9999 of the local host.

As in JMX Connectors, the RMI registry is used to store the RMI connector stubs for RMI
connectors implementing the JRMP transport.

$ rmiregistry 9999 &

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 21

ORACLE

Chapter 12
Initial Configuration

For your convenience when typing commands, create an environment variable for the
address of the RMI registry.

To shorten the commands that you will type when you run the examples, set the service
URL for the RMI registry as an environment variable, j ndi rmi . In these examples, the
service URL is given in JNDI form. See the APl documentation for the

j avax. managenent . renot e. rm package for an explanation of JNDI form. If you want to
run the external directories on a machine other than the local machine, you must specify
that machine’s host name instead of localhost.

$ jndirm="rm://local host:9999"

External LDAP Registry

To register the RMI connector server stubs in an external LDAP registry, for use by connectors
implementing the JRMP transport:

1.

Start an LDAP Server.

The LDAP server you use is your choice, although the schema for representing Java
objects in an LDAP directory must be known to the server. See the relevant Request For
Comments (RFC) document for details:

http://www.ietf.org/rfc/rfc2713.txt

Create a domain component suffix.

These examples require that you create the following domain component suffix:

dc=Test

See the documentation accompanying your LDAP server for details of how to configure the
server and create this suffix.

For your convenience, set the following LDAP parameters as environment variables.

These variables are used to shorten the commands you type when starting the Server and
Client classes in the lookup service examples that register RMI connector stubs in the
external LDAP server.

e The name of the machine running your LDAP server (I dap_host)
$ | daphost =l dap_host

e The port the LDAP server is running on (I dap_port)
$ | dapport=I dap_port

* The LDAP common name attribute, which in these examples is “Directory Manager”
$ principal ="cn=Directory Munager”

e The password required by your LDAP server . Supply the password for your LDAP
server.

$ credential s=your _| dap_password

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 21

http://www.ietf.org/rfc/rfc2713.txt

ORACLE Chapter 12
Service Location Protocol (SLP) Lookup Service

e The address of the LDAP server. In this example, the service URL for the LDAP server
is given in JNDI form and is identified by the variable jndildap.

$ jndi | dap="1dap://$l daphost: $| dapport"

You are now ready to run the different lookup service examples.

Service Location Protocol (SLP) Lookup Service

The JMX technology specifies how to register RMI connectors with the SLP lookup service.

This example demonstrates how a JMX Remote API connector client can find and connect to a
connector server that has registered with the SLP lookup service. This example performs the
following operations:

e The agent:
— Creates an MBean server
— Gets a pointer to the SLP lookup service
— Creates a connector server
— Registers the connector address with the SLP lookup service
e The client:
— Gets a pointer to the SLP lookup service
— Looks for any connector servers registered in the SLP lookup service
— Creates a JMX Remote API connector
— Retrieves information about the MBeans in the MBean server

This example assumes that you are already familiar with SLP technology. The code provided
for this example conforms to Oracle’s implementation of SLP, as defined by RFC 2614 (see
http://www.ietf.org/rfc/rfc2614.txt). You must obtain a version of SLP that is compliant with RFC
2614, section 5. You can download the OpenSLP Java implementation from http://
www.openslp.org/.

Analyzing the SLP Lookup Example Classes

1. Copy the source code contained in the Service Location Protocol (SLP) Lookup Service
section and create corresponding files in the wor k_di r/j mx_exanpl es/ Lookup/ sl p
directory. The files inside this directory should then include the following:

* README

e Server.java
e (dient.java
2. Openthe *.java files, in your IDE or text editor.

The following sections analyze each of these classes and explain how they perform the
operations described in the example.

Server.java in the SLP Lookup Example

Due to its size, the SLP lookup service Server. j ava class is analyzed in the following series of
code excerpts:

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 21

http://www.ietf.org/rfc/rfc2614.txt
http://www.ietf.org/rfc/rfc2614.txt
http://www.openslp.org/
http://www.openslp.org/

ORACLE’

Chapter 12
Service Location Protocol (SLP) Lookup Service

e CODE EXAMPLE 12-1 SLP Lookup Service Example Class Server.java (Excerpt 1)
e CODE EXAMPLE 12-2 SLP Lookup Service Example Class Server.java (Excerpt 2)
e CODE EXAMPLE 12-3 SLP Lookup Service Example Class Server.java (Excerpt 3)
e CODE EXAMPLE 12-4 SLP Lookup Service Example Class Server.java (Excerpt 4)

For explanations of the SLP code used in this example, see RFC 2614 and the API
documentation for SLP.

CODE EXAMPLE 12-1 SLP Lookup Service Example Class Server.java (Excerpt 1)

public class Server {
public final static int JMX DEFAULT LEASE = 300;
public final static String JMKX_SCOPE = "DEFAULT";

private final MBeanServer nbs;
public Server() {

mbs = MBeanServer Factory. creat eMBeanSer ver () ;
}

CODE EXAMPLE 12-1 sets the default SLP lease JMX_DEFAULT LEASE to a default lease of
300 seconds, corresponding to the length of time the URL is registered, and shows the initial
creation of the MBean server nbs.

In code that is not shown in the example, you then define an SLP advertiser sl pAdverti ser,
and an SLP service URL url . The sl pAdverti ser is used to register the service URL in the
SLP lookup service. The SCOPE and the agent Nane are registered in SLP as lookup attributes.

CODE EXAMPLE 12-2 SLP Lookup Service Example Class Server.java (Excerpt 2)

[]

public static void register(JMXServiceURL jnxUrl, String nanme)

throws ServicelocationException {
Servi ceURL serviceURL =

new Servi ceURL(j mxUrl.toString(),

JMX_DEFAULT_LEASE);

debug(" ServiceType is: " + serviceURL. get ServiceType());
Vector attributes = new Vector();
Vector attrValues = new Vector();
attrVal ues. add(JMX_SCOPE) ;
Servi ceLocationAttribute attrl =

new Servi ceLocationAttribute("SCOPE", attrVal ues);
attributes.add(attrl);
attrVal ues. renmoveAl | El ements();
attrVal ues. add(nane) ;
Servi ceLocationAttribute attr2 =

new Servi celLocationAttribute("Agent Name", attrVal ues);

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 21

ORACLE Chapter 12
Service Location Protocol (SLP) Lookup Service

attributes.add(attr2);
final Advertiser slpAdvertiser =

Servi celLocat i onManager . get Adverti ser(Local e. US);
sl pAdvertiser.register(serviceURL, attributes);

CODE EXAMPLE 12-2 shows the registration of the JMX connector server’'s URL with the SLP
lookup service.

The JMX service URL j nxUr | is the address of the connector server, and is obtained by a call
to the get Addr ess() method of JMXConnect or Server when the connector server is started.

The SLP lookup attributes, namely the scope and the agent name under which the connector
server address is to be registered (nane), are then specified by the SLP class

Servi ceLocati onAttribute. The Agent Nane attribute is mandatory, but other optional
attributes, such as Pr ot ocol Type, Agent Host , and Property can also be registered in the SLP
lookup service.

Finally, the JMX connector server address is registered in the SLP service with a call to the
regi ster() method of the Adverti ser interface, with the servi ceURL and the attri but es
passed in as parameters.

CODE EXAMPLE 12-3 SLP Lookup Service Example Class Server.java (Excerpt 3)

[]

public JMXConnectorServer rm (String url) throws
| CException,
JMExcepti on,
Nam ngExcepti on,
Cl assNot FoundExcept i on,
Servi ceLocat i onException {
JMXServiceURL jurl = new JMXServiceURL(url);
final HashMap env = new HashMap();
/1 Environnent nap attributes

-]

JMXConnect or Server rms =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (jurl, env, nbs);
final String agentNane = System get Property("agent. name",
"Defaul t Agent");
start(rms, agentNane);

return rms;

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 21

ORACLE Chapter 12
Service Location Protocol (SLP) Lookup Service

CODE EXAMPLE 12-3 shows the creation of an RMI connector server. The JMX service URL
jurl is constructed from the string ur| that is included in the command used to launch the
Server at the command line. An RMI connector server named rmi s is then created with the
system properties defined by the environment nap and the address j url .

The connector server is then started, and the RMI connector server address is registered in the
SLP lookup service under the name agent Nane.

CODE EXAMPLE 12-4 SLP Lookup Service Example Class Server.java (Excerpt 4)

[...]

public void start(JMXConnect or Server server, String agentNane)
throws | CException, ServicelLocationException {
server.start();
final JMXServiceURL address = server.get Address();
regi st er(address, agent Nane) ;

CODE EXAMPLE 12-4 shows the launching of the connector server server and the
registration of server in the SLP lookup service with the given address addr ess.

Client.java in the SLP Lookup Example

Due to its size, the SLP lookup service O i ent . j ava class is analyzed in the following series of
code excerpts:

e CODE EXAMPLE 12-5 SLP Lookup Service Example Class Client.java (Excerpt 1)
« CODE EXAMPLE 12-6 SLP Lookup Service Example Class Client.java (Excerpt 2)
e CODE EXAMPLE 12-7 SLP Lookup Service Example Class Client.java (Excerpt 3)

CODE EXAMPLE 12-5 SLP Lookup Service Example Class Client.java (Excerpt 1)

public class Cient {
public final static String JMX_SCOPE = "DEFAULT";

public static Locator getLocator() throws ServicelocationException {
final Locator slpLocator =
Servi ceLocat i onManager . get Locat or (Local e. US) ;
return sl plLocator;

}

public static List |ookup(Locator slpLocator, String name)
throws | CException, ServicelocationException {

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 21

ORACLE

Chapter 12
Service Location Protocol (SLP) Lookup Service

final ArrayList list = new ArrayList();
Vector scopes = new Vector();

scopes. add(JMX_SCOPE) ;
String query =
" (& Agent Name=" + ((nane!=null)?name:"*") + "))";

Servi celLocati onEnuneration result =
sl pLocator. findServi ces(new Servi ceType("service:jnx"),
scopes, query);

whi | e(resul t. hashoreEl ements()) {
final ServiceURL surl = (ServiceURL) result.next();

JMXServi ceURL jmxUrl = new JMXServiceURL(surl.toString());
try {

JMXConnector client =

JMXConnect or Fact ory. newJMXConnect or (j mxUrl, null);

if (client !'=null) list.add(client);
} catch (I OException x) {
[...]
}

}
}

return list;

}

CODE EXAMPLE 12-5 obtains the SLP service ,Locat or by calling the get Locat or method of
the SLP class Servi ceLocat i onManager. The O i ent then retrieves all the connector servers
registered in the SLP service under a given agent name, or under agent names that match a
certain pattern. If no agent name is specified when C i ent is started, all agent names will be
considered.

A JMX technology service URL, j mxUr |, is generated for each of the agents retrieved by SLP,
with each agent’s SLP service URL, surl, passed as a parameter into the JMXSer vi ceURL
instance. The URL ,j nxUr |, is then passed to the newJMXConnect or () method of

JMXConnect or Fact ory, to create a new connector client named cl i ent for each agent that is
registered in the SLP service.

The connector clients that are retrieved are stored in an array list called | i st .

CODE EXAMPLE 12-6 SLP Lookup Service Example Class Client.java (Excerpt 2)

public static void |istMeans(MeanServerConnection server)
throws | CException {

final Set names = server.queryNanes(null,null);

for (final Iterator i=names.iterator(); i.hasNext();) {
(bj ect Name name = (Chj ect Narme)i. next();
Systemout. println("Got MBean: "+nane);

try {
MBeanlnfo info =

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 21

ORACLE Chapter 12
Service Location Protocol (SLP) Lookup Service

server. get MBeanl nf o((Cbj ect Nane) nane) ;
MBeanAttributelnfo[] attrs = info.getAttributes();
if (attrs == null) continue;
for (int j=0; j<attrs.length; j++) {
try {
hject 0 =
server.getAttribute(nane,attrs[j].getNane());
Systemout.printIn("\t\t" + attrs[j].getName() +
"= "40);
} catch (Exception x) {
Systemerr.printin("JmxClient failed to get " +
attrs[j].getNanme() + x);
X. print StackTrace(Systemerr);

In CODE EXAMPLE 12-6, a reference to the MBeanSer ver Connect i on is retrieved for every
connector client that is created from the connector server address stored in the SLP service. A
list of all the MBeans and their attributes is retrieved.

CODE EXAMPLE 12-7 SLP Lookup Service Example Class Client.java (Excerpt 3)

public static void main(String[] args) {
try {
final String agentNane = System get Property("agent.name");
final Locator slplLocator = getlLocator();

List | = lookup(sl pLocator, agent Nane);
int j =1,
for (lterator i=l.iterator();i.hasNext();j++) {

JMXConnector c1 = (JMXConnector) i.next();
if (cl!=null) {
try {
cl. connect (env);
} catch (I CException x) {
Systemerr.println ("Connection failed: " + x);
X. printStackTrace(Systemerr);
conti nue;

}

MBeanSer ver Connecti on conn =
cl. get MBeanSer ver Connection();

try {
|'i st MBeans(conn);

} catch (I CException x) {
X. printStackTrace(Systemerr);
}

try {
cl.close();

} catch (I CException x) {
X. printStackTrace(Systemerr);

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE Chapter 12
Service Location Protocol (SLP) Lookup Service

}

}
} catch (Exception x) {
X. printStackTrace(Systemerr);

}

In CODE EXAMPLE 12-7, the agent . nane property is retrieved by calling the get Property()
method of the Syst emclass, and the SLP lookup service is found by calling the get Locat or ()
method of Locat or.

All the agents named agent Nane are then looked up, and connections are made to the agents
that are discovered. If no agent is specified, then all agents are looked up. Connections are
made to the MBean server created by Server, and all the MBeans in it are listed, before the
connection is closed down.

Running the SLP Lookup Service Example

This example demonstrates the use of the SLP lookup service to look up RMI connector
servers that use RMI's default transport, JRMP. As described in Initial Configuration, different
external directories are used to register the RMI connector stubs.

The following combinations of transports and external directories are demonstrated:

* RMI connector over the JRMP transport, with:
— No external directory
— An RMI registry
— An LDAP registry

In addition to the actions you performed in Initial Configuration, you must perform additional
actions specific to this example before you can run the examples that use the SLP. You can
then start looking up connectors using SLP in conjunction with the two connectors supported
by the JMX technology.

® Note

When you run the examples, to help you keep track of which agent has been created
with which transport, the agent names include a letter suffix that is the same as the
lettering of the corresponding section. For example, the agent from Starting the
Server, substep a, RMI connector over JRMP, without an external directory, is
called exanpl e- server-a.

To run the example, perform the sequence of steps described in:

e Setting up the SLP Lookup Service Example

e Starting the Server

e Starting the Client

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 21

ORACLE

Chapter 12
Service Location Protocol (SLP) Lookup Service

Setting up the SLP Lookup Service Example

The following steps are required by all the different transports you can run in this example.

1.

4,

For convenience when compiling and running the classes, define an additional
environment variable. In addition to the common environment variables that were set in
Initial Configuration, you need to add the path to the SLP service.

Set SLPLI B appropriately for the platform that you are using.

Define and export the cl assp environment variable. This example requires a classpath that
includes the Java archive (JAR) files for SLP:

$ cl assp=$SLPLI B/ sl p.j ar
Compile the example O i ent and Server classes by typing the following command:

$ javac -d . -classpath $classp Server.java Client.java

Start the SLP daemon according to the implementation of SLP that you are using.

Starting the Server

The command you use to start the Server varies according to which external directory you are
using. Before starting the d i ent, start one or more of the following instances of the Ser ver .
You can start instances of the Server with different transports and external registries.

RMI connector over JRMP, that does not use an external directory: Start the Ser ver
by typing the following command.

$ java -classpath .:$classp -Ddebug=true \
- Dagent . name=exanpl e- server-a \
-Durl ="service:jmcrm://" N\
sl p. Server &

In this command:

— The value for debug is set to true to provide more complete screen output when the
Server runs.

— The name of the agent is exanpl e- server - a.

— The service URL specifies that the selected connector is an RMI connector, running
over the RMI default transport JRMP.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service.

RMI connector over JRMP, using an RMI registry as an external directory: Start the
Server by typing the following command.

$ java -classpath .:$classp -Ddebug=true \
- Dagent . name=exanpl e- server-b \
-Durl="service:jm:rm:///jndi/${jndirm}/server" \
sl p. Server &

In this command:

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 21

ORACLE

Chapter 12
Service Location Protocol (SLP) Lookup Service

— The name of the agent that is created is exanpl e- server-b.

— The service URL specifies the selected connector as RMI over JRMP, and the external
directory in which the RMI connector stub, server, is stored is the RMI registry you
identified as jndirmi in Initial Configuration.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service.

* RMI connector over JRMP, using LDAP as the external directory: Start the Server by
typing the following command.

$ java -classpath .:$classp -Ddebug=true \
- Dagent . name=exanpl e- server-c¢ \
-Durl ="service:jm:rm:///jndi/${jndildap}/cn=x,dc=Test" \
-Dj ava. nam ng. security. principal ="$principal" \
-Dj ava. nam ng. security. credential s="$credential s" \
sl p. Server &

In this command:
— The name of the agent created is exanpl e- server-c.

— The service URL specifies the selected connector as RMI over JRMP, and the external
directory in which the RMI connector stub is stored is the LDAP server you identified
as j ndi | dap in Initial Configuration.

— The stub is registered in the Test domain component in the LDAP server.

— The common name attribute, pri nci pal , and password credenti al s, are given to gain
access to the LDAP server.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service under the agent name
exanpl e-server-c.

Starting the Client

After you start the Ser ver by using the transport and external directory of your choice, start the
Cient.

$ java -classpath .:$classp -Ddebug=true \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. naning. security. credential s="$credential s" \
slp.Cient

You will see output confirming the detection of the agents created by the Server and registered
in the lookup service. You will also see the identification and confirmation of the connection
made to the agents.

To look up a specific agent, type the following command:

$ java -classpath .:$classp -Ddebug=true \
-Dj ava. nam ng. security. principal ="$principal " \
-Djava. nam ng. security. credential s="$credential s" \
- Dagent . nane="agent Name" \
slp.Cient

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 21

ORACLE Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

In this command shown above, agentName is the name of the agent you want to look up. You
can specify a partial agent name by using *; for example, x* for all agent names beginning with
the letter x.

Java Naming and Directory Interface (JNDI) / LDAP Lookup
Service

JMX technology allows you to register RMI connectors with a JNDI lookup service using an
LDAP registry as a back end. This example performs the following operations:

e The agent:
— Creates an MBean server
— Creates a connector server
— Registers the connector address with the LDAP server
e Theclient:
— Gets a pointer to the INDI/LDAP lookup Service
— Looks for any connector servers registered in the JNDI/LDAP lookup service
— Creates a JMX Remote API connector

— Retrieves information about the MBeans in the MBean server

Analyzing the Example Classes

1. Copy the source code contained in the Java Naming and Directory Interface (JNDI)/LDAP
Lookup Service section and create corresponding files in the wor k_di r/j mx_exanpl es/
Lookup/ | dap directory. The files inside this directory should then include the following:

* README

e Server.java
e (Cdient.java
* jnx-schema.txt
e 60j nmx-schema. | dif
2. Openthe *.java files, in your IDE or text editor.

The following sections analyze each of the classes used in the JNDI/LDAP lookup service
example, and explain how they perform the operations described above.

Server.java in the INDI/LDAP Lookup Service Example

Due to its size, the INDI/LDAP lookup service Server. j ava class is analyzed in the following
series of code excerpts:

« CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)

« CODE EXAMPLE 12-13 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt
2)

EXAMPLE 12-14 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 3)
EXAMPLE 12-15 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 4)

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)

[...]

public class Server {
public final static int JVMX_DEFAULT_LEASE = 60;
private static bool ean debug = fal se;
private final MBeanServer nbs;
public Server() {
mbs = MBeanServer Factory. creat eMBeanServer () ;
}

public static DirContext getRootContext() throws Nam ngException {
final Hashtable env = new Hashtabl e();

final String factory =
System get Property(Context. | N TI AL_CONTEXT_FACTCRY,
"com sun.jndi.ldap. LdapCt xFactory");
final String |dapServerUl =
Syst em get Propert y(Cont ext. PROVI DER_URL) ;
final String |dapUser =
Syst em get Property(Cont ext. SECURI TY_PRI NCI PAL,
"cn=Di rectory Manager");
final String | dapPasswd =
Syst em get Propert y(Cont ext. SECURI TY_CREDENTI ALS) ;
debug(Cont ext . PROVIDER URL + "=" + | dapServerUrl);
debug(Cont ext. SECURI TY_PRI NCI PAL + "=" + | dapUser);
i f (debug) {
System out . print (Cont ext. SECURI TY_CREDENTI ALS + "=");
final int len = (ldapPasswd==null)?0: | dapPasswd. | ength();
for (int i=0;i<len;i++) Systemout.print("*");
Systemout. println();
}
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, f act ory);
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);
if (ldapServerUrl !'= null)
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);
if (ldapPasswd != null)
env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);
Initial Context root = new Initial LdapContext(env,null);
return (DirContext)(root.|ookup(""));

CODE EXAMPLE 12-12 shows the initial creation of an MBean server, nbs , and obtains a
pointer to the root context of the LDAP directory tree in which the connector server address is
registered. All the relevant LDAP access variables, such as the provider URL, the LDAP user
name, and the security credentials, are given here and passed into the environment map, env.
The environment map, env, is then passed as a parameter into a call to the

I nitial LdapCont ext, from which the initial LDAP context is obtained.

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

CODE EXAMPLE 12-13 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt
2)

[...]

public static void register(DirContext root,
JMXServiceURL jmUrl,
String nane)
throws Nami ngException, |COException {

final String nydn = System getProperty("dn","cn="+nane);
debug("dn: " + nydn);

oject 0 = null;
try {
0 = root. | ookup(nydn);
} catch (NameNot FoundException n) {
Attributes attrs = new BasicAttributes();
Attribute objclass = new Basi cAttribute("objectd ass");
obj cl ass. add("top");
obj cl ass. add("j avaCont ai ner");
obj cl ass. add("j mxConnector");
attrs. put (objcl ass);
attrs. put ("j nxAgent Nane", nane);
0 = root. createSubcontext (nydn,attrs);
}
if (o ==null) throw new NameNot FoundException();
final Attributes attrs = root.getAttributes(nydn);
final Attribute oc = attrs.get("objectC ass");
if ('oc.contains("jmConnector")) {
final String msg = "The supplied node [" + nydn +
"] does not contain the jmxConnector objectclass";
t hrow new Nami ngExcepti on(nsg);
}
final Attributes newattrs = new BasicAttributes();
newattrs. put ("] mcAgent Nane", nane) ;
newattrs. put ("jmServiceURL", jmxUrl.toString());
newattrs. put ("j mkAgent Host", | net Addr ess. get Local Host () . get Host Name()) ;
newattrs. put ("j mkProtocol Type",jmUrl . get Protocol ());
newattrs. put ("j mkExpirationDate",
get Expi rati onDat e(JMX_DEFAULT_LEASE));
root. modi f yAttri but es(mydn, Di r Cont ext . REPLACE_ATTRI BUTE, newattrs);

CODE EXAMPLE 12-13 shows the registration of the IMX connector server service URL in the
LDAP directory. You can specify the DN where the URL will be registered can be passed on
the command line through the dn System property, that is, - Ddn=nydn . See the commands
used start the server for a description. If the dn System property is not specified, then you can
use theDN: cn=nane where nane is the agent Name. However, this is not mandatory. The location
where the URL is registered does not matter, because the client code never uses that DN
directly, but instead performs an LDAP search to find the nodes which have an auxiliary

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 21

ORACLE

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

j mxConnector bj ect d ass . What is important is that each URL is registered in its own LDAP
node. How to name these nodes is left to the LDAP administrator, who in this case is you. In
this example, it is assumed that you have configured your LDAP server by creating a root
context under which the node cn=nane can be created, and that this r oot context has been
passed to the LDAP initial context through the Cont ext . PROVI DER_URL property. See

CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)).

The code in CODE EXAMPLE 12-13 checks whether the node in which you will register the
server URL already exists. If it does not, you try to create it. This will fail if the parent node
does not exist. The j mxConnect or (bj ect d ass is a simple auxiliary class, you will use the
j avaCont ai ner QObj ect C ass as structural class if you need to create a new context. This is
completely optional. Any structural class to which the j mxConnect or auxiliary class can be
added is acceptable. It then checks whether the node in which you will register the server
already has the j mxConnect or auxiliary class. If not, an exception is thrown.

At this point, you are sure that the node in which you will register the URL exists and has the
appropriate j nxConnect or auxiliary class. You only need to replace the values of the attributes
defined by JMX Remote API for LDAP lookup. See jmx-schema.txt.

e jmxServicelrl: Contains the String form of the server URL, as obtained from
server. get Address() after the server was started

e j mxAgent Nane: Contains the JMX agent name

e jmxProtocol Type: Contains the JMX protocol type, as returned by
j mxUrl. getProtocol Type()

e j mxAgent Host : Contains the name of the agent host

e jmxExpirationDat e: Contains the date at which the URL will be considered obsolete

EXAMPLE 12-14 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 3)

[...]

public JMXConnector Server rm (String url)
throws | OCException, JMException,
Nami ngExcepti on, C assNot FoundException {

JMXServiceURL jurl = new JMXServiceURL(url);
final HashMap env = new HashMap();
/'l Prepare the environnent Map

[...]

JMXConnector Server rms =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (jurl, env, nbs)

final String agentNanme = System get Property("agent. nane",
"Defaul t Agent");
start(rms, env, agent Nane) ;
return rms;
}
[...]

CODE EXAMPLE 12-14 creates a new RMI connector server named r i s with the JIMX
service URL jurl and the appropriate LDAP properties passed to its environment map env.
The connector server rni s is launched by calling JMXConnect or Server. start () and is
registered in the LDAP server..

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 21

ORACLE Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

EXAMPLE 12-15 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 4)

[...]

public void start(JMXConnect or Server server, Map env, String agent Name)
throws | CException, Nami ngException {server.start()
final DirContext root=getRootContext();
final JMXServiceURL address =
server. get Address();register(root, address, agent Nane)
}
[...]

CODE EXAMPLE 12-15 creates a JMX connector server server, obtains a pointer to the LDAP
server root directory root, and creates a URL for the server named address. The root directory,
the URL, and an agent name are passed as parameters to regi st er () and are registered in
the LDAP server.

Client.java in the INDI/LDAP Lookup Service Example

The JNDI/LDAP lookup service example class, O i ent. | ava, is shown in the following code
example.

CODE EXAMPLE 12-16 JNDI/LDAP Lookup Service Example Class Client.java

[...]
public class Cient {
private static bool ean debug = fal se;

public static void listAttributes(DirContext root, String dn)
throws Nam ngException {
final Attributes attrs = root.getAttributes(dn);
Systemout. printin("dn: " + dn);
Systemout.printin("attributes: " + attrs);
}
public static DirContext getRootContext() throws Nam ngException {
final Hashtable env = new Hashtabl e();
/'l Prepare environnment map
[...]
Initial Context root = new InitialLdapContext(env,null);
return (DirContext)(root.|ookup(""));

1
/1 ConfirmURL has not expired

[..]

public static List |ookup(DirContext root, String protocol Type,
String nane)
throws | CException, Nam ngException {
final ArrayList |ist = new ArrayList();
String queryProtocol =
(protocol Type==nul |)?"": " (j mProt ocol Type="+prot ocol Type+")";
String query =
"(&" + "(objectd ass=j nxConnector) " +

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 21

ORACLE

jmx-schema.txt

The j nx-schena. t xt file is the LDAP schema file for the JIMX Remote API.

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

"(jmServiceURL=*) " +
queryProt ocol +
"(j mxAgent Name=" + ((name!=nul|)?nanme:"*") + "))";

SearchControls ctrls = new SearchControl s();
ctrls. set SearchScope(SearchControl s. SUBTREE_SCOPE) ;
final NanmingEnuneration results = root.search("", query, ctrls);
while (results.hashMre()) {
final SearchResult r = (SearchResult) results.nextEl ement();
debug(" Found node: " + r.getName());
final Attributes attrs = r.getAttributes();
final Attribute attr = attrs.get("jnmxServiceURL");
if (attr == null) continue;
final Attribute exp = attrs.get("jnxExpirationDate");
if ((exp !=null) && hasExpired((String)exp.get())) {
Systemout.print(r.getNane() + ": ");
Systemout.printIn("URL expired since: " + exp.get());
continue;}
final String urlStr = (String)attr.get();
if (urlStr.length() == 0) continue;

debug(" Found URL: "+ url Str);

final JMXServiceURL url = new JMXServiceURL(url Str);
final JMXConnector conn =
JMXConnect or Fact ory. newJMXConnect or (url, null);
l'ist.add(conn);
if (debug) listAttributes(root,r.getNane());
}

return list;

In this code example, the C i ent first returns a pointer, r oot , to the LDAP directory

Di r Cont ext , and then it searches through the directory for object classes of the type

j mConnect or . The service URL and expiry date attributes, attr and exp respectively, for the
j mxConnect or object classes are obtained, exp is checked to make sure that the URL has not
expired and a call is made to JMXConnect or Fact ory to create a new connector conn. The
connector conn is added to the list of connectors and is used to access the MBeans in the
MBean server created by the Server.

60jmx-schema.ldif

The 60j nx-schema. | di f fileis an | dif file that corresponds to the LDAP schema file, j mx-
schena. t xt, for IMX technology.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 21

ORACLE Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

Running the JNDI/LDAP Lookup Service Example

This example demonstrates the use of the INDI/LDAP lookup service to look up RMI
connector servers that implement the default JRMP transport as well as the IIOP transport. In
addition, as described in Initial Configuration, different external directories are used to register
the RMI connector stubs.

The combinations of transports and external directories are demonstrated here are:

* RMI connector over the JRMP transport, with:
— No external directory
— An RMI registry
— An LDAP registry

Before you can run the examples that use the JNDI/LDAP lookup service, you must complete
the actions in the Initial Configuration, section and the actions that are specific to this
example. You can then start looking up connectors using the JNDI/LDAP network technology,
in conjunction with the two connectors supported by the JMX technology

® Note

When you run the examples, to help you keep track of which agent is created with
which transport, the agent names include a letter suffix that is the same as the
lettering of the corresponding section. For example, the agent in Starting the Server,
RMI connector over JRMP, without an external directory, is named exanpl e-
server-a.

To run the example, perform the sequence of steps described in:

e Setting up the INDI/LDAP Lookup Service Example

e Starting the Server

e Starting the Client

Setting up the JINDI/LDAP Lookup Service Example

The following steps are required by all the different connector/transport combinations you can
run in this example.

® Note

Complete the following steps according to the type of LDAP server that you are using.

1. Stop the LDAP server you started in the Initial Configuration.

2. Copy the JMX technology schema into your LDAP server’s schema directory.
3. Restart the LDAP server

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE

4,

5.

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

Define the root under which the Server will register its service URL. You must provide the
Server with the path to the domain component suffix dc=Test that you created in Initial

Configuration.
$ provi der="Idap://$l daphost : $| dapport/dc=Test"

Compile the example C i ent and Server classes by typing the following command:

$ javac -d . -classpath $classp Server.java Client.java

Starting the Server

The command you use to start the Server varies according to which external directory you are
using. You can start one or more of the following instances of Ser ver with different transports
and external registries before starting the i ent .

The combinations of transports and external directories are demonstrated here:

RMI connector over JRMP, without an external directory: Start the Server by typing the
following command.

$ java -classpath . -Ddebug=true \
- Dagent . name=exanpl e- server-a \
-Durl="service:jm:rm://" \
- Dj ava. nami ng. provi der. url ="$provi der" \
-Dj ava. nami ng. security. principal ="$principal" \
-Dj ava. nanmi ng. security. credential s="$credential s" \
jndi.Server &

In this command:

— The
debug, is set to true to provide more complete screen output when the Server runs.

— The name of the agent to be created is exanpl e- server - a.

— The URL, provi der, that points to the domain component suffix in which the agent will
be registered, is given.

— The common name attribute, pri nci pal , and password, credenti al s, are given to
gain access to the LDAP server.

— The service URL specifies that the chosen connector is an RMI connector, running
over the RMI default JRMP transport.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the INDI/LDAP lookup service.

RMI connector over JRMP, that uses an RMI registry as an external directory: Start
the Server by typing the following command.

$ java -classpath . -Ddebug=true \
- Dagent . name=exanpl e- server-b \
-Durl="service:jm:rm:///jndi/${jndirm}/server" \
- Dj ava. nam ng. provi der. url ="$provi der" \
-Dj ava. nam ng. security. principal ="$principal" \
-Dj ava. nam ng. security. credential s="$credential s" \
jndi.Server &

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 19 of 21

ORACLE

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

In this command:
— The name of the agent that is created is exanpl e- server-b.

— The URL, provi der, that points to the domain component suffix in which the agent will
be registered, is given.

— The common name attribute, pri nci pal , and password, credenti al s, are given to
gain access to the LDAP server.

— The service URL specifies the selected connector as RMI over JRMP, and the external
directory in which the RMI connector stub, server, is stored is the RMI registry you
identified as j ndi rm in Initial Configuration.

When the Server is launched, you will see the confirmation of the creation of the RMI
connector and the registration of its URL in the JNDI/LDAP lookup service.

* RMI connector over JRMP, that uses LDAP as the external directory: Start the Ser ver
by typing the following command.

$ java -classpath . -Ddebug=true \
- Dagent . name=exanpl e- server-c \
-Durl ="service:jm:rm:///jndi/${jndildap}/cn=x, dc=Test" \
-Dj ava. nam ng. provi der. url ="$provi der" \
-Dj ava. nam ng. security. principal ="$principal" \
-Dj ava. nam ng. security. credential s="$credential s" \
jndi.Server &

In this command:
— The name of the agent, created is exanpl e- server-c.

— The URL, provi der, that points to the domain component suffix in which the agent will
be registered, is given.

— The common name attribute, pri nci pal , and password, credenti al s, are given to
gain access to the LDAP server.

— The service URL specifies the chosen connector as RMI over JRMP, and the external
directory in which the RMI connector stub, server, is stored is the RMI registry that you
identified as j ndi | dap in the Initial Configuration.

When the Server is launched, you will see the confirmation of the creation of the RMI
connector and the registration of its URL in the JNDI/LDAP lookup service under the agent
name exanpl e- server-c.

Starting the Client

After you start the Server that is using the transport and external directory of your choice, start
the Client by typing the following command:

$ java -classpath . -Ddebug=true \
- Dj ava. nami ng. provi der. url ="$provi der" \
-Dj ava. nami ng. security. princi pal ="$princi pal " \
-Dj ava. nami ng. security.credential s="$credential s" \
jndi.Cient

You will see the output that confirms the detection of the agents that are created by the Ser ver
and registered in the lookup service. You will also see the identification and confirmation of the
connection made to the agents.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 20 of 21

ORACLE’

Chapter 12
Java Naming and Directory Interface (JNDI) / LDAP Lookup Service

To look up a specific agent, type the following command:

$ java -classpath . -Ddebug=true \
- Dj ava. nami ng. provi der. url ="$provider" \
-Dj ava. nami ng. security. princi pal ="$princi pal " \
-Dj ava. nanmi ng. security. credential s="$credential s" \
- Dagent . nane=agent Nare \
jndi.Cient

In the command shown above, agent Narre is the name of the agent you want to look up. You

can also specify a partial agent name by using *; for example, x* for all agent names
beginning with the letter x.

Java Management Extensions Guide
G34653-02

September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates.

Page 21 of 21

Security

This chapter gives examples of how to set up the JMX technology security features:

e Simple Security presents examples of connectors that implement straightforward security
that is based on password authentication and file access control.

@® Note

The Subject Delegation feature has been removed. If your client application needs to
perform operations as, or on behalf of, multiple identities, it will need to make multiple
calls to JMXConnect or Fact ory. connect () and to the get MBeanSer ver Connect i on()
method on the returned JMXConnector.

A\ Warning

The Security Manager and APIs related to it have been removed from the JDK,
starting with JDK 24 There is no replacement for the Security Manager. See JEP 411
for discussion and alternatives.

Caution:

e Applications should prompt the user to enter passwords rather than expecting the user to
provide them at the command line.

e Use secure authentication mechanisms in production systems. In particular, use both SSL
client certificates to authenticate the client host, and password authentication for user
management. See Using SSL and Using LDAP Authentication in the Java Platform,
Standard Edition Monitoring and Management Guide.

Simple Security

The simplest type of security you can use with the JMX technology is based upon encryption,
user name and password authentication, and file access control.

Analyzing the RMI Connectors with Simple Security Example Classes

1. Copy the source code contained in the Simple Security section and create the following
wor k_dir/j mx_exanpl es/ Security/sinpl e subdirectories and corresponding files:

e [server/Server.java

e /configlaccess.properties

e /configl/keystore

e /config/password. properties

e Jconfig/truststore

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 5

https://openjdk.java.net/jeps/411

ORACLE Chapter 13
Simple Security

e /nbeans/ Si npl eSt andar dMBean. j ava
e [nbeans/ Sinpl eStandard. j ava
e Jclient/Cient.java
e Jclient/dientListener.java
2. Openthe*.javaand*. properti es files, in your IDE or text editor.

The following sections analyze these files and explain how they perform the security
operations described above.

Server.java in the Simple Security Example

The Server. j ava class is shown in the following code example.

CODE EXAMPLE 13-1 RMI Connector Example (Simple Security) Class Server.java

public class Server {

public static void main(String[] args) {

try {
MBeanServer mbs = MBeanServer Factory. cr eat eMBeanSer ver () ;

HashMap env = new HashMap();

SsIRM C i ent Socket Factory csf =
new Ssl RM C i ent Socket Factory();
Ss| RM Server Socket Factory ssf =
new Ssl RM Ser ver Socket Factory();
env. put (RM Connect or Ser ver.
RM _CLI ENT_SOCKET_FACTORY_ATTRI BUTE, csf);
env. put (RM Connect or Ser ver.
RM _SERVER_SOCKET_FACTORY_ATTRI BUTE, ssf);

env. put ("j nx. renot e. x. password. file",

"config" + File.separator + "password. properties");
env. put ("j nx.renote. x. access.file",

"config" + File.separator + "access.properties");

JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://]ocal host:9999/server");
JMXConnect or Server cs =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (url,
env,
nbs) ;
cs.start();
} catch (Exception e) {
e.print StackTrace();

The Server class shown in this code example creates an MBean server nbs, and populates an
environment map env with a secure RMI client socket factory csf, a secure RMI server socket
factory ssf, and the properties files passwor d. properti es and access. properti es.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 13
Simple Security

The properties file passwor d. properti es contains a username and password and is accessed
using the IMX Remote API interface JMXAut hent i cat or . Using the property

j . renot e. x. passwor d. fi | e is the same as creating a password-based JMXAut hent i cat or
and passing it into the environment map through the j nx. r enot e. aut hent i cat or property.

The properties file access. properties contains a username and a level of access permission
that can be either readwr it e or readonl y. This represents the level of access this user can
have to MBean server operations. This file-based access control is implemented using the
JMX technology interface MBeanSer ver For war der , which wraps the real MBean server inside
an access controller MBean server. The access controller MBean server only forwards
requests to the real MBean server after performing the appropriate checks.

Server creates a JMX service URL, named ur | , for an RMI connector that will operate over the
default JRMP transport, and register an RMI connector stub in an RMI registry on port 9999 of
the local host.

The MBean server nhs, the environment map env and the service URL url are all passed to
JMXConnect or Ser ver to create a new, secure JMX connector server named cs.

SimpleStandardMBean.java in the Simple Security Example

The Si npl eSt andar dMBean class defines the same straightforward MBean interface used in
SimpleStandardMBean.java in the MBean Example.

SimpleStandard.java in the Simple Security Example

The Si npl eSt andar d class defines the same straightforward MBean used in
SimpleStandard.java in the MBean Example.

ClientListener.java in the Simple Security Example

The C i ent Li st ener class defines the same straightforward notification listener used in
ClientListener.java in the MBean Example.

Client.java in the Simple Security Example

The Cient.java class is shown in the following code example.

CODE EXAMPLE 13-2 RMI Connector Example (Simple Security) Class Client.java

public class Cient {

public static void main(String[] args) {

try {
HashMap env = new HashMap();

String[] credentials = new String[] { "username" , "password" };

env. put ("jnx.renote.credential s", credentials);

JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://]ocal host:9999/server");

JMXConnector jmxc = JMXConnect or Fact ory. connect (url, env);

MBeanSer ver Connection nbsc = jnxc. get MBeanSer ver Connection();

String domains[] = nbsc. get Donai ns();
for (int i =0; i <domains.length; i++) {
Systemout.printIn("Domain[" +i + "] =" + domains[i]);

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 13
Simple Security

}

bj ect Name nmbeanName =

new Cbj ect Nane(" MBeans: t ype=Si npl eSt andard") ;
mbsc. creat eMBean(" Si npl eSt andard", nbeanNane, null, null);
/'l Perform MBean operations

[...]

mbsc. renoveNot i ficationLi stener(nbeanNane, |istener);
mbsc. unr egi st er MBean(nbeanNane) ;
j mxc. close();
} catch (Exception e) {
e.printStackTrace();

The Cient class shown in this code example populates an environment map env with a set of
credentials, namely the user nane and passwor d expected by the Server . These credentials are
then given to an instance of JMXConnect or named j mkc when the service URL of the connector
stub and the environment map are passed to JMXConnect or Fact ory. connect () . Through j nxc,
the d i ent connects to the MBean server started by Server, and performs MBean operations.

When the connection is established, the credentials supplied in the environment map env are
sent to the server. The server then calls the aut henti cat e() method of the JMXAut hent i cat or
interface, passing the client credentials as parameters. The aut henti cat e() method
authenticates the client and returns a subject that contains the set of principals upon which the
access control checks will be performed.

Running the RMI Connector Example With Simple Security

To run the RMI connector example with simple security, perform the following steps:

1. Runthe RMI connector example:

$ javac
mbeans/ Si npl eSt andar d. j ava \
mbeans/ Si npl eSt andar dMBean. j ava \
server/ Server.java \
client/Cient.java \
client/dientListener.java

2. Start an RMI registry on port 9999 of the local host.
$ export CLASSPATH=server ; rmregistry 9999 &
3. Start the Server.

$ java -classpath server: nbeans \
- Dj avax. net. ssl . keySt ore=confi g/ keystore \
- Dj avax. net. ssl . keySt or ePasswor d=passwor d \
Server &

You will see confirmation of the creation of the MBean server and of the RMI connector.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 13
Simple Security

4, Startthedient.

$j ava -classpath client:server:nbeans \
-Dj avax. net.ssl.trust Store=config/truststore \
-Dj avax. net. ssl . trust St orePasswor d=trustword \
dient

You will see confirmation of the creation of the connector client, the various MBean
operations followed by the closure of the connection.

As you can see, all the above appears to proceed in exactly the same manner as the basic
RMI connector example described in JMX Connectors. However, if you were to open

passwor d. properties and change the password, you would see a

j ava. | ang. Securit yExcepti on when you launched the O i ent, and the connection would fail.

Java Management Extensions Guide

G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 5

Java Management Extensions Examples

The files in this section are code examples demonstrating some of the main features of IMX
technology. You can use these examples to develop more complex MBeans and full-featured
JMX agents to fit your management solution.

Each example consists of Java source files and a README file. The README file explains the
topics covered by the example and instructions for compiling and running the classes. See
Java Management Extensions (JMX) Technology Tutorial for more complete descriptions of
how to run the examples.

JMX Essentials: Introduces the fundamental notion of the JMX API, namely managed beans,
or MBeans.

JMX MBean Notifications: Implements MBean notifications.
MXBeans: Demonstrates the use of MXBeans.
MBean Descriptors: Demonstrates the use of MBean Descriptors.

JMX Connectors: Provides a sample implementation of how to connect to MBeans and
perform operations on them remotely.

Lookup Services: The JMX API defines three bindings to lookup services, using existing
lookup technologies.

* Service Location Protocol (SLP) Lookup Service
* Java Naming and Directory Interface (JNDI)/LDAP Lookup Service
Security: The JMX APl implements existing security protocols to secure your connections.

* Simple Security

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

JMX Essentials

This example introduces the fundamental notion of the JIMX API, namely managed beans
(MBeans). The source code contained in this section is used to create corresponding files in
the exanpl es/ directory specified in the appropriate setup procedure and includes:

« README file
e Main
« Hello

e HelloMBean

examples/Essential/lREADME

JMX Tutorial Introductory Exanple : Instrumenting Your Oan Applications.

The aimof this introductory exanple is to show the basic features of
the JMX technol ogy first by instrumenting a sinple resource and second
by perfornming operations on it using the jconsole tool. This exanple
shows the inplenentation of a standard MBean, how to register it in the
platforms MBean Server and how to performrenote operations on it by
connecting to the RM connector server using the jconsole tool. Besides
monitoring the application, jconsole will also allow you to observe the
built-in JVWinstrunentation as the JVMs MBeans are also registered in
the platforms MBean Server. This exanples al so shows how the existing
platform s MBean Server can be shared between the JVM and the application
itself to register the application MBeans, thus avoiding the creation of
mul ti pl e MBean Server instances on the sane JVM

HHHFHHHHFHEH R

z In order to conpile and run the exanple, make a copy of this README file,
Zn?hen sinply cut and paste all the commands as needed into a termnal w ndow.
z Thi s README nekes the assunption that you are running under Java SE 6 on
Un;/éij are famliar with the JMW technol ogy, and with the bourne shell or korn
shel | syntax.

Al'l the commands bel ow are defined using Unix korn shell syntax.

If you are not running Unix and korn shell you are expected to be able to
adapt these comands to your favorite OS and shell environnent.

HOoH H R

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE’

Chapter 14
examples/Essential/com/example/mbeans/Main.java

#

Conpile Java cl asses

#

The Java classes used in this exanple are contained in the
com exanpl e. nbeans

Java package.

#

* Main.java: gets the Platform MBean Server, and creates
and registers the Hello Wrld MBean on it.
#

* Hello.java: inplenments the Hello Wrld standard MBean.

* Hel | oMBean. java: the managenent interface exposed by
the Hello World standard MBean.

H OH H R

javac coni exanpl e/ nbeans/ *.j ava

Start the Main application
#

java com exanpl e. mheans. Mai n

Start jconsole on a different shell w ndow on the sane machi ne
#

JConsole is located in $(J2SE HOMVE)/ bin/jconsol e

#

j consol e

#

examples/Essential/com/example/mbeans/Main.java

/* Main.java - main class for Hello Wrld exanple. Create the
Hel | oWorl d MBean, register it, then wait forever (or until the
programis interrupted). */

package com exanpl e. mbeans;

i nport java.lang. managenent.*;
i nport javax. management. *;

public class Min {
/* For simplicity, we declare "throws Exception". Real prograns
wi Il usually want finer-grained exception handling. */
public static void main(String[] args) throws Exception {
/1 Get the Platform MBean Server
MBeanServer mbs = Management Fact ory. get Pl at f or mvBeanSer ver () ;

/1 Construct the CbjectNane for the MBean we will register

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE’

Chapter 14

examples/Essential/com/example/mbeans/Hello.java

bj ect Narre name = new (bj ect Name("com exanpl e. nbeans: t ype=Hel | 0");

|/l Create the Hello Wrld MBean
Hel 1 o mbean = new Hello();

/1 Register the Hello Wrld MBean
mbs. r egi st er MBean(nbean, nane);

/1 Wit forever
Systemout.printIn("Waiting forever...");
Thread. sl eep(Long. MAX_VALUE) ;

examples/Essential/com/example/mbeans/Hello.java

/* Hello.java - MBean inplenentation for the Hello Wrld MBean.
This class nust inplement all the Java nethods declared in the
Hel | oMBean interface, with the appropriate behavior for each one.

package com exanpl e. mbeans;

public class Hello inplements Hell oMBean {
public void sayHello() {
Systemout.printin("hello, world");
}

public int add(int x, int y) {
return x +vy;
}

/* CGetter for the Nane attribute. The pattern shown here is
frequent: the getter returns a private field representing the
attribute value. In our case, the attribute value never
changes, but for other attributes it mght change as the
application runs. Consider an attribute representing

statistics such as uptime or nenory usage, for exanple. Being

read-only just means that it can't be changed through the
managenent interface. */

public String getNane() {
return this.nane;

}

/* Getter for the CacheSize attribute. The pattern shown here is

frequent: the getter returns a private field representing the
attribute value, and the setter changes that field. */
public int getCacheSize() {
return this.cacheSize;
}

/* Setter for the CacheSize attribute. To avoid problenms with
stale values in multithreaded situations, it is a good idea
for setters to be synchronized. */

Java Management Extensions Guide

G34653-02

*/

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates.

Page 3 of 4

ORACLE Chapter 14
examples/Essential/com/example/mbeans/HelloMBean.java

public synchroni zed void setCacheSi ze(int size) {
t his. cacheSi ze = size

/* In a real application, changing the attribute would
typically have effects beyond just nodifying the cacheSize
field. For exanple, resizing the cache might nmean
discarding entries or allocating new ones. The logic for
these effects would be here. */

Systemout . println("Cache size now" + this.cacheSize);

}

private final String name = "Reginal d";
private int cacheSi ze = DEFAULT _CACHE S| ZE
private static final int DEFAULT_CACHE Sl ZE = 200;

examples/Essential/com/example/mbeans/HelloMBean.java

/* Hel | oMBean. java - MBean interface describing the managenent
operations and attributes for the Hello Wrld MBean. In this case
there are two operations, "sayHello" and "add", and two attributes,
"Name" and "CacheSize". */

package com exanpl e. mbeans

public interface Hell oMBean {
/'l operations

public void sayHello();
public int add(int x, int y);

[l attributes

/1 aread-only attribute called Nane of type String
public String getNane();

/1l aread-wite attribute called CacheSize of type int
public int getCacheSize();
public void setCacheSize(int size);

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 4

JMX MBean Notifications

This example implements MBean notifications. The source code contained in this section is
used to create corresponding files in the exanpl es/ directory specified in the appropriate setup
procedure and includes:

o README file
e Main
 Hello

e HelloMBean

examples/Notification/README

#

#

JMX Tutorial Introductory Exanple : Instrumenting Your Own Applications.
Using Notifications.

#

This exanple is the sane as the previous essential exanple with the

only difference that the Hello Wrld MBean has been nodified to send

notifications.

#

The Hello World MBean inplenents the NotificationBroadcaster interface
by extending the NotificationBroadcasterSupport class and enits

AttributeChangeNotifications every tine the CacheSize attribute

1is changed

#

#

#

In order to conpile and run the exanple, make a copy of this README file,
and

then sinply cut and paste all the commands as needed into a terminal w ndow.
#

This README nakes the assunption that you are running under Java SE 6 on
Uni x,

you are fanmiliar with the JMX technol ogy, and with the bourne shell or korn
shel | syntax.

#

Al the commands bel ow are defined using Unix korn shell syntax.

#

|f you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environment.

#

Conpile Java cl asses

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 15
examples/Notification/com/example/mbeans/Main.java

#

The Java classes used in this exanple are contained in the
com exanpl e. nbeans

Java package.

#

* Main.java: gets the Platform MBean Server, and creates
and registers the Hello Wrld MBean on it.
#

* Hello.java: inplenments the Hello Wrld standard MBean.
This MBean enits notifications every tine
the CacheSize attribute is changed.

#

* Hel | oMBean. java: the managenent interface exposed by
the Hello Wrld standard MBean.

#

javac coni exanpl e/ nbeans/ *.j ava

Start the Main application
#

java com exanpl e. mheans. Mai n

Start jconsole on a different shell w ndow on the sane machi ne
#

JConsole is located in $(J2SE HOME)/ bin/jconsol e

#

j consol e

#

examples/Notification/com/example/mbeans/Main.java

/* Main.java - main class for Hello Wrld exanmple. Create the
Hel | oWorl d MBean, register it, then wait forever (or until the
programis interrupted). */

package com exanpl e. mbeans;

i nport java.lang. managenent.*;
i nport javax. management. *;

public class Min {
[* For sinmplicity, we declare "throws Exception". Real prograns
wi Il usually want finer-grained exception handling. */
public static void main(String[] args) throws Exception {
/1 Get the Platform MBean Server
MBeanServer mbs = Management Fact ory. get Pl at f or mvBeanSer ver () ;

/1 Construct the CbjectNane for the MBean we will register
bj ect Name name = new bj ect Name("com exanpl e. nbeans: t ype=Hel | 0");

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 15
examples/Notification/com/example/mbeans/Hello.java

|/l Create the Hello Wrld MBean
Hel 1 o mbean = new Hello();

/1 Register the Hello Wrld MBean
mbs. r egi st er MBean(nbean, nane);

/1 Wit forever
Systemout.printIn("Waiting forever...");
Thread. sl eep(Long. MAX_VALUE)

examples/Notification/com/example/mbeans/Hello.java

/* Hello.java - MBean inplenentation for the Hello World MBean

This class nust inplement all the Java nethods declared in the
Hel | oMBean interface, with the appropriate behavior for each one. */

package com exanpl e. mbeans
i nport javax. management. *;

public class Hello

extends NotificationBroadcasterSupport inplenments Hell oMBean {

public void sayHello() {
Systemout.printin("hello, world");
1

public int add(int x, int y) {
return x +vy;
}

/* CGetter for the Nane attribute. The pattern shown here is
frequent: the getter returns a private field representing the
attribute value. In our case, the attribute value never
changes, but for other attributes it mght change as the
application runs. Consider an attribute representing
statistics such as uptime or nenory usage, for exanple. Being
read-only just means that it can't be changed through the
managenent interface. */

public String getNane() {

return this.nane
}

/* Getter for the CacheSize attribute. The pattern shown here is
frequent: the getter returns a private field representing the
attribute value, and the setter changes that field. */

public int getCacheSize() {

return this.cacheSize;
}

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 15

examples/Notification/com/example/mbeans/Hello.java

[* Setter for the CacheSize attribute. To avoid problenms with
stale values in multithreaded situations, it is a good idea
for setters to be synchronized. */

public synchroni zed void setCacheSi ze(int size) {

int ol dSize = this.cacheSi ze;
t his. cacheSi ze = si ze;

/* In a real application, changing the attribute would
typically have effects beyond just nodifying the cacheSize
field. For exanple, resizing the cache might nmean
discarding entries or allocating new ones. The logic for
these effects would be here. */

Systemout . println("Cache size now" + this.cacheSize);

/* Construct a notification that describes the change. The
"source" of a notification is the ChjectName of the MBean
that enitted it. But an MBean can put a reference to
itself ("this") in the source, and the MBean server will
replace this with the bject Name before sending the
notification on to its clients.

For good neasure, we maintain a sequence number for each
notification emtted by this Mean.

The ol dval ue and newval ue parameters to the constructor are

of type Qoject, so we are relying on Tiger's autoboxing

here. */

Notification n =
new AttributeChangeNotification(this,

sequenceNunber ++,
Systemcurrent TimeM I 1is(),
"CacheSi ze changed",
"CacheSi ze",
"int",
ol dSi ze,
t hi s. cacheSi ze);

/* Now send the notification using the sendNotification nethod
inherited fromthe parent class
Noti ficationBroadcasterSupport. */

sendNot i fication(n);

}

@verride
public MBeanNotificationlnfo[] getNotificationlnfo() {
String[] types = new String[] {
At tributeChangeNotification. ATTRI BUTE CHANGE
b
String name = AttributeChangeNotification.class.getNane();
String description = "An attribute of this MBean has changed";
MBeanNotificationinfo info =
new MBeanNoti fi cationlnfo(types, name, description);
return new MBeanNotificationlnfo[] {info};

}

private final String name = "Reginal d";

Java Management Extensions Guide

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates.

Page 4 of 5

ORACLE Chapter 15
examples/Notification/com/example/mbeans/HelloMBean.java

private int cacheSize = DEFAULT_CACHE Sl ZE;
private static final int DEFAULT_CACHE Sl ZE = 200;

private |ong sequenceNunber = 1;

examples/Notification/com/example/mbeans/HelloMBean.java

/* Hel | oMBean. java - MBean interface describing the managenent
operations and attributes for the Hello Wrld MBean. In this case
there are two operations, "sayHello" and "add", and two attributes,
"Name" and "CacheSize". */

package com exanpl e. mbeans;

public interface Hel |l oMBean {
/'l operations

public void sayHello();
public int add(int x, int y);

[l attributes

/1 aread-only attribute called Nane of type String
public String getNane();

/1 aread-wite attribute called CacheSize of type int
public int getCacheSize();
public void setCacheSize(int size);

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 5

MXBeans

This example demonstrates the use of MXBeans. The source code contained in this section is
used to create corresponding files in the exanpl es/ directory specified in the appropriate setup
procedure and includes:

- README file

* Main

* QueueSample
* QueueSampler

* QueueSamplerMXBean

examples/MXBean/README

#

#

JMX Tutorial Introductory Exanple : Instrumenting Your Own Applications.

Usi ng MXBeans.

#

The aimof this introductory exanple is to show the basic features of

the JMX technology first by instrunenting a sinple resource using the new
type of MBean, i.e. MXBeans, and second by perforning operations on it

usi ng

the jconsole tool. This exanple shows the inplementation of an MXBean, how
to

register it in the Platform MBean Server and how to performrenote
operations

on it by connecting to the RM connector server using the jconsole tool.
The

goal of this exanple is to show a sinple MXBean that manages a resource of
type Queue<String> The MXBean declares a getter getQueueSanple that takes
a snapshot of the queue when invoked and returns a Java class QueueSanpl e
that bundles the followi ng values together: the time the snapshot was

t aken

the queue size and the head of the queue at that given time. The MXBean

al so

declares an operation clearQeue that clears all the elenents in the queue
being managed. The exanple al so shows how to register this MXBean in the

Platform MBean Server al ongside the MBeans you can already see in jconsole
This exanples al so shows how the existing Platform MBean Server can be

shared between the JVM and the application itself to register the
application

MBeans, thus avoiding the creation of multiple MBean Server instances on

t he

same JW

#

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 16
examples/MXBean/README

#

#

In order to conpile and run the exanple, make a copy of this README file,
and

then sinply cut and paste all the commands as needed into a termnal w ndow.
#

This README nmakes the assunption that you are running under Java SE 6 on
Uni x,

you are fanmiliar with the JMX technol ogy, and with the bourne shell or korn
shel | syntax.

#

Al the commands bel ow are defined using Unix korn shell syntax.

#

|f you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environment.

#

Conpi | e Java cl asses

The Java classes used in this example are contained in the
om exanpl e. nxbeans

Java package.

* Main.java: gets the Platform MBean Server, and creates
and registers the QueueSanmpl er MXBean on it.

* QueueSanpl er.java: inplements the QueueSanpl er MXBean.

* QueueSanpl er MXBean. j ava: the managerment interface exposed
by the QueueSanpl er MXBean.

* QueueSanpl e.java: the Java type returned by the get QueueSanpl e()
met hod in the QueueSanpl er MXBean interface.

HOoH H HHHHE R HHHFHHFOHHH

javac coni exanpl e/ nxbeans/ *. | ava

Start the Main application
#

java com exanpl e. nxbeans. Mai n

Start jconsole on a different shell w ndow on the sane machi ne
#

JConsole is located in $(J2SE HOME)/ bin/jconsol e

#

j consol e

#

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 16
examples/MXBean/com/example/mxbeans/Main.java

examples/MXBean/com/example/mxbeans/Main.java

/**

* Main.java - main class for QueueSanpl er exanple. Create the Queue Sanpler
* MXBean, register it, then wait forever (or until the programis
interrupted).

*/

package com exanpl e. mxbeans;

inport java.lang. managenent. Managenent Fact ory;
inport java.util.Queue;

inport java.util.concurrent.ArrayBl ocki ngQueue;
i nport javax. managenment. MBeanServer;

i nport javax. management. Qbj ect Nane;

public class Min {
[* For sinplicity, we declare "throws Exception". Real programs
wi |l usually want finer-grained exception handling. */
public static void main(String[] args) throws Exception {
/1 Get the Platform MBean Server
MBeanServer mbs = Management Fact ory. get Pl at f or mvBeanSer ver () ;

/1 Construct the CbjectNanme for the MBean we will register
bj ect Narme name =
new Cbj ect Name(" com exanpl e. nxbeans: t ype=QueueSanpl er");

/1 Create the Queue Sanpler MXBean

Queue<String> queue = new ArrayBl ocki ngQueue<String>(10);
queue. add("Request-1");

queue. add(" Request -2");

queue. add(" Request -3");

QueueSanpl er nxbean = new QueueSanpl er (queue);

/1 Register the Queue Sanpler MXBean
mbs. r egi st er MBean(nxbean, nane);

/1 Wit forever
Systemout.printin("Witing...");
Thread. sl eep(Long. MAX_VALUE) ;

examples/MXBean/com/example/mxbeans/
QueueSamplerMXBean.java

/**

* QueueSanpl er MXBean. j ava - MXBean interface describing the managenent
* operations and attributes for the QueueSanpler MXBean. In this case

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 16
examples/MXBean/com/example/mxbeans/QueueSampler.java

* there is aread-only attribute "QueueSanpl e" and an operation "cl ear Queue".
*/

package com exanpl e. mxbeans;

public interface QueueSanpl er MXBean {
public QueueSanpl e get QueueSanpl e();
public void clearQeue();

examples/MXBean/com/example/mxbeans/QueueSampler.java

/**

* QueueSanpl er.java - MXBean inplenentation for the QueueSanpl er MXBean.

* This class must inplement all the Java nethods declared in the

* QueueSanpl er MXBean interface, with the appropriate behavior for each one.
*/

package com exanpl e. mxbeans;

i nport java.util.Date;
inport java.util.Queue;

public class QueueSanpler inplenments QueueSanpl er MXBean {
private Queue<String> queue;

public QueueSanpl er (Queue<String> queue) {
t hi s. queue = queue;

}

public QueueSanpl e get QueueSanpl e() {
synchroni zed (queue) {
return new QueueSanpl e(new Date(), queue.size(), queue.peek());

}
}

public void clearQueue() {
synchroni zed (queue) {
queue. cl ear ();

}

examples/MXBean/com/example/mxbeans/QueueSample.java

/**

* QueueSanpl e.java - Java type representing a snapshot of a given queue.
* It bundles together the instant tine the snapshot was taken, the queue
* size and the queue head.

*/

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 16
examples/MXBean/com/example/mxbeans/QueueSample.java

package com exanpl e. mxbeans;

inport java.beans. ConstructorProperti es;
inport java.util.Date;

public class QueueSanple {
private final Date date;
private final int size;

private final String head;

@onstructorProperties({"date", "size", "head"})
public QueueSanpl e(Date date, int size, String head) {

this.date = date;
this.size = size;
this. head = head;

}

public Date getDate() {
return date;
1

public int getSize() {
return size,
}

public String getHead() {
return head;
}

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 5

MBean Descriptors

This example demonstrates the use of MBean Descriptors. The source code contained in this
section is used to create corresponding files in the exanpl es/ directory specified in the
appropriate setup procedure and includes:

« README file

* Author

* DisplayName

¢ Main

* QueueSample

* QueueSampler

* QueueSamplerMXBean

e \ersion

examples/Descriptorss/README

#

#

JMX Tutorial Introductory Exanple : Instrumenting Your Own Applications.

Usi ng Descriptors and the Descri ptorKey
met a- annot at i on.

#

The aimof this exanple is to show how the new Descri ptorKey neta-
annotation

can be used in order to add new descriptor itens to the Descriptors for a
Standard MBean (or MXBean) via annotations in the Standard MBean (or
MXBean)

interface. The MXBeans exanple will be the starting point for this exanple.
#

#

#

In order to conpile and run the exanple, make a copy of this README file,
and

then sinply cut and paste all the commands as needed into a termnal w ndow.
#

This README nmakes the assunption that you are running under Java SE 6 on
Uni x,

you are fanmiliar with the JMX technol ogy, and with the bourne shell or korn
shel | syntax.

#

Al the commands bel ow are defined using Unix korn shell syntax.

#

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 17
examples/Descriptors/com/example/mxbeans/Author.java

|f you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environment.
#

Conpile Java cl asses

#

The Java classes used in this exanple are contained in the
com exanpl e. nkbeans

Java package.

#

* Main.java: gets the Platform MBean Server, and creates

and registers the QueueSanmpl er MXBean on it.

#

* QueueSanpl er.java: inplenents the QueueSanpl er MXBean.

#

* QueueSanpl er MXBean. j ava: the managenent interface exposed

by the QueueSanpl er MXBean.

#

* QueueSanpl e.java: the Java type returned by the get QueueSanpl e()

met hod in the QueueSanpl er MXBean interface.

#

* DisplayNane.java: This annotation is used in QueueSanpl er MBean to supply
a display name for a method in the MBean interface.
#

* Author.java: This annotation is used in QueueSanpl er MKBean to supply
the name of the creator of the MBean interface.

#

* Version.java: This annotation is used in QueueSanpl er MXBean to supply
the current version of the MBean interface.

#

javac conf exanpl e/ nxbeans/ *. | ava

Start the Min application
#

java com exanpl e. nkbeans. Mai n

Start jconsole on a different shell w ndow on the sane machi ne
#

JConsole is located in $(J2SE HOMVE)/ bin/jconsol e

#

j consol e

#

examples/Descriptors/com/example/mxbeans/Author.java

/**

* Author.java - This annotation allows to supply
* the nane of the creator of the MBean interface.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

*/

Chapter 17
examples/Descriptors/com/example/mxbeans/DisplayName.java

package com exanpl e. mxbeans;

inport java
inport java
inport java
inport java
inport java

.lang.
.lang.
.lang.
.lang.
.lang.

annot ati on
annot ati on
annot ati on
annot ati on
annot ati on

. Docunent ed;

. El ement Type;

. Retention;
.RetentionPolicy;
. Target;

i nport javax. managenent. Descri pt or Key;

@ocunent ed

@ar get (El ement Type. TYPE)

@Ret enti on(Ret enti onPol i cy. RUNTI VE)

public @nterface Author {
@escri ptor Key("aut hor")
String val ue();

examples/Descriptors/com/example/mxbeans/DisplayName.java

/**

* Di splayNare. j ava -

This annotation allows to supply

* a display name for a method in the MBean interface.

*/

package com exanpl e. mxbeans;

i nport java
i nport java
i nport java
i nport java
i nport java

.lang.
.lang.
.lang.
.lang.
.lang.

annotation
annotation
annotation
annotation
annotation

. Docunent ed;

. El enent Type;

. Retention;
.RetentionPolicy;
. Target;

i nport javax. managenent. Descri pt orKey;

@ocunent ed

@rar get (El enent Type. TYPE)

@Ret enti on(Ret enti onPol i cy. RUNTI ME)

public @nterface DisplayName {
@escri pt or Key("di spl ayNane")
String val ue();

examples/Descriptors/com/example/mxbeans/Main.java

/**

* Main.java -

mai n class for QueueSanpl er exanple. Create the Queue Sanpler

* MXBean, register it, then wait forever (or until the programis
interrupted).

*/

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 3 of 7

ORACLE’

Chapter 17
examples/Descriptors/com/example/mxbeans/QueueSample.java

package com exanpl e. mxbeans;

inport java.lang. managenent. Management Fact ory;
inport java.util.Queue;

inport java.util.concurrent.ArrayBl ocki ngQueue;
i nport javax. managenment. MBeanServer;

i nport javax. management. Qbj ect Nane;

public class Min {
[* For sinplicity, we declare "throws Exception". Real programs
wi |l usually want finer-grained exception handling. */
public static void main(String[] args) throws Exception {
/1 Get the Platform MBean Server
MBeanServer mbs = Management Fact ory. get Pl at f or mvBeanSer ver () ;

/1 Construct the CbjectNanme for the MBean we will register
bj ect Narme name =
new Cbj ect Name(" com exanpl e. nkbeans: t ype=QueueSanpl er");

/1 Create the Queue Sanpler MXBean

Queue<String> queue = new ArrayBl ocki ngQueue<String>(10);
queue. add("Request-1");

queue. add(" Request-2");

queue. add(" Request -3");

QueueSanpl er nxbean = new QueueSanpl er (queue);

/1 Register the Queue Sanpler MXBean
mbs. r egi st er MBean(nxbean, nane);

/1 Wit forever
Systemout.printin("Witing...");
Thread. sl eep(Long. MAX_VALUE) ;

examples/Descriptors/com/example/mxbeans/
QueueSample.java

/**

* QueueSanpl e.java - Java type representing a snapshot of a given queue.
* |t bundles together the instant tine the snapshot was taken, the queue
* size and the queue head.

*/

package com exanpl e. mxbeans;

i nport java. beans. ConstructorProperties;
inport java.util.Date;

public class QueueSanple {

private final Date date;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 17
examples/Descriptors/com/example/mxbeans/QueueSampler.java

private final int size;
private final String head;

@onstructorProperties({"date", "size", "head"})
public QueueSanpl e(Date date, int size, String head) {

this.date = date;
this.size = size;
this. head = head;

}

public Date getDate() {
return date;
1

public int getSize() {
return size,
}

public String getHead() {
return head;
}

examples/Descriptors/com/example/mxbeans/
QueueSampler.java

/**

* QueueSanpl er.java - MXBean inplenentation for the QueueSanpl er MXBean.

* This class must inplement all the Java nethods declared in the

* QueueSanpl er MXBean interface, with the appropriate behavior for each one.
*/

package com exanpl e. nxbeans;

inport java.util.Date;
inport java.util.Queue;

public class QueueSanpler inplements QueueSanpl er MXBean {
private Queue<String> queue;
public QueueSanpl er (Queue<String> queue) {

t hi s. queue = queue;
}

public QueueSanpl e get QueueSanpl e() {
synchroni zed (queue) {

return new QueueSanpl e(new Date(), queue.size(), queue.peek());
}

}

public void clearQueue() {

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 17
examples/Descriptors/com/example/mxbeans/QueueSamplerMXBean.java

synchroni zed (queue) {
queue. clear();
}

examples/Descriptors/com/example/mxbeans/
QueueSamplerMXBean.java

/**

* QueueSanpl er MXBean. j ava - MXBean interface describing the managenent

* operations and attributes for the QueueSanpler MXBean. In this case

* there is aread-only attribute "QueueSanpl e" and an operation "cl ear Queue".
*/

package com exanpl e. mxbeans;

@wut hor ("M Bean")

@/ersion("1.0")

public interface QueueSanpl er MXBean {
@i spl ayName(" GETTER: QueueSanpl e")
public QueueSanpl e get QueueSanpl e();
@i spl ayNare(" OPERATI ON: ¢l ear Queue")
public void clearQeue();

examples/Descriptors/com/example/mxbeans/Version.java

/**
* Version.java - This annotation allows to supply

* the current version of the MBean interface.
*/

package com exanpl e. nxbeans;

i nport java.lang. annot ati on. Docunent ed,;

i nport java.lang. annotati on. El enent Type;

i nport java.lang.annotation.Retention;

i nport java.lang.annotation. RetentionPolicy;
i nport java.lang.annotation. Target;

i nport javax.managenent. Descri pt or Key;

@ocunent ed
@rar get (El enent Type. TYPE)
@Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Version {
@escri pt or Key("version")
String val ue();

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 17
examples/Descriptors/com/example/mxbeans/Version.java

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 7

JMX Connectors

This example provides a sample implementation of how to connect to MBeans and perform
operations on them remotely. The source code contained in this section is used to create
corresponding files in the exanpl es/ directory specified in the appropriate setup procedure and
includes:

README file

Server
SimpleStandardMBean
SimpleStandard
SimpleDynamic
ClientListener

Client

examples/Basic/README

#

Copyright (c) 2004, Oacle and/or its affiliates. Al rights reserved.

ORACLE PROPRI ETARY/ CONFI DENTI AL. Use is subject to |icense terns.

#

#

#

JMX Tutorial Exanple

#

The aimof this exanple is to show the basic use of the JMX technol ogy. It
shows the use of standard and dynanmi c MBeans, and how to perform operations
locally and remotely, through the RM connector. In this exanple both the
SinpleStandard MBean and the SinpleDynanic MBean expose the same nanagenent
interface.

#

#

#

In order to conpile and run the exanple, make a copy of this README file,
and

then sinply cut and paste all the commands as needed into a termnal w ndow.
#

This README nakes the assunption that you are running under Java SE 6 on

Uni x,

you are fanmiliar with the JMX technol ogy, and with the bourne shell or korn
shel | syntax.

#

Al the commands bel ow are defined using Unix korn shell syntax.

#

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 26

ORACLE Chapter 18
examples/Basic/Server.java

H+

If you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environnent.

H R

Conpi | e Java cl asses

* Server.java: creates an MBeanServer,
registers a SinpleStandard MBean on the |ocal MBeanServer,
registers a SinpleDynanmic MBean on the | ocal MBeanServer,
performs |ocal operations on both Means,
creates and starts an RM connector server (JRWP).

* Cient.java: creates an RM connector (JRW),
registers a SinpleStandard MBean on the renote MBeanServer,
registers a SinpleDynani c MBean on the renote MBeanServer,
performs renote operations on both MBeans,
cl oses the RM connector.

* Clientlistener.java: inplements a generic notification |istener.

* SinpleStandard.java: inplenments the Sinple standard MBean.

* Sinpl eSt andar dMBean. j ava: the managenment interface exposed
by the Sinple standard MBean.

* SinpleDynanic.java: inplements the Sinple dynam ¢ Mean.

HHHHHH R HH R R R

javac *.java

Start the RM registry:
#

rmregistry 9999 &
Start the Server (follow the server's execution steps

until it pronpts you to start the
client on a different shell w ndow)

#
#
#
#
java -classpath . Server

Start the Cient (on a different shell w ndow)
#

java -classpath . dient

#

examples/Basic/Server.java

/*
* Copyright (c) 2004, Oracle and/or its affiliates. Al rights reserved.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 26

ORACLE

* *

*
-

Chapter 18
examples/Basic/Server.java

Redi stribution and use in source and binary forns, with or without
modi fication, are pernmtted provided that the follow ng conditions
are met:

- Redistributions of source code nust retain the above copyright
notice, this list of conditions and the follow ng disclaimer.

- Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunmentation and/or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH' S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTCRS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIMTED TO
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING IN ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN I F ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGE.

i nport java.io.lCException;

inport javax.management. Attribute;

i nport javax.managenent. MBeanAttri but el nfo;

i nport javax.managenent. MBeanConstruct or | nf o;

i nport javax.management. MBeanl nf o;

i nport javax.managenent. MBeanNoti fi cationl nfo;

i nport javax.managenent. MBeanQper ati onl nf o;

i nport javax.management. MBeanServer;

i nport javax.managenent. MBeanServer Factory;

i nport javax.managenent. Chj ect Name;

i nport javax. management. renot e. JMXConnect or Server;
i nport javax.management.renote. JMXConnect or Ser ver Fact ory;
i nport javax. managenent.renote. JMXServi ceURL;

public class Server {

public static void main(String[] args) {
try {
/1 Instantiate the MBean server
I
echo("\n>>> Create the MBean server");
MBeanServer nmbs = MBeanServer Factory. creat eMBeanServer ();
wai t For Ent er Pressed() ;

Il Get default donain
1
echo("\n>>> Get the MBean server's default donain");

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE

nbs);

Java Management Extensions Guide
G34653-02

Chapter 18
examples/Basic/Server.java

String domain = nbs. get Def aul t Donai n() ;
echo("\tDefault Domain =" + domain);
wai t For Ent er Pressed() ;

Il Create and register the SinpleStandard MBean
I
String nbeanCl assName = "Si npl eSt andard";
String nbeanhj ect NameStr =
domain + ":type=" + nbeanCl assName + ", nane=1";
(bj ect Name nbeanQbj ect Nane =
creat eSi npl eMBean(mbs, nbeanC assName, nbeanbj ect NameStr);
wai t For Ent er Pressed() ;

/1 Get and display the managenent information exposed by the
/1 SinpleStandard MBean

I

print MBeanl nf o(nbs, nbeanCbj ect Nane, nbeanC assNane) ;

wai t For Ent er Pressed() ;

/1 Manage the SinpleStandard MBean

I

manageSi npl eMBean(nbs, nbeanCbj ect Name, nbeanC assNane);
wai t For Ent er Pressed() ;

Il Create and register the SinpleDynam ¢ MBean

I

nbeanCl assName = " Si npl eDynami ¢";

nmbeanCbj ect NameStr =
domain + ":type=

nbeanbj ect Name =
creat eSi npl eMBean(nmbs, nbeanC assName, nbeanbj ect NameStr);

wai t For Ent er Pressed() ;

+ nbeand assNarme + ", nane=1";

/1 Get and display the managenent information exposed by the
/1 Sinpl eDynani ¢ MBean

I

print MBeanl nf o(nbs, nbeanCbj ect Nane, nbeanC assNane) ;

wai t For Ent er Pressed() ;

/1 Manage the SinpleDynam ¢ MBean

I

manageSi npl eMBean(nmbs, nbeanCbj ect Name, nbeanC assNane);
wai t For Ent er Pressed() ;

Il Create an RM connector server
1
echo("\nCreate an RM connector server");
JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://1ocal host:9999/server");
JMXConnect or Server cs =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (url, null,

[/ Start the RM connector server
1
echo("\nStart the RM connector server");

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 26

ORACLE

Chapter 18
examples/Basic/Server.java

cs.start();

echo("\nThe RM connector server successfully started");
echo("and is ready to handl e incom ng connections");
echo("\nStart the client on a different wi ndow and");
echo("press <Enter> once the client has finished");

wai t For Ent er Pressed() ;

/1 Stop the RM connector server
I
echo("\nStop the RM connector server");
cs. stop();
Systemout. println("\nBye! Bye!");
} catch (Exception e) {
e.printStackTrace();
}

private static ObjectNanme createSi npl eMBean(MBeanServer nbs,

String nbeanC assName,
String nbeanhj ect NameStr) {
echo("\n>>> Create the " + nbeanC assNane +
" MBean within the MBeanServer");
echo("\tbj ect Name = " + nbeanObj ect NameStr);
try {
(bj ect Name nbeanQbj ect Nane =
bj ect Narre. get | nst ance(mbeanChj ect NaneStr) ;
nbs. cr eat eMBean(nbeand assNane, nbeanCbj ect Nane) ;
return nbeanbj ect Nane;
} catch (Exception e) {
echo("\t!!! Could not create the " + nbeanCl assName + "

MBean !'!!");

e.printStackTrace();
echo("\nEXITING ..\n");
Systemexit(1);

}

return null;

private static void print©Meanlnfo(MeanServer nbs,

bj ect Narre mbeanbj ect Nane,
String nbeand assNane) {
echo("\n>>> Retrieve the managenent information for the " +
mbeanCl assNare) ;

echo(" MBean using the get MBeanlnfo() nethod of the MBeanServer");
MBeanInfo info = null;
try {

i nfo = nbs. get MBeanl nf o(nheanCbj ect Nane) ;
} catch (Exception e) {

echo("\t!!! Could not get MBeanlnfo object for " +

mbeanCl assNarme +" !11");

e.printStackTrace();

return;
}
echo("\nCLASSNAME: \t" + info.getC assNane());
echo("\nDESCRIPTION: \t" + info.getDescription());
echo("\ nATTRI BUTES") ;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE Chapter 18
examples/Basic/Server.java

MBeanAttributelnfo[] attrinfo = info.getAttributes();
if (attrinfo.length > 0) {

for (int i =0; i <attrinfo.length; i++) {
echo(" ** NAME: \t" + attrinfo[i].getNane());
echo(" DESCR \t" + attrinfo[i].getDescription());
echo(" TYPE: \t" + attrinfo[i].getType() +

"\tREAD: "+ attrinfo[i].isReadable() +
"\tWRITE: "+ attrinfo[i].isWitable());

} else echo(" ** No attributes **");

echo("\ nCONSTRUCTORS") ;

MBeanConstructorlnfo[] constrinfo = info.getConstructors();

for (int i=0; i<constrinfo.length; i++) {
echo(" ** NAME: \t" + constrinfo[i].getNane());
echo(" DESCR \t" + constrinfo[i].getDescription());
echo(" PARAM \t" + constrinfo[i].getSignature().length +

" paranmeter(s)");

}

echo("\ nOPERATI ONS") ;

MBeanQper ationlnfo[] oplnfo = info.getCperations();
if (oplnfo.length > 0) {

for (int i =0; i <oplnfo.length; i++) {
echo(" ** NAVE: \t" + oplnfo[i].getNane());
echo(" DESCR \t" + oplnfo[i].getDescription());
echo(" PARAM \t" + oplnfo[i].getSignature().length +

paraneter(s)");

} else echo(" ** No operations ** ");

echo("\ nNOTI FI CATI ONS") ;

MBeanNotificationlnfo[] notiflnfo = info.getNotifications();
if (notiflnfo.length > 0) {

for (int i =0; i <notiflnfo.length; i++) {
echo(" ** NAME: \t" + notiflnfo[i].getName());
echo(" DESCR \t" + notiflnfo[i].getDescription());

String notifTypes[] = notiflnfo[i].getNotifTypes();

for (int j =0; j <notifTypes.length; j++) {
echo(" TYPE: \t" + notifTypes[j]);

}

} else echo(" ** No notifications **");

}

private static void manageSi npl eMBean(MBeanServer nbs,
(bj ect Namre nmbeanChj ect Nane,
String nbeand assNane) {

echo("\n>>> Manage the " + nbeanCl assNane +
" MBean using its attributes ");
echo(" and operations exposed for management");

try {
Il Get attribute val ues

printSinpleAttributes(mbs, nmbeanChj ect Nane);

/1 Change State attribute
echo("\'n Setting State attribute to value \"new state\"...");

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 26

ORACLE Chapter 18
examples/Basic/Server.java

Attribute stateAttribute = new Attribute("State", "new state");
nbs. set Attri but e(mbeanbj ect Nane, stateAttribute);

[l CGet attribute val ues
printSinpleAttributes(mbs, nmbeanChj ect Nane);

/1 Invoking reset operation
echo("\n I nvoki ng reset operation...");
nbs. i nvoke(nbeanCbj ect Nane, "reset”, null, null);

/1l Get attribute val ues
printSinpleAttributes(mbs, nmbeanChj ect Nane);
} catch (Exception e) {
e.printStackTrace();
}

}

private static void printSinpleAttributes(MeanServer nbs,
bj ect Narre nmbeanQhj ect Nane) {
try {
echo("\'n CGetting attribute values:");
String State = (String) nbs.getAttribute(nmbeanj ect Nane,
"State");
I nteger NoChanges =
(I'nteger) nbs.getAttribute(nmbeanObj ect Nane, "NbChanges");
echo("\tState =\"" + State + "\"");
echo("\tNoChanges = " + NbChanges);
} catch (Exception e) {
echo("\t!!! Could not read attributes !I1");
e.printStackTrace();

}

private static void echo(String msg) {
Systemout . println(nsg);
}

private static void sleep(int mllis) {
try {
Thread. sl eep(mllis);
} catch (InterruptedException e) {
e.printStackTrace();
}

}

private static void waitForEnterPressed() {
try {
echo("\nPress <Enter> to continue...");
Systemin.read();
} catch (I CException e) {
e.printStackTrace();
}

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE

Chapter 18
examples/Basic/SimpleStandardMBean.java

examples/Basic/SimpleStandardMBean.java

/

* *

*
~

*
*
*
*
*
*
*
*
*
*
*
*

*|

Copyright (c) 2004, Oacle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forms, wth or without
modi fication, are pernmtted provided that the follow ng conditions
are net:

- Redistributions of source code nust retain the above copyright
notice, this list of conditions and the follow ng disclaimer.

- Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunentation and/or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG,
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAIMED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT LIM TED TO,
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, COR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY QUT OF THE USE OF TH S
SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGE.

This is the managenment interface explicitly defined for the
"Si npl eSt andard" standard MBean.

The "Sinpl eStandard" standard MBean inplenments this interface
in order to be manageabl e through a JMX agent.

The "Sinpl eSt andar dMBean" interface shows how to expose for nanagenent:

- aread/wite attribute (named "State") through its getter and setter
met hods,

- aread-only attribute (naned "NbChanges") through its getter nethod,

- an operation (named "reset").

public interface SinpleStandardvBean {

/**

* CGetter: set the "State" attribute of the "SinpleStandard" standard
* MBean.

*

* @eturn the current value of the "State" attribute.

x|

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE Chapter 18
examples/Basic/SimpleStandard.java

public String getState();

/**

* Setter: set the "State" attribute of the "SinpleStandard" standard
* MBean.

*

* @aram <VAR>s</ VAR> the new val ue of the "State" attribute.

*/

public void setState(String s);

/**

* Getter: get the "NoChanges" attribute of the "SinpleStandard" standard
* MBean.

*

* @eturn the current value of the "NoChanges" attribute.

*/

public int getNbChanges();

/**

* Qperation: reset to their initial values the "State" and "NoChanges"
* attributes of the "SinpleStandard" standard Mean.

*/

public void reset();

examples/Basic/SimpleStandard.java

/
Copyright (c) 2004, Oracle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forns, with or without
nmodi fication, are pernmitted provided that the foll owing conditions
are net:

- Redistributions of source code nmust retain the above copyright
notice, this list of conditions and the follow ng disclainer.

- Redistributions in binary formnust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunentation and/ or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH' S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TQ
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE ARE DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OMNER OR

CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TGO
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, COR

PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF

LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG

* *

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE

*
*

*

/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Chapter 18
examples/Basic/SimpleStandard.java

NEGLI GENCE OR OTHERW SE) ARISING IN ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN I F ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGE.

/
*
Sinmple definition of a standard MBean, nanmed "Sinpl eStandard".
The "Sinpl eStandard" standard MBean shows how to expose attributes
and operations for management by inplementing its corresponding
"Si npl eSt andar dMBean" managenent interface.
This MBean has two attributes and one operation exposed
for managenent by a JMX agent:
- the read/wite "State" attribute,
- the read only "NbChanges" attribute,
- the "reset()" operation.
This object also has one property and one nethod not exposed
for managenent by a JMX agent:
- the "NbResets" property,

- the "get NbResets()" method.
/

i nport javax.managenent. AttributeChangeNotification;
i nport javax.management. MBeanNotifi cati onl nfo;
i nport javax.managenent. NotificationBroadcaster Support;

public class SinpleStandard

extends NotificationBroadcaster Support
i mpl ements Si npl eSt andar dMBean {

[* "SinpleStandard" does not provide any specific constructors.
* However, "SinpleStandard" is JMX conpliant with regards to
* contructors because the default contructor SinpleStandard()
* provided by the Java conpiler is public.

*/

/**

* Cetter: get the "State" attribute of the "SinpleStandard" standard

VBean.

*

* @eturn the current value of the "State" attribute.
*/
public String getState() {

Java Management Extensions Guide

G34653-02
Copyright © 1993, 2025,

September 15, 2025
Oracle and/or its affiliates. Page 10 of 26

ORACLE Chapter 18
examples/Basic/SimpleStandard.java

return state;

}

/**

* Setter: set the "State" attribute of the "SinpleStandard" standard
MBean.

*

* @aram <VAR>s</ VAR> the new val ue of the "State" attribute.

*/
public void setState(String s) {
state = s;
nbChanges++;
1
/**
* Getter: get the "NoChanges" attribute of the "SinpleStandard" standard
* MBean.

*

* @eturn the current value of the "NbChanges" attribute.
*/
public int getNbChanges() {
return nbChanges;
}

/**

* Qperation: reset to their initial values the "State" and "NoChanges"
* attributes of the "SinpleStandard" standard Mean.
*/
public void reset() {
AttributeChangeNotification acn =
new AttributeChangeNotification(this,
0,
0,
"NbChanges reset",
"NbChanges",
"I nteger",
new | nt eger (nbChanges),
new | nteger(0));
state = "initial state";
nbChanges = 0;
nbReset s++;
sendNot i fication(acn);

*/

/**

* Return the "NoResets" property.

* This method is not a CGetter in the JMX sense because it
* is not exposed in the "SinpleStandardvBean" interface.
*

*

@eturn the current value of the "NbResets" property.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE

Chapter 18
examples/Basic/SimpleDynamic.java

*/
public int getNbResets() {
return nbResets;

}

/**
* Returns an array indicating, for each notification this Mean
* may send, the nanme of the Java class of the notification and
* the notification type.</p>
*
* @eturn the array of possible notifications.
*

/
public MBeanNotificationlnfo[] getNotificationlnfo() {
return new MBeanNotificationlnfo[] {
new MBeanNoti fi cati onl nfo(
new String[] { AttributeChangeNotification. ATTRI BUTE CHANGE },
At tributeChangeNotification. class. get Nane(),
"This notification is emtted when the reset() method is called.")

private String state = "initial state";
private int nbChanges = 0;

/*

*

* PROPERTY NOT ACCESSI BLE FOR MANAGEMENT BY A JMX AGENT

*

*/

private int nbResets = 0;

examples/Basic/SimpleDynamic.java

/

* * * * * * * * * * * * *

Copyright (c) 2004, Oracle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forns, with or without
nmodi fication, are pernmitted provided that the foll owing conditions
are net:

- Redistributions of source code nmust retain the above copyright
notice, this list of conditions and the follow ng disclainer.

- Redistributions in binary formnust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunentation and/ or other materials provided with the distribution.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 26

ORACLE

* * * * * * * * * * * * * * * *

E R I N N N N R N N N N N N N N N N N N *
-

*
-

>*

Chapter 18
examples/Basic/SimpleDynamic.java

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH' S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTCRS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, COR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING IN ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH DAVAGE.

Sinmple definition of a dynam c MBean, named "Si npl eDynamic".

The "Si npl eDynani c" dynam ¢ MBean shows how to expose for managenent
attributes and operations, at runtime, by inplementing the
"javax. management . Dynani cMBean" interface.

This MBean exposes for managenent two attributes and one operation:
- the read/wite "State" attribute,
- the read only "NbChanges" attribute,
- the "reset()" operation.
It does so by putting this information in an MBeanlnfo object that
is returned by the get MBeanl nfo() nmethod of the Dynam cMBean interface.

It inplements the access to its attributes through the getAttribute(),
getAttributes(), setAttribute(), and setAttributes() nethods of the
Dynami cMBean interface.

It inplements the invocation of its reset() operation through the
i nvoke() nethod of the Dynami cMBean interface.

Note that as "SinpleDynam c" explicitly defines one constructor,
this constructor nust be public and exposed for management through
the MBeanl nfo object.

inport java.lang.reflect.Constructor;
inport java.util.lterator;
i nport javax. management. *;

public class SinpleDynamnc

extends NotificationBroadcast er Support
i mpl ement's Dynani cMBean {

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE

Chapter 18
examples/Basic/SimpleDynamic.java

*/

public SinpleDynam c() {
/1 Build the managenent information to be exposed by the dynanic MBean
11
bui | dDynami cMBeanl nfo();

/**
* Allows the value of the specified attribute of the Dynamic MBean to be
* obt ai ned.
*/
public Cbject getAttribute(String attribute nane)
throws AttributeNot FoundException,
MBeanExcepti on,
Refl ecti onException {

/1 Check attribute_name is not null to avoid Null PointerException
/] later on
11
if (attribute name == null) {
t hrow new Runti neCperati onsExcepti on(
new ||l egal Argument Exception("Attribute name cannot be

nul1"),

"Cannot invoke a getter of " + dC assName +
“withnull attribute nane");
}
/1 Check for a recognized attribute_nanme and call the corresponding
/] getter
11
if (attribute_nane.equal s("State")) {
return getState();
}

if (attribute _nane.equal s("NoChanges")) {
return get NoChanges();
}

/1 1f attribute_name has not been recognized throw an

/1 AttributeNot FoundException

11

t hrow new Attribut eNot FoundException("Cannot find " +
attribute nane +
" attribute in " +
dd assNane) ;

}

/**
* Sets the value of the specified attribute of the Dynanmic MBean.
*/
public void setAttribute(Attribute attribute)
throws AttributeNot FoundException,

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE Chapter 18
examples/Basic/SimpleDynamic.java

I nval i dAttri but eVal ueExcepti on,
MBeanExcepti on,
Ref | ecti onException {

/1 Check attribute is not null to avoid Nul | PointerException later on
/1l
if (attribute == null) {
t hrow new Runti neCperati onsExcepti on(
new | Il egal Argument Exception("Attribute cannot be null"),
"Cannot invoke a setter of " + dC assNane +
“withnull attribute");
}
String name = attribute.getNane();
bj ect value = attribute.getVal ue();
if (name == null) {
t hrow new Runti neCperati onsExcepti on(
new ||l egal Argument Exception("Attribute name cannot be

nul "),
"Cannot invoke the setter of " + dd assNane +
“withnull attribute nane");
/1 Check for a recognized attribute name and call the corresponding
/] setter
/1l
if (nanme.equal s("State")) {
/1 if null value, try and see if the setter returns any exception
if (value == null) {
try {
setState(null);
} catch (Exception e) {
throw new I nval i dAttributeVal ueExcepti on(
"Cannot set attribute " + name + " to null");
}
}
/1 if non null value, nmake sure it is assignable to the attribute
el se {
try {
if (Cdass.forName("java.lang. String").isAssignabl eFrom
val ue.getCd ass())) {
setState((String) value);
} else {
throw new I nval i dAttribut eVal ueExcepti on(
"Cannot set attribute " + name + " to a " +
val ue. get G ass(). get Nang() +
" object, String expected");
}
} catch (C assNot FoundException e) {
e.printStackTrace();
}
}
}
/1 recognize an attenpt to set "NobChanges" attribute (read-only):
el se if (name.equal s("NbChanges")) {
throw new Attri but eNot FoundExcepti on(
"Cannot set attribute " + name + " because it is read-
only");

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 26

ORACLE Chapter 18
examples/Basic/SimpleDynamic.java

}
/1 unrecogni zed attribute nane:
el se {
throw new Attribut eNot FoundException("Attribute " + nane +
" not found in " +
this.getd ass().get Narme());
}
}
/**

* Enables the to get the values of several attributes of the Dynanic
MBean.

*/

public AttributelList getAttributes(String[] attributeNanes) {

/1 Check attributeNames is not null to avoid Null PointerException
/] later on
I/
if (attributeNames == null) {
t hrow new Runti neCperati onsExcepti on(
new ||| egal Argument Exception("attributeNames[] cannot be

nul 1"),
“Cannot invoke a getter of " + dC assNane);
}
AttributeList resultList = new Attributelist();
/1 1f attributeNames is enpty, return an enpty result Iist
/1l
if (attributeNames.length == 0)
return resultList;
/] Build the result attribute Iist
/1l
for (int i =0 ; i < attributeNanes.length ; i++) {
try {
bj ect value = getAttribute((String) attributeNanes[i]);
resul tList.add(new Attribute(attributeNanes[i], value));
} catch (Exception e) {
e.printStackTrace();
}
}
return resul tList;
}
/**

* Sets the values of several attributes of the Dynam ¢ MBean, and returns
* the list of attributes that have been set.

*/

public AttributelList setAttributes(AttributeList attributes) {

/1 Check attributes is not null to avoid Null PointerException |ater on
11
if (attributes == null) {
t hrow new Runti neCperati onsExcepti on(
new ||| egal Argunent Except i on(
"AttributelList attributes cannot be null"),

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE Chapter 18
examples/Basic/SimpleDynamic.java

"Cannot invoke a setter of " + dd assNane);

}
AttributeList resultList = new Attributelist();

/1 1f attributeNames is enpty, nothing nore to do
I/
if (attributes.isEnmpty())

return resultList;

/1 For each attribute, try to set it and add to the result list if
/1 successfull

I/
for (Iterator i = attributes.iterator(); i.hasNext();) {
Attribute attr = (Attribute) i.next();
try {
setAttribute(attr);
String nane = attr.getNanme();
bj ect value = get Attribute(name);
resul tList.add(new Attribute(nane, val ue));
} catch(Exception e) {
e.printStackTrace();
}
}
return resul tList;
}
/**
* Allows an operation to be invoked on the Dynam c MBean.
*/

public Object invoke(String operationName,
bj ect parans[],
String signature[])
t hrows MBeanException, ReflectionException {

/1 Check operationName is not null to avoid Null PointerException
/I later on
/1l
if (operationName == null) {
t hrow new Runti neCperati onsExcepti on(
new ||| egal Argument Exception(" Operati on nane cannot be
nul "),
"Cannot invoke a null operation in " + dC assName);

/1 Check for a recognized operation name and call the corresponding
/1 operation
/1l
if (operationName.equal s("reset")) {
reset();
return nul l;
} else {
/1 Unrecogni zed operation name
Il
throw new Refl ectionException(
new NoSuchMet hodExcepti on(operati onNane),
“Cannot find the operation " + operationName +
“in " + dd assName);

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE

Chapter 18
examples/Basic/SimpleDynamic.java

}

/**

* This method provides the exposed attributes and operations of the

* Dynamic MBean. It provides this information using an MBeanlnfo object.
*/

public MBeanlnfo get MBeanlnfo() {

/1 Return the information we want to expose for managenment:

/1 the dMBeanlnfo private field has been built at instanciation tine
/1l

return dMBeanl nf o;

/**
* Cetter: get the "State" attribute of the "SinpleDynanic" dynanic MBean.
*/
public String getState() {
return state;
}

/**
* Setter: set the "State" attribute of the "SinpleDynanic" dynam ¢ Mean.
*/
public void setState(String s) {
state = s;
nbChanges++;

}

/**
* Cetter: get the "NbChanges" attribute of the "SinpleDynanic" dynanic
* MBean.
*/
public Integer getNoChanges() {
return new I nteger(nbChanges);
}

/**

* Qperation: reset to their initial values the "State" and "NoChanges"

* attributes of the "SinpleDynam c¢c" dynanmi c MBean.

*/

public void reset() {

AttributeChangeNotification acn =
new AttributeChangeNotification(this,

01
01
"NbChanges reset",
"NbChanges",
"I nteger",

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE

}

/**

*

*

*

*/

Chapter 18
examples/Basic/SimpleDynamic.java

new | nt eger (nbChanges),
new | nteger(0));

state = "initial state";

nbChanges = 0;

nbReset s++;

sendNoti fication(acn);

Return the "NoResets" property.
This nethod is not a Getter in the JMX sense because
it is not returned by the getMBeanl nfo() nethod.

public Integer getNoResets() {

}
/*

*

return new | nteger(nbResets);

Build the private dvBeaninfo field,

whi ch represents the managenent interface exposed by the MBean,
that is, the set of attributes, constructors, operations and
notifications which are available for managenent.

A reference to the dMBeanlinfo object is returned by the get MBeanl nfo()
met hod of the DynanicMBean interface. Note that, once constructed, an
MBeanl nfo object is inmmutable.

private void buil dDynam cMBeanl nfo() {

dAttributes[0] =
new MBeanAttributel nfo("State",
"java.lang. String",
"State string.",
true,
true,
fal se);
dAttributes[1l] =
new MBeanAttri but el nf o("NoChanges",
"java.lang. I nteger",
"Nunber of times the " +
"State string has been changed. ",
true,
fal se,
fal se);

Constructor[] constructors = this.getC ass().getConstructors();
dConstructors[0] =
new MBeanConstructorlnfo("Constructs a " +
"Si npl eDynani ¢ obj ect",
constructors[0]);

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 19 of 26

ORACLE’

Chapter 18

examples/Basic/ClientListener.java

MBeanPar aneterInfo[] parans = null;
dOperations[0] =
new MBeanQperationlnfo("reset",

"reset State and NbChanges " +
"attributes to their initial values",
parans |,
"voi d",
MBeanQper at i onl nf o. ACTION) ;

dNotifications[0] =
new MBeanNoti fi cati onl nfo(
new String[] { AttributeChangeNotification. ATTRI BUTE_CHANGE }
At tributeChangeNotification. class. get Nane(),
"This notification is enmitted when the reset() nmethod is

called.");

pri
pri
pri

pri
pri

pri
pri
pri
pri

pri

dMBeanl nf o = new MBeanl nf o(dd assNane,
dDescri ption,
dAttributes,
dConstructors,
dQper ati ons,
dNotifications);

vate String state = "initial state";
vate int nbChanges = 0;
vate int nbResets = 0;

vate String dd assNane = this.getC ass().getNane();

l

vate String dDescription = "Sinple inplenmentation of a dynam c MBean.";

vate MBeanAttributelnfo[] dAttributes
new MBeanAttributel nfo[2];

vate MBeanConstructorlnfo[] dConstructors =
new MBeanConstructorlnfo[1];

vate MBeanNotificationlnfo[] dNotifications =
new MBeanNoti ficationlnfo[1];

vate MBeanCperationlnfo[] dCperations =
new MBeanQperationl nfo[1];

vate MBeanl nfo dMBeanlnfo = null;

examples/Basic/ClientListener.java

/*

* Copyright (c) 2004, Oracle and/or its affiliates. Al rights reserved.

*

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025

Page 20 of 26

ORACLE Chapter 18
examples/Basic/Client.java

Redi stribution and use in source and binary forns, with or without
modi fication, are pernmtted provided that the follow ng conditions
are met:

- Redistributions of source code nust retain the above copyright
notice, this list of conditions and the follow ng disclaimer.

- Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunmentation and/or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH' S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTCRS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TG
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING IN ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN I F ADVI SED OF THE POSSI BI LI TY OF SUCH DAVAGE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*|

i nport javax.managenent. Notification;
i nport javax.managenment. NotificationLi stener;

public class CientListener inplements NotificationListener {
public void handl eNotification(Notification notification, Object
handback) {
Systemout . println("\nReceived notification:

+ notification);

}

examples/Basic/Client.java

/
Copyright (c) 2004, Oacle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forns, with or without
nodi fication, are pernmitted provided that the foll owing conditions
are net:

- Redistributions of source code nmust retain the above copyright
notice, this list of conditions and the follow ng disclainer.

- Redistributions in binary formnust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunmentation and/or other materials provided with the distribution.

* * * * * * * * * * * * * *

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE Chapter 18
examples/Basic/Client.java

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

*

*

*

*

* TH'S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
* |'S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TQ,
* THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
* PURPCSE ARE DI SCLAIMED. IN NO EVENT SHALL THE COPYRI GHT OMNER OR

* CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,

* EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG BUT NOT LIM TED TGO

* PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR

* PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
* LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG

* NEGLI GENCE OR OTHERW SE) ARI SING IN ANY WAY QUT OF THE USE OF THI S

* SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGE.

*/

i nport java.io.lCException;

inport java.util.lterator;

inport java.util. Set;

i nport javax.management. Attribute;

i nport javax. managenment . JMX;

i nport javax. management. MBeanSer ver Connecti on;

i nport javax.managenent. Chj ect Name;

i nport javax. managenent. renot e. JMXConnect or;

i nport javax.management.renote. JMXConnect or Fact ory;
i nport javax. managenent.renote. JMXServi ceURL;

public class Cient {

public static void main(String[] args) {

try {
Il Create an RM connector client and
[l connect it to the RM connector server
Il
echo("\nCreate an RM connector client and " +

"connect it to the RM connector server");
JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://1ocal host:9999/server");

JMXConnector jmkc = JMXConnect or Fact ory. connect (url, null);

Il Create |istener
1
ClientListener listener = new ClientListener();

Il Get an MBeanServer Connection

I

echo("\nGet an MBeanServer Connection");

MBeanSer ver Connecti on mbsc = jnmxc. get MBeanSer ver Connection();
wai t For Ent er Pressed() ;

[l Get domains from MBeanServer

Il

echo("\ nDomains:");

String donmains[] = nbsc. get Domai ns();

for (int i =0; i < domins.length; i++) {

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE

Java Management Extensions Guide
G34653-02

Chapter 18
examples/Basic/Client.java

echo("\tDomain[" +i + "] =" + domains[i]);

}

wai t For Ent er Pressed() ;

/1 Get MBeanServer's default domain
Il
String domain = nbsc. get Def aul t Domai n() ;

/1 Create SinpleStandard MBean
I
(bj ect Narme st dMBeanNane =

new Cbj ect Narme(domai n +":type=Si npl eSt andar d, nane=2") ;
echo("\nCreate SinpleStandard MBean...");
nmbsc. creat eMBean(" Si npl eSt andard", stdMBeanNane, null, null);
wai t For Ent er Pressed() ;

Il Create SinpleDynanic MBean
I
(bj ect Namre dynMBeanNane =

new Cbj ect Narme(domai n +":type=Si npl eDynani ¢, name=2");
echo("\nCreate SinpleDynamc MBean...");
nmbsc. creat eMBean(" Si npl eDynami ¢", dynMBeanName, null, null);
wai t For Ent er Pressed() ;

/1 Get MBean count
I
echo("\nMBean count =" + nbsc. get MBeanCount ());

/1 Query MBean nanes

Il

echo("\ nQuery MBeanServer MBeans:");

Set names = nbsc. queryNames(null, null);

for (Iterator i = nanes.iterator(); i.hasNext();) {
echo("\tbj ectName = " + (CbjectName) i.next());

}

wai t For Ent er Pressed() ;

R
/1 Manage the SinpleStandard MBean

echo("\n>>> Perform operations on SinpleStandard MBean <<<");

[l CGet State attribute in SinpleStandard MBean
1
echo("\nState = " + nbsc.getAttribute(stdMvBeanName, "State"));

[l Set State attribute in SinpleStandard MBean
I
nbsc. set Att ri but e(st dMBeanNane,
new Attribute("State", "changed state"));

[l CGet State attribute in SinpleStandard MBean

I

[l Another way of interacting with a given MBean is through a
/'l dedicated proxy instead of going directly through the MBean
Il server connection

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE Chapter 18
examples/Basic/Client.java

1
Si mpl eSt andar dMBean proxy = JMX. newVBeanPr oxy(

mbsc, stdMBeanNane, SinpleStandardMBean. class, true);
echo("\nState = " + proxy.getState());

[l Add notification listener on SinpleStandard MBean

1

echo("\nAdd notification listener...");

nmbsc. addNot i fi cati onLi st ener(stdvBeanNane, |istener, null, null);

/1 Invoke "reset" in SinpleStandard MBean

I

[l Calling "reset" makes the SinpleStandard MBean enit a
/1 notification that will be received by the registered
/1 dientListener.

I

echo("\nlnvoke reset() in SinpleStandard MBean...");
nmbsc. i nvoke(st dvBeanNarme, "reset", null, null);

/1 Sleep for 2 seconds in order to have tine to receive the
Il notification before renoving the notification |istener.
I

echo("\nWaiting for notification...");

sl eep(2000);

/1 Remove notification listener on SinpleStandard MBean
I

echo("\nRenove notification listener...");

nmbsc. renoveNoti fi cationLi st ener(stdMBeanNane, |istener);

/1 Unregister SinpleStandard MBean

I

echo("\ nUnregi ster SinpleStandard MBean...");
nmbsc. unr egi st er MBean(st dMBeanNane) ;

wai t For Ent er Pressed() ;

L TP PP
/1 Manage the SinpleDynam ¢ MBean
L TP PP
echo("\n>>> Perform operations on SinpleDynanic MBean <<<");

Il Get State attribute in SinpleDynanic MBean
I
echo("\nState = " + nbsc. get Attribute(dynMBeanNane, "State"));

Il Set State attribute in SinpleDynanic Mean
1
nbsc. set Att ri but e(dynMBeanNane,
new Attribute("State", "changed state"));

Il Get State attribute in SinpleDynanic MBean
I
echo("\nState = " +
mbsc. get At tri but e(dynMBeanNane, "State"));

/1 Add notification |istener on SinpleDynanic MBean

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE

Chapter 18

examples/Basic/Client.java

I
echo("\nAdd notification listener...");
nmbsc. addNot i fi cati onLi st ener (dynMBeanNare, |istener,

Il 1nvoke "reset” in SinpleDynam ¢ MBean
1

null, null);

/1 Calling "reset" makes the SinpleDynanmic MBean enit a
/1 notification that will be received by the registered

Il CientListener.

I

echo("\nlnvoke reset() in SinpleDynanic MBean...");
nmbsc. i nvoke(dynMBeanNarme, "reset", null, null);

/1 Sleep for 2 seconds in order to have tine to receive the
/1 notification before renoving the notification Iistener.

I
echo("\nWaiting for notification...");
sl eep(2000);

/'l Rermove notification listener on SinpleDynam ¢ MBean

Il
echo("\nRenove notification |istener...");

mbsc. renoveNoti ficationLi stener (dynMBeanNanme, |istener);

/1 Unregister SinpleDynam ¢ MBean

I

echo("\ nUnregi ster SinpleDynanic MBean...");
mbsc. unr egi st er MBean(dynMBeanNane) ;

wai t For Ent er Pressed() ;

/1 O ose MBeanServer connection

I
echo("\nC ose the connection to the server");
jmxc. close();

echo("\nBye! Bye!");
} catch (Exception e) {

e.printStackTrace();
}

}

private static void echo(String msg) {
Systemout . println(nsg);
}

private static void sleep(int mllis) {
try {
Thread. sl eep(mllis);
} catch (InterruptedException e) {
e.printStackTrace();
}
}

private static void waitForEnterPressed() {
try {
echo("\nPress <Enter> to continue...");
Systemin.read();

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 25 of 26

ORACLE Chapter 18
examples/Basic/Client.java

} catch (I OException e) {
e.printStackTrace();
}

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 26 of 26

Service Location Protocol (SLP) Lookup
Service

A\ Warning

CORBA support was removed from the JDK, in JDK 11, including the or bd tool. See
JEP 320 for details. This example is retained for reference.

The JMX API defines three bindings to lookup services, using existing lookup technologies
This examples provide a sample implementation of the Service Location Protocol (SLP)
Lookup Service. The source code contained in this section is used to create corresponding
files in the exanpl es/ directory specified in the appropriate setup procedure and includes:

« README file
e Server

* Client

examples/Lookup/slp/README

#

Copyright (c) 2004, 2019 Oracle and/or its affiliates. Al rights reserved.
ORACLE PROPRI ETARY/ CONFI DENTIAL. Use is subject to |icense terns.

#

#

#

Exampl e of using SLP as Lookup service - registering and | ooking up

an RM Connector (11 OP/ JRVP)

#

#

Requi rement s:

The code provided in this exanple is build against the Java
i mpl ementation of SLP - conpliant with RFC 2614 see
[http://ww.ietf.org/rfc/rfc2614.txt].

Before running this exanple you will have to:
get a Java inplementation of SLP conpliant with
RFC 2614, section 5. You can downl oad the OpenSLP Java inpl ementation
fromhttp://ww. opensl p.org/. Then you nmay have to nodify Cient.java
and Server.java in order to use <ny-slp-inpl>.slp instead of
comsun.slp. If your SLP inplenmentation is RFC 2614 conpliant

FHoH H H H R HHHH R R R

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 18

https://openjdk.java.net/jeps/320

ORACLE

Chapter 19
examples/Lookup/slp/README

the changes should be linmted to replacing 'comsun.slp' in the
i mport clauses by '<ny-slp-inpl>.slp'.

If you wish to use an external directory for the RM JMX Connectors
(URLs of the formjnx:service:[rni|iiop]:/host:port/jndi/jndi-url)
t hen:

o |If you wish to use rniregistry in conjunction with the RM/JRW
JMX Connector you will have to start a rniregistry (see bel ow).

o If you wish to use CORBA Naning Service in conjunction with the RM/I110OP
JMX Connector you will have to start an ORB daenon (see bel ow).

o If you wish to use LDAP in conjunction with the RM JMX Connectors
you will have to install/setup a directory server

HOoH H O HE R R HHH R

In order to conpile and run the exanple, make a copy of this README file,
Zn?hen sinmply cut and paste all the comands as needed into a terminal w ndow.
z Thi s README nmekes the assunption that you are running under Java SE 6 on
Un;gh are famliar with SLP, the JMX technol ogy, with LDAP and JNDI, and with
the bourne shell or korn shell syntax.

Al'l the conmands bel ow are defined using Unix korn shell syntax.

If you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environnent.

HOoH H O H R

Define the follow ng variabl es:
#
SLPLI B=$SLP_HOME

cl assp=$SLPLI B/ sl p. j ar

The SLP daenon needs to be launched with root privilege on each
host who uses the SLP API. To launch the SLP daermon, sinply type
the follow ng command |ine:

#

su root -c "java -cp $SLPLIB/slpd.jar comsun.slp.slpd &

Start an rmregistry
#
rmregistry 9999 &

Start an ORB daenon:
#
rm-rf ./orb.db

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 18

ORACLE

Chapter 19

examples/Lookup/slp/README

orbd -ORBInitial Port 7777 &

Start an LDAP Server, and create a new dc=Test suffix inside.
#

(only needed if you wish to register the RM or I1OP stubs in
LDAP, instead of using CORBA Naning Service or RM registry)

#

You will have

to make sure the Java Schema (RFC 2713:

http://wmw ietf.org/rfc/rfc2713.txt) is known by that server
Fhe e o e mmmmeamaaa-

Conpile Server.java and Client.java

#

* Server.java: creates an MBeanServer, creates and starts an
RM connector (JRWP/11COP)

* Cient.java: |ookup a connector in SLP

list all MBeans.

#

javac -d . -classpath $classp Server.java Cient.java

LDAP Paraneters

Supply the appropriate hostname bel ow, and define this variable:
#
| daphost =gi gondas

Supply the appropriate port nunber below, and define this variable:

#
| dapport =6666

Supply the appropriate principal below, and define this variable:
#
princi pal ="cn=Di rectory Manager"

Supply the appropriate credentials below, and define this variable:

#

credential s=

Fhe e e e o eam—aaa-
JNDI URLs

#

jndirm="rm://local host:9999"
jndiiiop="iiop://localhost:7777"
j ndi | dap="1dap: // $l daphost : $I dapport"

JMX Service URLs
#

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates.

Page 3 of 18

ORACLE

Chapter 19
examples/Lookup/slp/README

jmxiiopurl="service:jm:iiop:///jndi/${jndiiiop}/server"
jmkrmurl="service:jm:rm:///jndi/${jndirm}/server"

j mxi i opl dapurl ="service:jm:iiop:///jndi/${jndildap}/cn=x,dc=Test"
jmxrm | dapurl ="service:jmx:rm:///jndi/${jndildap}/cn=x,dc=Test"
jmxstuburl ="service:jmcrm://"

jxiorurl="service:jm:iiop://"

Below we illustrate the different JMX Connector Servers
whi ch you have the choice to start.
There are seven cases labelled (a) to (f):

* RM Connectors

+ over JRW
- without any external directory (a)
- using rmregistry as external directory (b)
- using LDAP as external directory (c)

+ over |ICP
- without any external directory (d)
- using CORBA Naming Service as external directory (e)
- using LDAP as external directory (f)

HoH H H H H H R R R

NOTE-1: As defined in section 6.1 "Terninology" of the "JMX Renote APl 1.0
Specification" document, an agent is conposed of one MBean Server and of

one or nore Connector Servers. There can be several agents running in one
JWM

For flexibility of this exanple, the slp.Server class creates an agent which
i s conposed of one MBean Server and of only one Connector Server. The class
sl p. Server decides which type of Connector Server to create depending on the
value given to the "url" system property when you start the exanple

=

H H

NOTE-2: The val ue of the "agent.name" system property is the value that the
sl p.Server class will give to the "Agent Name" |ookup attribute when it
registers the connector's URL in the | ookup service. As defined in Table 6.1
"Lookup attributes for connectors" of the "JMX Renote APl 1.0 Specification"
document: the "Agent Nane" |ookup attribute is a sinple name used to identify
the *AGENT* to which the connector is attached. It nakes it possible to
search, with a query to the | ookup service, for all the connectors

regi stered

by a given agent.

HOoH H R

(a) You can start an agent with an RM Connector Server over JRW
wi t hout using any external directory
#
java -classpath .:$classp -Ddebug=true \
- Dagent . nanme=t est - server-a \
-Durl="service:jmc:rm://" \

sl p. Server &
(b) O you can start an agent with an RM Connector Server over JRWP
using rniregistry as external directory
(Start rmregistry first, if not yet started)
#

java -classpath .:$classp -Ddebug=true \
- Dagent . nane=t est-server-b \

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 18

ORACLE

Chapter 19

examples/Lookup/slp/README

-Durl="service:jm:rm:///jndi/${jndirm}/server" \

sl p. Server &
(c¢) O you can start an agent with an RM Connector Server over JRWP
using LDAP as external directory
(First start an LDAP server and create the dc=Test suffix)
#

java -classpath .:$classp -Ddebug=true \
- Dagent . nanme=t est - server-c \
-Durl ="service:jm:rm:///jndi/${jndildap}/cn=x, dc=Test" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. naning. security.credential s="$credentials" \

sl p. Server &
(d) O you can start an agent with an RM Connector Server over |IOP
wi t hout using any external directory
#

java -classpath .:$classp -Ddebug=true \
- Dagent . nane=t est-server-d \
-Durl ="service:jm:iiop://" \

sl p. Server &
(e) O you can start an agent with an RM Connector Server over |IOP
usi ng CORBA Naning Service as external directory
(Start ORBD first if not yet started).
#

java -classpath .:$classp -Ddebug=true \
- Dagent . nanme=t est - server-e \
-Durl ="service:jm:iiop:///jndi/${jndiiiop}/server" \

sl p. Server &
(f) O you can start an agent with an RM Connector Server over |I1OP
using LDAP as external directory
(First start an LDAP server and create the dc=Test suffix)
#

java -classpath .:$classp -Ddebug=true \
- Dagent . nane=t est -server-f \
-Durl ="service:jnmx:iiop:///jndi/${jndildap}/cn=x,dc=Test" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. nanming. security.credential s="$credential s" \
sl p. Server &

Once you have started one or nore agents, you can start the Cient.
Note that for the client to | ook up through SLP an agent you have just
started, you nust start the client before your agent's SLP | ease has
expired. You can update the Server.java file and reconpile it to change
the | ease period.
#
java -classpath .:$classp -Ddebug=true \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. nanmi ng. security. credential s="$credential s" \
slp.Cient

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025

Page 5 of 18

ORACLE Chapter 19
examples/Lookup/slp/Server.java

examples/Lookup/slp/Server.java

Copyright (c) 2004,2021, Oracle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forms, wth or without
modi fication, are pernmtted provided that the follow ng conditions
are net:

- Redistributions of source code nust retain the above copyright
notice, this list of conditions and the follow ng disclaimer.

- Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunentation and/or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I'S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG,
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAIMED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, I NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT LIM TED TO,
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY QUT OF THE USE OF TH S
SOFTWARE, EVEN IF ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGE.

* *

*
~

package sl p;

i nport com sun. sl p. Servi ceLocat i onManager ;

i nport com sun. sl p. Servi celLocati onExcepti on;
i nport com sun. sl p. Adverti ser;

i nport com sun. sl p. Servi ceURL;

i nport com sun. sl p. ServicelLocationAttribute;

i nport javax. management. *;
i nport javax.management.renote. *;
i nport javax.managenent.renote.rm.*;

i nport java.util.Map;

inport java.util.List;

i nport java.util.HashMap;

inport java.util.ArraylList;

inport java.util.Locale;

inport java.util.Vector;

i nport java.io. | CException;

inport java.io.Serializable;

i nport java.net. Ml formedURLExcepti on;

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 18

ORACLE Chapter 19
examples/Lookup/slp/Server.java

i nport javax. nam ng. Cont ext;
i nport javax.nam ng. Nani ngExcepti on;

/**

* This class denonstrates how to use SLP as a | ookup service for

* JSR 160 connectors. It shows how to register a JMXConnect or Server

* with the Service Location Protocol.

* <p>

* See README file and {@ink #main(String[])} for nore details.

* <p>

* Make sure to read the section "Binding with Lookup Services" of

* the JMX Renote APl 1.0 Specification before | ooking at this exanple.
*/

public class Server {

/1 The Service URL will remain registered for 300 secs.

[l This is an intentionally long time for the purpose of this exanple.
[l In practice, a shorter |ease, periodically refreshed, is preferable.
Il

public final static int JMX_DEFAULT_LEASE = 300;

/1 Default scope.
1
public final static String JMX_SCOPE = "DEFAULT";

Il The local MBeanServer.
I
private final MBeanServer nbs;

private static bool ean debug = fal se;

/**
* Constructs a Server object. Creates a new MBeanServer.
*/
public Server() {
mbs = MBeanServer Fact ory. creat eMBeanSer ver () ;
}

/ *
Regi sters a JMX Connector URL with the SLP Lookup Service.

*

*

*

* @aram jmxUl A JMX Connector Server URL obtained from
* {@ink JMXConnect or Ser ver #get Addr ess()

* JMXConnect or Ser ver . get Address()}

* @aramname The AgentNanme with which the URL will be
* registered in the SLP Lookup Service.

*/

public static void register(JMXServiceURL jmxUrl, String nane)
throws ServicelLocati onException {

/1l Create the SLP service URL

I/

/1 Note: It is recormended that the JMX Agents make use of the
/1 leasing feature of SLP, and periodically renew their |ease
I/

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 18

ORACLE

* * * * * * * * * * * * * * * *

*

Chapter 19
examples/Lookup/slp/Server.java

Servi ceURL serviceURL = new ServiceURL(j mUrl.toString(),
JMX_DEFAULT_LEASE) ;

Systemout.printIn("\nRegistering URL for " + name + ": " + jmUl);
debug(" ServiceType is: " + serviceURL. get ServiceType());

/1 Prepare Lookup Attributes
/1

Vector attributes
Vector attrVal ues

new Vector();
new Vector();

/1 Specify default SLP scope
I/
attrVval ues. add(JMX_SCOPE) ;
ServicelLocationAttribute attrl =
new Servi celLocationAttribute("SCOPE", attrVal ues);
attributes.add(attrl);

/1 Specify AgentNane attribute (mandatory)
I/
attrVval ues. removeAl | El ements();
attrVval ues. add(narme) ;
ServicelLocationAttribute attr2 =
new Servi celLocationAttribute("Agent Name", attrVal ues);
attributes.add(attr2);

/1 Register with SLP

/] Get SLP Adverti ser
I/
final Advertiser slpAdvertiser =
Servi celLocat i onManager. get Adverti ser(Local e. US);

/1 Register the service: URL

11

sl pAdvertiser.register(serviceURL, attributes);
Systemout.printIn("\nRegistered URL: " + jmxUrl);

Creates an RM Connector Server, starts it, and registers it
with the SLP Lookup Servi ce.
<p>
This nmethod will transfer a fixed set of System Properties to
the Map given to the RM Connect or Server constructor. Somne
JNDI properties, if defined, are transfered to the Map so
that they may be used when LDAP is used as external directory
to register the RM Stub (see {@ink javax. managenent.renote.rm}
JavaDoc). Note that even if LDAP is used as external directory
the {@ink Context#l N TI AL_CONTEXT_FACTCRY

Cont ext . | NI TI AL_CONTEXT_FACTORY} and
{@ink Context#PROVI DER_ URL Context.PROVIDER URL} properties
usual ly don't need to be passed.
<p>
The followi ng Systemproperties, if defined, are transfered to

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 18

ORACLE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Chapter 19
examples/Lookup/slp/Server.java

the Map given to the RM Connector Server constructor.
<l'i >{ @i nk Context#l N TI AL_CONTEXT_FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY}</Ili>
{@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} </ I i >
{@ink Context#SECURI TY_PRI NCl PAL
Cont ext . SECURI TY_PRI NCI PAL} </ i >
{@ink Context#SECURI TY_CREDENTI ALS
Cont ext . SECURI TY_CREDENTI ALS} </ | i >
{@ink RM Connect or Server#JNDI _REBI ND_ATTRI BUTE
RM Connect or Server. JNDI _REBI ND_ATTRI BUTE} - default
i s <code>true</code>. </1i>

@aramurl A string representation of the JMXServiceURL.

@eturn the created RM Connect or Server.

public JMXConnector Server rm (String url) throws

| CException,

JMEXcepti on,

Nami ngExcepti on,

C assNot FoundExcept i on,
Servi ceLocat i onException {

/1 Make a JMXServiceURL fromthe url string.
11
JMXServiceURL jurl = new JMXServiceURL(url);

/1 Prepare the environnment Map
/1l
final HashMap env = new HashMap();
final String rprop = RM Connector Server. JNDI _REBI ND_ATTRI BUTE;
final String rebind = System get Property(rprop,“true");
final String factory =

Syst em get Property(Context. | N TI AL_CONTEXT_FACTCRY) ;
final String |dapServerUl =

Syst em get Property(Cont ext. PROVI DER_URL) ;
final String |dapUser =

Syst em get Property(Cont ext. SECURI TY_PRI NCl PAL) ;
final String | dapPasswd =

Syst em get Property(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Transfer some system properties to the Map

11

if (factory!= null) // this should not be needed
env. put (Cont ext. I NI TI AL_CONTEXT_FACTCRY, f actory);

if (ldapServerUrl!=null) // this should not be needed
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);

if (ldapUser!=null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);

if (ldapPasswd != null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

env. put (rprop,rebind); // default is true.

/| Create an RM Connect or Server

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 18

ORACLE

Chapter 19
examples/Lookup/slp/Server.java

/1l
Systemout.printIn("Creating RM Connector: " + jurl);
JMXConnect or Server rnis =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (jurl, env, nbs);

/1 Get the AgentNane for registering the Connector in the Lookup

Servi ce

/1l
final String agentName = System get Property("agent.nane",
"Defaul t Agent");

/] Start the connector and register it with SLP Lookup Service
I/
start(rms, agentNane);

return rms;

}

/**

* Start a JMXConnectorServer and register it with SLP Lookup Service.
*

* @aram server the JMXConnectorServer to start and register.

* @aram agent Narme the AgentNane with which the URL nmust be registered
* in the SLP Lookup Service.

*/

public void start(JMXConnect or Server server, String agentNane)
throws | OException, ServicelLocationException {

/] Start the JMXConnect or Server
I/
server.start();

/] Create a JMX Service URL to register with SLP
11
final JMXServiceURL address = server.get Address();

/1 Register the URL with the SLP Lookup Service.
I/
regi ster(address, agentName);

}

/**

* Trace a debug message.

*/

private static void debug(String nsg) {
i f (debug) Systemout.println(nsg);

}
/**
* Program Main
* <p>
* Creates a server object, gets the JMX Service URL, and calls
* the method that will create and register the appropriate JMWX
* Connector Server for that URL.
* <p>
*

You may wish to use the followi ng properties on the Java comand |ine:

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 18

ORACLE Chapter 19
examples/Lookup/slp/Server.java

<code>-Durl =&l t;j mxServi ceURL> ; </ code>: specifies the URL of
the JMX Connector Server you wi sh to use. See README file for nore
details.
<l i ><code>- Dagent . name=&l t ; Agent Nane> ; </ code>: specifies the
Agent Name to register with.
<l i ><code>- Ddebug="true| fal se"</code>: switch the Server debug flag
on/off (default is "false").

/
public static void main(String[] args) {
try {
Il Get the value of the debug flag.
I
debug = (Bool ean. val ueCf (Syst em get Property("debug","fal se"))).
bool eanVal ue() ;

*
*
*
*
*
*
*
*
*
*

Il Create a new Server object.
I
final Server s = new Server();

Il Get the JMXConnector URL

I

final String url = System getProperty("url",
"servicerjm:rm://");

[l Build a JMXServiceURL
Il
final JMXServiceURL jurl = new JMXServiceURL(url);

/1 Creates a JMX Connector Server

I

debug(" Creating Connector: " + jurl);
final String p = jurl.getProtocol ();

if (p.equals("rm")) /Il Create an RM Connect or
s.rm(url);

else if (p.equals("iiop")) [/ Create an RM/I1OP Connector
s.rm(url);

el se /1 Unsupported protocol
t hrow new Mal f or medURLExcepti on(" Unsupported protocol: " + p);

Systemout. printin("\nService URL successfully registered " +
“in the SLP Lookup Service");

} catch (Exception x) {
Systemerr. println("Unexpected exception caught in main: " + x);
X. printStackTrace(Systemerr);

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 18

ORACLE

Chapter 19
examples/Lookup/slp/Client.java

examples/Lookup/slp/Client.java

* *

*
~

Copyright (c) 2004, Oracle and/or its affiliates. Al rights reserved.

Redi stribution and use in source and binary forms, wth or without
modi fication, are permtted provided that the follow ng conditions
are net:

- Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclaimer.

- Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunentation and/or other materials provided with the distribution.

- Neither the name of Oracle or the names of its
contributors may be used to endorse or pronote products derived
fromthis software without specific prior witten pernission.

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS " AS
I S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TG,
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPOSE ARE DI SCLAIMED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR
CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, I NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT LIM TED TO,
PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR
PROFI TS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG
NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY QUT OF THE USE OF TH S
SOFTWARE, EVEN I F ADVI SED OF THE POSSI BI LI TY OF SUCH DAMAGE.

package sl p;

i nport com sun. sl p. Servi ceLocat i onManager ;

i nport com sun. sl p. Servi celLocati onExcepti on;

i nport com sun. sl p. Locator;

i nport com sun. sl p. ServiceURL;

i nport com sun. sl p. ServicelLocationAttribute;

i nport com sun. sl p. Servi ceType;

i nport com sun. sl p. Servi celLocati onEnuner ati on;

i nport javax. management. *;
i nport javax.management.renote. *;

i nport javax. nami ng. Cont ext;

inport java.util.List;
inport java.util.Arraylist;
inport java.util.HashMap;

i nport java.util.Map;
inport java.util.Set;
inport java.util.lterator;

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 18

ORACLE Chapter 19
examples/Lookup/slp/Client.java

inport java.util.Locale;
inport java.util.Vector;

i nport java.io.lCException;
inport java.io.Serializable;

/**

* This class denonstrates how to use SLP as a | ookup service for

* JSR 160 connectors. It shows how to | ookup a JMXServiceURL

* fromthe SLP | ookup service.

* <p>

* See README file and {@ink #main(String[])} for nore details.

* <p>

* Make sure to read the section "Binding with Lookup Services" of

* the JMX Renote APl 1.0 Specification before | ooking at this exanple.
*/

public class Cient {

/1 Default scope.
I
public final static String JMX SCOPE = "DEFAULT";

private static bool ean debug = fal se;

/**

* Get a pointer to the SLP Lookup Servi ce.

* (See RFC 2614 for nore info).

* @eturn a pointer to the SLP Lookup Service.

*/

public static Locator getLocator() throws ServicelocationException {
/] Getting the Locator (for |ookup purposes)
11
final Locator slpLocator =

Servi ceLocat i onManager . get Locat or (Local e. US);

return slplLocator;

}

/**

* Lookup JMXConnectors in the SLP Lookup Service.

*

* @aram sl pLocator A pointer to the SLP Lookup Service,

* returned by {@ink #getlLocator()}.

* @aram name the Agent Nane of the JMXConnectors that shoul d
* be returned. |f <var>nane</var> is null, then

* the JMXConnectors for all agents are returned

* (null is an equivalent for a wildcard).

* @eturn The list of matching JMXConnectors retrieved from
* the SLP Lookup Service.

*/

public static List |ookup(Locator slpLocator, String nane)
throws | OException, ServicelLocationException {

final ArrayList list = new ArraylList();

/1 Set the | ookup SCOPE.
11

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 18

ORACLE

Chapter 19
examples/Lookup/slp/Client.java

Vector scopes = new Vector();
scopes. add(JMX_SCOPE) ;

/1 Set the LDAPv3 query string

11

/1 WIIl return only those services for which the AgentName

/] attribute was registered. Since JSR 160 specifies that

/1 the AgentName attribute is mandatory, this makes it possible
/I to filter out all the services that do not conform

/1 to the spec.

{1 1f <name>is null, it is replaced by "*", so that all

/1 services for which the AgentNane attribute was specified match,
/1 regardless of the value of that attribute.

/1 Otherwi se, only those services for which AgentNane matches the
/1 name or pattern specified by <nanme> will be returned.

11

String query = "(& Agent Name=" + ((nane!=null)?name:"*") + "))";

debug("Looking up JMX Agents with filter: + query);
/1 Lookup the JMX agents....
I/
Servi ceLocati onEnuneration result =
sl pLocator. fi ndServi ces(new Servi ceType("service:jnx"),
scopes, query);

debug("... Got service enuneration.");

/1 Build the JMXConnector |ist

I/

while (result.hasMreEl ements()) {
final ServiceURL surl = (ServiceURL) result.next();
debug("\nFound Service URL: " + surl);

/'l Some debug info:
I
if (debug) {
/1 Retrieve the Lookup Attributes that were registered
/] with this URL
I/
debug("CGetting attributes...");
final ServicelLocationEnuneration slpAttributes =
sl pLocator.findAttributes(surl, scopes, new Vector());
debug("... Got attribute enuneration.");
while (sl pAttributes. hashoreEl ements()) {
final ServicelLocationAttribute slpAttribute =
(ServiceLocationAttribute)

sl pAttributes. nextEl ement();

debug("\tAttribute: " + slpAttribute);

}
}
/1 Create a JMXConnect or
R R

Il Create a JMX Service URL

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 18

ORACLE Chapter 19
examples/Lookup/slp/Client.java

I
JMXServi ceURL jmxUrl = new JMXServiceURL(surl.toString());
debug("JIMX Service URL: " + jmxUrl);

[l Obtain a JMXConnector fromthe factory
Il
try {
JMXConnector client =
JMXConnect or Fact ory. newJMXConnect or (j mxUrl, null);
debug("JMX Connector: " + client);

/1 Add the connector to the result list.
/1l
if (client !'=null) list.add(client);
} catch (1 OException x) {
Systemerr.printIn("Failed to create JMXConnector for " +
jmxUrl);
Systemerr.printIn("Error is: " + Xx);
Systemerr.println("Skipping...");

}
}
return list;
}
/**
* List all MBeans and their attributes.
*/

public static void |istMeans(MeanServerConnection server)
throws | OException {

final Set names = server.queryNanmes(null,null);
for (final Iterator i=nanes.iterator(); i.hasNext();) {
(bj ect Name name = (Cbj ect Nanme)i. next();
Systemout. println("Got MBean: "+nane);
try {
MBeanlnfo info =
server. get MBeanl nf o((Cbj ect Nane) nane) ;
MBeanAttributelnfo[] attrs = info.getAttributes();
if (attrs == null) continue;
for (int j=0; j<attrs.length; j++) {
if (attrs[j].isReadable()) {
try {
bject o =
server.getAttribute(nane,attrs[j].getNane());
Systemout. printIn("\t\t" + attrs[j].getName() +
"= "+0);
} catch (Exception x) {
Systemerr.printin("JmxCient failed to get " +
attrs[j].getNanme());
X. printStackTrace(Systemerr);

}
}
}
} catch (Exception x) {
Systemerr.printin("JmxClient failed to get MBeanInfo: " +

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 18

ORACLE

/**

*

*/

Chapter 19
examples/Lookup/slp/Client.java

X. printStackTrace(Systemerr);

Trace a debug message.

private static void debug(String nsg) {

}

/ *

*
*
*
*
*
*
*
*
*
*
*
*
*
*

i f (debug) Systemout.println(nsg);

Program Mai n.
<p>
Lookup all JMX agents in the SLP Lookup Service and |i st
their MBeans and attributes.
<p>
You may wish to use the followi ng properties on the Java comand |ine:

<l i ><code>- Dagent . name=&l t ; Agent Nane> ; </ code>: specifies an
Agent Name to | ookup (default is null, neaning any agent).
<l i ><code>- Ddebug="true| fal se"</code>: switch the Cient debug flag
on/off (default is "false").

public static void main(String[] args) {

try {
Il Get the value of the debug flag.

I
debug = (Bool ean. val uef (Syst em get Property("debug","false"))).
bool eanVal ue();

Il Get AgentName to | ookup.

/1 1f not defined, all agents are taken into account.

I

final String agentNanme = System get Property("agent.name");

Il Get a pointer to the SLP Lookup Service.
I

final Locator slplLocator = getlLocator();
debug("sl pLocator is: " + slplLocator);

/1 Lookup all matching agents in the SLP Lookup Service.
I
List | = I ookup(sl pLocator, agent Nane);

Il Attenpt to connect to retrieved agents

Il

Systemout. println("\nNunber of agents found : " + |.size());
int j =1,

for (lterator i=l.iterator();i.hasNext();j++) {

JMXConnector cl1 = (JMXConnector) i.next();
if (cl!=null) {

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 18

ORACLE

used

Java Management Extensions Guide
G34653-02
Copyright © 1993, 2025, Oracle and/or its affiliates.

Chapter 19
examples/Lookup/slp/Client.java

/'l Connect
I
System out. print! n(

................................... ");
Systemout. printlIn("\tConnecting to agent number "+j);

System out. print! n(
debug(" JMXConnector is: " + cl);

/1 Prepare the environnent Map
Il
final HashMap env = new HashMap();
final String factory =
Syst em get Property(Cont ext. | NI TI AL_CONTEXT_FACTORY) ;
final String |dapServerUl =
Syst em get Propert y(Cont ext. PROVI DER_URL) ;
final String |dapUser =
Syst em get Property(Cont ext. SECURI TY_PRI NCl PAL) ;
final String | dapPasswd =
Syst em get Propert y(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Transfer some system properties to the Map

1

if (factory!= null) // this should not be needed
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, f act ory);

if (ldapServerUrl!=null) // this should not be needed
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);

if (ldapUser!=null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);

if (ldapPasswd != null) // this is needed when LDAP is

env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

try {
cl. connect (env);

} catch (I OException x) {
Systemerr.println("Connection failed: " + x);
X. printStackTrace(Systemerr);

conti nue;
}
/1 Get MBeanServer Connection
11l

MBeanSer ver Connecti on conn =
cl. get MBeanSer ver Connection();
debug(" Connection is:" + conn);
Systemout. println("Server domain is: " +
conn. get Def aul t Domai n()) ;

/1 List all MBeans
Il
try {
l'i st MBeans(conn);
} catch (I OException x) {
Systemerr.printin("Failed to list MBeans: " + x);

September 15, 2025
Page 17 of 18

ORACLE Chapter 19
examples/Lookup/slp/Client.java

X. printStackTrace(Systemerr);

}

/1 O ose connector
Il

try {

cl.close();
} catch (I CException x) {
Systemerr.printin("Failed to close connection: " +

X);
X. printStackTrace(Systemerr);
}
}
}
} catch (Exception x) {
Systemerr. println("Unexpected exception caught in main: " + x);
X.printStackTrace(Systemerr);
}
}
}

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 18 of 18

Java Naming and Directory Interface (JNDI)/
LDAP Lookup Service

A\ Warning

CORBA support was removed from the JDK, in JDK 11, including the or bd tool. See
JEP 320 for details. This example is retained for reference.

The JMX API defines three bindings to lookup services, using existing lookup technologies
This examples provide a sample implementation of the JNDI/LDAP Lookup Service. The
source code contained in this section is used to create corresponding files in the exanpl es/
directory specified in the appropriate setup procedure and includes:

 README file

* Server

* Client

e jmx-schema.txt

e 60jmx-schema.ldif

examples/Lookup/ldap/README

T+

Exampl e of using JNDI/LDAP as Lookup service - registering and | ooki ng up
an RM Connector (I1COP/ JRWP)

H oH H H R

Requi rement s:

H H H

Before running this exanple you will have to:

H+

* Get access (or install & start) an LDAP directory server that

wi |l inplenent the | ookup service.

* Make sure the Java Schema (RFC 2713 http://ww.ietf.org/rfc/rfc2713.txt)
is known by that server

Update the directory server with JSR 160 LDAP Schenm

- 60j nx-schema.ldif file provided

This Idif file corresponds to the schema described in jnx-schema.txt

and can be copied as is in the config/schema directory of

the Sun ONE Directory Server.

HoH H H H O R H H
*

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 26

https://openjdk.java.net/jeps/320

ORACLE Chapter 20
examples/Lookup/ldap/README

* Make sure you have wite access to the server so that you can
create contexts in which the server will register its URL.

The names used in this exanple make the assunption that you

have created a new suffix, a database, and a root node (e.g. dc=Test)
for the purpose of the exanple. You may however use any nanes / |ocation
you want - just make sure to provide the correct nanmes & URLs

when starting the Server and Cient exanples.

In addition, if you wish to use an external directory for the RM JWX
Connectors (URLs of the formjnx:service:[rni|iiop]:/host:port/jndi/jndi-

rl)

t hen:

o |If you wish to use rnmiregistry in conjunction with the RM/JRW
JMX Connector you will have to start a rniregistry (see bel ow).

o |If you wish to use CORBA Naning Service in conjunction with the RM/I110OP
JMX Connector you will have to start an ORB daenon (see bel ow).

o If you wish to use LDAP in conjunction with the RM JMX Connectors
you will have to install/setup a directory server (you can use the
same server than that used for Lookup, or another one)

HHAHRFHRHFHFEHRHEHEHEHEHS FHHHHHHFHF R

In order to conpile and run the exanple, make a copy of this README file,

and

then sinply cut and paste all the commands as needed into a termnal w ndow.
#

This README nmakes the assunption that you are running under Java SE 6 on

Uni x,

you are famliar with the JM technol ogy, with LDAP and JNDI, and with

the bourne shell or korn shell syntax.

#

Al the commands bel ow are defined using Unix korn shell syntax.

#

|f you are not running Unix and korn shell you are expected to be able to
adapt these commands to your favorite OS and shell environment.

The directory server nust be started first.

You will have

to make sure the Java Schema (RFC 2713:

http://wmietf.org/rfc/rfc2713.txt) is known by that server

Start an rmregistry
#
rmregistry 9999 &

Start an ORB daenon:
#

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 26

ORACLE

Chapter 20
examples/Lookup/ldap/README

rm-rf ./orb.db
orbd -ORBInitial Port 7777 &

Conpile Server.java and Client.java

#

* Server.java: creates an MBeanServer, creates and starts an
RM connector (JRWP/11COP)

* Cient.java: lookup a connector in JNDI

list all MBeans.

javac -d . Server.java Cient.java

LDAP paraneters:
#

Supply the appropriate hostname bel ow, and define this variable:
#
| daphost =gi gondas

Supply the appropriate port nunber below, and define this variable:
#
| dapport =6666

Supply the appropriate principal below, and define this variable:
#
princi pal ="cn=Di rectory Manager"

Supply the appropriate credentials below, and define this variable:
#
credential s=

Supply the appropriate root under which the Server will try
#toregister its URL...

#

provi der="1 dap: // $| daphost : $I dapport/dc=Test

JNDI URLs

#

jndirm="rm://local host:9999"
jndiiiop="iiop://local host:7777"

j ndi | dap="1dap: // $l daphost : $I dapport"

JMX Service URLs

#

jmxiiopurl="service:jm:iiop:///jndi/${jndiiiop}/server"
jmkrmurl="service:jm:rm:///jndi/${jndirm}/server"

j mxi i opl dapurl ="service:jm:iiop:///jndi/${jndildap}/cn=x, dc=Test"
jmxrm | dapurl ="service:jm:rm:///jndi/${jndildap}/cn=x, dc=Test"

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 26

ORACLE Chapter 20
examples/Lookup/ldap/README

jmxstuburl ="service:jm:rm://"
jmiorurl="service:jm:iiop://"

Below we illustrate the different JMX Connector Servers
whi ch you have the choice to start.
There are seven cases labelled (a) to (f):

* RM Connectors

+ over JRW
- without any external directory (a)
- using rmregistry as external directory (b)
- using LDAP as external directory (c)

+ over |ICP
- without any external directory (d)
- using CORBA Naming Service as external directory (e)
- using LDAP as external directory (f)

HoH H H O H H R R R

NOTE-1: As defined in section 6.1 "Terninology" of the "JMX Renote APl 1.0
Specification" document, an agent is conposed of one MBean Server and of

one or nore Connector Servers. There can be several agents running in one
JW

For flexibility of this exanple, the jndi.Server class creates an agent

whi ch

is conmposed of one MBean Server and of only one Connector Server. The class
jndi.Server decides which type of Connector Server to create depending on

t he

value given to the "url" system property when you start the exanple

NOTE-2: The val ue of the "agent.name" system property is the value that the
jndi.Server class will give to the "AgentNanme" | ookup attribute when it
registers the connector's URL in the | ookup service. As defined in Table 6.1
"Lookup attributes for connectors" of the "JMX Renote APl 1.0 Specification”
document: the "AgentNane" |ookup attribute is a sinple name used to identify
the *AGENT* to which the connector is attached. It nakes it possible to
search, with a query to the | ookup service, for all the connectors

regi stered

by a given agent.

HOoH H O H R

(a) You can start an agent with an RM Connector Server over JRW
wi t hout using any external directory
#
java -classpath . -Ddebug=true \
- Dagent . nanme=t est - server-a \
-Durl="service:jmc:rm://" \
- Dj ava. nani ng. provi der. url ="$provi der" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. nanming. security.credential s="$credentials" \

jndi.Server &
(b) O you can start an agent with an RM Connector Server over JRWP
using rnmiregistry as external directory
(Start rmregistry first, if not yet started)
#

java -classpath . -Ddebug=true \

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 26

ORACLE

Chapter 20
examples/Lookup/ldap/README

- Dagent . nane=t est-server-b \
-Durl="service:jm:rm:///jndi/${jndirm}/server" \
- Dj ava. nani ng. provi der. url ="$provi der" \

-Dj ava. nani ng. security. principal ="$principal" \

-Dj ava. naning. security.credential s="$credentials" \

jndi.Server &
(c¢) O you can start an agent with an RM Connector Server over JRWP
using LDAP as external directory
(First start an LDAP server and create the dc=Test suffix)
#

java -classpath . -Ddebug=true \
- Dagent . nanme=t est - server-c \
-Durl ="service:jm:rm:///jndi/${jndildap}/cn=x, dc=Test" \
- Dj ava. nani ng. provi der. url ="$provi der" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. naning. security.credential s="$credential s" \

jndi.Server &
(d) O you can start an agent with an RM Connector Server over |IOP
wi t hout using any external directory
#

java -classpath . -Ddebug=true \
- Dagent . nane=t est-server-d \
-Durl ="service:jm:iiop://" \
- Dj ava. nani ng. provi der. url ="$provi der" \
-Dj ava. nanmi ng. security. principal ="$principal" \
-Dj ava. naning. security. credential s="$credential s" \

jndi.Server &
(e) O you can start an agent with an RM Connector Server over |IOP
usi ng CORBA Naning Service as external directory
(Start ORBD first if not yet started).
#

java -classpath . -Ddebug=true \
- Dagent . nane=t est - server-e \
-Durl ="service:jm:iiop:///jndi/${jndiiiop}/server" \
- Dj ava. nami ng. provi der. url ="$provi der" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. nanming. security.credential s="$credential s" \

jndi.Server &
(f) O you can start an agent with an RM Connector Server over |IOP
using LDAP as external directory
(First start an LDAP server and create the dc=Test suffix)
#

java -classpath . -Ddebug=true \
- Dagent . nane=t est -server-f \
-Durl ="service:jnmx:iiop:///jndi/${jndildap}/cn=x,dc=Test" \
- Dj ava. nani ng. provi der. url ="$provi der" \
-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. nanming. security.credential s="$credentials" \
jndi.Server &

Once you have started one or nore agents, you can start the Cient.
#

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 26

ORACLE’

java -classpath . -Ddebug=true \
- Dj ava. nani ng. provi der. url ="$provi der" \

-Dj ava. nani ng. security. principal ="$principal" \
-Dj ava. naning. security.credential s="$credentials" \

indi.di

ent

examples/Lookup/ldap/Server.java

package jndi;

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

i nport javax.
i nport javax.

i nport javax.
i nport javax.

nam
nam
nam
nam
nam

nam
nam
nam
nam
nam
nam
nam
nam
nam
nam

nami

ng.
ng.
ng.
ng.
ng.

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

ng.

Initial Context;

Cont ext;

Nam ngEnunerati on;
NarmeNot FoundExcept i on;
Nam ngExcepti on;

directory. DirContext;
directory. Attribute;
directory. Basi cAttribute;
directory. Attributes;
directory. Basi cAttributes;
directory. DirContext;
directory. Attribute;
directory. Attributes;
directory. SearchResul t;
directory. SearchControls;

| dap. I nitial LdapCont ext ;

managenent . *;
managenent. renote. *;
managenment.remote. rm.*;

inport java.text.

inport java.util.
inport java.util.
inport java.util.
inport java.util.
inport java.util.
inport java.util.
inport java.util.
inport java.util.
i nport java.io.lCException;

inport java.io.Serializable;

i nport java.net.|net Address;

i nport java.net. Ml formedURLExcepti on;

/**

Si npl eDat eFor mat ;

Dat e;

Mep;
HashMap;
Hasht abl e;
Li st;
Arraylist;
Local e;
Vect or;

Chapter 20
examples/Lookup/ldap/Server.java

* This class denonstrates how to use an LDAP directory as a | ookup

Java Management Extensions Guide

G34653-02

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 15, 2025
Page 6 of 26

ORACLE Chapter 20
examples/Lookup/ldap/Server.java

service for JSR 160 connectors. It shows how to register a
JMXConnect or Server with the LDAP directory through JNDI .

<p>

See README file and {@ink #main(String[])} for nore details.

<p>

Make sure to read the section "Binding with Lookup Services" of

the JMX Renote APl 1.0 Specification before |ooking at this exanple.

* * * * * * *

*/
public class Server {

/1 The URL will remain registered for 60 secs.
I
public final static int JMX_DEFAULT_LEASE = 60;

private static bool ean debug = fal se;

/**

* The | ocal MBeanServer.

*/

private final MBeanServer nbs;

/**

* Constructs a Server object. Creates a new MBeanServer.
*/
public Server() {
mbs = MBeanServer Fact ory. creat eMBeanServer () ;
}

/

*

CGet a pointer to the root context of the directory tree
under which this server is supposed to register itself.
Al'l LDAP DNs will be considered to be relative to that root.
<p>
Note that this root is not part of the JSR 160 specification,
since the actual location where a JMX Agent will register
its connectors is left conpletely open by the specification.
The specification only discuss what the JMX Agent must/ may
put in the directory - but not where.
<p>
This method assumes that the root of the directory is
will be passed in a the {@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} System property.
<p>
This nmethod will transfer a fixed set of System Properties to
the Hashtable given to the JND Initial Context:
<l'i >{ @i nk Context#l N TI AL_CONTEXT_FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY} - default is
<code>"com sun. j ndi . | dap. LdapCt xFact ory" </ code></ i >
{@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} </ I i >
{@ink Context#SECURI TY_PRI NCl PAL
Cont ext . SECURI TY_PRI NCI PAL} - default is
<code>"cn=Directory Manager"</code>
{@ink Context#SECURI TY_CREDENTI ALS
Cont ext . SECURI TY_CREDENTI ALS} </ | i >

* *

<lul >

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 26

ORACLE Chapter 20
examples/Lookup/ldap/Server.java

*

* @eturn a pointer to the LDAP Directory.

*/

public static DirContext getRootContext() throws Nam ngException {
/1 Prepare environnent
I/
final Hashtable env = new Hashtable();

/1 The Initial Context Factory must be provided, and
/1 must point to an LDAP Context Factory
/1l
final String factory =
Syst em get Property(Context. | N Tl AL_CONTEXT_FACTCRY,
“com sun. jndi.|dap. LdapCt xFactory");

/1 The LDAP Provider URL nust be provided, and
/1 nmust point to a running LDAP directory server
/1l
final String |dapServerUl =

Syst em get Property(Cont ext. PROVI DER_URL) ;

/1 The LDAP user nust be provided, and
/1 must have wite access to the subpart of the directory
/1 where the agent will be registered.
11
final String |dapUser =
Syst em get Property(Cont ext. SECURI TY_PRI NCI PAL,
“cn=Directory Manager");

/1 Credentials nmust be provided, so that the user may
/I wite to the directory.
/1l
final String | dapPasswd =
Syst em get Property(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Debug info: print provided val ues:

/1l

debug(Cont ext. PROVIDER URL + "=" + | dapServerUrl);

debug(Cont ext. SECURI TY_PRI NCI PAL + "=" + | dapUser);

i f (debug) {
System out . print (Cont ext.SECURI TY_CREDENTI ALS + "=");
final int len = (ldapPasswd==nul|)?0: | dapPasswd. | engt h();
for (int i=0;i<len;i++) Systemout.print("*");
Systemout. println();

}

/1 Put provided value in the environment table.
11
env. put (Context. | NI TI AL_CONTEXT_FACTCRY, f act ory);
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);
if (ldapServerUrl != null)
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);
if (ldapPasswd != null)
env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

|/l Create initial context

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 26

ORACLE

* * * * * * * * * * * *

var >

var >

*
*
*
*
*
*
*
*
*
*
*
*

*

/

Chapter 20
examples/Lookup/ldap/Server.java

/1l
Initial Context root = new InitialLdapContext(env,null);

/1 Now return the root directory context.
11
return (DirContext)(root.lookup(""));

Regi sters a JMX Connector URL with the LDAP directory.

<p>

This method expects to find the LDAP DN where it will register
the JMX Connector URL in the "dn" System property. If that
property is not set, then "cn=<var>nanme</var>" is assuned.

<p>

If the given DN does not point to an existing node in the
directory, then this method will attenpt to create it. Yet,
the parent node nust already exist in that case.

<p>

If the DN points to a node that is already of the <var>j mxConnect or</

class, then this method will sinply override its <var>jnxServi ceURL</

, <var >j mxAgent Name</ var >, <var >j mxPr ot ocol Type</var >,
<var >j mkAgent Host </ var > and <var >j mkExpi rati onDat e</var> attri butes.

@ar am r oot A pointer to the root context we are using,
as returned by {@ink #getRoot Context()}.
@aram j mxUrl A JMX Connector Server URL, that should have

been obtai ned from
{@ink JMXConnect or Ser ver #get Addr ess()
JMXConnect or Ser ver . get Address() };
@ar am name The Agent Nane with which the URL nust be registered
in the LDAP directory.

public static void register(DirContext root,

JMXServi ceURL jmxUrl,
String nane)
t hrows Nam ngException, |COException {

/1 Get the LDAP DN where to register
I/
final String nmydn = System getProperty("dn","cn="+nane);

debug("dn: " + nydn);

[l First check whether <mydn> already exists
11
oject o = null;
try {
0 = root. | ookup(mydn);
[l There is already a node at <nydn>
1
} catch (NaneNot FoundException n) {
/1 <mydn> does not exist! attenpt to create it.
1

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 26

ORACLE

* * * * * * * * *

*

Chapter 20
examples/Lookup/ldap/Server.java

Il Prepare attributes for creating a javaContai ner
[l with the auxiliary class jnmxConnector.

1

Attributes attrs = new BasicAttributes();

Il Prepare objectC ass attribute: we're going to create
/1 a javaContainer with the jmConnector auxiliary class.
I

Attribute objclass = new Basi cAttribute("objectd ass");
obj cl ass. add("top");

obj cl ass. add("j avaCont ai ner");

obj cl ass. add("j mConnector");

attrs. put (objcl ass);

attrs. put ("j nxAgent Name", name);

0 = root.createSubcontext(nydn,attrs);

}

/1 That's not supposed to happen but who knows...
I/
if (o ==null) throw new NameNot FoundException();

/1 Check that the entry contains the jmConnector objectd ass
/1 before nmodifying the attributes.
I/
final Attributes attrs = root.getAttributes(nydn);
final Attribute oc = attrs.get("objectC ass");
if (!oc.contains("jmConnector")) {
/1 The node does not have the jmxConnector class.
I
final String msg = "The supplied node [" + mydn + "] does not
“contain the jmxConnector objectclass";
t hrow new Nani ngExcepti on(nsg);

" +

}

/1 Now need to replace jmxConnector attributes.
I/
final Attributes newattrs = new BasicAttributes();
newattrs. put ("j mxAgent Narme", nane) ;
newattrs. put ("jmServiceURL", jmxUrl.toString());
newattrs. put ("j mkAgent Host", | net Addr ess. get Local Host () . get Host Nane()) ;
newattrs. put ("j mxProtocol Type",jmUrl . getProtocol ());
newattrs. put ("jmxExpirationDate",
get Expi rati onDat e(JMX_DEFAULT_LEASE)) ;
root. nodi fyAttributes(mydn, Di r Cont ext. REPLACE_ATTRI BUTE, newattrs);

Creates an RM Connector Server, starts it, and registers it
with the LDAP directory.

<p>

This nmethod will transfer a fixed set of System Properties to
the Map given to the RM Connect or Server constructor. Sone

JNDI properties, if defined, are transfered to the Map so

that they may be used when LDAP is used as external directory

to register the RM Stub (see {@ink javax. managenent.renote.rm}

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 26

ORACLE

* *

Chapter 20
examples/Lookup/ldap/Server.java

JavaDoc). Note that even if LDAP is used as external directory
the {@ink Context#l N TI AL_CONTEXT_FACTCORY
Cont ext . | NI TI AL_CONTEXT_FACTORY} and
{@ink Context#PROVI DER_ URL Context.PROVIDER URL} properties
usual ly don't need to be passed.
<p>
The following Systemproperties, if defined, are transferred to
the Map given to the RM Connector Server constructor.
<l'i >{ @i nk Context#l N TI AL_CONTEXT_FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY}</Ili>
{@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} </ I i >
{@ink Context#SECURI TY_PRI NCl PAL
Cont ext . SECURI TY_PRI NCI PAL} </ 1i >
{@ink Context#SECURI TY_CREDENTI ALS
Cont ext . SECURI TY_CREDENTI ALS} </ | i >
{@ink RM Connect or Server#JNDI _REBI ND_ATTRI BUTE
RM Connect or Server. JNDI _REBI ND_ATTRI BUTE} - default
is <code>true</code>. </Ii>

@aramurl A string representation of the JMXServiceURL.
@eturn the created RM Connect or Server.

public JMXConnectorServer rm (String url)

throws | CException, JMException,
Nami ngException, C assNot FoundException {

/1 Make a JMXServiceURL fromthe url string.
1
JMXServiceURL jurl = new JMXServiceURL(url);

/1 Prepare the environnment Map
/1l
final HashMap env = new HashMap();
final String rprop = RM Connector Server. JNDI _REBI ND_ATTRI BUTE;
final String rebind=System getProperty(rprop,“true");
final String factory =

Syst em get Property(Context. | N TI AL_CONTEXT_FACTCRY) ;
final String |dapServerUl =

Syst em get Property(Cont ext. PROVI DER_URL) ;
final String |dapUser =

Syst em get Property(Cont ext. SECURI TY_PRI NCl PAL) ;
final String | dapPasswd =

Syst em get Property(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Transfer some system properties to the Map

11

if (factory!= null) // this should not be needed
env. put (Cont ext. I NI TI AL_CONTEXT_FACTCRY, f actory);

if (ldapServerUrl!=null) // this should not be needed
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);

if (ldapUser!=null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);

if (ldapPasswd != null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 26

ORACLE

Servi ce

* * * * * * * * *
*

-

Chapter 20
examples/Lookup/ldap/Server.java

env. put (rprop,rebind); // default is true.

/1 Create an RM Connect or Server
/1l
Systemout.printIn("Creating RM Connector: " + jurl);
JMXConnect or Server rnis =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (jurl, env, nbs);

/1 Get the AgentNane for registering the Connector in the Lookup
/1l
final String agentName = System get Property("agent.nane",
"Defaul t Agent");
/1 Start the connector and register it in the LDAP directory.
/1l

start(rms, env, agent Nane) ;

return rms;

Start a JMXConnector Server and register it with the LDAP directory.

@aram server the JMXConnector Server to start and register.
@aramenv the environnment Map.
@ar am agent Nane the AgentName with which the URL nust be registered

inthe LDAP Directory. This is not a LDAP DN, but
the value of the jmxAgentNane attribute.

public void start(JMXConnect or Server server, Map env, String agent Name)

}

/**
*
*
*

*

*/

throws | OException, Nami ngException {

/] Start the JMXConnect or Server
11
server.start();

/] Get a pointer to the LDAP directory.
I/
final DirContext root = getRootContext();

/] Create a JMX Service URL to register in the LDAP directory
I/
final JMXServiceURL address = server.get Address();

/1 Register the URL in the LDAP directory

I/
regi ster(root, address, agent Nane) ;

Returns a X. 208 string representing the GMI date at now + sec.

@ar am sec Nunmber of seconds from now.
@eturn an X. 208 GMI GeneralizedTime (ending with Z).

Java Management Extensions Guide

G34653-02
Copyright © 1993, 2025, Oracle

September 15, 2025
and/or its affiliates. Page 12 of 26

ORACLE

Chapter 20
examples/Lookup/ldap/Server.java

public static String getExpirationDate(long sec) {

final SinpleDateFormat fnt = new

Si npl eDat eFor mat ("yyyyMWdHHmMSS. S*) ;

final Date date = new Date();
final Date gntDate;
if (fnt.getCalendar().getTi meZone().inDaylightTinme(date))
gntDate = new Date(SystemcurrentTimeMI1is() -
fm . get Cal endar (). get Ti meZone() . get RawCr f set ()

fm . get Cal endar (). get Ti meZone() . get DSTSavi ngs() +

}

/**

*

*/

1000*sec) ;
el se
gntDate =
new Date(SystemcurrentTimeM I lis() -
fm . get Cal endar (). get Ti meZone() . get RawCf f set () +
1000*sec) ;
return ((fnt.format(gntDate))+"2");

Trace a debug message.

private static void debug(String nsg) {

}
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

i f (debug) Systemout.println(nsg);

Program Mai n

<p>

Creates a server object, gets the JMX Service URL, and calls

the method that will create and register the appropriate

JMX Connector Server for that URL.

<p>

You may wish to use the follow ng properties on the Java comand |ine:

<code>-Durl =&l t;j mxServi ceURL> ; </ code>: specifies the URL of
the JMX Connector Server you wi sh to use. See README file for nore
details.

<l i ><code>- Dagent . name=&l t ; Agent Nane> ; </ code>: specifies an
Agent Name to register with.

<code>-Djava.nam ng.factory.initial=&t;initial-context-factory>
</code>: The initial context factory to use for accessing the
LDAP directory (see {@ink Context#l N TI AL_CONTEXT FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY}) - default is
<code>"com sun. j ndi . | dap. LdapCt xFact ory" </ code>. </ 1i >

<l i ><code>- j ava. nami ng. provi der. url =& t; provi der-url > ; </ code>:
The LDAP Provider URL (see {@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL}) . </ i >

<l i ><code>- Dj ava. nani ng. security. principal =& t ;| dap- princi pal > ;
</code>. The security principal (login) to use to connect with
the LDAP directory (see {@ink Context#SECURI TY_PRI NCI PAL
Cont ext . SECURI TY_PRI NCI PAL} - default is
<code>"cn=Directory Manager"</code>.

<l i ><code>- Dj ava. nam ng. security. credential s=& t; | dap-credenti al s>
</code>. The security credentials (password) to use to

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 26

ORACLE Chapter 20
examples/Lookup/ldap/Client.java

* connect with the LDAP directory (see

* {@ink Context#SECURI TY_CREDENTI ALS

* Cont ext . SECURI TY_CREDENTI ALS}) . </1i >

* <|i><code>- Ddebug="true|fal se"</code>. switch the Server debug flag
* on/off (default is "false")</Ii>

*

*

<lul >
/
public static void main(String[] args) {
try {
Il Get the value of the debug flag.
/1

debug = (Bool ean. val ueCf (Syst em get Property("debug","fal se"))).
bool eanVal ue() ;

Il Create a new Server object.
I
final Server s = new Server();

Il Get the JMXConnector URL
Il
final String url =
System get Property("url", "service:jmrm://");

/1 Build a JMXServi ceURL
I
final JMXServiceURL jurl = new JMXServiceURL(url);

Il Creates a JMX Connector Server

/1

final JMXConnector Server server;
debug(" Creating Connector: " + jurl);

final String p = jurl.getProtocol ();

if (p.equals("rm")) /1l Create an RM Connect or
s.rm(url);

else if (p.equals("iiop")) // Create an RM/I1OP Connect or
s.rm(url);

el se /1 Unsupported protocol

t hrow new Mal f or medURLExcept i on("Unsupported protocol: " + p);

Systemout. printin("\nService URL successfully registered " +
"in the LDAP Lookup Service");

} catch (Exception x) {

Systemerr. println("Unexpected exception caught in main: " + x);
X.printStackTrace(Systemerr);

examples/Lookup/ldap/Client.java

package jndi;

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 26

ORACLE

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

i nport javax.

i nport javax.
i nport javax.

nami
nami
nami
nami
nami

nami
nami
nami
nami
nami
nami
nami
nami
nami
nami

nam

i nport java.text.

inport java.
inport java.
inport java.
inport java.
inport java.
inport java.
inport java.
inport java.
inport java.
inport java.

util.
util.
util.
util.
util.
util.
util.
util.
util.
util.

ng. I nitial Context;

ng. Cont ext;

ng. Nani ngEnunerati on

ng. NarmeNot FoundExcept i on
ng. Nani ngExcepti on

ng. directory. Di r Cont ext;
ng.directory. Attribute

ng. directory. Basi cAttribute;
ng. directory. Attributes;

ng. directory. Basi cAttributes;
ng. directory. Di r Cont ext;
ng.directory. Attribute

ng. directory. Attributes;

ng. di rectory. SearchResul t;
ng. di rectory. SearchControl s;

ng. | dap. I nitial LdapCont ext;

managenent.renote. *
managenent . *;

Si npl eDat eFor mat ;

Dat e;

Map;

Li st;
Arraylist;
HashMap;
Hasht abl e
Set;
Iterator;
Local e;
Vect or;

i nport java.io.lCException;
inport java.io.Serializable;

>*

/

<p>

<p>

* * * * * * * * *

*1

for JSR 160 connectors.
fromthe LDAP directory.

public class Cient {

private static bool ean debug = fal se

/**

* L st

*

Java Management Extensions Guide
G34653-02

all the attributes of an LDAP node

Copyright © 1993, 2025, Oracle and/or its affiliates.

Chapter 20
examples/Lookup/Ildap/Client.java

This class denmonstrates how to use an LDAP directory as a | ookup service
It shows how to | ookup a JMXServiceURL

See README file and {@ink #main(String[])} for nore details

Make sure to read the section "Binding with Lookup Services" of
the JMX Renote APl 1.0 Specification before looking at this exanple

September 15, 2025
Page 15 of 26

ORACLE

*

*

*/

Chapter 20
examples/Lookup/Idap/Client.java

@aramroot The root DirContext.
@aramdn The DN of the node, relative to the root DirContext.

public static void listAttributes(DirContext root, String dn)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

t hrows Nam ngException {

final Attributes attrs = root.getAttributes(dn);
Systemout.printin("dn: " + dn);
Systemout.printin("attributes: " + attrs);

CGet a pointer to the root context of the directory tree
under which this server is supposed to register itself.
Al'l LDAP DNs will be considered to be relative to that root.
<p>
Note that this root is not part of the JSR 160 specification,
since the actual location where a JMX Agent will register
its connectors is left conpletely open by the specification.
The specification only discuss what the JMX Agent must/ may
put in the directory - but not where.
<p>
This method assumes that the root of the directory is
will be passed in a the {@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} System property.
<p>
This nmethod will transfer a fixed set of System Properties to
the Hashtable given to the JND Initial Context:
<l'i >{ @i nk Context#l N TI AL_CONTEXT_FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY} - default is
<code>"com sun. j ndi . | dap. LdapCt xFact ory" </ code></Ii >
{@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL} </ I i >
{@ink Context#SECURI TY_PRI NCl PAL
Cont ext . SECURI TY_PRI NCI PAL} - default is
<code>"cn=Directory Manager"</code>
{@ink Context#SECURI TY_CREDENTI ALS
Cont ext . SECURI TY_CREDENTI ALS} </ | i >

@eturn a pointer to the LDAP Directory.

public static DirContext getRootContext() throws Nam ngException {

/'l Prepare environnent
I/
final Hashtable env = new Hashtable();

/1 The Initial Context Factory must be provided, and
/1 must point to an LDAP Context Factory
/1l
final String factory =
Syst em get Property(Context. | N Tl AL_CONTEXT_FACTCRY,
“com sun. jndi.|dap. LdapCt xFactory");

/1 The LDAP Provider URL nust be provided, and
/1 must point to a running LDAP directory server
I/

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 26

ORACLE

* * * * * * * * * *
*

-

Chapter 20
examples/Lookup/Ildap/Client.java

final String |dapServerUrl =
Syst em get Property(Cont ext. PROVI DER_URL) ;

/1 The LDAP user nust be provided, and
/1 must have wite access to the subpart of the directory
/1 where the agent will be registered.
11
final String |dapUser =
Syst em get Property(Cont ext. SECURI TY_PRI NCI PAL,
“cn=Directory Manager");

/1 Credentials nmust be provided, so that the user nmay
/Il wite to the directory.
/1l
final String | dapPasswd =
Syst em get Property(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Debug info: print provided val ues:

/1l

debug(Cont ext. PROVIDER URL + "=" + | dapServerUrl);

debug(Cont ext. SECURI TY_PRI NCI PAL + "=" + | dapUser);

i f (debug) {
System out . print (Cont ext.SECURI TY_CREDENTI ALS + "=");
final int len = (ldapPasswd==nul|)?0: | dapPasswd. | engt h();
for (int i=0;i<len;i++) Systemout.print("*");
Systemout. println();

}

/1 Put provided value in the environment table.
1
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, f act ory);
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);
if (ldapServerUrl != null)
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);
if (ldapPasswd != null)
env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

/] Create initial context
/1l
Initial Context root = new InitialLdapContext(env,null);

/1 Now return the root directory context.
11
return (DirContext)(root.lookup(""));

Parses the expirationDate in order to determ ned whet her
the associated URL has expired.

@aram expirationDate an X 208 CeneralizedTinme, |ocal or GM.
Only yyyyMldHHmM®ss. S (local tine) and yyyyMWdHHmMSS. SZ
(GMr tine) formats are recogni zed.

@eturn true if the expirationDate coul d be parsed and i s past,
fal se otherw se.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 26

ORACLE

* * * * * * * *
*

oy

* * * * * * * * * * * * * * * * *
*

.y

Chapter 20
examples/Lookup/Ildap/Client.java

public static bool ean hasExpired(String expirationDate) {

if (expirationDate == null) return false;
try {
final Date | ocal ExpDate = getLocal Date(expirationDate);
final Date now = new Date();
if (local ExpDate. before(now)) return true;
} catch (java.text.ParseException x) {
X. print StackTrace(System out);

}

return fal se;

Returns a date in the local time zone parsed froman X 208
formatted date. Only yyyyMWdHHmMSs. S (local tine) and
yyyyMwldHHmMTss. SZ (GMT tine) formats are recogni zed.

@aram expirationDate an X 208 CeneralizedTinme, |ocal or GM.
@eturn the corresponding Date in the local time zone.

public static Date getLocal Date(String expirationDate)

throws java.text.ParseException {
final SinpleDateFormat fnt = new Sinpl eDat eFor mat ("yyyyMvldHHMmsS. S') ;
Date | ocal Date = fnt.parse(expirationDate);
if (expirationDate.endsWth("z")) {
final Date date = new Date();
if (fnt.getCal endar().getTimeZone().inDaylightTine(date))
| ocal Date =
new Dat e(l ocal Date. get Ti ne() +
fnt. get Cal endar (). get Ti meZone() . get RawOf f set () +
fnt. get Cal endar (). get Ti meZone() . get DSTSavi ngs()) ;
el se
| ocal Date =
new Dat e(l ocal Date. get Ti ne() +
fnt. get Cal endar (). get Ti meZone() . get RawOf f set ());
}

return | ocal Date;

Lookup JMXConnectors in the LDAP directory.

@aramroot A pointer to the LDAP directory,
returned by {@ink #get Root Context()}.
@ar am pr ot ocol Type The protocol type of the JMX Connectors
we want to retrieve. |If <var>protocol Type</var>is null,
then the jnmxProtocol Type attribute is ignored. O herw se,
only those agents that have registered a matching
j mProtocol Type attribute will be returned.
@aram nane the Agent Name of the JMXConnectors that shoul d
be returned. |f <var>nane</var> is null, then
the JMXConnectors for all agents are returned
(null is an equivalent for a wildcard).
@eturn The list of matching JMXConnectors retrieved from
the LDAP directory.

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 18 of 26

ORACLE

Chapter 20
examples/Lookup/Ildap/Client.java

public static List |ookup(DirContext root, String protocol Type, String

nane)

throws | OException, Nami ngException {
final ArrayList list = new ArraylList();

/1 1f protocol Type is not null, include it in the filter.
I/
String queryProtocol =
(protocol Type==nul 1) ?"":"(j mxProt ocol Type="+pr ot ocol Type+")";

/1 Set the LDAPv3 query string
/1l
/1 Only those node that have the jmxConnector object class are
/1 of interest to us, so we specify (objectC ass=jmConnector)
/1 in the filter.
/1l
/1 W specify the jnmxAgentNane attribute in the filter so that the
/1 query will return only those services for which the Agent Name
/] attribute was registered. Since JSR 160 specifies that
/1 the AgentName attribute is mandatory, this makes it possible
/I to filter out all the services that do not conform
/1 to the spec.
{1 1f <name>is null, it is replaced by "*", so that all
/1 services for which the AgentNane attribute was specified match,
/1 regardless of the value of that attribute.
/1 Otherwise, only those services for which AgentNane matches the
/1 name or pattern specified by <nanme> will be returned.
/1l
/1 W also specify (jmServiceURL=*) so that only those node
/1 for which the jnxServiceURL attribute is present will be
/1 returned. Thus, we filter out all those node corresponding
/] to agents that are not currently available.
/1l
String query =
"(&" + "(objectd ass=jnxConnector) " +
"(jmxServiceURL=*) " +
queryProtocol +
"(j mxAgent Name=" + ((name! =null)?name:"*") + "))",;

Systemout. println("Looking up JMX Agents with filter: + query);

SearchControls ctrls = new SearchControl s();

/1 Want to get all jnmxConnector objects, wherever they've been
/'l registered.

I/

ctrls. set SearchScope(Sear chControl s. SUBTREE_SCOPE) ;

/1 Want to get only the jnxServiceU | and jmxExpirationDate
/1 (comrent these lines and all attributes will be returned).
11

/1 ctrls.setReturningAttributes(new String[] {

/1 "j mxServi ceURL",
/1 "j mxExpirationDat e"
I b

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 19 of 26

ORACLE

Chapter 20
examples/Lookup/Ildap/Client.java

/] Search...

11

final Nanmi ngEnuneration results = root.search(

, query, ctrls);

/] Get the URL...

11

while (results.hashre()) {

Java Management Extensions Guide
G34653-02

Il Get node...

I

final SearchResult r = (SearchResult) results.nextEl ement();
debug(" Found node: " + r.getName());

[l Get attributes
I
final Attributes attrs = r.getAttributes();

/1 Get jmxServiceURL attribute

I

final Attribute attr = attrs.get("jmServiceURL");
if (attr == null) continue;

/1 Get jnmxExpirationDate
I
final Attribute exp = attrs.get("jmExpirationDate");

Il Check that URL has not expired.

I

if ((exp !'=null) && hasExpired((String)exp.get())) {
Systemout.print(r.getNane() + ": ");
Systemout. println("URL expired since:

+ exp.get());

conti nue;
1
[l Get the URL string
11

final String urlStr = (String)attr.get();
if (urlStr.length() == 0) continue;

debug("Found URL: " + urlStr);

Il Create a JMXServiceURL
Il
final JMXServiceURL url = new JMXServiceURL(url Str);

/1 Create a JMXConnect or
/1l
final JMXConnector conn =
JMXConnect or Fact ory. newJMXConnect or (url, null);

/1 Add the connector to the result Iist

I

l'ist.add(conn);

if (debug) listAttributes(root,r.getNane());

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 20 of 26

ORACLE Chapter 20
examples/Lookup/Idap/Client.java

return list;
}
/**
* List all MBeans and their attributes.
*/

public static void |istMeans(MeanServerConnection server)
throws | OException {
final Set names = server.queryNanmes(null,null);
for (final Iterator i=nanes.iterator(); i.hasNext();) {
(bj ect Name name = (Cbj ect Nane)i. next ();
Systemout. println("Got MBean: "+nane);
try {
MBeanlnfo info =
server. get MBeanl nf o((Cbj ect Nane) nane) ;
MBeanAttributelnfo[] attrs = info.getAttributes();
if (attrs == null) continue;
for (int j=0; j<attrs.length; j++) {
if (attrs[j].isReadable()) {
try {
bject o =
server.getAttribute(nane,attrs[j].getNane());
Systemout. printIn("\t\t" + attrs[j].getName() +
"= "+0);
} catch (Exception x) {
Systemerr.printin("JmxCient failed to get " +
attrs[j].getNanme());
X. printStackTrace(Systemerr);

}
}
}
} catch (Exception x) {
Systemerr.printin("JmxClient failed to get MBeanInfo: " +
X);
X. printStackTrace(Systemerr);
}
}
}
/**

* Trace a debug message.
*/
private static void debug(String nsg) {
i f (debug) Systemout.println(nsg);

}
/**
* Program Mai n.
* <p>
* Lookup all JMX agents in the LDAP Directory and I|ist
* their MBeans and attributes.
* <p>
* You may wish to use the follow ng properties on the Java conmand |ine:
* o<yl >
*

<l i ><code>- Dagent . name=&l t ; Agent Nane> ; </ code>: specifies an

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 21 of 26

ORACLE Chapter 20
examples/Lookup/Idap/Client.java

Agent Narme to | ookup (default is null, neaning any agent).

<l i ><code>- Dpr ot ocol =& t ; Prot ocol Typeé> ; </ code>: restrains the client
to lookup for a specific protocol type (default is null,
meani ng any type).

<l i ><code>-Dj ava. nami ng. factory.initial =& t;initial-context-factory>
</code>: The initial context factory to use for accessing the
LDAP directory (see {@ink Context#l N TI AL_CONTEXT FACTORY
Cont ext. | NI TI AL_CONTEXT_FACTORY}) - default is
<code>"com sun. j ndi . | dap. LdapCt xFact ory" </ code>. </ 1i >

<l i ><code>- j ava. nami ng. provi der. url =& t; provi der-url > ; </ code>:
The LDAP Provider URL (see {@ink Context#PROVI DER_URL
Cont ext . PROVI DER_URL}) . </ i >

<l i ><code>- Dj ava. nani ng. security. principal =& t ;| dap- princi pal > ;
</code>. The security principal (login) to use to connect with
the LDAP directory (see {@ink Context#SECURI TY_PRI NCI PAL
Cont ext . SECURI TY_PRI NCI PAL} - default is
<code>"cn=Directory Manager"</code>.

<l i ><code>- Dj ava. nam ng. security. credential s=& t; | dap-credenti al s>
</code>. The security credentials (password) to use to
connect with the LDAP directory (see
{@ink Context#SECURI TY_CREDENTI ALS
Cont ext . SECURI TY_CREDENTI ALS}) . </ i >

<l i ><code>- Ddebug="true| fal se"</code>: switch the Server debug flag

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* on/off (default is "false")</Ii>
*

*

/
public static void main(String[] args) {
try {
Il Get the value of the debug flag.
I

debug = (Bool ean. val uef (Syst em get Property("debug", "false"))).
bool eanVal ue() ;

Il Get a pointer to the LDAP Directory.

I

final DirContext root = getRootContext();
debug("root is: " + root.get Namel nNanespace());

final String protocol Type=System get Property("protocol");
final String agent Nane=System get Property("agent.nane");

/1 Lookup all matching agents in the LDAP Directory.

f_|/ st | = lookup(root, protocol Type, agent Nane) ;

/1 Attenpt to connect to retrieved agents

g/stgm out.println("Nunber of agents found : " + |.size());
;2: t|;e35tor i<l iterator():i.hasNext():j+) {

JMXConnector cl1 = (JMXConnector) i.next();
if (cl!=null) {

/'l Connect
1
System out. print! n(

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 22 of 26

ORACLE Chapter 20
examples/Lookup/Idap/Client.java

Systemout. println("\tConnecting to agent nunber "+j);
System out. print! n(

debug(" JMXConnector is: " + cl);

/1 Prepare the environnent Map
Il
final HashMap env = new HashMap();
final String factory =
Syst em get Property(Cont ext. | NI TI AL_CONTEXT_FACTORY) ;
final String |dapServerUl =
Syst em get Propert y(Cont ext. PROVI DER_URL) ;
final String |dapUser =
Syst em get Property(Cont ext. SECURI TY_PRI NCl PAL) ;
final String | dapPasswd =
Syst em get Propert y(Cont ext. SECURI TY_CREDENTI ALS) ;

/1 Transfer some system properties to the Map

1

if (factory!= null) // this should not be needed
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, f act ory);

if (ldapServerUrl!=null) // this should not be needed
env. put (Cont ext . PROVI DER_URL, | dapServerUrl);

if (ldapUser!=null) // this is needed when LDAP is used
env. put (Cont ext . SECURI TY_PRI NCI PAL, | dapUser);

if (ldapPasswd != null) // this is needed when LDAP is

used

env. put (Cont ext . SECURI TY_CREDENTI ALS, | dapPasswd);

try {
cl. connect (env);

} catch (I CException x) {
Systemerr.println("Connection failed: " + x);
X.printStackTrace(Systemerr);

conti nue;
}
/| Get MBeanServer Connection
11

MBeanSer ver Connecti on conn =
cl. get MBeanSer ver Connection();
debug(" Connection is:" + conn);
Systemout. println("Server domain is: " +
conn. get Def aul t Domai n()) ;

/1 List all MBeans

Il

try {
l'i st MBeans(conn);

} catch (I CException x) {
Systemerr.printin("Failed to list MBeans: " + x);
X. printStackTrace(Systemerr);

}

/1 O ose connector

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 23 of 26

ORACLE’

Chapter 20
examples/Lookup/ldap/jmx-schema.txt

1

try {
cl.close();

} catch (I CException x) {
Systemerr.printin("Failed to close connection: " +

X. printStackTrace(Systemerr);

}
}
} catch (Exception x) {

Systemerr. println("Unexpected exception caught in main: " + x);
X.printStackTrace(Systemerr);

examples/Lookup/ldap/jmx-schema.txt

LDAP Schena for JSR 160 Lookup

-- jmxServiceURL attribute is an A5 String

(1.3.6.1.4.1.42.2.27.11. 1.1 NAME 'j mxServi ceURL'
DESC ' String representation of a JMX Service URL'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SI NGLE- VALUE)

-- jmxAgent Name attribute is an A5 String

(1.3.6.1.4.1.42.2.27.11. 1. 2 NAME ' j nxAgent Nane'
DESC ' Nane of the JMX Agent'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SI NGLE- VALUE)

-- jmxProtocol Type attribute is an A5 String

(1 1.3.6.1.4.1.42.2.27.11. 1. 3 NAME ' j nxPr ot ocol Type'
DESC ' Protocol used by the registered connector'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SI NGLE- VALUE)

-- jmxAgentHost attribute is an I A5 String

(1.3.6.1.4.1.42.2.27.11. 1. 4 NAME ' j nxAgent Host'
DESC ' Nanmes or | P Addresses of the host on which the agent is running.

When multiple values are given, they should be aliases to the
same host.'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 24 of 26

ORACLE Chapter 20
examples/Lookup/ldap/60jmx-schema.ldif

-- jmxProperty attribute is an A5 String

(1.3.6.1.4.1.42.2.27.11. 1.5 NAME ' j mxProperty’
DESC ' Java-like property characterizing the registered object.
The form of each val ue shoul d be: "<property-name>=<val ue>".
For instance: "comsun.jnmx.renote.tcp.tinmeout=200""
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

-- jmxExpirationDate attribute is a Generalized Tinme
-- see [RFC 2252] - or X 208 for a description of
-- Ceneralized Tine

(1.3.6.1.4.1.42.2.27.11. 1.6 NAME ' j nxExpirationDate'
DESC 'Date at which the JMX Service URL will be considered obsolete
and may be renoved fromthe directory tree'
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 24
SI NGLE- VALUE)

-- (vj ect d asses:

-- jmConnector class - represents a JMX Connector.
-- nust contain the JMX Service URL
-- and the JMX Agent Nane

(1.3.6.1.4.1.42.2.27.11. 2.1 NAME 'j mxConnector'

DESC 'A class representing a JMX Connector, and containing a
JMX Service URL. The jmxServiceURL is not present if the server
is not accepting connections'

AUXI LI ARY

MUST (jnxAgentNane)

MAY (jmxServiceURL $ j mxAgentHost $ jmxProtocol Type $ jnxProperty $
j mExpirationDate $ description))

examples/Lookup/Idap/60jmx-schema.ldif

dn: cn=schena
attributeTypes: (1.3.6.1.4.1.42.2.27.11.1.1 NAME 'j nxServi ceURL
DESC ' String representation of a JMX Service URL'
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26
SI NGLE- VALUE)
attributeTypes: (1.3.6.1.4.1.42.2.27.11.1. 2 NAME ' j nxAgent Nare'
DESC ' Nane of the JMX Agent'
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26
SI NGLE- VALUE)
attributeTypes: (1.3.6.1.4.1.42.2.27.11. 1.3 NAME ' j nxProtocol Type
DESC ' Protocol used by the registered connector
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26
SI NGLE- VALUE)
attributeTypes: (1.3.6.1.4.1.42.2.27.11. 1.4 NAME ' j mxAgent Host
DESC ' Nanes or | P Addresses of the host on which the agent is running
Wien nultiple values are given, they should be aliases to the sane host.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 25 of 26

ORACLE Chapter 20
examples/Lookup/ldap/60jmx-schema.ldif

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
attributeTypes: (1.3.6.1.4.1.42.2.27.11.1.5 NAME ' j nxProperty'
DESC ' Java-like property characterizing the registered object.
The form of each value shoul d be: "<property-name>=<val ue>".
For instance: "comsun.jmx.renote.tcp.tineout=200""
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
attributeTypes: (1.3.6.1.4.1.42.2.27.11.1.6 NAME 'j nxExpirationDate'
DESC 'Date at which the JMX Service URL will be considered
obsol ete and may be renoved fromthe directory tree'
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 24
SI NGLE- VALUE)
objectCl asses: (1.3.6.1.4.1.42.2.27.11.2.1 NAME 'j mxConnector'
DESC 'A class representing a JMX Connector, and containing a
JMX Service URL. The jmxServiceURL is not present if the server is
not accepting connections'
AUXI LI ARY
MUST (j mxAgent Nane)
MAY (jmxServiceURL $ jnxAgentHost $ jnxProtocol Type $
j mProperty $ jnxExpirationDate $ description))

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 26 of 26

Simple Security

The JMX API uses existing security protocols to secure your connections. This example
provides a simple security implementation. The source code contained in this section is used
to create corresponding files in the exanpl es/ directory specified in the appropriate setup
procedure and includes:

« README file

* Server

e Client

e ClientListener

e access.properties

e password.properties

e SimpleStandard

* SimpleStandardMBean

To run the example, a keystore and truststore are also required. If you do not already have
these in place on your system, see keytool command and Customizing the Default Keystores
and Truststores, Store Types, and Store Passwordsfor information about creating a keystore
and truststore.

examples/Security/simple/README

#

#

Exanple of a secure RM connector.

#

This exanpl e uses:

#

- the RM SSL socket factories for encryption,

- the password authenticator based on the JMXAut henticator interface for
user authentication,

- the file access controller based on the MBeanServerForwarder interface
for user access |evel authorization.

#

#

#

In order to conpile and run the exanple, make a copy of this README file,
and

then sinply cut and paste all the commands as needed into a termnal w ndow.
#

Al the commands bel ow are defined using Unix korn shell syntax.

#

|f you are not running Unix and korn shell you are expected to be able to

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 12

https://docs.oracle.com/en/java/javase/18/docs/specs/man/keytool.html#importing-the-keystore
https://docs.oracle.com/en/java/javase/18/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-7D9F43B8-AABF-4C5B-93E6-3AFB18B66150
https://docs.oracle.com/en/java/javase/18/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-7D9F43B8-AABF-4C5B-93E6-3AFB18B66150

ORACLE Chapter 21
examples/Security/simple/server/Server.java

adapt these commands to your favorite OS and shell environment.

#

Conpile Java cl asses

#

* Server.java: creates an MBeanServer and creates and starts a secure RM
connector server (JRWP).

#

#* Cient.java: creates a secure RM connector (JRWP), creates and registers
a Sinple standard MBean and perforns operations on it.

#

* dientListener.java: inplements a generic notification listener.

#

* SinpleStandard.java: inplenents the Sinple standard MBean.

#

* SinpleStandar dMBean. j ava: the managenent interface exposed by the Sinple
standard MBean.

#

javac nbeans/ Si npl eSt andard. java \
mbeans/ Si npl eSt andar dVBean. j ava \
server/ Server.java \
client/Cient.java \
client/dientListener.java

Start the RM registry:
#

export CLASSPATH=server ; rmiregistry 9999 &

Start the Server:
#

java -classpath server:nbeans \
-Dj avax. net. ssl . keySt ore=confi g/ keystore \
- Dj avax. net. ssl . keySt or ePasswor d=passwor d \
Server &

Start the Cient:
#

java -classpath client:server:nbeans \
-Dj avax. net.ssl.trust Store=config/truststore \
-Dj avax. net. ssl . trust St orePasswor d=trustword \
dient

examples/Security/simple/server/Server.java

inport java.io.File;
inport java.util.HashMap;

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 12

ORACLE

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

public class

public s
try

Chapter 21
examples/Security/simple/server/Server.java

managenent . MBeanSer ver
managenent . MBeanSer ver Fact ory;
managenent . r enot e. JMXConnect or Ser ver
managenent . r enot e. JMXConnect or Ser ver Fact ory;
managenent . renot e. JMXSer vi ceURL;
managenent . renot e. rmi . RM Connect or Ser ver
rm.ssl.Ssl RM dient Socket Fact ory;
rm.ssl.Ssl RM Server Socket Fact ory;

Server {

tatic void main(String[] args) {
{
/] Instantiate the MBean server
Il

Systemout.println("\nCreate the MBean server");
MBeanServer nbs = MBeanServer Factory. creat eMBeanServer();

/1 Environnment nap

I

Systemout.printin("\nlnitialize the environment map");
HashMap env = new HashMap();

/1 Provide SSL-based RM socket factories
I

SsI RM O i ent Socket Factory csf
SsI RM Ser ver Socket Fact ory ssf

new Ssl RM Cl i ent Socket Factory();
new Ssl RM Ser ver Socket Factory();

env. put (RM Connect or Server. RM _CLI ENT_SOCKET_FACTCRY_ATTRI BUTE, csf);

env. put (RM Connect or Server. RM _SERVER_SOCKET_FACTCRY_ATTRI BUTE, ssf) ;

properties

checks

Java Management Extensions Guide
G34653-02

/1 Provide the password file used by the connector server to
Il performuser authentication. The password file is a properties
/1 based text file specifying usernanme/password pairs. This
/'l properties based password authenticator has been inplenented
Il using the JMXAut henticator interface and is passed to the
Il connector through the "jnx.renote.authenticator” property
[l in the map.
I
/1 This property is inplenentation-dependent and m ght not be
/1 supported by all inplenentations of the JMX Renote API
I
env. put ("j nx. renot e. x. password. file",
"config" + File.separator + "password.properties");

/1 Provide the access level file used by the connector server to
/1 performuser authorization. The access level fileis a

/'l based text file specifying usernanme/access |evel pairs where
Il access level is either "readonly" or "readwite" access to the
/1 MBeanServer operations. This properties based access contro

/'l checker has been inplenented using the MBeanServer Forwar der

[l interface which waps the real MBean server inside an access
/'l controller MBean server which perforns the access contro

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE’

nbs);

Chapter 21
examples/Security/simple/client/Client.java

/'l before forwarding the requests to the real MBean server.
I
/1 This property is inplenentation-dependent and m ght not be
/'l supported by all inplenentations of the JMX Renote API.
I
env. put ("j nx. renote. x. access.file",

"config" + File.separator + "access.properties");

Il Create an RM connector server
Il
Systemout. printIn("\nCreate an RM connector server");
JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://1ocal host:9999/server");
JMXConnect or Server cs =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (url, env,

/1 Start the RM connector server

I

Systemout.printin("\nStart the RM connector server");
cs.start();

Systemout. printin("\nRM connector server successfully started");
Systemout. printIn("\nWaiting for incomng connections...");

} catch (Exception e) {

}

e.printStackTrace();

examples/Security/simple/client/Client.java

i nport java.

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

public class

public s
try

Java Management Extensions Guide
G34653-02

util.HashMap;

managenent . Attribute;

managenent . JMX;

managenent . MBeanSer ver Connect i on;
managenent . Cbj ect Naneg;

managenent . r enot e. JMXConnect or;
managenent . r enot e. JMXConnect or Fact ory;
managenent . renot e. JMXSer vi ceURL;

Cient {

tatic void main(String[] args) {
{

/1 Environnent nap

/1!

Systemout.printin("\nlnitialize the environment map");
HashMap env = new HashMap();

/1 Provide the credentials required by the server to successfully
/1 performuser authentication

1

String[] credentials = new String[] { "usernane" , "password" };

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 12

ORACLE Chapter 21
examples/Security/simple/client/Client.java

env. put ("jnx.renote.credential s", credentials);

Il Create an RM connector client and

Il connect it to the RM connector server

I

Systemout. printin("\nCreate an RM connector client and " +

“connect it to the RM connector server");

JMXServi ceURL url = new JMXServi ceURL(
"service:jmcrm:///jndi/rm://1ocal host:9999/server");

JMXConnector jmxc = JMXConnect or Fact ory. connect (url, env);

Il Get an MBeanServer Connection

1

Systemout. printlIn("\nCGet an MBeanServer Connection");
MBeanSer ver Connecti on mbsc = jnmxc. get MBeanSer ver Connection();

/1 Get domains from MBeanServer

I

Systemout. println("\nDomains:");
String donmains[] = nbsc. get Domai ns();

for (int i =0; i < domins.length; i++) {
Systemout.printIn("\tDomain[" +i + "] =" + domains[i]);

}

/1 Create SinpleStandard MBean

1

(bj ect Name nmbeanName = new

bj ect Narre(" MBeans: t ype=Si npl eSt andar d") ;
Systemout. printIn("\nCreate SinpleStandard MBean...");
nmbsc. creat eMBean(" Si npl eSt andard", nbeanName, null, null);

/1 Get MBean count

I

Systemout. println("\nMBean count = " + nbsc. get MBeanCount ());
Il Get State attribute

I

Systemout.printin("\nState = " +

mbsc. get Attri but e(nbeanNanme, "State"));

Il Set State attribute
I
nmbsc. set Att ri but e(mbeanNamne,
new Attribute("State", "changed state"));

Il Get State attribute
I
[l Another way of interacting with a given MBean is through a
/'l dedicated proxy instead of going directly through the MBean
/'l server connection
I
Si npl eSt andar dMBean proxy = JMX. newBeanPr oxy(

nmbsc, nbeanName, SinpleStandar dMBean. cl ass);
Systemout.printin("\nState = " + proxy.getState());

[l Add notification listener on SinpleStandard MBean

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 12

ORACLE Chapter 21
examples/Security/simple/client/ClientListener.java

1
ClientListener listener = new ClientListener();
Systemout. printin("\nAdd notification listener...");

nmbsc. addNot i fi cati onLi st ener(nbeanNane, listener, null, null);

/1 Invoke "reset" in SinpleStandard MBean

I

[l Calling "reset" makes the SinpleStandard MBean enit a

/1 notification that will be received by the registered

/1 dientlListener.

I

Systemout. printin("\nlnvoke reset() in SinpleStandard MBean...");
nbsc. i nvoke(nbeanNane, “"reset", null, null);

/1 Sleep for 2 seconds in order to have tine to receive the
/1 notification before renoving the notification Iistener.
I

Systemout.printIn("\nWaiting for notification...");
Thread. sl eep(2000);

/1 Remove notification listener on SinpleStandard MBean
I

Systemout. println("\nRenove notification listener...");
mbsc. renoveNot i ficationLi stener(nbeanNane, |istener);

/1 Unregister SinpleStandard MBean

I

Systemout. println("\nUnregister SinpleStandard MBean...");
nmbsc. unr egi st er MBean(nbeanNane) ;

/1 C ose MBeanServer connection
I
Systemout. printlin("\nC ose the connection to the server");
jmxc. close();
Systemout. println("\nByel Bye!");
} catch (Exception e) {
e.printStackTrace();
}

examples/Security/simple/client/ClientListener.java

i nport javax.managenent. Notification;
i nport javax.managenent. NotificationLi stener;

public class CientListener inplenents NotificationListener {
public void handl eNotification(Notification notification, Object
handback) {
Systemout. println("\nReceived notification:
}

+ notification);

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE Chapter 21
examples/Security/simple/config/access.properties

examples/Security/simple/config/access.properties

access. properties

Access control file for Renpote JMX APl access to MBeanServer resources

This file defines the allowed access for different roles.
The file format for the access file is syntactically the same as the
Properties file format. The syntax is described in the JavaDoc page for

=

java.util.Properties.|oad.

=

A typical access file has multiple Iines, where each line is blank

a coment (like this one), or an access control entry.

An access control entry consists of a role name, and an associ ated access

level. The role nane is any string that does not itself contain spaces or

tabs. It corresponds to an entry in the password file. The access |eve

is one of the follow ng:

#

“readonly" grants access to read attributes of MBeans

For monitoring, this nmeans that a remote client in this

role can read neasurenents but cannot performany action
that changes the environment of the running program

#

"“readwite" grants access to read and wite attributes of MBeans, to
i nvoke operations on them and to create or renmove them
This access should be only granted to trusted clients,

since they can potentially interfere with the smoth

operation of a running program

The "readwite" access level can optionally be followed by the "create"

and/or "unregister" keywords. The "unregister" keyword grants access to

unregister (delete) MBeans. The "create" keyword grants access to create

H*

MBeans of a particular class or of any class matching a particul ar
pattern.
Access should only be granted to create MBeans of known and trusted cl asses

A given rol e should have at nost one entry in this file. If a role has no
entry, it has no access.

If nultiple entries are found for the sanme role name, then the |ast access
entry is used

H OH H R

H*

Access rights granted to the authenticated identity by the RM connector
in this exanple.

#

usernane readwite \

create SinpleStandard \

unregi ster

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE Chapter 21
examples/Security/simple/config/password.properties

examples/Security/simple/config/password.properties

password. properties

Password file for Rembte JMX APl authentication. This file defines
the different roles and their passwords.

The file format for the password file is syntactically the same as
the Properties file format. The syntax is described in the JavaDoc page
for java.util.Properties.|oad

H*

A typical password file has nultiple lines, where each line is blank
a coment (like this one), or a password entry.

A password entry consists of a role nane and an associ ated password.
The role nane is any string that does not itself contain spaces or

tabs. The password is again any string that does not contain spaces
or tabs. Note that passwords appear in the clear inthis file, so it
is a good idea not to use val uabl e passwords

A given role should have at nmost one entry in this file. If arole
has no entry, it has no access.

If multiple entries are found for the sane role nane, then the |ast
one is used.

In a typical installation, this file can be read by anybody on the
I ocal machine, and possibly by people on other machines.

For security, you should either restrict the access to this file,
or specify another, |less accessible file in the managenment config
file as described above.

H OH H H B

Rol e and password used for authentication by the RM connector in
this exanple

#

user name password

examples/Security/simple/mbeans/SimpleStandard.java

/**
* Sinple definition of a standard MBean, naned "Si npl eSt andard”.
*
* The "Sinpl eStandard" standard MBean shows how to expose attributes
* and operations for managenent by inplementing its corresponding
* "Sinpl eSt andar dMBean" nanagerent interface
*
* This MBean has two attributes and one operation exposed
* for managenent by a JMX agent:
* - the read/wite "State" attribute
* - the read only "NbChanges" attribute,
*

- the "reset()" operation.

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE Chapter 21
examples/Security/simple/mbeans/SimpleStandard.java

*

* This object al so has one property and one nethod not exposed
* for managenent by a JMX agent:

* - the "NbResets" property,

* - the "get NbResets()" method.

*/

inport javax.managenent. AttributeChangeNotification;
i nport javax.management. MBeanNotifi cationl nfo;
inport javax.managenent. NotificationBroadcaster Support;

public class SinpleStandard
extends NotificationBroadcaster Support
i mpl ements Si npl eSt andar dMBean {

[* "SinpleStandard" does not provide any specific constructors.
* However, "SinpleStandard" is JMX conpliant with regards to
* contructors because the default contructor SinpleStandard()
* provided by the Java conpiler is public.

*/

/**

* Cetter: get the "State" attribute of the "SinpleStandard" standard
MBean.
*
* @eturn the current value of the "State" attribute.
*/
public String getState() {
return state;
1

/**

* Setter: set the "State" attribute of the "SinpleStandard" standard
MBean.
*
* @aram <VAR>s</VAR> the new val ue of the "State" attribute.
*/
public void setState(String s) {
state = s;
nbChanges++;

}

/**

* Getter: get the "NoChanges" attribute of the "SinpleStandard" standard

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

Chapter 21
examples/Security/simple/mbeans/SimpleStandard.java

* MBean.
*
* @eturn the current value of the "NbChanges" attribute.
*/
public int getNbChanges() {
return nbChanges;
}

/**
* Qperation: reset to their initial values the "State" and "NoChanges"
* attributes of the "SinpleStandard" standard Mean.
*/
public void reset() {
AttributeChangeNotification acn =
new AttributeChangeNotification(this,
0,
0,
"NbChanges reset",
"NbChanges",
"I nteger",
new | nt eger (nbChanges),
new | nteger(0));
state = "initial state";
nbChanges = 0;
nbReset s++;
sendNot i fication(acn);

*/

/**

* Return the "NoResets" property.

* This method is not a CGetter in the JMX sense because it
* is not exposed in the "SinpleStandardvBean" interface.
*

* @eturn the current value of the "NbResets" property.

*

/
public int getNbResets() {
return nbResets;

}

/**
* Returns an array indicating, for each notification this Mean
* may send, the nanme of the Java class of the notification and
* the notification type.</p>
*
* @eturn the array of possible notifications.
*

/
public MBeanNotificationlnfo[] getNotificationlnfo() {
return new MBeanNotificationlnfo[] {
new MBeanNoti fi cati onl nfo(
new String[] { AttributeChangeNotification. ATTRI BUTE _CHANGE },

Java Management Extensions Guide

G34653-02

September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE Chapter 21
examples/Security/simple/mbeans/SimpleStandardMBean.java

At tributeChangeNotification. class. getNane(),
"This notification is emtted when the reset() method is called.")

private String state = "initial state";
private int nbChanges = 0;

private int nbResets = 0;

examples/Security/simple/mbeans/SimpleStandardMBean.java

/**

* This is the managenent interface explicitly defined for the
* "Sinpl eStandard" standard MBean.

*

* The "Sinpl eStandard" standard MBean inplements this interface

* in order to be nmnageabl e through a JMX agent.

*

* The "Si npl eSt andardMBean" interface shows how to expose for managenent:
* - aread/wite attribute (named "State") through its getter and setter
* nmethods,

* - aread-only attribute (naned "NbChanges") through its getter nethod,
* - an operation (naned "reset").

*/

public interface SinpleStandardvBean {

/**

* CGetter: set the "State" attribute of the "SinpleStandard" standard
* MBean.

*

* @eturn the current value of the "State" attribute.

*/

public String getState();

/**

* Setter: set the "State" attribute of the "SinpleStandard" standard
* MBean.

*

* @aram <VAR>s</ VAR> the new val ue of the "State" attribute.

Java Management Extensions Guide
G34653-02 September 15, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE Chapter 21
examples/Security/simple/mbeans/SimpleStandardMBean.java

*/

public void setState(String s);

/**

* Getter: get the "NoChanges" attribute of the "SinpleStandard" standard
* MBean.

*

* @eturn the current value of the "NbChanges" attribute.
*/
public int getNbChanges();

/**

* Qperation: reset to their initial values the "State" and "NoChanges"
* attributes of the "SinpleStandard" standard Mean.

*/

public void reset();

Java Management Extensions Guide
G34653-02 September 15, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Java Management Extensions Technology User’s Guide
	1 Introduction to JMX Technology
	What Is JMX Technology?
	Why Use JMX Technology?

	2 JMX Technology Architecture
	Architecture Outline
	Instrumenting Resources by Using MBeans
	Creating a JMX Agent
	Managing Resources Remotely

	3 Instrumenting Your Resources for JMX Technology
	Manageable Resources
	Managed Beans (MBeans)
	JVM Instrumentation

	4 Using JMX Agents
	MBean Server
	Agent Services
	Protocol Adaptors and Connectors
	Protocol Adaptors
	Connectors

	5 Using JMX Connectors to Manage Resources Remotely
	RMI Connector
	User-Defined Protocols

	6 Discovery and Lookup Services
	Getting Started with Lookup Services

	7 JMX Technology Versions
	JMX Instrumentation and Agent Specification (JSR 3)
	JMX Remote API Specification (JSR 160)

	8 Java Management Extensions (JMX) API

	Part II Java Management Extensions (JMX) Technology Tutorial
	9 Getting Started
	Platform Information

	10 Essentials of the JMX API
	Standard MBeans
	MBean Interface
	MBean Implementation
	Managing a Resource
	Running the Standard MBean Example

	Sending Notifications
	NotificationBroadcaster Interface
	Running the MBean Notification Example

	Introducing MXBeans
	QueueSamplerMXBean Interface
	QueueSampler Class
	QueueSample Class
	Creating and Registering the MXBean in the MBean Server
	Running the MXBean Example

	MBean Descriptors
	DescriptorKey Annotations
	Using MBean Descriptors
	Running the MBean Descriptors Example

	11 JMX Connectors
	Accessing Standard and Dynamic MBeans By Using the RMI Connector
	Server.java in the MBean Example
	SimpleStandardMBean.java in the MBean Example
	SimpleStandard.java in the MBean Example
	SimpleDynamic.java in the MBean Example
	ClientListener.java in the MBean Example
	Client.java in the MBean Example

	Running the MBean Example

	12 Lookup Services
	Initial Configuration
	External RMI Registry
	External LDAP Registry

	Service Location Protocol (SLP) Lookup Service
	Server.java in the SLP Lookup Example
	Client.java in the SLP Lookup Example
	Running the SLP Lookup Service Example

	Java Naming and Directory Interface (JNDI) / LDAP Lookup Service
	Server.java in the JNDI/LDAP Lookup Service Example
	Client.java in the JNDI/LDAP Lookup Service Example
	jmx-schema.txt
	60jmx-schema.ldif
	Running the JNDI/LDAP Lookup Service Example

	13 Security
	Simple Security
	Server.java in the Simple Security Example
	SimpleStandardMBean.java in the Simple Security Example
	SimpleStandard.java in the Simple Security Example
	ClientListener.java in the Simple Security Example
	Client.java in the Simple Security Example
	Running the RMI Connector Example With Simple Security

	Part III Java Management Extensions Examples
	14 JMX Essentials
	examples/Essential/README
	examples/Essential/com/example/mbeans/Main.java
	examples/Essential/com/example/mbeans/Hello.java
	examples/Essential/com/example/mbeans/HelloMBean.java

	15 JMX MBean Notifications
	examples/Notification/README
	examples/Notification/com/example/mbeans/Main.java
	examples/Notification/com/example/mbeans/Hello.java
	examples/Notification/com/example/mbeans/HelloMBean.java

	16 MXBeans
	examples/MXBean/README
	examples/MXBean/com/example/mxbeans/Main.java
	examples/MXBean/com/example/mxbeans/QueueSamplerMXBean.java
	examples/MXBean/com/example/mxbeans/QueueSampler.java
	examples/MXBean/com/example/mxbeans/QueueSample.java

	17 MBean Descriptors
	examples/Descriptors/README
	examples/Descriptors/com/example/mxbeans/Author.java
	examples/Descriptors/com/example/mxbeans/DisplayName.java
	examples/Descriptors/com/example/mxbeans/Main.java
	examples/Descriptors/com/example/mxbeans/QueueSample.java
	examples/Descriptors/com/example/mxbeans/QueueSampler.java
	examples/Descriptors/com/example/mxbeans/QueueSamplerMXBean.java
	examples/Descriptors/com/example/mxbeans/Version.java

	18 JMX Connectors
	examples/Basic/README
	examples/Basic/Server.java
	examples/Basic/SimpleStandardMBean.java
	examples/Basic/SimpleStandard.java
	examples/Basic/SimpleDynamic.java
	examples/Basic/ClientListener.java
	examples/Basic/Client.java

	19 Service Location Protocol (SLP) Lookup Service
	examples/Lookup/slp/README
	examples/Lookup/slp/Server.java
	examples/Lookup/slp/Client.java

	20 Java Naming and Directory Interface (JNDI)/LDAP Lookup Service
	examples/Lookup/ldap/README
	examples/Lookup/ldap/Server.java
	examples/Lookup/ldap/Client.java
	examples/Lookup/ldap/jmx-schema.txt
	examples/Lookup/ldap/60jmx-schema.ldif

	21 Simple Security
	examples/Security/simple/README
	examples/Security/simple/server/Server.java
	examples/Security/simple/client/Client.java
	examples/Security/simple/client/ClientListener.java
	examples/Security/simple/config/access.properties
	examples/Security/simple/config/password.properties
	examples/Security/simple/mbeans/SimpleStandard.java
	examples/Security/simple/mbeans/SimpleStandardMBean.java

