Java Platform, Standard Edition
Java Virtual Machine Guide

Release 25
(G35928-01
September 2025

ORACLE"

Java Platform, Standard Edition Java Virtual Machine Guide, Release 25
G35928-01
Copyright © 1993, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documents [
Conventions i

1 Java Virtual Machine Technology Overview

2 Compiler Control

Writing Directives 1
Compiler Control Options 2
Writing a Directive File 5
Writing a Compiler Directive 6
Writing a Method Pattern in a Compiler Directive 8
Writing an Inline Directive Option 9
Preventing Duplication with the Enable Option 9

Understanding Directives 11
What Is the Default Directive? 11
How Directives are Applied to Code? 13
Compiler Control and Backward Compatibility 14

Commands for Working with Directive Files 15
Compiler Directives and the Command Line 15
Compiler Directives and Diagnostic Commands 16

Getting Your Java Process Identification Number 16
Adding Directives Through Diagnostic Commands 17
Removing Directives Through Diagnostic Commands 17
Printing Directives Through Diagnostic Commands 17
How Directives Are Ordered in the Directives Stack? 17

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page i of iii

Garbage Collection

Class Data Sharing

Class Data Sharing
Application Class-Data Sharing
Manually Controlling Class Data Sharing

Java HotSpot Virtual Machine Performance Enhancements

Compact Strings
Tiered Compilation
Segmented Code Cache
Compressed Ordinary Object Pointer
Zero-Based Compressed Ordinary Object Pointers
Escape Analysis

JVM APlIs

W W NN PP

JVM Constants API
Class-File API

Support for Non-Java Languages

Introduction to Non-Java Language Features
Static and Dynamic Typing

Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages
The Challenge of Compiling Dynamically-Typed Languages
The invokedynamic Instruction

Defining the Bootstrap Method

Specifying Constant Pool Entries

Example Constant Pool
Using the invokedynamic Instruction

Signal Chaining

0O N o OO 0o WN PP

Native Memory Tracking

Key Features
Using Native Memory Tracking
Enabling NMT

Java Virtual Machine Guide

G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page ii of iii

Accessing NMT Data using jemd
Obtaining NMT Data at VM Exit

10 DTrace Probes in HotSpot VM

Using the hotspot Provider
VM Lifecycle Probes
Thread Lifecycle Probes
Classloading Probes
Garbage Collection Probes
Method Compilation Probes
Monitor Probes
Application Tracking Probes
Using the hotspot_jni Provider
Sample DTrace Probes

11 Fatal Error Reporting

N N OO O W w NN P

Error Report Example

12 Java Virtual Machine Related Resources

Tools

Java Virtual Machine Guide
G35928-01
Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page iii of iii

ORACLE’

Preface

This document provides information about the features supported by Java Virtual Machine
technology.

Audience

This document is intended for experienced developers who build applications using the Java
HotSpot technology.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

See JDK 25 Documentation for other JDK 25 guides.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/pls/topic/lookup?ctx=javase25&id=homepage

ORACLE’

Preface
Convention Meaning
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page ii of ii

Java Virtual Machine Technology Overview

This chapter describes the implementation of the Java Virtual Machine (JVM) and the main
features of the Java HotSpot technology:

- Adaptive compiler: A standard interpreter is used to launch the applications. When the
application runs, the code is analyzed to detect performance bottlenecks, or hot spots. The
Java HotSpot VM compiles the performance-critical portions of the code for a boost in
performance, but does not compile the seldom-used code (most of the application). The
Java HotSpot VM uses the adaptive compiler to decide how to optimize compiled code
with techniques such as inlining.

* Rapid memory allocation and garbage collection: Java HotSpot technology provides
rapid memory allocation for objects and fast, efficient, state-of-the-art garbage collectors.

e Thread synchronization: Java HotSpot technology provides a thread-handling capability
that is designed to scale for use in large, shared-memory multiprocessor servers.

In Oracle Java Runtime Environment (JRE) 8 and earlier, different implementations of the JVM,
(the client VM, server VM, and minimal VM) were supported for configurations commonly used
as clients, as servers, and for embedded systems. Because most systems can now take
advantage of the server VM, only that VM implementation is provided in later versions.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Compiler Control

Compiler Control provides a way to control Java Virtual Machine (JVM) compilation through
compiler directive options. The level of control is runtime-manageable and method specific.

A compiler directive is an instruction that tells the JVM how compilation should occur. A
directive provides method-context precision in controlling the compilation process. You can use
directives to write small, contained, JVM compiler tests that can run without restarting the
entire JVM. You can also use directives to create workarounds for bugs, in the JVM compilers.

You can specify a file that contains compiler directives when you start a program through the
command line. You can also add or remove directives from an already running program by
using diagnostic commands.

Compiler Control supersedes and is backward compatible with CompileCommand.
Topics:

e Writing Directives

— Compiler Control Options

— Writing a Directive File

— Writing a Compiler Directive

— WIriting a Method Pattern in a Compiler Directive

— WIriting an Inline Directive Option

— Preventing Duplication with the Enable Option

* Understanding Directives

— What Is the Default Directive?

— How Directives are Applied to Code?

— Compiler Control and Backward Compatibility

Commands for Working with Directive Files

— Compiler Directives and the Command Line

— Compiler Directives and Diagnostic Commands

— How Directives Are Ordered in the Directives Stack?

Writing Directives

This topic examines Compiler Control options and steps for writing directives from those
options.

Topics:

e Compiler Control Options

e Writing a Directive File

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 21

ORACLE’

Chapter 2
Writing Directives

e Writing a Compiler Directive

* Writing a Method Pattern in a Compiler Directive

* Writing an Inline Directive Option

* Preventing Duplication with the Enable Option

Compiler Control Options

Options are instructions for compilation. Options provide method-context precision. Available
options vary by compiler and require specific types of values.

Table 2-1 Common Options

Option

Description Value Type Default Value

Enabl e

Hides a directive and bool true
renders it unmatchable if

itis setto f al se. This

option is useful for

preventing option

duplication. See

Preventing Duplication

with the Enable Option.

Excl ude

Excludes methods from bool fal se

compilation.

Br eak At Execut e

Sets a breakpoint to stop bool fal se
execution at the

beginning of the

specified methods when

debugging the JVM.

Br eak At Conpi | e

Sets a breakpoint to stop bool fal se
compilation at the

beginning of the

specified methods when

debugging the JVM.

Log

Places only the specified bool fal se
methods in a log. You

must first set the

command-line option -

XX: +LogConpi | ati on.

The default value f al se

places all compiled

methods in a log.

Print Assenbl y

Prints assembly code for bool fal se
bytecoded and native

methods by using the

external

di sassenbl er. so

library.

Printlnlining

Prints which methods bool fal se

are inlined, and where.

Pri nt NMet hods

Prints nmethods as they bool fal se

are generated.

Java Virtual Machine Guide
G35928-01
Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 2 of 21

ORACLE Chapter 2
Writing Directives

Table 2-1 (Cont.) Common Options

Option Description Value Type Default Value
BackgroundConpi |l ati Compiles methods asa bool true
on background task.

Methods run in
interpreter mode until the
background compilation
finishes. The value

fal se compiles
methods as a foreground
task.

Repl ayl nline Enables the same bool fal se
Cl Repl ay functionality
as the corresponding
global option, but on a
per-method basis.

DunpRepl ay Enables the same bool fal se
Cl Repl ay functionality
as the corresponding
global option, but on a
per-method basis.

Dunpl nli ne Enables the same bool fal se
Cl Repl ay functionality
as the corresponding
global option, but on a
per-method basis.

Conpi l erDirectivesl Disregards all bool fal se

gnor eConpi | eCommand CompileCommands.

S

Di sablelntrinsic Disables the use of cestr No default value.

intrinsics based on
method-matching
criteria.

inline Forces or prevents cestr[] No default value.
inlining of a method
based on method-
matching criteria. See
Writing an Inline
Directive Option.

Table 2-2 C2 Exclusive Options
]

Option Description Value Type Default Value
Bl ockLayout ByFreque Moves infrequent bool true
ncy execution branches from

the hot path.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 21

ORACLE Chapter 2
Writing Directives

Table 2-2 (Cont.) C2 Exclusive Options

. __|
Option Description Value Type Default Value

Print Opt oAssenbl y Prints generated bool fal se
assembly code after
compilation by using the
external
di sassenbl er. so
library. This requires a
debugging build of the

JVM.

PrintIntrinsics Prints which intrinsic bool fal se
methods are used, and
where.

TraceQpt oPi pel i ni ng Traces pipelining bool fal se

information, similar to
the corresponding global
option, but on a per-
method basis. This is
intended for slow and
fast debugging builds.

TraceOpt oQut put Traces pipelining bool fal se
information, similar to
the corresponding global
option, but on a per-
method basis. This is
intended for slow and
fast debugging builds.

TraceSpilling Traces variable spilling. bool fal se
Vectori ze Performs calculations in bool fal se
parallel, across vector
registers.
Vect ori zeDebug Performs calculations in i nt x 0

parallel, across vector
registers. This requires a
debugging build of the
JVM.

Cl oneNMapDebug Enables you to examine hool fal se
the Cl oneMap generated
from vectorization. This
requires a debugging
build of the JVM.

| GVPrint Level Specifies the points i ntx 0
where the compiler
graph is printed in
Oracle’s Hotspot Ideal
Graphic Visualizer (IGV).
A higher value means
higher granularity.

MaxNodeLi m t Sets the maximum i ntx 80000
number of nodes to use
during a single method’s
compilation.

A ccstr value type is a method pattern. See Writing a Method Pattern in a Compiler Directive.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 21

ORACLE’

Chapter 2
Writing Directives

The default directive supplies default values for compiler options. See What Is the Default
Directive?

Writing a Directive File

Individual compiler directives are written in a directives file. Only directive files, not individual
directives, can be added to the stack of active directives.

1.

Create a file with a . j son extension. Directive files are written using a subset of JSON
syntax with minor additions and deviations.

Add the following syntax as a template you can work from:
[//Array of Directives

{ [I/Drective Block
//Directive 1

{ [I/Drective Block
//Directive 2

The components of this template are:

Array of Directives

e Adirectives file stores an array of directive blocks, denoted with a pair of brackets ([]).
* The brackets are optional if the file contains only a single directive block.
Directive Block

* Ablock is denoted with a pair of braces ({}).

* A block contains one individual directive.

e Adirectives file can contain any number of directive blocks.

e Blocks are separated with a comma (,).

* A comma is optional following the final block in the array.

Directive

* Each directive must be within a directive block.

* Adirectives file can contain multiple directives when it contains multiple directive
blocks.

Comments
e Single-line comments are preceded with two slashes (/ /).
e Multiline comments are not allowed.

Add or remove directive blocks from the template to match the number of directives you
want in the directives file.

In each directive block, write one compiler directive. See Writing a Compiler Directive.

Reorder the directive blocks if necessary. The ordering of directives in a file is significant.
Directives written closer to the beginning of the array receive higher priority. For more

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 21

ORACLE Chapter 2
Writing Directives

information, see How Directives Are Ordered in the Directives Stack? and How Directives
are Applied to Code?

[//Array of directives
{ [I/Drective Block

/I/Directive 1

match: ["java*.*", "oracle*.*"],

cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execute: true,

b
c2: {
Enabl e: fal se,
MaxNodeLi mi t: 1000,
b

Br eakAt Conpi | e: true,
DunpRepl ay: true,

{ [I/Drective Block
[IDirective 2
mat ch: ["*Concurrent.*"],
c2: {
Excl ude: true,

b

Writing a Compiler Directive

You must write a compiler directive within a directives file. You can repeat the following steps
for each individual compiler directive that you want to write in a directives file.

An individual compiler directive is written within a directive block in a directives file. See Writing
a Directive File.

1. Insert the following block of code, as a template you can work from, to write an individual
compiler directive. This block of code is a directive block.

{
match: [],
cl: {
/1cl directive options
b
c2: {
/1c2 directive options
b
//Directive options applicable to all conpilers
¥

2. Provide the nmat ch attribute with an array of method patterns. See Writing a Method Pattern
in a Compiler Directive.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 21

ORACLE Chapter 2
Writing Directives

For example:
match: ["java*.*", "oracle*.*"],

3. Provide the c1 attribute with a block of comma-separated directive options. Ensure that
these options are valid for the c1 compiler.

For example:

cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execute: true,

b

4. Provide the c2 attribute with a block of comma-separated directive options. This block can
contain a mix of common and c2-exclusive compiler options.

For example:

c2: {
Enabl e: fal se,
MaxNodeLi m t: 1000,

b

5. Provide, at the end of the directive, options you want applicable to all compilers. These
options are considered written within the scope of the common block. Options are comma-
separated.

For example:

Br eakAt Conpi | e: true,
DunpRepl ay: true,

6. Clean up the file by completing the following steps.

a. Check for the duplication of directive options. If a conflict occurs, then the last
occurrence of an option takes priority. Conflicts typically occur between the common
block and the c1 or c2 blocks, not between the c1 and c2 blocks.

b. Avoid writing c2-exclusive directive options in the common block. Although the
common block can accept a mix of common and c2-exclusive options, it's pointless to
structure a directive this way because c2-exclusive options in the common block have
no effect on the c1 compiler. Write c2-exclusive options within the c2 block instead.

c. Ifthe cl or c2 attribute has no corresponding directive options, then omit the attribute-
value syntax for that compiler.

The following example shows the resulting directive, based on earlier examples, is:

{
match: ["java*.*", "oracle*.*"],
cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execute: true,

Enabl e: fal se,

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 21

ORACLE Chapter 2
Writing Directives

MaxNodeLi m t: 1000,

}1
Br eakAt Conpi l e: true,

DunpRepl ay: true,
}l

The JSON format of directive files allows the following deviations in syntax:
« Extra trailing commas are optional in arrays and objects.

e Attributes are strings and are optionally placed within quotation marks.
* If an array contains only one element, then brackets are optional.

Therefore, the following example shows a valid compiler directive:

{
"match": "*Concurrent.*",
c2: {
"Exclude": true,
}
b

Writing a Method Pattern in a Compiler Directive

A ccstr is a method pattern that you can write precisely or you can generalize with wildcard
characters. You can specify what best-matching Java code should have accompanying
directive options applied, or what Java code should be inlined.

To write a method pattern:

1. Use the following syntax to write your method pattern: package/
cl ass. met hod(paraneter _|ist). To generalize a method pattern with wildcard characters,
see Step 2.

The following example shows a method pattern that uses this syntax:

javallang/ String.indexO ()

Other formatting styles are available. This ensures backward compatibility with earlier
ways of method matching such as CompileCommand. Valid formatting alternatives for the
previous example include:

e javallang/String.indexO()

e javal/lang/ String,indexO()

e javallang/String i ndexOf ()

e java.lang.String::indexO()
The last formatting style matches the HotSpot output.

2. Insert a wildcard character (*) where you want to generalize part of the method pattern.
The following examples are valid generalizations of the method pattern example in Step 1:
e javallang/String.index(O*
e *lang/ String.indexOf*

* *vallang*.*dex*

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE’

Chapter 2
Writing Directives

e javallang/String.*

. * ok

Increased generalization leads to decreased precision. More Java code becomes a
potential match with the method pattern. Therefore, it's important to use the wildcard
character (*) judiciously.

Modify the signature portion of the method pattern, according to the Java Specifications. A
signature match must be exact, otherwise the signature defaults to a wildcard character
(*). Omitted signatures also default to a wildcard character. Signatures cannot contain the
wildcard character.

Optional: If you write a method pattern to accompany the i nl i ne directive option, then you
must prefix the method pattern with additional characters. See Writing an Inline Directive
Option.

Writing an Inline Directive Option

The attribute for an i nl i ne directive option requires an array of method patterns with special
commands prefixed. This indicates which method patterns should or shouldn’t inline.

1.
2.

Write i nl i ne: in the common block, c1 block , or c2 block of a directive.

Add an array of carefully ordered method patterns. The prefixed command on the first
matching method pattern is executed. The remaining method patterns in the array are
ignored.

Prefix a + to force inlining of any matching Java code.
Prefix a - to prevent inlining of any matching Java code.

Optional: If you need inlining behavior applied to multiple method patterns, then repeat
Steps 1 to 4 to write multiple i nl i ne statements. Don’t write a single array that contains
multiple method patterns.

The following examples show the i nl i ne directive options:

inline: ["+javal/lang*.*", "-sun*.*"]

inline: "+ avallang*.*"

Preventing Duplication with the Enable Option

You can use the Enabl e option to hide aspects of directives and prevent duplication between
directives.

In the following example, the clattribute of the compiler directives are identical.:

[

match: ["java*.*"],

cl: {
BreakAt Execute: true,
BreakAt Conpi | e: true,
DunpRepl ay: true,
Dunplnline: true,

b
c2: {

MaxNodeLi m t: 1000,
b

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 21

ORACLE Chapter 2
Writing Directives

¥
{
match: ["oracle*.*"],
cl: {
Br eak At Execute: true,
BreakAt Conpi l e: true,
DumpRepl ay: true,
Dunpl nline: true,
b
c2: {
MaxNodeLimit: 2000,
b
¥

The following example shows how the undesirable code duplication is resolved with the Enabl e
option. Enabl e hides the block directives and renders them unmatchable.

[

{
match: ["java*.*"],
cl: {
Enabl e: fal se,
¥
c2: {
MaxNodeLimi t: 1000,
¥
¥
{
match: ["oracle*.*"],
cl: {
Enabl e: fal se,
¥
c2: {
MaxNodeLi mi t: 2000,
¥
¥
{
match: ["java*.*", "oracle*.*"],
cl: {
Br eak At Execut e: true,
Br eakAt Conpi | e: true,
DumpRepl ay: true,
Dunmplnline: true,
¥
c2: {
/' Unr eachabl e code
¥
¥

Typically, the first matching directive is applied to a method’s compilation. The Enabl e option
provides an exception to this rule. A method that would typically be compiled by c1 in the first
or second directive is now compiled with the c1 block of the third directive. The c2 block of the

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 21

ORACLE Chapter 2
Understanding Directives

third directive is unreachable because the c¢2 blocks in the first and second directive take
priority.

Understanding Directives

The following topics examine how directives behave and interact.

Topics:

« What Is the Default Directive?

« How Directives are Applied to Code?

e« Compiler Control and Backward Compatibility

What Is the Default Directive?

The default directive is a compiler directive that contains default values for all possible directive
options. It is the bottom-most directives in the stack and matches every method submitted for
compilation.

When you design a new compiler directive, you specify how the new directive differs from the
default directive. The default directive becomes a template to guide your design decisions.

Directive Option Values in the Default Directive

You can print an empty directive stack to reveal the matching criteria and the values for all
directive options in the default compiler directive:

Directive: (default)
mat ching: *.*
cl directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunmpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceQOptoQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GVPrint Level : 0 MaxNodeLi nit: 80000

c2 directives:

inline: -

Enabl e: true Excl ude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GVPrint Level : 0 MaxNodeLi nit: 80000

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 11 of 21

ORACLE Chapter 2
Understanding Directives

@® Note

Certain options are applicable exclusively to the c2 compiler. For a complete list, see
Table 2-2.

Directive Option Values in New Directives

In a new directives, you must specify how the directive differs from the default directive. If you
don’t specify a directive option, then that option retains the value from the default directive.

Example:

[

mat ch: ["*Concurrent.*"],
c2: {

MaxNodeLim t: 1000,
}!

Excl ude: t rue,

When you add a new directive to the directives stack, the default directive becomes the
bottom-maost directive in the stack. See How Directives Are Ordered in the Directives Stack?
for a description of this process. For this example, when you print the directives stack, it shows
how the directive options specified in the new directive differ from the values in the default
directive:

Directive:
mat chi ng: *Concurrent.*
cl directives:

inline: -

Enabl e: true Exclude:true BreakAt Execute:fal se BreakAt Conpile:false
Log: fal se PrintAssenbly:false Printlnlining:false PrintNWethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: f al se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly: fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoCQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GVPrintLevel : 0 MaxNodeLi nit: 80000

c2 directives:

inline: -

Enabl e: true Exclude:true BreakAt Execute:fal se BreakAt Conpile:false
Log:fal se PrintAssenbly:false Printlnlining:false PrintNWethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: f al se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly: fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoCQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GVPrintLevel : 0 MaxNodeLi nmit: 1000

Directive: (default)

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE Chapter 2
Understanding Directives

mat chi ng: *.*
cl directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:fal se
Log: fal se PrintAssenbly:false Printlnlining:false PrintNWwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nl i ne: fal se Conpil erDirectivesl gnoreConpi | eCommands: f al se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly: fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoCQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GvPrint Level : 0 MaxNodeLi mit: 80000

c2 directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log: fal se PrintAssenbly:false Printlnlining:false PrintNWwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nl i ne: fal se Conpil erDirectivesl gnoreConpi | eCommands: f al se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly: fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceQptoCQutput:false
TraceSpilling:false Vectorize:false VectorizeDebug: 0 C oneMapDebug: fal se
| GvPrint Level : 0 MaxNodeLi mit: 80000

How Directives are Applied to Code?

A directive is applied to code based on a method matching process. Every method submitted
for compilation is matched with a directive in the directives stack.

The process of matching a method with a directive in the directives stack is performed by the
CompilerBroker.

The Method Matching Process

When a method is submitted for compilation, the fully qualified name of the method is
compared with the matching criteria in the directives stack. The first directive in the stack that
matches is applied to the method. The remaining directives in the stack are ignored. If no
match is found, then the default directive is applied.

This process is repeated for all methods in a compilation. More than one directive can be
applied in a compilation, but only one directive is applied to each method. All directives in the
stack are considered active because they are potentially applicable. The key differences
between active and applied directives are:

- Adirective is active if it's present in the directives stack.

e Adirective is applied if it's affecting code.

Example 2-1 When a Match Is Found

The following example shows a method submitted for compilation:

public int exanpleMethod(int x){
return x;
}

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE Chapter 2
Understanding Directives

Based on method-matching criteria, Di rective 2 is applied from the following example
directive stack:

Directive 2:

mat chi ng: *.*exanpl e*
Directive 1:

mat chi ng: *. *exanpl eMet hod*
Directive 0: (default)

mat chi ng: *.*

Example 2-2 When No Match Is Found

The following example shows a method submitted for compilation:

public int otherMethod(int y){
return y;

}

Based on method-matching criteria, Di recti ve 0 (the default directive) is applied from the
following example directive stack:

Directive 2:

mat chi ng: *.*exanpl e*
Directive 1:

mat chi ng: *.*exanpl eMet hod*
Directive 0: (default)

mat ching: *.*

Guidelines for Writing a New Directive

* No feedback mechanism is provided to verify which directive is applied to a given method.
Instead, a profiler such as Java Management Extensions (JMX) is used to measure the
cumulative effects of applied directives.

« The CompilerBroker ignores directive options that create bad code, such as forcing
hardware instructions on a platform that doesn't offer support. A warning message is
displayed.

» Directive options have the same limitations as typical command-line flags. For example,
the instructions to inline code are followed only if the Intermediate Representation (IR)
doesn’t become too large.

Compiler Control and Backward Compatibility

CompileCommand and command-line flags can be used alongside Compiler Control directives.

Although Compiler Control can replace CompileCommand, backward compatibility is provided.
It's possible to utilize both at the same time. Compiler Control receives priority. Conflicts are
handled based on the following prioritization:

1. Compiler Control

2. CompileCommand
3. Command-line flags
4

Default values

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 14 of 21

ORACLE’

Chapter 2
Commands for Working with Directive Files

Example 2-3 Mixing Compiler Control and CompileCommand
The following list shows a small number of compilation options and values:
e Compiler Control:

— Exclude: true

— BreakAtExecute: false
e CompileCommand:

— BreakAt Execute: true

— BreakAtConpile: true
* Default values:

— Exclude: false

— BreakAt Execute: false

— BreakAtConpile: false

— Log: false

For the options and values in this example, the resulting compilation is determined by using the
rules for handling backward compatibility conflicts:

e Exclude: true
 BreakAt Execute: false
* BreakAt Conpile: true

« Log: false

Commands for Working with Directive Files

This topic examines commands and the effects of working with completed directive files.

e Compiler Directives and the Command Line

« Compiler Directives and Diagnostic Commands

« How Directives Are Ordered in the Directives Stack?

Compiler Directives and the Command Line

You can use the command-line interface to add and print compiler directives while starting a
program.

You can specify only one directives file at the command line. All directives within that file are
added to the directives stack and are immediately active when the program starts. Adding
directives at the command line enables you to test the performance effects of directives during
a program'’s early stages. You can also focus on debugging and developing your program.

Adding Directives Through the Command Line

The following command-line option specifies a directives file:

XX: ConpilerDirectivesFile=file

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 21

ORACLE’

Chapter 2
Commands for Working with Directive Files

Include this command-line option when you start a Java program. The following example
shows this option, which starts Test Pr ogr am

java - XX: +Unl ockDi agnosti cVMptions - XX: Conpi |l erDirectivesFile=File_A json
Test Program

In the example:

e - XX +Unl ockDi agnost i cVMpt i ons enables diagnostic options. You must enter this before
you add directives at the command line.

e -XX: ConpilerDirectivesFil e is atype of diagnostic option. You can use it to specify one
directives file to add to the directives stack.

* File_A jsonis adirectives file. The file can contain multiple directives, all of which are
added to the stack of active directives when the program starts.

e IfFile_A json contains syntax errors or malformed directives, then an error message is
displayed and Test Pr ogr amdoes not start.

Printing Directives Through the Command Line

You can automatically print the directives stack when a program starts or when additional
directives are added through diagnostic commands. The following command-line option to
enables this behavior:

- XX: +Conpi | erDirectivesPrint

The following example shows how to include this diagnostic command at the command line:

java - XX: +Unl ockDi agnosti cVMptions - XX: +Conpi l erDirectivesPrint -
XX: Conpil erDirectivesFile=File_A json TestProgram

Compiler Directives and Diagnostic Commands

You can use diagnostic commands to manage which directives are active at runtime. You can
add or remove directives without restarting a running program.

Crafting a single perfect directives file might take some iteration and experimentation.
Diagnostic commands provide powerful mechanisms for testing different configurations of
directives in the directives stack. Diagnostic commands let you add or remove directives
without restarting a running program’s JVM.

Getting Your Java Process Identification Number

To test directives you must find the processor identifier (PID) number of your running program.
1. Open aterminal.

2. Enter the j cnd command.

The j cnd command returns a list of the Java process that are running, along with their PID

numbers. In the following example, the information returned about Test Pr ogr am:

11084 Test Program

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 16 of 21

ORACLE Chapter 2
Commands for Working with Directive Files

Adding Directives Through Diagnostic Commands

You can add all directives in a file to the directives stack through the following diagnostic
command.

Syntax:

jemd pid Conpiler.directives_add file

The following example shows a diagnostic command:

jcmd 11084 Conpiler.directives_add File_B.json

The terminal reports the number of individual directives added. If the directives file contains
syntax errors or malformed directives, then an error message is displayed, and no directives
from the file are added to the stack, and no changes are made to the running program.

Removing Directives Through Diagnostic Commands

You can remove directives by using diagnostic commands.

To remove the top-most, individual directive from the directive stack, enter:

jemd pid Conpiler.directives_renmove

To clear every directive you added to the directives stack, enter:

jemd pid Conpiler.directives_clear

It's not possible to specify an entire file of directives to remove, nor is any other way available
to remove directives in bulk.

Printing Directives Through Diagnostic Commands

You can use diagnostic commands to print the directives stack of a running program.

To print a detailed description of the full directives stack, enter:

jemd pid Conpiler.directives_print

Example output is shown in What Is the Default Directive?

How Directives Are Ordered in the Directives Stack?

The order of the directives in a directives file, and in the directives is very important. The top-
most, best-matching directive in the stack receives priority and is applied to code compilation.

The following examples illustrate the order of directive files in an example directives stack. The
directive files in the examples contain the following directives :

e File AcontainsDirective 1andDirective 2.

 File_Bcontains Directive 3.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 21

ORACLE Chapter 2
Commands for Working with Directive Files

e File_CcontainsDirective 4andDirective 5.

Starting an Application With or Without Directives

You can start the Test Pr ogr amwithout specifying the directive files.

e To start Test Progr amwithout adding any directives, at the command line, enter the
following command:

java Test Program

e Test Programstarts without any directives file specified.

* The default directive is always the bottom-most directive in the directives stack. Figure 2-1
shows the default directive as Di rective 0. When you don't specify a directives file, the
default directive is also the top-most directive and it receives priority.

Figure 2-1 Starting a Program Without Directives

T > Directives Stack
java TestProgram

File_A File_B File_C
o L o
Directive 1 Directive 3 Directive 4
Directive 2] Directive 5 Directive 0

You can start an application and specify directives.

e To start the Test Progr amapplication and add the directives from Fi | e_A. j son to the
directives stack, at the command line, enter the following command:

java - XX: +Unl ockDi agnosti cVMDpti ons - XX: Conpi l erDirectivesFile=File A json
Test Program

e Test Programstarts and the directives in Fi | e_A are added to the stack. The top-most
directive in the directives file becomes the top-most directive in the directives stack.

» Figure 2-2 shows that the order of directives in the stack, from top to bottom, becomes is
[1, 2, 0].

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE’

Chapter 2
Commands for Working with Directive Files

Figure 2-2 Starting a Program with Directives

I > Directives Stack
-XX: CompilerDirectivesFile=File A.json

File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Adding Directives to a Running Application

You can add directives to a running application through diagnostic commands.

e Toto add all directives from Fi | e_B to the directives stack, enter the following command:

jcnd 11084 Conpiler.directives _add File B.json

The directive in Fi | e_B is added to the top of the stack.
e Figure 2-3 shows that the order of directives in the stack becomes is [3, 1, 2, O].

Figure 2-3 Adding a Directive to a Running Program

I > Directives Stack
Compiler.directives_add File B.json

F
b b
File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

You can add directive files through diagnostic commands to the Test Progr amwhile it is
running:

* To add all directives from Fi | e_Cto the directives stack, enter the following command.

jcmd 11084 Conpiler.directives_add File_C. json

» Figure 2-4 shows that the order of directives in the stack becomes is [4, 5, 3, 1, 2, O].

Java Virtual Machine Guide

G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 19 of 21

ORACLE Chapter 2
Commands for Working with Directive Files

Figure 2-4 Adding multiple Directives to a Running Program

—> Directives Stack

Compiler.directives_add File C.json

|
File_A File_B File_C
[[
Directive 1 Directive 3 Directive 4
Directive 2] Directive 5

]] Directive 0

Removing Directives from the Directives Stack

You can remove the top-most directive from the directive stacks through diagnostic commands.

 Toremove Directive 4 from the stack, enter the following command:
jcmd 11084 Conpiler.directives_renove

* To remove more, repeat this diagnostic command until only the default directive remains.
You can’t remove the default directive.

» Figure 2-5 shows that the order of directives in the stack becomes is [5, 3, 1, 2, O].

Figure 2-5 Removing One Directive from the Stack

T Directives Stack
Compiler.directives_remove

Directive 4 (X
. .
File_A File_B File_C
[
Directive 1 Directive 3 Directive 4
Directive 2] Directive 5

Directive 0

You can remove multiple directives from the directives stack.

« To clear the directives stack, enter the following command:
jcmd 11084 Conpiler.directives_clear

« All directives are removed except the default directive. You can’t remove the default
directive.

e Figure 2-6 shows that only Di recti ve 0 remains in the stack.

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 20 of 21

ORACLE Chapter 2
Commands for Working with Directive Files

Figure 2-6 Removing All Directives from the Stack

[
Compiler.directives_clear

Directives Stack

Directive 0

[N
k Directive 5 (%
Directive 3 (X
Directive 1 (X
FleA | |[FileB | [Filec |
[[Directive 2 (X
Directive 1 Directive 3 Directive 4
Directive 2] Directive 5

Java Virtual Machine Guide
G35928-01
Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 21 of 21

Garbage Collection

Oracle’s HotSpot VM includes several garbage collectors that you can use to help optimize the
performance of your application. A garbage collector is especially helpful if your application
handles large amounts of data (multiple gigabytes), has many threads, and has high
transaction rates.

For descriptions on the available garbage collectors, see Garbage Collection Implementation in
the Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning
Guide.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

Class Data Sharing

This chapter describes the class data sharing (CDS) feature that can help reduce the startup
time and memory footprints for Java applications.

Topics:

e Class Data Sharing

Manually Controlling Class Data Sharing

Class Data Sharing

The Class data sharing (CDS) feature helps reduce the startup time and memory footprint
between multiple Java Virtual Machines (JVM).

Starting from JDK 12, a default CDS archive is pre-packaged with the Oracle JDK binary.

By default, the default CDS archive is enabled at the runtime. Specify - Xshar e: of f to disable
the default shared archive.

When the JVM starts, the shared archive is memory-mapped to allow sharing of read-only JVM
metadata for these classes among multiple JVM processes. Because accessing the shared
archive is faster than loading the classes, startup time is reduced.

Class data sharing is supported with the ZGC, G1, serial, and parallel garbage collectors.

The primary motivation for including CDS in Java SE is to decrease in startup time. The
smaller the application relative to the number of core classes it uses, the larger the saved
fraction of startup time.

The footprint cost of new JVM instances has been reduced in two ways:

1. A portion of the shared archive on the same host is mapped as read-only and shared
among multiple JVM processes. Otherwise, this data would need to be replicated in each
JVM instance, which would increase the startup time of your application.

2. The shared archive contains class data in the form that the Java Hotspot VM uses it. The
memory that would otherwise be required to access the original class information in the
runtime modular image, is not used. These memory savings allow more applications to be
run concurrently on the same system. In Windows applications, the memory footprint of a
process, as measured by various tools, might appear to increase, because more pages are
mapped to the process’s address space. This increase is offset by the reduced amount of
memory (inside Windows) that is needed to hold portions on the runtime modular image.
Reducing footprint remains a high priority.

Application Class-Data Sharing

To further reduce the startup time and the footprint, Application Class-Data Sharing (AppCDS)
is introduced that extends the CDS to include selected classes from the application class path.

This feature allows application classes to be placed in a shared drive. The common class
metadata is shared across different Java processes. AppCDS allows the built-in system class

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE’

Chapter 4
Manually Controlling Class Data Sharing

loader, built-in platform class loader, and custom class loaders to load the archived classes.
When multiple JVMs share the same archive file, memory is saved and the overall system
response time improves.

See Application Class Data Sharing in Java Development Kit Tool Specifications.

Manually Controlling Class Data Sharing

Class data sharing is enabled by default. You can manually enable and disable this feature.

You can use the following command-line options for diagnostic and debugging purposes.

- Xshare: of f
To disable class data sharing.

- Xshare: on
To enable class data sharing. If class data sharing can't be enabled, print an error message
and exit.

@® Note

The - Xshar e: on is for testing purposes only. It may cause the VM to unexpectedly
exit during start-up when the CDS archive cannot be used (for example, when certain
VM parameters are changed, or when a different JDK is used). This option should not
be used in production environments.

- Xshare: auto
To enable class data sharing by default. Enable class data sharing whenever possible.

See Using CDS Archives in Java Development Kit Tool Specifications for more information.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Java HotSpot Virtual Machine Performance
Enhancements

This chapter describes the performance enhancements in the Oracle’s HotSpot Virtual
Machine technology.

Topics:

e Compact Strings

* Tiered Compilation

e Compressed Ordinary Object Pointer

o Zero-Based Compressed Ordinary Object Pointers

 Escape Analysis

Compact Strings

The compact strings feature introduces a space-efficient internal representation for strings.

Data from different applications suggests that strings are a major component of Java heap
usage and that most j ava. | ang. St ri ng objects contain only Latin-1 characters. Such
characters require only one byte of storage. As a result, half of the space in the internal
character arrays of j ava. | ang. Stri ng objects are not used. The compact strings feature,
introduced in Java SE 9 reduces the memory footprint, and reduces garbage collection activity.
This feature can be disabled if you observe performance regression issues in an application.

The compact strings feature does not introduce new public APIs or interfaces. It modifies the
internal representation of the j ava. | ang. Stri ng class from a UTF-16 (two bytes) character
array to a byte array with an additional field to identify character encoding. Other string-related
classes, such as Abstract StringBuil der, StringBuil der, and StringBuffer are updated to
use a similar internal representation.

In Java SE 9, the compact strings feature is enabled by default. Therefore, the

java.lang. String class stores characters as one byte for each character, encoded as Latin-1.
The additional character encoding field indicates the encoding that is used. The HotSpot VM
string intrinsics are updated and optimized to support the internal representation.

You can disable the compact strings feature by using the - XX: - Conpact St ri ngs flag with the
j ava command line. When the feature is disabled, the j ava. | ang. Stri ng class stores
characters as two bytes, encoded as UTF-16, and the HotSpot VM string intrinsics to use
UTF-16 encoding.

Tiered Compilation

Tiered compilation, introduced in Java SE 7, brings client VM startup speeds to the server VM.
Without tired compilation, a server VM uses the interpreter to collect profiling information about
methods that is sent to the compiler. With tiered compilation, the server VM also uses the client
compiler to generate compiled versions of methods that collect profiling information about

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 5
Compressed Ordinary Object Pointer

themselves. The compiled code is substantially faster than the interpreter, and the program
executes with greater performance during the profiling phase. Often, startup is faster than the
client VM startup speed because the final code produced by the server compiler might be
available during the early stages of application initialization. Tiered compilation can also
achieve better peak performance than a regular server VM, because, the faster profiling phase
allows a longer period of profiling, which can yield better optimization.

Tiered compilation is enabled by default for the server VM. The 64-bit mode and Compressed
Ordinary Object Pointer are supported. You can disable tiered compilation by using the - XX: -
Ti eredConpi | ati on flag with the j ava command.

To accommodate the additional profiling code that is generated with tiered compilation, the
default size of code cache is multiplied by 5x. To organize and manage the larger space
effectively, segmented code cache is used.

Segmented Code Cache

The code cache is the area of memory where the Java Virtual Machine stores generated native
code. It is organized as a single heap data structure on top of a contiguous chunk of memory.

Instead of having a single code heap, the code cache is divided into segments, each
containing compiled code of a particular type. This segmentation provides better control of the
JVM memory footprint, shortens scanning time of compiled methods, significantly decreases
the fragmentation of code cache, and improves performance.

The code cache is divided into the following three segments:

Table 5-1 Segmented Code Cache
|

Code Cache Description JVM Command-Line Arguments
Segments
Non-method This code heap contains non- - XX: NonMet hodCodeHeapSi ze

method code such as
compiler buffers and
bytecode interpreter. This
code type stays in the code
cache forever. The code heap
has a fixed size of 3 MB and
remaining code cache is
distributed evenly among the
profiled and non-profiled code
heaps.

Profiled This code heap contains —XX: Profil edCodeHeapSi ze
lightly optimized, profiled
methods with a short lifetime.

Non-profiled This code heap contains fully - XX: NonPr of i | edCodeHeapSi ze
optimized, non-profiled
methods with a potentially
long lifetime.

Compressed Ordinary Object Pointer

An ordinary object pointer (oop) in Java Hotspot parlance, is a managed pointer to an object.
Typically, an oop is the same size as a native machine pointer, which is 64-bit on an LP64
system. On an ILP32 system, maximum heap size is less than 4 gigabytes, which is insufficient
for many applications. On an LP64 system, the heap used by a given program might have to

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 5
Zero-Based Compressed Ordinary Object Pointers

be around 1.5 times larger than when it is run on an ILP32 system. This requirement is due to
the expanded size of managed pointers. Memory is inexpensive, but these days bandwidth
and cache are in short supply, so significantly increasing the size of the heap and only getting
just over the 4 gigabyte limit is undesirable.

Managed pointers in the Java heap point to objects that are aligned on 8-byte address
boundaries. Compressed oops represent managed pointers (in many but not all places in the
Java Virtual Machine (JVM) software) as 32-bit object offsets from the 64-bit Java heap base
address. Because they're object offsets rather than byte offsets, oops can be used to address
up to four billion objects (not bytes), or a heap size of up to about 32 gigabytes. To use them,
they must be scaled by a factor of 8 and added to the Java heap base address to find the
object to which they refer. Object sizes using compressed oops are comparable to those in
ILP32 mode.

The term decode refer to the operation by which a 32-bit compressed oop is converted to a 64-
bit native address and added into the managed heap. The term encode refers to that inverse
operation.

Compressed oops is supported and enabled by default in Java SE 6u23 and later. In Java SE
7, compressed oops is enabled by default for 64-bit JVM processes when - Xnx isn't specified
and for values of - Xnx less than 32 gigabytes. For JDK releases earlier than 6u23 release, use
the - XX: +UseConpr essedQops flag with the j ava command to enable the compressed oops.

Zero-Based Compressed Ordinary Object Pointers

When the JVM uses compressed ordinary object pointers (oops) in a 64-bit JVM process, the
JVM software sends a request to the operating system to reserve memory for the Java heap
starting at virtual address zero. If the operating system supports such a request and can
reserve memory for the Java heap at virtual address zero, then zero-based compressed oops
are used.

When zero-based compressed oops are used, a 64-bit pointer can be decoded from a 32-bit
object offset without including the Java heap base address. For heap sizes less than 4
gigabytes, the JVM software can use a byte offset instead of an object offset and thus also
avoid scaling the offset by 8. Encoding a 64-bit address into a 32-bit offset is correspondingly
efficient.

For Java heap sizes up to 26 gigabytes, the Linux and Windows operating systems typically
can allocate the Java heap at virtual address zero.

Escape Analysis

Escape analysis is a technique by which the Java HotSpot Server Compiler can analyze the
scope of a new object's uses and decide whether to allocate the object on the Java heap.

Escape analysis is supported and enabled by default in Java SE 6u23 and later.

The Java HotSpot Server Compiler implements the flow-insensitive escape analysis algorithm
described in:

[Choi 99] Jong- Deok Choi, Manish Gupta, Mauricio Seffano,
Vugranam C. Sreedhar, Sam M dki ff,
"Escape Analysis for Java", Procedings of ACM SI GPLAN
OOPSLA Conference, Novenber 1, 1999

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 5
Escape Analysis

An object's escape state, based on escape analysis, can be one of the following states:

e { obal Escape: The object escapes the method and thread. For example, an object stored
in a static field, stored in a field of an escaped object, or returned as the result of the
current method.

e ArgEscape: The object is passed as an argument or referenced by an argument but does
not globally escape during a call. This state is determined by analyzing the bytecode of the
called method.

e NoEscape: The object is a scalar replaceable object, which means that its allocation could
be removed from generated code.

After escape analysis, the server compiler eliminates the scalar replaceable object allocations
and the associated locks from generated code. The server compiler also eliminates locks for
objects that do not globally escape. It does not replace a heap allocation with a stack allocation
for objects that do not globally escape.

The following examples describe some scenarios for escape analysis:

e The server compiler might eliminate certain object allocations. For example, a method
makes a defensive copy of an object and returns the copy to the caller.

public class Person {
private String name;
private int age;
public Person(String personNanme, int personAge) {
name = personName;
age = personAge;

}

public Person(Person p) { this(p.getNane(), p.getAge()); }
public int getName() { return name; }
public int getAge() { return age; }

}

public class Enpl oyee {
private Person person;

/1 makes a defensive copy to protect against nodifications by

caller
publ i c Person getPerson() { return new Person(person) };
public void printEnpl oyeeDetail (Enpl oyee enp) {
Person person = enp. get Person();
/1 this caller does not modify the object, so defensive copy was
unnecessary
Systemout.println ("Enpl oyee's name: " + person. get Name()
+"; age: " + person.getAge());
}
}

The method makes a copy to prevent modification of the original object by the caller. If the
compiler determines that the get Per son method is being invoked in a loop, then the
compiler inlines that method. By using escape analysis, when the compiler determines that

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 5
Escape Analysis

the original object is never modified, the compiler can optimize and eliminate the call to
make a copy.

e The server compiler might eliminate synchronization blocks (lock elision) if it determines
that an object is thread local. For example, methods of classes such as St ri ngBuf f er and
Vect or are synchronized because they can be accessed by different threads. However, in
most scenarios, they are used in a thread local manner. In cases where the usage is
thread local, the compiler can optimize and remove the synchronization blocks.

Java Virtual Machine Guide

G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 5

JVM APIs

Java Virtual Machine (JVM) APIs provide a set of classes and methods that enable you to
interact with and control various aspects of the JVM. These APIs provide a way to interact with
the JVM at runtime, allowing you to monitor and control the execution of Java applications.

This topic introduces you to some of the new and important APIs that you need to be aware of.
Topics:

* JVM Constants API

» Class-File API

JVM Constants API

The JVM Constants API is defined in the package j ava. | ang. const ant , which contains the
nominal descriptors of various types of loadable constants. These nominal descriptors are
useful for applications that manipulate class files and compile-time or link-time program
analysis tools.

A nominal descriptor is not the value of a loadable constant but a description of its value, which
can be reconstituted given a class loading context. A loadable constant is a constant pool entry
that can be pushed onto the operand stack or can appear in the static argument list of a
bootstrap method for the i nvokedynami ¢ instruction. The operand stack is where JVM
instructions get their input and store their output. Every Java class file has a constant pool,
which contains several kinds of constants, ranging from numeric literals known at compile-time
to method and field references that must be resolved at run-time.

The issue with working with non-nominal loadable constants, such as a 0 ass objects, whose
references are resolved at run-time, is that these references depend on the correctness and
consistency of the class loading context. Class loading may have side effects, such as running
code that you don't want run and throwing access-related and out-of-memory exceptions,
which you can avoid with nominal descriptions. In addition, class loading may not be possible
at all.

See the package j ava. | ang. const ant .

Class-File API

The Class-File API is defined in the package j ava. | ang. cl assfi | e, which is used for parsing,
generating, and transforming Java class files. The API processes the class files that tracks the
cl ass file format defined by the chapter "The cl ass File Format" in The Java Virtual Machine
Specification.. See Java Language and Virtual Machine Specifications.

For background information, see JEP 484: Class-File API.

The Class-File APl is defined by several key principles, such as:

« lttreats all class-file entities such as fields, methods, attributes, and bytecode instructions
as immutable objects. This immutable representation ensures reliable sharing when a
class file undergoes transformations.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/lang/constant/package-summary.html
https://docs.oracle.com/javase/specs/
https://openjdk.org/jeps/484

ORACLE Chapter 6
Class-File API

e It uses a tree structure to represent the hierarchical nature of class files.
* It enables user-driven navigation for efficient parsing.

* It emphasizes laziness in parsing, processing only the class files that are required by the
user.

* Ittransforms as an emergent property if the class-file parsing and generation APIs are
sufficiently aligned. This does not require its own special mode or significant new API
surface.

The Class-File API incorporates three main abstractions: elements, builders, and transforms.
Elements are immutable descriptions of class file components. A builder facilities the
construction of class files using specific building methods. There’s a build for each kind of
compound element. Transforms represent functions that modify elements during the building
process.

The API also introduces new methods for parsing class files using patterns. This enables more
direct and concise expressions, leveraging Java's pattern-matching capabilities. The
frameworks and tools that use this APl automatically support the class files from the latest
JDK.

See the package java. | ang. cl assfile.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/lang/classfile/package-summary.html

Support for Non-Java Languages

This chapter describes the Non-Java Language features in the Java Virtual Machine.
Topics:

e |Introduction to Non-Java Language Features

e Static and Dynamic Typing

e The Challenge of Compiling Dynamically-Typed Languages

e The invokedynamic Instruction

Introduction to Non-Java Language Features

The Java Platform, Standard Edition (Java SE) enables the development of applications that
have the following features:

e They can be written once and run anywhere
« They can be run securely because of the Java sandbox security model
e They are easy to package and deliver

The Java SE platform provides robust support in the following areas:

e Concurrency
* Garbage collection
» Reflective access to classes and objects

* JVM Tool Interface (JVM TI): A native programming interface for use by tools. It provides
both a way to inspect the state and to control the execution of applications running in the
JVM.

Oracle's HotSpot JVM provides the following tools and features:

« DTrace: A dynamic tracing utility that monitors the behavior of applications and the
operating system.

e Performance optimizations

e PrintAssembly: A Java HotSpot option that prints assembly code for bytecoded and native
methods.

The Java SE 7 platform enables non-Java languages to use the infrastructure and potential
performance optimizations of the JVM. The key mechanism is the i nvokedynani ¢ instruction,
which simplifies the implementation of compilers and runtime systems for dynamically-typed
languages on the JVM.

Static and Dynamic Typing

A programming language is statically-typed if it performs type checking at compile time. Type
checking is the process of verifying that a program is type safe. A program is type safe if the
arguments of all of its operations are the correct type.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE’

Chapter 7
Static and Dynamic Typing

Java is a statically-typed language. Type information is available for class and instance
variables, method parameters, return values, and other variables when a program is compiled.
The compiler for the Java programming language uses this type information to produce
strongly typed bytecode, which can then be efficiently executed by the JVM at runtime.

The following example of a Hello World program demonstrates static typing. Types are shown
in bold.

inport java.util.Date;

public class HelloWrld {
public static void main(String[] argv) {
String hello = "Hello ";
Date currDate = new Date();
for (String a : argv) {
Systemout.printin(hello + a);
Systemout.println("Today's date is: " + currDate);

A programming language is dynamically-typed if it performs type checking at runtime.
JavaScript and Ruby are examples of dynamically typed languages. These languages verify at
runtime, rather than at compile time, that values in an application conform to expected types.
Typically, type information for these languages is not available when an application is compiled.
The type of an object is determined only at runtime. In the past, it was difficult to efficiently
implement dynamically-typed languages on the JVM.

The following is an example of the Hello World program written in the Ruby programming
language:

#!'/usr/bin/env ruby
require 'date'

hello = "Hello "
currDate = DateTi ne. now
ARGV. each do| a|

puts hello + a

puts "Date and tine:
end

+ currDate.to_s

In the example, every name is introduced without a type declaration. The main program is not
located inside a holder type (the Java class Hel | oWor | d). The Ruby equivalent of the Java f or
loop is inside the dynamic type ARGV variable. The body of the loop is contained in a block
called a closure, which is a common feature in dynamic languages.

Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages

Statically-typed programming languages can employ strong typing or weak typing. A
programming language that employs strong typing specifies restrictions on the types of values
supplied to its operations, and it prevents the execution of an operation if its arguments have
the wrong type. A language that employs weak typing would implicitly convert (or cast)
arguments of an operation if those arguments have the wrong or incompatible types.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE’

Chapter 7
The Challenge of Compiling Dynamically-Typed Languages

Dynamically-typed languages can employ strong typing or weak typing. For example, the Ruby
programming language is dynamically-typed and strongly-typed. When a variable is initialized
with a value of some type, the Ruby programming language does not implicitly convert the
variable into another data type.

In the following example, the Ruby programming language does not implicitly cast the number
2, which has a Fi xnumtype, to a string.

n 40"
a+ 2

o o

The Challenge of Compiling Dynamically-Typed Languages

Consider the following dynamically-typed method, addt wo, which adds any two numbers (which
can be of any numeric type) and returns their sum:

def addtwo(a, b)
a+b;
end

Suppose your organization is implementing a compiler and runtime system for the
programming language in which the method addt wo is written. In a strongly-typed language,
whether typed statically or dynamically, the behavior of + (the addition operator) depends on
the operand types. A compiler for a statically-typed language chooses the appropriate
implementation of + based on the static types of a and b. For example, a Java compiler
implements + with the i add JVM instruction if the types of a and b are i nt . The addition
operator is compiled to a method call because the JVM i add instruction requires the operand
types to be statically known.

A compiler for a dynamically-typed language must defer the choice until runtime. The
statement a + b is compiled as the method call +(a, b), where + is the method name. A
method named + is permitted in the JVM but not in the Java programming language. If the
runtime system for the dynamically-typed language is able to identify that a and b are variables
of integer type, then the runtime system would prefer to call an implementation of + that is
specialized for integer types rather than arbitrary object types.

The challenge of compiling dynamically-typed languages is how to implement a runtime
system that can choose the most appropriate implementation of a method or function — after
the program has been compiled. Treating all variables as objects of Obj ect type would not
work efficiently; the Qbj ect class does not contain a method named +.

In Java SE 7 and later, the i nvokedynani ¢ instruction enables the runtime system to customize
the linkage between a call site and a method implementation. In this example, the

i nvokedynami ¢ call site is +. An i nvokedynani ¢ call site is linked to a method by means of a
bootstrap method, which is a method specified by the compiler for the dynamically-typed
language that is called once by the JVM to link the site. Assuming the compiler emitted an

i nvokedynami ¢ instruction that invokes +, and assuming that the runtime system knows about
the method adder (I nt eger, | nt eger), the runtime can link the i nvokedynami ¢ call site to the
adder method as follows:

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE’

Chapter 7
The Challenge of Compiling Dynamically-Typed Languages

IntegerOps.java

class IntegerQps {

public static Integer adder(Integer x, Integer y) {
return x +vy;
}
}

Example.java

inport java.util.*;

i nport java.lang.invoke. *;

inport static java.lang.invoke. Met hodType. *;
inport static java.lang.invoke. Met hodHandl es. *;

class Exanpl e {

public static CallSite mybsm
Met hodHandl es. Lookup cal | erC ass, String dynMet hodNane, MethodType
dynMet hodType)
throws Throwabl e {

Met hodHandl e mh =
callerCass.findStatic(
Exanpl e. cl ass,
"I nt eger Ops. adder ",
Met hodType. net hodType(I nteger. cl ass, Integer.class, Integer.class));

i f (!dynMet hodType. equal s(mh. type())) {
mh = mh. asType(dynMet hodType);
}

return new Constant Cal | Site(nh);

}
}

In this example, the | nt eger Ops class belongs to the library that accompanies runtime system
for the dynamically-typed language.

The Exanpl e. nybsmmethod is a bootstrap method that links the i nvokedynani ¢ call site to the
adder method.

The cal | er C ass object is a | ookup object, which is a factory for creating method handles.

The Met hodHandl es. Lookup. findSt ati ¢ method (called from the cal | er O ass | ookup object)
creates a static method handle for the method adder .

Note: This bootstrap method links an i nvokedynani ¢ call site to only the code that is defined in
the adder method. It assumes that the arguments given to the i nvokedynani ¢ call site are

I nt eger objects. A bootstrap method requires additional code to properly link i nvokedynarmi ¢
call sites to the appropriate code to execute if the parameters of the bootstrap method (in this
example, cal | er d ass, dynMet hodNane, and dynMet hodType) vary.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 7
The invokedynamic Instruction

The java.l ang. i nvoke. Met hodHandl es class and j ava. | ang. i nvoke. Met hodHandl e class
contain various methods that create method handles based on existing method handles. This
example calls the asType method if the method type of the mh method handle does not match
the method type specified by the dynMet hodType parameter. This enables the bootstrap
method to link i nvokedynami c call sites to Java methods whose method types don't exactly
match.

The Const ant Cal | Si t e instance returned by the bootstrap method represents a call site to be
associated with a distinct i nvokedynami ¢ instruction. The target for a ConstantCal | Site
instance is permanent and can never be changed. In this case, one Java method, adder, is a
candidate for executing the call site. This method does not have to be a Java method. Instead,
if several such methods are available to the runtime system, each handling different argument
types, the nybsmbootstrap method could dynamically select the correct method based on the
dynMet hodType argument.

The invokedynamic Instruction

You can use the i nvokedynami ¢ instruction in implementations of compilers and runtime
systems for dynamically typed languages on the JVM. The i nvokedynani ¢ instruction enables
the language implementer to define custom linkage. This contrasts with other JVM instructions
such as i nvokevi rtual , in which linkage behavior specific to Java classes and interfaces is
hard-wired by the JVM.

Each instance of an i nvokedynani ¢ instruction is called a dynamic call site. When an instance
of the dynamic call site is created, it is in an unlinked state, with no method specified for the
call site to invoke. The dynamic call site is linked to a method by means of a bootstrap method.
A dynamic call site's bootstrap method is a method specified by the compiler for the
dynamically-typed language. The method is called once by the JVM to link the site. The object
returned from the bootstrap method permanently determines the call site's activity.

The i nvokedynami c instruction contains a constant pool index (in the same format as for the
other i nvoke instructions). This constant pool index references a CONSTANT_| nvokeDynani ¢
entry. This entry specifies the bootstrap method (a CONSTANT_Met hodHandl e entry), the name of
the dynamically-linked method, and the argument types and return type of the call to the
dynamically-linked method.

In the following example, the runtime system links the dynamic call site specified by the

i nvokedynami ¢ instruction (which is +, the addition operator) to the IntegerOps.adder method by
using the Example.mybsm bootstrap method. The adder method and nybsmmethod are defined
in The Challenge of Compiling Dynamically Typed Languages (line breaks have been added
for clarity):

i nvokedynami ¢ | nvokeDynami ¢
REF_i nvokeSt ati c:
Exanpl e. mybsm
“(Lj avall ang/ i nvoke/ Met hodHand! es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Ljava/l ang/invoke/ Cal | Site;":
+:
“(Ljavall ang/ I nteger;
Lj ava/l ang/ | nt eger;)
Ljava/l ang/ I nteger;";

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE Chapter 7
The invokedynamic Instruction

@® Note

The bytecode examples use the syntax of the ASM Java bytecode manipulation and
analysis framework.

Invoking a dynamically-linked method with the i nvokedynani ¢ instruction involves the following
steps:

1. Defining the Bootstrap Method

2. Specifying Constant Pool Entries

3. Using the i nvokedynani ¢ Instruction

Defining the Bootstrap Method

At runtime, the first time the JVM encounters an i nvokedynani ¢ instruction, it calls the
bootstrap method. This method links the name that the i nvokedynani c instruction specifies
with the code to execute the target method, which is referenced by a method handle. The next
time the JVM executes the same i nvokedynam ¢ instruction, it does not call the bootstrap
method; it automatically calls the linked method handle.

The bootstrap method's return type must be j ava. | ang. i nvoke. Cal | Site. The Cal | Site
object represents the linked state of the i nvokedynami ¢ instruction and the method handle to
which it is linked.

The bootstrap method takes three or more of the following parameters:

- MethodHandl es. Lookup object: A factory for creating method handles in the context of the
i nvokedynami ¢ instruction.

e String object: The method name mentioned in the dynamic call site.
« MethodType object: The resolved type signature of the dynamic call site.

e One or more additional static arguments to the i nvokedynam ¢ instruction: Optional
arguments, drawn from the constant pool, are intended to help language implementers
safely and compactly encode additional metadata useful to the bootstrap method. In
principle, the name and extra arguments are redundant because each call site could be
given its own unique bootstrap method. However, such a practice is likely to produce large
class files and constant pools

See The Challenge of Compiling Dynamically Typed Languages for an example of a bootstrap
method.

Specifying Constant Pool Entries

The i nvokedynani ¢ instruction contains a reference to an entry in the constant pool with the
CONSTANT _I nvokeDynani ¢ tag. This entry contains references to other entries in the constant
pool and references to attributes. See j ava. | ang. i nvoke package docunentati on and
The Java Virtual Machine Specification.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 6 of 10

http://asm.ow2.org/
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/lang/invoke/package-summary.html

ORACLE Chapter 7
The invokedynamic Instruction

Example Constant Pool

The following example shows an excerpt from the constant pool for the class Exanpl e, which
contains the bootstrap method Exanpl e. nybsmthat links the method + with the Java method
adder :

class #159; [/ #47
Uf8 "adder"; // #83
Uf8 "(Ljaval/lang/Integer;Ljaval/lang/Integer;)Ljaval/lang/Integer;"; /I #84
Uf8 "mybsm'; // #87
U f8 "(Ljaval/l ang/invoke/ Met hodHandl es/ Lookup; Lj ava/l ang/ Stri ng; Lj ava/
| ang/ i nvoke/ Met hodType;)
javall ang/invoke/Call Site;"; // #88
Uf8 "Exanple"; // #159
wf8 "+"; [/ #166

...

NameAndType #83 #84; [/ #228

Met hod #47 #228; [/ #229

Met hodHandl e 6b #229; [/ #230
NameAndType #87 #88; [/ #231

Met hod #47 #231; /] #232

Met hodHandl e 6b #232; [/ #233
NameAndType #166 #84; [/ #234
Ut f8 "BootstrapMethods"; // #235
I nvokeDynani ¢ 0s #234; [/ #236

The constant pool entry for the i nvokedynani ¢ instruction in this example contains the
following values:

e CONSTANT_I nvokeDynani ¢ tag
e Unsigned short of value 0
e Constant pool index #234.

The value, 0, refers to the first bootstrap method specifier in the array of specifiers that are
stored in the Boot st r apMet hods attribute. Bootstrap method specifiers are not in the constant
pool table. They are contained in this separate array of specifiers. Each bootstrap method
specifier contains an index to a CONSTANT_Met hodHand| e constant pool entry, which is the
bootstrap method itself.

The following example shows an excerpt from the same constant pool that shows the
Boot st r apMet hods attribute, which contains the array of bootstrap method specifiers:

[3] { // Attributes
...

Attr(#235, 6) { // BootstrapMethods at 0xOF63
[1] { /I bootstrap_nethods
{ 1/ bootstrap_nethod
#233; |/ bootstrap_method_ref

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE Chapter 7
The invokedynamic Instruction

[0] { // bootstrap_argunents
} I/ bootstrap_argunents
} I/ bootstrap_nethod

}
} /1 end Boot strapMet hods
} /1 Attributes

The constant pool entry for the bootstrap method nybsmmethod handle contains the following
values:

e CONSTANT_Met hodHandl e tag
e Unsigned byte of value 6
e Constant pool index #232.

The value, 6, is the REF i nvokeSt ati ¢ subtag. See, Using the invokedynamic Instruction, for
more information about this subtag.

Using the invokedynamic Instruction

The following example shows how the bytecode uses the i nvokedynami ¢ instruction to call the
mybsmbootstrap method, which links the dynamic call site (+, the addition operator) to the
adder method. This example uses the + method to add the numbers 40 and 2 (line breaks have
been added for clarity):

bi push 40;
i nvokestatic Met hod javal/l ang/ I nteger.val ueC:"(1)Ljavallang/Integer;";
i const_2;
i nvokestatic Met hod javal/l ang/ I nteger.val ueC:"(1)Ljavallang/Integer;";
i nvokedynami ¢ | nvokeDynam c
REF i nvokeStati c:
Exanpl e. mybsm
"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Ljava/l ang/invoke/Cal I Site;":
+:
“(Ljavall ang/ I nt eger;
Lj ava/l ang/ | nt eger;)
Ljava/l ang/ I nteger;";

The first four instructions put the integers 40 and 2 in the stack and boxes them in the
java. |l ang. I nt eger wrapper type. The fifth instruction invokes a dynamic method. This
instruction refers to a constant pool entry with a CONSTANT _| nvokeDynani ¢ tag:

REF i nvokeStati c:
Exanpl e. mybsm
"(Ljavall ang/ i nvoke/ Met hodHandl es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/ Cal I Site;":
+
"(Ljavall ang/ I nt eger;

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE Chapter 7
The invokedynamic Instruction

Lj ava/l ang/ I nteger;)
Lj ava/l ang/ | nt eger;";

Four bytes follow the CONSTANT_| nvokeDynami ¢ tag in this entry.

e The first two bytes form a reference to a CONSTANT_Met hodHandl e entry that references a
bootstrap method specifier:

REF i nvokeStati c:
Exanpl e. mybsm
"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType;)
Lj ava/l ang/invoke/ Call Site;"

This reference to a bootstrap method specifier is not in the constant pool table. It is
contained in a separate array defined by a class file attribute named Boot st r apMet hods.
The bootstrap method specifier contains an index to a CONSTANT _Met hodHandl e constant
pool entry, which is the bootstrap method itself.

Three bytes follow this CONSTANT Met hodHandl e constant pool entry:

The first byte is the REF_i nvokeSt at i ¢ subtag. This means that this bootstrap method
will create a method handle for a static method; note that this bootstrap method is
linking the dynamic call site with the static Java adder method.

— The next two bytes form a CONSTANT _Met hodr ef entry that represents the method for
which the method handle is to be created:

Exanpl e. mybsm
"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Lj ava/l ang/ Stri ng;
Lj aval/ | ang/ i nvoke/ Met hodType;)
Ljava/l ang/invoke/CallSite;"

In this example, the fully qualified name of the bootstrap method is Exanpl e. mybsm.
The argument types are Met hodHandl es. Lookup, Stri ng, and Met hodType. The return
typeis Cal | Site.

e The next two bytes form a reference to a CONSTANT NaneAndType entry:

+:
"(Ljavall ang/ | nt eger;
Lj ava/l ang/ I nt eger;)
Ljaval/l ang/ | nteger;"

This constant pool entry specifies the method name (+), the argument types (two | nt eger
instances), and return type of the dynamic call site (I nt eger).

In this example, the dynamic call site is presented with boxed integer values, which exactly
match the type of the eventual target, the adder method. In practice, the argument and return
types don't need to exactly match. For example, the i nvokedynani ¢ instruction could pass
either or both of its operands on the JVM stack as primitive i nt values. Either or both operands

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 7
The invokedynamic Instruction

could be untyped bj ect values. The i nvokedynani ¢ instruction could receive its result as a
primitive i nt value, or an untyped bj ect value. In any case, the dynMet hodType argument to
mybsmaccurately describes the method type that is required by the i nvokedynam ¢ instruction.

The adder method could be given primitive or untyped arguments or return values. The
bootstrap method is responsible for making up any difference between the dynMet hodType and
the type of the adder method. As shown in the code, this is easily done with an asType call on
the target method.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 10

Signal Chaining

Signal chaining enables you to write applications that need to install their own signal handlers.
This facility is available on Linux and macOS.

The signal chaining facility has the following features:

Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by the
HotSpot VM are saved. During execution, when any of these signals are raised and are not
to be targeted at the HotSpot VM, the preinstalled handlers are invoked. In other words,
preinstalled signal handlers are chained behind the HotSpot VM handlers for these signals.

Support for the signal handlers that are installed after you create the HotSpot VM, either
inside the Java Native Interface code or from another native thread.

Your application can link and load the | i bj si g. so shared library before the | i bc/

I'i bt hread/|ibpthread library. This library ensures that calls such as si gnal (), si gset(),
and si gaction() are intercepted and don't replace the signal handlers that are used by
the HotSpot VM, if the handlers conflict with the signal handlers that are already installed
by HotSpot VM. Instead, these calls save the new signal handlers. The new signal
handlers are chained behind the HotSpot VM signal handlers for the signals. During
execution, when any of these signals are raised and are not targeted at the HotSpot VM,
the preinstalled handlers are invoked.

@ Note

As of Java 16 the use of the si gnal and si gset functions are deprecated, and
support for those functions will be removed in a future release. Use the si gacti on
function instead.

If support for signal handler installation after the creation of the VM is not required, then the
l'i bj si g. so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the | i bj si g. so
shared library:

— Link the | i bj si g. so shared library with the application that creates or embeds the
HotSpot VM:

cc -L libjvmso-directory -l1jsig -ljvmjava_application.c

— Use the LD _PRELQAD environment variable:
* Korn shell (ksh):

export LD PRELOAD=I i bjvm so-directory/libjsig.so; java_application

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE
Chapter 8

* C shell (csh):
setenv LD PRELOAD |ibjvmso-directory/libjsig.so; java_application

The interposed si gnal () , sigset() , and si gaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

® Note

The SI GQUI T, SI GTERM SI @ NT, and Sl GHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xr s option.

Enable Signal Chaining in macOS
To enable signal chaining in macOS, set the following environment variables:

o DYLD_I NSERT_LI BRARI ES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Linux.

e DYLD FORCE FLAT_NAMESPACE: Enables functions in the | i bj si g library and replaces the
OS implementations, because of macOS's two-level namespace (a symbol's fully qualified
name includes its library). To enable this feature, set this environment variable to any
value.

The following command enables signal chaining by preloading the | i bj si g library:

$ DYLD_FORCE_FLAT_NAMESPACE=0 DYLD | NSERT_LI BRARI ES="JAVA HOME/lib/1ibjsig.dylib"
java MySpiffyJavaApp

@® Note

The library file name on macOS is | i bj si g.dylib notlibjsig.soasitis on Linux.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Native Memory Tracking

This chapter describes the Native Memory Tracking (NMT) feature. NMT is a Java Hotspot VM
feature that tracks internal memory usage for a HotSpot VM. You can access NMT data by
using the j cnd utility. NMT does not track memory allocations for third-party native code and
Oracle Java Development Kit (JDK) class libraries. NMT does not include NMT MBean in
HotSpot for Java Mission Control (JMC).

Topics:
 Key Features
» Using Native Memory Tracking

— Enabling NMT
— Accessing NMT Data using jcmd

e Obtaining NMT Data at VM Exit

Key Features

When you use Native Memory Tracking with j cnd, you can track Java Virtual Machine (JVM)
or HotSpot VM memory usage at different levels. NMT tracks only the memory that the JVM or
HotSpot VM uses, not the user's native memory. NMT doesn't give complete information for the
memory used by the class data sharing (CDS) archive.

NMT for HotSpot VM is turned off by default. You can turn on NMT by using the JVM
command-line option. See The java Command in the Java Development Kit Tool Specifications
for information about advanced runtime options.

You can access NMT using the j cnd utility. See Use jemd to Access NMT Data. You can stop
NMT by using the j cnd utility, but you can't start or restart NMT by using the j cnd utilty.

NMT supports the following features:

e Generate summary and detail reports.
« Establish an early baseline for later comparison.

e Request a memory usage report at JVM exit with the JVM command-line option. See NMT
at VM exit.

Using Native Memory Tracking

You must enable NMT and then use the j cnd utility to access the NMT data.

Enabling NMT

To enable NMT, use the following command-line options:

- XX: NativeMenoryTracki ng=[of f | summary | detail]

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 9
Obtaining NMT Data at VM Exit

@® Note

Enabling NMT causes a 5% -10% performance overhead.

The following table describes the NMT command-line usage options:

Table 9-1 NMT Usage Options
|

NMT Options Description

of f NMT is turned of f by default.

sunmary Collect only memory usage aggregated by subsystem.
detai | Collect the memory usage by individual call sites.

Accessing NMT Data using jcmd

Use j cnd to dump the data that is collected and optionally compare the data to the last
baseline.

jemd <pid> VM native nenory [summary | detail | baseline | summary.diff |
detail.diff | shutdown] [scale= KB | MB | GB]

Table 9-2 jcmd NMT Options
|

jcmd NMT Option Description
sunmary Print a summary, aggregated by category.
detai | - Print memory usage, aggregated by category

e Print virtual memory map
« Print memory usage, aggregated by call site

basel i ne Create a new memory usage snapshot for comparison.
summary. di f f Print a new summary report against the last baseline.
detail.diff Print a new detail report against the last baseline.

shut down Stop NMT.

Obtaining NMT Data at VM Exit

To obtain data for the last memory usage at VM exit, when Native Memory Tracking is enabled,
use the following VM diagnostic command-line options. The level of detail is based on tracking
level.

- XX: +Unl ockDi agnosti cVMDptions - XX: +Print NMISt ati sti cs

See Native Memory Tracking in the Java Platform, Standard Edition Troubleshooting Guide for
information about how to monitor VM internal memory allocations and diagnose VM memory
leaks.

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

DTrace Probes in HotSpot VM

Using the

This chapter describes DTrace support in Oracle’'s HotSpot VM. The hotspot and hotspot_jni
providers let you access probes that you can use to monitor the Java application that is
running together with the internal state and activities of the Java Virtual Machine (JVM). All of
the probes are USDT probes and you can access them by using the process-id of the JVM
process.

Topics:

e Using the hotspot Provider

— VM Lifecycle Probes

— Thread Lifecycle Probes

— Classloading Probes

— Garbage Collection Probes

— Method Compilation Probes

— Monitor Probes

— Application Tracking Probes

e Using the hotspot_jni Provider

« Sample DTrace Probes

hotspot Provider

The hotspot provider lets you access probes that you can use to track the lifespan of the VM,
thread start and stop events, garbage collector (GC) and memory pool statistics, method
compilations, and monitor activity. A startup flag can enable additional probes that you can use
to monitor the running Java program, such as object allocations and method enter and return
probes. The hotspot probes originate in the VM library (libjvm.so), so they are provided from
programs that embed the VM.

Many of the probes in the provider have arguments for providing further details on the state of
the VM. Many of these arguments are opaque IDs which can be used to link probe firings to
each other. However, strings and other data are also provided. When string values are
provided, they are always present as a pair: a pointer to unterminated modified UTF-8 data
(see the JVM Specification) , and a length value which indicates the extent of that data. The
string data is not guaranteed to be terminated by a NUL character, and it is necessary to use
the length-terminated copyi nstr () intrinsic to read the string data. This is true even when
none of the characters are outside the ASCII range.

VM Lifecycle Probes

The following probes are available for tracking VM lifecycle activities. None have any
arguments.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 17

http://docs.oracle.com/javase/specs/

ORACLE Chapter 10
Using the hotspot Provider

Table 10-1 VM Lifecycle Probes

Probe Description
vminit-begin Probe that starts when the VM initialization begins
vminit-end Probe that starts when the VM initialization finishes, and the

VM is ready to start running application code

vm shut down Probe that starts as the VM is shuts down due to program
termination or an error

Thread Lifecycle Probes

The following probes are available for tracking thread start and stop events.

Probe Description
t hread-start Probe that starts when a thread starts.
t hread- stop Probe that starts when the thread has completed.

The following argument are available for the thread lifecycle probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the thread name.

args[1] The length of the thread name data (in bytes).

args[2] The Java thread ID. This value matches other HotSpot VM
probes that contain a thread argument.

args[3] The native or OS thread ID. This ID is assigned by the host

operating system.

args| 4] A boolean value that indicates whether this thread is a
daemon or not. A value of 0 indicates a non-daemon thread.

Classloading Probes

The following probes are available for tracking class loading and unloading activity.

Probe Description
cl ass-1 oaded Probe that fires when a class is loaded
cl ass-unl oaded Probe that fires when a class is unloaded from the system

The following arguments are available for the cl assl oadi ng probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
class that is loaded

args[1] The length of the class name data (in bytes)

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE’

Chapter 10
Using the hotspot Provider

Probe Arguments

Description

args[2] The class loader ID, which is a unique identifier for a class
loader in the VM. (This is the class loader that loaded the
class.)

argsj 3] A boolean value that indicates whether the class is a shared

class (if the class was loaded from the shared archive)

Garbage Collection Probes

Probes are available that you can use to measure the duration of a system-wide garbage
collection cycle (for those garbage collectors that have a defined begin and end). Each
memory pool is tracked independently. The probes for individual pools pass the memory
manager's name, the pool name, and pool usage information at both the beginning and ending

of pool collection.

The following probes are available for garbage collecting activities:

Probe Description

gc-begin Probe that starts when a system-wide collection starts. The
one argument available for this probe, (ar g[0]), is a boolean
value that indicates whether to perform a Full GC.

gc-end Probe that starts when a system-wide collection is

completed. No arguments.

mem pool - gc- begin

Probe that starts when an individual memory pool is
collected.

mem pool - gc- end

Probe that starts after an individual memory pool is collected.

The following arguments are available for the memory pool probes:

Probe Arguments

Description

args[0] A pointer to the UTF-8 string data that contains the name of
the manager that manages this memory pool.

args[1] The length of the manager name data (in bytes).

args[2] A pointer to the UTF-8 string data that contains the name of
the memory pool.

argsj 3] The length of the memory pool name data (in bytes).

args[4] The initial size of the memory pool (in bytes).

args[5] The amount of memory in use in the memory pool (in bytes).

argsj 6] The number of committed pages in the memory pool.

args[7] The maximum size of the memory pool.

Method Compilation Probes

Probes are available to indicate which methods are being compiled and by which compiler, and
to track when the compiled methods are installed or uninstalled.

The following probes are available to mark the beginning and ending of method compilation:

Java Virtual Machine Guide
G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 3 of 17

ORACLE Chapter 10
Using the hotspot Provider

Probe Description
met hod- conpi | e- begin Probe that starts when the method compilation begins.
met hod- conpi | e- end Probe that starts when method compilation is completed. In

addition to the following arguments, the ar gv[8] argument is
a boolean value that indicates whether the compilation was
successful.

The following arguments are available for the method compilation probes:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
compiler that is compiling this method.

args[1] The length of the compiler name data (in bytes).

args[2] A pointer to UTF-8 string data that contains the name of the
class of the method being compiled.

argsj 3] The length of the class name data (in bytes).

argsj 4] A pointer to UTF-8 string data that contains the name of the
method being compiled.

args[5] The length of the method name data (in bytes).

argsj 6] A pointer to UTF-8 string data that contains the signature of

the method being compiled.

args[7] The length of the signature data (in bytes).

The following probes are available when compiled methods are installed for execution or

uninstalled:
Probe Description
conpi | ed- met hod- | oad Probe that starts when a compiled method is installed. The
additional argument, ar gv[6] contains a pointer to the
compiled code, and the ar gv[7] is the size of the compiled
code.
conpi | ed- met hod- unl oad Probe that starts when a compiled method is uninstalled.

The following arguments are available for the compiled method loading probe:

Probe Arguments Description

args[0] A pointer to UTF-8 string data that contains the name of the
class of the method being installed.

args[1] The length of the class name data (in bytes).

args[2] A pointer to UTF-8 string data that contains the name of the
method being installed.

argsj 3] The length of the method name data (in bytes).

argsj 4] A pointer to UTF-8 string data that contains the signature of

the method being installed.

args[5] The length of the signature data (in bytes).

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE’

Chapter 10
Using the hotspot Provider

Monitor Probes

When your Java application runs, threads enter and exit monitors, wait on monitors, and
perform notifications. Probes are available for all wait and notification events, and for
contended monitor entry and exit events.

A contended monitor entry occurs when a thread attempts to enter a monitor while another
thread is in the monitor. A contended monitor exit event occurs when a thread leaves a monitor
while other threads are waiting to enter to the monitor. The contended monitor entry and
contended monitor exit events might not match each other in relation to the thread that
encounters these events, athough a contended exit from one thread is expected to match up to
a contended enter on another thread (the thread waiting to enter the monitor).

Monitor events provide the thread ID, a monitor ID, and the type of the class of the object as
arguments. The thread ID and the class type can map back to the Java program, while the
monitor ID can provide matching information between probe firings.

The existence of these probes in the VM degrades performance and they start only when the -
XX: +Ext endedDTr acePr obes flag is set on the Java command line. This flag is turned on and off
dynamically at runtime by using the j i nf o utility.

If the flag is off, the monitor probes are present in the probe listing that is obtainable from
Dtrace, but the probes remain dormant and don'’t start. Removal of this restriction is planned
for future releases of the VM, and these probes will be enabled with no impact to performance.

The following probes are available for monitoring events:

Probe Description

moni t or - cont ended- ent er Probe that starts when a thread attempts to enter a
contended monitor

moni t or - cont ended- ent er ed Probe that starts when a thread successfully enters the
contended monitor

moni t or - cont ended- exi t Probe that starts when a thread leaves a monitor and other

threads are waiting to enter

noni t or - wai t

Probe that starts when a thread begins a wait on a monitor
by using the Qbj ect . wai t () . The additional argument,

ar gs[4] is a long value that indicates the timeout being
used.

noni tor-wai t ed

Probe that starts when a thread completes an
(bj ect.wait () action.

moni tor-notify

Probe that starts when a thread calls Cbj ect . noti fy() to
notify waiters on a monitor.

moni t or - noti fyAl | Probe that starts when a thread calls Obj ect . noti fyAl | ()

to notify waiters on a monitor.

The following arguments are available for the monitor:

Probe Arguments Description

args[0]

The Java thread identifier for the thread performing the
monitor operation.

args[1]

A unique, but opaque identifier for the specific monitor that
the action is performed upon.

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 5 of 17

ORACLE’

Chapter 10
Using the hotspot Provider

Probe Arguments

Description

args[2] A pointer to UTF-8 string data which contains the class name
of the object being acted upon.
argsj 3] The length of the class name data (in bytes).

Application Tracking Probes

You can use probes to allow fine-grained examination of Java thread execution. Application
tracking probes start when a method is entered or returned from, or when a Java object has

been allocated.

The existence of these probes in the VM degrades performance and they start only when the
VM has the Ext endedDTr acePr obes flag enabled. By default, the probes are present in any
listing of the probes in the VM, but are dormant without the appropriate flag. Removal of this
restriction is planned in future releases of the VM, and these probes will be enabled no impact

to performance.

The following probes are available for the method entry and exit:

Probe

Description

met hod-entry

Probe that starts when a method is being entered.

net hod-return

Probe that starts when a method returns, either normally or
due to an exception.

The following arguments are available for the method entry and exit:

Probe Arguments

Description

args[0] The Java thread ID of the thread that is entering or leaving
the method.

args[1] A pointer to UTF-8 string data that contains the name of the
class of the method.

args[2] The length of the class name data (in bytes).

args 3] A pointer to UTF-8 string data that contains the name of the
method.

argsj 4] The length of the method name data (in bytes).

args[5] A pointer to UTF-8 string data that contains the signature of
the method.

argsj 6] The length of the signature data (in bytes).

The following probe is available for the object allocation:
Probe Description

obj ect-all oc

Probe that starts when any object is allocated, provided that
the Ext endedDTr acePr obes flag is enabled.

The following arguments are available for the object allocation probe:

Java Virtual Machine Guide
G35928-01
Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 6 of 17

ORACLE’

Chapter 10
Using the hotspot_jni Provider

Probe Arguments

Description

args[0] The Java thread ID of the thread that is allocating the object.

args[1] A pointer to UTF-8 string data that contains the class name
of the object being allocated.

args[2] The length of the class name data (in bytes).

args 3] The size of the object being allocated.

Using the

hotspot_jni Provider

In order to call from native code to Java code, due to embedding of the VM in an application or
execution of native code within a Java application, the native code must make a call through
the Java Native Interface (JNI). The JNI provides a number of methods for invoking Java code
and examining the state of the VM. DTrace probes are provided at the entry point and return
point for each of these methods. The probes are provided by the hotspot_jni provider. The
name of the probe is the name of the JNI method, appended with - ent ry for entry probes, and
-return for return probes. The arguments available at each entry probe are the arguments that
were provided to the function, with the exception of the | nvoke* methods, which omit the
arguments that are passed to the Java method. The return probes have the return value of the
method as an argument (if available).

Sample DTrace Probes

Java Virtual Machine
G35928-01
Copyright © 1993, 20

provi der hotspot {
probe vminit-begin();
probe vminit-end();
probe vm shut down();
probe cl ass-| oaded(
char* class_nane, uintptr_t class_nane_|len, uintptr_t class_|oader_id,
bool is_shared);
probe cl ass-unl oaded(
char* class_nane, uintptr_t class_nane_|len, uintptr_t class_|oader_id,
bool is_shared);
probe gc-begin(bool is_full);
probe gc-end();
probe mem pool - gc- begi n(
char* mgr_nane, uintptr_t ngr_name_| en, char* pool _nane, uintptr_t
pool _name_| en
uintptr_t initial _size, uintptr_t used, uintptr_t conmitted, uintptr_t
max_si ze);
probe mem pool - gc- end(
char* mgr_nane, uintptr_t ngr_name_| en, char* pool _nane, uintptr_t
pool _name_| en
uintptr_t initial _size, uintptr_t used, uintptr_t conmitted, uintptr_t
max_si ze);
probe thread-start(
char* thread_name, uintptr_t thread_nane_| ength,
uintptr_t java thread_id, uintptr_t native_thread_id, bool is_daenon);
probe thread-stop(
char* thread_name, uintptr_t thread_nane_| ength,
uintptr_t java thread_id, uintptr_t native_thread_id, bool is_daenon);

Guide
September 8, 2025

25, Oracle and/or its affiliates. Page 7 of 17

ORACLE’

b

probe met hod- conpi | e- begi n(
char* class_nane, uintptr_t class_nane_|en
char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_|en);
probe met hod- conpi | e- end(
char* class_nane, uintptr_t class_nane_|en
char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_len
bool is_success);
probe conpi | ed- et hod- | oad(
char* class_nane, uintptr_t class_nane_|en
char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_len
voi d* code, uintptr_t code_size);
probe conpi | ed- met hod- unl oad(
char* class_nane, uintptr_t class_nane_|en
char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_|en);
probe noni tor - cont ended- ent er (

uintptr_t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_|en);
probe noni tor - cont ended- ent er ed(

uintptr_t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_|en);
probe moni t or - cont ended- exi t (

uintptr _t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_| en);
probe noni tor-wait (

uintptr_t java thread_id, uintptr_t nonitor_id,

char* class_nane, uintptr_t class_nane_|en
uintptr_t timeout);
probe noni tor-wait ed(

uintptr _t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_|en);
probe monitor-notify(

uintptr _t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_|en);
probe monitor-notifyAll(

uintptr_t java thread_id, uintptr_t nonitor_id,

char* class_name, uintptr_t class_nane_|en);
probe met hod-ent ry(

Chapter 10
Sample DTrace Probes

uintptr_t java thread_id, char* class_nane, uintptr_t class_nane_|len,

char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_|en);
probe met hod-r et urn(

uintptr_t java thread_id, char* class_nane, uintptr_t class_nane_|len,

char* method_nanme, uintptr_t nethod _name_len,
char* signature, uintptr_t signature_|en);
probe object-all oc(

uintptr_t java thread_id, char* class_nane, uintptr_t class_nane_|len,

uintptr_t size);

provi der hotspot_jni {

probe All ocQbject-entry(void*, void*);
probe All ocQhject-return(void*);

Java Virtual Machine Guide

G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 8 of 17

ORACLE Chapter 10
Sample DTrace Probes

probe AttachCurrent ThreadAsDaenon-entry(voi d*, void**, void*);
probe AttachCurrent ThreadAsDaenmon-return(uint32_t);
probe AttachCurrent Thread-entry(void*, void**, void*);
probe AttachCurrentThread-return(uint32_t);

probe Cal | Bool eanMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hodA-return(uintptr_t);

probe Cal | Bool eanMet hod-entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hod-return(uintptr_t);

probe Cal | Bool eanMet hodV-entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hodV-return(uintptr_t);

probe Cal | Byt eMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Byt eMet hodA-return(char);

probe Cal | Byt eMet hod-entry(void*, void*, uintptr_t);
probe Cal | Byt eMet hod-return(char);

probe Cal | Byt eMet hodV-entry(void*, void*, uintptr_t);

probe Cal | Byt eMet hodV-return(char);

probe Cal | Char Met hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Char Met hodA-return(uint16 t);

probe Cal | Char Met hod-entry(voi d*, void*, uintptr_t);

probe Cal | Char Met hod-return(uint16 t);

probe Cal | Char Met hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Char Met hodV-return(uint16 t);

probe Cal | Doubl eMet hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Doubl eMet hodA-r et urn(doubl e) ;

probe Cal | Doubl eMet hod-entry(voi d*, void*, uintptr_t);

probe Cal | Doubl eMet hod-r et ur n(doubl) ;

probe Cal | Doubl eMet hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Doubl eMet hodV-r et ur n(doubl e) ;

probe Cal | Fl oat Met hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Fl oat Met hodA-return(float);

probe Cal | Fl oat Met hod- entry(voi d*, void*, uintptr_t);

probe Cal | Fl oat Met hod-return(float);

probe Cal | Fl oat Met hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Fl oat Met hodV-return(float);

probe Call|nt Met hodA-entry(void*, void*, uintptr_t);

probe CalllntMethodA-return(uint32_t);

probe Cal ||l nt Method-entry(void*, void*, uintptr_t);

probe CalllntMethod-return(uint32_t);

probe Calllnt Met hodV-entry(void*, void*, uintptr_t);

probe CalllntMethodV-return(uint32_t);

probe Cal | LongMet hodA-entry(void*, void*, uintptr_t);

probe Cal | LongMet hodA-return(uintptr_t);

probe Cal | LongMet hod-entry(void*, void*, uintptr_t);

probe Cal | LongMet hod-return(uintptr_t);

probe Cal | LongMet hodV-entry(void*, void*, uintptr_t);

probe Cal | LongMet hodV-return(uintptr_t);

probe Cal | Nonvi rtual Bool eanMet hodA- entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Bool eanMet hodA-return(uintptr_t);

probe Cal | Nonvi rtual Bool eanMet hod- ent ry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Bool eanMet hod-return(uintptr_t);

probe Cal | Nonvi rtual Bool eanMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Bool eanMet hodV-return(uintptr_t);

probe Cal | Nonvirtual Byt eMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Byt eMet hodA-return(char);

probe Cal | Nonvirtual Byt eMet hod-entry(voi d*, void*, void*, uintptr_t);

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE Chapter 10
Sample DTrace Probes

probe Cal | Nonvi rtual Byt eMet hod-return(char);

probe Cal | Nonvirtual Byt eMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Byt eMet hodV-return(char);

probe Cal | Nonvi rtual Char Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Char Met hodA-return(uint16 t);

probe Cal | Nonvi rtual Char Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Char Met hod-return(uint16_t);

probe Cal | Nonvi rtual Char Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Char Met hodV-return(uint16 t);

probe Cal | Nonvi rtual Doubl eMet hodA- ent ry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Doubl eMet hodA-r et ur n(doubl e) ;

probe Cal | Nonvi rtual Doubl eMet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Doubl eMet hod- r et ur n(doubl e) ;

probe Cal | Nonvi rtual Doubl eMet hodV- ent ry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rt ual Doubl eMet hodV-r et ur n(doubl e) ;

probe Cal | Nonvirtual Fl oat Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Fl oat Met hodA-return(float);

probe Cal | Nonvirtual Fl oat Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Fl oat Met hod-return(float);

probe Cal | Nonvirtual Fl oat Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Fl oat Met hodV-return(float);

probe Cal | Nonvirtual I nt Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual I nt Met hodA-return(uint32_t);

probe Cal | Nonvirtual I nt Met hod-entry(void*, void*, void*, uintptr_t);
probe Cal I Nonvirtual I nt Met hod-return(uint3t);

probe Cal | Nonvirtual I nt Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual I nt Met hodV-return(uint32_t);

probe Cal | Nonvirtual LongMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LongMet hodA-return(uintptr_t);

probe Cal | Nonvirtual LongMet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LonghMet hod-return(uintptr_t);

probe Cal | Nonvirtual LongMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LongMet hodV-return(uintptr_t);

probe Cal | Nonvirtual Qbj ect Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Obj ect Met hodA-return(voi d*);

probe Cal | Nonvirtual Qbj ect Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Qbj ect Met hod-r et urn(voi d*);

probe Cal | Nonvi rtual Qbj ect Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Obj ect Met hodV-return(voi d*);

probe Cal | Nonvirtual Short Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Short Met hodA-return(uint16 t);

probe Cal | Nonvirtual Short Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Short Met hod-return(uint16 t);

probe Cal | Nonvirtual Short Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Short Met hodV-return(uint16 t);

probe Cal | Nonvi rtual Voi dMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Voi dMet hodA-return();

probe Cal | Nonvi rtual Voi dvet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Voi dMet hod-return();

probe Cal | Nonvi rtual Voi dMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Voi dMet hodV-return();

probe Cal | Qoj ect Met hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Qoj ect Met hodA-return(voi d*);

probe Cal | Qbj ect Met hod-entry(voi d*, void*, uintptr_t);

probe Cal | Qbj ect Met hod-r et urn(voi d*);

probe Cal | Qoj ect Met hodV-entry(voi d*, void*, uintptr_t);

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE’

probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe

Java Virtual Machine Guide
G35928-01

Cal | Cbj ect Met hodV-r et urn(voi d*);

Cal | Short Met hodA- entry(voi d*, void*, uintptr_t);

Cal | Short Met hodA-return(uint16_t);

Cal | Short Met hod-entry(voi d*, void*, uintptr_t);

Cal | Short Met hod-return(uint16_t);

Cal | Short Met hodV-entry(voi d*, void*, uintptr_t);

Cal | Short Met hodV-return(uint16_t);

Cal | St ati cBool eanMet hodA-entry(voi d*, void*, uintptr_t);
Cal | St ati cBool eanMet hodA-return(uintptr_t);

Cal | St ati cBool eanMet hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cBool eanMet hod-return(uintptr_t);

Cal | St ati cBool eanMet hodV-entry(voi d*, void*, uintptr_t);
Cal | St ati cBool eanMet hodV-return(uintptr_t);

Cal | Stati cByt eMet hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cByt eMet hodA-return(char);

Cal | Stati cByteMet hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cByt eMet hod-return(char);

Cal | Stati cByt eMet hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cByt eMet hodV-return(char);

Cal | Stati cChar Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cChar Met hodA-return(uint16 t);

Cal | Stati cChar Met hod-entry(voi d*, void*, uintptr_t);
Cal | StaticChar Met hod-return(uintl16 t);

Cal | Stati cChar Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cChar Met hodV-return(uintl16 t);

Cal | Stati cDoubl eMet hodA-entry(void*, void*, uintptr_t);
Cal I St ati cDoubl eMet hodA-ret urn(doubl e);

Cal | Stati cDoubl eMet hod-entry(voi d*, void*, uintptr_t);
Cal | St ati cDoubl eMet hod-ret urn(doubl e);

Cal | Stati cDoubl eMet hodV-entry(void*, void*, uintptr_t);
Cal I St ati cDoubl eMet hodV-ret urn(doubl e);

Cal | Stati cFl oat Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cFl oat Met hodA-return(float);

Cal | Stati cFl oat Met hod-entry(voi d*, void*, uintptr_t);
Cal | StaticFl oat Met hod-return(float);

Cal | Stati cFl oat Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cFl oat Met hodV-return(float);

Cal I StaticlntMethodA-entry(void*, void*, uintptr_t);
Cal | StaticlntMethodA-return(uint32_t);

Cal I StaticlntMethod-entry(void*, void*, uintptr_t);
Call StaticlntMethod-return(uint32_t);

Cal | StaticlntMethodentry(void*, void*, uintptr_t);

Cal I StaticlntMethodV-return(uint32_t);

Cal | Stati cLongMet hodA-entry(voi d*, void*, uintptr_t);
Cal I StaticLongMet hodA-return(uintptr_t);

Cal I StaticLongMet hod-entry(voi d*, void*, uintptr_t);
Cal I StaticLongMet hod-return(uintptr_t);

Cal | Stati cLongMet hodV-entry(voi d*, void*, uintptr_t);
Cal I StaticLongMet hodV-return(uintptr_t);

Cal | Stati coj ect Met hodA-entry(void*, void*, uintptr_t);
Cal | Stati cQoj ect Met hodA-return(voi d*);

Cal | Stati coj ect Met hod-entry(void*, void*, uintptr_t);
Cal | Stati coj ect Met hod-return(voi d*);

Cal | Stati cQoj ect Met hodV-entry(void*, void*, uintptr_t);
Cal | Stati coj ect Met hodV-return(voi d*);

Cal | Stati cShort Met hodA-entry(void*, void*, uintptr_t);

Copyright © 1993, 2025, Oracle and/or its affiliates.

Chapter 10
Sample DTrace Probes

September 8, 2025
Page 11 of 17

ORACLE Chapter 10
Sample DTrace Probes

probe Call StaticShort MethodA-return(uint16 t);

probe Cal | StaticShortMethod-entry(void*, void*, uintptr_t);
probe Call StaticShort Method-return(uintl16 t);

probe Cal | StaticShortMethodV-entry(void*, void*, uintptr_t);
probe Cal |l StaticShort MethodV-return(uint16 t);

probe Cal | StaticVoi dvet hodA-entry(void*, void*, uintptr_t);
probe Cal | StaticVoi dMet hodA-return();

probe Cal | StaticVoi dvet hod-entry(void*, void*, uintptr_t);
probe Cal |l StaticVoi dMet hod-return();

probe Cal | StaticVoi dvet hodV-entry(void*, void*, uintptr_t);
probe Cal |l StaticVoi dMet hodV-return();

probe Cal | Voi dMet hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Voi dMet hodA-return();

probe Cal | Voi dMet hod-entry(voi d*, void*, uintptr_t);

probe Cal | Voi dMet hod-return();

probe Cal | Voi dMet hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Voi dMet hodV-return();

probe CreateJavaVM entry(voi d**, void**, void*);

probe CreateJavaVM return(uint32_t);

probe Defined ass-entry(voi d*, const char*, void*, char, uintptr_t);
probe Defined ass-return(void*);

probe Del et ed obal Ref - entry(voi d*, void*);

probe Del et ed obal Ref-return();

probe Del et eLocal Ref-entry(voi d*, void*);

probe Del et eLocal Ref -return();

probe Del et eWeakd obal Ref -entry(voi d*, void*);

probe Del et eWeakd obal Ref -return();

probe DestroyJavaVM entry(void*);

probe DestroyJavaVMreturn(uint32_t);

probe DetachCurrent Thread-entry(voi d*);

probe DetachCurrent Thread-return(uint32_t);

probe Ensurelocal Capacity-entry(void*, uint32_t);

probe Ensurelocal Capacity-return(uint32_t);

probe ExceptionCheck-entry(void*);

probe ExceptionCheck-return(uintptr_t);

probe ExceptionC ear-entry(void*);

probe ExceptionC ear-return();

probe ExceptionDescribe-entry(void*);

probe ExceptionDescribe-return();

probe ExceptionCQccurred-entry(void*);

probe ExceptionQccurred-return(void*);

probe Fatal Error-entry(void* env, const char*);

probe Findd ass-entry(void*, const char*);

probe Findd ass-return(void*);

probe FronRefl ect edFi el d-entry(void*, void*);

probe FronReflectedField-return(uintptr_t);

probe FronRefl ect edMet hod-entry(void*, void*);

probe FronRefl ectedMet hod-return(uintptr_t);

probe GetArraylLength-entry(void*, void*);

probe GetArraylLength-return(uintptr_t);

probe Get Bool eanArrayEl enents-entry(void*, void*, uintptr_t*);
probe GetBool eanArrayEl enents-return(uintptr_t*);

probe Get Bool eanArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
ntptr_t*);

probe Get Bool eanArrayRegi on-return();

probe Get Bool eanFi el d-entry(void*, void*, uintptr_t);

u

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 12 of 17

ORACLE’

u

Chapter 10
Sample DTrace Probes

probe GetBool eanFiel d-return(uintptr_t);

probe GetByteArrayEl enents-entry(void*, void*, uintptr_t*);

probe GetByteArrayEl enents-return(char*);

probe GetByteArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, char*);
probe Get Byt eArrayRegi on-return();

probe GetByteField-entry(void*, void*, uintptr_t);

probe GetByteField-return(char);

probe Get CharArrayEl enents-entry(voi d*, void*, uintptr_t*);

probe Get Char ArrayEl ements-return(uint16 t*);

probe Get Char ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
nt16_t*);

probe Get Char ArrayRegi on-return();

probe Get CharField-entry(void*, void*, uintptr_t);

probe GetCharField-return(uint16_t);

probe Get CreatedJavaVMs-eintptr_t*);

probe Get CreatedJavaVMs-return(uintptr_t);

probe Get CreatelJavaVMs-entry(void*, uintptr_t, uintptr_t*);

probe Get CreateJavaVMs-return(uint32_t);

probe Get Def aul t JavavVM ni t Args-entry(voi d*);

probe Get Defaul t JavavM nit Args-return(uint32_t);

probe GetDirectBufferAddress-entry(void*, void*);

probe GetDirectBufferAddress-return(void*);

probe GetDirectBufferCapacity-entry(void*, void*);

probe GetDirectBufferCapacity-return(uintptr_t);

probe Get Doubl eArrayEl ements-entry(voi d*, void*, uintptr_t*);
probe Get Doubl eArrayEl ement s-r et urn(doubl e*) ;

probe Get Doubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,

doubl e*);

u

probe Get Doubl eArrayRegi on-return();

probe Get Doubl eFi el d-entry(void*, void*, uintptr_t);

probe Get Doubl eFi el d-return(doubl e);

probe GetEnv-entry(void*, void*, void*);

probe GetEnv-return(uint32_t);

probe GetFiel dl D-entry(void*, void*, const char*, const char*);
probe GetFieldlD-return(uintptr_t);

probe GetFl oat ArrayEl ements-entry(void*, void*, uintptr_t*);
probe GetFl oat ArrayEl ements-return(float*);

probe Get Fl oat ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, float*);
probe GetFl oat ArrayRegi on-return();

probe GetFl oatField-entry(void*, void*, uintptr_t);

probe GetFloatField-return(float);

probe GetlntArrayEl ements-entry(void*, void*, uintptr_t*);

probe GetlntArrayEl ements-return(uint32_t*);

probe GetlntArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
nt32_t*);

probe GetlntArrayRegi on-return();

probe GetlntField-entry(void*, void*, uintptr_t);

probe GetIntField-return(uint32_t);

probe GetJavaVMentry(void*, void**);

probe GetJavaVMreturn(uint32_t);

probe GetlLongArrayEl enents-entry(void*, void*, uintptr_t*);

probe GetlLongArrayEl ements-return(uintptr_t*);

probe GetLongArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,

uintptr_t*);

probe GetLongArrayRegi on-return();
probe GetlLongField-entry(void*, void*, uintptr_t);

Java Virtual Machine Guide

G35928-01

September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE’

probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe

u
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe

Chapter 10

Sample DTrace Probes

CGet LongFi el d-return(uintptr_t);

Get Met hodl D-entry(voi d*, void*, const char*, const char*);
Get Met hodl D-return(uintptr_t);

Get Qoj ect ArrayEl enent -entry(voi d*, void*, uintptr_t);

CGet Qbj ect ArrayEl enent -return(voi d*);

CGet oj ect d ass-entry(voi d*, void*);

CGet bj ect O ass-return(voi d*);

Get Ooj ect Fi el d-entry(voi d*, void*, uintptr_t);

CGet vj ect Fiel d-return(voi d*);

CGet bj ect Ref Type-entry(voi d*, void*);

CGet Obj ect Ref Type-return(voi d*);

GetPrimtiveArrayCritical -entry(void*, void*, uintptr_t*);
GetPrimtiveArrayCritical -return(void*);

Get Short ArrayEl ement s-entry(voi d*, void*, uintptr_t*);

Get Short ArrayEl ements-return(uint16_t*);

Cet Short ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,

nt16_t*);

Get Short ArrayRegi on-return();

Get Short Fi el d-entry(void*, void*, uintptr_t);
CGetShortField-return(uint16_t);

CGet St ati cBool eanFi el d-entry(voi d*, void*, uintptr_t);
Cet St at i cBool eanFi el d-return(uintptr_t);

CGet Stati cByteField-entry(void*, void*, uintptr_t);
Cet StaticByteField-return(char);

CGet StaticCharField-entry(void*, void*, uintptr_t);
CGetStaticCharField-return(uintl6_t);

CGet St ati cDoubl eFi el d-entry(voi d*, void*, uintptr_t);
Cet St at i cDoubl eFi el d-return(doubl e);

CGet StaticFieldl D-entry(void*, void*, const char*, const char*);
CetStaticFieldl D-return(uintptr_t);

Get StaticFl oatFiel d-entry(void*, void*, uintptr_t);
CGetStaticFloatField-return(float);
CGetStaticlntField-entry(void*, void*, uintptr_t);
CetStaticlntField-return(uint32_t);

CGet StaticLongFi el d-entry(void*, void*, uintptr_t);
Get StaticlLongField-return(uintptr_t);

Get Stati cMet hodl D-entry(voi d*, void*, const char*, const char*);
Cet StaticMethodl D-return(uintptr_t);

CGet StaticObjectField-entry(void*, void*, uintptr_t);
CGet Stati cObj ectFi el d-return(voi d*);

Get StaticShortField-entry(void*, void*, uintptr_t);
CGet StaticShortField-return(uintl6_t);

pro GetStringChars-entry(void*, void*, uintptr_t*);

probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe
probe

Java Virtual Machine Guide
G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

Get StringChars-return(const uintl6 t*);
CetStringCritical-entry(void*, void*, uintptr_t*);
GetStringCritical -return(const uint16 t*);

Get StringlLengt h-entry(voi d*, void*);

Get Stringlength-return(uintptr _t);

Get StringRegi on-entry(void*, void*, uintptr_t, uintptr_t, uintl6_t*);

Cet StringRegi on-return();

Get StringUTFChar s-entry(voi d*, void*, uintptr_t*);
Get StringUTFChar s-return(const char*);

Cet Stri ngUTFLengt h-entry(voi d*, voi d*);

Get StringUTFLengt h-return(uintptr_t);

Get StringUTFRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, char*);

Get StringUTFRegi on-return();

September 8, 2025

Page 14 of 17

ORACLE Chapter 10
Sample DTrace Probes

probe Get Supercl ass-entry(void*, void*);

probe Get Superclass-return(void*);

probe Get Version-entry(void*);

probe GetVersion-return(uint32_t);

probe |sAssignabl eFromentry(voi d*, void*, void*);
probe |sAssignabl eFromreturn(uintptr _t);

probe IslnstanceC -entry(void*, void*, void*);
probe IslnstanceCf-return(uintptr_t);

probe | sSamehj ect-entry(void*, void*, void*);
probe |sSamehj ect-return(uintptr_t);

probe MonitorEnter-entry(void*, void*);

probe MonitorEnter-return(uint32_t);

probe MnitorExit-entry(void*, void*);

probe MnitorExit-return(uint32_t);

probe NewBool eanArray-entry(void*, uintptr_t);
probe NewBool eanArray-return(voi d*);

probe NewByteArray-entry(void*, uintptr_t);
probe NewByt eArray-return(void*);

probe NewCharArray-entry(void*, uintptr_t);
probe NewChar Array-return(void*);

probe NewDirect Byt eBuf fer-entry(void*, void*, uintptr_t);
probe NewDirect Byt eBuf fer-return(void*);

probe NewDoubl eArray-entry(void*, uintptr_t);
probe NewDoubl eArray-return(void*);

probe Newrl oat Array-entry(void*, uintptr_t);
probe Newrl oat Array-return(void*);

probe Newd obal Ref -entry(voi d*, void*);

probe Newd obal Ref-return(voi d*);

probe New nt Array-entry(void*, uintptr_t);

probe New nt Array-return(void*);

probe NewLocal Ref-entry(void*, void*);

probe NewlLocal Ref-return(void*);

probe NewLongArray-entry(void*, uintptr_t);
probe NewLongArray-return(void*);

probe New(bj ect A-entry(voi d*, void*, uintptr_t);
probe NewCbj ect A-return(voi d*);

probe NewCbj ect Array-entry(void*, uintptr_t, void*, void*);
probe NewCbj ect Array-return(void*);

probe NewChject-entry(void*, void*, uintptr_t);
probe NewChj ect-return(void*);

probe New(bj ectV-entry(void*, void*, uintptr_t);
probe NewCbj ect V-return(voi d*);

probe NewShortArray-entry(void*, uintptr_t);
probe NewShortArray-return(void*);

probe NewString-entry(void*, const uintl6 t*, uintptr_t);
probe NewString-return(void*);

probe NewStringUTF-entry(void*, const char*);
probe NewsStringUTF-return(void*);

probe Newwakd obal Ref -entry(voi d*, void*);
probe Newwakd obal Ref -return(void*);

probe PopLocal Frame-entry(voi d*, void*);

probe PopLocal Franme-return(voi d*);

probe PushLocal Frame-entry(void*, uint32_t);
probe PushlLocal Frame-return(uint32_t);

probe Regi sterNatives-entry(void*, void*, const void*, uint32_t);
probe RegisterNatives-return(uint32_t);

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE’

probe

Chapter 10
Sample DTrace Probes

Rel easeBool eanArrayEl ement s-entry(voi d*, void*, uintptr_t*, uint32_t);

probe Rel easeBool eanArrayEl enents-return();

probe Rel easeByt eArrayEl ements-entry(voi d*, void*, char*, uint32_t);

probe Rel easeByteArrayEl ements-return();

probe Rel easeChar ArrayEl ement s-entry(voi d*, void*, uint16_t*, uint32_t);

probe Rel easeChar ArrayEl ements-return();

probe Rel easeDoubl eArrayEl ement s-entry(voi d*, void*, double*, uint32_t);

probe Rel easeDoubl eArrayEl ements-return();

probe Rel easeFl oat ArrayEl enents-entry(void*, void*, float*, uint32_t);

probe Rel easeFl oat ArrayEl enents-return();

probe Rel easel nt ArrayEl enents-entry(void*, void*, uint32_t*, uint32_t);

probe Rel easel nt ArrayEl enents-return();

probe Rel easeLongArrayEl ements-entry(void*, void*, uintptr_t*, uint32_t);

probe Rel easeLongArrayEl ements-return();

probe Rel easehj ect ArrayEl ement s-entry(voi d*, void*, void**, uint32_t);

probe Rel easeObj ect ArrayEl ements-return();

probe Rel easey(void*, void*, void*, uint32_t);

probe Rel easePrimitiveArrayCritical-return();

probe Rel easeShort ArrayEl enents-entry(void*, void*, uint1l6_t*, uint32_t);

probe Rel easeShort ArrayEl enents-return();

probe Rel easeStringChars-entry(void*, void*, const uintlé t*);

probe Rel easeStringChars-return();

probe Rel easeStringCritical-entry(void*, void*, const uintl6_t*);

probe Rel easeStringCritical-return();

probe Rel easeStringUTFChars-entry(void*, void*, const char*);

probe Rel easeStringUTFChars-return();

probe Set Bool eanArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
uintptr_t*);

probe Set Bool eanArrayRegi on-return();

probe Set Bool eanFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);

probe Set Bool eanFi el d-return();

probe Set Byt eArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
char*);

probe Set Byt eArrayRegi on-return();

probe SetByteField-entry(void*, void*, uintptr_t, char);

probe SetByteField-return();

probe Set Char ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
uint1e t*);

probe Set Char ArrayRegi on-return();

probe Set Char Fi el d-entry(void*, void*, uintptr_t, uintl16_t);

probe Set CharField-return();

probe Set Doubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t, const
doubl e*);

probe Set Doubl eArrayRegi on-return();

probe Set Doubl eFi el d-entry(voi d*, void*, uintptr_t, double);

probe Set Doubl eFi el d-return();

probe Set Fl oat ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
float*);

probe Set Fl oat ArrayRegi on-return();

probe SetFl oat Fi el d-entry(void*, void*, uintptr_t, float);

probe SetFl oat Fiel d-return();

probe SetlntArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
uint32_t*);

probe SetlntArrayRegion-return();

probe SetlntField-entry(void*, void*, uintptr_t, uint32_t);

probe SetlntField-return();

Java Virtual Machine Guide

G35928-01

Copyright © 1993, 2025, Oracle and/or its affiliates.

September 8, 2025
Page 16 of 17

ORACLE Chapter 10
Sample DTrace Probes

probe SetlLongArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
uintptr_t*);
probe Set LongArrayRegi on-return();
probe SetlLongField-entry(void*, void*, uintptr_t, uintptr_t);
probe SetLongField-return();
probe Set Cbj ect ArrayEl ement-entry(voi d*, void*, uintptr_t, void*);
probe Set Cbject ArrayEl ement-return();
probe Set CbjectField-entry(void*, void*, uintptr_t, void*);
probe Set ObjectField-return();
probe Set Short ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t, const
nt16_t*);
probe Set Short ArrayRegi on-return();
probe Set ShortFiel d-entry(void*, void*, uintptr_t, uintl6 t);
probe Set ShortField-return();
probe Set StaticBool eanFi el d-entry(voi d*, void*, uintptr_t, uintptr_t);
probe Set Stati cBool eanFi el d-return();
probe Set StaticByteField-entry(void*, void*, uintptr_t, char);
probe Set StaticByteField-return();
probe SetStaticCharField-entry(void*, void*, uintptr_t, uintl6 t);
probe Set StaticCharField-return();
probe Set StaticDoubl eFiel d-entry(void*, void*, uintptr_t, double);
probe Set StaticDoubl eField-return();
probe SetStaticFloatField-entry(void*, void*, uintptr_t, float);
probe Set StaticFloatField-return();
probe SetStaticlntField-entry(void*, void*, uintptr_t, uint32_t);
probe SetStaticlntField-return();
probe Set StaticLongField-entry(void*, void*, uintptr_t, uintptr_t);
probe Set StaticLongField-return();
probe SetStaticObjectField-entry(void*, void*, uintptr_t, void*);
probe Set StaticOhjectField-return();
probe SetStaticShortField-entry(void*, void*, uintptr_t, uintl6 t);
probe Set StaticShortField-return();
probe Throw entry(void*, void*);
probe ThrowNew entry(voi d*, void*, const char*);
probe ThrowNewreturn(uint32_t);
probe Throwreturn(uint32_t);
probe ToRefl ectedFiel d-entry(void*, void*, uintptr_t, uintptr_t);
probe ToRefl ectedFi el d-return(void*);
probe ToRefl ectedMet hod-entry(void*, void*, uintptr_t, uintptr_t);
probe ToRefl ect edMet hod-return(void*);
probe Unregi sterNatives-entry(void*, void*);
probe UnregisterNatives-return(uint32_t);

u

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 17 of 17

Fatal Error Reporting

Fatal errors are errors such as native memory exhaustion, memory access errors, or explicit
signals directed to the process. Fatal errors can be triggered by native code within the
application (for example, developer-written Java Native Interface (JNI) code), by third-party
native libraries that the are used by application or the JVM, or by native code in the JVM. If a
fatal error causes the process that is hosting the JVM to terminate, the JVM gathers
information about the error and writes a crash report.

The JVM tries to identify the nature and location of the error. If possible, the JVM writes
detailed information about the state of the JVM and the process, at the time of the crash. The
details that are available can depend on the platform and the nature of the crash. The
information that is provided by this error-reporting mechanism lets you debug your application
more easily and efficiently, and helps you identify issues in third-party code. When an error
message indicates a problem in the JVM code, you can submit a more accurate and helpful
bug report. In some cases, crash report generation causes secondary errors that prevent full
details from being reported.

Error Report Example

The following example shows the start of an error report (file hs_err _pi d18240. | og) for a
crash in the native JNI code for an application:

#

A fatal error has been detected by the Java Runtime Environnent:
#

SIGSEGV (0xb) at pc=0x00007f 0Of 159f 857d, pi d=18240, ti d=18245
#

JRE version: Java(TM SE Runtine Environnent (9.0+167) (build 9-ea+167)
Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, m xed node, tiered,
conpressed oops, gl gc, |inux-and64)

Probl ematic frame:

C [libMApp.so+0x57d] Java_MyApp_readDat a+Ox11

H+

Core dunp will be witten. Default location: /cores/core.18240)

If you would like to submt a bug report, please visit:
http://bugreport.java. contf bugreport/crash.jsp

The crash happened outside the Java Virtual Machine in native code.

See problematic frane for where to report the bug.

HoH R R R

--------------- SUMMARY -----ccmnn--
Command Line: MyApp

Host: Intel (R) Xeon(R) CPU X5675 @3.07GHz, 24 cores, 141G Ubuntu
12.04 LTS
Time: Fri Apr 28 02:57:13 2017 EDT el apsed time: 2 seconds (0d Oh Om 2s)

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 11
Error Report Example

--------------- THREAD -ceceermnaemnn-

Current thread (0x00007f102¢c013000): JavaThread "main" [_thread_in_native,
i d=18245, stack(0x00007f 10345c0000, 0x00007f 10346c0000)]

Stack: [0x00007f 10345c¢0000, 0x00007f 10346c0000], sp=0x00007f 10346be930, free
space=1018k

Native frames: (J=conpiled Java code, A=aot conpiled Java code,
j=interpreted, W=VM code, C=native code)

C [libMApp.so+0x57d] Java_M/App_readDat a+Ox11

i MApp.readData()!+0

i MApp. mai n([Ljaval/l ang/ String;) V+15

v ~StubRoutines::call_stub

V. [libjvmso+0x839eea] JavaCalls::call_hel per(JavaVal ue*, nethodHandl e
const & JavaCal | Argurent s*, Thread*) +0x47a

V' [libjvmso+0x896fcf] jni_invoke_static(JNIEnv_*, JavaVal ue*, _jobject*,
JNI Cal | Type, _jnmethodl D*, JN _Argunent Pusher*, Thread*) [clone .isra.90]+0x21f
V. [libjvmso+0x8a7fle] jni_CallStaticVoi dMet hod+0x14e

C [libjli.sot0x4142] JavaMni n+0x812

C [libpthread.so.0+0x7e9a] start _thread+0xda

Java franes: (J=conpiled Java code, j=interpreted, W=VM code)
i MApp.readData()!+0

i MApp. mai n([Ljaval/l ang/ String;) V+15

v ~StubRoutines::call_stub

siginfo: si_signo: 11 (SIGSEGY), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000

Java Virtual Machine Guide
G35928-01 September 8, 2025

Copyright © 1993, 2025, Oracle and/or its affiliates. Page 2 of 2

Java Virtual Machine Related Resources

The following related links are related to the JVM.

e java.lang.invoke package docunentation

 The Da Vinci Machine Project

Tools

You can control some operating characteristics of the Java HotSpot VM by using command-
line flags. For more information about the Java application launcher, see The java Command in
the Java Development Kit Tool Specifications.

Java Virtual Machine Guide
G35928-01 September 8, 2025
Copyright © 1993, 2025, Oracle and/or its affiliates. Page 1 of 1

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/lang/invoke/package-summary.html
http://openjdk.java.net/projects/mlvm/

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Virtual Machine Technology Overview
	2 Compiler Control
	Writing Directives
	Compiler Control Options
	Writing a Directive File
	Writing a Compiler Directive
	Writing a Method Pattern in a Compiler Directive
	Writing an Inline Directive Option
	Preventing Duplication with the Enable Option

	Understanding Directives
	What Is the Default Directive?
	How Directives are Applied to Code?
	Compiler Control and Backward Compatibility

	Commands for Working with Directive Files
	Compiler Directives and the Command Line
	Compiler Directives and Diagnostic Commands
	Getting Your Java Process Identification Number
	Adding Directives Through Diagnostic Commands
	Removing Directives Through Diagnostic Commands
	Printing Directives Through Diagnostic Commands

	How Directives Are Ordered in the Directives Stack?

	3 Garbage Collection
	4 Class Data Sharing
	Class Data Sharing
	Application Class-Data Sharing

	Manually Controlling Class Data Sharing

	5 Java HotSpot Virtual Machine Performance Enhancements
	Compact Strings
	Tiered Compilation
	Segmented Code Cache

	Compressed Ordinary Object Pointer
	Zero-Based Compressed Ordinary Object Pointers
	Escape Analysis

	6 JVM APIs
	JVM Constants API
	Class-File API

	7 Support for Non-Java Languages
	Introduction to Non-Java Language Features
	Static and Dynamic Typing
	Statically-Typed Languages Are Not Necessarily Strongly-Typed Languages

	The Challenge of Compiling Dynamically-Typed Languages
	The invokedynamic Instruction
	Defining the Bootstrap Method
	Specifying Constant Pool Entries
	Example Constant Pool

	Using the invokedynamic Instruction

	8 Signal Chaining
	9 Native Memory Tracking
	Key Features
	Using Native Memory Tracking
	Enabling NMT
	Accessing NMT Data using jcmd

	Obtaining NMT Data at VM Exit

	10 DTrace Probes in HotSpot VM
	Using the hotspot Provider
	VM Lifecycle Probes
	Thread Lifecycle Probes
	Classloading Probes
	Garbage Collection Probes
	Method Compilation Probes
	Monitor Probes
	Application Tracking Probes

	Using the hotspot_jni Provider
	Sample DTrace Probes

	11 Fatal Error Reporting
	Error Report Example

	12 Java Virtual Machine Related Resources
	Tools

