
Oracle® Analytics
Developer's Guide for Oracle Analytics Server

F92263-02
May 2025

Oracle Analytics Developer's Guide for Oracle Analytics Server,

F92263-02

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Adam Donald

Contributing Authors: Stefanie Rhone, Hemala Vivek

Contributors: Oracle Analytics Server development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Documents xiii

Conventions xiii

Part I Overview of Oracle Analytics Developer Resources

1 Introduction to Oracle Analytics Developer Resources

Part II Create and Manage Custom Extensions

2 Create Custom Data Action Extensions

About Data Action Extensions and the Data Actions Framework 2-1

Data Action Categories 2-2

Data Action Context 2-3

Data Action Code Design 2-4

Data Action Model Classes 2-4

Data Action Service Classes 2-6

Data Action Code Interactions 2-7

Example Data Action plugin.xml File 2-8

Data Action Extension Files and Folders 2-9

Choose the Best Data Action Class to Extend 2-9

AbstractDataAction Class 2-10

DataActionKOModel Class 2-11

CanvasDataAction Class 2-12

EventDataAction Class 2-12

AbstractHTTPDataAction Class 2-13

URLNavigationDataAction Class 2-13

iii

HTTPAPIDataAction Class 2-14

Generate Data Action Extensions from a Template 2-14

Generated Folders and Files 2-15

Extend a Data Action Base Class 2-16

Choose Which Data Action Inherited Methods to Override 2-17

Test, Package, and Install Your Data Action 2-20

Use an Upgrade Handler for Knockout Model Changes 2-21

Upgrade Data Action Extensions 2-22

Data Action Extension File Reference 2-22

Data Action plugin.xml File Example 2-22

Data Action plugin.xml File Properties Section - tns:obiplugin 2-23

Data Action plugin.xml File Resources Section - tns:resources 2-24

Data Action plugin.xml File Extensions Section - tns:extension 2-26

3 Create Oracle Analytics Visualization and Workbook Extensions

About the Oracle Analytics Extension Development Environment 3-1

Workflow to Set Up the Oracle Analytics Extension Development Environment 3-1

Oracle Analytics Extensions Development Scripts 3-2

Types of Oracle Analytics Extensions 3-2

Oracle Analytics Extension Development Resources 3-3

Oracle Analytics Extensions Limitations 3-3

Set Up the Oracle Analytics Extension Development Environment on Mac 3-4

Install Oracle Analytics Desktop on Mac 3-4

Install Java JDK on Mac 3-4

Update Bash Profile or ZSHRC File and Create the Development Directory on Mac 3-5

Create the Extension Development Environment on Mac 3-6

Create a Skeleton Extension on Mac 3-6

Test Your Visualization and Workbook Extensions on Mac 3-8

Set Up the Oracle Analytics Extension Development Environment on Windows 3-10

Install Oracle Analytics Desktop on Windows 3-10

Install Java JDK on Windows 3-10

Set User Variables and Create a Development Directory on Windows 3-11

Create the Extension Development Environment on Windows 3-11

Create a Skeleton Extension on Windows 3-12

Test Your Visualization and Workbook Extensions on Windows 3-14

Work with Extensions 3-16

Build and Package an Extension 3-16

Upload an Extension to Oracle Analytics 3-16

Delete Extensions from the Oracle Analytics Development Environment 3-17

iv

4 Manage Oracle Analytics Extensions

Part III Embed Content

5 Get Started Embedding Content into Applications and Web Pages

About Embedding Oracle Analytics Content into Applications and Web Pages 5-1

Register an Application as a Safe Domain 5-1

6 Embed Oracle Analytics Content With iFrames

Considerations for Embedding Oracle Analytics Content With iFrame 6-1

Use iFrame to Embed Analytics Content into an Application or Web Page 6-1

7 Embed Oracle Analytics Content With the JavaScript Embedding
Framework

Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics
Content 7-1

Enable Oracle Analytics Developer Options 7-2

Find the Javascript and HTML for Embedding Oracle Analytics Content 7-2

Prepare the HTML Page for Embedded Oracle Analytics Content 7-3

Pass Filters to the HTML Page for Embedded Oracle Analytics Content 7-7

Pass Parameters to the HTML Page for Embedded Oracle Analytics Content 7-9

Refresh Data in the HTML Page for Embedded Oracle Analytics Content 7-10

Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET 7-11

Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET 7-12

Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics
Content 7-13

Use Login Prompt Authentication With Embedded Oracle Analytics Content 7-13

Part IV Use APIs

8 REST APIs

9 SOAP APIs

Introduction to Oracle Analytics Web Services 9-1

About Oracle Analytics Web Services 9-1

What are the Oracle Analytics Session-Based Web Services? 9-1

v

Description of Services and Methods in Oracle Analytics Web Services 9-2

AdministrationService Service 9-2

deleteCSPWhitelist() Method 9-3

getCSPDefaultAllowList() Method 9-3

getCSPWhitelist() Method 9-3

reloadLogConfiguration() Method 9-4

updateCSPWhitelist() Method 9-4

AnalysisExportViewsService Service 9-5

completeAnalysisExport() Method 9-5

initiateAnalysisExport() Method 9-5

ConditionService Service 9-6

evaluateCondition() Method 9-6

evaluateInlineCondition() Method 9-7

getConditionCustomizableReportElements() Method 9-7

HtmlViewService Service 9-8

About HtmlViewService Bridging and Callback URLs 9-8

addReportToPage() Method 9-9

endPage() Method 9-9

getCommonBodyHTML() Method 9-10

getHeadersHTML() Method 9-10

getHtmlforPageWithOneReport() Method 9-10

getHTMLForReport() Method 9-11

setBridge() Method 9-12

startPage() Method 9-13

iBotService Service 9-13

deleteIBot() Method 9-13

enableIBot() Method 9-14

executeIBotNow() Method 9-14

getAgentPaths() Method 9-15

getAgents() Method 9-15

getIBotStatus() Method 9-15

moveIBot() Method 9-16

purgeAlerts() Method 9-16

sendMessage() Method 9-17

subscribe() Method 9-17

unsubscribe() Method 9-17

writeIBot() Method 9-18

MetadataService Service 9-18

clearQueryCache() Method 9-19

describeColumn() Method 9-19

describeSubjectArea() Method 9-20

describeSubjectAreaWithSort() Method 9-21

vi

describeTable() Method 9-21

describeTableWithSort() Method 9-22

getSubjectAreas() Method 9-23

getSubjectAreasWithSort() Method 9-23

reloadLogConfiguration() Method 9-24

reloadMetadata() Method 9-24

ReportEditingService Service 9-24

applyReportDefaults() Method 9-25

applyReportParams() Method 9-25

getPromptElements() Method 9-26

generateReportSQL() Method 9-26

getReportColumns() Method 9-27

getReportElements() Method 9-27

SAWSessionService Service 9-28

getCurUser() Method 9-28

GetSessionEnvironment() Method 9-29

getSessionVariable() Method 9-29

impersonate() Method 9-29

impersonateex() Method 9-30

keepAlive() Method 9-30

logoff() Method 9-31

logon() Method 9-31

logonex() Method 9-31

SchedulerService Service 9-32

getJobReferences() Method 9-33

getJobInstanceReferences() Method 9-33

getJob() Method 9-34

getJobInstance() Method 9-35

cancelJobInstance() Method 9-35

removeJobs() Method 9-36

purgeJobInstances() Method 9-36

Examples of Using the SchedulerService API 9-36

SecurityService Service 9-39

forgetAccounts() Method 9-39

forgetAccountsEx() Method 9-40

getAccounts() Method 9-40

getAccountTenantID() Method 9-41

getGlobalPrivilegeACL() Method 9-41

getGlobalPrivileges() Method 9-41

getPermissions() Method 9-41

getPermissionsEx() Method 9-42

getPrivilegesStatus() Method 9-43

vii

isMember() Method 9-43

joinGroups() Method 9-43

leaveGroups() Method 9-44

renameAccountsEx() Method 9-44

updateGlobalPrivilegeACL() Method 9-44

UserPersonalizationService Service 9-45

addFavorite() Method 9-45

addFavoriteCategory() Method 9-45

deleteFavorite() Method 9-46

deleteFavoriteCategory() Method 9-46

getFavorites() Method 9-46

updateFavorites() Method 9-47

getMostRecents() Method 9-47

WebCatalogService Service 9-48

ErrorDetailsLevel Enumeration 9-49

ReadObjectsReturnOptions Enumeration 9-49

copyItem() Method 9-50

copyItem2() Method 9-50

createFolder() Method 9-50

createLink() Method 9-51

deleteItem() Method 9-51

getItemInfo() Method 9-51

getMaintenanceMode() Method 9-52

getObjectCategories() Method 9-52

getObjectCreateList() Method 9-53

getObjectTypes() Method 9-53

getSubItems() Method 9-53

getUserHomeDirPath() Method 9-54

maintenanceMode() Method 9-54

moveItem() Method 9-55

pasteItem2() Method 9-55

readObjects() Method 9-55

removeFolder() Method 9-56

setItemAttributes() Method 9-56

setItemProperty() Method 9-57

setOwnership() Method 9-57

updateCatalogItemACL() Method 9-58

writeObjects() Method 9-58

XMLViewService Service 9-59

XMLQueryOutputFormat Enumeration 9-59

cancelQuery() Method 9-60

executeSQLQuery() Method 9-60

viii

executeXMLQuery() Method 9-61

fetchNext() Method 9-61

getPromptedFilters() Method 9-62

Description of Structures in Oracle Analytics Web Services 9-62

AccessControlToken Structure 9-64

Account Structure 9-64

ACL Structure 9-65

Action Structure 9-66

ActionLinks Structure 9-66

AnalysisExportExecutionOptions Structure 9-67

AnalysisExportResult Structure 9-67

ArrayofGUIDS Structure 9-67

AssessmentResult Structure 9-68

AuthResult Structure 9-68

CatalogItemsFilter Structure 9-69

CatalogObject Structure 9-69

CausalLinkage Structure 9-70

Strength Enumeration 9-70

Interaction Enumeration 9-70

Operation Enumeration 9-70

CSPWhitelist Structure 9-71

CSPWhitelistXml Structure 9-71

DimensionContext Structure 9-72

ErrorInfo Structure 9-72

FavoriteItem Structure 9-72

ForgetAccount Structure 9-73

ForgetAccountResult Structure 9-73

ForgetAccountsStatus Structure 9-73

GetSubItemsParams Structure 9-74

ItemInfo Structure 9-74

Job Structure 9-75

JobFilter Structure 9-76

JobInstance Structure 9-76

JobInstanceFilter Structure 9-77

JobInstanceStatus Enumeration 9-77

JobReferenceAndInstanceReferences Structure 9-77

KPIColumnName Enumeration 9-78

KPIDimensionPinning Structure 9-78

KPIRequest Structure 9-79

KPIResultColumn Structure 9-79

MRUItem Structure 9-80

NameValuePair Structure 9-80

ix

NodeInfo Structure 9-80

NodeTypes Enumeration 9-80

ReportHierarchicalColumn Structure 9-81

PathMap Structure 9-81

ParameterDocument Structure 9-82

ParameterValue Structure 9-82

Prompt Structures 9-83

PromptsObjectModel Structure 9-84

PromptCollectionRunTimeInfo Structure 9-84

PromptStepObjectModel Structure 9-84

PromptStepRunTimeInfo Structure 9-85

IndividualPromptObjectModel Structure 9-85

IndividualPromptRunTimeInfoLimitedByInfo Structure 9-86

IndividualPromptRunTimeInfo Structure 9-86

IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo Structure 9-87

IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo Structure 9-87

IndividualPromptRunTimeInfoDataTypeHierarchyLevels Structure 9-88

IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels Structure 9-88

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure 9-89

IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo Structure 9-89

IndividualPromptRunTimeInfoDataType Structure 9-90

IndividualPromptRunTimeInfoSingleValueType Structure 9-90

IndividualPromptRunTimeInfoValuesType Structure 9-91

IndividualPromptRunTimeInfoCurrentValues Structure 9-91

IndividualPromptRunTimeInfoAvailableOptions Structure 9-91

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure 9-92

IndividualPromptRunTimeInfoLimitedByPromptReference Structure 9-92

IndividualPromptRunTimeInfoLimitedByPromptRefGroups Structure 9-93

Privilege Structure 9-93

PurgeJobInstancesFilter Structure 9-93

QueryResults Structure 9-94

RenameAccount Structure 9-94

RenameAccountResults Structure 9-94

RenameAccountsStatus Structure 9-95

ReportADFParameters Structure 9-95

ReportHTMLOptions Structure 9-96

ReportHTMLLinksMode Enumeration 9-96

ReportParams Structure 9-96

ReportRegularColumn Structure 9-97

ColumnAggregationRule Values 9-98

ReportRef Structure 9-98

SAColumn Structure 9-98

x

SADataType Values 9-99

AggregationRule Values 9-100

SASubjectArea Structure 9-100

SATable Structure 9-100

SAWLocale Structure 9-101

SAWSessionParameters Structure 9-101

SegmentationOptions Structure 9-102

SessionEnvironment Structure 9-102

StartPageParams Structure 9-103

TreeFlags Enumeration 9-103

TreeNodePath Structure 9-104

UpdateACLParams Structure 9-104

UpdateACLMode Enumeration 9-104

UpdateCatalogItemACLParams Structure 9-105

ValidActionLinks Structure 9-105

Variable Structure 9-105

XMLQueryExecutionOptions Structure 9-105

xi

Preface

Learn how to develop and extend your Oracle Analytics instance with embedded content, and
SDKs.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This guide is intended for application developers and integrators who want to programmatically
access and use the Oracle Analytics components to create applications or integrations with
other components. You need to have knowledge of the following:

• Oracle Analytics Desktop

• Oracle Analytics Server

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For a full list of guides, refer to the Books tab on Oracle Analytics Server Help Center.

https://docs.oracle.com/en/middleware/bi/analytics-server/books.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

https://docs.oracle.com/en/middleware/bi/analytics-server/books.html

Part I
Overview of Oracle Analytics Developer
Resources

This part introduces you to the Oracle Analytics developer resources.

Topics:

• Introduction to Oracle Analytics Developer Resources

1
Introduction to Oracle Analytics Developer
Resources

Oracle allows you to develop and extend your Oracle Analytics products with REST APIs,
custom extension plug-ins, and embedded content.

Developer Resources

Developer Resource See

REST APIs Oracle Analytics Server REST APIs

REST APIs for Oracle Analytics Publisher in Oracle Analytics Server

SOAP APIs SOAP APIs

Custom Extensions Create and Manage Custom Extensions

Embedding content methods Embed Content

1-1

https://docs.oracle.com/en/middleware/bi/analytics-server/oasri/index.html
https://docs.oracle.com/en/middleware/bi/analytics-server/oap_rest_api/index.html

Part II
Create and Manage Custom Extensions

This part explains how to create and manage custom data action, visualization, and workbook
extensions.

Topics:

• Create Custom Data Action Extensions

• Create Oracle Analytics Visualization and Workbook Extensions

• Manage Oracle Analytics Extensions

2
Create Custom Data Action Extensions

You can create custom data action extensions to use in Oracle Analytics.

Data action extensions extend Oracle Analytics and enable users to select data-points in
visualizations and to invoke specific actions. Oracle Analytics provides a core set of data
actions that cover many common use cases, but by writing your own data action extension,
you can extend this functionality even further.

You must have a basic understanding of the following to create custom data action extensions:

• JavaScript

• RequireJS

• JQuery

• KnockoutJS

Topics:

• About Data Action Extensions and the Data Actions Framework

• Choose the Best Data Action Class to Extend

• Generate Data Action Extensions from a Template

• Generated Folders and Files

• Extend a Data Action Base Class

• Choose Which Data Action Inherited Methods to Override

• Test, Package, and Install Your Data Action

• Use an Upgrade Handler for Knockout Model Changes

• Upgrade Data Action Extensions

• Data Action Extension File Reference

About Data Action Extensions and the Data Actions Framework
Data action extensions leverage the data actions framework to provide custom, data-driven
actions that are tightly integrated into the Oracle Analytics user interface.

When a user invokes a data action, the Data Action Manager passes the request context (for
example, qualified data reference, measure values, filters and metadata) to the data action
extension which is responsible for handling the request. Oracle provides four types of data
action extensions: CanvasDataAction, URLNavigationDataAction, HTTPAPIDataAction and
EventDataAction. You can extend these data action extension types along with their abstract
base classes to provide your own data actions.

Topics:

• Data Action Categories

• Data Action Context

2-1

• Data Action Code Design

• Data Action Model Classes

• Data Action Service Classes

• Data Action Code Interactions

• Example Data Action plugin.xml File

• Data Action Extension Files and Folders

Data Action Categories
The data action categories include Navigate to URL, HTTP API, Navigate to Canvas, and
Event actions:

• Navigate to URL: Opens the specified URL in a new browser tab.

• HTTP API: Uses the GET/POST/PUT/DELETE/TRACE commands to target an HTTP API and
doesn't result in a new tab. Instead the HTTP status code is examined and a transient
success or failure message is displayed.

• Navigate to Canvas: Enables the user to navigate from a source canvas to a target
canvas in either the same or a different visualization. Any filters that are in effect in the
source canvas are passed to the target canvas as external filters. When the target canvas
opens, it attempts to apply the external filters to the visualization. The mechanism by which
external filters are applied isn't described here.

• Event Actions: Publishes an event using the Oracle Analytics event router. Any
JavaScript code (for example, a third-party extension) can subscribe to these events and
handle their custom response accordingly. This provides the maximum flexibility because
the extension developer can choose how the data action responds. For example, they can
choose to display a user interface or pass data to multiple services at once.

Both the Navigate to URL and HTTP API data action category types can use a token syntax
to inject data or metadata from the visualization into the URL and POST parameters.

URL Token Replacement

HTTP data actions can replace tokens in URLs with values from the context passed to the data
action. For example, qualified data reference values, filter values, username, workbook path,
and canvas name.

Token Notes Replace With Example Result

$
{valuesForColumn:C
OLUMN}

NA Column display values
from the qualified data
reference.

${valuesForColumn:
"Sales"."Products"
."Brand"}

BizTech,FunPod

$
{valuesForColumn:C
OLUMN,
separator:"/"}

Any token that can
potentially be replaced
with multiple values
supports the optional
separator option. The
separator defaults to
a comma (,) but you
can set it to any string.
You can escape double
quotes inside this string
by using a backslash
(\).

Column display values
from the qualified data
reference.

${valuesForColumn:
"Sales"."Products"
."Brand"}

BizTech,FunPod

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-2

Token Notes Replace With Example Result

$
{valuesForColumn:C
OLUMN,
separationStyle:in
dividual}

Any
separationStyle
defaults to delimited
but you can set it to
individual if the user
needs to generate
separate URL
parameters for each
value.

Column display values
from the qualified data
reference.

&myParam=$
{valuesForColumn:
"Sales"."Products"
."Brand"}

&myParam=BizTech&m
yParam=FunPod

$
{keyValuesForColum
n:COLUMN}

NA Column key values
from the qualified data
reference.

$
{keyValuesForColum
n:COLUMN}

10001,10002

${env:ENV_VAR} Supported environment
variables are:
sProjectPath,
sProjectName,
sCanvasName,
sUserID, and
sUserName.

An environment
variable.

${env:'sUserID'} myUserName

Data Action Context
You can define a context that is passed when the user invokes a data action.

You define how much of the context is passed to the data action when you create the data
action.

Qualified Data Reference

When the data action is invoked a qualified data reference is generated for each marked data
point using an array of LogicalFilterTree objects. A LogicalFilterTree consists of multiple
LogicalFilterNode objects arranged in a tree structure. This object includes:

• The attributes on the row or column edges of the data layout.

• The specific measure on the measure edge that addresses each marked cell.

• The specific measure value for each marked cell.

• Key values and display values.

Environment Variables

In addition to the data and metadata describing each marked data point, certain data actions
may need further context describing the environment from where the data action is invoked.
Such environment variables include:

• Project Path

• Project Name

• Canvas Name

• User ID

• User Name

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-3

Data Action Code Design
You create data actions using API classes.

• There are four concrete classes of data action that inherit from the AbstractDataAction
class:

– CanvasDataAction
– URLNavigationDataAction
– HTTPAPIDataAction
– EventDataAction

• You can create new types of data actions using the data action extension API.

• The registry of data action types is managed by the DataActionPluginHandler.

• Code that creates, reads, edits, deletes, or invokes instances of data actions does so by
publishing events.

• Events are handled by the DataActionManager.

Data Action Model Classes
There are several different types of data action model classes.

AbstractDataAction

This class is responsible for:

• Storing the Knockout Model (subclasses are free to extend this with their own properties).

• Defining the abstract methods that subclasses must implement:

– + invoke(oActionContext: ActionContext,
oDataActionContext:DataActionContext) <<abstract>>
Invokes the data action with the passed context - should only be called by the
DataActionManager.

– + getGadgetInfos(oReport): AbstractGadgetInfo[] <<abstract>>
Constructs and returns the GadgetInfos responsible for rendering the user interface
fields for editing this type of data action.

– + validate() : DataActionError
Validates the data action and returns null if valid or a DataActionError if it's invalid.

• Providing the default implementation for the following methods used to render generic
parts of the data action user interface fields:

– + getSettings():JSON
Serializes the data action's Knockout Model to JSON ready to be included in the report
(uses komapping.toJS(_koModel)).

– + createNameGadgetInfo(oReport) : AbstractGadgetInfo
Constructs and returns the GadgetInfo that can render the data action's Name field.

– + createAnchorToGadgetInfo(oReport) : AbstractGadgetInfo
Constructs and returns the GadgetInfo that can render the data action's Anchor To
field.

– + createPassValuesGadgetInfo(oReport) : AbstractGadgetInfo

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-4

Constructs and returns the GadgetInfo that can render the data action's Pass Values
field.

Subclasses may not need all of the GadgetInfos that the base class provides so they may not
need to call all of these methods. By separating out the rendering of each field in this way,
subclasses are free to pick and choose the gadgets they need. Some subclasses may even
choose to provide a different implementation of these common data action gadgets.

CanvasDataAction, URLNavigationDataAction, HTTPAPIDataAction, EventDataAction

These are the concrete classes for the basic types of data actions. These classes work by
themselves to provide the generic user interface for these types of data action. They can also
act as convenient base classes for custom data action plug-ins to extend.

• CanvasDataAction: Used to navigate to a canvas.

• URLNavigationDataAction: Used to open a web page in a new browser window.

• HTTPAPIDataAction: Used to make a GET/POST/PUT/DELETE/TRACE request to an HTTP
API and handle the HTTP Response programatically.

• EventDataAction: Used to publish JavaScript events through the Event Router.

Each class is responsible for:

• Implementing the abstract methods from the base class.

– invoke(oActionContext: ActionContext,
oDataActionContext:DataActionContext)
This method should invoke the data action by combining the properties defined in the
KOModel with the specified DataActionContext object.

– getGadgetInfos(oReport): AbstractGadgetInfo[]
This method should:

* Create an array containing AbstractGadgetInfos.

* Call individual createXXXGadgetInfo() methods pushing each
AbstractGadgetInfo into the array.

* Return the array.

• Providing the additional methods for creating the individual gadgets that are specific to the
particular subclass of data action.

Subclasses of these concrete classes may not need to use all of the gadgets provided by their
superclasses in their custom user interfaces. By separating out the construction of each gadget
in this way, subclasses are free to pick and choose the gadgets they need.

DataActionKOModel, ValuePassingMode

The DataActionKOModel class provides the base KOModel shared by the different subclasses
of AbstractDataAction. See DataActionKOModel Class.

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-5

Data Action Service Classes
There are several different data action service classes.

DataActionManager

All communication with DataActionManager uses ClientEvents.DataActionManager which
implements event handlers for:

• Managing the set of data actions defined in the current workbook.

• Invoking a data action.

• Retrieving all the data actions defined in the current workbook.

• Retrieving all the data actions that are applicable to the current marked data points.

DataActionContext, EnvironmentContext

When a data action is invoked, the DataActionContext class contains the context that's
passed to the target.

• getColumnValueMap()
Returns a map of attribute column values keyed by attribute column names. These define
the qualified data reference for the data points that the data action is invoked from.

• getLogicalFilterTrees()
Returns a LogicalFilterTrees object describing the qualified data references for the
specific data points that the data action is invoked from (see the InteractionService for
details).

• getEnvironmentContext()
An instance of the EnvironmentContext class describing the source environment such as:

– getProjectPath()
– getCanvasName()
– getUserID()
– getUserName()

• getReport()
Returns the report that the data action is invoked from.

DataActionHandler

The DataActionHandler class registers the various data action extensions. Its API is broadly
consistent with the other extension handlers (for example, VisualizationHandler).

The DataActionHandler class provides the following public methods:

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-6

• getClassName(sPluginType:String) : String
Returns the fully qualified class name for the specified data action type.

• getDisplayName(sPluginType:String) : String
Returns the translated display name for the specified data action type.

• getOrder(sPluginType:String) : Number
Returns a number used to sort lists of the types of data action into the preferred order.

The DataActionHandler class provides the following static methods:

• getDependencies(oPluginRegistry:Object) : Object.<String, Array>
Returns a dependency map covering all the registered data action types.

• getHandler(oPluginRegistry:Object, sExtensionPointName:String,
oConfig:Object) : DataActionPluginHandler
Constructs and returns a new instance of the DataActionHandler class.

DataActionUpgradeHandler

The DataActionUpgradeHandler class is called by the UpgradeService when a report is
opened.

The DataActionHandler class provides two main methods:

• deferredNeedsUpgrade(sCurrentVersion, sUpgradeTopic, oDataActionJS,
oActionContext) : Promise
Returns a Promise that resolves to a Boolean indicating whether the specified data action
must be upgraded (true) or not (false). The method decides whether the data action must
be upgraded by comparing the data action instance with the data action's constructor.

• performUpgrade(sCurrentVersion, sUpgradeTopic, oDataActionJS, oActionContext,
oUpgradeContext) : Promise
Carries out the upgrade on the specified data action and resolves the Promise. The
upgrade itself is carried out by calling the upgrade() method on the data action (only the
specific subclass of data action being upgraded is qualified to upgrade itself).

• getOrder(sPluginType:String) : Number
Returns a number used to sort lists of the types of data action into the preferred order.

Data Action Code Interactions
A data action interacts with Oracle Analytics code when it creates a user interface field, and
when a user invokes a data action.

Create the Field for a New Data Action Instance

This interaction starts when Oracle Analytics wants to render a data action user interface field.
To do so, it:

1. Creates a PanelGadgetInfo that acts as the parent GadgetInfo for the GadgetInfos that
the data action returns.

2. Calls getGadgetInfos() on the data action.

3. Adds the data action's GadgetInfos as children of the PanelGadgetInfo created in the first
step.

4. Creates the PanelGadgetView that renders the PanelGadgetInfo.

5. Sets the HTMLElement that's the container of the PanelGadgetView.

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-7

6. Registers the PanelGadgetView as a child HostedComponent of a HostedComponent that's
already attached to the HostedComponent tree.
This renders the data action's gadgets inside the Panel gadget in the order they appear in
the array returned by getGadgetInfos().

Invoke a Data Action

This interaction starts when the user invokes a data action through the Oracle Analytics user
interface (for example, from the context menu on a data point in a visualization).

In response to the user interaction, the code:

1. Publishes an INVOKE_DATA_ACTION event containing the data action's ID, the
DataVisualization that the data action is invoked from, and a TransientVizContext
object.

2. The DataActionManager handles this event by:

a. Obtaining the data action instance from its ID.

b. Obtaining the LogicalFilterTrees for the marked data points in the specified
DataVisualization.

c. Constructing a DataActionContext that contains all the information to pass to the data
action's target.

d. Calling invoke(oDataActionContext) on the data action.

Example Data Action plugin.xml File
This topic shows an example plugin.xml file for a CanvasDataAction data action.

Example plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"
 xmlns:viz="http://plugin.frameworks.tech.bi.oracle/extension-
points/visualization"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="obitech-currencyconversion"
 name="Oracle BI Currency Conversion"
 version="0.1.0.@qualifier@"
 optimizable="true"
 optimized="false">

 <tns:resources>
 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
 <tns:extensions>
 <tns:extension name="js" resource-type="script"/>
 </tns:extensions>
 </tns:resource-folder>
 </tns:resources>

 <tns:extensions>

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-8

 <tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
 <tns:configuration>
 {
 "resourceBundle": "obitech-currencyconversion/nls/messages",
 "properties":
 {
 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
 "order": 100
 }
 }
 </tns:configuration>
 </tns:extension>
 </tns:extensions>

</tns:obiplugin>

Data Action Extension Files and Folders
The following files and folders are used to implement data action extensions.

bitech/client/plugins/src/
• report

– obitech-report
* scripts

* dataaction
* dataaction.js
* dataactiongadgets.js
* dataactionpanel.js
* dataactionupgradehandler.js

• obitech-reportservice
– scripts

* dataaction
* dataactionmanager.js
* dataactionhandler.js

Choose the Best Data Action Class to Extend
Before you start writing your custom data action extension, decide which of the existing data
action classes you want to extend. Choose the data action class that provides functionality that
most closely matches what you want your data action to do.

Each data action inherits from the AbstractDataAction class as shown in the class diagram.
The class diagram shows the two abstract data action classes (AbstractDataAction and

Chapter 2
Choose the Best Data Action Class to Extend

2-9

AbstractHTTPDataAction) and the four concrete data action classes (CanvasDataAction,
URLNavigationDataAction, HTTPAPIDataAction, and EventDataAction) that you can extend.
Each data action that you provide must extend one of these classes. Which class you extend
depends on the behavior you want to implement when you invoke your data action. Most third-
party data actions are likely to extend either URLNavigationDataAction, HTTPAPIDataAction or
EventDataAction.

Regardless of which class you extend, when your data action is invoked, you're provided with
metadata describing the full context of the data-point from which the data action is invoked.
See Data Action Context.

AbstractDataAction Class
AbstractDataAction is the abstract base class from which all types of data action inherit. It's
responsible for providing common functionality and default behavior that the subclasses can
use.

AbstractDataAction

All types of data action are subclasses of the AbstractDataAction base class. It provides the
core set of functionality common to all data actions. Unless you're creating a complex data
action that carries out multiple types of action when invoked, or you need to do something not
supported by the concrete classes, you shouldn't extend this class directly. If you need to
create a complex data action then consider extending the concrete class that most closely
provides the functionality you require.

Chapter 2
Choose the Best Data Action Class to Extend

2-10

AbstractDataAction Syntax

+ AbstractDataAction(oKOModel)

+ getKOViewModel():DataActionKOModel

+ createFromJS(fDataActionConstructor, sClassName, oDataActionKOModelUS) :
AbstractDataAction

+ invoke(oActionContext, oDataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

+ getSettings() : Object
+ requiresActionContextToInvoke() : Boolean
+ isAllowedHere() : Boolean

createNameGadgetInfo(oReport) : AbstractGadgetInfo
createAnchorToGadgetInfo(oReport) : AbstractGadgetInfo
createPassValuesGadgetInfo(oReport) : AbstractGadgetInfo

DataActionKOModel Class
Each subclass of AbstractDataAction is likely to create its own subclass of
DataActionKOModel. The DataActionKOModel base class provides the following properties:

DataActionKOModel, ValuePassingMode

• sID:String
The unique ID given to the data action instance.

• sClass:String
The class name of this specific type of data action.

• sName:String
The display name given to the data action instance.

• sVersion
• sScopeID
• eValuePassingMode:ValuePassingMode

The mode used when passing context values. The mode can be one of the
ValuePassingMode values (ALL, ANCHOR_DATA, NONE, CUSTOM).

• aAnchorToColumns: ColumnKOViewModel[]
The columns that this data action is anchored to. This is optional. If not supplied, then the
data action is available on all columns.

• aContextColumns : ColumnKOViewModel[]

Chapter 2
Choose the Best Data Action Class to Extend

2-11

The columns that this data action includes in the context passed to the data action target
when the data action is invoked. If not supplied, all marked columns are included in the
context.

CanvasDataAction Class
CanvasDataAction is a subclass of the AbstractDataAction base class. You can extend this
concrete class to provide the functionality you require.

CanvasDataAction

Use the CanvasDataAction class to navigate from a data point in a visualization to a different
canvas. The canvas you're navigating to can be in the same workbook or a different one. All
the active filters for the source visualization are passed to the target canvas along with new
filters that describe the Qualified Data Reference of the data point itself. If your data action
needs to navigate to a different canvas then this is the class your data action should extend.

+ CanvasDataAction(oKOModel)

+ create(s)ID_sName) : CanvasDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

createProjectGadgetInfo(oReport) : AbstractGadgetInfo
createCanvasGadgetInfo(oReport) : AbstractGadgetInfo

EventDataAction Class
EventDataAction is a subclass of the AbstractDataAction base class. You can extend this
concrete class to provide the functionality you require.

EventDataAction

Use the EventDataAction class to publish a client-side event. You can then register one or
more subscribers that listen for that event and perform their own actions. Use this type of data
action in more complex use cases where you've a large amount of code and can benefit from

Chapter 2
Choose the Best Data Action Class to Extend

2-12

keeping your data action code loosely coupled to the code that performs the necessary actions
when the data action is invoked.

+ EventDataAction(oKOModel)

+ create(sID_sName) : EventDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

createEventGadgetInfo(oReport) : AbstractGadgetInfo

AbstractHTTPDataAction Class
AbstractHTTPDataAction is the abstract base class that the URLNavigationDataAction and
HTTPAPIDataAction subclasses inherit common functionality and default behavior from.

AbstractHTTPDataAction

The AbstractHTTPDataAction abstract base class is shared by both the
URLNavigationDataAction and HTTPAPIDataAction classes. If your data action needs to open
a web page in a new browser tab you must extend URLNavigationDataAction. If your data
action needs to invoke an HTTP API then you should extend HTTPAPIDataAction. You may
decide it's better to extend AbstractHTTPDataAction directly.

+ HTTPDataAction(oKOModel)

+ validate() : DataActionError

createURLGadgetInfo(oReport) : AbstractGadgetInfo

URLNavigationDataAction Class
URLNavigationDataAction is a subclass or the AbstractHTTPDataAction base class.

URLNavigationDataAction

Use the URLNavigationDataAction class to open a specific URL in a new browser tab. You
compose the URL using tokens that are replaced with values derived from data points that the
user selects when they invoke the data action. The data point values are passed as part of the
data action context to the external web page. For example, create a data action invoked using

Chapter 2
Choose the Best Data Action Class to Extend

2-13

a CustomerID column that opens a customer's web page in your Customer Relations
Management application such as Oracle Sales Cloud.

+ URLNavigationDataAction(oKOModel)

+ create(sID_sName) : URLNavigationDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]

HTTPAPIDataAction Class
HTTPAPIDataAction is a subclass or the AbstractHTTPDataAction base class. You can extend
this concrete class to provide the functionality you require.

HTTPAPIDataAction

Use the HTTPAPIDataAction class to invoke HTTP APIs by creating an asyncronous
XMLHTTPRequest (XHR) and submitting it to the specified URL. The HTTP response code
enables a message to be displayed briefly on the canvas. For example, you can customize the
request to send JSON or XML payloads to a REST or SOAP server and you can customize the
response handler to show a custom user interface.

For the HTTPAPIDataAction data action to work, you must add the URL of the HTTP API you
want to access to your list of Safe Domains and grant it Connect access. See Register Safe
Domains.

+ HTTPAPIDataAction(oKOModel)

+ create(sID_sName) : HTTPAPIDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]

createHTTPMethodGadgetInfo(oReport) : AbstractGadgetInfo
createPostParamGadgetInfo(oReport) : AbstractGadgetInfo

Generate Data Action Extensions from a Template
You use a series of commands to generate a development environment and populate it with a
HTTP API Data Action along with the necessary folders and files that you need to create a
custom data action extension.

All extensions files follow the same basic structure. You can manually create the files and
folders or you can generate them from a template. The tools to do this are part of the Oracle
Analytics Desktop software development kit (SDK) which is included with Oracle Analytics
Desktop.

Chapter 2
Generate Data Action Extensions from a Template

2-14

Use these commands to generate your development environment and populate it with a HTTP
API data action.

1. At a command prompt, specify the root folder of your Oracle Analytics Desktop installation:

set DVDESKTOP_SDK_HOME=C:\Program Files\Oracle Analytics Desktop
2. Specify the location to store your custom extensions:

set PLUGIN_DEV_DIR=C:\temp\dv-custom-plugins

3. Add the SDK command line tools to your path using:

set PATH=%DVDESKTOP_SDK_HOME%\tools\bin;%PATH%
4. Create a folder for the directory used to store the custom extensions using:

mkdir %PLUGIN_DEV_DIR%
5. Change the directory to the folder for storing custom extensions:

cd %PLUGIN_DEV_DIR%
6. Create the environment variables:

bicreateenv
7. Create the template files needed to start developing a custom HTTP API data action, for

example:

bicreateplugin -pluginxml dataaction -id company.mydataaction -subType httpapi
Use the -subType option to specify the data action type that you want to create from:
httpapi, urlNavigation, canvasNavigation, event, or advanced. The advanced option
extends from the AbstractDataAction base class.

Generated Folders and Files
Your newly generated data action development environment contains these folders and files:

1 %PLUGIN_DEV_DIR%\src\customdataaction
2 company-mydataaction\
3 extensions\
4 oracle.bi.tech.plugin.dataaction\
5 company.mydataaction.json
6 nls\
7 root\
8 messages.js
9 messages.js
10 mydataaction.js
11 mydataactionstyles.css
12 plugin.xml

• Line 2: The company-mydataaction folder is the ID that you specify.

• Line 6: The nls folder contains the files for externalizing strings that enable your extension
to provide Native Language Support.

• Line 7: The strings in the files under the nls\root folder are the default strings used when
translations for a requested language aren't available.

Chapter 2
Generated Folders and Files

2-15

• Line 8: The messages.js file contains externalized strings for your extension that you can
add.

• Line 9: The messages.js file must contain an entry that you add for each additional
language that you want to provide localized strings for. You must add a corresponding
folder under the nls folder for each locale that you want to add translations for. Each folder
must contain the same set of files, with the same file names as those added under the
nls\root folder.

• Line 10: The mydataaction.js file is the newly generated JavaScript module template that
provides a starting point to develop your custom data action.

• Line 11: The mydataactionstyles.css file can contain any CSS styles that you want to
add, and which your data action's user interface can use.

• Line 12: The plugin.xml file registers your extension and its files with Oracle Analytics.

Extend a Data Action Base Class
Once you've chosen the subclass of data action that you want to extend and have generated
the necessary folders and files, you're ready to start writing the code specific to your new data
action.

You can find your newly generated data action code under %PLUGIN_DEV_DIR%
\src\dataaction. See Generated Folders and Files for an explanation of the files and
folder structure. The main file you must edit is the JavaScript file. For example, if your custom
data action ID is company.MyDataaction, then the file you're looking for is
%PLUGIN_DEV_DIR%\src\dataaction\company-mydataaction\mydataaction.js.

Extending Your Data Action's Knockout Model
If your data action has additional properties that need to be stored, then you must add them as
observable properties to the Knockout Model. If your data action is given the ID
company.MyDataaction, then the Knockout Model is called
mydataaction.MyDataActionKOModel which is located near the top of mydataaction.js. By
default, this Knockout Model is configured to extend the Knockout Model used by your data
action's superclass so you only need to add additional properties to the model.

For a data action that's extending the HTTPAPIDataAction base class, use code similar to the
following:

1 - mydataaction.MydataactionKOModel = function (sClass, sID, sName,
sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
 eHTTPMethod, sPOSTParams)
2 - {
3 - mydataaction.MydataactionKOModel.baseConstructor.call(this, sClass, sID,
sName, sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
eHTTPMethod, sPOSTParams);
4 - };
5 - jsx.extend(mydataaction.MydataactionKOModel,
dataaction.HTTPAPIDataActionKOModel);

• Line 1: This is the constructor for your Knockout Model. It accepts the properties that the
model needs to store.

• Line 3: This is the superclass's constructor, otherwise known as the baseConstructor to
which you pass the values for all of the properties that are handled by one of the Knockout
Model's superclasses.

Chapter 2
Extend a Data Action Base Class

2-16

• Line 5: This sets the superclass for this Knockout Model class.

Use code similar to the following to add a string and an array to set properties that are
persisted by the data action.

1 mydataaction.MydataactionKOModel = function (sClass, sID, sName,
sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL, eHTTPMethod,
sPOSTParams)
2 {
3 mydataaction.MydataactionKOModel.baseConstructor.call(this, sClass, sID,
sName, sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
eHTTPMethod, sPOSTParams);
4
5
6 // Set Defaults
7 sMyString = sMyString || "My default string value";
8 aMyArray = aMyArray || [];
9
10
11 // Asserts
12 jsx.assertString(sMyString, "sMyString");
13 jsx.assertArray(aMyArray, "aMyArray");
14
15
16 // Add observable properties
17 this.sMyString = ko.observable(sMyString);
18 this.aMyArray = ko.observableArray(aMyArray);
19 };
20 jsx.extend(mydataaction.MydataactionKOModel,
dataaction.HTTPAPIDataActionKOModel);

Choose Which Data Action Inherited Methods to Override
Each data action must implement various methods in order to function properly, so you only
need to override those methods that implement behavior that you want to change.

If you're extending one of the concrete data actions classes, for example HTTPAPIDataAction,
then most of the required methods are already implemented and you only need to override the
methods that implement the behavior you want to change.

Generic Methods

This section describes the various methods and what's expected of them.

All types of data action must implement the methods that are described here.

create(sID, sName)

The create() static method is called when you're creating a new data action and select a Data
Action Type from the drop-down menu. This method is responsible for:

• Constructing the Knockout Model class that your data action uses.
The Knockout Model class must have the ID and name that's passed to the create()
method along with sensible defaults for all other properties. For example, for a currency
conversion data action you might want to set the default currency to convert into Dollars.
The Knockout Model is the correct place to provide your default values.

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-17

• Constructing an instance of your data action from the Knockout Model.

• Returning the instance of your data action.

invoke(oActionContext, oDataActionContext)

The invoke() method is called when the user invokes your data action from the context menu
for a data point in a visualization. The method passes the DataActionContext argument which
contains metadata describing the selected data points, visualization, filters, workbook, and
session. See Data Action Service Classes.

validate()

The validate() method is called on each data action when the user clicks OK in the Data
Actions dialog. The validate() method returns a null to indicate that everything is valid or a
DataActionError if something is invalid. If there's an error in one of the data actions in the
dialog, the error prevents the dialog from closing and an error message is displayed to the
user. This method validates the name of the data action using the this.validateName()
method.

getGadgetInfos(oReport)

The getGadgetInfos() method is called to enable the user interface to display data action
property fields. The method returns an array of GadgetInfos in the order you want them to
appear in the user interface. Gadgets are provided for all of the most common types of fields
(for example, text, drop-down, password, multi-select, radio button, check box) but you can
create custom gadgets if you want more complicated fields (for example, where multiple
gadgets are grouped together, or where different gadget fields display depending on which
option you select). It's a best practice to create a method that constructs each GadgetInfo you
want in your array, as it makes it easier for potential subclasses to pick and choose from the
GadgetInfos you've provided. If you follow this best practice there are already various methods
implemented by the different data action base classes that can return a GadgetInfo for each of
the fields that they use in their user interfaces. If you also need one of these GadgetInfos then
you call the corresponding create****GadgetInfo() method and push its return value into
your array of gadgets.

isAllowedHere(oReport)

The isAllowedHere() method is called when the user right-clicks on a data-point in a
visualization and the user interface starts to generate the context menu. If a data action exists
that's relevant to the selected data-points, then the method returns true and the data action
appears in the context menu. If the method returns false, then the data action doesn't appear
in the context menu. Consider accepting the default behavior inherited from the superclass.

upgrade(oOldDataActionJS)

If you're creating your first data action then don't use the upgrade(oOldDataActionJS) method.
Only use this method after you've created your first Knockout Model and are making significant
changes to properties for a second version of your Knockout Model. For example, if the first
version of your data action stores a URL in its Knockout Model, but you decide that the next
version will store URL component parts in separate properties (for example, protocol,
hostname, port, path, queryString and bookmark).

The second version of your Knockout Model code would request to open a data action that had
been saved with the first version of your Knockout Model code which can cause problems. To
resolve this issue, the system identifies that your current data action code version is newer
than that of the data action being opened and it calls the upgrade() method on your new data
action class and passes in the old data action Knockout Model (serialized to a JSON object).
You can then use the old JSON object to populate your new Knockout Model and return an

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-18

upgraded version of the JSON object. This ensures that old data action metadata continues to
work as you improve your data action code.

HTTPAPIDataAction Methods

If you're extending the HTTPAPIDataAction class, then it provides the following additional
method that you may choose to override:

getAJAXOptions(oDataActionContext)

The getAJAXOptions() method is called by the data action's invoke() method. The
getAJAXOptions() method creates the AJAX Options object that describes the HTTP request
that you want your data action to make. The getAJAXOptions() method is passed the
oDataActionContext object that contains the metadata describing the selected data-points,
visualization, filters, workbook, and session. Set the AJAX Options as required by the HTTP
API you're trying to integrate with and specify the functions you want to be called when the
HTTPRequest is successful or results in an error. See the JQuery website for an explanation of
the jQuery.ajax object and its properties.

The following implementation is inherited from the HTTPAPIDataAction class. You need to
rewrite the inherited method to specify requirements. For example, forming the HTTP request,
and the code that handles the HTTP response. This implementation is useful as it shows the
parameters passed to the getAJAXOptions() function, the object that it's expected to return,
and gives a clear example of how to structure the code inside the method.

1 /**
2 * This method returns an object containing the AJAX settings used when the
data action is invoked.
3 * Subclasses may wish to override this method to provide their own
behavior.
4 * @param {module:obitech-reportservices/
dataactionmanager.DataActionContext} oDataActionContext The context metadata
describing where the data action was invoked from.
5 * @returns {?object} A JQuery AJAX settings object (see http://
api.jquery.com/jQuery.ajax/ for details) - returns null if there is a
problem.
6 */
7 dataaction.HTTPAPIDataAction.prototype.getAJAXOptions = function
(oDataActionContext)
8 {
9 jsx.assertInstanceOfModule(oDataActionContext, "oDataActionContext",
"obitech-reportservices/dataactionmanager", "DataActionContext");
10
11 var oAJAXOptions = null;
12 var oKOViewModel = this.getKOViewModel();
13 var sURL = oKOViewModel.sURL();
14 if (sURL)
15 {
16 // Parse the URL
17 var sResultURL = this._parseURL(sURL, oDataActionContext);
18 if (sResultURL)
19 {
20 // Parse the POST parameters (if required)
21 var eHTTPMethod = oKOViewModel.eHTTPMethod()[0];
22 var sData = null;
23 if (eHTTPMethod ===
dataaction.HTTPDataActionKOModel.HTTPMethod.POST)

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-19

24 {
25 var sPOSTParams = oKOViewModel.sPOSTParams();
26 sData =
sPOSTParams.replace(dataaction.AbstractHTTPDataAction.RegularExpressions.LINE_
END, "&");
27 sData = this._parseURL(sData, oDataActionContext, false);
28 }
29 oAJAXOptions = {
30 type: eHTTPMethod,
31 url: sResultURL,
32 async: true,
33 cache: false,
34 success: function (/*oData, sTextStatus, oJQXHR*/)
35 {
36
oDataActionContext.getReport().displaySuccessMessage(messages.HTTP_API_DATA_AC
TION_INVOCATION_SUCCESSFUL.format(oKOViewModel.sName()));
37 },
38 error: function (oJQXHR/*, sTextStatus, sError*/)
39 {
40
oDataActionContext.getReport().displayErrorMessage(messages.HTTP_API_DATA_ACTI
ON_INVOCATION_FAILED.format(oKOViewModel.sName(), oJQXHR.statusText,
oJQXHR.status));
41 }
42 };
43 if (sData)
44 {
45 oAJAXOptions.data = sData;
46 }
47 }
48 }
49 return oAJAXOptions;
50 };

Test, Package, and Install Your Data Action
You use Oracle Analytics Desktop to test your data action from its source location before you
install it.

1. If Oracle Analytics Desktop is currently running, close it.

2. If you're working behind a proxy, set the proxy settings in %PLUGIN_DEV_DIR%
\gradle.properties. For information about accessing the web through HTTP proxy, see
Gradle User Manual.

3. Run Oracle Analytics Desktop in SDK mode by using the command prompt you started in
Choose Which Data Action Inherited Methods to Override and enter the following
commands:

cd %PLUGIN_DEV_DIR%
.\gradlew run
Oracle Analytics Desktop starts in SDK mode. Your data action extension appears in the
Console | Extensions page.

Chapter 2
Test, Package, and Install Your Data Action

2-20

Create a workbook and test your data action. If you find any issues, you can debug your
code using your browser's built-in developer tools.

4. If you created an HTTP API data action:

a. Go to the Console and display the Safe Domains page.

b. Add each domain that you want to access.

For example, if you need access to the apilayer.com APIs, add apilayer.net to the list
of safe domains.

c. Click the Connect column checkbox for the selected domain.

d. Reload the Safe Domains page in your browser for the changes to take effect.

5. If you want to prepare your data action extension to distribute to other people or to install in
Oracle Analytics:

• Package all of the files into a single ZIP file containing the %PLUGIN_DEV_DIR%
\src\customdataaction folder and its contents.

• Name the zip using the same ID you gave to your data action extension when you
created it.

6. Install your data action extension. See Manage Oracle Analytics Extensions.

Use an Upgrade Handler for Knockout Model Changes
For some Knockout Model changes you need to upgrade your data action extension using an
upgrade handler.

When you're making improvements to your data action extension without making changes to
the Knockout Model you normally edit your JavaScript or CSS files, create a new ZIP file, and
replace the existing data action extension with the new ZIP file. However, if you've made
changes to your data action's Knockout Model then you might need to change the data action
VERSION property and provide an upgrade handler.

Decide whether you need to use an upgrade handler:

Upgrade Handler Required

• If you rename a property in your Knockout Model.

• If you combine multiple properties into a single property in your Knockout Model.

• If you split a single property into multiple properties in your Knockout Model.

• If you add a new property to the Knockout Model and the correct default value for it
depends on other values in the Knockout Model.

Upgrade Handler Not Required

• If you add a new property to the Knockout Model and can provide a default value that's
correct for all existing usages of your data action.

• If you remove a property from the Knockout Model because it's no longer used by your
data action code.

Chapter 2
Use an Upgrade Handler for Knockout Model Changes

2-21

Upgrade Data Action Extensions
Upgrade your data action extensions to improve the data action code or upgrade the metadata
to enable existing data actions to work with new data action code.

Use an upgrade handler to upgrade a data action extension.

1. Increase the version number of your data action.

For example, if your data action is called company.MyDataAction, then search
mydataaction.js for the mydataaction.MyDataAction.VERSION property. If it's currently
set to 1.0.0 then change it to 1.0.1.

2. Add a static upgrade(oOldDataActionJS) method to your data action's class.

If the VERSION property differs from the sVersion value stored in the data action metadata
then the Data Action Manager calls the static upgrade() method on your data action's
class.

3. Implement your upgrade() method by calling the upgrade() method on the superclass and
capture its response.

4. Continue to implement your upgrade() method by making further edits to the partially
upgraded data action JSON returned by the superclass, until the object matches the
correct set of properties required by your latest Knockout Model.

5. To finish call var oUpgradedDataAction =
dataaction.AbstractDataAction.createFromJS(fDataActionClass,
sFullyQualifiedDataActionClassName, oUpgradedDataActionJS).

This command constructs a new instance of your data action from the upgraded data
action JSON and returns oUpgradedDataAction.getSettings().

Data Action Extension File Reference
Each data action extension requires a plugin.xml file and each plugin.xml file can contain any
number of data actions.

Topics:

• Data Action plugin.xml File Example

• Data Action plugin.xml File Properties Section - tns:obiplugin

• Data Action plugin.xml File Resources Section - tns:resources

• Data Action plugin.xml File Extensions Section - tns:extension

Data Action plugin.xml File Example
The plugin.xml file has three main sections, tns:obiplugin, tns:resources, and
tns:extension.

Example plugin.xml

This example shows a typical plugin.xml file for one data action.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"

Chapter 2
Upgrade Data Action Extensions

2-22

3 id="obitech-currencyconversion"
4 name="Oracle BI Currency Conversion"
5 version="0.1.0.@qualifier@"
6 optimizable="true"
7 optimized="false">
8
9
10 <tns:resources>
11 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
12 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
13 <tns:extensions>
14 <tns:extension name="js" resource-type="script"/>
15 </tns:extensions>
16 </tns:resource-folder>
17 </tns:resources>
18
19
20 <tns:extensions>
21 <tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
22 <tns:configuration>
23 {
24 "host": { "module": "obitech-currencyconversion/
currencyconversion" },
25 "resourceBundle": "obitech-currencyconversion/nls/messages",
26 "properties":
27 {
28 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
29 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
30 "order": 100
31 }
32 }
33 </tns:configuration>
34 </tns:extension>
35 </tns:extensions>
36
37 </tns:obiplugin>

Data Action plugin.xml File Properties Section - tns:obiplugin
The tns:obiplugin section defines properties common to all types of extensions.

Extension Properties

The tns:obiplugin section defines properties common to all types of extensions.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"
3 id="obitech-currencyconversion"
4 name="Oracle BI Currency Conversion"
5 version="0.1.0.@qualifier@"

Chapter 2
Data Action Extension File Reference

2-23

6 optimizable="true"
7 optimized="false">

• Line 1: The XML declaration.

• Line 2: The opening tag for the extension's root XMLElement and the declaration for the
tns namespace that's used throughout plugin.xml files.

• Line 3: The extension's unique ID.

• Line 4: The extension's default display name (used when a localized version isn't
available).

• Line 5: The extension's version number.

• Line 6: A boolean indicating whether or not the JS/CSS can be optimized (compressed).

• Line 7: A boolean indicating whether or not the JS/CSS has been optimized (compressed).

Data Action plugin.xml File Resources Section - tns:resources
The tns:resources section registers all of the files that contribute to your extension.

Resources

1 <tns:resources>
2 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
3 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
4 <tns:extensions>
5 <tns:extension name="js" resource-type="script"/>
6 </tns:extensions>
7 </tns:resource-folder>
8 </tns:resources>

You need to register each JavaScript, CSS, Image, and Translation Resource File here. The
section is contained within the <tns:resources> element and contains any number of the
following elements:

• <tns:resource>
These elements are used to register a single file (for example, a JavaScript or CSS file).

• <tns:resource-folder>
These elements are used to register all the files under a specified folder at the same time.
For example, an image folder or the folder containing the resource files for Native
Language Support.

More information on how to register each type of file is provided in the following sections.

JavaScript Files

Each JavaScript file in your extension must be registered with a line similar to the one shown
below.

<tns:resource id="currencyconversion" path="scripts/currencyconversion.js"
type="script" optimizedGroup="base"/>

Chapter 2
Data Action Extension File Reference

2-24

Where:

• id is the ID given to the file.
Set the ID to match the JavaScript filename without the .js extension.

• path is the relative path to the JavaScript file from the plugin.xml file. JavaScript files
should be stored under your extension's scripts directory.
Use all lowercase for your JavaScript files with no special characters (for example,
underscore, hyphen).

• type is the type of file being registered. It must be set to script for JavaScript files.

• optimizedGroup groups multiple JavaScript files into a single compressed file. Third-party
extensions must leave this set to base.

CSS Files

Each CSS file in your extension must be registered with a line similar to the one shown below.

<tns:resource id="currencyconversionstyles" path="resources/
currencyconversion.css" type="css"/>

Where:

• id is the ID given to the file.
Set the ID to match the CSS filename without the .css extension.

• path is the relative path to the CSS file from the plugin.xml file. CSS files should be stored
under your extension's resources directory.
Use all lowercase for your CSS files with no special characters (for example, underscore,
hyphen).

• type is the type of file being registered. It should always be set to css for CSS files.

Image Folders

If your extension has images that you need to refer to from within your JavaScript code, then
put them in a resources/images directory within your extension's directory structure and
add a <tns:resource-folder> element to your plugin.xml as follows:

<tns:resource-folder id="images" path="resources/images" optimizable="false"/>

If your images are only referenced by your CSS files, then you don't need to add this
<tns:resource-folder> element to your plugin.xml file. In this case, you must still add
them to the resources/images directory so that you can then refer to them using a relative
path from your CSS file.

Native Language Support Resource Folders

Oracle Analytics implements Native Language Support. This requires developers to externalize
the strings they display in their user interface into separate JSON resource files. You can then
provide different localized versions of those files in a prescribed directory structure and Oracle
Analytics automatically uses the correct file for the user's chosen language. You can provide as
many translated versions of the resource files as needed. A Native Language Support
resource folder points Oracle Analytics to the root of the prescribed Native Language Support
directory structure used by your extension. All extensions that use Native Language Support

Chapter 2
Data Action Extension File Reference

2-25

resource files must have a <tns:resource-folder> entry that looks exactly like the example
below.

1 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
2 <tns:extensions>
3 <tns:extension name="js" resource-type="script"/>
4 </tns:extensions>
5 </tns:resource-folder>

See Generated Folders and Files for details about the contents of the files and the prescribed
directory structure that you should follow.

Data Action plugin.xml File Extensions Section - tns:extension
For each data action you want your extension to provide, you must register a data action
extension using a <tns:extension> element similar to this:

<tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
 <tns:configuration>
 {
 "host": { "module": "obitech-currencyconversion/currencyconversion" },
 "resourceBundle": "obitech-currencyconversion/nls/messages",
 "properties":
 {
 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
 "order": 100
 }
 }
 </tns:configuration>
</tns:extension>

Where:

• id is the unique ID you give to your data action.

• point-id is the type of extension you want to register. For data action extensions, this must
be set to oracle.bi.tech.plugin.dataaction.

• version is the extension API version that your extension definition uses (leave this set to
1.0.0).

The <tns:configuration> element contains a JSON string that defines:

• host.module - This is the fully qualified name of the module containing your data action.
This fully qualified module name is formulated as %PluginID%/%ModuleName%, where:

– %PluginID% must be replaced with the extension ID you specified in the id attribute of
the <tns:obiplugin> element.

– %ModuleName% must be replaced with the resource ID you specified in the id attribute of
the <tns:resource> element for the JavaScript file containing your data action.

Chapter 2
Data Action Extension File Reference

2-26

• resourceBundle - This is the Native Language Support path to the resource file that
contains this data action's localized resources. If your resource files are named
messages.js and stored correctly in the prescribed nls directory structure, then set this
property to %PluginID%/nls/messages (where %PluginID% must be replaced with the
extension ID you specified in the id attribute of the <tns:obiplugin> element at the top of
the plugin.xml file).

• properties.className - This is the fully qualified class name given to the data action
you're registering. This fully qualified class name is formulated as %PluginID%/
%ModuleName%.%ClassName%, where:

– %PluginID% must be replaced with the extension ID you specified in the id attribute of
the <tns:obiplugin> element.

– %ModuleName% must be replaced with the resource ID you specified in the id attribute of
the <tns:resource> element for the JavaScript file containing your data action.

– %ClassName% must be replaced with the name you gave to the data action class in your
JavaScript file.

• properties.displayName - This property contains an object and two further properties:

– key is the Native Language Support message key that can be used to lookup the data
action's localized display name from within the specified resourceBundle.

– default is the default display name to use if for some reason the localized version of
the display name can't be found.

• properties.order - This property enables you to provide a hint that's used to determine the
position that this data action should appear when shown in a list of data actions. Data
actions with lower numbers in their order property appear before data actions with higher
numbers. When there's a tie, the data actions are displayed in the order they're loaded by
the system.

Chapter 2
Data Action Extension File Reference

2-27

3
Create Oracle Analytics Visualization and
Workbook Extensions

This chapter describes how to set up your development environment to create and test custom
visualization and workbook extensions.

Topics:

• About the Oracle Analytics Extension Development Environment

• Set Up the Oracle Analytics Extension Development Environment on Mac

• Set Up the Oracle Analytics Extension Development Environment on Windows

• Work with Extensions

About the Oracle Analytics Extension Development Environment
After you set up your extension development environment, you use the scripts and SDK
provided with Oracle Analytics Desktop to create, develop, and test custom visualization and
workbook extensions.

Topics:

• Workflow to Set Up the Oracle Analytics Extension Development Environment

• Oracle Analytics Extensions Development Scripts

• Types of Oracle Analytics Extensions

• Oracle Analytics Extension Development Resources

• Oracle Analytics Extensions Limitations

Workflow to Set Up the Oracle Analytics Extension Development
Environment

Here are the tasks you need to complete to set up your extension development environment.
You can begin creating your extensions after you've successfully set up your environment.

Task Description More Information

Install Oracle
Analytics Desktop

Provides the scripts you need to create your
environment and create an extension
skeleton. Oracle Analytics Desktop also
functions as a local environment where you
run and test your extensions.

Install Oracle Analytics Desktop
on Mac

Install Oracle Analytics Desktop
on Windows

Install Java JDK Provides the Java tools and libraries required
to build your extensions.

Install Java JDK on Mac

Install Java JDK on Windows

3-1

Task Description More Information

Set variables on your
computer

Ensures that the Oracle Analytics Desktop
scripts work properly. For Mac you configure
bash profile, and for Windows you set user
variables.

Update Bash Profile or ZSHRC
File and Create the Development
Directory on Mac

Set User Variables and Create a
Development Directory on
Windows

Add a directory to
contain your
development
environment

Provides a location where you create your
development environment.

Update Bash Profile or ZSHRC
File and Create the Development
Directory on Mac

Set User Variables and Create a
Development Directory on
Windows

Create your extension
development
environment

Provides the framework and resources you
use to create and develop extensions.

Create the Extension
Development Environment on
Mac

Create the Extension
Development Environment on
Windows

Oracle Analytics Extensions Development Scripts
Your installation of Oracle Analytics Desktop includes the scripts you use to create your
development environment and create and work with extensions.

• bicreateenv - Run this script to create the environment where you develop your
extensions.

• bicreateplugin - Run this script to create a skeleton extension. For information about the
types of extensions that you can create with this script, see Types of Oracle Analytics
Extensions.

• bideleteplugin - Run this script to delete an extension from your development
environment.

• bivalidate - Run the gradlew validate command to call this script. The bivalidate
script validates that the JSON configuration files are properly formatted and contain the
appropriate extension configuration.

Types of Oracle Analytics Extensions
This topic lists the types of extensions you can create when you run the bicreateplugin
script.

Visualization Extensions

Runing the bicreateplugin command creates a folder containing the files that you use to
develop your visualization extension. The entry point of the visualizations is the render()
method on the file <vizName>.js. The render() method is invoked during the creation of the
visualization and during events like resize, data update, and so on.

You can create the following types of visualization extensions.

• basic - Creates a visualization that doesn’t use any data from Oracle Analytics or any data
model mapping. This is like the Image and Text visualization types delivered with Oracle
Analytics.

Chapter 3
About the Oracle Analytics Extension Development Environment

3-2

For example, you can use this visualization type to show an image or some text that’s
coded into the extension or from a configuration. You can use this type of visualization to
improve formatting.

• dataviz - Creates a visualization that renders data from data sources registered with
Oracle Analytics into a chart or table or some other representation.

• embeddableDataviz - Creates a visualization that renders data from data sources
registered with Oracle Analytics into the cells of a trellis visualization.

Workbook Extension

You can create a workbook extension.

• workbook - Creates the base structure that you use to develop a workbook-scoped
extension. The extension's entry point is the performMainAction method. This code exists
in the .js file created by the extension command, for example workbook.js.

Oracle Analytics Extension Development Resources
Oracle Analytics provides information to help you develop your extensions.

• circlePack sample - The circlePack sample is included in your development environment
to help you learn how to develop a visualization extension. You can deploy and use this
sample immediately. You can also copy the sample and use it as a template for the
visualization extensions that you want to create.

The circlePack sample is located in your development environment, for example
<your_development_directory>\src\sampleviz\sample-circlepack

• Extensions library - Extensions are available for you to download from the Oracle
Analytics Extensions library.

• JS API documentation - The API documentation contains JavaScript reference
information that you need to develop an extension.

• Oracle Analytics product documentation - These resources contain information about
how to create workbooks and visualizations:

Begin to Build a Workbook and Create Visualizations

Get Started with Visualizations video

Oracle Analytics Extensions Limitations
The extensions that you create are custom code and may not work properly in all browsers or
on all devices.

When creating an extension, you as the developer must test all of the browsers and devices
that you want the extension to render on.

Also, in some cases extensions may not work in the Oracle Analytics mobile application due to
application restrictions that don't apply to browsers.

Chapter 3
About the Oracle Analytics Extension Development Environment

3-3

https://www.oracle.com/business-analytics/data-visualization/extensions/
https://www.oracle.com/business-analytics/data-visualization/extensions/
https://docs.oracle.com/en/middleware/bi/analytics-server/user-oas/begin-build-workbook-and-create-visualizations.html
https://www.youtube.com/watch?v=lu0dYy1Z87c&autoplay=0&html5=1

Set Up the Oracle Analytics Extension Development
Environment on Mac

This topic describes the tasks you need to perform to set up and use your Oracle Analytics
extension development environment.

Topics:

• Install Oracle Analytics Desktop on Mac

• Install Java JDK on Mac

• Update Bash Profile or ZSHRC File and Create the Development Directory on Mac

• Create the Extension Development Environment on Mac

• Create a Skeleton Extension on Mac

• Test Your Visualization and Workbook Extensions on Mac

Install Oracle Analytics Desktop on Mac
Oracle Analytics Desktop provides the scripts needed to create your development environment
and extension skeletons, and a local test environment.

Install or upgrade to the latest version of Oracle Analytics Desktop.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Go to Oracle Analytics Desktop Installation Download, click Download and log into your
Oracle Cloud account.

2. In the Oracle Software Delivery Cloud page, click Platforms and select Apple Mac OS X.

3. Review and accept the license agreement. Click the Oracle Analytics Desktop ZIP file to
download it.

4. Go to the download location on your computer, click the ZIP file, and click
Oracle_Analytics_Desktop_<version>_Mac.pkg and perform the installation.

5. Navigate to the Applications folder and confirm the installation created these applications:

• Oracle Data Visualization for Desktop

• Oracle Data Visualization for Desktop Configure Python

Install Java JDK on Mac
Use a Java JDK version that's compatible with your macOS and processor. All examples in this
chapter were developed with Java JDK 8u201.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Terminal and enter this command to check if you have Java JDK installed.

java -version

2. If one or more Java JDK is installed, confirm that one is compatible with your macOS and
processor.

3. If you need to install Java JDK, go to Java SE 8 Archive Downloads.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-4

https://www.oracle.com/solutions/business-analytics/analytics-desktop/oracle-analytics-desktop.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

4. In the table, click the macOS tab. Locate and download the install file compatible with your
macOS and processor.

5. Locate and run the downloaded installation file.

6. After the installation completes, in Terminal enter this command to check that the Java JDK
version you picked installed successfully:

java -version

Update Bash Profile or ZSHRC File and Create the Development Directory
on Mac

Modify your bash profile or ZSHRC file to include the variables required by the Oracle Analytics
Desktop scripts. Then create the development directory to contain your development
environment.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. To modify your Bash Profile, go to the home directory and check if bash_profile is visible. If
not, press Command + Shift + . to make bash_profile visible.

To modify your ZSHRC file, open Terminal and run this command: .

open ~/.zshrc
2. Add these lines to bash_profile or ZSHRC.

In PLUGIN_DEV_DIR specify the location of the development directory, for example /Users/
<username>/Documents/dv-custom-plugins.

export DVDESKTOP_SDK_HOME=/Applications/dvdesktop.app/Contents/Resources/
app.nw

export PLUGIN_DEV_DIR=/Users/<username>/Documents/dv-custom-plugins

export PATH=${DVDESKTOP_SDK_HOME}/tools/bin:$PATH

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-1.8.jdk/Contents/
Home/

3. For bash_profile, open Terminal and run this command to apply the changes:

source ~/.bash_profile

For the ZSHRC file, open Terminal and run this command to apply the changes:

source ~/.zshrc

4. To create the extension development directory, open Terminal and run this command:

mkdir $PLUGIN_DEV_DIR

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-5

Create the Extension Development Environment on Mac
After you configure bash profile, you run the bicreateenv script to create the development
environment that contains the resources you need to create extensions.

For information about the options available for running this script, see the script's command-
line help, for example:

cd $PLUGIN_DEV_DIR
bicreateenv -help

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. In Finder, navigate to the extension directory and run the bicreateenv script to create the
environment:

cd $PLUGIN_DEV_DIR
bicreateenv

2. Navigate to the directory that you created and confirm that its contents look like this:

3. Open build.gradle and search for -pluginDevDir. If the -pluginDevDir argument
contains capital letters, change them to lowercase letters. The modified argument should
look like this:

4. Optional: If you’re working behind a web proxy, open gradle.properties and add
system properties that point to your proxy.

Use the following example to set your system properties:

systemProp.https.proxyHost=www-proxy.somecompany.com
systemProp.https.proxyPort=80
systemProp.https.nonProxyHosts=*.somecompany.com|*.companyaltname.com

Create a Skeleton Extension on Mac
Use the bicreateplugin script to create an Oracle Analytics extension skeleton.

For information about the extensions you can create when you run the bicreateplugin script,
see Types of Oracle Analytics Extensions.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-6

Running the script creates a folder in your PLUGIN_DEV_DIRECTORY environment. This
folder contains the files that you use to develop the extension. The <extension_name>.js
render method is the entry point where you can start writing code.

The bicreateplugin script uses the following syntax:

bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

Where:

subType is the type of visualization extension you want to create. Valid values are basic,
dataviz, and embeddableDataviz. Don't include subType when you create a workbook
extension.

id is the name of the extension. The name you specify must be in this format:
<com.company.yourVizName>.

1. In Terminal, navigate to your extension development directory, run the bicreateplugin
script.

This example shows how to create a dataviz skeleton extension:

bicreateplugin viz -subType dataviz -id com.companyabc.helloviz

This example shows how to create a workbook skeleton extension:

bicreateplugin workbook -id com.companyabc.helloworkbook

2. In Finder, navigate to the src/customviz folder and confirm that a new folder was
created and that its name matches the extension name you specified when you ran the
script.

This example shows a dataviz extension's directory:

This example shows a workbook extension's directory:

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-7

Test Your Visualization and Workbook Extensions on Mac
Use Terminal to run Oracle Analytics Desktop in SDK mode to test your Oracle Analytics
visualization and workbook extensions. Running Oracle Analytics Desktop in SDK mode opens
Oracle Analytics Desktop in the browser.

For information about creating workbooks and adding visualizations to workbooks, see the
Oracle Analytics product documentation section in Oracle Analytics Extension Development
Resources.

You must build and package a workbook extension before you can upload it to Oracle Analytics
Desktop to test it. See Build and Package an Extension.

1. In Terminal run this command to invoke Oracle Analytics Desktop in the browser:

./gradlew run
2. If after you run the command Oracle Analytics Desktop opens and then closes, you can

use the Mac menu bar to manually open Oracle Analytics Desktop in a browser.

a. Go to the Mac menu bar and locate and click the Oracle Analytics Desktop icon.

b. Select Copy URL to Clipboard.

c. In a browser, paste the copied URL and press Enter.

3. To test a visualization extension:

a. In Oracle Analytics Desktop, open or create a workbook.

b. In the workbook's Data Panel, click Visualizations and scroll to the bottom of the
Visualizations list to locate the Custom Visualizations section containing the custom
visualizations you created.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-8

4. To test a workbook extension:

a. In Oracle Analytics Desktop, click Navigator and then click Console. Go to the
Extensions and Enrichments section and click Extensions.

b. Click Upload Extensions and browse for and select the workbook extension ZIP file.
Click Open.

c. In Oracle Analytics Desktop, open or create a workbook.

d. In the Toolbar click Custom Workbook Extension to view a list of the workbook
extensions that you uploaded to your instance.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-9

Set Up the Oracle Analytics Extension Development
Environment on Windows

This topic describes the tasks you need to perform to set up and use your Oracle Analytics
extension development environment.

Topics:

• Install Oracle Analytics Desktop on Windows

• Install Java JDK on Windows

• Set User Variables and Create a Development Directory on Windows

• Create the Extension Development Environment on Windows

• Create a Skeleton Extension on Windows

• Test Your Visualization and Workbook Extensions on Windows

Install Oracle Analytics Desktop on Windows
Oracle Analytics Desktop provides the scripts needed to create your development environment
and extension skeletons, and a local test environment.

Install or upgrade to the latest version of Oracle Analytics Desktop.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Go to Oracle Analytics Desktop Installation Download, click Download and log into your
Oracle Cloud account.

2. In the Oracle Software Delivery Cloud page, click Platforms and select Microsoft
Windows x64.

3. Review and accept the license agreement. Click the Oracle Analytics Desktop ZIP file to
download it.

4. Go to the download location on your computer, double-click the ZIP file, and double-click
Oracle_Analytics_Desktop_<version>_Win.exe and perform the installation.

5. Navigate to C:\Program Files\Oracle Analytics Desktop to confirm the
installation.

Install Java JDK on Windows
Use a Java JDK version that is compatible with your Windows and processor. All examples in
this chapter were developed with Java JDK 8u201.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Command Prompt and enter this command to check if you have Java JDK installed:

java -version

2. If one or more Java JDK is installed, confirm one is compatible with your macOS and
processor.

3. If you need to install Java JDK, go to Java SE 8 Archive Downloads.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-10

https://www.oracle.com/solutions/business-analytics/analytics-desktop/oracle-analytics-desktop.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

4. Locate and download the JDK install file compatible with your Windows and processor.

5. After the installation completes, open Command Prompt and enter this command to check
that the Java JDK version you picked installed successfully:

java -version

Set User Variables and Create a Development Directory on Windows
Create or modify the user variables required by the Oracle Analytics Desktop scripts. Then
create the development directory to contain your development environment,

In this procedure, you create or update these required user variables:

• PLUGIN_DEV_DIR - The location of your development directory, for example
C:\PLUGIN_DEV_DIR.

• DVDESKTOP_SDK_HOME - The location of your Oracle Analytics Desktop installation,
for example C:\Program Files\Oracle Analytics Desktop\dvdesktop.

• JAVA_HOME - The location of your JDK 1.8 installation, for example C:\Program
Files\Java\jdk-1.8.

• Path - The location of your Oracle Analytics Desktop bin directory, for example
C:\Program Files\Oracle Analytics Desktop\tools\bin. This variable
already exists in Windows. When you update it, make sure that you don't delete or modify
any of the variable's existing paths.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open File Explorer, right-click This PC, and then click Properties. Click Advanced
System Settings, and in the Advanced tab click Environment Variables.

2. In Environment Variables, click New under User variables for <computer name>. In the
New User Variable dialog, go to Variable name and enter the name of the variable, and
then browse for or enter the directory location. See the list at the top of this task for
variable name and value requirements. Click OK.

3. In Environment Variables, under User variables for <computer name> click the Path
variable, and then click Edit. Browse for or enter the location of your Oracle Analytics
Desktop bin directory. Click OK.

4. In the Environment Variables dialog, click OK.

5. To create the development directory, open the Command Prompt and run this command:

cd C:\
mkdir $PLUGIN_DEV_DIR

Create the Extension Development Environment on Windows
After you configure user variables, you run the bicreateenv script to create the development
environment that contains the resources you need to create extensions.

For information about the options available for running the script, see the script's command-line
help, for example:

cd $PLUGIN_DEV_DIR
bicreateenv -help

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-11

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Command Prompt, and run the bicreateenv script to create the environment, for
example:

cd $PLUGIN_DEV_DIR
bicreateenv

2. In File Explorer, navigate to the directory that you created and confirm that its contents
look like this:

3. Optional: If you’re working behind a web proxy, open gradle.properties and add
system properties that point to your proxy.

Use the following example to set your gradle.properties:

systemProp.https.proxyHost=www-proxy.somecompany.com
systemProp.https.proxyPort=80
systemProp.https.nonProxyHosts=*.somecompany.com|*.companyaltname.com

Create a Skeleton Extension on Windows
Use the bicreateplugin script to create an Oracle Analytics extension skeleton.

The bicreateplugin script uses the following syntax:

bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

Where:

subType is the type of visualization extension you want to create. Valid values are basic,
dataviz, and embeddableDataviz. Don't include subType when you create a workbook
extension.

id is the name of the extension. The name you specify must be in this format:
<com.company.yourVizName>.

For information about the extensions you can create when you run the bicreateplugin script,
see Types of Oracle Analytics Extensions. The examples used in this topic show you how to
create the dataviz and workbook skeleton extensions.

Running the script creates a folder in your PLUGIN_DEV_DIRECTORY environment. This
folder contains the files that you use to develop the extension. The <extension_name>.js
render method is the entry point where you can start writing code.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-12

1. In Command Prompt, run the bicreateplugin script in your development directory.

cd $PLUGIN_DEV_DIR
bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

This example shows how to create a dataviz skeleton extension:

bicreateplugin viz -subType dataviz -id com.companyabc.helloviz

This example shows how to create a workbook skeleton extension:

bicreateplugin workbook -id com.companyabc.helloworkbook

2. In File Explorer, navigate to your development environment and extension directory, for
example C:\PLUGIN_DEV_DIR\src\customviz, and confirm that a new folder was
created and that its name matches the extension name you specified.

This example shows a dataviz extension's directory:

This example shows a workbook extension's directory:

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-13

Test Your Visualization and Workbook Extensions on Windows
Use Command Prompt to run Oracle Analytics Desktop in SDK mode to test your Oracle
Analytics visualization and workbook extensions. Running Oracle Analytics Desktop in SDK
mode opens Oracle Analytics Desktop in a browser.

For information about creating workbooks and adding visualizations to workbooks, see the
Oracle Analytics product documentation section in Oracle Analytics Extension Development
Resources.

You must build and package a workbook extension before you can upload it to Oracle Analytics
Desktop to test it. See Build and Package an Extension.

1. In Command Prompt, change to PLUG_IN_DEV_DIR and run this command to invoke
Oracle Analytics Desktop in a browser:

cd $PLUGIN_DEV_DIR
./gradlew run

2. If after you run the command Oracle Analytics Desktop opens and then closes, you can
use the Windows task bar to manually open Oracle Analytics Desktop in a browser.

a. Go to the Windows task bar and click Show hidden icons. Locate and right-click the
Oracle Analytics Desktop icon.

b. Select Copy URL to Clipboard.

c. In a browser, paste the copied URL and press Enter.

3. To test a visualization extension:

a. In Oracle Analytics Desktop, open or create a workbook.

b. In the workbook's Data Panel, click Visualizations and scroll to the bottom of the
Visualizations list to locate the Custom Visualizations section containing the custom
visualizations you created.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-14

4. To test a workbook extension:

a. In Oracle Analytics Desktop, click Navigator, and then click Console. Go to the
Extensions and Enrichments section and click Extensions.

b. Click Upload Extensions and browse for and select the workbook extension ZIP file.
Click Open.

c. In Oracle Analytics Desktop, open or create a workbook.

d. In the Toolbar click Custom Workbook Extension to view a list of the workbook
extensions and you uploaded to your instance.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-15

Work with Extensions
This topic describes some of the tasks you perform when you develop your Oracle Analytics
extensions.

Topics:

• Build and Package an Extension

• Upload an Extension to Oracle Analytics

• Delete Extensions from the Oracle Analytics Development Environment

Build and Package an Extension
Run the gradlew clean build command to build and package an extension into a ZIP file.
You upload this file to your Oracle Analytics production environment, or to your Oracle
Analytics Desktop test environment.

After you run the command, Oracle Analytics Desktop adds a build directory to your
development environment, for example C:/PLUGIN_DEV_DIR/build/distributions. This
directory contains a ZIP file for each extension in your development directory.

• Navigate to your development directory and run the gradlew clean build command.
For example,

cd $PLUGIN_DEV_DIR
./gradlew clean build

Upload an Extension to Oracle Analytics
After you build and package your extension to a ZIP file in your Oracle Analytics Desktop
development environment, you upload the ZIP file to your Oracle Analytics production
environment.

See Build and Package an Extension.

After you upload a visualization extension to Oracle Analytics and create or open a workbook,
the Visualization tab displays the visualization extension in the Custom Visualizations section.
From there you can drag and drop the custom visualization to your workbook. The extension
displays as an option for every workbook on the instance where you uploaded the extension.
All visualization extension types are available for you to add to workbooks. See Types of
Oracle Analytics Extensions.

After you upload a workbook extension to Oracle Analytics, and create or open a workbook,
the Custom Workbook Extension icon is displayed in the workbook's toolbar. Click this icon
to view a list of the uploaded workbook extensions. Click an extension from the list to invoke it.
The workbook extensions display for every workbook on the instance where you uploaded the
extension.

1. Open Oracle Analytics. On the Home page click Navigator. In Navigator click Console.

2. Under Extensions and Enrichments, click Extensions.

3. In Extensions, click Upload Extensions, and select the ZIP file containing the extension.
Then click Open.

Chapter 3
Work with Extensions

3-16

Delete Extensions from the Oracle Analytics Development Environment
You can use the bideleteplugin script to delete any extension from your Oracle Analytics
development environment.

The build and package process includes all of the visualizations contained in your development
directory. To exclude any unwanted visualizations from the build, you can delete them before
you perform the build and package process.

Use the information in this table to help you delete an extension:

Action Command

Delete an extension
cd $PLUGIN_DEV_DIR
bideleteplugin viz -id
<id_of_extension>

Delete an unclassified extension
cd $PLUGIN_DEV_DIR
bideleteplugin unclassified -id
<id_of_extension>

Delete a skin extension
cd $PLUGIN_DEV_DIR
bideleteplugin skin -id
<id_of_extension>

Chapter 3
Work with Extensions

3-17

4
Manage Oracle Analytics Extensions

You can upload, download, search for, and delete extensions. Extensions are custom
visualizations, workbooks, or data actions that you or a developer create externally and then
import into Oracle Analytics.

 LiveLabs Sprint

For example, you can upload an extension that provides a custom visualization that you can
add to workbooks.

1. On the Home page, click the Navigator, and then click Console.

2. Click Extensions.

3. To upload an extension, click Upload Extension, browse to the extension ZIP file, and
click Open to upload the extension.

4. Perform any of the following tasks.

• To search for an extension, enter your search criteria in the Search field and click
Return to display search results.

• To delete an extension, click Options on the extension and select Delete, and click
Yes to delete the extension.
If you delete a visualization type that’s used in a workbook, then that workbook
displays an error message in place of the visualization. Either click Delete to remove
the visualization, or upload the same extension so that the visualization renders
correctly.

• To download an extension, click Options on the extension and select Download.

4-1

https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=3247

Part III
Embed Content

This part explains how to embed content into applications and web pages.

Topics:

• About Embedding Oracle Analytics Content into Applications and Web Pages

• Embed Oracle Analytics Content With iFrames

• Embed Oracle Analytics Content With the JavaScript Embedding Framework

5
Get Started Embedding Content into
Applications and Web Pages

This chapter contains information that you need to know before you embed content into
applications and web pages.

Topics:

• About Embedding Oracle Analytics Content into Applications and Web Pages

• Register an Application as a Safe Domain

About Embedding Oracle Analytics Content into Applications and
Web Pages

You can embed Oracle Analytics content into an application, custom application, or portal web
page.

When you embed analytics, you put information where users need it to make business
decisions. Embedded analytics delivers fast time-to-insight and increases user productivity.

There are two analytics content embedding methods:

• Use the analytics content item's URL. Typically this method uses an iFrame. See Embed
Oracle Analytics Content With iFrames.

• Use the JavaScript embedding framework when you need an integrated way to embed
analytics content. This method provides greater flexibility than the iFrame embedding
method. For example, use this method when you want to embed visualizations into a
custom web application. See Typical Workflow to Use the JavaScript Embedding
Framework with Oracle Analytics Content.

Register an Application as a Safe Domain
Before you can embed Oracle Analytics content into another application, your administrator
must register the application's domain as safe.

For security reasons, you’re not allowed to add analytics content to an applications unless your
administrator considers it safe to do so.

See Register Safe Domains.

Web browsers have become more restrictive about dealing with third party cookies. This
restriction can impact embedding projects where the browser won't display your embedded
analytics content.

To work around this issue make sure that the Oracle Analytics instance where you embed
analytics content is on a subdomain of the host web page or web application.

Use this information if you're using JavaScript to embed analytics content:

5-1

• Due to CORS safeguarding, you can't open your HTML file containing embedded analytics
content directly in a browser. To work around this issue you must register the web server
(either localhost or another web server) as a safe domain.

• If you use a localhost web server for testing, then you may need to add references to http://
localhost:<port> and http://127.0.0.1:<port>.

You must be an administrator to perform this task.

1. Go to Oracle Analytics, click Navigator, and click Console.

2. Click Safe Domains.

3. Click Add Domain and enter the domain.

4. Select Embedding.

5. If using compatibility mode with embedding, select Allow Frames.

Chapter 5
Register an Application as a Safe Domain

5-2

6
Embed Oracle Analytics Content With iFrames

This chapter explains how to use iFrames to embed Oracle Analytics content into applications
and web pages.

Topics:

• Considerations for Embedding Oracle Analytics Content With iFrame

• Use iFrame to Embed Analytics Content into an Application or Web Page

Considerations for Embedding Oracle Analytics Content With
iFrame

This topic describes issues that you might encounter when you use iFrame to embed Oracle
Analytics content into applications and web pages.

Users can open embedded Oracle Analytics content from an application if single sign-on is set
up, or if there's already an active session for the embedded Oracle Analytics in the same
browser.

If you're using the Safari browser and the embedded analytics content doesn't display as
expected, try disabling Safari's Prevent cross-site tracking preference.

Use iFrame to Embed Analytics Content into an Application or
Web Page

You can embed your analytics content into an application or web page by adding the target
analytics content's URL into an application or portal's iFrame. For example, you can use this
method to embed analytics content into Microsoft Teams.

Note:

If you need an integrated way to embed analytics content, then use the JavaScript
embedding framework. This method provides greater flexibility than the iFrame
embedding method. See Typical Workflow to Use the JavaScript Embedding
Framework with Oracle Analytics Content.

Before you perform this task, confirm that you've registered the domain that you want to embed
your analytics content into as a safe domain. See Register an Application as a Safe Domain.

If you need to manually build the URL, for example to create a URL that includes parameters,
be sure to properly escape any characters. All special characters in the URL need to be URL-
encoded. For example, use %2C to encode commas and %20 to encode spaces.

1. On the Home page, click Navigator, and then click Catalog.

2. Locate the item that you want to embed and click Actions. Click Open.

6-1

3. Go to the browser's address bar and copy the item's URL. These are examples of URLs:

• Report - http://example.com/analytics/saw.dll?
PortalGo&path=%2Fshared%2FRevenuehttp://example.com/analytics/saw.dll?
PortalGo&Action=prompt&path=%2Fshared%2FSaled%2FSales%20by%20Brand

• Dashboard - http://example.com/analytics/saw.dll?
Dashboard&PortalPath=%2Fshared%2FSales%2F_portal%2FQuickStart&page=Top%20P
roducts

• Workbook - http://example.com/ui/dv/home.jsp?
pageid=visualAnalyzer&reportmode=full&reportpath=%2Fshared%2FMySalesWorkbo
ok

• Canvas - https://example.com:8080/ui/dv/?
pageid=visualAnalyzer&reportmode=full&reportpath=%2F%40Catalog%2Fusers%2Fa
dmin%2FOAC%20Demo%20Samples%2FCost%20Management%20Analytics%20copy&canvasn
ame=canvas!2.

See Share a Workbook URL with a Specific Canvas Selected.

4. Alternatively, manually build and then copy the URL to insert into an iFrame.

This is an example of how to construct a URL containing parameters:

https://example.com/ui/dv/ui/project.jsp?
pageid=visualAnalyzer&reportmode=full&reportpath=%2F%40Catalog%2Fshared&p1n=pC
ustomerSegment&p1v=Corporate&p2n=pCity&p2v=Bristol%2CCardiff%2CAustin

5. Open the target application or portal, locate an iFrame, and paste the analytics content's
URL into it.

Chapter 6
Use iFrame to Embed Analytics Content into an Application or Web Page

6-2

7
Embed Oracle Analytics Content With the
JavaScript Embedding Framework

This chapter explain how to use the JavaScript embedding framework to embed Oracle
Analytics content into applications and web pages.

Topics:

• Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics
Content

• Enable Oracle Analytics Developer Options

• Find the Javascript and HTML for Embedding Oracle Analytics Content

• Prepare the HTML Page for Embedded Oracle Analytics Content

• Pass Filters to the HTML Page for Embedded Oracle Analytics Content

• Pass Parameters to the HTML Page for Embedded Oracle Analytics Content

• Refresh Data in the HTML Page for Embedded Oracle Analytics Content

• Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET

• Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET

• Use Login Prompt Authentication With Embedded Oracle Analytics Content

Typical Workflow to Use the JavaScript Embedding Framework
with Oracle Analytics Content

If you're using the JavaScript embedding framework to embed Oracle Analytics content into an
application or web page, then follow these tasks as a guide.

Note:

You can also embed Oracle Analytics content using the analytic content item's URL.
Typically this method uses an iFrame. See Embed Oracle Analytics Content With
iFrames.

Task Description More Information

Add safe domains Use the Console to register as
safe the development, production,
and test environments domains.

Register an Application as a Safe
Domain

Enable Developer options Use the Developer's page to find
the <script> tag, HTML, and
column's expression that you
need to embed analytics content.

Enable Oracle Analytics
Developer Options

7-1

Task Description More Information

Create the HTML page Create the HTML page where
you'll embed analytics content.
Steps include: reference the
embedding.js JavaScript source
and the embedded workbook's
URL, specify filters and
parameters, and specify how to
refresh data.

Prepare the HTML Page for
Embedded Oracle Analytics
Content

Pass Filters to the HTML Page
for Embedded Oracle Analytics
Content

Pass Parameters to the HTML
Page for Embedded Oracle
Analytics Content

Refresh Data in the HTML Page
for Embedded Oracle Analytics
Content

Specify the embedding mode Your application uses JET or
another technology to embed
analytics content.

Embed Oracle Analytics Content
into a Custom Application that
Uses Oracle JET

Embed Oracle Analytics Content
into a Custom Application That
Doesn’t Use Oracle JET

Understand how authentication
works

Learn about login prompt
authentication and how to
customize the login message that
users see.

Use Login Prompt Authentication
With Embedded Oracle Analytics
Content

Enable Oracle Analytics Developer Options
Enable the developer's options to access the Oracle Analytics Developer's page. Use the
Developer's page to find the <script> tag, HTML, and column's expression that you need to
embed Oracle Analytics content into an application or web page.

1. Go to the top toolbar and click your user name.

2. Click Profile and in the Profile window, click Advanced.

3. Click the Enable Developer Options icon and click Save.

Find the Javascript and HTML for Embedding Oracle Analytics
Content

Oracle Analytics generates the analytics content's <script> tag and HTML for you to copy and
paste in to your custom application or portal web page's HTML page.

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

1. Go to Oracle Analytics and open the workbook containing the analytics content you want to
embed.

2. Click the workbook's Menu and then click Developer.

3. In the Developer window, click the Embed tab.

4. Locate the Embedding Script to Include field and click Copy to copy the <script> tag to
paste in to the HTML page.

Chapter 7
Enable Oracle Analytics Developer Options

7-2

5. Optional: If you want the embedded workbook to show the workbook's default view, then
locate the Default field, click Copy to copy the HTML, and paste it in to the HTML page.

6. Optional: If you want the embedded workbook to show an item such as a specific canvas,
then locate the item's field, click Copy to copy the HTML, and paste it in to the HTML
page.

Prepare the HTML Page for Embedded Oracle Analytics Content
To embed Oracle Analytics content, you must create or update the HTML page to include the
required DOCTYPE declaration, dir global attribute, and reference the embedding.js JavaScript
source and the embedded workbook's URL. You must also specify the embedding mode (JET
or standalone), an authentication method, and add any attributes.

This topic contains the following information:

• DOCTYPE Declaration

• Dir Global Attribute

• <script> Tag and JavaScript Source Reference

• Authentication

• <oracle-dv> Element

• Example

Doctype Declaration

Set the doctype declaration to <!DOCTYPE html>. Unpredictable behavior such as the page not
rendering properly results if you use a doctype declaration other than <!DOCTYPE html>, or if
you forget to include a doctype declaration.

Dir Global Attribute

Set the dir global attribute as required by the web page's locale. The dir global attribute
indicates the embedded analytics content's layout direction.

Note:

If you need to support multiple locales, then use JavaScript to set the attribute.

The attribute's value options are:

• rtl - Use for right to left layout direction.

• ltr - Use for left to right layout direction.

• auto - Don't use. This value isn't supported by Oracle Analytics.

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-3

<script> Tag and JavaScript Source Reference

Note:

Oracle Analytics generates the <script> tag and JavaScript source's URL that you
need to include.

Add a <script> tag that references embedding.js to your HTML page.

The JavaScript source's URL structure is:

• ”https://<instance>/public/dv/v1/embedding/<embeddingMode>/embedding.js”. The
examples in this document use this URL.

• For older deployments, use: "http://<instance>/ui/dv/v1/embedding/
<embeddingMode>/embedding.js".

Where <embeddingMode> must be either jet or standalone:

• Use jet if you're embedding analytics content within an existing Oracle JET application. If
you use jet, then the version of Oracle JET that the application uses must match the
same major version of Oracle JET that Oracle Analytics uses. For example, if Oracle
Analytics uses JET 11.0.0, then your custom application must use JET 11.0.0 or 11.1.0.
Oracle Analytics uses Oracle JET version 11.1.10.

To find the version of JET that Oracle Analytics uses, log into Oracle Analytics, open the
browser console, and run this command:

requirejs('ojs/ojcore').version

If the embedding application uses Oracle JET, Oracle Analytics extends the application
with the components it needs. See Embed Oracle Analytics Content into a Custom
Application that Uses Oracle JET.

Oracle JET is a set of Javascript-based libraries used for the Oracle Analytics user
interface.

• Use standalone when embedding visualization content in a generic application that
doesn’t use Oracle JET.

If the embedding application doesn't use Oracle JET, then Oracle Analytics brings its JET
distribution to the page with additional components. See Embed Oracle Analytics Content
into a Custom Application That Doesn’t Use Oracle JET.

Authentication

You need an authenticated session to view the embedded analytics content. See Use Login
Prompt Authentication With Embedded Oracle Analytics Content.

<oracle-dv> Element

To embed a workbook, you must add the following HTML snippet with attribute values inside
an appropriately sized element. Oracle Analytics generates the HTML that you need to include.

<oracle-dv project-path="" active-page="" active-tab-id="" filters=""></oracle—
dv>

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-4

Supported attributes — These attributes support static strings and properties defined within a
Knockout model. Knockout is a technology used in Oracle JET.

Note:

See Embed Oracle Analytics Content into a Custom Application That Doesn’t Use
Oracle JET for an example of binding these attributes to a Knockout model.

• project-path: Specifies the path of the workbook that you want to render.

• active-page: (Optional) Specifies whether an insight other than the default is rendered.
When you specify active-page, you also use active-tab-id to specify the exact Present
canvas that you’re showing. Valid value is insight.

Note:

The active-page value canvas is deprecated. Oracle recommends that you
modify your embedding code that uses canvas to insight. Existing embedded
analytics content that uses canvas will continue to work and a warning displays in
the browser console.

• active-tab-id: (Optional) Specifies the ID of the Present canvas that you’re showing.

• filters: (Optional) Allows the programmatic passing of filter values to an embedded
workbook.

• project-options: (Optional) In this attribute, project refers to workbook. Allows you to
pass these options:

– bDisableMobileLayout: Disables or enables the mobile layout. Mobile layout refers to
the summary card layout available only on phone devices. Value should be true or
false.

– bShowFilterBar: Shows or hides the filter bar. Value should be true or false.

– showCanvasNavigation: Shows or hides the canvases in the workbook according to
the canvas navigation setting in the workbook's Present tab. Value should be true or
false.

For example, <oracle-dv project-path="{{projectPath}}" active-page="canvas"
active-tab-id="1" filters="{{filters}}" project-
options='{"bDisableMobileLayout":true, "bShowFilterBar":false}'></oracle-dv>

• brushing-type: Controls how brushing works. The value you specify overrides all other
settings, including system defaults and settings in the saved workbook. Value should be
the string on, off, or auto.

– on: Use to issue brushing queries with normal priority. Brushing queries and
visualization queries are mixed and run at the same time.

– auto: Default. Use to issue brushing queries with low priority. When a user interacts
with a visualization, there may be a delay showing marks in other visualizations until
the brushing queries complete.

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-5

• compatibility-mode: Use when different major versions of Oracle JET are present. This
creates an iFrame at runtime to sandbox the embedded analytics content. Value should be
the string yes, no, or auto.

Note:

When setting this attribute, note these two items:

If using compatibility mode, confirm that Allow Frames is selected for the
application your administrator registered as a safe domain. See Register an
Application as a Safe Domain.

To find the version of JET that Oracle Analytics uses, log into Oracle Analytics,
open the browser console, and run this command:

requirejs('ojs/ojcore').version

– yes: Use when you always want to sandbox the analytics embedded content. This is
useful when embedding into Oracle APEX applications.

– no: Default. Use when you don't want to create an iFrame.

– auto: Use to automatically detect major differences in Oracle JET version between the
host embedding application and Oracle Analytics. You can use this when embedding
into Oracle APEX.

Example

In this example, all instances of project refer to workbook.

You can get the exact URL of the embedding.js file from the Embed tab in the Developer
window of the workbook.

<!DOCTYPE html>
<html dir="ltr">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Embedded Oracle Analytics Workbook Example</title>
 <script src="https://<instance>/public/dv/v1/embedding/<embedding
mode>/embedding.js" type="application/javascript">
 </script>

 </head>
 <body>
 <h1>Embedded Oracle Analytics Workbook</h1>
 <div style="border:1px solid black;position: absolute; width:
calc(100% - 40px); height: calc(100% - 120px)" >
 <!--
 The following <oracle-dv> tag is the tag that will embed the
specified workbook.
 -->
 <oracle-dv
 project-path="<project path>"
 active-page="insight"
 active-tab-id="snapshot!canvas!1">

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-6

 </oracle-dv>
 </div>
 <!--
 Apply Knockout bindings after DV workbook is fully loaded. This
should be executed in a body onload handler or in a <script> tag after the
<oracle-dv> tag.
 -->
 <script>
 requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/
ojcomposite', 'jet-composites/oracle-dv/loader'], function(ko) {
 ko.applyBindings();
 });
 </script>
 </body>
</html>

Pass Filters to the HTML Page for Embedded Oracle Analytics
Content

You can pass numeric and list filters to the HTML page where you're embedding Oracle
Analytics content. You can filter any type of data with these filter types.

The filters payload is a Javascript array containing one filter Javascript object per array item.

In this example, all instances of project refer to workbook. Rendering a workbook while
applying filters looks like this:

<oracle-dv project-path="{{projectPath}}" filters="{{filters}}">
</oracle-dv>

<script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {
 function MyProject() {
 var self = this;
 self.projectPath = ko.observable("/users/weblogic/EmbeddingStory");
 self.filters = ko.observableArray([{
 "sColFormula": "\"A - Sample Sales\".\"Products\".\"P2 Product
Type\"",
 "sColName": "P2 Product Type",
 "sOperator": "in", /* One of in, notIn, between, less, lessOrEqual,
greater, greaterOrEqual */
 "isNumericCol": false,
 "bIsDoubleColumn": false,
 "aCodeValues": [],
 "aDisplayValues": ['Audio', 'Camera', 'LCD']
 },{
 "sColFormula": "\"A - Sample Sales\".\"Base Facts\".\"1- Revenue\"",
 "sColName": "Rev",
 "sOperator": "between", /* One of in, notIn, between, less,
lessOrEqual, greater, greaterOrEqual */
 "isNumericCol": true,
 "bIsDoubleColumn": false,
 "aCodeValues": [],

Chapter 7
Pass Filters to the HTML Page for Embedded Oracle Analytics Content

7-7

 "aDisplayValues": [0, 2400000] /* Because the operator is "between",
this results in values between 0 and 2400000 *
/
 }]);
}
 ko.applyBindings(MyProject);
});
</script>

Supported attributes — Each filter object within the filters payload must contain the following
attributes:

• sColFormula: Specifies the three-part formula of the column to filter. The column formula
must include three parts.

If you're unsure of the formula, create a workbook that uses that column, and then in the
Visualize tab, click the workbook's Menu and then click Developer. In the Developer page,
click the JSON tab to view the column's expression. For example, sColFormula": "\"A -
Sample Sales\".\"Base Facts\".\"1- Revenue\"" .

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

• sColName: (Required) Specifies a unique name for this column.

• sOperator: Use in, notIn, between, less, lessOrEqual, greater, or greaterOrEqual.

– in and notIn - Apply to list filters.

– between, less, lessOrEqual, greater, and greaterOrEqual - Apply to numeric filters.

• isNumericCol: Specifies if the filter is numeric or list. Value should be true or false.

• isDateCol: (Required) Indicates whether the column is a date column. Value should be
true or false. Use true if the column is a date, but not for year, month, quarter, and so on.
If set to true, then specify date or dates in the aDisplayValues attribute.

• bIsDoubleColumn: Specifies if the column has double column values behind the display
values. Value should be true or false.

• aCodeValues: When bIsDoubleColumn is true, this array is used.

• bHonorEmptyFilter: (Optional) Indicates whether an empty filter is honored (for example,
empty aCodeValues/aDisplayValues based on the bIsDoubleColumn flag). This attribute
applies to all column filters: list filters, number range filters, and date range filters. Value
should be true or false.

– If set to true and the user passes empty aCodeValues/aDisplayValues, then all
values are part of the filter.

– If set to false and user passes empty aCodeValues/aDisplayValues, then the
attribute won't be applied and there is no change in filter values.

– If this attribute isn't present, then the default value is false.

• aDisplayValues: When bIsDoubleColumn is false, then this array is used to filter and to
display values within the user interface.

When bIsDoubleColumn is true, then the values in this array are used for display in the
user interface while the values in aCodeValues are used for filtering. When
bIsDoubleColumn is true, there must be the same number of entries in this array as there
are in the aCodeValues array and the values must line up. For example, suppose

Chapter 7
Pass Filters to the HTML Page for Embedded Oracle Analytics Content

7-8

aCodeValues has two values 1 and 2, then aDisplayValues must have two values a and b,
where 1 is the code value for a, and 2 is the code value for b.

If isDateCol attribute is set to true, then specify the aDisplayValues array with dates. If
either no time zone in the time stamp or no time stamp is provided, then time is set with the
local time zone. Use any of the following formats:

– mm/dd/yyyy (For example, 12/31/2011.)

– yyyy-mm-dd (For example, 2011-12-31.)

– yyyy/mm/dd (For example, 2011/12/31.)

– mm/dd/yyyy or yyyy/mm/dd, hh:mm:ss (For example, 12/31/2011 or 2011/12/31,
23:23:00.)
Note: Use a 24 hour format. You can use a space as the separator.

– mm/dd/yyyy or yyyy/mm/dd, hh:mm:ss AM/PM (For example, 12/31/2011 or
2011/12/31, 11:23:00 PM.)
Note: Use a 12 hour format. You can use a space as the separator.

– <3 letter month name> dd yyyy (For example, Mar 25 2015.)

– dd <3 letter month name> yyyy (For example, 25 Mar 2015.)

– Fri Sep 30 2011 05:30:00 GMT+0530 (India Standard Time)

– ISO Date Format - 2011-10-05T14:48:00.000Z

Pass Parameters to the HTML Page for Embedded Oracle
Analytics Content

You can pass parameter values to the HTML page where you're embedding Oracle Analytics
content. The parameter values that you pass can be utilized within query expressions and
various parts of the product.

The parameters payload is a Javascript Object containing paired attributes of parameter
names and values.

In this example, all instances of project refer to workbook. Rendering a project while applying
parameters look like this:

<oracle-dv project-path="{{projectPath}}" active-page="canvas" active-tab-
id="3" parameters="{{parameters}}"
project-options='{"bDisableMobileLayout":false, "bShowFilterBar":false}'>
</oracle-dv>

<script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {

 function MyProject() {
 var self = this;
 self.projectPath = ko.observable("/users/weblogic/EmbeddingStory");
 self.parameters = ko.observable({
 "p1n": "Office",
 "p1v": "Bristol Office",
 "p2n": "Year",
 "p2v": [2023, 2022]
 });

Chapter 7
Pass Parameters to the HTML Page for Embedded Oracle Analytics Content

7-9

 }
 ko.applyBindings(MyProject);
});
</script>

Supported attributes — Each parameter object within the parameters payload must contain
the following attributes:

• p <number> n: (Required) Specifies the parameter's name as defined in the workbook. For
example, "Office" or "Year".

• p <number> v: (Required) Specifies the parameter value that you want to pass. For
example "Bluebell Office" or "10" or [2023, 2022].

• p <number> d: (Optional) Use with parameters with double columns. Specifies the
parameter's display value corresponding to p <number> v. For example, "My Office".

Refresh Data in the HTML Page for Embedded Oracle Analytics
Content

In the HTML page where you're embedding Oracle Analytics content, you can specify how to
refresh the embedded workbook's data.

To refresh data without reloading a workbook, the refreshData function is attached to all
<oracle-dv> elements. Invoking it forces all visualizations under that element to refresh.

This is the code to refresh data for a single embedded workbook. In this code, all instances of
project refer to workbook.

<oracle-dv id="project1" project-path="{{projectPath}}">
</oracle-dv>

<script>
 function refreshProject() {
 $('#project1')
 [0].refreshData();
}
</script>

This is the code to refresh data for multiple embedded workbooks. In this code, all instances of
project refer to workbook.

<script>
 function refreshProject()
 {
 $('oracle-dv').each(function() {
 this.refreshData();
 });
}
</script>

Chapter 7
Refresh Data in the HTML Page for Embedded Oracle Analytics Content

7-10

Embed Oracle Analytics Content into a Custom Application that
Uses Oracle JET

If the custom application uses Oracle JET, then the embedded Oracle Analytics content
extends the application with the component it needs.

Before you begin to embed analytics content, confirm that the custom application uses the
same major version of JET that Oracle Analytics uses. For example, if Oracle Analytics uses
JET 11.0.10, then your custom application must use JET 11.x.x.
To find the version of JET that Oracle Analytics uses, log into Oracle Analytics, open the
browser console, and run this command:

requirejs('ojs/ojcore').version

Your JET application must also use the same style that Oracle Analytics uses, which is Alta.

For information about creating an Oracle JET quick start application where you'll embed
analytics content, see Oracle JET Get Started.

This procedure uses an example embedding application named OAJETAPP.

1. Follow the instructions to install the Oracle JET quickstart application and name the
embedding application OAJETAPP using --template=navdrawer.

2. Edit the index.HTML file of the embedding application (for example, OAJETAPP/src/
index.html) and include embedding.js.

<script src="https://<instance>/public/dv/v1/embedding/jet/embedding.js"
type="text/javascript">
</script>

3. Include <oracle-dv> in the appropriate section (for example OACJETAPP/src/js/
views/dashboard.html). Here project-path specifies the workbook's path.

<div class="oj-hybrid-padding" style="position: absolute; width: calc(100%
- 40px); height: calc(100% - 120px)">
 <h3Dashboard Content Area</h3>
 <oracle-dv id="oracle-dv" project-path="/Shared Folders/embed/test-
embed">
 </oracle-dv>
</div>

4. Run the quick start application using these commands.

ojet build
ojet serve

Chapter 7
Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET

7-11

Embed Oracle Analytics Content into a Custom Application That
Doesn’t Use Oracle JET

If the custom application uses a technology other than Oracle JET, then the embedded Oracle
Analytics content adds its Oracle JET distribution and all additional components into the page.

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

1. Include the standalone version of embedding.js.

<script src=https://<instance>/public/ui/dv/v1/embedding/standalone/
embedding.js type="text/javascript"> </script>

2. Find and include <oracle-dv> under an appropriately sized <div>. To find this tag:

a. Go to Oracle Analytics and open the workbook containing the analytics content you
want to embed.

b. Click the workbook's Menu and then click Developer.

c. Click the Embed tab.

d. Locate the item you want to embed and click Copy to copy it.

Example

Here project-path specifies the workbook's path.

<div style="position: absolute; width: calc(100% - 40px); height:
calc(100% - 120px)">
 <oracle-dv project-path="/@Catalog/users/admin/workbook_name">
 </oracle-dv>
</div>

3. Apply Knockout bindings after the visualization is fully loaded. This should be placed inside
of a <script> tag after the <oracle-dv> tag, or executed in an onload body handler.

requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {
 ko.applyBindings();
});

Complete Example

<!DOCTYPE html>
<html dir="ltr">
 <head>
 <title>AJAX Standalone Demo</title>
 <script src="https://<instance>/public/dv/v1/embedding/standalone/
embedding.js""
type="text/javascript">
 </script>
 </head>
 <body>
 <h1>AJAX Standalone Demo</h1>

 <div style="position: absolute; width: calc(100% - 40px); height:

Chapter 7
Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET

7-12

calc(100% -
120px)" >
 <oracle-dv project-path="/shared/embed/test-embed">
 </oracle-dv>
 </div>

 <script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) { ko.applyBindings();
});
 </script
 </body
</html

Add Authentication to an Application or Web Page Containing
Embedded Oracle Analytics Content

Use the topics in this section to add an authentication method to your web application or portal
web page that contains embedded Oracle Analytics content.

Topics:

• Use Login Prompt Authentication With Embedded Oracle Analytics Content

Use Login Prompt Authentication With Embedded Oracle Analytics Content
Login prompt authentication is the default authentication method for Oracle Analytics content
embedded in a web application or portal web page.

When users access embedded analytics content, they're presented with a login screen where
they enter login name and password before they can view data. If there is no common identity
management between Oracle Analytics and the web application or portal web page, then users
are presented with this login screen, even if they've already logged in to the web application or
portal web page containing the embedded analytics content

Customize the Login Prompt Authentication Message

Add attributes to the <oracle-dv> tag to customize the login prompt authentication messages.
The following attributes are supported:

• auth-message-prefix: Specifies the prefix text for the login message. The default value is
"Oracle Analytics".

• auth-message-link: Specifies the text for the login link. The default value is "Login".

• auth-message-suffix: Specifies the suffix text for the login message. The default value is
"Required".

• auth-needed-message: Specifies the text for the authentication needed message. The
default value is "Requires Authentication".

• auth-message-prefix-small: Specifies the prefix text for the login message. The default
value is "Oracle Analytics". Applicable only if the embedded container size is smaller
than 215 pixels.

• auth-message-link-small: Specifies the text for the login link. The default value is
"Login". Applicable only if the embedded container size is smaller than 215 pixels.

Chapter 7
Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content

7-13

• auth-message-suffix-small - Specifies the suffix text for the login message. The default
value is the empty string. Applicable only if the embedded container size is smaller than
215 pixels.

• auth-needed-message-small: Specifies the text for the authentication needed message.
The default value is "Requires Authentication". Applicable only if the embedded
container size is smaller than 160 pixels.

Chapter 7
Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content

7-14

Part IV
Use APIs

Oracle Analytics offers REST APIs and session-based web services (SOAP APIs) to integrate
with your applications.

Topics:

• REST APIs

• SOAP APIs

8
REST APIs

Use the REST APIs to automate processes and programmatically access features and
functionality in Oracle Analytics.

API Version

The base path of the endpoint includes the API version (for example, 20210901). Here's an
example GET request to get analysis details:

GET
 https://myoas.com/api/20210901/catalog/analysis/<analysis_id>

API Breaking Changes Policy

Oracle will provide 12 months advance notice prior to the date of removing or changing an
existing API that you have deployed which would require you to update your code.

REST API Reference

See REST API for Oracle Analytics Server.

8-1

https://docs.oracle.com/en/middleware/bi/analytics-server/oasri/index.html

9
SOAP APIs

Use the Oracle Analytics session-based web services (SOAP APIs) to enable external
applications to communicate with Oracle Analytics.

Topics:

• Introduction to Oracle Analytics Web Services

• Description of Services and Methods in Oracle Analytics Web Services

• Description of Structures in Oracle Analytics Web Services

Introduction to Oracle Analytics Web Services
This topic describes the Oracle Analytics session-based web services (SOAP APIs).

Topics:

• About Oracle Analytics Web Services

• What are the Oracle Analytics Session-Based Web Services?

About Oracle Analytics Web Services
You can use Oracle Analytics session-based web service to call Oracle Analytics
programmatically and to perform various analytics tasks.

The Oracle Analytics session-based web services require a valid Oracle Analytics session ID
to be passed as a parameter. The calling application must first make a call to get the session
ID before calling the web service.

If you have configured Oracle Analytics Server with an identity management system that
supports OAuth2 tokens, you can obtain the session ID by using an access token in the
authorization header of the logon() method of the SAWSessionService service.

This document includes descriptions of the web services supported by Oracle Analytics. Note
that the WSDL document might include additional services not documented here.

What are the Oracle Analytics Session-Based Web Services?
The Oracle Analytics session-based web services are an application programming interface
(API) that implements SOAP (Simple Object Access Protocol). These web services are
designed for programatically invoking analysis and interactive reporting objects. These web
services also provide functionality to perform a wide range of operations.

The Oracle Analytics session-based web services allow you to perform three types of
functions:

• Extract results from analysis and interactive reporting objects and deliver them to external
applications and web application environments.

• Perform management functions.

9-1

• Execute Intelligent Agents.

Oracle Analytics session-based web services allow external applications such as J2EE
and .NET to use Oracle Analytics as an analytical calculation and data integration engine. It
provides a set of services that allow external applications to communicate with Oracle
Analytics.

Oracle Analytics session-based web services require a valid Oracle Analytics session ID to be
passed as a parameter. This means that the calling application first needs to make a call to get
the session ID before calling the web service. A final call is made to log out.

The formal definition of services and methods in Oracle Analytics web services can be
retrieved in WSDL format. You can use a proxy generation tool to create proxy/stub code to
access the services. Depending upon the client version you are using, you can access the
WSDL document at the following Oracle Analytics web services URL:

https://host:port/analytics-ws/saw.dll/wsdl/v12

Description of Services and Methods in Oracle Analytics Web
Services

This topic describes the services and methods used by the Oracle Analytics session-based
web services. This document uses JavaScript-like syntax to describe structures. The exact
syntax and implementation depend on the SOAP code generation tool and the target language
used by your application development environment.

Topics:

• AdministrationService Service

• AnalysisExportViewsService Service

• ConditionService Service

• HtmlViewService Service

• iBotService Service

• MetadataService Service

• ReportEditingService Service

• SAWSessionService Service

• SchedulerService Service

• SecurityService Service

• UserPersonalizationService Service

• WebCatalogService Service

• XMLViewService Service

AdministrationService Service
Use the AdministrationService service to manage the Oracle Analytics safe domains and
configure log level.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-2

Method Name Description

deleteCSPWhitelist() Method Deletes all safe domains entries. Use with caution.

getCSPDefaultAllowList() Method This method is used internally by Oracle Analytics to return the default entries for the
content security policy required by the product functionality.

getCSPWhitelist() Method Retrieves the list of domains and options specified in the safe domains configuration.

reloadLogConfiguration() Method Reloads the log configuration.

updateCSPWhitelist() Method Updates the current set of domains and allowed options in the content security policy
that's sent to the web browsers.

deleteCSPWhitelist() Method
Use the deleteCSPWhitelist() method to delete all safe domains entries. Use with caution.

Signature

deleteCSPWhitelistResult deleteCSPWhitelist(String sessionID);

Argument Description

String sessionID Specifies the session ID.

Returns

Returns deleteCSPWhitelistResult.

getCSPDefaultAllowList() Method
The getCSPDefaultAllowList() method is used internally by Oracle Analytics to return the
default entries for the content security policy required by product functionality.

You can use REST APIs to create, update, and delete safe domains. See Safe Domains REST
Endpoints.

Signature

getCSPDefaultAllowList(String sessionID);

Argument Description

String sessionID Specifies the session ID.

Returns

Returns an output as defined in the getCSPWhitelist structure. See CSPWhitelist Structure.

getCSPWhitelist() Method
Use the getCSPWhitelist() method to obtain the current set of domains and allowed options in
the content security policy that is sent to web browsers.

Signature

getCSPWhitelist(String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-3

https://docs.oracle.com/en/middleware/bi/analytics-server/oasri/api-system-safe-domains.html
https://docs.oracle.com/en/middleware/bi/analytics-server/oasri/api-system-safe-domains.html

Argument Description

String sessionID Specifies the session ID.

Returns

Returns an output as defined in the getCSPWhitelist structure. See CSPWhitelist Structure.

reloadLogConfiguration() Method
Use the reloadLogConfiguration() method to reload the log configuration.

Signature

reloadLogConfigurationResult reloadLogConfiguration(LogReloadLevel logLevel,
LogReloadDomain domain, String id, String sessionID);

Argument Description

LogReloadLevel logLevel Specifies the logging level. Defined using one of these log levels in the
LogReloadLevel enumeration:

• DEFAULT
• INCIDENT
• ERROR
• WARNING
• INFORMATION
• TRACE
• DISABLED

LogReloadDomain domain Specifies the domain to reload. Defined using one of these domains in
the LogReloadDomain enumeration:

• SYSTEM
• TENANT
• SESSION

String id Specifies the system ID.

String sessionID Specifies the session ID.

Returns

Returns reloadLogConfigurationResult.

updateCSPWhitelist() Method
Use the updateCSPWhitelist() method to update the current set of domains and allowed
options in the content security policy that is sent to web browsers.

Signature

updateCSPWhitelist(String cspWhitelistXml, String sessionID);

Argument Description

String cspWhitelistXml Specifies the content security policy in the CSPWhitelist structure. See
CSPWhitelistXml Structure.

String sessionID Specifies the session ID.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-4

Returns

Returns confirmation of the updated CSP whitelist.

AnalysisExportViewsService Service
Use the AnalysisExportViewsService service to initiate export of analysis reports and retrieve
exported files in PDF, MHTML, Excel, and CSV formats.

Method Name Description

completeAnalysisExport() Method Retrieves the exported files.

initiateAnalysisExport() Method Initiates and retrieves the exported files of analysis.

completeAnalysisExport() Method
Use the completeAnalysisExport() method to retrieve exported files in PDF, MHTML, Excel, or
CSV formats.

Signature
completeAnalysisExport(String queryID, String sessionID);

Arguments Description

String queryID Specifies query ID returned by the initiateAnalysisExport() method. See
initiateAnalysisExport() Method.

String SessionID Specifies the unique session ID.

Returns
Returns an output as defined in the AnalysisExportResult structure.

For information on the AnalysisExportResult structure, see AnalysisExportResult Structure.

initiateAnalysisExport() Method
Use initiateAnalysisExport() method to initiate and retrieve exported files of analysis in the
following formats - PDF, MHTML, Excel, CSV.

Signature
initiateAnalysisExport(ReportRef reportRef, AnalysisExportOutputFormat outputFormat,
AnalysisExportExecutionOptions executionOptions, ReportParams reportParams, String
reportViewName, String sessionID);

Arguments Description

ReportRef reportRef Specifies the path to the analysis definition, supplied in the ReportRef
common structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-5

Arguments Description

AnalysisExportOutputFormat
outputFormat

Specifies one of the following output formats that you can select:

• String PDF - Specifies the PDF format
• String MHTML - Specifies the MHTML format
• String Excel 2007 - Specifies the Excel 2007 format
• String CSV - Specifies the CSV format

AnalysisExportExecutionOptio
ns executionOptions

Specifies the execution options in the AnalysisExportExecutionOptions
structure.

ReportParams reportParams Specifies the filters or variables to apply to the analysis before execution,
supplied in the ReportParams common structure.

String reportViewName Specifies the view to export. If this parameter is null, the analysis default
view is used. The view name should match the one used to identify the
view in the analysis XML definition.

String sessionID Specifies the session ID.

Returns
Returns an output as defined in the AnalysisExportResult structure.

For information on the AnalysisExportResult structure, see AnalysisExportResult Structure.

ConditionService Service
Use the ConditionService service to evaluate Oracle Analytics conditions programatically. This
service also allows users to obtain the customizable filters available in a condition.

Method Name Description

evaluateCondition() Method Evaluates a condition saved to the catalog.

evaluateInlineCondition()
Method

Evaluate a condition supplied as a parameter.

getConditionCustomizableRe
portElements() Method

Obtains the customizable filters of a condition saved to the catalog.

evaluateCondition() Method
Use the evaluateCondition() method to evaluate a Condition that is stored in the catalog. This
method returns an XML string containing the result of the condition (true or false).

Signature
boolean evaluateCondition(String path, String[] reportCustomizationParameters, String
sessionID);

Arguments Description

String path Specifies the full path and name of the Condition in the catalog. For example, /users/
jchan/Conditions/IsRegionUnderBudget.

String []
reportCustomizationParameters

Specifies the customization parameters XML, which is only used if the Condition has
customizable filters.

This XML is validated against the customization schema available in orahome/
bifoundation/web/schemas/analysis_customization.xsd.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-6

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method. If the SOAP
client engine can handle HTTP cookies, you can omit the session ID or set it to null.

evaluateInlineCondition() Method
Use the evaluateInlineCondition() method to evaluate a condition defined outside of Oracle
Analytics. The Condition XML is supplied in the conditionXML parameter. This method returns
an XML string with the result of the condition evaluation, true or false.

Signature
boolean evaluateInlineCondition(String conditionXML, String[] reportCustomizationParameters,
String sessionID);

Arguments Description

String conditionXML Specifies the Condition XML.

This XML is validated against the condition schema available in orahome/
bifoundation/web/schemas/condition.xsd.

String[]
ListreportCustomizationParameters

Specifies the customization parameters XML, which is only used if the Condition has
customizable filters.

This XML is validated against the customization schema available in orahome/
bifoundation/web/schemas/analysis_customization.xsd.

String sessionID Specifies the session ID, which is usually returned by the logon method. If the SOAP
client engine can handle HTTP cookies, you can omit the session ID or set it to null.

getConditionCustomizableReportElements() Method
Use the getConditionCustomizableReportElements() method to determine the customizable
filters available in a condition that is stored in the catalog.

This method returns an XML string containing the definition of the customizable filters available
in the condition.

The XML is in the format defined in the customization schema available in orahome/
bifoundation/web/schemas/analysis_customization.xsd.

Signature
String[] getConditionCustomizableReportElements(String path, String sessionID);

Arguments Description

String path Specifies the full path and name of the condition in the catalog. For
example, /users/jchan/Conditions/IsRegionUnderBudget.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-7

HtmlViewService Service
Use the HtmlViewService service to embed Oracle Analytics HTML results in third-party
dynamic web pages, such as Active Server Pages (ASP) or JavaServer Pages (JSP), and
portal frameworks.

The embed process merges Oracle Analytics web services content with the content of third-
party web pages.

Method Name Description

addReportToPage() Method Adds results to an HTML page.

endPage() Method Destroys a server page object and all data associated with it.

getCommonBodyHTML()
Method

Retrieves HTML to include in the <BODY> section.

getHeadersHTML() Method Retrieves HTML to include in the <HEAD> section.

getHtmlforPageWithOneRepo
rt() Method

Retrieves HTML for a page that contains only one analysis.

getHTMLForReport() Method Retrieves HTML to display a particular set of results.

setBridge() Method Specifies a bridge URL to receive communications. Can be useful when
the Oracle Analytics web services server and the Presentation Services
that the user is accessing reside on different machines or when you
want to modify the results in your application development environment.

startPage() Method Creates a new page object and returns its ID.

The methods in HtmlViewService extract fragments of HTML code that can be inserted in third-
party web pages.

HTML Code Fragment Desired Page Location

Header Should be inserted in the <HEAD> section of an HTML page. The code
contains links to common JavaScript files and style sheets.

Report Objects Can be inserted anywhere in the <BODY> section.

Common Body Should be inserted in the <BODY> tag after all analysis links. The code
contains hidden HTML elements that are used to implement drilldown
links.

For each returned analysis object, the HTML code fragment contains a callback link that is
followed automatically when the web page is loaded by the browser. The code fragment does
not contain the full user interface definition of the analysis. While the analysis is being
constructed by Oracle Analytics Presentation Services, the interface displays the Oracle
Analytics web services "Searching..." image embedded on the third-party web page.

For smooth analysis transitioning, Oracle Analytics Presentation Services tracks the Oracle
Analytics analyses that have been added to third-party web pages by maintaining information
in an internal logical page object during the construction of the third-party web page. The
HtmlViewService service methods explicitly refer to the internal logical page by its ID.

About HtmlViewService Bridging and Callback URLs
To embed an analysis with active drilldown linksdrilldown links, the HtmlViewService service
allows the web browser to issue callback requests from embedded analyses to the Oracle
Analytics Presentation Services server.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-8

Although it is possible to route requests directly to the Oracle Analytics Presentation Services
server, in many cases it is preferable to route requests through the Oracle Analytics instance
that originally serviced the third-party page. Also, in situations where Oracle Analytics
Presentation Services and the third-party web server don't belong to the same Domain Name
Service (DNS) domain, users may get JavaScript errors related to browser security constraints
for cross-domain scripting.

To avoid these issues, use the setBridge() method to modify callback URLs to point to the
third-party web server. Be aware that a web component executed by the third-party web server
to re-route requests to Oracle Analytics Presentation Services isn't provided. This function
would need to be fulfilled by the third-party application. For more information about the
setBridge() method, see setBridge() Method.

addReportToPage() Method
Use the addReportToPage() method to add results to an HTML page.

Signature
void addReportToPage(String pageID, String reportID, ReportRef report,
String reportViewName, ReportParams reportParams, ReportHTMLOptions options,
String sessionID);

Arguments Description

String pageID Specifies a character string page ID returned by the startPage() method.
See startPage() Method.

String reportID Specifies a character string that identifies the analysis containing the
results to add to the page. It should be used to reference this analysis in
subsequent method invocations; for example, corresponding user
interface elements generated by the Oracle Analytics Presentation
Services server would reference the same ID.

ReportRef report Specifies the analysis definition, supplied in the ReportRef structure.

String reportViewName Specifies the view to display. If this parameter is null, the analysis'
default view is used. The view name should match the one used to
identify the view in the analysis XML definition.

ReportParams reportParams Optional. Specifies the filters or variables to apply to the analysis before
execution, supplied in the ReportParams common structure.

ReportHTMLOptions options Optional. Specifies the display options to apply to the analysis after
execution, supplied in the ReportHTMLOptions structure. See
QueryResults Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

endPage() Method
Use the endPage() method to destroy the Oracle Analytics Presentation Services server page
object and all data associated with it.

Signature
void endpage(String pageID, String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-9

Arguments Description

String pageID Specifies the ID of the page object, which is returned by the startPage()
method. See startPage() Method.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getCommonBodyHTML() Method
Use the getCommonBodyHTML() method to retrieve HTML to include in the <BODY> section.

Signature
String getCommonBodyHTML(String pageID, String sessionID);

Arguments Description

String pageID Specifies the ID of the page object, which is returned by the startPage()
method. See startPage() Method.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a string containing the HTML to include in the <BODY> section.

getHeadersHTML() Method
Use the getHeadersHTML() method to retrieve HTML to include in the <HEAD> section.

Signature
String getHeadersHTML(String pageID, String sessionID);

Arguments Description

String pageID Specifies the ID of the page object, which is returned by the startPage()
method. See startPage() Method.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a string containing the HTML to include in the <HEAD> section.

getHtmlforPageWithOneReport() Method
Use the getHtmlforPageWithOneReport() method to retrieve the HTML for a page that contains
only one analysis. A page that contains only one analysis doesn't have <BODY> and <HEAD>
sections.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-10

Signature
String getHtmlForPageWithOneReport(String reportID, ReportRef report, String
reportViewName, ReportParams reportParams, ReportHTMLOptions reportOptions,
StartPageParams pageParams, String sessionID);

Arguments Description

String pageReportID Specifies the analysis ID returned by the
getHtmlForPageWithOneReport() method.

See addReportToPage() Method.

ReportRef report Specifies the analysis definition, supplied in the ReportRef structure.

String reportViewName Specifies the view to display. If this parameter is null, the analysis'
default view is used. The view name should match the one used to
identify the view in the analysis XML definition.

ReportParams reportParams Optional. Specifies the filters or variables to apply to the analysis before
execution, supplied in the ReportParams common structure.

ReportHTMLOptions
reportOptions

Optional. Specifies the display options to apply to the analysis after
execution, supplied in the ReportHTMLOptions structure. See
QueryResults Structure.

StartPageParams
pageParams

Specifies the options to use when starting the page, supplied in the
StartPageParams structure. See StartPageParams Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getHTMLForReport() Method
Use the getHTMLForReport() method to retrieve an HTML excerpt to display the results for a
particular analysis. Before invoking this method, use the addReportToPage method to add the
results to an HTML page.

Signature
String getHTMLForReport(String pageID, String pageReportID, String sessionID);

Arguments Description

String pageID Specifies the ID of the page object, which is returned by the startPage()
method. See startPage() Method).

String pageReportID Specifies the analysis ID returned by the addReportToPage() method.

See addReportToPage() Method.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a string containing the HTML excerpt that displays the specified analysis.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-11

setBridge() Method
Use the setBridge() method to specify a bridge URL to receive communications. Specifying a
bridge URL can be useful when the Oracle Analytics web services server and the user's web
server reside on different machines, or when you want to modify the results in your application
development environment.

After the setBridge() method is called, all requests from the client browser to the Oracle
Analytics Presentation Services server are sent to the bridge URL, which then forwards
requests to theOracle Analytics Presentation Services server.

Signature
setBridge(String bridge, String sessionID);

Arguments Description

String bridge Specifies the bridge URL. For example,

http://myserver/myapplication/sawbridge

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Usage
You must make sure that the client browser provides a handler to the bridge URL in the form of
a Java servlet, an Active Server Pages (ASP) page, a Common Gateway Interface (CGI), an
Internet Server application programming interface (ISAPI), or an equivalent application.

You must also perform the following tasks:

• Decode the path of the requested Oracle Analytics web services resource in the
RedirectURL argument of the request character string. See How Callback URLs Are
Replaced.

• Forward all other request arguments, together with all headers and the request body, to the
bridge URL.

• Copy the response from the Oracle Analytics Presentation Services server to the response
stream.

How Callback URLs Are Replaced
The new callback URL is based on the bridge URL, with the addition of a RedirectURL
argument. The value of the RedirectURL argument should be the original value of the URL,
encoded using standard URL encoding rules.

Internally, Oracle Analytics web services usually uses relative URLs for callback links. For
example, if the original callback link is saw.dll?Go and the bridge URL is

http://myserver/myapplication/sawbridge

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-12

then the new callback URL is

http://myserver/myapplication/sawbridge?RedirectURL=saw.dll%3fGo

startPage() Method
Use the startPage() method to create a page object and returns its ID.

Signature
String startPage(StartPageParams options, String sessionID);

Arguments Description

StartPageParams options Specifies the options to use when starting the page, supplied in the
StartPageParams structure. See StartPageParams Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a string containing the Oracle Analytics Presentation Services page ID.

iBotService Service
Use the iBotService service to save, edit, delete, subscribe, unsubscribe, customize, and
execute Oracle Analytics agents. Note that as of the Oracle Business Intelligence 11g (11.1.1)
release, "iBots" have been renamed to "agents."

Method Names Description

deleteIBot() Method Deletes an agent from the catalog and deregisters it from the Oracle
Analytics Scheduler.

enableIBot() Method Enables an Oracle Analytics agent.

executeIBotNow() Method Executes an agent saved in the catalog.

getAgentPaths() Method Gets the paths of the agents of a specified user.

getAgents() Method Gets the agents from a specified path.

moveIBot() Method Moves an agent from one catalog folder to another.

purgeAlerts() Method Specifies the alerts to be deleted.

getIBotStatus() Method Gets the status of the specified agent.

sendMessage() Method Sends a message to an Oracle Analytics user, group, or user and group.

subscribe() Method Subscribes to a published agent. Also customizes your subscription.

unsubscribe() Method Unsubscribes from an agent.

writeIBot() Method Writes a new agent into the catalog and registers it with Oracle Analytics
Scheduler.

deleteIBot() Method
Use the deleteIBot() method to delete a saved agent. Deleting an agent not only removes it
(the object) from the catalog, but it also deregisters the agent from the Oracle Analytics

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-13

Scheduler. Note that this method is different from the deleteitem() method of
WebCatalogService because the deleteitem() method doesn't deregister the agent from the
Oracle Analytics Scheduler.

Signature
void deleteIBot(String path, String sessionID);

Arguments Description

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

enableIBot() Method
Use the enableIBot() method to enable an Oracle Analytics agent.

Signature

enableIBotResult enableIBot(String path, boolean enable, String sessionID);

Argument Description

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

boolean enable Specifies whether to enable the specified agent.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns

Returns enableIBotResult.

executeIBotNow() Method
Use the executeIBotNow() method to execute an agent that's stored in the catalog. Note that
this method doesn't change the agent's original schedule.

Signature
void executeIBotNow(String path, String sessionID);

Arguments Description

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-14

getAgentPaths() Method
Use the getAgentPaths() method to get the paths of the Oracle Analytics agents of a specified
user.

Signature

getAgentPathsResult getAgentPaths(String userID, String sessionID);

Argument Description

String userID Specifies the user ID of the user to get the paths of the agents.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns

Returns getAgentPathsResult.

getAgents() Method
Use the getAgents() method to get the Oracle Analytics agents in a specified path.

Signature

getAgentsResult getAgents(String agentPath, String sessionID);

Argument Description

String agentPath Specifies the full path in the catalog.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns

Returns getAgentsResult.

getIBotStatus() Method
Use the getIBotStatus() method to get the status of the specified Oracle Analytics agent.

Signature

getIBotStatusResult getIBotStatus(String path, String sessionID);

Argument Description

String path Specifies the full path of the agent in the catalog.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-15

Returns

Returns getIBotStatusResult.

moveIBot() Method
Use the moveIBot() method to move an agent from one catalog folder to another. Note that this
method is different from the moveItem() method of WebCatalogService Service because the
moveItem() method moves the catalog object and informs the Oracle Analytics Scheduler that
the object was moved.

Signature
void moveIBot(String fromPath, String toPath, boolean resolveLinks, boolean allowOverwrite,
String sessionID);

Arguments Description

String fromPath Specifies the full catalog path of the agent to be moved.

String toPath Specifies the full catalog path where the agent is moved to.

boolean resolveLinks Specifies if you want to move the child objects. If this argument is set to
TRUE and the path specified in the "fromPath" argument is a link, then
the child object pointed to by that link is moved.

boolean allowOverwrite Specifies if you want to overwrite an existing object. If this argument is
set to TRUE and another catalog object existed in the path specified by
"toPath", it is overwritten.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

purgeAlerts() Method
Use the purgeAlerts() method to delete the alerts that are older than the specified time.

Signature

purgeAlertsResult purgeAlerts(Unsigned Integer maxAgeSecs, String userGlob, String
sessionID);

Argument Description

Unsigned Integer
maxAgeSecs

Specifies the age of the alert in seconds. Alerts older than this will be
deleted. Use 0 to delete the alert irrespective of the age.

String userGlob Specifies the user whose alerts has to be deleted. Specify the wildcard *
to delete alerts for all users.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns

Returns the number of alerts purged, how many user's alerts were checked, alerts remaining,
and if any errors occured.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-16

sendMessage() Method
Use the sendMessage() method to send a message to an Oracle Analytics user, group, or user
and group. The message is delivered according to the corresponding recipient's delivery
profile, which was set up in the My Account dialog in Oracle Analytics Presentation Services.

Signature
String sendMessage(String[] recipient, String[] group, String subject, String body, String priority,
String sessionID);

Arguments Description

String[] recipient Specifies the GUID of the Oracle Analytics user to whom you want to
send the message. You can include more than one user in this
argument.

String[] group Specifies the GUID of the Oracle Analytics group to whom you want to
send the message. You can include more than one group in this
argument.

String subject Specifies the subject line of the message.

String body Specifies the text to be included in the body of the message.

String priority Specifies the message's priority. You can specify "High," "Normal," or
"Low."

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

subscribe() Method
Use the subscribe() method to subscribe to a published agent. If the agent allows
customization, then you can also specify the customization XML.

Signature
void subscribe(String path, String customizationXml, String sessionID);

Arguments Description

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

String customizationXml Specifies the customization XML (only if the agent allows
customizations).

This XML is validated against the customization schema available in
orahome/bifoundation/web/schemas/analysis_customization.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

unsubscribe() Method
Use the unsubscribe() method to unsubscribe from an agent. This method also deletes any
user customizations.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-17

Signature
void unsubscribe(String path, String sessionID);

Arguments Description

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

writeIBot() Method
Use the writeIBot() method to write a new agent to the catalog and to register it with Oracle
Analytics Scheduler. Note that this method is different from the writeObjects() method of
WebCatalogService. The writeObjects() method only writes to the catalog.

Signature
int writeIBot(CatalogObject obj, String path, boolean resolveLinks, boolean allowOverwrite,
String sessionID);

Arguments Description

CatalogObject obj Specifies the object to be written to the catalog.

The object's XML is validated against analysis_ibot.xsd, which is located
in orahome/bifoundation/web/schemas directory.

String path Specifies the full path and name of the agent in the catalog. For
example, /users/jchan/iBots/BrandDollars.

boolean resolveLinks If set to TRUE and the path in the catalog refers to a link, then the object
is written to the location pointed to by the link.

boolean allowOverwrite Specifies whether to overwrite an existing object. Set to TRUE to
overwrite any object already present in the location specified by "path."

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

MetadataService Service
Use the MetadataService() service to retrieve descriptions of Oracle Analytics Presentation
Services schema objects, such as columns, tables, and subject areas.

Method Names Description

clearQueryCache() Method Clears the query cache.

describeColumn() Method Retrieves column information for a specified column in a specified
subject area and table.

describeSubjectArea()
Method

Retrieves subject area information for a specified subject area.

describeSubjectAreaWithSort(
) Method

Retrieves subject area information for a specified subject area in the
specified sort order.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-18

Method Names Description

describeTable() Method Retrieves table information for a specified table in a specified subject
area.

describeTableWithSort()
Method

Retrieves table information for a specified table in a specified subject
area in the specified sort order (of their names).

getSubjectAreas() Method Retrieves the list of subject areas available.

getSubjectAreasWithSort()
Method

Retrieves the list of subject areas available in the specific sort order.

reloadLogConfiguration()
Method

Forces changes to logging configuration to take effect without manually
restarting Oracle Analytics Presentation Services.

reloadMetadata() Method Reloads XML message files, refresh server metadata, and clear caches.

clearQueryCache() Method
Use the clearQueryCache() method to clear the query cache.

Signature
boolean clearQueryCache(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

describeColumn() Method
Use the describeColumn() method to retrieve column information for a specified column in a
specified subject area and table.

Signature
SAColumn describeColumn(String subjectAreaName, String tableName, String columnName,
String sessionID);

Arguments Description

String subjectAreaName Specifies the subject area to be queried.

String tableName Specifies the table to be queried.

String columnName Specifies the name of the column to be queried.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns an SAColumn Object. For information on the SAColumn structure.

See SAColumn Structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-19

describeSubjectArea() Method
Use the describeSubjectArea() method to retrieve subject area information about the specified
subject area.

Signature
SASubjectArea describeSubjectArea(String subjectAreaName,
SASubjectAreaDetails detailsLevel, String sessionID);

Arguments Description

String subjectAreaName Specifies the subject area to be queried.

SASubjectAreaDetails details
Level

Specifies the information to be retrieved about the subject area. For
information on the SASubjectAreaDetails structure, see
SASubjectAreaDetails Values.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

SASubjectAreaDetails Values
Use the SASubjectAreaDetails values to specify what information should be retrieved about
the subject area.

Values Description

IncludeTables Include table list with minimum information about each table.

IncludeTablesAndColumns Include full table and column information.

Minimum Don't include table and column information.

Returns
Returns an SASubjectArea Object.

See SASubjectArea Structure).

Usage
The detailsLevel parameter values for the describeSubjectArea() method.

Depending on the value of the detailsLevel parameter, the returned object contains the
information specified in this table.

Value of detailsLevel Description

IncludeTables Specifies that the tables field is not null and contains the collection of
tables for this subject area. Each table object has the columns field set
to null.

InludeTablesAndColumns Specifies that the tables field is not null and contains the collection of
tables for this subject area. For each table object the columns field
contains the corresponding collection of columns.

Minimum Specifies that the table list is not available. The tables field in the
resulting subject area object is null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-20

describeSubjectAreaWithSort() Method
Use the describeSubjectAreaWithSort() method to retrieve subject area information about the
specified subject area in the specified sort order.

Signature
SASubjectArea describeSubjectAreaWithSort(String subjectAreaName,
SASubjectAreaDetails detailsLevel, String sortOrder, String sortOrderCaseSensitive,
String sessionID);

Arguments Description

String subjectAreaName Specifies the subject area to be queried.

SASubjectAreaDetails details
Level

Specifies the information to be retrieved about the subject area. For
information on the SASubjectAreaDetails structure, see
SASubjectAreaDetails Values.

String sortOrder Specifies specifies which sort order you want the results returned in.
Values can be 'asc' or 'desc'. 'asc' returns values in ascending order of
the current language of the user (for example, in English, A to Z), and
conversely 'desc' returns in the reverse order (for example, in English -
from Z to A).

String sortOrderCaseSensitiv
e

Specifies if the case of the values need to be taken into consideration
during sort. Values can be 'caseSensitive' or 'caseInsensitive'.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns an SASubjectArea Object .

See SASubjectArea Structure) with tables returned in the specified sort order.

describeTable() Method
Use the describeTable() method to retrieve table information for a specified table in a specified
subject area.

Signature
SATable describeTable(String subjectAreaName, String tableName,
SATableDetails detailsLevel, String sessionID);

Arguments Description

String subjectAreaName Specifies the subject area to be queried.

String tableName Specifies the table to be queried.

SATableDetails detailsLevel Specifies the information to retrieve about the table. For information on
the SATableDetails structure, see SATablesDetails Values.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-21

SATablesDetails Values
The SATablesDetails values specify the information to retrieve about the subject area table.

Values Description

IncludeColumns Populate the columns field in the SATable Object.

Minimum Do not include column information. The columns field in the SATable
Object is set to null.

Returns
Returns an SATable Object. For information on the SATable structure.

See SATable Structure.

describeTableWithSort() Method
Use the describeTableWithSort() method to retrieve table information for a specified table in
the specified sort order (of their names).

Signature
SATable describeTable(String subjectAreaName, String tableName,
SATableDetails detailsLevel, String sortOrder, String sortOrderCaseSensitive,
String sessionID);

Arguments Description

String subjectAreaName Specifies the subject area to be queried.

String tableName Specifies the table to be queried.

SATableDetails detailsLevel Specifies the information to retrieve about the table. For information on
the SATableDetails structure, see SATablesDetails Values.

String sortOrder Specifies specifies which sort order you want the results returned in.
Values can be 'asc' or 'desc'. 'asc' returns values in ascending order of
the current language of the user (for example, in English, A to Z), and
conversely 'desc' returns in the reverse order (for example, in English -
from Z to A).

String sortOrderCaseSensitiv
e

Specifies if the case of the values need to be taken into consideration
during sort. Values can be 'caseSensitive' or 'caseInsensitive'.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns an SATable Object with columns in the specified sort order. For information on the
SATable structure.

See SATable Structure.

There is a fixed order for column types. This fixed sort order is:

• Nested folders

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-22

• Measures

• Attributes

• Hierarchies

getSubjectAreas() Method
Use the getSubjectAreas() method to retrieve the list of subject areas that are available.

Signature
List[] getSubjectAreas(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns an array of SASubjectArea objects. For information on the SASubjectArea structure.

See SASubjectArea Structure.

Usage
SASubjectArea objects returned by this method do not have table information available.

The tables field is null. The approach to querying at all levels is to use getSubjectAreas() to
retrieve the list of subject areas and then use describeSubjectArea() to retrieve the list of
tables. Next, use describeTable() to retrieve the list of columns in a specified table, and finally,
use describeColumn() to retrieve information on a specified column.

getSubjectAreasWithSort() Method
Use the getSubjectAreasWithSort() method to retrieve the list of subject areas that are
available in the specific sort order.

Signature
List[] getSubjectAreasWithSort(String sortOrder, String sortOrderCaseSensitive,
String sessionID);

Arguments Description

String sortOrder Specifies specifies which sort order you want the results returned in.
Values can be 'asc' or 'desc'. 'asc' returns values in ascending order of
the current language of the user (for example, in English, A to Z), and
conversely 'desc' returns in the reverse order (for example, in English -
from Z to A).

String sortOrderCaseSensitiv
e

Specifies if the case of the values need to be taken into consideration
during sort. Values can be 'caseSensitive' or 'caseInsensitive'.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-23

Returns
Returns an array of SASubjectArea objects returned in the specified sort order.

For information on the SASubjectArea structure, see SASubjectArea Structure.

Usage
SASubjectArea objects returned by this method do not have table information available.

The tables field is null. The approach to querying at all levels is to use
getSubjectAreasWithSort() to retrieve the list of subject areas and then use
describeSubjectAreaWithSort() to retrieve the list of tables. Next, use describeTableWithSort()
to retrieve the list of columns in a specified table, and finally, use describeColumn() to retrieve
information on a specified column.

reloadLogConfiguration() Method
Use the reloadLogConfiguration() method to force changes to logging configuration to take
effect without manually restarting Oracle Analytics Presentation Services.

Signature
boolean reloadLogConfiguration(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

reloadMetadata() Method
Use the reloadMetadata() method to reload XML message files, refresh server metadata, and
clear caches.

Signature
boolean reloadMetadata(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a boolean to indicate if the operation is successful.

ReportEditingService Service
Use the ReportEditingService service to merge arguments and Oracle Analytics Presentation
Services data to create and return the results.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-24

Method Names Description

applyReportDefaults() Method Applies analysis default arguments to the analysis and returns the
results.

applyReportParams() Method Applies report arguments to the analysis object and returns the results.

getPromptElements() Method Retrieves a list of criteria prompt column definitions in a given analysis
and current runtime state.

generateReportSQL() Method Retrieves the SQL query for a given analysis.

getReportColumns() Method Retrieves a list of criteria columns in an analysis.

getReportElements() Method Retrieves a list of prompts, unprotected filters, and referenced
presentation variables in the given report.

applyReportDefaults() Method
Use the applyReportDefaults() method to apply analysis default arguments to the analysis and
returns the results.

Signature
String applyReportDefaults(ReportRef reportRefs, String sessionID);

Arguments Description

ReportRef object Specifies the path to the analysis definition, supplied in the ReportRef
common structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns the result of applying the default analysis arguments to the specified analysis object.

applyReportParams() Method
Use the applyReportParams() method to apply analysis arguments to the analysis and return
the results.

Signature
Object applyReportParams(ReportRef reportRef, ReportParams reportParams,
boolean encodeInString, String sessionID);

Arguments Description

ReportRef reportRef Specifies the path to the analysis definition, supplied in the ReportRef
common structure.

ReportParams reportParams Optional. Specifies the filters or variables to apply to the analysis before
execution, supplied in the ReportParams common structure.

boolean encodeInString If set to TRUE, then the returned analysis object is encoded as a
character string.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-25

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns the result of applying analysis arguments to the specified analysis object. If you set
encodeInString to true, then the result is encoded as a character string.

getPromptElements() Method
Use the getPromptElements() method to retrieve a list of criteria prompt column definitions in a
given analysis and current runtime state.

Signature
getPromptElements(ReportRef promptRef, String viewState, String viewID, String portalPath,
String page, NameValuePair optionalParams, String sessionID);

Arguments Description

ReportRef promptRef Required. Specifies the catalog path to a saved report or a report xml
document.

String viewState Optional.Specifies the runtime viewState. Runtime prompt definition may
be changed based on other prompts setting view viewState.

String viewID Optional: Specifies the view ID

String portalPath Optional: Specifies the dashboard catalog path where the report resides.

String page Optional: Specifies the dashboard page name where the report resides.

NameValuePair
optionalParams

Optional: Specifies the name of additional parameters which are usually
used for debugging purposes.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
A set of report prompt columns.

See PromptsObjectModel Structure.

generateReportSQL() Method
Use the generateReportSQL() method to retrieve the logical SQL query for a given analysis.

Signature
String generateReportSQL(ReportRef reportRef, ReportParams reportParams,
String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-26

Arguments Description

ReportRef reportRef Specifies the path to the analysis definition supplied in the ReportRef
common structure.

ReportParams reportParams Optional. Specifies the path to the filters or variables to apply to the
analysis before execution, supplied in the ReportParams common
structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
A string containing the SQL query for the specified analysis.

getReportColumns() Method
Use the getReportColumns() method to retrieve a list of criteria columns in a given analysis.

Signature
ReportColumn[] getReportElements(String reportPath, String sessionID);

Arguments Description

ReportRef reportRef Specifies the path to the analysis definition supplied in the ReportRef
common structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
ReportColumn[] - array of columns in the report.

See ReportHierarchicalColumn Structure and ReportRegularColumn Structure.

getReportElements() Method
Use the getReportElements() method to retrieve a list of all report prompts, unprotected filters,
and referenced presentation variables in the given report.

Signature
String getReportElements(String reportPath, String sessionID);

Arguments Description

String reportPath Required. Specifies the report catalog path for the report.

String sessionID Optional. Specifies the session ID, which is usually returned by the logon
method. If the SOAP client engine can handle HTTP cookies, you can
omit the session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-27

Returns
Report ADF parameters.

If present, report ADF parameters for the following objects, in the order listed:

• Prompts

• Unprotected filters

• Presentation variables referenced in the report

• Context variables referenced by the Oracle Analytics Presentation Services

See ReportADFParameters Structure.

SAWSessionService Service
Use the SAWSessionService service to provide authentication methods such as logon and
logoff, and other session-related methods.

Method Name Description

getCurUser() Method Retrieves the current user ID for the session.

GetSessionEnvironment()
Method

Retrieves the environment object for the current session.

getSessionVariable() Method Retrieves a list of session variables.

impersonate() Method Logs on and then impersonates the user.

impersonateex() Method Logs on and then impersonates the user. Similar to the impersonate
method, but impersonateex can specify optional session parameters.

keepAlive() Method Instructs Oracle Analytics Presentation Services not to end particular
sessions due to inactivity.

logoff() Method Logs the user off Oracle Analytics Presentation Services.

logon() Method Authenticates the user.

logonex() Method Authenticates the user. Similar to the logon method, but logonex can
specify optional session parameters.

getCurUser() Method
Use the getCurUser() method to retrieve the current user name for the session.

Signature
String getCurUser(String sessionID);

Argument Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a string indicating the current user name for the session.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-28

GetSessionEnvironment() Method
Use the GetSessionEnvironment() method to retrieve the environment object for the current
session.

Signature
SessionEnvironment getSessionEnvironment(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
This method returns a session environment object.

See SessionEnvironment Structure.

getSessionVariable() Method
Use the getSessionVariable() method to retrieve a list of session variables.

Signature
List[] getSessionVariables(List[] names, String sessionID);

Arguments Description

List[] names Specifies the names of the session variables.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
This method returns values of the Oracle BI EE variables associated with the current session.

impersonate() Method
Use the impersonate() method to log on and impersonate the user during the
SAWSessionService service.

This method is useful when you need to create sessions for multiple users and have only the
administrator's name and password. You do not need to use the (logon) method if you use the
impersonate() method.

If user authentication or impersonation fails, an exception is thrown.

Signature
String impersonate(String name, String password, String impersonateID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-29

Arguments Description

String name Specifies the user name to log on and authenticate.

String password Specifies the password for the user. If there is no password for the user,
leave this field empty (void).

String impersonateID Specifies the user name to impersonate the authenticated user.

Returns
This method returns the session ID and sets an HTTP session cookie.

The session ID is used in other methods to identify the Oracle Analytics web services session.

impersonateex() Method
Use the impersonateex() method to log on and impersonate the user in the
SAWSessionService service.

Similar to the impersonate method, but impersonateex can specify optional session
parameters. This method is useful when you need to create sessions for multiple users and
have only the administrator's name and password. You do not need to use the (logon) method
if you use the impersonateex() method.

If user authentication or impersonation fails, then an exception is thrown.

Signature
AuthResults impersonateex(String name, String password, String impersonateID,
SAWSessionParameters sessionparams);

Arguments Description

String name Specifies the user name to log on and authenticate.

String password Specifies the password for the user. If there is no password for the user,
leave this field empty (void).

String impersonateID Specifies the user name to impersonate the authenticated user.

SAWSessionParameters sessi
onparams

Optional. Specifies the session parameters to use, supplied in the
SAWSessionParameters structure. For information about the
SAWSessionParameters structure, see SAWSessionParameters
Structure.

Returns
This method returns the AuthResult structure containing the session ID, and also sets an
HTTP session cookie.

The session ID is used in other methods to identify the Oracle Analytics Presentation Services
session. For more information, see AuthResult Structure.

keepAlive() Method
Use the keepAlive() method to instruct Oracle Analytics Presentation Services not to end
particular web user sessions due to inactivity.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-30

The effect of this method on session lifetime is the same as if those users performed an activity
in the browser such as clicking an analysis, or invoking a method.

Signature
void keepAlive(String[] sessionID);

Argument Description

String[] sessionID Specifies the session IDs to remain logged on.

logoff() Method
Use the logoff() method to log off the user from Oracle Analytics.

Signature
void logoff(String sessionID);

Argument Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

logon() Method
Use the logon() method to authenticate the user. If authentication fails, an exception is thrown.

Signature
String logon(String name, String password);

Arguments Description

String name Specifies the user name to authenticate.

String password Specifies the password for the user. If there is no password, leave this
field empty (void).

If you have configured Oracle Analytics Server with an identity management system that
supports OAuth2 tokens, you can alternatively pass an access token in an Authorization
header instead of the username and password in order to obtain a session ID.

Returns
This method returns the session ID and sets an HTTP session cookie.

The session ID is used in other methods to identify the Oracle Analytics session.

logonex() Method
Use the logonex() method to authenticate the user. The logonex() method is similar to the
logon method, but logonex can specify optional session parameters.

If authentication fails, an exception is thrown.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-31

Signature
AuthResult logonex(String name, String password, SAWSessionParameters sessionparams);

Arguments Description

String name Specifies the user name to authenticate.

String password Specifies the password for the user. If there is no password, leave this
field empty (void).

SAWSessionParameters sessi
onparams

Optional. Specifies the sessionparams to use, supplied in the
SAWSessionParameters structure. For information about the
SAWSessionParameters structure, see SAWSessionParameters
Structure.

Returns
This method returns the AuthResult structure containing the session ID, and also sets an
HTTP session cookie.

The session ID is used in other methods to identify the Oracle Analytics Presentation Services
session.

SchedulerService Service
The following terms are associated with the SchedulerService service:

• Agents (or iBots) - These are Presentation Services catalog objects.

• Jobs - These are scheduler objects, and every agent has at least one job stored in the
BI_PLATFORM schema.

• JobInstances - These are scheduler objects representing active or completed jobs and are
stored in the BI_PLATFORM schema.

Use this service to list, and detail scheduler jobs and job instances, and to purge and remove
job instances (removing a job automatically purges job instances). Deleting agents
automatically removes jobs.

To use this service, you must obtain a user session ID to return a list of Job or Job Instance
Reference ID's, which you use to get details or remove the object. You obtain a user session
ID by using the logon() method of the SAW session service (for more information, see logon()
Method). You must then apply filters to specify particular Job Reference IDs and Job Instance
IDs.

For examples of using the SchedulerService service methods, see Examples of Using the
SchedulerService API

The client must be granted the privileges Access SOAP, and Access SchedulerService
Service to call methods in the SchedulerService service API. These privileges are granted by
default to the BIConsumer application role. You manage these privileges using the Manage
Privileges Page in Presentation Services Administration.

The methods described in this section are synchronous unless stated otherwise.

iBotService Service shows the supported methods.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-32

Method Names Description

getJobReferences() Method Returns a list of Jobs that match the selection criteria in the specified
filter argument.

getJobInstanceReferences()
Method

Returns a list of Job Instances that match the selection criteria in the
specified filter argument.

getJob() Method Returns a Job definition for a specified Job reference.

getJobInstance() Method Returns Job Instance details for a specified Job Reference.

cancelJobInstance() Method Requests to cancel an executing Job Instance for a specified Job
Reference.

removeJobs() Method Requests to remove a Job definition for a specified Job Reference.

purgeJobInstances() Method Requests to purge an existing Job Instance for a specified Job
Reference.

getJobReferences() Method
Use the getJobReferences() method to get a list of job references based on a filter.

Returned references are not live and are invalidated when jobs or instances are deleted.

Signature
JobReference[] getJobReferences(List[] JobFilter, String SessionID);

Arguments Description

List[] JobFilter Selection criteria that returns matching job references. An empty
JobFilter results in all job references being returned. Note that filters are
applied in the context of the calling user, which means that a user is
restricted to listing jobs within their tenancy but does not require any
Presentation Services catalog permissions on the agent corresponding
to the job.

For more information, see JobFilter Structure, and
JobReferenceAndInstanceReferences Structure.

String SessionID Specifies the session ID, which is usually returned by the login method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null. If no Session IDs are specified then all
JobReferences are returned.

getJobInstanceReferences() Method
Use the getJobInstanceReferences() method to get a list of job instances that correspond to
running, cancelled or completed jobs.

The JobInstanceFilter must include one or more Job References (unknown Job References
are ignored).

A structure is returned in the list for each Job which has associated Job Instances that satisfy
the filter. For example, if the method is invoked with a JobInstanceFilter that specifies three Job
references, and two of these Jobs are found to have associated Job Instances, then there will
be two JobReferenceAndInstanceReferences structures returned in the list.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-33

There is no limit to the number of structures and job instances that can be returned.
Performance of this method is critical and must be optimized to allow efficient polling of job
status.

References are not live and are invalidated if jobs or instances are deleted or cancelled.

The following properties can be applied when listing job instance references:

• List of JobReference [Mandatory]. For more information, see
JobReferenceAndInstanceReferences Structure

• JobInstanceStatus [Optional] For more information, see JobInstanceStatus Enumeration.

• JobFilter, JobInstanceFilter, and PurgeJobInstancesFilter properties are selection criteria
that are used as follows:

– A filter is always applied in the context of the current user.

– Properties in the filter are selection criteria.

– Filter and its properties must be populated according to the schema.

– If the selection criteria are valid, but would return Jobs that are not visible to the
current user these jobs is excluded without error.

– All properties in a filter is used as selection criteria (union).

– Filter criteria are applied by the server at the time the request is serviced.

For more information, see JobFilter Structure, JobInstanceFilter Structure, and
PurgeJobInstancesFilter Structure.

Signature
JobReferenceAndInstanceReferences[] getJobInstanceReferences(Array JobInstanceFilter,
String SessionID);

Arguments Description

JobInstanceFilter filter Specifies the selection criteria that determines which
JobInstanceReferences to return. For more information, see
JobInstanceFilter Structure and JobReferenceAndInstanceReferences
Structure.

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getJob() Method
Use the getJob() method to get the Job definition given a Job Reference.

If you try to get a job that doesn't exist, you get Job not found error.

Signature
Job[] getJob(String JobReference, String SessionID);

Arguments Description

String JobReference Specifies a unique job identifier. For more information, see Job
Structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-34

Arguments Description

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getJobInstance() Method
Use the getJobInstance() method to get the Job Instance details, when given a Job Instance
Reference.

If you try to get a Job Instance that doesn't exist, you get JobInstance not found error.

Signature
JobInstance[] getJobInstance(String JobReference, String JobInstanceReference, String
SessionID);

Arguments Description

String JobReference Specifies a unique job identifier. For more information, see JobInstance
Structure.

String JobInstanceReference Specifies a unique job instance identifier.

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

cancelJobInstance() Method
Use the cancelJobInstance() method to request to cancel an executing Job Instance, when
given a reference to an existing Job Instance.

Successful return indicates that the cancellation request has been accepted. Callers must use
the getJobInstanceReferences operation (with an appropriate filter - such as Job Reference
and State) or using the getJobInstance operation (and checking the JobInstanceStatus
property), to determine if the cancellation has completed.

Cancelling a Job Instance that is not running has no effect. Cancelling a Job Instance that
doesn't exist raises a JobInstance not found error.

Signature
Boolean cancelJobInstance(String JobReference, String JobInstanceReference, String
SessionID);

Arguments Description

String JobReference Specifies a unique job identifier.

String JobInstanceReference Specifies a unique job instance identifier. For more information, see
JobReferenceAndInstanceReferences Structure.

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-35

removeJobs() Method
Use the removeJobs() method to remove associated jobs, given a list of Job References.

If you try to remove a job that does not exist, it will be ignored and logged. The number of Jobs
actually removed is returned.

Signature
Unsigned Integer removeJobs(List JobReference[], String SessionID);

Arguments Description

List JobReference[] Specifies the job identifiers of the removed jobs. For more information,
see JobReferenceAndInstanceReferences Structure.

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

purgeJobInstances() Method
Use the purgeJobInstances() method to purge Job Instances based on a filter.

The purgeJobInstancesFilter must contain either a populated list of Job References or
UserIDs, and if this is not done correctly then it will result in an Invalid Choice SOAP fault
being raised. Attempting to purge with a Job Reference or UserID that does not exist will be
ignored and logged.

The following properties can be applied when purging job instances:

• Choice of only one of the following: [Mandatory]:

– List of Job Reference [Optional].

– List of User IDs [Optional].

Signature
Void purgeJobinstances(List[] PurgeJobInstancesFilter, String SessionID);

Arguments Description

List[] PurgeJobInstancesFilter Specifies filter properties for the Job Instances to purge. For more
information, see PurgeJobInstancesFilter Structure.

String SessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Examples of Using the SchedulerService API
This section assumes that the reader is familiar with Java and SOAP based web services. The
Java code that follows is intended to illustrate API usage.

• Example - Creating a Session and Scheduler Service

• Example - Finding Job References for a User and Displaying the Job Names

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-36

• Example - Finding Job Instances for Two Given Job References

• Example - Cancelling All Job Instances Associated with a Job Reference

• Example - Finding and Displaying all Agents in the WebCatalogService

Example - Creating a Session and Scheduler Service
As with all services detailed here, to use the scheduler service you must first establish a
SAWSession, then instantiate a handle to the service endpoint:

SAWSessionService sessionService = new SAWSessionService();

SAWSessionServiceSoap sessionServiceSoap =
sessionService.getSAWSessionServiceSoap();

String sessionId = sessionServiceSoap.logon("<USER_NAME>", "<PASSWORD>");

SchedulerService schedulerService = new SchedulerService();

SchedulerServiceSoap schedulerServiceSoap =
schedulerService.getSchedulerServiceSoap();

Example - Finding Job References for a User and Displaying the Job Names
Example code for finding job references for a user and displaying the job names.

This example depends on the code from Example - Creating a Session and Scheduler Service
to create the session and service.

JobFilter jobFilter = new JobFilter();

jobFilter.getUserID().add("<USER_ID>");

List<Long> jobRefs = schedulerServiceSoap.getJobReferences(jobFilter,
sessionId);

for (long jobRef : jobRefs)
 {
 Job job = schedulerServiceSoap.getJob(jobRef, sessionId);
 System.out.println("Name = " + job.getName());
 }

Example - Finding Job Instances for Two Given Job References
Example code for finding job instanes for two given job references.

This example depends on the code from Example - Creating a Session and Scheduler Service
to create the session and service.

// Create Job Instance Filter
JobInstanceFilter jobInstanceFilter = new JobInstanceFilter();
jobInstanceFilter.getJobReference().add(<JOB_REFERENCE_1>);
jobInstanceFilter.getJobReference().add(<JOB_REFERENCE_2>);
jobInstanceFilter.setJobInstanceStatus(null);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-37

List<JobReferenceAndInstanceReferences> listJobRefAndInstanceRefs =
schedulerServiceSoap.getJobInstanceReferences(jobInstanceFilter, sessionId);

System.out.println("Number of Jobs with Instances found: " +
listJobRefAndInstanceRefs.size());
for (JobReferenceAndInstanceReferences jobRefAndInstanceRefs :
listJobRefAndInstanceRefs)
 {
 System.out.println("Job Ref = " +
 jobRefAndInstanceRefs.getJobReference() + ", Job Instance Refs = " +
 jobRefAndInstanceRefs.getJobInstanceReference());
 }

Example - Cancelling All Job Instances Associated with a Job Reference
This example cancels all Job Instances for the Job with the given Job Reference.

This example also depends on the code from Example - Creating a Session and Scheduler
Service to create the session and service.

// Create Job Instance Filter
JobInstanceFilter jobInstanceFilter = new JobInstanceFilter();
jobInstanceFilter.getJobReference().add(<JOB_REFERENCE>);

// Get JobInstance References
List<JobReferenceAndInstanceReferences> listJobRefAndInstanceRefs =
schedulerServiceSoap.getJobInstanceReferences(jobInstanceFilter, sessionId);

// Cancel all the obtained Job Instances
for (JobReferenceAndInstanceReferences jobRefAndInstanceRefs :
listJobRefAndInstanceRefs)
{
for (BigInteger jobInstanceRef :
jobRefAndInstanceRefs.getJobInstanceReference())
 {
 System.out.println("Cancelling Job = " +
jobRefAndInstanceRefs.getJobReference() + ", Job Instance = " +
jobInstanceRef);
 boolean result = schedulerServiceSoap.cancelJobInstance(jobRef,
jobInstanceRef, sessionId);
 System.out.println("Result = " + result);
 }
}

Example - Finding and Displaying all Agents in the WebCatalogService
This example shows how to iterate through the WebCatalogService and display the path of all
the agents found.

This example also depends on the code from Example - Creating a Session and Scheduler
Service to create the session and service.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-38

You could extend this example, so that once an agent has been found, it can be used to call
iBot web service methods (for example, Enable the Agent using the Agent path found).
iBotService Service

WebCatalogService webCatalogService = new WebCatalogService();
WebCatalogServiceSoap webCatalogServiceSoap =
webCatalogService.getWebCatalogServiceSoap();

void outputAgentsInFolder(String path) { List<ItemInfo> items = null; try
{ // Get folder items items =
webCatalogServiceSoap.getSubItems(path, "*", false, null, sessionId);
for (ItemInfo itemInfo : items) { // If item is Agent then display
Agent path if (itemInfo.getSignature().equals("coibot1"))
{ System.out.println("Agent Path = " +
itemInfo.getPath()); } // If item is a folder then recurse
if (itemInfo.getType() == ItemInfoType.FOLDER)
{ outputAgentsInFolder (itemInfo.getPath()); } }} catch
(SOAPFaultException soapFault){ System.out.println("SOAP Fault for
path: " + path);} catch (Exception e) { e.printStackTrace(); }}

SecurityService Service
Use the SecurityService service to provide methods for identifying accounts and privileges.

Method Names Description

forgetAccounts() Method Removes accounts from the catalog.

forgetAccountsEx() Method Removes accounts from the catalog.

getAccounts() Method Searches for Oracle Analytics user accounts.

getAccountTenantID() Method Gets the tenant ID of a specific account.

getGlobalPrivilegeACL()
Method

Gets the Access Control List for global privileges.

getGlobalPrivileges() Method Gets the list of all global privileges.

getPermissions() Method Get the list of permissions for the specified user.

getPermissionsEx() Method Get the list of permissions for the specified user.

getPrivilegesStatus() Method Lists all privileges and their statuses.

isMember() Method Confirms if a catalog group is a member of the user or group.

joinGroups() Method Adds a user to a catalog group as a member.

leaveGroups() Method Removes a member from a group.

renameAccountsEx() Method Changes the name of an user account.

updateGlobalPrivilegeACL()
Method

Updates the Access Control List for global privileges.

forgetAccounts() Method
Use the forgetAccounts() method to remove accounts from the catalog.

Signature

forgetAccountsStatus forgetAccounts(Account account, int cleanuplevel, String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-39

Argument Description

Account account Specifies the account to forget. See Account Structure.

int cleanuplevel Specifies the level for account cleanup.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns

Returns a list of account names with status of forgetAccounts operation in the
ForgetAccountsStatus Structure.

forgetAccountsEx() Method
Use the forgetAccountsEx() method to remove accounts from the catalog.

Signature
forgetAccountsStatus forgetAccountsEx(ForgetAccount forgetAccountsList, String sessionID);

Argument Description

ForgetAccount
forgetAccountsList

Specifies the accounts to forget, supplied in the ForgetAccount structure.
For information about the ForgetAccount structure, see ForgetAccount
Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a list of account names with status of forgetAccounts operation in the
ForgetAccountsStatus Structure.

See ForgetAccountsStatus Structure.

getAccounts() Method
Use the getAccounts() method to search for Oracle Analytics user accounts (for example,
LDAP users, catalog groups, or application roles).

Signature
List[] getAccounts(List[], String sessionID);

Argument Description

List[] Specifies user names, catalog group names, and application role
names. A flag indicates if the name is a user, group, or application role.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-40

getAccountTenantID() Method
Use the getAccountTenantID() method to retrieve the tenant ID of a specific account.

Signature
List[] getAccountTenantID(List[], String sessionID);

Argument Description

Account account Specifies the account for which we want tenant ID.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns the tenant ID.

getGlobalPrivilegeACL() Method
Use the getGlobalPrivilegeACL() method to retrieve the Access Control List for global
privileges.

Signature
ACL getGlobalPrivilegeACL(String privilegeName, String sessionID);

Argument Description

String privilegeName Specifies the name of the privilege to retrieve.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getGlobalPrivileges() Method
Use the getGlobalPrivileges() method to retrieve the list of global privileges.

Signature
List[] getGlobalPrivileges(String sessionID);

Argument Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getPermissions() Method
Use the getPermissions() method to retrieve a list of permissions for the specified user, based
on the specified access control list.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-41

This method also returns any permissions that are inherited by a user's security group, even if
the access control list doesn't specify the group's permissions.

Signature
List[] getPermissions(List[], Account account, String sessionID);

Argument Description

List[] Specifies the access control list for the user specified by Account
account.

Account account Specifies the name of the user for whom to find permission for the ACLs.
Can be the user's name or a GUID.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns permissions information in the permissionMask field in the AccessControlToken
structure.

See AccessControlToken Structure).

getPermissionsEx() Method
Use the getPermissionsEx() method to retrieve a list of permissions for the specified user,
owner, or creator, based on the specified access control list.

Signature
List[] getPermissionsEx(List[], Account account, Owner owner, Creator creator, String
sessionID);

Argument Description

List[] Specifies the access control list for the user specified by Account
account.

Account account Specifies the name of the user for whom to find permission for the ACLs.
Can be the user's name or a GUID.

Owner owner Specifies the name of the owner for whom to find permission for the
ACLs. Can be the owner's user name or a GUID.

Creator creator Specifies the name of the creator for whom to find permission for the
ACLs. Can be the creator's user name or a GUID.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns permissions information in the permissionMask field in the AccessControlToken
structure.

See AccessControlToken Structure).

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-42

getPrivilegesStatus() Method
Use the getPrivilegesStatus() method to list all privileges and their statuses.

Signature
List[] getPrivilegesStatus(List[] privileges, String sessionID);

Argument Description

List[] privileges Specifies a list of privileges.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

isMember() Method
Use the isMember() method to confirm if a catalog group is a member of the user or group.

Signature
boolean isMember(List[] group, List[] member, Boolean expandGroups, String sessionID);

Argument Description

List[] group Specifies the username, catalog group, or application role name.

List[] member Specifies the name of the member to verify. Consider the example is
Member (BIAdministrator, Administrator, false). This example asks if the
user Administrator is a member of the BIAdministrator application role.

Boolean expandGroups Specifies to expand the groups to which the members belong.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

joinGroups() Method
Use the joinGroups() method to join a catalog group as a member.

Signature
void joinGroups(List[] group, List[] member, String sessionID);

Argument Description

List[] group Specifies the name of the group to join or become a member. Consider
the following example: join(Marketing, UserA). This example illustrates
that UserA will join the Marketing catalog group.

List[] member Specifies the name of the underlying member. For more information, see
the example included in the previous argument.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-43

leaveGroups() Method
Use the leaveGroups() method to remove a member from a group.

Signature
void leaveGroups(List[] group, List[] member, String sessionID);

Argument Description

List[] group Specifies the group from which to remove a member.

List[] member Specifies the member that you want to remove from the group.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

renameAccountsEx() Method
Use the renameAccountsEx() method to rename accounts.

Signature
RenameAccountsStatus renameAccountsStatusEx(RenameAccount renameAccountsList,
String sessionID);

Argument Description

RenameAccount
renameAccountsList

Specifies a list of old names and new names with their account types in
the RenameAccount structure. For information about the
RenameAccount structure, see RenameAccountsStatus Structure

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a list of account names with status of renameAccounts operation in the
RenameAccountsStatus Structure.

See RenameAccountsStatus Structure.

updateGlobalPrivilegeACL() Method
Use the updateGlobalPrivilegeACL() method to update the Access Control List for global
privileges.

Signature
void updateGlobalPrivilegeACL(String privilegeName, ACL acl, UpdateACLParams
updateACLParams, String sessionID);

Arguments Description

String privilegeName Specifies the name of privilege to update.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-44

Arguments Description

ACL acl Specifies the Access Control List to update, supplied in the ACL
structure. For information about the ACL structure, see ACL Structure.

UpdateACLParams updateAC
LParams

Specifies the Access Control List parameters to update, supplied in the
UpdateACLParams structure. For information about the
UpdateACLParams structure, see UpdateACLParams Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

UserPersonalizationService Service
Use the UserPersonalizationService service to manage favorites and favorite categories.

Method Names Description

addFavorite() Method Adds a catalog object as a favorite in favorite list.

addFavoriteCategory()
Method

Adds a category object in favorite manager.

deleteFavorite() Method Deletes an existing favorite item from favorite manager.

deleteFavoriteCategory()
Method

Deletes an existing favorite category from favorite manager.

getFavorites() Method Returns all existing favorite items and category.

updateFavorites() Method Removes all existing favorite items and category and regenerates all
favorite manager items using the supplied list of favorite items.

getMostRecents() Method Returns all most recent used items.

addFavorite() Method
Use the addFavorite() method to add a catalog object as favorite in the favorite list.

Signature
void addFavorite(String catalogObjectPath, String categoryPath, String sessionID);

Arguments Description

String catalogObjectPath Specifies the catalog object path to add as a favorite.

String categoryPath Specifies the category location (in favorite manager) to create the
favorite item. If blank, the favorite item is added as a root element in
favorite manager.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

addFavoriteCategory() Method
Use the addFavoriteCategory() method to add a category object in favorite manager.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-45

Signature
void addFavoriteCategory(String categoryName, String categoryPath, String sessionID);

Arguments Description

String categoryName Specifies the catalog object path to add as a favorite.

String categoryPath Specifies the category location (in favorite manager) to create new
category. If empty, new category will be added on root of favorite
manager.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

deleteFavorite() Method
Use the deleteFavorite() method to delete an existing favorite item from favorite manager.

Signature
void deleteFavorite(String catalogObjectPath, String categoryPath, String sessionID);

Arguments Description

String catalogObjectPath Specifies the catalog object path for which to delete the favorite item.

String categoryPath Specifies the category location (in favorite manager) from where favorite
item needs to be deleted. If empty, catalog object will be removed from
all categories, that is, it will be marked as non favorite object.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

deleteFavoriteCategory() Method
Use the deleteFavoriteCategory() method to delete an existing favorite category from favorite
manager.

Signature
void deleteFavoriteCategory(String categoryPath, String sessionID);

Arguments Description

String categoryPath Specifies the complete category path (in favorite manager) that needs to
be deleted. This path starts from /root.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getFavorites() Method
Use the getFavorites() method to return all existing favorite items and category.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-46

Signature
List[] getFavorites(String categoryPath, boolean recursive, boolean categoryOnly, String
sessionID);

Arguments Description

String categoryPath Specifies the category location (in favorite manager) to create favorite
item. If blank, favorite item is added as root element in favorite manager.

Boolean recursive Specifies whether the child-level categories were included in the result.

Boolean categoryOnly Specifies if only categories were included in the result and excluding all
favorite items.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
All existing favorite items and category.

updateFavorites() Method
Use the updateFavorites() method to remove all existing favorite items and category, and
regenerate all favorite manager items using supplied list of favorite items.

Signature
void updateFavorites(List [] favoriteItems, String sessionID);

Arguments Description

List [] favoriteItems Specifies a list of FavoriteItem structure, for more information, see
ForgetAccount Structure. In this FavoriteItem structure, there is no need
to fill ItemInfo structure (see ItemInfo Structure), only name, path and
type parameters are mandatory. The catalogPath argument is required
to add a catalog object in favorite manager. Additionally for optional
subItems, you can include a nested FavoriteItem list.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getMostRecents() Method
Use the getMostRecents() method to return all most recent used items.

Signature
List[] getMostRecents(UnsignedShort listType, String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-47

Arguments Description

UnsignedShort listType listType value is as following flags:

1 = Recently Updated

2 = Recently Viewed

3 = Frequently Viewed

4 = Recent

5 = Suggestions

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
A list of MRUItem.

See MRUItem Structure.

WebCatalogService Service
Use the WebCatalogService service to provide methods for navigating and managing the
catalog, and to read and write catalog objects in XML format.

Enumeration and Method
Names

Description

ErrorDetailsLevel
Enumeration

Specifies a list of valid values for methods.

ReadObjectsReturnOptions
Enumeration

Specifies a list of valid values for methods.

copyItem() Method Copies an object from one location to another in the catalog.

copyItem2() Method Generates an archive file from the catalog.

createFolder() Method Creates a new folder in the catalog.

createLink() Method Creates a link to the catalog.

deleteItem() Method Deletes an object from the catalog.

getItemInfo() Method Retrieves catalog information for an object.

getMaintenanceMode()
Method

Retrieves the maintenance mode status.

getObjectCategories() Method Retrieves all supported categories.

getObjectCreateList() Method Retrieves all creatable objects.

getObjectTypes() Method Retrieves all supported catalog object types.

getSubItems() Method Retrieves the collection of child subitems for an object in the catalog.

getUserHomeDirPath()
Method

Retrieves the home directory path of a user.

maintenanceMode() Method Locks the catalog during maintenance.

moveItem() Method Moves an object in the catalog to a different location in the catalog.

pasteItem2() Method Pastes the copied items.

readObjects() Method Reads an object from the catalog.

removeFolder() Method Deletes a folder from the catalog.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-48

Enumeration and Method
Names

Description

setItemAttributes() Method Sets attribute flags for the specified catalog item.

setItemProperty() Method Sets a property for an object in the catalog.

setOwnership() Method Take ownership of the specified item.

updateCatalogItemACL()
Method

Update the Access Control List for an item in the catalog.

writeObjects() Method Writes a list of objects to the catalog.

ErrorDetailsLevel Enumeration
The ErrorDetailsLevel enumeration specifies a list of valid values for methods in
WebCatalogService Service.

See WebCatalogService Service.

Note:

Only one of the values in ErrorDetailsLevel should be selected.

Table 9-1 ErrorDetailsLevel Enumeration Values

Values Description

String ErrorCode Specifies that the ErrorInfo.errorCode field is populated.

String ErrorCodeAndText Specifies that the ErrorInfo.errorCode and ErrorInfo.message fields are
populated.

String FullDetails Specifies that all ErrorInfo fields are populated.

ReadObjectsReturnOptions Enumeration
The ReadObjectsReturnOptions enumeration is a list of valid values for methods in the
WebCatalogService Service.

This enumeration specifies a list of valid values for methods in the WebCatalogService
Service.

Values Description

String NoObject Specifies that the catalogObject and catalogObjectBytes fields are not
populated.

String ObjectAsString Specifies that the catalogObject field is populated and the
catalogObjectBytes fields is not populated.

String ObjectAsBinary Specifies that the catalogObject field is not populated and the
catalogObjectBytes fields is populated.

String ObjectAsBinaryUseMto
m

Specifies that the catalogObject field is not populated and the
catalogObjectBytes fields is populated and using MTOM to encode the
content returned by the SOAP message.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-49

copyItem() Method
Use the copyItem() method to copy an object from one location in the catalog to another
location in the catalog.

Signature
void copyItem(String pathSrc, String pathDest, int flagACL, String sessionID);

Arguments Description

String pathSrc Specifies the current path to the object in the catalog.

String pathDest Specifies the location in the catalog where the object should be copied.

int flagACL Specified whether the item is copied with security. 0 indicates that the
item is copied without security. 1 indicates that the item is copied with
security.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

copyItem2() Method
Use the copyItem2() method to generate an archive file from the catalog.

Signature
DataHandler copyItem2(List[] path, boolean recursive, boolean permissions, boolean
timestamps, boolean useMtom, String skipPath, CopyItem2Params options, String sessionID);

Arguments Description

List[] path Specifies the location in the catalog from which the archive was created.

boolean recursive Specifies whether the child-level folders were included in the archive.

boolean permissions Specified whether the items are copied with security.

boolean timestamps Specifies whether to preserve the items' time stamps were preserved.

boolean useMtom Specifies whether MTOM was used to encode the content returned by
the SOAP message.

String skipPath Specifies the location of the folder to skip while archiving.

CopyItem2Params options Specifies the source application.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

createFolder() Method
Use the createFolder() method to create a folder in the catalog.

Signature
void createFolder(String path, boolean createIfNotExists, boolean createIntermediateDirs,
String sessionID);

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-50

Arguments Description

String path Specifies the location in the catalog where the folder should be created,
including the name of the new folder.

boolean createIfNotExists If set to TRUE, then the folder object is created in the catalog if it does
not already exist. If set to FALSE, then the folder object is not recreated
if it already exists.

boolean
createIntermediateDirs

If set to TRUE, then an intermediate directory is created. If set to
FALSE, the an intermediate directory is not created.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

createLink() Method
Use the createLink() method to create a link to the catalog.

Signature
void createLink(String path, String pathTarget, boolean overwriteIfExists, String sessionID);

Arguments Description

String Path Specifies the path to the parent object in the catalog.

String TargetPath Specifies the location in the catalog to which the link being created
should refer.

boolean overwriteIfExists If set to TRUE, then the link is overwritten if it already exists in the
catalog. If set to FALSE, then the link is not overwritten if it already exists
in the catalog.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

deleteItem() Method
Use the deleteItem() method to delete an object from the catalog.

To delete a folder, see removeFolder() Method.

Signature
void deleteItem(String path, String sessionID);

Arguments Description

String path Specifies the path to the object in the catalog.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

getItemInfo() Method
Use the getItemInfo() method to retrieve catalog information for an object.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-51

Signature
ItemInfo getItemInfo(String path, boolean resolveLinks, String sessionID);

Arguments Description

String path Specifies the path to the object in the catalog.

boolean resolveLinks If set to TRUE and the path in the catalog refers to a link, then Oracle
Analytics retrieves information for the object pointed to by the link.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns catalog information for an object in an ItemInfo structure.

See ItemInfo Structure.

getMaintenanceMode() Method
Use the getMaintenanceMode() method to retrieve the maintenance mode status.

Signature
Boolean getMaintenanceMode(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns true or false value indicating current maintenance mode status.

See maintenanceMode() Method.

getObjectCategories() Method
Use the getObjectCategories() method to retrieve the supported categories.

Signature
Boolean getObjectCategories(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-52

Returns
Returns a list of supported categories.

getObjectCreateList() Method
Use the getObjectCreateList() method to retrieve a list of all creatable objects.

Signature
Boolean getObjectCreateList(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a list of creatable objects.

getObjectTypes() Method
Use the getObjectTypes() method to retrieve a list of all supported catalog object types.

Signature
Boolean getObjectTypes(String sessionID);

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a list of supported object types.

getSubItems() Method
Use the getSubItems() method to retrieve the collection of child sub-items for an object in the
catalog.

Signature
List[] getSubItems(String path, String mask, boolean resolveLinks, GetSubItemsParams
options, String sessionID);

Arguments Description

String path Specifies the path to the parent object in the catalog.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-53

Arguments Description

String mask Specifies a mask that indicates the child subitems to retrieve. The mask
character is an asterisk (*). To retrieve all child subitems, use a single
asterisk.

boolean resolveLinks If set to TRUE and the path in the catalog refers to a link, then
information is retrieved for the child subitems of the object pointed to by
the link.

GetSubItemsParams options Optional. Specifies parameters to supply to the GetSubItemsParams
structure. For information about the GetSubItemsParams structure, see
GetSubItemsParams Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns a collection of child subitems in an ItemInfo structure.

See ItemInfo Structure.

getUserHomeDirPath() Method
Use the getUserHomeDirPath() method to retrieve the home directory path of a user.

Signature
String getUserHomeDirPath(String user name, String sessionID);

Arguments Description

String user name Specifies the name of the user

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns the path of the specified user's home directory.

maintenanceMode() Method
Use the maintenanceMode() method to lock the catalog during maintenance.

Signature
void maintenanceMode(boolean flag, String sessionID);

Arguments Description

boolean flag Set to TRUE if the catalog is locked.

String sessionID) Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-54

moveItem() Method
Use the moveItem() method to move an object in the catalog to a different location in the
catalog.

Signature
void moveItem(String pathSrc, String pathDest, int flagACL, String sessionID);

Arguments Description

String pathSrc Specifies the current path to the object in the catalog.

String pathDest Specifies the location in the catalog where the object should be moved.

int flagACL Specified whether the item is moved with security. 0 indicates that the
item is moved without security. 1 indicates that the item is moved with
security.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

pasteItem2() Method
Use the pasteItem2() method to paste the copied items.

Signature
pasteItem2(Binary stream DataHandler archive, String replacePath, int flagACL, int
flagOverwrite, String sessionID);

Arguments Description

Binary stream DataHandler
archive

Specifies the returned content of the item as string or bytes. What you
specify in this field is determined by the readObjects method.

String replacePath Specifies the location to paste the copied item.

int flagACL Specified whether the item is pasted with security. 0 indicates that the
item is pasted without security. 1 indicates that the item is pasted without
security.

int flagOverwrite Specifies whether the pasted item overwrites existing item. 0 indicates
replace all, 1 indicates replace old, 2 indicates replace none, and 3
indicates force replace.

int flagReplaceReferences Specifies whether to replace the path references in the xml objects.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

readObjects() Method
Use the readObjects() method to read an object from the catalog and return a CatalogObject
structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-55

Signature
List[] readObjects(List[] paths, boolean resolveLinks, ErrorDetailsLevel errorMode,
ReadObjectsReturnOptions returnOptions, String sessionID);

Arguments Description

List[] paths Specifies the location of the object in the catalog.

boolean resolveLinks If set to TRUE and the path in the catalog refers to a link, then the object
is written to the location pointed to by the link.

ErrorDetailsLevel errorMode Specifies the amount of error information in the errorInfo field in the
CatalogObjects structure. For more information, see CatalogObject
Structure.

ReadObjectsReturnOptions
returnOptions

Specifies a list of valid values. For more information, see
"ReadObjectsReturnOptions Enumeration".

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Returns an array of CatalogObject Structure objects.

See CatalogObject Structure.

If a read operation fails for a catalog object (for example, due to an invalid path or insufficient
privileges), the errorInfo field for that object contains a description of the error.

removeFolder() Method
Use the removeFolder() method to delete a folder and its contents from the catalog.

To delete an object other than a folder and its contents, see deleteItem() Method.

Signature
void removeFolder(String path, boolean recursive, String sessionID);

Arguments Description

String path Specifies the path to the folder in the catalog.

boolean recursive If set to TRUE, then remove the specified folder and its contents. If set to
FALSE, then only remove the specified folder if it is empty, otherwise
display an exception message.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

setItemAttributes() Method
Use the setItemAttributes() method to set attribute flags for a specified catalog item.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-56

Signature
void setItemAttributes (List[] path, int value, int valueOff, boolean recursive, String sessionID);

Arguments Description

List[] path Specifies the path to the folder in the catalog.

int value Specifies which attributes is added. Specifies a combination of the
following flags:

1 = read only 2 = archive 4 = hidden 8 = system

int valueOff Specifies which attributes is removed. See the above int value cell for
flags.

boolean recursive Specifies whether to set the properties of items in sub-directories.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

setItemProperty() Method
Use the setItemProperty() method to set a property for an object in the catalog.

Signature
void setItemProperty(List[] path, List[] name, List[] value, boolean recursive, String sessionID);

Arguments Description

List[] path Specifies the path to the object in the catalog.

List[] name Specifies the name of the property to set.

List[] value Specifies the new setting for the property.

boolean recursive Specifies whether to set the properties of items in sub-directories.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

setOwnership() Method
Use the setOwnership() method to take ownership of the specified item.

Signature
void setOwnership(List[]path, Account owner, boolean recursive, String sessionID);

Arguments Description

List[] path Specifies the location in the catalog of the object to take ownership.

Account owner Specifies the account to assign as owner.

boolean recursive If set to TRUE, then apply this action to the specified folder and its
contents. If set to FALSE, then only apply this action to the specified
folder if it is empty, otherwise display an exception message.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-57

Arguments Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

updateCatalogItemACL() Method
Use the updateCatalogItemACL() method to update the Access Control List for an item in the
catalog.

Signature
void updateCatalogItemACL(List[] path, ACL acl, UpdateCatalogItemACLParams options,
String sessionID);

Fields Description

List[] path Specifies the path to the object in the catalog.

ACL acl Specifies the Access Control List. For more information, see ACL
Structure.

UpdateCatalogItemACLParam
s options

Specifies additional parameters. For more information, see
UpdateCatalogItemACLParams Structure.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

writeObjects() Method
Use the writeObjects() method to write an array of objects to the catalog.

Signature
List[] writeObjects(List[] catalogObjects, boolean allowOverwrite, boolean
createIntermediateDirs, ErrorDetailsLevel errorMode, String sessionID);

Argument Description

List [] catalogObjects Specifies the objects to write to the catalog, supplied in the
CatalogObject structure. For information about the CatalogObject
structure, see CatalogObject Structure.

All fields of object.itemInfo are ignored, except for the array of item
properties, which are applied to the object. The signature of the resulting
document is always COXmlDocument1.

boolean allowOverwrite If set to TRUE, then if the object already exists in the catalog, it is
overwritten. If set to FALSE, then if the object already exists in the
catalog, it is not overwritten.

boolean
createIntermediateDirs

If set to TRUE and the path in the catalog refers to a link, then the object
is written to the location pointed to by the link.

ErrorDetailsLevel errorMode Specifies the amount of error information in the errorInfo field in the
CatalogObject Structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-58

Argument Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

Returns
Array of ErrorInfo Structure objects.

See ErrorInfo Structure.

XMLViewService Service
Use the XMLViewService service to retrieve results from Oracle Analytics Presentation
Services in XML format.

Enumeration and Method
Name

Description

XMLQueryOutputFormat
Enumeration

Specifies a list of valid values.

cancelQuery() Method Cancels the current query.

executeSQLQuery() Method Runs a SQL query.

executeXMLQuery() Method Runs an XML query.

fetchNext() Method Returns the next page of data rows.

getPromptedFilters() Method Returns a filter XML structure containing only the analysis' columns with
a prompted filter.

XMLQueryOutputFormat Enumeration
The XMLQueryOutputFormat enumeration specifies a list of values for the executeSQLQuery()
Method and executeXMLQuery() Method.

This enumeration specifies a list of valid values for the executeSQLQuery() Method and
executeXMLQuery() Method. For example, you might want to return data rows and metadata,
or data rows only.

Note:

Only one of the values in XMLQueryOutputFormat can be selected.

Values Description

String SAWRowsetData Specifies that the query returns only data rows.

String SAWRowsetSchema Specifies that the query returns only metadata.

String SAWRowsetSchemaAn
dData

Specifies that the query returns both metadata and data rows.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-59

cancelQuery() Method
Use the cancelQuery() method to cancel a query and clean up resources associated with the
query.

This method should only be used if the query row set is not scrolled to the last row in the data
set returned.

Note:

If you use this method when the query row set is scrolled to the last row in the data
set returned, query data is cleaned up during the last fetchNext method invocation.

Signature
void cancelQuery(String queryID, String sessionID);

Argument Description

String queryID Specifies the unique ID of the query.

String sessionID Specifies the unique ID of the session.

executeSQLQuery() Method
Use the executeSQLQuery() method to execute a SQL query and return the results of the
query.

If the results returned exceed one page, you need to use the fetchNext() Method to return the
next page of rows.

Signature
QueryResults executeSQLQuery(String sql, XMLQueryOutputFormat outputFormat,
XMLQueryExecutionOptions executionOptions, String sessionID);

Argument Description

String sql Specifies the string of SQL code to execute.

XMLQueryOutputFormat outp
utFormat

Specifies the output format (for more information, see
XMLQueryExecutionOptions Structure).

XMLQueryExecutionOptions e
xecutionOptions

Specifies the query execution options (for more information, see
XMLQueryExecutionOptions Structure).

String sessionID Specifies the unique ID of the session.

Returns
Returns the results of the query as one or more rows of data in a QueryResults structure.

See QueryResults Structure.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-60

executeXMLQuery() Method
Use the executeXMLQuery() method to execute an XML query and return the results of the
query.

If the results returned exceed one page, you need to use the fetchNext() Method to return the
next page of rows.

Signature
QueryResults executeXMLQuery(ReportRef report, XMLQueryOutputFormat outputFormat,
XMLQueryExecutionOptions executionOptions, ReportParams reportParams,
String sessionID);

Argument Description

ReportRef reportRef Specifies the analysis definition, supplied in the ReportRef common
structure.

XMLQueryOutputFormat outp
utFormat

Specifies the output format (for more information, see
XMLQueryExecutionOptions Structure).

XMLQueryExecutionOptions e
xecutionOptions

Specifies the query execution options (for more information, see
XMLQueryExecutionOptions Structure).

ReportParams reportParams Optional. Specifies the filters or variables to apply to the analysis before
execution, supplied in the ReportParams common structure. For
information about the ReportParams structure, see ReportParams
Structure.

String sessionID Specifies the unique ID of the session.

Returns
Returns the results of the query as one or more rows of data in a QueryResults structure.

See QueryResults Structure.

fetchNext() Method
Use the fetchNext() method to return the next page of rows retrieved by a query.

The page returned might contain zero rows. If the finished flag is not set, the remaining rows
might not be available immediately.

Signature
QueryResults fetchNext(String queryID, String sessionID);

Argument Description

String queryID Specifies the unique ID of the query, which is returned in the
QueryResults object.

String sessionID Specifies the unique ID of the session.

Chapter 9
Description of Services and Methods in Oracle Analytics Web Services

9-61

Returns
Returns the next page of query results as one or more rows of data in a QueryResults
structure.

See QueryResults Structure.

getPromptedFilters() Method
Use the getPromptedFilters() method to retrieve a saved analysis' prompted columns or the
prompted columns from an analysis' XML definition.

Note that to create an analysis with a prompted column, you must assign the isPrompted
operator to it.

Signature
List[] getPromptedFilters(ReportRef report, String sessionID);

Argument Description

ReportRef report Specifies the analysis' reportPath or a reportXml (report definition).

String sessionID Specifies the unique ID of the session.

Description of Structures in Oracle Analytics Web Services
This topic describes structures used by the Oracle Analytics session-based web services. This
document uses JavaScript-like syntax to describe structures. The exact syntax and
implementation depend on the SOAP code generation tool and the target language used by
your application development environment.

Topics:

• AccessControlToken Structure

• Account Structure

• ACL Structure

• Action Structure

• ActionLinks Structure

• AnalysisExportExecutionOptions Structure

• AnalysisExportResult Structure

• ArrayofGUIDS Structure

• AssessmentResult Structure

• AuthResult Structure

• CatalogItemsFilter Structure

• CatalogObject Structure

• CausalLinkage Structure

• CSPWhitelist Structure

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-62

• DimensionContext Structure

• ErrorInfo Structure

• FavoriteItem Structure

• ForgetAccount Structure

• ForgetAccountResult Structure

• ForgetAccountsStatus Structure

• GetSubItemsParams Structure

• ItemInfo Structure

• Job Structure

• JobFilter Structure

• JobInstance Structure

• JobInstanceFilter Structure

• JobInstanceStatus Enumeration

• JobReferenceAndInstanceReferences Structure

• KPIColumnName Enumeration

• KPIDimensionPinning Structure

• KPIRequest Structure

• KPIResultColumn Structure

• MRUItem Structure

• NameValuePair Structure

• NodeInfo Structure

• PathMap Structure

• ParameterDocument Structure

• ParameterValue Structure

• Prompt Structures

• Privilege Structure

• PurgeJobInstancesFilter Structure

• QueryResults Structure

• RenameAccount Structure

• RenameAccountResults Structure

• RenameAccountsStatus Structure

• ReportADFParameters Structure

• ReportHTMLOptions Structure

• ReportParams Structure

• ReportHierarchicalColumn Structure

• ReportRegularColumn Structure

• ReportRef Structure

• SAColumn Structure

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-63

• SASubjectArea Structure

• SATable Structure

• SAWLocale Structure

• SAWSessionParameters Structure

• SegmentationOptions Structure

• SessionEnvironment Structure

• StartPageParams Structure

• TreeFlags Enumeration

• TreeNodePath Structure

• UpdateACLParams Structure

• UpdateCatalogItemACLParams Structure

• ValidActionLinks Structure

• Variable Structure

• XMLQueryExecutionOptions Structure

AccessControlToken Structure
Use the AccessControlToken structure to describe the permissions granted to a specific
account in the access control list. The AccessControlToken structure is used in the
SecurityService Service.

AccessControlToken Structure Fields

Fields Description

Account account Specifies a reference to the Account structure.

int permissionMask Specifies a combination of the following flags:

1 = Permission to read item content

2 = Permission to traverse directory

4 = Permission to change item content

8 = Permission to delete an item

16 = Permission to assign permissions to other accounts

32 = Permission to take ownership of the item

2048 = Permission to run an Oracle Analytics Publisher report live

4096 = Permission to schedule an Oracle Analytics Publisher report

8192 = Permission to view output from an Oracle Analytics Publisher
report

65535 = Permission to grant full control of the item.

Account Structure
Use the Account structure to hold user names or group names. It has a flag to indicate whether
the name is a user or a group.

The Account structure is used in the SecurityService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-64

Account Structure Fields

Fields Description

String accountName Specifies an account name or group name.

int accountType Specifies whether the account is a user or a group or both.

Use accountType when it is:

• An input to a "non-query" SOAP function (for example, a parameter
in calling updateCatalogItemACL()).

Or
• An output from any SOAP function (for example, as returned data

from getAccounts()).
0 = user

1 = catalog group

2 = initblock user

3 = invalid or deleted account

int accountFindType Specifies whether the account is a user or a group or both.

Use accountFindType when it is being used as an input to a "query"
SOAP function (for example, as a parameter in calling getAccounts()):

0 = find a user using name or GUID exact match

1 = find a catalog group using name or GUID exact match

2 = find a application role using name or GUID exact match

3 = find a user OR Catalog group OR application roles using name or
GUID exact match

Note the following information for advanced use of this field. If
accountFindType is greater than or equal to 4, the system treats the
Name or GUID as a pattern.

4 = find all users using name or GUID pattern match

5 = find all catalog groups using name or GUID pattern match

6 = find all application roles using name or GUID pattern match

7 = find all users AND webcat groups AND application roles using name
or GUID pattern match

Using this field in this way can be slow, and result in the system
returning many records. When receiving an Account, both Name and
GUID are set.

String GUID Specifies the unique ID which identifies the account.

ACL Structure
Use the ACL structure to hold the access control list (ACL).

The ACL structure is used in the SecurityService Service.

ACL Structure Fields

Fields Description

AccessControlToken[]
accessControlTokens

Specifies the full list of permissions. For more information, see
AccessControlToken Structure.

String dummy For internal purposes.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-65

Action Structure
Use the Action structure to hold information about the action attached to the scorecard.

The Action structure is used in the ActionLinks Structure.

Action Structure Fields

Fields Description

String Path Specifies the catalog path to the BI content that is the target of the
Action (only appears when ActionLink is not a "BI Content" type).

String ActionName Specifies the catalog object name of the action.

String ClassName Specifies the java class to be called by an EJB Action.

String ClassPath Specifies the Java path containing the jar.

String AddnClassPath Specifies additional class path if the jar is not in the specified path.

ParameterDocument[]
ActionParameters

Specifies an array of ParameterDocument objects. A
ParameterDocument is a JavaScript object defining a single action
parameter. For more information, see ParameterDocument Structure.

String ActionType Specifies the type of action (not all action types are available, for
example, depending on system setup, privileges):

WebServiceActionType
JavaActionType
OldJavaActionType
URLActionType
InvokeURLActionType
ScriptActionType
ServerScriptActionType
NavToBIActionType
NavToEBSActionType
NavToEPMActionType
WorkflowActionType
NavToCRMActionType
ADFContextEventActionType

String WebServerRegistry Specifies the individual web service details that the action will invoke.

String WebService Specifies the individual web service details that the action will invoke.

String WebOperation Specifies the individual web service details that the action will invoke.

ActionLinks Structure
Use the ActionLinks structure to reference valid action links.

The ActionLinks structure is used in the ValidActionLinks Structure.

ActionLinks Structure Fields

Fields Description

String ActionPath Specifies the catalog path to the BI content that is the target of the
ActionLink (only appears when the ActionLink is a "BI Content" type of
Action Link).

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-66

Fields Description

String Text Specifies the text that is shown to the user that they click on to invoke
the Action.

Action[] Action Specifies the Action details (only appears when the ActionLink is not a
"BI Content" type). For more information, see Action Structure.

AnalysisExportExecutionOptions Structure
Use the AnalysisExportExecutionOptions structure to specify the execution options when
exporting an analysis.

The AnalysisExportExecutionOptions structure is used in the AnalysisExportViewsService
Service.

AnalysisExportExecutionOptions Structure Fields

Fields Description

boolean async If set to TRUE, then asynchronous analysis export is enabled. If set to
FALSE, asynchronous analysis export is disabled.

boolean useMtom If set to TRUE, then MTOM is used to encode the content returned by
the SOAP message.

boolean refresh If set to TRUE, then the server re-submits the query to refresh the data.
If set to FALSE, then Oracle Analytics uses data in the cache.

AnalysisExportResult Structure
Use the AnalysisExportResult structure to specify the execution options when exporting the
result.

The AnalysisExportResult structure is used in the AnalysisExportViewsService Service.

AnalysisExportResult Structure Fields

Fields Description

viewData Specifies the returned content of the view data in the format specified in
the AnalysisExportOutputFormat.

String mimeType Specifies mime type of view data returned.

String queryID Specifies query ID of the request. You use this as a parameter in
completeAnalysisExport method.

completeAnalysisExport Specifies the status of the download request. The values are:

• String InProgress - Specifies that download is in progress
• String Error - Specifies that download request resulted in Error.
• String Done - Specifies that download is done.

ArrayofGUIDS Structure
Use the ArrayofGUIDS structure to specify a list of GUIDs representing a saved result set.

The ArrayofGUIDS structure is used in the SecurityService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-67

ArrayofGUIDS Structure Fields

Fields Description

String[] guid Specifies a list of GUIDs representing the saved result set.

AssessmentResult Structure
Use the AssessmentResult structure to contain a single assessment for a particular QDR for a
node in a strategy tree.

The AssessmentResult structure is used in the #unique_457.

AssessmentResult Structure Fields

Fields Description

String ScorecardPath Specifies the Presentation Services catalog path to the folder containing
the scorecard that was assessed.

Variable[] Variables Specifies an array of Variable objects defining the QDR for which the
assessment result is applicable. For more information, see Variable
Structure.

String GUID Specifies the GUID identifying the node of the strategy tree for which this
assessment result is for.

Enumeration Assessment Specifies the status ID for the node or QDR.

Number Assessment Specifies the normalized assessment result for the strategy node. A
number between 0 and 100. The number is not only an integer and so
can include decimal places.

String ObjectContext Specifies the object context representing the instance of the strategy
node.

String ObjectContext Specifies the object context representing the instance of the strategy
node.

Boolean IsAnnotated Specifies the value of a flag indicating if the node is annotated (true) or
not (false).

KPIResultColumn[] KPIResult
Columns

Specifies an array of KPIResultColumn objects defining the KPI results,
if the node is a KPI node. For more information, see KPIResultColumn
Structure.

Boolean IsOverridden Specifies whether the node is overridden (true) or not (false).

ValidActionLink[] ValidActionLi
nks

Specifies an array of link elements defining the actions links for the
current evaluated status. For more information, see ValidActionLinks
Structure.

AuthResult Structure
Use the AuthResult structure to specify authorization details during an authentication.

The AuthResult structure is used in the SecurityService Service (in the impersonateex()
Method and logonex() Method).

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-68

AuthResult Structure Fields

Fields Description

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

boolean authCompleted If set to TRUE, then the authorization is complete. If set to FALSE, then
the authorization process is in progress and the logonex or
impersonatex process should be called again.

CatalogItemsFilter Structure
Use the CatalogItemsFilter structure to filter catalog items and changes based on the path and
timestamp.

CatalogItemsFilter Structure Fields

Fields Description

String[] items Specifies the list of folders and their descendants to include in the filter.
If this value is null, then all nodes in the catalog are included.

Calendar from Specifies the time period on which to filter. Only items and changes with
timestamps within that period satisfy the filter. Either or both of those
fields could be null, in which case corresponding bound is considered
not set.

Calendar to Specifies the time period on which to filter. Only items and changes with
timestamps within that period satisfy the filter (from <= timestamp <= to).
Either or both of those fields could be null, in which case the
corresponding bound is considered not set.

CatalogObject Structure
Use the CatalogObject structure to retrieve or specify all information for a particular catalog
object in a single method.

The CatalogObject structure is used in the WebCatalogService Service.

CatalogObject Structure Fields

Fields Description

String catalogObject Specifies an XML representation of the object.

catalogObjectBytes Specifies the returned content of the catalog object as string or bytes.
What you specify in this field is determined by the readObjects method.

ItemInfo itemInfo Specifies catalog information about the object, supplied in the ItemInfo
common structure.

For information about the ItemInfo structure, see ItemInfo Structure.

ErrorInfo errorInfo Specifies the level of error information to be supplied as specified by the
ErrorDetails argument in the readObjects method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-69

CausalLinkage Structure
Use the CausalLinkage structure to describe a single causal linkage.

The CausalLinkage structure is used in the #unique_458.

CausalLinkage Structure Fields

Fields Description

String ID Specifies the GUID of this causal linkage.

String causeNodeID Specifies the GUID of the strategy or initiative node at the cause end of
the link.

String effectNodeID Specifies the GUID of the strategy or initiative node at the "effect" end of
the link.

String Strength Specifies the strength of the relationship. Defined using one of the
values in the Strength Enumeration.

String Interaction Specifies the proportionality of the relationship. Defined using one of the
statics in the Interaction Enumeration.

String Operation Specifies what you want to do with the specified CausalLinkage. Can be
one of the values ADD, UPDATE or DELETE.

Strength Enumeration
The Strength enumeration describes values of the various supported link strengths.

The Strength enumeration is used in the CausalLinkage Structure.

Strength Enumeration Values

Values Description

String STRONG Used to identify strong relationships.

String MIDDLE Used to identify normal relationships.

String WEAK Used to identify weak relationships.

Interaction Enumeration
The Interaction enumeration describes values of the various supported link strengths.

The Interaction enumeration is used in the CausalLinkage Structure.

Interaction Enumeration Values

Values Description

String POSITIVE Used to identify directly proportional relationships.

String NEGATIVE Used to identify inversely proportional relationships.

Operation Enumeration
The Operation enumeration describes values of the operation.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-70

The Operation enumeration is used in the CausalLinkage Structure.

Operation Enumeration Values

Values Description

String ADD Used to identify the operation to apply.

String UPDATE Used to identify the operation to apply.

String DELETE Used to identify the operation to apply.

CSPWhitelist Structure
Use the CSPWhitelist structure to specify the content security policy for the Oracle Analytics
instance.

The CSPWhitelist structure is used in the getCSPDefaultAllowList() Method and
getCSPWhitelist() Method.

CSPWhitelist Structure Fields

Fields Description

String cspWhitelistXml Specifies a character string that contains a representation of the content
security policy.

String sessionID Specifies the session ID, which is usually returned by the logon method.
If the SOAP client engine can handle HTTP cookies, you can omit the
session ID or set it to null.

CSPWhitelistXml Structure
Use the CSPWhitelistXml structure to specify the content security policy for the Oracle
Analytics instance.

The CSPWhitelistXml structure is used in the updateCSPWhitelist() Method.

CSPWhitelist Structure Fields

Fields Description

String Directive type Specifies the content security policy type.

Values:

• “all”
• “img-src”
• “frame-src”
• “script-src”
• “font-src”
• “style-src”
• “media-src”
• “connect-src”
• “frame-ancestors”
• “form-action”

String value Specifies the domain to be added to the specified content security policy.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-71

DimensionContext Structure
Use the DimensionContext structure to retrieve dimensions.

The DimensionContext structure is used in the ValidActionLinks Structure.

DimensionContext Structure Fields

Fields Description

String name Specifies the name of a dimension.

String value Specifies the value(s) that the dimension has been pinned to.

ErrorInfo Structure
Use the ErrorInfo structure to retrieve error information during Presentation Catalog Service
method invocations.

The ErrorInfo structure is used in the WebCatalogService Service.

ErrorInfo Structure Fields

Fields Description

String code Specifies the error code to display.

String context Specifies the service and method in which the error occurred.

String details Specifies detailed information about the error.

String message Specifies a human-readable description of the error.

FavoriteItem Structure
Use the FavoriteItem structure to retrieve favorite item information during Presentation Catalog
Service method invocations.

The FavoriteItem structure is used in the UserPersonalizationService Service.

FavoriteItem Structure Fields

Fields Description

String name Specifies the favorite or category name.

String path Specifies the path of catalog object in case of favorite item or category
path in favorite manager in case category object.

UnsignedShort type Specifies the type stored in FavoriteItem object:

FavoriteItem = 0

Category Object = 1

ItemInfo itemInfo Specifies catalog information about the object, supplied in the ItemInfo
common structure.

Valid and stores the actual catalog object if type is 0. Not valid if type is
1.

For information about the ItemInfo structure, see ItemInfo Structure.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-72

Fields Description

FavoriteItem favoriteItem A list of sub items in case type is 1 otherwise not a valid value.

ForgetAccount Structure
Use the ForgetAccount structure to hold the name and type of an account that will be removed
from the catalog.

The ForgetAccount structure is used in the SecurityService Service.

ForgetAccount Structure Fields

Fields Description

String accountName Specifies account name.

int accountType Specifies the account type.

ForgetAccountResult Structure
Use the ForgetAccountResult structure to hold the status of the delete accounts operation for
each account.

The ForgetAccountResult structure is used in the SecurityService Service.

ForgetAccountResult Structure Fields

Fields Description

String accountName Specifies the name of the account.

int accountType Specifies the type of the account

int Status Specifies the status of the overall delete accounts operation. The status
values are:

• 0- Success
• 1- Error

ForgetAccountsStatus Structure
Use the ForgetAccountsStatus structure to hold the overall status of the delete accounts
operation.

The ForgetAccountsStatus structure is used in the SecurityService Service.

ForgetAccountsStatus Structure Fields

Fields Description

int Status Specifies the status of the overall delete accounts operation. The status
values are:

• 0- Success
• 1- Error

ForgetAccountResult[]
accountsResult

Specifies the account name and account type with Success or Fail
message for each account.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-73

GetSubItemsParams Structure
Use the GetSubItemsParams structure to contain optional parameters used in a getSubItems
method.

The GetSubItemsParams structure is used in the WebCatalogService Service.

GetSubItemsParams Structure Fields

Fields Descriptions

GetSubItemsFilter filter For internal use only.

boolean includeACL If set to TRUE, then ACL information is included in the resulting ItemInfo
structures.

int withPermission and
int withPermissionMask

Specifies that you want to filter the resulting items collection by access
level. The only items included in the result are those for which the
following expression is true:

(itemPermission & withPermissionMask) = (withPermission &
withPermissionMask)

where itemPermission is a combination of permission flags for the
current catalog item.

int withAttributes and

int withAttributesMask

Specifies that you want to filter the resulting items collection by attribute
flags. The only items included in the result are those for which the
following expression is true:

(itemAttributes & withAttributesMask) = (withAttributes &
withAttributesMask)

Where itemAttributes is a combination of attribute flags for the
current catalog item.

ItemInfo Structure
Use the ItemInfo structure to contain catalog information about an object.

The ItemInfo structure is used in the WebCatalogService Service and #unique_458.

ItemInfo Structure Fields

Fields Description

String path Specifies the path to the object in the catalog. For example, /users/
jchan/analyses/.

ItemInfoType type Specifies a character string that indicates the type. Valid values are:

• Folder
• Link
• Missing
• NoAccess
• Object

String caption Specifies the localized name of the object in the catalog. For example, in
French, 'My Folders' is displayed as 'Mes Dossiers'.

int attributes Specifies a combination of the following flags:

1 = read only 2 = archive 4 = hidden 8 = system

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-74

Fields Description

Calendar lastModified Specifies the date and time that the object was last modified, in
Calendar format.

Calendar created Specifies the date and time that the object was created (saved) in the
catalog, in Calendar format.

Calendar accessed Specifies the data and time that the object was last accessed by a user,
in Calendar format.

String signature Specifies the signature of the catalog object.

NameValuePair[]
itemProperties

Specifies an array of object properties.

ACL aclXX Specifies the Access Control List for this catalog item.

Account owner Specifies the owner of the object.

String targetPath If the ItemInfoType field is set to "Link," this field specifies the target path
for the object.

Job Structure
Use the Job structure to contain information about jobs.

The Job structure is used in the SchedulerService Service .

Some Job properties are optional, and may not be present if not relevant to the Job (for
example, depending on the Job Trigger type).

Job Structure Fields

Fields Description

Job Reference A unique reference for the job associated with an instance.

Name A short descriptive name for the job.

Description The text description of the job that describes its actions to end users.

User ID (author ID) The user ID that created the job.

Script Type The type of script used to run the job (VBScript, JScript, Java, or
NQCmd).

Script ID (Path of Agent) The path to the script that runs the job.

Use to call the WebCatalogService API to return the agent definition. For
more information, see Example - Finding and Displaying all Agents in
the WebCatalogService.

Max Run Time (in ms) The maximum time in milliseconds that the job can run.

Running Instances Count The total number of currently running instances of this job.

Max Concurrent Instances The maximum number of concurrent running instances. For an unlimited
number of concurrent instances, set this value to zero.

Time Zone The time zone that is used to execute the job. If missing the timezone is
assumed to be the scheduler local timezone.

Last Run Date Time The last date and time the job started to execute.

Next Run Date Time The next date and time the job will execute.

Begin Date The date when the first recurrent interval runs.

Start Time The time the job starts.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-75

Fields Description

End Date The date when the first recurrent interval ends.

End Time The time the job completes.

Interval Minutes The number of minutes between subsequent executions of a job during
the recurrent interval.

Disabled Specifies that a job script does not execute when the trigger expires.

Delete Job When Done Specifies whether to delete a job after it completes.

Execute When Missed Specifies whether to execute a job if running it has failed to occur at the
scheduled time.

Job Trigger (with details
depending on type)

Specifies what triggers a job including details that depend on job type.

A Job Trigger can be one of the following values:

RunNever, RunOnce, RunDaily, RunWeekly, RunMonthlyByDate,
RunMonthlyByDayOfWeek.

JobFilter Structure
Use the JobFilter structure to filter job lists.

The JobFilter structure is used in the SchedulerService Service .

JobFilter Structure Fields

Fields Description

List of User IDs (Authors) (Optional) If no User IDs are specified then all JobReferences are
returned.

JobInstance Structure
Use the JobInstance structure to contain information about a job instance corresponding to a
running, completed, or cancelled job.

The JobInstance structure is used in the SchedulerService Service .

JobInstance Structure Fields

Fields Description

Job Reference A unique reference for the job associated with the job instance.

Job Instance Reference A unique reference for the job instance.

Job Instance Status The current status of the job instance. Valid values are:

• Completed
• Running
• Failed
• Cancelled
• TimedOut
• Warning

Begin Date Time The day and time that the scheduler initiated the job instance.

End Date Time The day and time that the job scheduler completed the job instance.

Successful Deliveries The number of successful deliveries for this job instance.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-76

Fields Description

Error Message The error message, warning, or general message about the job instance
execution.

JobInstanceFilter Structure
Use the JobInstanceFilter structure to filter job instance lists.

The JobInstanceFilter structure is used in the SchedulerService Service .

JobInstanceFilter Structure Fields

Fields Description

List of JobReference
(Authors)

(Mandatory) If no Job References are specified then all JobReferences
are returned.

Job Instance Status (Optional)

The current status of the Job instance. Valid values are:

• Completed
• Running
• Failed
• Cancelled
• TimedOut
• Warning

JobInstanceStatus Enumeration
Use the JobInstanceStatus enumeration to define job instance state.

The JobInstanceStatus enumeration is used in the SchedulerService Service .

JobInstanceStatus Enumeration Values

Values Description

Job Instance State Job instance state is represented using this enumeration. Valid states
are:

• Completed
• Running
• Failed
• Cancelled
• TimedOut
• Warning

JobReferenceAndInstanceReferences Structure
Use the JobReferenceAndInstanceReferences structure to group a job and its associated
instances.

The JobReferenceAndInstanceReferences structure is important when a list of job references
are specified as the selection criteria for job instance listing. This structure is used in the
SchedulerService Service .

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-77

JobReferenceAndInstanceReferences Structure Fields

Fields Description

Job Reference (Mandatory) A unique reference for the job associated with an instance.

List of Job Instance
References

(Mandatory) A list of job instances.

KPIColumnName Enumeration
The KPIColumnName enumeration specifies a list of valid values for the KPIColumnName
field.

The KPIColumnName enumeration is used in the #unique_462 and is used by the
KPIResultColumn Structure.

KPIColumnName Enumeration Values

Values Description

String NAME The column name.

String STATUS The status column name.

String ACTUAL_VALUE The actual values column name.

String TARGET_VALUE The target value column name.

String VARIANCE The variance column name.

String VARIANCE_PERCENT The variance percent column name.

String CHANGE The change column name.

String CHANGE_PERCENT The change percent column name.

String TREND The trend column name.

String OBJECT_CONTEXT The object context column name.

String STATUS_INFO The status info column name.

String OWNER The owner column name.

String DIMENSION_CONTEX
T

The dimension context column name.

String CUSTOM_COLUMN1 A custom column name.

String CUSTOM_COLUMN2 A custom column name.

String CUSTOM_COLUMN5 A custom column name.

KPIDimensionPinning Structure
Use the KPIDimensionPinning structure to contain the metadata for an individual dimension
pinning used when defining the QDR for a KPI when requesting assessments.

The KPIDimensionPinning structure is used in the KPIRequest Structure.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-78

KPIDimensionPinning Structure Fields

Fields Description

String DimensionID Specifies the ID of the dimension that you want to pin to a specific value
(or values).

String Value Specifies the value that you want to pin the specified dimension to.

String VariableType Specifies the type of variable containing the value you want to use to pin
the specified dimension.

String VariableName (Optional) Specifies the name of the variable containing the value you
want to use to pin the specified dimension (may be left null if
VariableType is NONE).

String LevelID (Optional) Specifies the ID of the dimension level the specified value
belongs to (may be left null if the dimension is not a Level or Value
Hierarchy).

KPIRequest Structure
Use the KPIRequest structure to contain the information required to request assessment
values for the specified KPI.

The KPIRequest structure is used in the #unique_462.

KPIRequest Structure Fields

Fields Description

String Path Specifies the KPI's Presentation Services catalog path.

KPIDimensionPinning[] KPIDi
mensionPinnings

Specifies an array of dimension pinnings that define the filters to be
applied to the query.

KPIResultColumn Structure
Use the KPIResultColumn structure to contain a single assessment for a particular QDR for a
node in a strategy tree.

The KPIResultColumn structure is used in the #unique_457.

KPIResultColumn Structure Fields

Fields Description

String Name Specifies the column name that the cell belongs to.

String Type Specifies the cell's data type.

String Value Specifies the cell's value.

String FormattedValue Specifies the formatted value.

String ObjectContext Specifies the QDR that was applied to the query that returned this cell.

Boolean IsAnnotated Specifies whether the cell has been annotated (true) or not (false).

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-79

MRUItem Structure
Use the MRUItem structure to retrieve most recently used (MRU) item information during
Presentation Catalog Service method invocations.

The MRUItem structure is used in the UserPersonalizationService Service.

MRUItem Structure Fields

Fields Description

String catalogPath Specifies the catalog path for the recent catalog object.

Boolean isFavorite Specifies if the MRU item is a favorite item as well.

ItemInfo itemInfo Specifies catalog information about the object, supplied in the ItemInfo
common structure.

NameValuePair Structure
Use the NameValuePair structure to denote named properties, such as COLOR=RED.

The NameValuePair structure is used in the WebCatalogService Service.

NameValuePair Structure Fields

Fields Description

String name Specifies a character string that contains the name of the property, such
as COLOR.

String value Specifies a character string that contains the value, such as RED.

NodeInfo Structure
Use the NodeInfo structure to contain the information that identifies a single node.

The NodeInfo structure is used in the #unique_457.

NodeInfo Structure Fields

Fields Description

String NodeType Specifies the type of node.

String NodeID Specifies the node's GUID.

NodeTypes Enumeration
This enumeration defines the values for the different types of nodes.

This enumeration is used in the NodeInfo Structure.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-80

NodeTypes Enumeration Values

Values Description

String STRATEGY_
NODE

Specifies the node belongs to a strategy tree.

String INITIATIVE_
NODE

Specifies the node belongs to an initiative tree.

ReportHierarchicalColumn Structure
Use the ReportHierarchicalColumn structure to return column properties for a hierarchical
column used in an analysis.

The ReportHierarchicalColumn structure is used in ReportEditingService Service.

Note:

System wide default column properties that apply to any of the report columns are
returned in the report column properties.

ReportHierarchicalColumn Structure Fields

Fields Description

String ID Specifies the column identifier of the report column

String tableHeading Specifies the table heading of the report column

String columnHeading Specifies the column heading of the report column

Boolean hidden If set to TRUE, the column is hidden. If set to FALSE, the column is
displayed.

String subjectArea Specifies the subject area of the report column

String tableName Specifies the table name of the report column

String hierarchyID Specifies the hierarchy of the report column

String dimensionID Specifies the dimension of the report column

PathMap Structure
Use the PathMap structure to specify the location to which you want to copy the data included
in the export method.

PathMap Structure Fields

Fields Description

PathMapEntry pathMapEntrie
s

Specifies the location to which you want to copy the data included in the
export method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-81

ParameterDocument Structure
Use the ParameterDocument structure to model a parameter, as used by the Action
framework.

The ParameterDocument structure is used in the Action Structure.

ParameterDocument Structure Fields

Fields Description

String Name Specifies the name (title) of the parameter.

String Prompt Specifies the prompt displayed to the user for this parameter.

String Description Specifies the description of the parameter document (sometimes
displayed as a tooltip).

String ParameterType Specifies the datatype of the parameter which should be one of the
following:

string
integer
long
float
double
short
decimal
boolean
byte
date
dateTime
time
document

Array[] ParameterValues Specifies an array of parameter value objects. This could be an empty
array, or an array with one or more parameter values (see
MultiValuesAllowed).

String ValueFixed Specifies whether the parameter values are fixed for this parameter
(cannot be overridden). Values are 'true' or 'false'.

String Order Specifies the particular order of parameters in which the owning
documents want to keep them.

String MultiValuesAllowed Specifies if the parameter supports multiple values. Values are 'true' or
'false'.

String Mandatory Specifies whether user entry of a value is mandatory.Values are 'true' or
'false'.

ParameterValue Structure
Use the ParameterValue structure to model a parameter value, as used by the
ParameterDocument structure.

A ParameterDocument owns an array of zero or more of these. The ParameterValue structure
is used in the ParameterDocument Structure.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-82

ParameterValue Structure Fields

Fields Description

String Value Specifies the value. Defaults to an empty string.

String ValueMapping Specifies the type of parameter value, which should be one of the
following:

value
session
repository
presentation
colrequest
request
column
catalog
date
time
dateTime

String AltDisplayValue Specifies an alternative display value, for when the actual value is a
code.

Prompt Structures
Use the Prompt structures to specify the prompts in the getPromptElements Methods of the
ReportEditingService Service.

Prompt structures:

• PromptsObjectModel Structure

• PromptCollectionRunTimeInfo Structure

• PromptStepObjectModel Structure

• PromptStepRunTimeInfo Structure

• IndividualPromptObjectModel Structure

• IndividualPromptRunTimeInfoLimitedByInfo Structure

• IndividualPromptRunTimeInfo Structure

• IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo Structure

• IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo Structure

• IndividualPromptRunTimeInfoDataTypeHierarchyLevels Structure

• IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels Structure

• IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure

• IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo Structure

• IndividualPromptRunTimeInfoDataType Structure

• IndividualPromptRunTimeInfoSingleValueType Structure

• IndividualPromptRunTimeInfoValuesType Structure

• IndividualPromptRunTimeInfoCurrentValues Structure

• IndividualPromptRunTimeInfoAvailableOptions Structure

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-83

• IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure

• IndividualPromptRunTimeInfoLimitedByPromptReference Structure

• IndividualPromptRunTimeInfoLimitedByPromptRefGroups Structure

PromptsObjectModel Structure
Use the PromptsObjectModel structure to specify the object model of the prompt.

The PromptsObjectModel structure is used in the getPromptElements() Method.

PromptsObjectModel Structure Fields

Fields Description

String name Specifies the name of the prompt.

String description Specifies the description of the prompt.

String scope Specifies the scope of the prompt.

String subjectArea Specifies the subject area of the prompt.

String layout Specifies the layout of the prompt.

PromptCollectionRunTimeInfo
runTimeInfo

Specifies the run time information of the prompt collection.

PromptStepObjectModel
promptStepObj

Specifies the object model of the prompt state.

PromptCollectionRunTimeInfo Structure
Use the PromptCollectionRunTimeInfo structure to specify the run time information of the
prompt collection.

The PromptCollectionRunTimeInfo structure is used in the getPromptElements() Method.

PromptCollectionRunTimeInfo Structure Fields

Fields Description

String collectionID Specifies the collection ID of the prompt.

String viewStatePath Specifies the view state path of the prompt.

Int currentStep Specifies the current step of the prompt.

Boolean reloadInline Specifies whether to reload the prompt inline (true) or not (false).

Boolean
supportAutoComplete

Specifies whether the prompt auto completes (true) or not (false).

Boolean showReturnLink Specifies whether the prompt displays a return link (true) or not (false).

String currentAction Specifies the current action of the prompt.

PromptStepObjectModel Structure
Use the PromptStepObjectModel structure to specify the step object model of the prompt.

The PromptStepObjectModel structure is used in the getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-84

PromptStepObjectModel Structure Fields

Fields Description

String title Specifies the title of the prompt.

String instruction Specifies the instruction of the prompt.

String buttonsPosition Specifies the position of the button in the prompt.

String labelPosition Specifies the position of the label in the prompt.

String wrapLabelText Specifies the wrap label text in the prompt.

String customWidthUsage Specifies custom width usage of the prompt.

String customWidthWidth Specifies custom width of the prompt.

String setWidthToAllPrompts Specifies whether width applies to all prompts.

Boolean autoApplyPrompt Specifies whether the prompt is applied automatically (true) or not
(false).

Boolean showResetButton Specifies whether the prompt displays a Reset button (true) or not
(false).

PromptStepRunTimeInfo
runTimeInfo (nillable)

Specifies the run time information for the prompt step. This can be null.

IndividualPromptObjectModel[
] promptObj

Species an array of prompt object models.

PromptStepRunTimeInfo Structure
Use the PromptStepRunTimeInfo structure to specify the step run time information of the
prompt.

The PromptStepRunTimeInfo structure is used in the getPromptElements() Method.

PromptStepRunTimeInfo Structure Fields

Fields Description

Boolean applyToAllSteps Specifies whether the prompt applies to all steps (true) or not (false).

Boolean autoApplyPrompt Specifies whether the prompt is applied automatically (true) or not
(false).

Boolean showResetButton Specifies whether the prompt displays the Reset button(true) or not
(false).

Int
remaininglRequiredPromptsO
nSubsequentSteps

Specifies the required prompts on subsequent steps.

Int firstPromptStartIndex Specifies the index of the first prompt.

IndividualPromptObjectModel Structure
Use the IndividualPromptObjectModel structure to specify the prompt object model of the
prompt.

The IndividualPromptObjectModel structure is used in the getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-85

IndividualPromptObjectModel Structure Fields

Fields Description

String label Specifies the label of the prompt.

String description Specifies the description of the prompt.

String type Specifies the type of prompt.

String subjectArea Specifies the subject area of the prompt.

Boolean
placedOnNewColumn

Specifies whether the prompt is applied on a new column (true) or not
(false).

Boolean required Specifies whether the prompt is required (true) or not (false).

String formulaExprString Specifies the formula expression of the prompt.

String promptUIControlType Specifies the user interface control type of the prompt.

String promptOperator Specifies the prompt operator.

String customWidthUsage Specifies the custom width usage of the prompt.

String customWidthWidth Specifies the custom width of the prompt.

String setPromptVariableType Specifies the prompt variable type of the prompt.

String setVariableName Specifies the variable name of the prompt.

IndividualPromptRunTimeInfo
LimitedByInfo limitedByInfo

Specifies the limited by information of a prompt.

IndividualPromptRunTimeInfo
runTimeInfo

Specifies the run time information of a prompt.

IndividualPromptRunTimeInfoLimitedByInfo Structure
Use the IndividualPromptRunTimeInfoLimitedByInfo structure to specify the run time limited
information of the prompt.

The IndividualPromptRunTimeInfoLimitedByInfo structure is used in the getPromptElements()
Method.

IndividualPromptRunTimeInfoLimitedByInfo Structure Fields

Fields Description

String limitedByType Specifies whether the prompt is limited by other prompt types, such as
none, allPrompts, and specificPrompts.

Boolean
isLimitedByNotApplied

Specifies whether constraint is applied to the prompt (true) or not (false).

IndividualPromptRunTimeInfo
LimitedByPromptRefGroups
specificPrompts

Specifies prompts that limit this prompt.

IndividualPromptRunTimeInfo Structure
Use the IndividualPromptRunTimeInfo structure to specify the run time information of the
prompt.

The IndividualPromptRunTimeInfo structure is used in the getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-86

IndividualPromptRunTimeInfo Structure Fields

Fields Description

Int promptID Specifies the prompt ID.

Boolean allowUserTypeValues Specifies whether the user is allowed to type the values of the prompt
(true) or not (false).

Boolean allowAutoComplete Specifies whether the prompt auto completes (true) or not (false).

Boolean multiSelect Specifies whether the prompt allows multiple selections (true) or not
(false).

String showSearch Specifies to show the search of the prompt.

IndividualPromptRunTimeInfo
DataType dataType

Specifies the data type information of a prompt. For more information,
see IndividualPromptRunTimeInfoDataType Structure.

IndividualPromptRunTimeInfo
CurrentValues currentValues

Specifies the current values of a prompt. For more information, see
IndividualPromptRunTimeInfoCurrentValues Structure.

IndividualPromptRunTimeInfo
AvailableOptions
availableOptions

Specifies the available options for a prompt. For more information, see
IndividualPromptRunTimeInfoAvailableOptions Structure.

IndividualPromptRunTimeInfo
AdditionalAttributes attributes

Specifies the additional attributes of a prompt. For more information, see
IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure.

IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo structure to specify the
SQL information of the hierarchy level of the display column of the prompt.

The IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo Structure Fields

Fields Description

String displayFormula Specifies the display formula of the prompt.

String sqlFormula Specifies the SQL formula of the prompt.

String dataType Specifies the data type of the prompt.

String category Specifies the category of the prompt.

String primaryType Specifies the primary type of the prompt.

Boolean nullable Specifies whether the prompt displays a nullable value (true) or not
(false).

Boolean isMeasure If set to TRUE, the prompt displays a measure. If set to FALSE, the
prompt displays an attribute.

String aggType Specifies the aggregate type of the prompt.

String aggRule Species the aggregate rule of the prompt.

IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo structure to specify the
level information of a prompt based on a hierarchy column.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-87

The IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo Structure Fields

Fields Description

String levelID Specifies the level ID of the prompt.

String displayName Specifies the display name of the prompt.

String displayFormula Specifies the display formula of the prompt.

String sqlFormula Specifies the SQL formula of the prompt.

Boolean isDoubleColumn Specifies whether the prompt displays a double column (true) or not
(false).

IndividualPromptRunTimeInfo
DataTypeHierarchyLevelSQLI
nfo keyColumnInfo

Specifies the SQL information of the hierarchy level of the key column of
the prompt if the prompt column is a hierarchy level.

IndividualPromptRunTimeInfo
DataTypeHierarchyLevelSQLI
nfo displayColumnInfo

Specifies the SQL information of the hierarchy level of the display
column of the prompt if the prompt column is a hierarchy level.

IndividualPromptRunTimeInfoDataTypeHierarchyLevels Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyLevels structure to specify the levels
of a prompt based on a hierarchy column.

The IndividualPromptRunTimeInfoDataTypeHierarchyLevels structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyLevels Structure Fields

Fields Description

IndividualPromptRunTimeInfo
DataTypeHierarchyLevelInfo []
levelInfo

Specifies an array of level information of a prompt based on a hierarchy
column.

IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels structure to specify
the metadata/formula information of a prompt based on a hierarchy column.

The IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels Structure Fields

Fields Description

String subjectArea Specifies the subject area of the prompt.

String dimensionID Specifies the dimension of the prompt.

String tableName Specifies the table name of the prompt.

String hierarchyID Specifies the hierarchy ID of the prompt.

String displayName Specifies the display name of the prompt.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-88

Fields Description

String tableDisplayName Specifies the display name of a table in the prompt.

String hierarchyDisplayName Specifies the hierarchy display name of the prompt.

String sqlFormulaIn2Parts Specifies the two part SQL formula of the prompt.

String
sqlFormulaDisplaySubjectAre
aPart

Specifies the subject area part of the SQL formula.

IndividualPromptRunTimeInfo
DataTypeHierarchyLevels
levels

Specifies the levels of a prompt based on a hierarchy column.

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyInfo structure to specify the hierarchy
information of a prompt based on a hierarchy column.

The IndividualPromptRunTimeInfoDataTypeHierarchyInfo structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure Fields

Fields Description

String hierarchyID Specifies the hierarchy ID of the prompt.

String dimensionID Specifies the dimension ID of the prompt.

String tableName Specifies the table name of the prompt.

IndividualPromptRunTimeInfo
DataTypeHierarchyFormulaLe
vels formulaLevels

Specifies the metadata/formula information for a prompt based on a
hierarchy column.

IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo Structure
Use the IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo structure to specify the
information of a prompt based on a double column.

The IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo Structure Fields

Fields Description

String codeColumnFormula Specifies the code column formula of the prompt.

String codeColumnCategory Specifies the code column category of the prompt.

String
codeColumnPrimaryType

Specifies the code of the column primary type of the prompt.

String
codeColumnDBPrimaryType

Specifies the code of the database primary type of the prompt.

Boolean
enableDoubleColumnInput

Specifies whether the prompt enables input in a double column (true) or
not (false).

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-89

Fields Description

String codeColumnLabel
(nillable)

Specifies the label of the code column for the prompt.

Boolean
selectedByCodeValue

Specifies whether the prompt input is in code value (true) or not (false).

IndividualPromptRunTimeInfoDataType Structure
Use the IndividualPromptRunTimeInfoDataType structure to specify the data type information
of a prompt.

The IndividualPromptRunTimeInfoDataType structure is used in the getPromptElements()
Method.

IndividualPromptRunTimeInfoDataType Structure Fields

Fields Description

String subjectArea Specifies the subject area for the prompt.

String displayColumnFormula Specifies the column formula for the prompt.

String
displayColumnCategory

Specifies the column category for the prompt.

String
displayColumnPrimaryType

Specifies the column primary type for the prompt.

String
displayColumnDBPrimaryTyp
e

Specifies the column data base primary type for the prompt.

Boolean isMeasureColumn If set to TRUE, the report column is a measure. If set to FALSE, the
report column is an attribute.

String displayTimeZone Specifies the time zone for the prompt.

Int dataTimeZoneOffset Specifies the data time zone offset for the prompt.

Int displayToDataOffset Specifies the data offset for the prompt.

String promptSourceDataType Specifies the source data type for the prompt display column.

Boolean isHierarchy Specifies whether the prompt column is a hierarchy column (true) or not
(false).

IndividualPromptRunTimeInfo
DataTypeHierarchyInfo
hierarchyInfo (nillable)

Specifies the hierarchy information of a prompt based on a hierarchy
column. This argument can be null.

Boolean
isDoubleColumnInput

Specifies whether the prompt input is in a double column (true) or not
(false).

IndividualPromptRunTimeInfo
DataTypeDoubleColumnInfo
codeColumnInfo (nillable)

Specifies the code column information of a prompt based on a double
column. This argument can be null.

IndividualPromptRunTimeInfoSingleValueType Structure
Use the IndividualPromptRunTimeInfoSingleValueType structure to specify a single value for
the prompt.

The IndividualPromptRunTimeInfoSingleValueType structure is used in the
getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-90

IndividualPromptRunTimeInfoSingleValueType Structure Fields

Fields Description

String eType Specifies the type of value in the structure. For example, SQL,
customGroup, hierarchyLevels and so on.

String caption Specifies the caption of the prompt.

String codeValue Specifies the code value of the prompt.

IndividualPromptRunTimeInfoValuesType Structure
Use the IndividualPromptRunTimeInfoValuesType structure to specify all values that are used
by the prompt.

The IndividualPromptRunTimeInfoValuesType structure is used in the getPromptElements()
Method.

IndividualPromptRunTimeInfoValuesType Structure Fields

Fields Description

IndividualPromptRunTimeInfo
SingleValueType[] value

Specifies an array of single values for the prompt.

IndividualPromptRunTimeInfoCurrentValues Structure
Use the IndividualPromptRunTimeInfoCurrentValues structure to specify the current values of a
prompt.

The IndividualPromptRunTimeInfoCurrentValues structure is used in the getPromptElements()
Method.

IndividualPromptRunTimeInfoCurrentValues Structure Fields

Fields Description

String currentOperator Specifies the current operator of the prompt.

Boolean emptyAsAllChoices Specifies whether an empty prompt defaults to all choices (true) or not
(false).

IndividualPromptRunTimeInfo
ValuesType values

Specifies the values for the prompt.

IndividualPromptRunTimeInfoAvailableOptions Structure
Use the IndividualPromptRunTimeInfoAvailableOptions structure to specify the available
options of a prompt.

The IndividualPromptRunTimeInfoAvailableOptions structure is used in the
getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-91

IndividualPromptRunTimeInfoAvailableOptions Structure Fields

Fields Description

Int numOptionsPerPage Specifies the number of options per page.

Int currentPageInOptions Specifies current page number.

Boolean moreOptions Specifies whether the prompt consists of more options (true) or not
(false).

Boolean includeAllChoices Specifies whether the prompt include all choices (true) or not (false).

Boolean
needToPopulateDropDown

Specifies whether the prompt requires you to populate the drop down
(true) or not (false).

String
valueTablePromptSourceType

Specifies the source type for the prompt.

String sql Specifies the SQL for the prompt.

String
runTimeCodeAndDisplayValu
eFormatStr

Specifies the format string for the values of the prompt.

String filterXmlString (nillable) Specifies the xml filter of the prompt.

IndividualPromptRunTimeInfo
ValuesType groupPaths
(nillable)

Specifies the values of the groups that are used by the prompt. This
argument can be null.

IndividualPromptRunTimeInfo
ValuesType populatedOptions
(nillable)

Specifies the populated values that are used by the prompt. This
argument can be null.

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure
Use the IndividualPromptRunTimeInfoDataTypeHierarchyInfo structure to specify the additional
attributes of a prompt.

The IndividualPromptRunTimeInfoDataTypeHierarchyInfo structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure Fields

Fields Description

Int opMinNumValues Specifies the minimum number of values in the prompt.

Int opMaxNumValues Specifies the maximum number of values in the prompt.

IndividualPromptRunTimeInfoLimitedByPromptReference Structure
Use the IndividualPromptRunTimeInfoLimitedByPromptReference structure to specify prompts
that limit this prompt.

The IndividualPromptRunTimeInfoLimitedByPromptReference structure is used in the
getPromptElements() Method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-92

IndividualPromptRunTimeInfoLimitedByPromptReference Structure Fields

Fields Description

Int promptID Specifies the identifier of the prompt.

String formulaExprString Specifies the formula expression of the prompt.

IndividualPromptRunTimeInfoLimitedByPromptRefGroups Structure
Use the IndividualPromptRunTimeInfoLimitedByPromptRefGroups structure to specify prompts
that limit the groups of this prompt.

The IndividualPromptRunTimeInfoLimitedByPromptRefGroups structure is used in the
getPromptElements() Method.

IndividualPromptRunTimeInfoLimitedByPromptRefGroups Structure Fields

Fields Description

IndividualPromptRunTimeInfo
LimitedByPromptReference[]
limitByPrompt

Specifies an array of prompts that limit this prompt.

Privilege Structure
Use the Privilege structure to represent global privileges.

You configure these privileges using the Manage Privileges screen. The Privilege structure is
used in the SecurityService Service.

Privilege Structure Fields

Fields Description

String name Specifies the name of a privilege.

String description Specifies the description of a privilege.

PurgeJobInstancesFilter Structure
Use the PurgeJobInstancesFilter structure when purging job instances.

The PurgeJobInstancesFilter structure is used in the SchedulerService Service .

PurgeJobInstancesFilter Structure Fields

You must choose only one of the two properties.

Fields Description

List of JobReference (Optional) If no Job References are specified then all JobReferences are
returned.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-93

Fields Description

JobInstanceStatus (Optional)

The current status of the Job instance. Valid values are:

• Completed
• Running
• Failed
• Cancelled
• TimedOut
• Warning

QueryResults Structure
Use the QueryResults structure to specify query details during query execution.

The QueryResults structure is used in the XMLViewService Service (in the executeXMLQuery
method).

QueryResults Structure Fields

Fields Description

String rowset Specifies the rowset XML encoded in the string.

String queryID Specifies the unique ID of the query, which can be used in fetchNext
calls.

boolean finished If set to TRUE, then there are no more rows to return. If set to FALSE,
then another fetchNext call is needed to return more rows.

RenameAccount Structure
Use the RenameAccount structure to hold the old name, new name and type of an account
which will be renamed.

The RenameAccount structure is used in the SecurityService Service.

RenameAccount Structure Fields

Fields Description

String oldAccountName Specifies the old name of the account.

String newAccountName Specifies the new name of the account.

int accountType Specifies the account type.

RenameAccountResults Structure
Use the RenameAccountResults structure to hold the status of the rename accounts operation
for each account.

The RenameAccountResults structure is used in the SecurityService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-94

RenameAccountResults Structure Fields

Fields Description

String oldAccountName Specifies the old name of the account.

String newAccountName Specifies the new name of the account.

int accountType Specifies the type of account.

int status Specifies the status of the overall rename accounts operation. The
values are:

• 0-Success
• 1-Error

RenameAccountsStatus Structure
Use the RenameAccountsStatus structure to hold the overall status of the rename accounts
operation.

The RenameAccountsStatus structure is used in the SecurityService Service.

RenameAccountsStatus Structure Fields

Fields Description

int status Specifies the status of the overall rename accounts operation. The
values are:

• 0- Success
• 1- Error

RenameAccountResult[]
accountsResult

Specifies the old name, new name and account type with Success or
Fail message for each account.

ReportADFParameters Structure
Use the ReportADFParameters structure to define report parameters (prompt, filter, or
variable).

The ReportADFParameters structure is used in the ReportEditingService Service.

ReportADFParameters Structure Fields

Table 9-2 ReportADFParameters Structure Fields

Field Description

String name Specifies the formula of the prompt, filter, or variable

String operator Specifies the prompt operator

String type Specifies the type of parameter (filter, prompt, or variable).

String datatype Specifies the SQL datatype of the parameter

String value Specifies the field used for an operator needing two operands. Other
operators have values specified in the ADFParameterValues field.

ADFParameterValues values Specifies the values for this parameter

ADFParameterValues String [] Specifies an array of string values

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-95

ReportHTMLOptions Structure
Use the ReportHTMLOptions structure to define options for displaying results on an HTML
page.

The ReportHTMLOptions structure is used in the HtmlViewService Service.

ReportHTMLOptions Structure Field

Field Description

boolean enableDelayLoading Internal use only. This field is always set to 1, which means that Oracle
Analytics web services is never required to provide results immediately,
and displays a message indicating that it is waiting for results.

String linkMode Specifies whether to display drills or links in the current browser window
or a new browser window.

ReportHTMLLinksMode Enumeration
The ReportHTMLLinksMode enumeration specifies a list of valid values for the
ReportHTMLLinksMode field.

The ReportHTMLLinksMode enumeration is used in the ReportHTMLOptions Structure.

ReportHTMLLinksMode Enumeration Values

Values Description

String InPlace Specifies that drills or links should replace only the content of the current
analysis without changing the rest of the page.

String NewPage Specifies that drills or links should be displayed in a new browser
window.

String SamePage Specifies that drills or links should replace the current browser window.

ReportParams Structure
Use the ReportParams structure to replace existing filters and variables in an analysis.

The ReportParams structure is common to all web services.

ReportParams Structure Fields

Fields Description

String[] filterExpressions Specifies an array of Oracle Analytics web services filter expressions in
the form Object[] filter_expression, filter_expression ...

Variable[] variables Specifies an array of variable values to be set before method execution.
This structure is used in executeXMLQuery() method and
generateReportSQL() method.

NameValuePair[] nameValues Should be set to NULL. This field is for internal use only.

TemplateInfo[] templateInfos Should be set to NULL. This field is for internal use only.

String viewName Specifies which view to use when generating XML data for the analysis.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-96

How Filter Expressions Are Applied to an Analysis in Web Services

Step Internal Processing

1 Obtains XML representations of the analysis and each filter expression.

2 For each expression element, locates the child node of the type
sqlExpression (the type is determined by the value of the xsi:type
attribute), and references its inner text.

3 In the analysis XML, locates all nodes that also have a child node of type
sqlExpression where the inner text matches that located in the preceding
step.

4 Replaces all nodes found in Step 3 with the expression from Step 2.

How Variables Are Applied to an Analysis in Web Services

Step Internal Processing

1 Obtains XML representations of the analysis.

2 For each variable, locates all nodes in the analysis XML that have a type
of variable, attribute scope equal to analysis, and inner text that matches
the variable name.

3 Replaces each node located in Step 2 with the new variable value.

ReportRegularColumn Structure
Use the ReportRegularColumn structure to return column properties for a regular column used
in an analysis.

The ReportRegularColumn structure is used in ReportEditingService Service.

Note:

System wide default column properties that apply to any of the report columns are
returned in the report column properties.

ReportRegularColumn Structure Fields

Fields Description

String ID Specifies the column identifier of the report column

String tableHeading Specifies the table heading of the report column

String columnHeading Specifies the column heading of the report column

Boolean hidden If set to TRUE, the column is hidden. If set to FALSE, the column is
displayed.

String sqlFormula Specifies the column formula of the report column

Boolean measure If set to TRUE, the report column is a measure. If set to FALSE, the
report column is an attribute column.

aggrRule
ReportColumnAggrRule

If the column contains aggregated data, this value specifies the type of
aggregation used in the column.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-97

ColumnAggregationRule Values
This structure specifies the default aggregation rule for the column.

The following list shows the aggregation functions available:

• Default

• Server

• Sum

• Average

• Count

• CountDistinct

• Max

• Min

• None

• ServerAggregate

• Unknown

ReportRef Structure
Use the ReportRef structure to reference an analysis.

Use the ReportRef structure in one of the following ways to reference an analysis:

• The location of the analysis in the catalog.

• The ReportDef object that defines the analysis. This field should always be null.

• The XML that defines the analysis.

Note:

Only one of the fields in ReportRef should be populated.

The ReportRef structure is common to all web services.

ReportRef Structure Fields

Fields Description

String reportPath Specifies a string value that provides the path to the analysis in the
catalog. For example, /users/jchan/analyses/.

String reportXML Specifies a string value that contains the XML that defines the analysis.

SAColumn Structure
Use the SAColumn structure to represent the logical column in the Subject Area.

The SAColumn structure is used in the MetadataService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-98

SAColumn Structure Fields

Fields Description

String name Specifies a column name used in SQL statements.

String displayName Specifies a localized name, used in an Oracle Analytics analysis.

String description Specifies a string to contain the description of the column name.

boolean nullable If set to TRUE, then the column can be null.

String dataType Specifies the type of data that a column contains.

boolean aggregateable If set to TRUE, then the column can be aggregated.

String aggrRule If the column contains aggregated data, this value specifies the type of
aggregation used.

SADataType Values
The SADataType indicates the type of data that a column contains.

The following list shows the data types available:

• BigInt

• Binary

• Bit

• Char

• Coordinate

• Date

• Decimal

• Double

• Float

• Integer

• Invalid

• LongVarBinary

• LongVarChar

• Numeric

• Real

• SmallInt

• Time

• TimeStamp

• TinyInt

• Unknown

• VarBinary

• VarChar

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-99

AggregationRule Values
The AggregationRule specifies the default aggregation rule for the column.

The following list shows the aggregation functions available:

• Avg

• BottomN

• Complex

• Count

• CountDistinct

• CountStar

• DimensionAggr

• First

• Last

• Max

• Min

• None

• Percentile

• Rank

• ServerDefault

• SubTotal

• Sum

• TopN

SASubjectArea Structure
Use the SASubjectArea structure to represent Subject Area attributes.

The SASubjectArea structure is used in the MetadataService Service.

SASubjectArea Structure Fields

Fields Description

String name Specifies the table name that is used in SQL statements.

String displayName Specifies the localized name, used in Oracle Analytics Classic.

String description Specifies the description of the subject area.

SATable[] tables Specifies a collection of tables for this subject area.

SATable Structure
Use the SATable structure to represent the logical table in the Subject Area.

The SATable structure is used in the MetadataService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-100

SATable Structure Fields

Fields Description

String name Specifies the table name that is used in SQL statements.

String displayName Specifies the localized name, used in Oracle Analytics Classic.

String description Specifies the description of the table name.

SAColumn[] columns Specifies an array of the table's columns.

SAWLocale Structure
Use the SAWLocale structure to define the locale for the current session.

The SAWLocale structure is used in the SAWSessionService Service.

SAWLocale Structure Fields

Fields Description

String language Specifies the language code. Values for language should conform to the
ones used in Java, in the java.util.Locale class (ISO-639, ISO-3166).

String country Specifies the country code. Values for country should conform to the
ones used in Java, in the java.util.Locale class (ISO-639, ISO-3166).

SAWSessionParameters Structure
Use the SAWSessionParameters structure to define optional parameters for the current
session.

The SAWSessionParameters structure is used in the SAWSessionService Service.

SAWSessionParameters Structure Fields

Fields Description

SAWLocale locale Specifies the locale to be used, supplied in the SAWLocale structure.

String userAgent Specifies whether the HTMLView service is used with current session. It
specifies the userAgent string of the browser, where Oracle Analytics
Presentation Services HTML content is displayed. Oracle Analytics
Presentation Services uses this information to produce browser-specific
HTML.

String syndicate Internal use only.

LogonParameter
logonParams

Specifies the parameters used for authentication.

boolean asyncLogon If set to TRUE, then asynchronous login is enabled. If set to FALSE
(default), then asynchronous login is not enabled.

String sessionID Specifies the unique ID of the session. This field is used in logonex()
method and impersonateex() method.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-101

SegmentationOptions Structure
Use the SegmentationOptions structure to define the segment or segment tree to override the
defaults specified in the Oracle Marketing Analytics user interface.

The SegmentationOptions structure is used in the MetadataService Service.

SegmentationOptions Structure Fields

Fields Description

OverrideType cacheOverride Specifies how you want to override the Oracle Marketing Analytics'
"Cache the block for future update counts requests" user interface
option.

If set to Default, then the cache override is not specified in the structure
or the structure is not specified. The Default value specifies to use what
is defined in the user interface option for each criteria block.

If set to None, the system overrides the user interface-defined values
and sets all criteria blocks to disable the "Cache the block for future
update counts requests" user interface option.

If set to All, the system overrides the user interface-defined values and
sets all criteria blocks to enable the "Cache the block for future update
counts requests" user interface option.

OverrideType countOverride Specifies if the system should use the getCounts method to generate
the count numbers.

If set to Default, then the count override is not specified in the structure
or the structure is not specified.

If set to All, the system executes the getCounts method. When set to All,
the system calculates count numbers for all criteria blocks.

NameValuePair govRules Specifies a value to enforce the corresponding contract planning rules
for the segment or segment tree.

NameValuePair prompts Specifies the prompt values to apply to the columns in the segment or
segment tree. This process filters data when generating counts.

If you do not provide a value in this field, then the system does not apply
filter criteria to columns in segments.

Boolean removeCacheHits Specifies that you want to clear cache entries that contain count
information.

If set to True, the system queries against the most current data. To do
this, the system removes all existing cache entries that contain count
information for the target segment or segment tree. The system then
repopulates the cache with new count number entries calculated by the
getCounts method.

BigDecimal samplingFactor Specifies the size of the data set for calculating counts. The getCounts
method calculates the count number of all criteria blocks against a
subset of the data determined by this value.

The default value is 100. The default value determines that the count
number is calculated against the whole data set.

SessionEnvironment Structure
Use the SessionEnvironment structure to return environment information for the current
session.

The SessionEnvironment structure is used in the SAWSessionService Service.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-102

SessionEnvironment Structure Fields

Fields Description

String userName Specifies the name of the current user.

ItemInfo homeDirectory Specifies the full path to the user's home directory in the catalog. For
example, /users/<user login ID>.

ItemInfo[] SharedDirectories Specifies the full paths to shared directories to which the current user
has at least read access.

Note:

By default, only administrators are allowed
to list direct descendents of the "/shared"
directory. Retrieving the
SessionEnvironment object is the only way
to enable users to navigate its shared
area.

StartPageParams Structure
Use the StartPageParams structure to define options in startPage method invocations.

The StartPageParams structure is used in the HtmlViewService Service.

StartPageParams Structure Fields

Fields Description

String idsPrefix Specifies a prefix to be used with IDs and names of all HTML elements
to avoid name conflicts on an HTML page.

boolean dontUseHttpCookies If set to TRUE, then Oracle Analytics Presentation Services cannot rely
on cookies for passing the sessionID. Instead, the sessionID is included
as a parameter in callback URLs.

TreeFlags Enumeration
The TreeFlags enumeration specifies the static definitions for the various TreeFlag values that
can be returned as part of a nodes assessment.

The TreeFlags enumeration is used in the #unique_462.

TreeFlags Enumeration Values

Values Description

Integer STRATEGY Specifies that the value of the Strategy TreeFlag is 1.

Integer INITIATIVE Specifies that the value of the Initiative TreeFlag is 2.

Integer ACCOUNTABILITY Specifies that the value of the Accountability TreeFlag is 4.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-103

Note:

You can add the values in TreeFlags Enumeration values if required. For example, if
the you want the results to include nodes from both the Strategy and Initiative trees,
you would pass 3 as the value (1+2).

TreeNodePath Structure
Use the TreeNodePath structure to specify a segment tree path and branch ID number for a
branch in the segment tree.

The TreeNodePath structure is used in the #unique_488.

TreeNodePath Structure Fields

Fields Description

String treeNode Specifies the segment tree's branch Id number that contains the
members to include in the list.

String treePath Specifies the path to the segment tree.

UpdateACLParams Structure
Use the UpdateACLParams structure to set options in updateACL method invocations.

The UpdateACLParams structure is used in the SecurityService Service.

UpdateACLParams Structure Fields

Fields Description

UpdateACLMode updateFlag Specifies how to update the ACL mode.

UpdateACLMode Enumeration
Use the UpdateACLMode enumeration to update the ACL mode.

The UpdateACLMode enumeration specifies a list of valid values for the update flag in the
UpdateACLParams Structure.

UpdateACLMode Enumeration Values

Values Description

String ReplaceACL Specifies the ACL value to update.

String ReplaceForSpecifiedAc
counts

Specifies a list of accounts to update in the ACL.

String DeleteAccountsFromA
CL

Specifies a list of accounts to remove from the ACL.

String AddPermission Specifies a list permissions to update for a list of ACL entries

String DeletePermission Specifies a list permissions to be removed from a list of ACL entries

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-104

UpdateCatalogItemACLParams Structure
Use the UpdateCatalogItemACLParams structure to provide additional parameters in the
updateCatalogItemACL() method.

The UpdateCatalogItemACLParams structure is used in the WebCatalogService Service.

UpdateCatalogItemACLParams Structure Fields

Fields Description

UpdateACLMode updateFlag Specifies how to update the ACL mode.

boolean recursive If set to TRUE, then the method is applied to the catalog item and all
descendents, which are identified by the path. If set to FALSE, then the
method is only applied to the catalog item.

ValidActionLinks Structure
Use the ValidActionLinks structure to reference valid action links.

The ValidActionLinks structure is used in the AssessmentResult Structure.

ValidActionLinks Structure Fields

Fields Description

DimensionContext[] ActionLin
kContext

Specifies an array of DimensionContext structures.

ActionLinks[] ActionLink Specifies an array of ActionLink structures.

Variable Structure
Use the Variable structure to reference a variable in the analysis and replace it with another
variable.

The Variable structure is common to all web services.

Variable Structure Fields

Fields Description

String name Specifies a character string that contains the name of the variable to
replace.

Object value Specifies the value of the variable.

XMLQueryExecutionOptions Structure
Use the XMLQueryExecutionOptions structure to specify optional parameters during a query.

The XMLQueryExecutionOptions structure is used in the XMLViewService Service (in the
executeXMLQuery method).

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-105

XMLQueryExecutionOptions Structure Fields

Fields Description

boolean async If set to TRUE, then asynchronous query execution is enabled. If set to
FALSE, then asynchronous query execution is disabled.

int maxRowsPerPage Specifies the maximum number of rows to be returned by a
executeXMLQuery or fetchNext method.

boolean refresh If set to TRUE, then the server re-submits the query to refresh the data.
If set to FALSE, then the server uses data in the cache.

boolean presentationInfo If set to TRUE, then store localized presentation information in the
metadata section of the record set XML.

Presentation information consists of the following:

• Column heading information (stored in the columnHeading field).
• Table heading information (stored in the tableHeading field).

String type Specifies the query ID, which can be used in logs to diagnose errors.

Chapter 9
Description of Structures in Oracle Analytics Web Services

9-106

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Overview of Oracle Analytics Developer Resources
	1 Introduction to Oracle Analytics Developer Resources

	Part II Create and Manage Custom Extensions
	2 Create Custom Data Action Extensions
	About Data Action Extensions and the Data Actions Framework
	Data Action Categories
	Data Action Context
	Data Action Code Design
	Data Action Model Classes
	Data Action Service Classes
	Data Action Code Interactions
	Example Data Action plugin.xml File
	Data Action Extension Files and Folders

	Choose the Best Data Action Class to Extend
	AbstractDataAction Class
	DataActionKOModel Class
	CanvasDataAction Class
	EventDataAction Class
	AbstractHTTPDataAction Class
	URLNavigationDataAction Class
	HTTPAPIDataAction Class

	Generate Data Action Extensions from a Template
	Generated Folders and Files
	Extend a Data Action Base Class
	Choose Which Data Action Inherited Methods to Override
	Test, Package, and Install Your Data Action
	Use an Upgrade Handler for Knockout Model Changes
	Upgrade Data Action Extensions
	Data Action Extension File Reference
	Data Action plugin.xml File Example
	Data Action plugin.xml File Properties Section - tns:obiplugin
	Data Action plugin.xml File Resources Section - tns:resources
	Data Action plugin.xml File Extensions Section - tns:extension

	3 Create Oracle Analytics Visualization and Workbook Extensions
	About the Oracle Analytics Extension Development Environment
	Workflow to Set Up the Oracle Analytics Extension Development Environment
	Oracle Analytics Extensions Development Scripts
	Types of Oracle Analytics Extensions
	Oracle Analytics Extension Development Resources
	Oracle Analytics Extensions Limitations

	Set Up the Oracle Analytics Extension Development Environment on Mac
	Install Oracle Analytics Desktop on Mac
	Install Java JDK on Mac
	Update Bash Profile or ZSHRC File and Create the Development Directory on Mac
	Create the Extension Development Environment on Mac
	Create a Skeleton Extension on Mac
	Test Your Visualization and Workbook Extensions on Mac

	Set Up the Oracle Analytics Extension Development Environment on Windows
	Install Oracle Analytics Desktop on Windows
	Install Java JDK on Windows
	Set User Variables and Create a Development Directory on Windows
	Create the Extension Development Environment on Windows
	Create a Skeleton Extension on Windows
	Test Your Visualization and Workbook Extensions on Windows

	Work with Extensions
	Build and Package an Extension
	Upload an Extension to Oracle Analytics
	Delete Extensions from the Oracle Analytics Development Environment

	4 Manage Oracle Analytics Extensions

	Part III Embed Content
	5 Get Started Embedding Content into Applications and Web Pages
	About Embedding Oracle Analytics Content into Applications and Web Pages
	Register an Application as a Safe Domain

	6 Embed Oracle Analytics Content With iFrames
	Considerations for Embedding Oracle Analytics Content With iFrame
	Use iFrame to Embed Analytics Content into an Application or Web Page

	7 Embed Oracle Analytics Content With the JavaScript Embedding Framework
	Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics Content
	Enable Oracle Analytics Developer Options
	Find the Javascript and HTML for Embedding Oracle Analytics Content
	Prepare the HTML Page for Embedded Oracle Analytics Content
	Pass Filters to the HTML Page for Embedded Oracle Analytics Content
	Pass Parameters to the HTML Page for Embedded Oracle Analytics Content
	Refresh Data in the HTML Page for Embedded Oracle Analytics Content
	Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET
	Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET
	Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content
	Use Login Prompt Authentication With Embedded Oracle Analytics Content

	Part IV Use APIs
	8 REST APIs
	9 SOAP APIs
	Introduction to Oracle Analytics Web Services
	About Oracle Analytics Web Services
	What are the Oracle Analytics Session-Based Web Services?

	Description of Services and Methods in Oracle Analytics Web Services
	AdministrationService Service
	deleteCSPWhitelist() Method
	getCSPDefaultAllowList() Method
	getCSPWhitelist() Method
	reloadLogConfiguration() Method
	updateCSPWhitelist() Method

	AnalysisExportViewsService Service
	completeAnalysisExport() Method
	Signature
	Returns

	initiateAnalysisExport() Method
	Signature
	Returns

	ConditionService Service
	evaluateCondition() Method
	Signature

	evaluateInlineCondition() Method
	Signature

	getConditionCustomizableReportElements() Method
	Signature

	HtmlViewService Service
	About HtmlViewService Bridging and Callback URLs
	addReportToPage() Method
	Signature

	endPage() Method
	Signature

	getCommonBodyHTML() Method
	Signature
	Returns

	getHeadersHTML() Method
	Signature
	Returns

	getHtmlforPageWithOneReport() Method
	Signature

	getHTMLForReport() Method
	Signature
	Returns

	setBridge() Method
	Signature
	Usage
	How Callback URLs Are Replaced

	startPage() Method
	Signature
	Returns

	iBotService Service
	deleteIBot() Method
	Signature

	enableIBot() Method
	executeIBotNow() Method
	Signature

	getAgentPaths() Method
	getAgents() Method
	getIBotStatus() Method
	moveIBot() Method
	Signature

	purgeAlerts() Method
	sendMessage() Method
	Signature

	subscribe() Method
	Signature

	unsubscribe() Method
	Signature

	writeIBot() Method
	Signature

	MetadataService Service
	clearQueryCache() Method
	Signature

	describeColumn() Method
	Signature
	Returns

	describeSubjectArea() Method
	Signature
	SASubjectAreaDetails Values
	Returns
	Usage

	describeSubjectAreaWithSort() Method
	Signature
	Returns

	describeTable() Method
	Signature
	SATablesDetails Values
	Returns

	describeTableWithSort() Method
	Signature
	Returns

	getSubjectAreas() Method
	Signature
	Returns
	Usage

	getSubjectAreasWithSort() Method
	Signature
	Returns
	Usage

	reloadLogConfiguration() Method
	Signature

	reloadMetadata() Method
	Signature
	Returns

	ReportEditingService Service
	applyReportDefaults() Method
	Signature
	Returns

	applyReportParams() Method
	Signature
	Returns

	getPromptElements() Method
	Signature
	Returns

	generateReportSQL() Method
	Signature
	Returns

	getReportColumns() Method
	Signature
	Returns

	getReportElements() Method
	Signature
	Returns

	SAWSessionService Service
	getCurUser() Method
	Signature
	Returns

	GetSessionEnvironment() Method
	Signature
	Returns

	getSessionVariable() Method
	Signature
	Returns

	impersonate() Method
	Signature
	Returns

	impersonateex() Method
	Signature
	Returns

	keepAlive() Method
	Signature

	logoff() Method
	Signature

	logon() Method
	Signature
	Returns

	logonex() Method
	Signature
	Returns

	SchedulerService Service
	getJobReferences() Method
	Signature

	getJobInstanceReferences() Method
	Signature

	getJob() Method
	Signature

	getJobInstance() Method
	Signature

	cancelJobInstance() Method
	Signature

	removeJobs() Method
	Signature

	purgeJobInstances() Method
	Signature

	Examples of Using the SchedulerService API
	Example - Creating a Session and Scheduler Service
	Example - Finding Job References for a User and Displaying the Job Names
	Example - Finding Job Instances for Two Given Job References
	Example - Cancelling All Job Instances Associated with a Job Reference
	Example - Finding and Displaying all Agents in the WebCatalogService

	SecurityService Service
	forgetAccounts() Method
	forgetAccountsEx() Method
	Signature
	Returns

	getAccounts() Method
	Signature

	getAccountTenantID() Method
	Signature
	Returns

	getGlobalPrivilegeACL() Method
	Signature

	getGlobalPrivileges() Method
	Signature

	getPermissions() Method
	Signature
	Returns

	getPermissionsEx() Method
	Signature
	Returns

	getPrivilegesStatus() Method
	Signature

	isMember() Method
	Signature

	joinGroups() Method
	Signature

	leaveGroups() Method
	Signature

	renameAccountsEx() Method
	Signature
	Returns

	updateGlobalPrivilegeACL() Method
	Signature

	UserPersonalizationService Service
	addFavorite() Method
	Signature

	addFavoriteCategory() Method
	Signature

	deleteFavorite() Method
	Signature

	deleteFavoriteCategory() Method
	Signature

	getFavorites() Method
	Signature
	Returns

	updateFavorites() Method
	Signature

	getMostRecents() Method
	Signature
	Returns

	WebCatalogService Service
	ErrorDetailsLevel Enumeration
	ReadObjectsReturnOptions Enumeration
	copyItem() Method
	Signature

	copyItem2() Method
	Signature

	createFolder() Method
	Signature

	createLink() Method
	Signature

	deleteItem() Method
	Signature

	getItemInfo() Method
	Signature
	Returns

	getMaintenanceMode() Method
	Signature
	Returns

	getObjectCategories() Method
	Signature
	Returns

	getObjectCreateList() Method
	Signature
	Returns

	getObjectTypes() Method
	Signature
	Returns

	getSubItems() Method
	Signature
	Returns

	getUserHomeDirPath() Method
	Signature
	Returns

	maintenanceMode() Method
	Signature

	moveItem() Method
	Signature

	pasteItem2() Method
	Signature

	readObjects() Method
	Signature
	Returns

	removeFolder() Method
	Signature

	setItemAttributes() Method
	Signature

	setItemProperty() Method
	Signature

	setOwnership() Method
	Signature

	updateCatalogItemACL() Method
	Signature

	writeObjects() Method
	Signature
	Returns

	XMLViewService Service
	XMLQueryOutputFormat Enumeration
	cancelQuery() Method
	Signature

	executeSQLQuery() Method
	Signature
	Returns

	executeXMLQuery() Method
	Signature
	Returns

	fetchNext() Method
	Signature
	Returns

	getPromptedFilters() Method
	Signature

	Description of Structures in Oracle Analytics Web Services
	AccessControlToken Structure
	Account Structure
	ACL Structure
	Action Structure
	ActionLinks Structure
	AnalysisExportExecutionOptions Structure
	AnalysisExportResult Structure
	ArrayofGUIDS Structure
	AssessmentResult Structure
	AuthResult Structure
	CatalogItemsFilter Structure
	CatalogObject Structure
	CausalLinkage Structure
	Strength Enumeration
	Interaction Enumeration
	Operation Enumeration

	CSPWhitelist Structure
	CSPWhitelistXml Structure
	DimensionContext Structure
	ErrorInfo Structure
	FavoriteItem Structure
	ForgetAccount Structure
	ForgetAccountResult Structure
	ForgetAccountsStatus Structure
	GetSubItemsParams Structure
	ItemInfo Structure
	Job Structure
	JobFilter Structure
	JobInstance Structure
	JobInstanceFilter Structure
	JobInstanceStatus Enumeration
	JobReferenceAndInstanceReferences Structure
	KPIColumnName Enumeration
	KPIDimensionPinning Structure
	KPIRequest Structure
	KPIResultColumn Structure
	MRUItem Structure
	NameValuePair Structure
	NodeInfo Structure
	NodeTypes Enumeration

	ReportHierarchicalColumn Structure
	PathMap Structure
	ParameterDocument Structure
	ParameterValue Structure
	Prompt Structures
	PromptsObjectModel Structure
	PromptCollectionRunTimeInfo Structure
	PromptStepObjectModel Structure
	PromptStepRunTimeInfo Structure
	IndividualPromptObjectModel Structure
	IndividualPromptRunTimeInfoLimitedByInfo Structure
	IndividualPromptRunTimeInfo Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyLevelSQLInfo Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyLevelInfo Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyLevels Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyFormulaLevels Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure
	IndividualPromptRunTimeInfoDataTypeDoubleColumnInfo Structure
	IndividualPromptRunTimeInfoDataType Structure
	IndividualPromptRunTimeInfoSingleValueType Structure
	IndividualPromptRunTimeInfoValuesType Structure
	IndividualPromptRunTimeInfoCurrentValues Structure
	IndividualPromptRunTimeInfoAvailableOptions Structure
	IndividualPromptRunTimeInfoDataTypeHierarchyInfo Structure
	IndividualPromptRunTimeInfoLimitedByPromptReference Structure
	IndividualPromptRunTimeInfoLimitedByPromptRefGroups Structure

	Privilege Structure
	PurgeJobInstancesFilter Structure
	QueryResults Structure
	RenameAccount Structure
	RenameAccountResults Structure
	RenameAccountsStatus Structure
	ReportADFParameters Structure
	ReportHTMLOptions Structure
	ReportHTMLLinksMode Enumeration

	ReportParams Structure
	ReportRegularColumn Structure
	ColumnAggregationRule Values

	ReportRef Structure
	SAColumn Structure
	SADataType Values
	AggregationRule Values

	SASubjectArea Structure
	SATable Structure
	SAWLocale Structure
	SAWSessionParameters Structure
	SegmentationOptions Structure
	SessionEnvironment Structure
	StartPageParams Structure
	TreeFlags Enumeration
	TreeNodePath Structure
	UpdateACLParams Structure
	UpdateACLMode Enumeration

	UpdateCatalogItemACLParams Structure
	ValidActionLinks Structure
	Variable Structure
	XMLQueryExecutionOptions Structure

