Oracle® Fusion Middleware

Developing Web User Interfaces with Oracle
ADF Faces

12¢ (12.2.1.4.0)
E80056-01
September 2019

ORACLE"

Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces, 12¢ (12.2.1.4.0)
E80056-01
Copyright © 2008, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Robin Whitmore (lead), Kathryn Munn, Cindy Hall, Walter Egan, Ralph Gordon, Vaibhav
Gupta, Krithika Gangadhar, Sandhya Hombardi, Sandhya Sriram

Contributors: ADF Faces development team, Frank Nimphius, Laura Akel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXXIX
Documentation Accessibility XXXIX
Related Documents XXXIX
Conventions x|

Part | Getting Started with ADF Faces

1 Introduction to ADF Faces

About ADF Faces 1-1
ADF Faces Framework 1-2
ADF Faces Components 1-4

2 ADF Faces Components Demo Application

About the ADF Faces Components Demo Application 2-1
Downloading and Installing the ADF Faces Components Demo Application 2-9

3 Getting Started with ADF Faces and JDeveloper

About Developing Declaratively in JDeveloper 3-1
Creating an Application Workspace 3-2
How to Create an ADF Faces Application Workspace 3-2
What Happens When You Create an Application Workspace 3-3
Defining Page Flows 3-4
How to Define a Page Flow 3-5
What Happens When You Use the Diagrammer to Create a Page Flow 3-6
Creating a View Page 3-7
How to Create JSF Pages 3-10
What Happens When You Create a JSF Page 3-10
What You May Need to Know About Updating Your Application to Use the
Facelets Engine 3-15

ORACLE iii

What You May Need to Know About Automatic Component Binding 3-16
How to Add ADF Faces Components to JSF Pages 3-20
What Happens When You Add Components to a Page 3-23
How to Set Component Attributes 3-24
What Happens When You Use the Properties window 3-26
Creating EL Expressions 3-26
How to Create an EL Expression 3-27
How to Use the EL Format Tags 3-29
How to Use EL Expressions Within Managed Beans 3-30
Creating and Using Managed Beans 3-31
How to Create a Managed Bean in JDeveloper 3-31
What Happens When You Use JDeveloper to Create a Managed Bean 3-33
What You May Need to Know About Component Bindings and Managed Beans 3-34
Viewing ADF Faces Javadoc 3-35
How to View ADF Faces Source Code and Javadoc 3-35
Part |l Understanding ADF Faces Architecture
4 Using ADF Faces Client-Side Architecture
About Using ADF Faces Architecture 4-1
Adding JavaScript to a Page 4-3
How to Use Inline JavaScript 4-3
How to Import JavaScript Libraries 4-4
What You May Need to Know About Accessing Client Event Sources 4-5
Instantiating Client-Side Components 4-5
How to Configure a Component to for a Client-Side Instance 4-5
What Happens When You Set clientComponent to true 4-6
Listening for Client Events 4-7
How to Listen for Client Events 4-7
How to Use an ADF Client Listener to Control Navigating Away From a JSF
Page 4-8
Accessing Component Properties on the Client 4-9
Secure Client Properties 4-10
How to Set Property Values on the Client 4-13
What Happens at Runtime: How Client Properties Are Set on the Client 4-14
How to Unsecure the disabled Property 4-14
How to “Unsynchronize" Client and Server Property Values 4-15
Using Bonus Attributes for Client-Side Components 4-18
How to Create Bonus Attributes 4-18
What You May Need to Know About Marshalling Bonus Attributes 4-19

ORACLE

Understanding Rendering and Visibility 4-19

How to Set Visibility Using JavaScript 4-20
What You May Need to Know About Visible and the isShowing Function 4-22
Locating a Client Component on a Page 4-22

What You May Need to Know About Finding Components in Naming Containers
4-23
JavaScript Library Partitioning 4-24
How to Create JavaScript Partitions 4-25
What Happens at Runtime: JavaScript Partitioning 4-26

5 Using the JSF Lifecycle with ADF Faces
About Using the JSF Lifecycle and ADF Faces 5-1
Using the Immediate Attribute 5-4
How to Use the Immediate Attribute 5-8
Using the Optimized Lifecycle 5-8
Using the Client-Side Lifecycle 5-9
Using Subforms to Create Sections on a Page 5-10
Object Scope Lifecycles 5-11
Passing Values Between Pages 5-13
How to Use the pageFlowScope Scope Within Java Code 5-14
How to Use the pageFlowScope Scope Without Writing Java Code 5-15
What Happens at Runtime: How Values Are Passed 5-16
6 Handling Events

About Events and Event Handling 6-1
Events and Partial Page Rendering 6-2
Event and Even Root Components 6-3
Client-Side Event Model 6-4
Using ADF Faces Server Events 6-4
How to Handle Server-Side Events 6-6
Using JavaScript for ADF Faces Client Events 6-7
ADF Faces Client-Side Events 6-9
How to Use Client-Side Events 6-11
How to Return the Original Source of the Event 6-13
How to Use Client-Side Attributes for an Event 6-14
How to Block Ul Input During Event Execution 6-15
How to Prevent Events from Propagating to the Server 6-15
How to Indicate No Response is Expected 6-16
What Happens at Runtime: How Client-Side Events Work 6-16
What You May Need to Know About Using Naming Containers 6-17

ORACLE Y

Sending Custom Events from the Client to the Server 6-17

How to Send Custom Events from the Client to the Server 6-18
What Happens at Runtime: How Client and Server Listeners Work Together 6-20
What You May Need to Know About Marshalling and Unmarshalling Data 6-20
Mapping Java to JavaScript 6-21
Executing a Script Within an Event Response 6-21
Using ADF Faces Client Behavior Tags 6-23
How to Use the scrollComponentintoViewBehavior Tag 6-24
Using Polling Events to Update Pages 6-25
How to Use the Poll Component 6-26

7 Validating and Converting Input

About ADF Faces Converters and Validators 7-1
ADF Faces Converters and Validators Use Cases and Examples 7-2
Additional Functionality for ADF Faces Converters and Validators 7-2

Conversion, Validation, and the JSF Lifecycle 7-2

Adding Conversion 7-3
How to Add a Converter 7-4
How to Specify Multiple Converter Patterns 7-5
How to Specify Negative Numbers for Converters 7-6
What Happens at Runtime: How Converters Work 7-6
What You May Need to Know About Number Converters 7-6
What You May Need to Know About Date Time Converters 7-7

Creating Custom ADF Faces Converters 7-9
How to Create a Custom ADF Faces Converter 7-9

Implement Server-Side (Java) Conversion 7-9
Register ADF Faces Converter in faces-config.xml 7-10
Create a Client-Side Version of the Converter 7-10
Modify the Server Converter to Enable Client Conversion 7-11
Using Custom ADF Faces Converter on a JSF Page 7-14
What You May Need to Know About Custom ADF Faces Converters 7-14
How to Declaratively Register a Client-Side Only Converter Script 7-15

Adding Validation 7-17

How to Add Validation 7-18
Using Validation Attributes 7-18
Using ADF Faces Validators 7-18

What Happens at Runtime: How Validators Work 7-20

What You May Need to Know About Multiple Validators 7-21

Creating Custom JSF Validation 7-21
How to Create a Backing Bean Validation Method 7-21

ORACLE vi

What Happens When You Create a Backing Bean Validation Method 7-22

How to Create a Custom JSF Validator 7-22
What Happens When You Use a Custom JSF Validator 7-24
8 Rerendering Partial Page Content
About Partial Page Rendering 8-1
Using Partial Triggers 8-4
How to Use Partial Triggers 8-6
What You May Need to Know About Using the Browser Back Button 8-8
What You May Need to Know About PPR and Screen Readers 8-9
Using the Target Tag to Execute PPR 8-9
How to Use the Target Tag to Enable Partial Page Rendering 8-10
Enabling Partial Page Rendering Programmatically 8-13
How to Enable Partial Page Rendering Programmatically 8-13
Using Partial Page Navigation 8-14
How to Use Partial Page Navigation 8-15
What You May Need to Know About PPR Navigation 8-15
Using a Streaming Component to Allow Page Loading 8-16
How to Implement an Instance of AsyncFetch to Fetch Streaming Data 8-16
How to Create a Streaming Component 8-17

Part Il Creating Your Layout

O Organizing Content on Web Pages

About Organizing Content on Web Pages 9-1
ADF Faces Layout Components 9-2
Additional Functionality for Layout Components 9-6

Starting to Lay Out a Page 9-6
Geometry Management and Component Stretching 9-7
Nesting Components Inside Components That Allow Stretching 9-9
Using Quick Start Layouts 9-12
Tips for Using Geometry-Managed Components 9-13
How to Configure the document Tag 9-14

Arranging Content in a Grid 9-17
How to Use the panelGridLayout, gridRow, and gridCell Components to Create
a Grid-Based Layout 9-20
What You May Need to Know About Geometry Management and the
panelGridLayout Component 9-24
What You May Need to Know About Determining the Structure of Your Grid 9-25

ORACLE vii

What You May Need to Know About Determining Which Layout Component to

Use 9-27
Displaying Contents in a Dynamic Grid Using a masonryLayout Component 9-28
How to Use a masonryLayout Component 9-31
Achieving Responsive Behavior Using matchMediaBehavior Tag 9-33
Arranging Contents to Stretch Across a Page 9-38
How to Use the panelStretchLayout Component 9-39
What You May Need to Know About Geometry Management and the
panelStretchLayout Component 9-42
Using Splitters to Create Resizable Panes 9-43
How to Use the panelSplitter Component 9-45
What You May Need to Know About Geometry Management and the
panelSplitter Component 9-49
Arranging Page Contents in Predefined Fixed Areas 9-50
How to Use the panelBorderLayout Component to Arrange Page Contents in
Predefined Fixed Areas 9-52
Arranging Content in Forms 9-53
How to Use the panelFormLayout Component 9-55
What You May Need to Know About Responsive Mode in the panelFormLayout
Component 9-59
What You May Need to Know About Using the group Component with the
panelFormLayout Component 9-61
Arranging Contents in a Dashboard 9-64
How to Use the panelDashboard Component 9-68
What You May Need to Know About Geometry Management and the
panelDashboard Component 9-71
Displaying and Hiding Contents Dynamically 9-72
How to Use the showDetail Component 9-78
How to Use the showDetailHeader Component 9-80
How to Use the panelBox Component 9-84
What You May Need to Know About Disclosure Events 9-86
What You May Need to Know About Skinning and the showDetail Component 9-87
What You May Need to Know About Skinning and the showDetailHeader
Component 9-88
What You May Need to Know About Skinning and the panelBox Component 9-88
Displaying or Hiding Contents in Panels 9-88
How to Use the panelAccordion Component 9-96
How to Use the panelTabbed Component 9-99
How to Use the panelDrawer Component 9-102
How to Use the panelSpringboard Component 9-104
What You May Need to Know About Switching Between Grid and Strip Mode 9-105
How to Use the showDetailltem Component to Display Content 9-105

ORACLE viii

What You May Need to Know About Geometry Management and the

showDetailltem Component 9-110
What You May Need to Know About showDetailltem Disclosure Events 9-112
What You May Need to Know About Skinning and the panelTabbed Component 9-113
Adding a Transition Between Components 9-116
How to Use the Deck Component 9-117
What You May Need to Know About Geometry Management and the deck
Component 9-119
Displaying Items in a Static Box 9-120
How to Use the panelHeader Component 9-122
How to Use the decorativeBox Component 9-126
What You May Need to Know About Geometry Management and the
decorativeBox Component 9-127
What You May Need to Know About Skinning and the panelHeader Component 9-128
What You May Need to Know About Skinning and the decorativeBox
Component 9-128
Displaying a Bulleted List in One or More Columns 9-129
How to Use the panelList Component 9-130
What You May Need to Know About Creating a List Hierarchy 9-131
Grouping Related Items 9-132
How to Use the panelGroupLayout Component 9-135
What You May Need to Know About Geometry Management and the
panelGroupLayout Component 9-137
Separating Content Using Blank Space or Lines 9-137
How to Use the spacer Component 9-139
How to Use the Separator Component 9-139

10 Creating and Reusing Fragments, Page Templates, and

Components

About Reusable Content 10-1
Reusable Components Use Cases and Examples 10-3
Additional Functionality for Reusable Components 10-4

Using Page Templates 10-4
How to Create a Page Template 10-9
What Happens When You Create a Page Template 10-14
How to Create JSF Pages Based on Page Templates 10-14
What Happens When You Use a Template to Create a Page 10-17
What Happens at Runtime: How Page Templates Are Resolved 10-17
What You May Need to Know About Page Templates and Naming Containers 10-18

Using Page Fragments 10-18
How to Create a Page Fragment 10-21

ORACLE iX

What Happens When You Create a Page Fragment 10-22

How to Use a Page Fragment in a JSF Page 10-23
What Happens at Runtime: How Page Fragments are Resolved 10-23
What You May Need to Know About Accessing a Page From a Different View ID
10-23
Using Declarative Components 10-24
How to Create a Declarative Component 10-27
What Happens When You Create a Declarative Component 10-32
How to Deploy Declarative Components 10-34
How to Use Declarative Components in JSF Pages 10-34
What Happens When You Use a Declarative Component on a JSF Page 10-36
What Happens at Runtime: Declarative Components 10-37
Adding Resources to Pages 10-37
How to Add Resources to Page Templates and Declarative Components 10-38
What Happens at Runtime: How to Add Resources to the Document Header 10-38
Part IV Using Common ADF Faces Components
11 Using Input Components and Defining Forms
About Input Components and Forms 11-1
Input Component Use Cases and Examples 11-3
Additional Functionality for Input Components and Forms 11-5
Defining Forms 11-6
How to Add a Form to a Page 11-8
How to Add a Subform to a Page 11-8
How to Add a Button to Reset the Form 11-9
Using the inputText Component 11-9
How to Add an inputText Component 11-11
How to Add the Ability to Insert Text into an inputText Component 11-14
Using the Input Number Components 11-15
How to Add an inputNumberSlider or an inputRangeSlider Component 11-17
How to Add an inputNumberSpinbox Component 11-18
Using Color and Date Choosers 11-18
How to Add an inputColor Component 11-20
How to Add an InputDate Component 11-22
What You May Need to Know About Including a Default Value for an InputDate
Component 11-25
What You May Need to Know About Setting the Time Value for an InputDate
Component 11-26
What You May Need to Know About Selecting Time Zones Without the
inputDate Component 11-26

ORACLE X

What You May Need to Know About Multi-Selection Support in the chooseDate

Component 11-28
What You May Need to Know About Creating a Custom Time Zone List 11-30
Using Selection Components 11-31
How to Use Selection Components 11-35
What You May Need to Know About the contentDelivery Attribute on the
SelectManyChoice Component 11-38
Using Shuttle Components 11-39
How to Add a selectManyShuttle or selectOrderShuttle Component 11-41
What You May Need to Know About Using a Client Listener for Selection
Events 11-43
Using the richTextEditor Component 11-44
How to Add a richTextEditor Component 11-47
How to Add the Ability to Insert Text into a richTextEditor Component 11-49
How to Customize the Toolbar 11-50
About richTextEditor for UIWebView User-Agent 11-52
Using File Upload 11-52
How to Use the inputFile Component 11-56
How to Configure the inputFile Component to Upload Multiple Files 11-57
What You May Need to Know About Temporary File Storage 11-59
What You May Need to Know About Uploading Multiple Files 11-60
What You May Need to Know About Customizing User Interface of inputFile
Component 11-61
Using Code Editor 11-63
How to Add a codeEditor Component 11-67

12 Using Tables, Trees, and Other Collection-Based Components

About Collection-Based Components 12-1
Collection-Based Component Use Cases and Examples 12-3
Additional Functionality for Collection-Based Components 12-6

Common Functionality in Collection-Based Components 12-7
Displaying Data in Rows and Nodes 12-7
Content Delivery 12-8
Row Selection 12-13
Editing Data in Tables, Trees, and Tree Tables 12-14
Using Popup Dialogs in Tables, Trees, and Tree Tables 12-16
Accessing Client Collection Components 12-18
Geometry Management for the Table, Tree, and Tree Table Components 12-18

Displaying Data in Tables 12-21
Columns and Column Data 12-22
Formatting Tables 12-23

ORACLE Xi

Formatting Columns

How to Display a Table on a Page

What Happens When You Add a Table to a Page
What Happens at Runtime: Data Delivery

What You May Need to Know About Programmatically Enabling Sorting for
Table Columns

What You May Need to Know About Performing an Action on Selected Rows in
Tables

What You May Need to Know About Dynamically Determining Values for
Selection Components in Tables

What You May Need to Know About Read Only Tables
Adding Hidden Capabilities to a Table

How to Use the detailStamp Facet

What Happens at Runtime: The rowDisclosureEvent
Enabling Filtering in Tables

How to Add Filtering to a Table
Displaying Data in Trees

How to Display Data in Trees

What Happens When You Add a Tree to a Page

What Happens at Runtime: Tree Component Events

What You May Need to Know About Programmatically Expanding and
Collapsing Nodes

What You May Need to Know About Programmatically Selecting Nodes
Displaying Data in Tree Tables

How to Display Data in a Tree Table
Passing a Row as a Value
Displaying Table Menus, Toolbars, and Status Bars

How to Add a panelCollection with a Table, Tree, or Tree Table
Displaying a Collection in a List

How to Display a Collection in a List

What You May Need to Know About Scrollbars in a List View
Displaying Images in a Carousel

How to Create a Carousel

What You May Need to Know About the Carousel Component and Different
Browsers

Exporting Data from Table, Tree, or Tree Tables
How to Export Table, Tree, or Tree Table Data to an External Format
What Happens at Runtime: How Row Selection Affects the Exported Data
Accessing Selected Values on the Client from Collection-Based Components
How to Access Values from a Selection in Stamped Components.
What You May Need to Know About Accessing Selected Values

ORACLE

12-25
12-28
12-41
12-42

12-42

12-43

12-44
12-45
12-46
12-48
12-49
12-50
12-51
12-52
12-55
12-58
12-59

12-59
12-61
12-61
12-63
12-63
12-64
12-66
12-68
12-72
12-73
12-74
12-79

12-85
12-85
12-88
12-90
12-90
12-90
12-92

Xii

13 Using List-of-Values Components

About List-of-Values Components 13-1
Additional Functionality for List-of-Values Components 13-9
Creating the ListOfValues Data Model 13-10
How to Create the ListOfValues Data Model 13-10
Using the inputListOfValues Component 13-11
How to Use the InputListOfValues Component 13-11
What You May Need to Know About Dynamically Creating Auto Suggest
Behavior for LOV Components 13-14
What You May Need to Know About Skinning the Search and Select Dialogs in
the LOV Components 13-14
Using the InputComboboxListOfValues Component 13-15
How to Use the InputComboboxListOfValues Component 13-15
Using the InputSearch Component 13-17
How to Use the InputSearch Component 13-21
What You May Need to Know About InputSearch Component Tags and REST
Data 13-22
What You May Need to Know About InputSearch Attributes 13-23
What You May Need to Know About SearchSection Attributes 13-33
How to Customize InputSearch Component Display Modes 13-36
How to Add Custom Buttons to Suggestions Popup 13-39
What You May Need to Know About SuggestionSection Component 13-41
How to Set Attributes of Suggestion Section 13-41
What You May Need to Know About suggestionSection Attributes 13-42
How to Specify Dependency-Based Filtering on InputSearch Components 13-44
14 Using Query Components
About Query Components 14-1
Query Component Use Cases and Examples 14-4
Additional Functionality for the Query Components 14-4
Creating the Query Data Model 14-4
How to Create the Query Data Model 14-15
Using the quickQuery Component 14-16
How to Add the quickQuery Component Using a Model 14-16
How to Use a quickQuery Component Without a Model 14-17
What Happens at Runtime: How the Framework Renders the quickQuery
Component and Executes the Search 14-19
Using the query Component 14-19
How to Add the Query Component 14-24

ORACLE

Xiii

15 Using Menus, Toolbars, and Toolboxes

About Menus, Toolbars, and Toolboxes 15-1
Menu Components Use Cases and Examples 15-2
Additional Functionality for Menu and Toolbar Components 15-4

Using Menus in a Menu Bar 15-5
How to Create and Use Menus in a Menu Bar 15-10

Using Toolbars 15-17
How to Create and Use Toolbars 15-19
What Happens at Runtime: How the Size of Menu Bars and Toolbars Is
Determined 15-24
What You May Need to Know About Toolbars 15-24

16 Using Popup Dialogs, Menus, and Windows

About Popup Dialogs, Menus, and Windows 16-1
Popup Dialogs, Menus, Windows Use Cases and Examples 16-3
Additional Functionality for Popup Dialogs, Menus, and Windows 16-4
What You May Need to Know About ADF Faces Window Manager
Configuration 16-4

Declaratively Creating Popups 16-6
How to Create a Dialog 16-8
How to Create a Panel Window 16-13
How to Create a Context Menu 16-16
How to Create a Note Window 16-17
What Happens at Runtime: Popup Component Events 16-19
What You May Need to Know About Dialog Events 16-20
What You May Need to Know About Animation and Popups 16-21

Controlling Display Behavior of Popups 16-22
How to Dismiss a Popup Component Automatically 16-23
What Happens When a Popup Component is Automatically Dismissed 16-23

Declaratively Invoking a Popup 16-23
How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag 16-24
What Happens When You Use af:showPopupBehavior Tag to Invoke a Popup 16-25

Programmatically Invoking a Popup 16-26
How to Programmatically Invoke a Popup 16-28
What Happens When You Programmatically Invoke a Popup 16-28

Displaying Contextual Information in Popups 16-29
How to Create Contextual Information 16-30

Controlling the Automatic Cancellation of Inline Popups 16-31
How to Disable the Automatic Cancellation of an Inline Popup 16-32

ORACLE Xiv

What Happens When You Disable the Automatic Cancellation of an Inline

Popup 16-32
Resetting Input Fields in a Popup 16-33
How to Reset the Input Fields in a Popup 16-34
What Happens When You Configure a Popup to Reset Its Input Fields 16-34
17 Using a Calendar Component
About Creating a Calendar Component 17-1
Calendar Use Cases and Examples 17-4
Additional Functionality for the Calendar 17-5
Creating the Calendar 17-6
Calendar Classes 17-6
How to Create a Calendar 17-7
Configuring the Calendar Component 17-8
How to Configure the Calendar Component 17-8
What Happens at Runtime: Calendar Events and PPR 17-12
Adding Functionality Using Popup Components 17-13
How to Add Functionality Using Popup Components 17-14
Customizing the Toolbar 17-16
How to Customize the Toolbar 17-17
Styling the Calendar 17-19
How to Style Activities 17-20
What Happens at Runtime: Activity Styling 17-22
How to Customize Dates 17-22
18 Using Output Components
About Output Text, Image, Icon, and Media Components 18-1
Output Components Use Case and Examples 18-2
Additional Functionality for Output Components 18-3
Displaying Output Text and Formatted Output Text 18-3
How to Display Output Text 18-5
What You May Need to Know About Allowed Format and Character Codes in
the outputFormatted Component 18-6
Displaying Icons 18-8
How to Display Icons 18-8
Displaying Images 18-9
How to Display Images 18-9
Using Images as Links 18-10
How to Use Images as Links 18-10
Displaying Application Status Using lcons 18-11

ORACLE

XV

Playing Video and Audio Clips 18-12
How to Allow Playing of Audio and Video Clips 18-13

19 Displaying Tips, Messages, and Help

About Displaying Tips and Messages 19-1
Messaging Components Use Cases and Examples 19-4
Additional Functionality for Message Components 19-8

Displaying Tips for Components 19-9
How to Display Tips for Components 19-9

Displaying Hints and Error Messages for Validation and Conversion 19-10
How to Define Custom Validator and Converter Messages for a Component
Instance 19-13
How to Define Custom Validator and Converter Messages for All Instances of a
Component 19-14
How to Display Component Messages Inline 19-15
How to Display Global Messages Inline 19-16
What Happens at Runtime: How Messages Are Displayed 19-16

Grouping Components with a Single Label and Message 19-17
How to Group Components with a Single Label and Message 19-19

Displaying Help for Components 19-20
How to Create Help Providers 19-24

How to Create a Resource Bundle-Based Provider 19-25

How to Create an XLIFF Provider 19-26

How to Create a Managed Bean Provider 19-27

How to Create an External URL Help Provider 19-28

How to Create a Custom Java Class Help Provider 19-30

How to Register the Help Provider 19-31
How to Access Help Content from a Ul Component 19-34
How to Use JavaScript to Launch an External Help Window 19-34
What You May Need to Know About Skinning and Definition Help 19-35
Combining Different Message Types 19-36

20 Working with Navigation Components

About Navigation Components 20-1
Navigation Components Use Cases and Examples 20-2
Additional Functionality for Navigation Components 20-6

Common Functionality in Navigation Components 20-7

Using Buttons and Links for Navigation 20-7
How to Use Buttons and Links for Navigation and Deliver ActionEvents 20-9
How to Use Buttons and Links for Navigation Without Delivering ActionEvents 20-12

ORACLE Xvi

What You May Need to Know About Using Partial Page Navigation 20-13

Configuring a Browser's Context Menu for Links 20-13
How to Configure a Browser's Context Menu for Command Links 20-14
What Happens When You Configure a Browser's Context Menu for Command
Links 20-15

Using Buttons or Links to Invoke Functionality 20-15
How to Use an Action Component to Download Files 20-15
How to Use an Action Component to Reset Input Fields 20-18

Using Navigation Items for a Page Hierarchy 20-19
How to Create Navigation Cases for a Page Hierarchy 20-23

Using a Menu Model to Create a Page Hierarchy 20-24
How to Create the Menu Model Metadata 20-26
What Happens When You Use the Create ADF Menu Model Wizard 20-34
How to Bind the navigationPane Component to the Menu Model 20-35
How to Use the breadCrumbs Component with a Menu Model 20-39
How to Use the menuBar Component with a Menu Model 20-41
What Happens at Runtime: How the Menu Model Creates a Page Hierarchy 20-43
What You May Need to Know About Using Custom Attributes 20-45

Creating a Simple Navigational Hierarchy 20-46
How to Create a Simple Page Hierarchy 20-48
How to Use the breadCrumbs Component 20-52
What You May Need to Know About Removing Navigation Tabs 20-53
What You May Need to Know About the Size of Navigation Tabs 20-54
What You May Need to Know About Skinning and Navigation Tabs 20-54

Using Train Components to Create Navigation Items for a Multistep Process 20-55
How to Create the Train Model 20-60
How to Configure Managed Beans for the Train Model 20-62
How to Bind to the Train Model in JSF Pages 20-66

21 Determining Components at Runtime

About Determining Components at Runtime 21-1
Creating the Model for a Dynamic Component 21-4
How to Create the Model Without Groups 21-4
How to Create the Model Using Groups 21-7
Adding a Dynamic Component as a Form to a Page 21-9
How to Add a Dynamic Component as a Form without Groups to a Page 21-9
How to Add a Dynamic Component as a Form with Groups to a Page 21-10
Adding a Dynamic Component as a Table to a Page 21-12
How to Add a Dynamic Component as a Table Without Groups to a Page 21-13
How to Add a Dynamic Component as a Table with Groups to a Page 21-13
Using Validation and Conversion with Dynamic Components 21-15

ORACLE XVii

Using Dynamic and Static Components Together 21-16
Part V. Using ADF Data Visualization Components
272 Introduction to ADF Data Visualization Components
About ADF Data Visualization Components 22-1
Chart Component Use Cases and Examples 22-1
Picto Chart Use Cases and Examples 22-3
Gauge Component Use Cases and Examples 22-6
NBox Use Cases and Examples 22-8
Pivot Table Component Use Cases and Examples 22-11
Geographic Map Component Use Cases and Examples 22-11
Thematic Map Component Use Cases and Examples 22-12
Gantt Chart Component Use Cases and Examples 22-13
Timeline Component Use Cases and Examples 22-14
Hierarchy Viewer Component Use Cases and Examples 22-15
Treemap and Sunburst Components Use Cases and Examples 22-16
Diagram Use Cases and Examples 22-18
Tag Cloud Component Use Cases and Examples 22-21
Additional Functionality for Data Visualization Components 22-22
Common Functionality in Data Visualization Components 22-23
Content Delivery 22-23
Automatic Partial Page Rendering (PPR) 22-25
Active Data Support 22-25
Text Resources from Application Resource Bundles 22-26
Providing Data for ADF Data Visualization Components 22-27
23 Using Chart Components
About the Chart Component 23-1
Chart Component Use Cases and Examples 23-1
End User and Presentation Features of Charts 23-9
Chart Data Labels 23-9
Chart Element Labels 23-10
Chart Sizing 23-10
Chart Legends 23-11
Chart Styling 23-11
Chart Series Hiding 23-12
Chart Reference Objects 23-12
Chart Series Effects 23-13
ORACLE Xviii

Chart Series Customization
Chart Data Cursor

Chart Time Axis

Chart Categorical Axis

Chart Popups and Context Menus
Chart Selection Support
Chart Zoom and Scroll
Legend and Marker Dimming
Pie Chart Other Slice Support
Exploding Slices in Pie Charts
Active Data Support (ADS)
Chart Animation

Chart Image Formats

Additional Functionality for Chart Components

Using the Chart Component
Chart Component Data Requirements

Area, Bar, and Line Chart Data Requirements

Bubble Chart Data Requirements
Combination Chart Data Requirements
Funnel Chart Data Requirements
Pie Chart Data Requirements
Scatter Chart Data Requirements
Spark Chart Data Requirements
Stock Chart Data Requirements
Configuring Charts
How to Add a Chart to a Page

What Happens When You Add a Chart to a Page

Adding Data to Charts

How to Add Data to Area, Bar, Combination, and Line Charts

How to Add Data to Pie Charts

How to Add Data to Bubble or Scatter Charts

How to Add Data to Funnel Charts

How to Add Data to Stock Charts

How to Add Data to Spark Charts

Customizing Chart Display Elements

How to Configure Chart Labels
How to Configure Chart Data Labels
How to Configure Chart Element Labels
How to Configure Chart Axis Labels

How to Configure Chart Legends

How to Format Chart Numerical Values

ORACLE

23-13
23-14
23-15
23-16
23-18
23-18
23-19
23-20
23-21
23-22
23-22
23-23
23-23
23-23
23-24
23-24
23-25
23-25
23-25
23-26
23-26
23-26
23-26
23-26
23-27
23-31
23-34
23-34
23-34
23-38
23-41
23-44
23-46
23-49
23-53
23-53
23-54
23-56
23-57
23-58
23-60

XiX

How to Format Numeric Values on a Chart's Value, Value Label, or Axis

Values 23-62
How to Format Numeric Values on a Chart's Axis Label 23-62
How to Specify Numeric Patterns, Currency, or Percent 23-63
Customizing a Chart Axis 23-63
How to Configure a Time Axis 23-63
How to Customize the Chart Axis 23-67
Configuring Dual Y-Axis 23-71
Adding Reference Objects to a Chart 23-71
How to Add a Reference Object to a Chart 23-75
What You May Need to Know About Adding Reference Objects to Charts 23-77
How to Configure a Stacked Chart 23-77
Customizing Chart Series 23-78
How to Customize a Chart Series 23-79
How to Configure Series Fill Effects on All Series in a Chart 23-82
Customizing Chart Groups 23-83
How to Customize a Chart Group 23-83
How to Configure Hierarchical Labels Using Chart Groups 23-84
How to Configure the Pie Chart Other Slice 23-87
How to Explode Pie Chart Slices 23-88
How to Configure Animation 23-89
What You May Need to Know About Skinning and Customizing Chart Display
Elements 23-90
Adding Interactive Features to Charts 23-90
How to Add a Data Cursor 23-90
How to Configure Hide and Show Behavior 23-91
How to Configure Legend and Marker Dimming 23-93
How to Configure Selection Support 23-93
How to Configure Popups and Context Menus 23-96
How to Configure Chart Zoom and Scroll 23-97
How to Configure Chart Overview Window 23-99

24 Using Picto Chart Components

About the Picto Chart Component 24-1
Picto Chart Use Cases and Examples 24-1
End User and Presentation Features of Picto Charts 24-4
Additional Functionality for Picto Chart Components 24-5

Using the Picto Chart Component 24-6
Picto Chart Data Requirements 24-6
How to Add a Picto Chart to a Page 24-7
What Happens When You Add a Picto Chart to a Page 24-8

ORACLE XX

Configuring Picto Charts 24-8
25 Using Gauge Components

About the Gauge Component 25-1
Gauge Component Use Cases and Examples 25-1
End User and Presentation Features of Gauge Components 25-3
Gauge Shape Variations 25-4
Gauge Thresholds 25-5
Gauge Visual Effects 25-5
Active Data Support (ADS) 25-6
Gauge Animation 25-6
Gauge Tooltips 25-6
Gauge Popups and Context Menus 25-7
Gauge Value Change Support 25-7
Gauge Reference Lines (Status Meter Gauges) 25-8
Additional Functionality of Gauge Components 25-8
Using the Gauge Component 25-9
Gauge Component Data Requirements 25-9
How to Add a Gauge to a Page 25-10
What Happens When You Add a Gauge to a Page 25-12
How to Add Data to Gauges 25-12
Configuring Gauges 25-14
Configuring Dial Gauges 25-15
Configuring LED Gauges 25-15
Configuring Rating Gauges 25-15
Configuring Status Meter Gauges 25-15
Customizing Gauge Display Elements 25-16
How to Configure Gauge Thresholds 25-16
Formatting Gauge Style Elements 25-19
How to Change Gauge Size and Apply CSS Styles 25-19
How to Format Gauge Text 25-20

What You May Need to Know About Skinning and Formatting Gauge Style
Elements 25-21
How to Format Numeric Data Values in Gauges 25-22
How to Disable Gauge Visual Effects 25-23
How to Configure Gauge Animation 25-23
How to Configure Status Meter Gauge Reference Lines 25-24
Adding Interactivity to Gauges 25-25
How to Configure Gauge Tooltips 25-25
How to Add a Popup or Context Menu to a Gauge 25-26

ORACLE

XXi

How to Configure Value Change Support for a Gauge 25-27
26 Using NBox Components
About the NBox Component 26-1
NBox Use Cases and Examples 26-1
End User and Presentation Features of NBoxes 26-4
Additional Functionality for NBox Components 26-4
Using the NBox Component 26-5
NBox Data Requirements 26-5
Configuring NBoxes 26-6
How to Add an NBox to a Page 26-7
What Happens When You Add an NBox to a Page 26-9
27 Using Pivot Table Components
About the Pivot Table Component 27-1
Pivot Table and Pivot Filter Bar Component Use Cases and Examples 27-1
End User and Presentation Features of Pivot Table Components 27-4
Pivot Filter Bar 27-4
Pivoting 27-4
Editing Data Cells 27-5
Data and Header Sorting 27-7
Drilling 27-8
Scrolling and Page Controls 27-9
Persistent Header Layers 27-11
Split View of Large Data Sets 27-11
Sizing 27-13
Header Cell Word Wrapping 27-14
Active Data Support (ADS) 27-15
Additional Functionality for the Pivot Table Component 27-15
Using the Pivot Table Component 27-16
Pivot Table Data Requirements 27-17
Configuring Pivot Tables 27-17
How to Add a Pivot Table to a Page 27-18
Configuring Pivot Table Display Size and Style 27-21
What Happens When You Add a Pivot Table to a Page 27-22
What You May Need to Know About Displaying Large Data Sets 27-22
What You May Need to Know About Pivot Tables on Touch Devices 27-23
What You May Need to Know About Skinning and Customizing the Appearance
of Pivot Tables 27-23
Configuring Header and Data Cell Stamps 27-23
XXii

ORACLE

Using var and varStatus Properties 27-24
How to Configure Header and Data Cell Stamps 27-27
Using Pivot Filter Bars 27-31
Using a Pivot Filter Bar with a Pivot Table 27-32
Using a Pivot Filter Bar with a Graph 27-32
What You May Need to Know About Skinning and Customizing the Appearance
of Pivot Filter Bars 27-33
Adding Interactivity to Pivot Tables 27-33
Using Selection in Pivot Tables 27-33
Using Partial Page Rendering 27-34
Exporting from a Pivot Table 27-34
Displaying Pivot Tables in Printable Pages 27-36
Formatting Pivot Table Cell Content With CellFormat 27-36
Using a CellFormat Object for a Data Cell 27-37
Specifying a Cell Format 27-37
Configuring Stoplight and Conditional Formatting Using CellFormat 27-39
28 Using Gantt Chart Components
About the Gantt Chart Components 28-1
Gantt Chart Component Use Cases and Examples 28-2
End User and Presentation Features 28-3
Gantt Chart Regions 28-3
Information Panel 28-4
Toolbar 28-4
Scrolling, Zooming, and Panning 28-6
Showing Dependencies 28-7
Context Menus 28-8
Row Selection 28-9
Editing Tasks 28-10
Server-Side Events 28-10
Printing 28-11
Content Delivery 28-11
Additional Functionality for Gantt Chart Components 28-11
Using the Gantt Chart Components 28-12
Data for a Project Gantt Chart 28-12
Data for a Resource Utilization Gantt Chart 28-14
Data for a Scheduling Gantt Chart 28-15
Gantt Chart Tasks and Resources 28-17
Configuring Gantt Charts 28-18
How to Add a Gantt Chart to a Page 28-19
What Happens When You Add a Gantt Chart to a Page 28-22

ORACLE

XXiii

Customizing Gantt Chart Tasks and Resources 28-23

Creating a New Task Type 28-23
Configuring Stacked Bars in Resource Utilization Gantt Charts 28-24
Configuring a Resource Capacity Line 28-25
Displaying Resource Attribute Details 28-25
Configuring Background Bars in Scheduling Gantt Charts 28-27
Customizing Gantt Chart Display Elements 28-30
Customizing Gantt Chart Toolbars and Menus 28-30
Creating Custom Toolbar and Menu Items 28-33
Customizing Gantt Chart Context Menus 28-34
How to Customize the Time Axis of a Gantt Chart 28-37
Creating and Customizing a Gantt Chart Legend 28-39
How to Specify Custom Data Filters 28-40
Specifying Nonworking Days in a Gantt Chart 28-41
How to Specify Weekdays as Nonworking Days 28-41
How to Identify Specific Dates as Nonworking Days 28-42
How to Apply Read-Only Values to Gantt Chart Features 28-42
What You May Need to Know About Skinning and Customizing the Appearance
of Gantt Charts 28-46
Adding Interactive Features to Gantt Charts 28-46
Performing an Action on Selected Tasks or Resources 28-46
Using Page Controls for a Gantt Chart 28-47
Configuring Synchronized Scrolling Between Gantt Charts 28-48
Printing a Gantt Chart 28-51
Print Options 28-51
Action Listener to Handle the Print Event 28-52
Adding a Double-Click Event to a Task Bar 28-53
Using Gantt Charts as a Drop Target or Drag Source 28-53

29 Using Timeline Components

About Timeline Components 29-1
Timeline Use Cases and Examples 29-1
End User and Presentation Features 29-2

Timeline Overview Options 29-2

Layout Options 29-3
Timeline Item Selection 29-4
Content Delivery 29-4
Timeline Image Formats 29-5
Timeline Display in Printable or Emailable Pages 29-5
Additional Functionality for Timeline Components 29-6
Using Timeline Components 29-7

ORACLE XXiV

Timeline Component Data Requirements 29-7

Configuring Timelines 29-9
How to Add a Timeline to a Page 29-10
What Happens When You Add a Timeline to a Page 29-12
Adding Data to Timeline Components 29-13
How to Add Data to a Timeline 29-13
What You May Need to Know About Configuring Data for a Dual Timeline 29-15
What You May Need to Know About Adding Data to Timelines 29-16
Customizing Timeline Display Elements 29-16
Customizing Timeline Items 29-17
Configuring a Timeline Item Duration 29-17
How to Add a Custom Time Scale to a Timeline 29-18
What You May Need to Know About Skinning and Customizing the Appearance
of Timelines 29-19
Adding Interactive Features to Timelines 29-19
How to Add Popups to Timeline ltems 29-19
Configuring Timeline Context Menus 29-20

30 Using Map Components

About Map Components 30-1
Map Component Use Cases and Examples 30-1
End User and Presentation Features of Maps 30-5

Geographic Map End User and Presentation Features 30-5
Thematic Map End User and Presentation Features 30-8
Additional Functionality for Map Components 30-11

Using the Geographic Map Component 30-12
Configuring Geographic Map Components 30-12
How to Add a Geographic Map to a Page 30-14
What Happens When You Add a Geographic Map to a Page 30-17
What You May Need to Know About Active Data Support for Map Point Themes 30-18

Customizing Geographic Map Display Attributes 30-18
How to Adjust the Map Size 30-18
How to Specify Strategy for Map Zoom Control 30-19
How to Customize and Use Map Selections 30-20
How to Customize the Map Legend 30-22
What You May Need to Know About Skinning and Customizing the Appearance
of Geographic Maps 30-23

Customizing Geographic Map Themes 30-24
How to Customize Zoom Levels for a Theme 30-24
How to Customize the Labels of a Map Theme 30-24
How to Customize Color Map Themes 30-25

ORACLE XXV

How to Customize Point Images in a Point Theme 30-26
What Happens When You Customize the Point Images in a Map 30-27
How to Customize the Bars in a Bar Graph Theme 30-28
What Happens When You Customize the Bars in a Map Bar Graph Theme 30-29
How to Customize the Slices in a Pie Graph Theme 30-29
What Happens When You Customize the Slices in a Map Pie Graph Theme 30-30
Adding a Toolbar to a Geographic Map 30-30
How to Add a Toolbar to a Map 30-31
What Happens When You Add a Toolbar to a Map 30-31
Using Thematic Map Components 30-32
Configuring Thematic Maps 30-32
Using the Layer Browser 30-37
How to Add a Thematic Map to a Page 30-38
What Happens When You Add a Thematic Map to a Page 30-42
What You May Need to Know About Thematic Map Image Formats 30-43
Defining Thematic Map Base Maps 30-43
Using Prebuilt Base Maps 30-43
Defining a Custom Base Map Using Map Provider APIs 30-44
Defining a Custom Base Map Using Image Files 30-47
Customizing Thematic Map Display Attributes 30-50
How to Customize Thematic Map Labels 30-50
How to Configure Tooltips to Display Data 30-52
How to Format Numeric Data Values in Area and Marker Labels 30-53
How to Configure Thematic Map Data Zooming 30-54
How to Configure Invisible Area Layers 30-56
What You May Need to Know About Skinning and Customizing the Appearance
of a Thematic Map 30-58
Adding Interactive Features to Thematic Maps 30-58
How to Configure Selection and Action Events in Thematic Maps 30-58
How to Add Popups to Thematic Map Areas and Markers 30-60
How to Configure Animation Effects 30-64
How to Add Drag and Drop to Thematic Map Components 30-65
31 Using Hierarchy Viewer Components
About Hierarchy Viewer Components 31-1
Hierarchy Viewer Use Cases and Examples 31-1
End User and Presentation Features 31-2
Layouts 31-2
Navigation 31-5
Panning 31-5
Control Panel 31-5

ORACLE

XXVi

Printing 31-7

Bi-directional Support 31-7
State Management 31-7
Additional Functionality for Hierarchy Viewer Components 31-7
Using Hierarchy Viewer Components 31-8
Configuring Hierarchy Viewer Components 31-9
How to Add a Hierarchy Viewer to a Page 31-10
What Happens When You Add a Hierarchy Viewer to a Page 31-13
What You May Need to Know About Hierarchy Viewer Rendering and Image
Formats 31-14
Managing Nodes in a Hierarchy Viewer 31-15
How to Specify Node Content 31-16
How to Configure the Controls on a Node 31-18
Specifying a Node Definition for an Accessor 31-20
Associating a Node Definition with a Particular Set of Data Rows 31-21
How to Specify Ancestor Levels for an Anchor Node 31-21
Using Panel Cards 31-22
How to Create a Panel Card 31-22
What Happens at Runtime: How the Panel Card Component Is Rendered 31-24
Configuring Navigation in a Hierarchy Viewer 31-24
How to Configure Upward Navigation in a Hierarchy Viewer 31-25
How to Configure Same-Level Navigation in a Hierarchy Viewer 31-25
What Happens When You Configure Same-Level Navigation in a Hierarchy
Viewer 31-26
Customizing the Appearance of a Hierarchy Viewer 31-27
How to Adjust the Display Size and Styles of a Hierarchy Viewer 31-27
Including Images in a Hierarchy Viewer 31-28
How to Configure the Display of the Control Panel 31-29
How to Configure the Display of Links and Labels 31-30
How to Disable the Hover Detail Window 31-31
What You May Need to Know About Skinning and Customizing the Appearance
of a Hierarchy Viewer 31-32
Adding Interactivity to a Hierarchy Viewer Component 31-32
How to Configure Node Selection Action 31-32
Configuring a Hierarchy Viewer to Invoke a Popup Window 31-33
Configuring Hierarchy Viewer Drag and Drop 31-34
How to Configure Hierarchy Viewer Drag and Drop 31-37
What You May Need to Know About Configuring Hierarchy Viewer Drag and
Drop 31-45
Adding Search to a Hierarchy Viewer 31-45
How to Configure Searching in a Hierarchy Viewer 31-45

ORACLE XXVii

What You May Need to Know About Configuring Search in a Hierarchy Viewer 31-48

32 Using Treemap and Sunburst Components

About the Treemap and Sunburst Components 32-1
Treemap and Sunburst Use Cases and Examples 32-1
End User and Presentation Features of Treemaps and Sunbursts 32-3

Treemap and Sunburst Layouts 32-3
Attribute Groups 32-5
Legend Support 32-6
Pattern Support 32-6
Node Selection Support 32-7
Tooltip Support 32-8
Popup Support 32-8
Context Menus 32-9
Drilling Support 32-10
Other Node Support 32-13
Drag and Drop Support 32-14
Sorting Support 32-15
Treemap and Sunburst Image Formats 32-16
Advanced Node Content 32-16
Printing and Email Support 32-18
Active Data Support (ADS) 32-18
Isolation Support (Treemap Only) 32-18
Treemap Group Node Header Customization (Treemap Only) 32-19
Additional Functionality for Treemap and Sunburst Components 32-20

Using the Treemap and Sunburst Components 32-21
Treemap and Sunburst Data Requirements 32-22
Using the Treemap Component 32-23

Configuring Treemaps 32-23
How to Add a Treemap to a Page 32-24
What Happens When You Add a Treemap to a Page 32-26
Using the Sunburst Component 32-27
Configuring Sunbursts 32-27
How to Add a Sunburst to a Page 32-29
What Happens When You Add a Sunburst to a Page 32-31

Adding Data to Treemap and Sunburst Components 32-31
How to Add Data to Treemap or Sunburst Components 32-31
What You May Need to Know about Adding Data to Treemaps and Sunbursts 32-34

Customizing Treemap and Sunburst Display Elements 32-34
Configuring Treemap and Sunburst Display Size and Style 32-34

ORACLE XXViii

What You May Need to Know About Skinning and Configuring Treemap and
Sunburst Display Size and Style

Configuring Pattern Display
Configuring Treemap and Sunburst Attribute Groups
How to Configure Treemap and Sunburst Discrete Attribute Groups
How to Configure Treemap or Sunburst Continuous Attribute Groups
What You May Need to Know About Configuring Attribute Groups
How to Configure Treemap and Sunburst Legends
Configuring the Treemap and Sunburst Other Node
How to Configure the Treemap and Sunburst Other Node

What You May Need to Know About Configuring the Treemap and Sunburst
Other Node

Configuring Treemap and Sunburst Sorting

Configuring Treemap and Sunburst Advanced Node Content
How to Add Advanced Node Content to a Treemap
How to Add Advanced Root Node Content to a Sunburst:

What You May Need to Know About Configuring Advanced Node Content
on Treemaps

How to Configure Animation in Treemaps and Sunbursts
Configuring Labels in Treemaps and Sunbursts
How to Configure Treemap Leaf Node Labels
How to Configure Sunburst Node Labels
Configuring Sunburst Node Radius
How to Configure a Sunburst Node Radius
What You May Need to Know about Configuring the Sunburst Node Radius
Configuring Treemap Node Headers and Group Gap Display
How to Configure Treemap Node Headers
What You May Need to Know About Treemap Node Headers
How to Customize Treemap Group Gaps
Adding Interactive Features to Treemaps and Sunbursts
Configuring Treemap and Sunburst Tooltips
Configuring Treemap and Sunburst Popups
How to Add Popups to Treemap and Sunburst Components

What You May Need to Know About Adding Popups to Treemaps and
Sunburst Components

Configuring Treemap and Sunburst Selection Support
How to Add Selection Support to Treemap and Sunburst Components

What You May Need to Know About Adding Selection Support to Treemaps
and Sunbursts

Configuring Treemap and Sunburst Context Menus
How to Configure Treemap and Sunburst Context Menus

What You May Need to Know About Configuring Treemap and Sunburst
Context Menus

ORACLE

32-34
32-35
32-35
32-36
32-39
32-41
32-41
32-42
32-42

32-45
32-46
32-46
32-46
32-47

32-48
32-48
32-49
32-49
32-50
32-51
32-52
32-53
32-53
32-53
32-54
32-54
32-55
32-55
32-56
32-56

32-59
32-60
32-60

32-62
32-63
32-63

32-69

XXiX

Configuring Treemap and Sunburst Drilling Support 32-70
How to Configure Treemap and Sunburst Drilling Support 32-70

What You May Need to Know About Treemaps and Drilling Support 32-71

How to Add Drag and Drop to Treemaps and Sunbursts 32-71
Configuring Isolation Support (Treemap Only) 32-77
How to Disable Isolation Support 32-78

What You May Need to Know About Treemaps and Isolation Support 32-78

33 Using Diagram Components
About the Diagram Component 33-1
Diagram Use Cases and Examples 33-1
End User and Presentation Features of Diagrams 33-4
Additional Functionality for Diagram Components 33-9
Using the Diagram Component 33-10
Diagram Data Requirements 33-11
Configuring Diagrams 33-11
What You May Need to Know About Using the Default Diagram Layout 33-14
How to Add a Diagram to a Page 33-15
What Happens When You Add a Diagram to a Page 33-17
How to Create Diagram Nodes 33-17
Using the Diagram Layout Framework 33-18
Layout Requirements and Processing 33-19
Configuring Diagram Layouts 33-20
How to Register a Custom Layout 33-20
Designing Simple Client Layouts 33-21
34 Using Tag Cloud Components

About the Tag Cloud Component 34-1
Tag Cloud Use Cases and Examples 34-1
End User and Presentation Features of Tag Clouds 34-2
Additional Functionality for Tag Cloud Components 34-4
Using the Tag Cloud Component 34-5
Tag Cloud Data Requirements 34-6
How to Add a Tag Cloud to a Page 34-6
What Happens When You Add a Tag Cloud to a Page 34-7
Configuring Tag Clouds 34-7

Part VI Completing Your View

ORACLE

XXX

35

36

Customizing the Appearance Using Styles and Skins

About Customizing the Appearance Using Styles and Skins 35-1
Customizing the Appearance Use Cases and Examples 35-3
Additional Functionality for Customizing the Appearance 35-4

Changing the Style Properties of a Component 35-4
How to Set an Inline Style 35-5
How to Set a Style Class 35-6

Enabling End Users to Change an Application's ADF Skin 35-7
How to Enable End Users Change an Application's ADF Skin 35-8
What Happens at Runtime: How End Users Change an Application's ADF Skin 35-9

Using Scalar Vector Graphics Image Files 35-9

What You May Need to Know About Inline SVG Support in ADF Faces 35-10

Internationalizing and Localizing Pages

About Internationalizing and Localizing ADF Faces Pages 36-1
Internationalizing and Localizing Pages Use Cases and Examples 36-2
Additional Functionality for Internationalizing and Localizing Pages 36-3

Using Automatic Resource Bundle Integration in JDeveloper 36-3
How to Set Resource Bundle Options 36-4
What Happens When You Set Resource Bundle Options 36-5
How to Create an Entry in a JDeveloper-Generated Resource Bundle 36-6
What Happens When You Create an Entry in a JDeveloper-Generated
Resource Bundle 36-7

Manually Defining Resource Bundles and Locales 36-7
How to Create a Resource Bundle as a Property File or an XLIFF File 36-8
How to Create a Resource Bundle as a Java Class 36-10
How to Edit a Resource Bundle File 36-11
How to Register a Locale for Your Application 36-13
How to Register a Resource Bundle in Your Application 36-14
How to Use Resource Bundles in Your Application 36-15
What You May Need to Know About ADF Skins and Control Hints 36-16
What You May Need to Know About Overriding a Resource Bundle in a
Customizable Application 36-16

Configuring Pages for an End User to Specify Locale at Runtime 36-17
How to Configure a Page for an End User to Specify Locale 36-17
What Happens When You Configure a Page to Specify Locale 36-19
What Happens at Runtime: How an End User Specifies a Locale 36-20

Configuring Optional ADF Faces Localization Properties 36-20
How to Configure Optional Localization Properties 36-21

ORACLE

XXXI

37 Developing Accessible ADF Faces Pages

About Accessibility Support In ADF Faces 37-1
Additional Information for Accessibility Support in ADF Pages 37-2
Accessibility Support Guidelines at Sign-In 37-2

Specifying Component-Level Accessibility Properties 37-3
ADF Faces Component Accessibility Guidelines 37-3
Using ADF Faces Table Components with a Screen Reader 37-7
ADF Data Visualization Components Accessibility Guidelines 37-8
How to Define Access Keys for an ADF Faces Component 37-9
How to Define Localized Labels and Access Keys 37-10

Creating Accessible Pages 37-11
How to Use Partial Page Rendering 37-13
How to Use Scripting 37-13
How to Use Styles 37-16
How to Use Page Structures and Navigation 37-17
How to Use Images and Tables 37-18
How to Use WAI-ARIA Landmark Regions 37-19

Creating Accessible Active Data Components 37-20
How to Customize the Screen Reader Response for Scalar Active Data
Components 37-23
How to Customize the Screen Reader Response for Collection-Based Active
Data Components 37-24
What You May Need to Know About Pass-Through Attributes 37-27

Running Accessibility Audit Rules 37-30
How to Create an Audit Profile 37-30
How to Run Audit Report 37-31

38 Allowing User Customization on JSF Pages

About User Customization 38-1
User Customization Use Cases and Examples 38-8
Implementing Session Change Persistence 38-8
How to Implement Session Change Persistence 38-9
What Happens When You Configure Your Application to Use Change
Persistence 38-9
What Happens at Runtime: How Changes are Persisted 38-9

What You May Need to Know About Using Change Persistence on Templates
and Regions 38-9

ORACLE XXXii

39 Adding Drag and Drop Functionality
About Drag and Drop Functionality 39-1
Additional Functionality for Drag and Drop 39-4
Adding Drag and Drop Functionality for Attributes 39-5
How to add Drag and Drop Functionality 39-5
Adding Drag and Drop Functionality for Objects 39-6
How to Add Drag and Drop Functionality for a Single Object 39-7
What Happens at Runtime: How to Use Keyboard Modifiers 39-10
What You May Need to Know About Using the ClientDropListener 39-11
Adding Drag and Drop Functionality for Collections 39-11
How to Add Drag and Drop Functionality for Collections 39-12
What You May Need to Know About the dragDropEndListener 39-14
Adding Drag and Drop Functionality for Components 39-15
How to Add Drag and Drop Functionality for Components 39-16
Adding Drag and Drop Functionality Into and Out of a panelDashboard Component 39-17
How to Add Drag and Drop Functionality Into a panelDashboard Component 39-18
How to Add Drag and Drop Functionality Out of a panelDashboard Component 39-19
Adding Drag and Drop Functionality to a Calendar 39-21
How to Add Drag and Drop Functionality to a Calendar 39-21
What You May Need to Know About Dragging and Dropping in a Calendar 39-22
Adding Drag and Drop Functionality for DVT Components 39-23
Adding Drop Functionality for DVT Pareto and Stock Graphs 39-23
How to Add Drop Functionality to Pareto and Stock Graphs 39-23
Adding Drag and Drop Functionality for DVT Gantt Charts 39-25
How to Add Drag and Drop Functionality for a DVT Gantt Component 39-26
Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and
Treemaps 39-29
Drag and Drop Example for DVT Hierarchy Viewers 39-29
Drag and Drop Example for DVT Sunbursts 39-30
Drag and Drop Example for DVT Treemaps 39-31
How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer,
Sunburst, or Treemap Component 39-32
Adding Drag and Drop Functionality for Timeline Components 39-37
40 Using Different Output Modes
About Using Different Output Modes 40-1
Output Mode Use Cases 40-2
Displaying a Page for Print 40-4
How to Use the showPrintablePageBehavior Tag 40-4
Creating Emailable Pages 40-5
ORACLE XXXiii

How to Create an Emailable Page 40-6
How to Test the Rendering of a Page in an Email Client 40-7
What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable
Pages 40-8
41 Using the Active Data Service with an Asynchronous Backend
About the Active Data Service 41-1
Active Data Service Use Cases and Examples 41-2
Process Overview for Using Active Data Service 41-2
Implementing the ActiveModel Interface in a Managed Bean 41-3
What You May Need to Know About Maintaining Read Consistency 41-6
What You May Need to Know About Navigating Away From the ADS Enabled Page 41-7
Passing the Event Into the Active Data Service 41-7
Registering the Data Update Event Listener 41-8
Configuring the ADF Component to Display Active Data 41-9
Part VIl Appendices
A ADF Faces Configuration
About Configuring ADF Faces A-1
Configuration in web.xml A-1
How to Configure for JSF and ADF Faces in web.xml A-2
What You May Need to Know About Required Elements in web.xml A-3
What You May Need to Know About ADF Faces Context Parameters in web.xml
A-4
State Saving A-5
Debugging A-6
File Uploading A-6
Save Query Mode A-7
Resource Debug Mode A-7
User Customization A-8
Enabling the Application for Real User Experience Insight A-8
Assertions A-8
Dialog Prefix A-9
Compression for CSS Class Names A-9
Control Caching When You Have Multiple ADF Skins in an Application A-9
Test Automation A-9
UlViewRoot Caching A-9
Themes and Tonal Styles A-10

ORACLE

XXXIV

Partial Page Rendering
Partial Page Navigation
Postback Payload Size Optimization
JavaScript Partitioning
Framebusting
Version Number Information
Suppressing Auto-Generated Component IDs
ADF Faces Caching Filter
Configuring Native Browser Context Menus for Command Links
Internet Explorer Compatibility View Mode
Session Timeout Warning
JSP Tag Execution in HTTP Streaming
Clean URLs
Page Loading Splash Screen
Graph and Gauge Image Format
Geometry Management for Layout and Table Components
Rendering Tables Initially as Read Only
Scrollbar Behavior in Tables
Production Project Stage
Toggle Example Hints
What You May Need to Know About Other Context Parameters in web.xml
Configuration in faces-config.xml
How to Configure for ADF Faces in faces-config.xml
Configuration in adf-config.xml
How to Configure ADF Faces in adf-config.xml
Defining Caching Rules for ADF Faces Caching Filter
Configuring Flash as Component Output Format
Using Content Delivery Networks
What You May Need to Know About Skin Style Sheets and CDN

What You May Need to Know About Preparing Your Resource Files for
CDNs

Configuration in adf-settings.xml
How to Configure for ADF Faces in adf-settings.xml
What You May Need to Know About Elements in adf-settings.xml
Help System
Caching Rules
Configuration in trinidad-config.xml
How to Configure ADF Faces Features in trinidad-config.xml
What You May Need to Know About Elements in trinidad-config.xml
Animation Enabled
Skin Family

ORACLE

A-10
A-10
A-11
A-11
A-12
A-14
A-14
A-14
A-15
A-16
A-16
A-17
A-17
A-17
A-18
A-18
A-19
A-19
A-20
A-21
A-21
A-22
A-22
A-24
A-24
A-24
A-26
A-27
A-30

A-30
A-31
A-32
A-32
A-33
A-33
A-34
A-35
A-36
A-36
A-36

XXXV

Time Zone and Year A-37

Enhanced Debugging Output A-37

Page Accessibility Level A-37
Language Reading Direction A-38
Currency Code and Separators for Number Groups and Decimal Points A-38
Formatting Dates and Numbers Locale A-39

Output Mode A-39
Number of Active PageFlowScope Instances A-39

File Uploading A-39
Custom File Uploaded Processor A-40
Client-Side Validation and Conversion A-40

What You May Need to Know About Configuring a System Property A-40
Configuration in trinidad-skins.xml A-41
Using the RequestContext EL Implicit Object A-41
Performance Tuning A-44

B Message Keys for Converter and Validator Messages

About ADF Faces Default Messages B-1
Message Keys and Setter Methods B-2
Converter and Validator Message Keys and Setter Methods B-2
af:convertColor B-2
af:convertDateTime B-2
af:convertNumber B-3
af:validateByteLength B-5
af:validateDateRestriction B-5
af:validateDateTimeRange B-6
af:validateDoubleRange B-7
af:validateLength B-8
af:validateRegExp B-9

C Keyboard Shortcuts

About Keyboard Shortcuts C-1
Tab Traversal C-2
Tab Traversal Sequence on a Page C-2
Tab Traversal Sequence in a Table C-3
Shortcut Keys C-5
Accelerator Keys C-5
Access Keys C-7
Shortcut Keys for Common Components C-9

ORACLE XXXVi

Shortcut Keys for Widgets C-10

Shortcut Keys for Rich Text Editor Component C-11
Shortcut Keys for Table, Tree, and Tree Table Components C-12
Shortcut Keys for ADF Data Visualization Components C-15
Shortcut Keys for Calendar Component C-22
Default Cursor or Focus Placement C-24
The Enter Key C-25

D Creating Web Applications for Touch Devices Using ADF Faces

About Creating Web Applications for Touch Devices Using ADF Faces D-1
How ADF Faces Behaves in Mobile Browsers on Touch Devices D-1
Best Practices When Using ADF Faces Components in a Mobile Browser D-6

E Quick Start Layout Themes

F Code Samples

Samples for Chapter 4, "Using ADF Faces Client-Side Architecture" F-1
The adf-js-partitions.xml File F-1
Samples for Chapter 29, "Using Map Components" F-8
Sample Code for Thematic Map Custom Base Map F-8
Sample Code for Thematic Map Custom Base Map Area Layer F-13
Samples for Chapter 31, "Using Treemap and Sunburst Components" F-14
Sample Code for Treemap and Sunburst Census Data Example F-14
Code Sample for Sunburst Managed Bean F-20
Samples for Chapter 32, "Using Diagram Components" F-21
Code Sample for Default Client Layout F-22
Code Sample for Simple Circle Layout F-27
Code Sample for Simple Vertical Layout F-30

G Troubleshooting ADF Faces

About Troubleshooting ADF Faces G-1
Getting Started with Troubleshooting the View Layer of an ADF Application G-2
Using Test Automation for ADF Faces G-5
Enabling Test Automation for ADF Faces G-5
Simulating Mouse Events in ADF Faces Test Automation G-7
Resolving Common Problems G-9
Application Displays an Unexpected White Background G-9
Application is Missing Expected Images G-9

ORACLE XXXVii

ADF Skin Does Not Render Properly G-10

ADF Data Visualization Components Fail to Display as Expected G-10
High Availability Application Displays a NotSerializableException G-10
Unable to Reproduce Problem in All Web Browsers G-11
Application is Missing Content G-12
Browser Displays an ADF_Faces-60098 Error G-12
Browser Displays an HTTP 404 or 500 Error G-12
Browser Fails to Navigate Between Pages G-13
Using My Oracle Support for Additional Troubleshooting Information G-13

ORACLE XXXViii

Preface

Welcome to Developing Web User Interfaces with Oracle ADF Faces!

Audience

This document is intended for developers who need to create the view layer of a web
application using the rich functionality of ADF Faces components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following related documents:

ORACLE

Developing ADF Skins
Understanding Oracle Application Development Framework
Developing Applications with Oracle JDeveloper

Developing Fusion Web Applications with Oracle Application Development
Framework

Administering Oracle ADF Applications

Developing Applications with Oracle ADF Desktop Integration

Java API Reference for Oracle ADF Faces

Java API Reference for Oracle ADF Data Visualization Components
JavaScript API Reference for Oracle ADF Faces

Tag Reference for Oracle ADF Faces

Tag Reference for Oracle ADF Faces Skin Selectors

Tag Reference for Oracle ADF Faces Data Visualization Tools

Java API Reference for Oracle ADF Lifecycle

XXXIX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

» Java API Reference for Oracle ADF Resource Bundle

* Oracle JDeveloper 12c Release Notes, included with your JDeveloper 12¢
installation, and on Oracle Technology Network

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

ORACLE x|

What's New in This Guide for Release 12c
(12.2.1.4.0)

ORACLE

The following topics introduce the new and changed features of ADF Faces and other
significant changes, which are described in this guide.

New and Changed Features for Release 12¢ (12.2.1.4.0)

Oracle Fusion Middleware Release 12c¢ (12.2.1.4.0) of Oracle JDeveloper and Oracle
Application Development Framework (Oracle ADF) includes the following new and
changed development features, which are described in this guide.

Common ADF Faces Components

ADF Faces supports filtering from a list of values to search and highlight the
matched suggestion by using the new inputSearch component. You must use
the ADF inputSearch component with REST resource and inputSearch
supports tag attributes to understand REST data. See Using the InputSearch
Component.

ADF Faces supports a new streaming component in a JSF page. It allows the
components to delay their rendering until a streaming request is fulfilled. See
Using a Streaming Component to Allow Page Loading.

ADF Faces supports most recently used (MRU) suggestions lists with the new
suggestionSection component when used on a parent inputSearch
component. The component creates and manages the MRU suggestion list
based on the frequency and recentness of the suggestions used. See How to
Set Attributes of Suggestion Section.

ADF Faces supports new query component options to configure
personalization behavior for the Saved Search dropdown to optimize
performance for searches over all records. Also, you can implement an event
handler for more query operation actions, including include saving a search,
personalizing a search, and resetting a search. See Creating the Query Data
Model.

ADF Faces supports a new save query mode on the query component to

prevent users from creating a new search, updating an existing search, or
deleting an existing saved search, when the user is in preview mode. See
Save Query Mode.

ADF Faces supports a vertical compressed layout on the panelTabbed
component. See What You May Need to Know About Skinning and the
panelTabbed Component.

ADF Faces supports using inline Scalar Vector Graphics (SVG) images via
CSS and Javascript for ADF Faces components to access various elements
available within the SVG DOM. See Using Scalar Vector Graphics Image
Files. Additionally, ADF supports styling inline Scalar Vector Graphics (SVG)
by adding a style class in skin file and referencing it in the SVG content. See
What You May Need to Know About Inline SVG Support in ADF Faces.

ADF Faces supports configuring the inputDate component to show a default
value for either the date or both the date and the time. Also, you can now

41

Other Significant Changes in this Document for Release 12¢ (12.2.1.4.0)

specify the date picker functionality to expose and to optionally specify the
number of months to be shown at once in the date picker. See What You May
Need to Know About Including a Default Value for an InputDate Component
and How to Add an InputDate Component.

ADF Faces supports implementing event handlers to handle data selection in
the chooseDate component based on selection modifier keys (Ctrl and Shift
keys). See What You May Need to Know About Multi-Selection Support in the
chooseDate Component.

ADF Faces supports new web.xml context parameters to configure the session
timeout to override window timeout and to set a maximum window cache size.
See What You May Need to Know About ADF Faces Window Manager
Configuration.

Creating Your Layout

ADF supports configuring the panelFormLayout component to be responsive
so that it modifies the form layout dynamically, depending on the space
available. See What You May Need to Know About Responsive Mode in the
panelFormLayout Component.

ADF supports accessing a page from a different viewlID by using a new public
interface QueryResultsLayoutldentifier to map a logical viewID to an actual
viewID. See What You May Need to Know About Accessing a Page From a
Different View ID.

ADF Data Converters

ADF Faces supports defining value formatting for a table or chart with Active
Data Service (ADS) data by using the new
oracle._adf.view.rich.ads.USE_COMPONENT_FORMATTER context parameter in
the web.xml file. See What You May Need to Know About Custom ADF Faces
Converters.

Other Significant Changes in this Document for Release 12¢

(12.2.1.4.0)

ORACLE

For Release 12c (12.2.1.4.0), this document has been updated in several ways.
Following are the sections that have been added or changed.

Part lll Creating Your Layout

Revised a showDetailHeader component section to explain that if disclosed
property is set to false (for a collapsed state), then any validation present for child
components will not be performed as the child components are not visible. See
How to Use the showDetailHeader Component.

Part IV Using Common ADF Faces Components

Revised an LOV component section to carry forward the value entered in the input

field of inputListOfValues and inputComboboxListOfValues components to the

appropriate search field in the search dialog. See About List-of-Values
Components.

Revised a listView component section to note that you must include the fetchSize
and rows attributes on the component for the matchMediaBehavior tag to work
properly. See Achieving Responsive Behavior Using matchMediaBehavior Tag.

42

ORACLE

Other Significant Changes in this Document for Release 12¢ (12.2.1.4.0)

Part VI Completing Your View

Revised an accessibility section for active data service (ADS) components to
remove the type=email attribute on the input fields in the generated DOM sample.
Also added a note to explain that the passthrough attribute is stamped on the
outermost element. See What You May Need to Know About Pass-Through
Attributes.

Part VII Appendices

Revised a keyboard shortcuts section to include Ctrl+right arrow and Ctrl+ left
arrow to expand and collapse nodes in the TreeTable component. Also removed
references to Screen Reader Mode. See Shortcut Keys for Table, Tree, and Tree
Table Components.

43

Getting Started with ADF Faces

ORACLE

Part | introduces you to the ADF Faces components and their architecture, the ADF
Faces Components Demo application, and how to start developing with ADF Faces
using JDeveloper.

Specifically, this part contains the following chapters:

* Introduction to ADF Faces
* ADF Faces Components Demo Application

» Getting Started with ADF Faces and JDeveloper

Introduction to ADF Faces

This chapter introduces ADF Faces, providing an overview of the framework
functionality and each of the different component types found in the library.

This chapter includes the following sections:

e About ADF Faces
e ADF Faces Framework
* ADF Faces Components

For definitions of unfamiliar terms found in this and other books, see the Glossary.

About ADF Faces

ADF Faces is the view/controller part of the Oracle ADF end-to-end framework. ADF
Faces has more than 150 Ajax-enabled components that help you to quickly build
applications that are robust, responsive, and easy to use.

ADF Faces is a set of over 150 Ajax-enabled JavaServer Faces (JSF) components as
well as a complete framework, all built on top of the JSF 2.0 standard. In its
beginnings, ADF Faces was a first-generation set of JSF components, and has since
been donated to the Apache Software Foundation. That set is now known as Apache
MyFaces Trinidad (currently available through the Apache Software Foundation), and
remains as the foundation of today's ADF Faces.

With ADF Faces and the advent of JSF 2.0, you can implement Ajax-based
applications relatively easily with a minimal amount of hand-coded JavaScript. For
example, you can easily build a stock trader's dashboard application that allows a
stock analyst to use drag and drop to add new stock symbols to a table view, which
then gets updated by the server model using an advanced push technology. To close
new deals, the stock trader could navigate through the process of purchasing new
stocks for a client, without having to leave the actual page. Much of this functionality
can be implemented declaratively using Oracle JDeveloper, a full-featured
development environment with built-in support for ADF Faces components, allowing
you to quickly and easily build the view layer of your web application.

Note:

Because ADF Faces adheres to the standards of the JSF technology, this
guide is mostly concerned with content that is in addition to, or different from,
JSF standards. Therefore, you should have a basic understanding of how
JSF works before beginning to develop with ADF Faces. To learn about JSF,
see http://www.oracle.com/technetwork/java/javaee/
jJavaserverfaces-139869.html.

ORACLE 1-1

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

Chapter 1
ADF Faces Framework

ADF Faces Framework

ADF Faces is built on top of the JavaServer Faces (JSF) 2.0 framework that provides
a commercial Java framework for building enterprise applications. It provides Java EE
and web standards based application development in a productive (declarative, visual)
way.

ORACLE

ADF Faces framework offers complete rich functionality, including the following:

Built to the JavaServer Faces (JSF) 2.0 and later specification

Currently, ADF Faces supports JSF 2.2, including Facelets. Several of the JSF 2.0
features have parallel functionality in ADF Faces. To understand the functionality
introduced in JSF 2.0 and the functional overlap that exists between ADF Faces
and JSF 2.0, see the JavaServer Faces 2.0 Overview and Adoption Roadmap in
Oracle ADF Faces and Oracle JDeveloper 11g whitepaper on OTN at http://
www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-
jsf20-190927 . pdf.

Large set of fully featured rich components that are optimized to run in browsers
on a desktop or a tablet device.

The library provides over 150 Rich Internet Application (RIA) components,
including geometry-managed layout components, text and selection components,
sortable and hierarchical data tables and trees, menus, in-page dialogs, and
general controls. See ADF Faces Components. For information about running
ADF Faces on tablets, see Creating Web Applications for Touch Devices Using
ADF Faces.

Widespread Ajax support

Many ADF Faces components have ajax-style functionality implemented natively.
For example, the ADF Faces table component lets you scroll through the table,
sort the table by clicking a column header, mark a row or several rows for
selection, and even expand specific rows in the table, all without requiring the
page to be submitted to the server, and with no coding needed. In ADF Faces, this
functionality is implemented as partial page rendering (PPR), as described in
Rerendering Partial Page Content.

Limited need for developers to write JavaScript

ADF Faces hides much of the complex JavaScript from you. Instead, you
declaratively control how components function. You can implement a rich,
functional, attractive web Ul using ADF Faces in a declarative way that does not
require the use of any JavaScript at all.

That said, there may be cases when you do want to add your own functionality to
ADF Faces, and you can easily do that using the client-side component and event
framework. See Using ADF Faces Client-Side Architecture.

Enhanced lifecycle on both server and client

ADF Faces extends the standard JSF 2.0 page request lifecycle. Examples
include a client-side value lifecycle, a subform component that allows you to create
independent submittable regions on a page without needing multiple forms, and an
optimized lifecycle that can limit the parts of the page submitted for processing.
See Using the JSF Lifecycle with ADF Faces.

Event handling

1-2

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf

ORACLE

Chapter 1
ADF Faces Framework

ADF Faces adheres to standard JSF event handling techniques, as well as
offering complete a client-side event model. For information about events, see
Handling Events.

Partial page navigation

ADF Faces applications can use PPR for navigation, which eliminates the need to
repeatedly load JavaScript libraries and stylesheets when navigating between
pages. See Using Partial Page Navigation.

Client-side validation, conversion, and messaging

ADF Faces validators can operate on both the client and server side. Client-side
validators are in written JavaScript and validation errors caught on the client-side
can be processed without a round-trip to the server. See Validating and
Converting Input.

Server-side push and streaming

The ADF Faces framework includes server-side push that allows you to provide
real-time data updates for ADF Faces components, as described in Using the
Active Data Service with an Asynchronous Backend.

Active geometry management

ADF Faces provides a client-side geometry management facility that allows
components to determine how best to make use of available screen real-estate.
The framework notifies layout components of browser resize activity, and they in
turn are able to resize their children. This allows certain components to stretch or
shrink, filling up any available browser space. See Geometry Management and
Component Stretching.

Advanced templating and declarative components

You can create page templates, as well as page fragments and composite
components made up of multiple components, which can be used throughout your
application, as described in Creating and Reusing Fragments, Page Templates,
and Components.

Advanced visualization components

ADF Faces includes data visualization components, which are Flash- and PNG-
enabled components capable of rendering dynamic charts, graphs, gauges, and
other graphics that provide a real-time view of underlying data. See Using ADF
Data Visualization Components.

Skinning

You can create your own look and feel by implementing skins for ADF Faces
components. Oracle provides tools, where you can declaratively create and modify
your skins. See Customizing the Appearance Using Styles and Skins.

Output modes

You can make it so that pages that normally display in an HTML browser can be
displayed in another mode, such as email or print view, as described in Using
Different Output Modes .

Internationalization

You can configure your JSF page or application to use different locales so that it
displays the correct language based on the language setting of a user's browser,
as described in Internationalizing and Localizing Pages.

Accessibility

1-3

Chapter 1
ADF Faces Components

ADF Faces components have built-in accessibility that work with a range of
assistive technologies, including screen readers. ADF Faces accessibility audit
rules provide direction to create accessible images, tables, frames, forms, error
messages, and popup windows using accessible HTML markup. See Developing
Accessible ADF Faces Pages.

User-driven personalization

Many ADF Faces components allow users to change the display of the component
at runtime. By default, these changes live only as long as the page request.
However, you can configure your application so that the changes can be persisted
through the length of the user's session. See Allowing User Customization on JSF
Pages.

Drag and drop

The ADF Faces framework allows the user to move data from one location to
another by dragging and dropping one component onto another, as described in
Adding Drag and Drop Functionality.

Integration with other Oracle ADF technologies

You can use ADF Faces in conjunction with the other Oracle ADF technologies,
including ADF Business Components, ADF Controller, and ADF data binding. For
information about using ADF Faces with the ADF technology stack, see Creating a
Databound Web User Interface in Developing Fusion Web Applications with
Oracle Application Development FrameworKk.

Integrated declarative development with Oracle JDeveloper

JDeveloper is a full-featured development environment with built-in declarative
support for ADF Faces components, including a visual layout editor, a
Components window that allows you to drag and drop an ADF Faces component
onto a page, and a Properties window where you declaratively configure
component functionality. For information about using JDeveloper, see Getting
Started with ADF Faces and JDeveloper.

ADF Faces Components

The ADF Faces components provide numerous user-interface additives with built-in
functionality such as layout, backgrounds, data views, color, and so on that can be
customized and re-used in your application.

ORACLE

ADF Faces components generally fall into the following categories:

Layout components

Layout components act as containers to determine the layout of the page, ADF
Faces layout components also include interactive container components that can
show or hide content, or that provide sections, lists, or empty spaces. JDeveloper
provides prebuilt quick-start layouts that declaratively add layout components to
your page based on how you want the page to look. For information about layout
components and geometry management, see Organizing Content on Web Pages.

In addition to standard layout components, ADF Faces also provides the following
specialty layout components:

— Explorer-type menus and toolbar containers: Allow you to create menu bars
and toolbars. Menus and toolbars allow users to select from a specified list of

1-4

ORACLE

Chapter 1
ADF Faces Components

options (in the case of a menu) or buttons (in the case of a toolbar) to cause
some change to the application. See Using Menus, Toolbars, and Toolboxes.

— Secondary windows: Display data in popup windows or dialogs. The dialog
framework in ADF Faces provides an infrastructure to support building pages
for a process displayed in a new popup browser window separate from the
parent page. Multiple dialogs can have a control flow of their own. See Using
Popup Dialogs, Menus, and Windows.

— Core structure components and tags: Provide the tags needed to create pages
and layouts, such as documents, forms and subforms, and resources. These
tags are discussed in various chapters.

Text and selection components

These components allow you to display text, from a simple output text component
to input components, including selection components, to a complex list of value
component.

— Output components: Display text and graphics, and can also play video and
music clips. ADF Faces also includes a carousel component that can display
graphics in a revolving carousel. See Using Output Components.

— Input components: Allow users to enter data or other types of information,
such as color selection or date selection. ADF Faces also provides simple lists
from which users can choose the data to be posted, as well as a file upload
component. For information about input components, see Using Input
Components and Defining Forms .

— List-of-Values (LOV) components: Allow users to make selections from lists
driven by a model that contains functionality like searching for a specific value
or showing values marked as favorites. These LOV components are useful
when a field used to populate an attribute for one object might actually be
contained in a list of other objects, as with a foreign key relationship in a
database. See Using List-of-Values Components.

Data Views
ADF Faces provides a number of different ways to display complex data.

— Table and tree components: Display structured data in tables or expandable
trees. ADF Faces tables provide functionality such as sorting column data,
filtering data, and showing and hiding detailed content for a row. Trees have
built-in expand/collapse behavior. Tree tables combine the functionality of
tables with the data hierarchy functionality of trees. See Using Tables, Trees,
and Other Collection-Based Components.

— Data visualization components: Allow users to view and analyze complex data
in real time. ADF Data Visualization components include graphs, gauges, pivot
tables, timelines, geographic and thematic maps, Gantt charts, hierarchy
viewers, and treemap and sunbursts that display row set and hierarchical data,
for example an organization chart. See Introduction to ADF Data Visualization
Components.

— Query components: Allow users to query data. The query component can
support multiple search criteria, dynamically adding and deleting criteria,
selectable search operators, match all/any selections, seeded or saved
searches, a basic or advanced mode, and personalization of searches. See
Using Query Components.

— Specialty display components: The calendar component displays activities in
day, week, month, or list view. You can implement popup components that

1-5

ORACLE

Chapter 1
ADF Faces Components

allow users to create, edit, or delete activities. See Using a Calendar
Component. The carousel component allows you to display a collection of
images in a scrollable manner. See Displaying Images in a Carousel.

Messaging and help: The framework provides the ability to display tooltips,
messages, and help for input components, as well as the ability to display global
messages for the application. The help framework allows you to create messages
that can be reused throughout the application. You create a help provider using a
Java class, a managed bean, an XLIFF file, or a standard properties file, or you
can link to an external HTML-based help system. See Displaying Tips, Messages,
and Help.

Hierarchical menu model: ADF Faces provides navigation components that render
items such as tabs and breadcrumbs for navigating hierarchical pages. The
framework provides an XML-based menu model that, in conjunction with a
metadata file, contains all the information for generating the appropriate number of
hierarchical levels on each page, and the navigation items that belong to each
level. See Working with Navigation Components.

General controls

General controls include the components used to navigate, as well as to display
images and icons,

— Navigation components: Allow users to go from one page to the next. ADF
Faces navigation components include buttons and links, as well as the
capability to create more complex hierarchical page flows accessed through
different levels of menus. See Working with Navigation Components.

— Images and icon components: Allow you to display images as simple as icons,
to as complex as video. See Using Output Components.

Operations

While not components, these tags work with components to provide additional
functionality, such as drag and drop, validation, and a variety of event listeners.
These operational tags are discussed with the components that use them.

1-6

ADF Faces Components Demo Application

This chapter describes the ADF Faces Components Demo application that can be
used in conjunction with this developers guide.
This chapter contains the following sections:

e About the ADF Faces Components Demo Application

* Downloading and Installing the ADF Faces Components Demo Application

About the ADF Faces Components Demo Application

ORACLE

The ADF Faces Components demo application showcases the various components
and framework capabilities and allows users to try different property settings on the
selected component. The components demo is provided with full source code.

ADF Faces includes the ADF Faces Components Demo application that allows you
both to experiment with running samples of the components and architecture features
and to view the source code.

The ADF Faces Components Demo application contains the following:

e Tag guide: Demonstrations of ADF Faces components, validators, converters, and
miscellaneous tags, along with a property editor to see how changing attribute
values affects the component. Figure 2-1 shows the demonstration of the
selectManyCheckbox component. Each demo provides a link to the associated tag
documentation.

2-1

Chapter 2
About the ADF Faces Components Demo Application

Figure 2-1 Tag Demonstration

ORACL € selectManyCheckbox Demo Documentaion * Related Demos + View Source * Skin v JSOpfimization + Settings
Tag Guide @3 Alphsbstical This is a demo for the selectManyCheckbox component, Select a value from the selectianyCheckbox and use either the partial or full postback 4 Editor
command button to push the value of the selectilanyCheckbox inta the underlying model (a bean property). The outputText will display the
4 [Components “ cubmitted value. Attri -
T ributes T
b Bl Actve The value attribute in the example below is bound to a List
» [Data Visualization Tools Drinks [] coffee accessKey
= tea
4 Qnput o autoSubmit [7]
Il chooseColor
[wine changed [
[@ chooseDate
€ CodeEditor (6 ma changedDesc L
L [fizz
e8] Form 3 clientComponent [7]
i InputCol
nputcoler 7] lemonade contentstyle
@ inputDate =
i s customizationid
[inputFile
 inputhlumberSider ek disabled [7]
58 InputhumberSpinbox The submitied value was F— m
S nputRangsSiker By choosing & message type, the appropriate message wil be added to the selectlanyCheckbox.
b LAl N
[none “
InpufText
impute [fatal
e Bl eror immediate [7]
), RichTextEdtor] warming niinestyle
[SelectBooleanCheckbox [F] confirmation
(@ SelectBookanRadio [info tahel Dok
Selecttt
Qseiecttem This demo shows the selectianyCheckbox inside of a popup. ~ Show SelectManyCheckbox labelStyle
[SelectManyCheckbox
— layout vertical
& SelectManyChoice e e
HsclectiianyListhox See also: localValueSet
= editableTable
b Feature Demos 4 Container Geometry
Visual Designs Container () Stretched
@ Flowing with width (space to stretch width)
) Styles ° ’l
= % Flowing without width (minimum width}
&, Print Content | Show Attachment
» Commonly Confused (B ow men - = o

e Feature demos: Various pages that demonstrate different ways you can use ADF
components. For example, the File Explorer is an application with a live data
model that displays a directory structure and allows you to create, save, and move
directories and files. This application is meant to showcase the components and
features of ADF Faces in a working application, as shown in Figure 2-2.

ORACLE 2-2

Chapter 2
About the ADF Faces Components Demo Application

Figure 2-2 File Explorer Application

ORACLE' File Explorer Feature Demos | (8] Qracle Corporation Home Page | Page Source Template Source

Fie v Edit v Wiew v Help v
2 @ [select Skin nanamuE| Refresh E| Search 47 Bookmarkable Link

Current Location: Wy Files/Folder1

b Tag Guide 4 1 Folders —
= [l Table | [F] Tree Table = List

Feature Demos#§ Alphabetica # [My Files

@, Active Data Samples . [Folder0 View v | i Detach

W Automatic PPR il [Foider1 f— prapprs o oate Moo epertes
S ‘:J o [File1.doc 10 Document File 04/21/2016 1:57 Al Froperties
: :j i:ﬁr‘n‘«‘;::::;s\,nﬂ|i¢m.;p :j ::::; i File.html 10 HTML File 04/21/2016 1:57 AW Properties

N , [File1.pdf 10 PDF File 0412172018 1:57 AM Properties

» [Data Visualization Tools [Folders =
» [Drag and Drop [E Folders &) File1.xls 10 XLS File 04/21/2016 1:57 AW Propertiss
» (3 Dynamic Faces. [Folder7
b [Emailable Page (3 Foldera
4 [Z3)File Explorer 3 Folderd

£ [File Explorer] = » [Foldert0
b [Help and Hints * > [@Foldernt .
» [()LOV Basics » [Folder12
» [Menu Medel Usages » (3 Folder13
b [Optimized Lifecycle b [Foider14
» [Panel Springboard App » B3 Folderts
b [PostBack » [Foider16
» (2 Query Basics » [Folder17
» [Sample Page Templates » (3 Foider1s
b [Table Components Basics + » [Foider19
LI —T— » [Folder20
P Visual Designs
b Styles
» Commonly Confused b @8 Search

Other pages demonstrate the main architectural features of ADF Faces, such as
layout components, Ajax postback functionality, and drag and drop. Figure 2-3
shows the demonstration on using the AutoSubmit attribute and partial page
rendering.

ORACLE 2-3

Chapter 2
About the ADF Faces Components Demo Application

Figure 2-3 Framework Demonstration
ORACL € Autosubmit and PPR View Source , Skin , J§ Optimization , Seftings

b Tag Guide In the demos on this page we show how to

= || o
Feature Demos Hrshabetedl | picabled

Number of copies 1[a collate

Rendered

ckbax is being hidden and shown based on the numbes

Number of copies P

Switcher

Book Author

Book Title
Condition | Any condiion ¥

Reader Age All ages 7

Data Switch

San Jose

Demo - demo of autoSubmit and validation

b Visual Designs

b Styles

»C Iy C. sed G, Print Content || Show Attachment
-ommonly Confu:

* Visual designs: Demonstrations of how you can use types of components in
different ways to achieve different Ul designs. Figure 2-4 shows how you can
achieve different looks for a toolbar.

ORACLE" 2-4

Chapter 2

About the ADF Faces Components Demo Application

Figure 2-4 Toolbar Desigh Demonstration

ORACL &€ Toolbar Visual Design Demo

View Source ¥

Primary/Medium Theme

Related Links
Visual Design - bution
Component -
commandToolbarButton
Component - toolbox
Component - toolbar

Wove spiter to cause overflow!

Figure 2-5

ORACL & panelBox Demo

¥ Tag Guide
b Feature Demos

) Visual Designs

Toolbars (Primary/Medium) - Two row toolbox example, containing menuBar, menu, tookar, commandToolbarBution, commandButton, and quickQuery

7 R C . [7] unfreeze [Maximize (7 back m Refresh

Q

Objects » Wiew v Format v &

Search Employee Name |z| FirstName Lastame

Example showing commandToolbarButtons not on a toolbar
R 2 c . [[] unfreeze [Maximize (7 back m Refresh

Secondary/Light Theme

= - D)

Toolbars (Secondary/Light) - Two row toolbox example, containing menuBar, menu, toolbar, commandToolbarBution, commandButton, and quickQuery

7 R C . [1] unfreeze [Maximize (back m Refresh

E FirstName LastName Q

Objects v View v Format v ©
Search Employes Name

Example showing commandToolbarButtons not on a toolbar

R 2 %R C . [Unfreeze [} Maximize

o o Y

Default Theme

Toolbars (Defaut Theme) - Twa row toolbox example, containing menuBar, menu, toolbar, commangToolbarButton, commandBution, and quickQuery

B Zrc . [Unfreeze i Maximize back m Refresh

qQ

Objects v View v Format v E

Search Employee Name E Firstlame LastName

Example showing commandToolbarButtons not on & toolbar

Z|%|c . (] Unfreeze | (3 Maximize

o [=@

bac

Skin v JSOptimization v Settings ¥

Find

Bl = @ e

ack m [@5 TextButton

o O] = @ | rescouton

Styles: Demonstration of how setting inline styles and content styles affects
components. Figure 2-5 shows different styles applied to the panelBox component.

Styles Demonstration

Documentation v Related Demos v View Source v

‘This page demos the effect various contentStyle and inineStyle parameters have on this component.

Skin

Editor

JS Optimization v Seftings +

*1 and*C represent inline Style and contentStyle,

4 PanelBox Text

[CPanelBex Content
Styles 443 Alphabetical B Au
4 [Styles. = =

b [Active o

» Edinput

4 [3Layout

3 DecorativeBox

® Deck

[Group

& MasonryLayout
Bl Paneiaccordion
[PaneBorderLayout
[PanelBox

[E8l PanelDashboard
PaneFormLayout

anelGroupLayout

'C) PanelHeader

g PanelLabelindMessage

= PanelList

[raneispitter

iy PanelStretchLayout
[Panefmabbed

b ShowDetal

'E ShowDetaiHeader
(3 ShowDetailtem

» Commeonly Confused

ORACLE"

I

OO OO0 0O0O0O0O0O0O0COEOOGEGEOEO

&, Print Content Show Attachment

©

respectively.

B An

[F] Text—=Color—> color:Aqua;

[C] Text—=Size—> font-size:iarge;

[F] Text—>Bokd—> font-weight:bold;

[Text—>Decoration— text-decorationine-throu
[F] Text—=Font—= font-family Times Hew Roman;
[C] Text—>ttalic—> font-styleitalic;

[C] Text—=Horizontal Align—= text-align:right;

[C] Text—=Vertical Align—> vertical-align:super;

Background—>Color—> background-color:Red

[Background—»Repeat— background-repeatr
[T] Background—rimage—= fimages/CoffeeBean.b
[F] Box—=Width—> width:250px;

[C] Box—Height—> height:50px;

[C] Box—=Border Color—> border-color:Lime;

[Box—»Border Width— border-width:thick;

[7] Box—»Border Style—> border-style:dotted;

[F] Box—sOutine Style—> outine-style:double;

[[] Box—=Outline Color—= outiine-color:Fuchsia;
[F] Box—=Outine Widtn—> outine-width:medium,
[C] Box—>Padding—> padding:20px;

[] Box—=Margin—= margin:20px;

[Classification—sList Type—» list-style-type:upp

[[] Classification—>List Image—= list-style-image:n

i] ’

Commonly confused components: A comparison of components that provide
similar functionality. Figure 2-6 shows the differences between the various

components that display selection lists.

2-5

Chapter 2
About the ADF Faces Components Demo Application

Figure 2-6 Commonly Confused Components

ORACL €' Choice Comparison View Source * Skin v JSOptimization ¥ Settings

} Tag Guide

» Feature Demos

b Visual Designs

b Styles

Commonly Confused
4 [Commonly Confused

[checkboxes

B e
@ Command Buttons
(@) Radio Buttons

af:inputComboboxListOfValues
* LOVs are editable components that are model-driven and should be used with larger datasets as they allow the user to launch a popup and further restrict the dataset by fitering it

- LOV components support functionalties such as auto-complete and provide developers the aiity to create new data by wiring their 0w DopUp Components.
Ename [|abdulz

af:selectOneChoice
= The selectOneChoice component creates a menu-style component, which allows the user to select a single value from a list of items.

« It can contain any number of <f.selecttem, <f or < each of which represents an available option that the user may select.

» afselectOneChoice can be model-driven or data-driven but should be used with smaller datasets. If a large number of items is desired, it is recommended to use afinputComboboxListO fValues instead.

wies [

afinputListOfValues
 LOVs are editable components that are model-driven and should be used with larger datasets as they allow the user to launch a popup and further restrict the dataset by fitering it

[E8 s econdary Windowe « LOV components support functionalties such as auto-complete and provide developers the abity to create new data by wiring their own popup components.

ETabs
[E] terators

ORACLE

+ afinpuiComboboxListOMValues supports a most-recently-used (aka WRU or Favories) feature that alows it to remember a pre-configured number of selections in the drop-down
Ename 2,
Y secalso
« inpuListOTValues
+ selectonechoice
« inpuiComboboxListOfValues
+ ediableTable
~ afiquery (SeiECtONEChoICe IS USEd for operator and saved query seiection)
» afinpuiDate (selectOneChoice is used for monih selection)

» africhTextEditor (selectOneChoice is used for font selection)

&, Print Content ~ Show Attachment

Additional Components of the File Explorer in the Demo Application

Because the File Explorer is a complete working application, many sections in this
guide use that application to illustrate key points, or to provide code samples. The
source for the File Explorer application can be found in the fileExplorer directory.

The File Explorer application uses the fileExplorerTemplate page template. This
template contains a number of layout components that provide the basic look and feel
for the application. For information about layout components, see Organizing Content
on Web Pages. For information about using templates, see Creating and Reusing
Fragments, Page Templates, and Components.

The left-hand side of the application contains a panelAccordion component that holds
two areas: the directory structure and a search field with a results table, as shown in
Figure 2-7.

Figure 2-7 Directory Structure Panel and Search Panel

4 % Folders
4 [Ny Files. -
[Folderd

[[Foldert

(] Folder2

m

[Folder3
[Foldera
[Folders
[Folders
[Folder?
[Folders
4 @ Search

JAll OF part of the file name

What type of File? E
b When was it modified?

b What size is it?

Search

2-6

Chapter 2
About the ADF Faces Components Demo Application

You can expand and collapse both these areas. The directory structure is created
using a tree component. The search area is created using input components, a
button, and a table component. For information about using panelAccordion
components, see Displaying or Hiding Contents in Panels. For information about using
input components, see Using Input Components and Defining Forms . For information
about using buttons, see Working with Navigation Components. For information about
using tables and trees, see Using Tables, Trees, and Other Collection-Based
Components.

The right-hand side of the File Explorer application uses tabbed panes to display the
contents of a directory in either a table, a tree table or a list, as shown in Figure 2-8.

Figure 2-8 Directory Contents in Tabbed Panels

B Table [Z] Tree Table = List
View » = Detach
Hame & ihe Type

(KB)

[w] File1.doc 10 Document File
[@] File1.htm 10 HTML File
D File1.pdf 10 PDF File

[File1 xis 10 XLS File

The table and tree table have built-in toolbars that allow you to manipulate how the
contents are displayed. In the table an list, you can drag a file or subdirectory from one
directory and drop it into another. In all tabs, you can right-click a file, and from the
context menu, you can view the properties of the file in a popup window. For
information about using tabbed panes, see Displaying or Hiding Contents in Panels.
For information about table and tree table toolbars, see Displaying Table Menus,
Toolbars, and Status Bars. For information about using context menus and popup
windows, see Using Popup Dialogs, Menus, and Windows.

The top of the File Explorer application contains a menu and a toolbar, as shown in
Figure 2-9.

Figure 2-9 Menu and Toolbar

iR 8 Edit v View v Help »
New L File... Ctrl+N
8 Delete Folder CtrisT

Quit

ORACLE 2.7

ORACLE

Chapter 2
About the ADF Faces Components Demo Application

The menu options allow you to create and delete files and directories and change how
the contents are displayed. The Help menu opens a help system that allows users to

provide feedback in dialogs, as shown in Figure 2-10.

Figure 2-10 Help System

Help

P~ Email Customer Service ﬂ Speak with Customer Service iy Ratethe Site # UserPolls

Email to FileExplorer.com Customer Service
To: FileExplorer.com Customer Service
Hame:

Email Address:

-
Issue: B

Email E| ol ol
Message:

B I U S & & =

[
'@
]
S
4
ae
H
4

I
+
I
\ 4
1
e
R
o
5

Attachment: | Browse... | Mo file selected.
3

4| 1

Submit Reset Cancel

The help system consists of a number of forms created with various input components,
including a rich text editor. For information about menus, see Using Menus in a Menu
Bar. For information about creating help systems, see Displaying Help for
Components. For information about input components, see Using Input Components

and Defining Forms .

Within the toolbar of the File Explorer are controls that allow you navigate within the
directory structure, as well as controls that allow you to change the look and feel of the
application by changing its skin. Figure 2-11 shows the File Explorer application using

the simple skin.

2-8

Chapter 2
Downloading and Installing the ADF Faces Components Demo Application

Figure 2-11 File Explorer Application with the Simple Skin

s s
ORACLE' File Explorer Feature Demos | (& Oracle Corporation Home Page | Page Source | Template Source o
File~ Edit~ View~ Help~ 3
[O] O selectskin [simple || Refresn| | =l [Search | & Bookmarkable Link
Current Location: My Files/Foldert
1= Tag Guide = B Folders il Table (3] Tree Table = List
Feature Demosdf) [My Files ewe ‘ e Deiaat]
=1 (3 Active Data Service [Foldero A
® Active Data Samples =] Name &% | 4 o) Trpe Date Modified | Properties
® Automatic PPR [Folder2 - 426201 203
1 B3 Changed Indicator [Folder2 [File1... 10|Document .| Properties
1 [Client Behaviors [Folderd . 04/26/2016 2:03
- @ Filel.. | 10/ HTHLFile Properties
F1 2 Converters and Validators [Folders A
1 [Data Visualization Tools [53 Folders B Fiet. | 10/POFFile Eﬁ/zs/zmsz 03 |oropertios
f= 3 Drag and Drop (3 Folder7 M p
7 [Dynamic Faces (3 Folder8 [File1xs| 10|XLS File E;fmm“ 3 |properties
1 £ Emailable Page [Folders
[=1 C3 File Explorer @ [Foldert0
EA[File Explorer] @ [Foldertt
I [Help and Hints [Folder12
= B3 LOV Basics & [Foldert
f 3 Menu Model Usages =@ Fu\demf
[3 Optimized Lifecycle @ [Foldert5
[(3 Panel Springboard App @ [Folder16
[£2 PostBack [Foldert?
7 3 Query Basics [Folder1s
I (3 Sample Page Templates & [Folder19
s 3 Table Components Basics [® (5 Folder20
@ Visual Designs
= Styles.
= Commonly Confused {71 @ Search

For information about toolbars, see Using Toolbars. For information about using skins,
see Customizing the Appearance Using Styles and Skins.

Downloading and Installing the ADF Faces Components
Demo Application

You can download and install the ADF Faces Components Demo application from
Oracle Technology Network (OTN) web site; you can open and view the demo using
JDeveloper when you want to view samples of ADF Faces components and to
understand features.

In order to view the demo application (both the code and at runtime), install
JDeveloper, and then download and open the application within JDeveloper.

You can download the ADF Faces Components Demo application from the Oracle
Technology Network (OTN) web site. Navigate to http://www.oracle.com/
technetwork/developer-tools/adf/overview/ index-092391.html and click the
ADF Faces Components Demo link in the Download section of the page. The
resulting page provides detailed instructions for downloading the WAR file that
contains the application, along with instructions for deploying the application to a

standalone server, or for running the application using the Integrated WebLogic Server
included with JDeveloper.

If you do not want to install the application, you can run the application directly from
OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.

ORACLE 2-9

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html

Getting Started with ADF Faces and
JDeveloper

This chapter describes how to use JDeveloper to declaratively create ADF Faces
applications.
This chapter includes the following sections:

e About Developing Declaratively in JDeveloper
e Creating an Application Workspace

» Defining Page Flows

e Creating a View Page

e Creating EL Expressions

e Creating and Using Managed Beans

e Viewing ADF Faces Javadoc

About Developing Declaratively in JDeveloper

ORACLE

The ADF framework provides a visual and declarative approach to Java EE
development. It supports rapid application development based on ready-to-use design
patterns, metadata-driven and visual tools.

Using JDeveloper with ADF Faces and JSF provides a number of areas where page
and managed bean code is generated for you declaratively, including creating EL
expressions and automatic component binding. Additionally, there are a number of
areas where XML metadata is generated for you declaratively, including metadata that
controls navigation and configuration.

At a high level, the development process for an ADF Faces view project usually
involves the following:

» Creating an Application Workspace
» Defining Page Flows
» Creating a View Page using either Facelets or JavaServer Pages (JSPs).

» Deploying the application. See Deploying ADF Applications in Administering
Oracle ADF Applications. If your application uses ADF Faces with the ADF Model
layer, ADF Controller, and ADF Business Components, see Deploying Fusion
Web Applications in Developing Fusion Web Applications with Oracle Application
Development Framework.

Ongoing tasks throughout the development cycle will likely include the following:
e Creating and Using Managed Beans
e Creating EL Expressions

e Viewing ADF Faces Javadoc

3-1

Chapter 3
Creating an Application Workspace

JDeveloper also includes debugging and testing capabilities. See Testing and
Debugging ADF Components in Developing Fusion Web Applications with Oracle
Application Development Framework.

Creating an Application Workspace

An application workspace is a directory that helps the ADF application developer to
gather various source code files and resources and work with them as a cohesive unit.
It is the one of the first steps in building a new application.

The first steps in building a new application are to assign it a name and to specify the
directory where its source files will be saved. You can either create an application that
just contains the view layer, or you can add an ADF Faces project to an existing
application.

" Note:

This document covers only how to create the ADF Faces project in an
application, without regard to the business services used or the binding to
those services. For information about how to use ADF Faces with the ADF
Model layer, ADF Controller, and ADF Business Components, see Getting
Started with Your Web Interface in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Create an ADF Faces Application Workspace

You create an application workspace using the Create Application wizard.

To create an application:

1.
2.
3.

ORACLE

In the menu, choose File > New > Application.
In the New Gallery, select Custom Application and click OK.

In the Create Custom Application dialog, set a name, directory location, and
package prefix of your choice and click Next.

In the Name Your Project page, you can optionally change the name and location
for your view project. On the Project Features tab, shuttle ADF Faces to Selected.
The necessary libraries and metadata files for ADF Faces will be added to your
project. Click Next.

In the Configure Java Settings page, optionally change the package name, Java
source path, and output directory for any Java classes you might create. Click
Finish.

3-2

Chapter 3
Creating an Application Workspace

Q Tip:

You can also add ADF Faces to an existing project (for example, a view
project in a JEE web application). To do so:

a. Right-click the project and choose Project Properties.

b. In the Project Properties dialog, select Features, then click the Add
(green plus) icon, and shuttle ADF Faces to the Selected pane.

What Happens When You Create an Application Workspace

When you create an application workspace using the Custom template, and then
select ADF Faces for your project, JDeveloper creates a project that contains all the
source and configuration files needed for an ADF Faces application. Additionally,
JDeveloper adds the following libraries to your project:

e JSF2.2
e JSTL1.2
 JSP Runtime

Once the projects are created for you, you can rename them. Figure 3-1 shows the
workspace for a new ADF Faces application.

Figure 3-1 New Workspace for an ADF Faces Application

@ Oracle IDeveloper 12c Development Build - AbramsTestNewApp,ws : ProjectLjpr . =B8] %
L
File Edit View Application Refactor Search Mavigate Build Run Team Tools Window Help
DHE 9@ Q-O- aWS > & DEA Qu Search
Applications ® Start Page —
AbramsTesthewApp v ¥
=l Projects Bl&- V- E- @ JDEVELOPER ORACLE
-5 Project1
=1 Web Content
-0 WEB-INF Learn & Explore Get Started Community
E faces-config. xml
[web,xml
-] Page Flows .
What's New Featured Tutorials Featured Documentation
Release Notes Getting Started with the JDeveloper IDE Oracle JDeveloper User's Guide
Developing Rich Web Applications with Oracle ADF Oracle ADF Fusion Developer's Guide
Samples
+| Application Resources Designing and Building Database Tables Orade ADF Web User Interface Developer's Guide
| Recent Files Fom—
Building a Simple JSF Application Oracle ADF Mabile Browser Developer's Guide
Projectt jpr - Structure
Building and Using Web Services Oracle JDeveloper Extension Developer's Guide
Messages - Log
Bug 17, 2012 5:08:57 PM oracle_security jps.util. JpsUtil disableludit
INFQ: JpsUtil: isZuditDisabled set to true
Messages Extensions -
DAO i j y \pp'\Project \Project 1 jpr &

ORACLE 3-3

Chapter 3
Defining Page Flows

JDeveloper also sets configuration parameters in the configuration files based on the
options chosen when you created the application. In the web.xml file, these are
configurations needed to run a JSF application (settings specific to ADF Faces are
added when you create a JSF page with ADF Faces components). Following is the
web.xml file generated by JDeveloper when you create a new ADF Faces application.

<?xml version = "1.0" encoding = “windows-1252%?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www._w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3 0.xsd"
version="3.0">
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
</web-app>

Configurations required for specific ADF Faces features are covered in the respective
chapters of this guide. For example, any configuration needed in order to use the
Change Persistence framework is covered in Allowing User Customization on JSF
Pages. For comprehensive information about configuring an ADF Faces application,
see ADF Faces Configuration.

Defining Page Flows

Defining the page flow of your ADF Faces application refers to how the Ul elements
are arranged in pages, designing the right sequence of pages, how pages interact with
each other and how they can be modularized and communicate with each other as
well. Navigation cases and rules are used to define the page flow.

Once you create your application workspace, often the next step is to design the flow
of your Ul. As with standard JSF applications, ADF Faces applications use navigation
cases and rules to define the page flow. These definitions are stored in the faces-
config.xml file. JDeveloper provides a diagrammer through which you can
declaratively define your page flow using icons.

Figure 3-2 shows the navigation diagram created for a simple page flow that contains
two pages: a DisplayCustomer page that shows data for a specific customer, and an
EditCustomer page that allows a user to edit the customer information. There is one
navigation rule that goes from the display page to the edit page and one navigation
rule that returns to the display page from the edit page.

ORACLE 3-4

Chapter 3
Defining Page Flows

Figure 3-2 Navigation Diagram in JDeveloper

edit

Ll

e

back

/DisplayCustomer jsf [EditCustomer.jsf

< Note:

If you plan on using ADF Model data binding and ADF Controller, then you
use ADF task flows to define your navigation rules. See “Getting Started with
ADF Task Flows" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Best Practice:

ADF Controller extends the JSF default controller. While you can technically
use the JSF controller and ADF Controller in your application, you should
use only one or the other.

With the advent of JSF 2.0, you no longer need to create a navigation case for simple
navigation between two pages. If no matching navigation case is found after checking
all available rules, the navigation handler checks to see whether the action outcome
corresponds to a view ID. If a view matching the action outcome is found, an implicit
navigation to the matching view occurs. For information on how navigation works in a
JSF application, see the Java EE 6 tutorial (http://download.oracle.com/javaee/
index.html).

How to Define a Page Flow

ORACLE

You use the navigation diagrammer to declaratively create a page flow using Facelets
or JSPX pages. When you use the diagrammer, JDeveloper creates the XML
metadata needed for navigation to work in your application in the faces-config.xml
file.

Before you begin:

It may be helpful to have an understanding of page flows. For information, see
Defining Page Flows.

To create a page flow:

1. In the Applications window, double-click the faces-config.xml file for your
application. By default, this is in the Web Content/WEB-INF node of your project.

3-5

http://download.oracle.com/javaee/index.html
http://download.oracle.com/javaee/index.html

Chapter 3
Defining Page Flows

2. In the editor window, click the Diagram tab to open the navigation diagrammer.

3. If the Components window is not displayed, from the main menu choose Window
> Components. By default, the Components window is displayed in the upper
right-hand corner of JDeveloper.

4. In the Components window, use the dropdown menu to choose ADF Task Flow.

The components are contained in three accordion panels: Source Elements,
Components, and Diagram Annotations. Figure 3-3 shows the Components
window displaying JSF navigation components.

Figure 3-3 Components in JDeveloper

Components
Q-
ADF Task Flow =

+| Source Elements
=| Components

Activities

=
Method Call Parent Action
@ 2
Router Save Point
Restore
% X
Task Flow Task Flow
Call Return
Z =2
URL View View

rnteal Fla
+| Diagram Annotations

5. Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

Tip:
You can also use the overview editor to create navigation rules and

navigation cases by clicking the Overview tab. For help with the editor, click
Help or press F1.

Additionally, you can manually add elements to the faces-config.xml file by
directly editing the page in the source editor. To view the file in the source
editor, click the Source tab.

Once the navigation for your application is defined, you can create the pages and add
the components that will execute the navigation. For information about using
navigation components on a page, see Working with Navigation Components.

What Happens When You Use the Diagrammer to Create a Page Flow

When you use the diagrammer to create a page flow, JDeveloper creates the
associated XML entries in the faces-config.xml file. This code shows the XML
generated for the navigation rules displayed in Figure 3-2.

ORACLE 3-6

Chapter 3
Creating a View Page

<navigation-rule>
<from-view-id>/DisplayCustomer</from-view-id>
<navigation-case>
<from-outcome>edit</from-outcome>
<to-view-id>/EditCustomer</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/EditCustomer</from-view-id>
<navigation-case>
<from-outcome>back</from-outcome>
<to-view-id>/DisplayCustomer</to-view-id>
</navigation-case>
</navigation-rule>

Creating a View Page

ORACLE

The JSF pages you create for your ADF Faces application using JavaServer Faces
can be Facelets documents (.jsf) or ISP documents written in XML syntax (.jspx).You
can define the look and feel for the new page, and you can specify whether or not
components on the page are exposed in a managed bean, to allow programmatic
manipulation of the Ul components.

From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSF page files. You can choose to create either a
Facelets page or a JSP page. Facelet pages use the extension *. jsf. Facelets is a
JSF-centric declarative XML view definition technology that provides an alternative to
using the JSP engine.

If instead you create a JSP page for an ADF Faces application, you create an XML-
based JSP document, which uses the extension *. jspx. Using an XML-based
document has the following advantages:

» It simplifies treating your page as a well-formed tree of Ul component tags.
* It discourages you from mixing Java code and component tags.

* It allows you to easily parse the page to create documentation or audit reports.

" Best Practice:
Use Facelets to take advantage of the following:

e The Facelets layer was created specifically for JSF, which results in
reduced overhead and improved performance during tag compilation and
execution.

* Facelets is considered the primary view definition technology in JSF 2.0.

e Some future performance enhancements to the JSF standard will only
be available with Facelets.

ADF Faces provides a number of components that you can use to define the overall
layout of a page. JDeveloper contains predefined quick start layouts that use these
components to provide you with a quick and easy way to correctly build the layout.
You can choose from one, two, or three column layouts, and then determine how you

3-7

ORACLE

Chapter 3
Creating a View Page

want the columns to behave. For example, you may want one column's width to be
locked, while another column stretches to fill available browser space. Figure 3-4
shows the quick start layouts available for a two-column layout with the second column
split between two panes. For information about the layout components, see Organizing
Content on Web Pages.

Figure 3-4 Quick Layouts

(") Create Blank Page (_) Reference ADF Page Template (=) Copy Quick Start Layout

Categories Types Description

One Column (Scroll)

|:| ! G Fixe
v o

Two Column

Ll

Three Column

Layouts

~| Apply color theme to layout components

" Best Practice:

Creating a layout that works correctly in all browsers can be time consuming.
Use a predefined quick layout to avoid any potential issues.

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Quick Start
Layout Themes. For information about themes, see Customizing the Appearance
Using Styles and Skins

When you know you want to use the same layout on many pages in your application,
ADF Faces allows you to create and use predefined page templates. When creating
templates, the template developer can not only determine the layout of any page that
will use the template, but can also provide static content that must appear on all
pages, as well as create placeholder attributes that can be replaced with valid values
for each individual page.

For example, ADF Faces ships with the Oracle Three-Column-Layout template. This
template provides areas for specific content, such as branding, a header, and

3-8

Chapter 3
Creating a View Page

copyright information, and also displays a static logo and busy icon, as shown in
Figure 3-5.

Figure 3-5 Oracle Three Column Layout Template

OoRACLE o

Page def unidation
EC validation i table
Master Drtail

bl R -

Faarm-tubie
Tree
Tree table

Whenever a template is changed, for example if the layout changes, any page that
uses the template will also be automatically updated. For information about creating
and using templates, see Using Page Templates.

" Best Practice:

Use templates to ensure consistency and so that in the future, you can easily
update multiple pages in an application.

At the time you create a JSF page, you can also choose to create an associated
backing bean for the page. Backing beans allow you to access the components on the
page programmatically. For information about using backing beans with JSF pages,
see What You May Need to Know About Automatic Component Binding.

" Best Practice:

Create backing beans only for pages that contain components that must be
accessed and manipulated programmatically. Use managed beans instead if
you need only to provide additional functionality accessed through EL
expressions on component attributes (such as listeners).

Once your page files are created, you can add Ul components and work with the page
source.

ORACLE 3-9

Chapter 3
Creating a View Page

How to Create JSF Pages

You create JSF pages (either Facelets or JSP) using the Create JSF Page dialog.
Before you begin:

It may be helpful to have an understanding of the different options when creating a
page. See Creating a View Page.

To create a JSF page:

1. Inthe Applications window, right-click the node (directory) where you would like
the page to be saved, and choose New > Page.

OR

From a navigation diagram, double-click a page icon for a page that has not yet
been created.

2. Complete the Create JSF Page dialog. For help, click Help in the dialog. For
information about the Managed Bean page, which can be used to automatically
create a backing bean and associated bindings, see What You May Need to Know
About Automatic Component Binding.

" Note:

While a Facelets page can use any extension you'd like, a Facelets page
must use the . jsT extension to be customizable. See Allowing User
Customization on JSF Pages.

What Happens When You Create a JSF Page

ORACLE

When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates
the physical file and adds the code necessary to import the component libraries and
display a page. The code created depends on whether or not you chose to create a
Facelets or JSP page.

The following shows the code for a Facelets page when it is first created by
JDeveloper.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html>
<f:view xmIns:f="http://java.sun.com/jsf/core" xmlns:af="http://xmlns.oracle.com/adf/
faces/rich">

<af:document title="DisplayCustomer._jsf" id="d1">

<af:form id="f1"></af:form>

</af:document>

</f:view>

Below is the code for a . jspx page when it is first created by JDeveloper.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page" version="2_.1" xmlns:f="http://
java.sun.com/jsf/core”
xmIns:af="http://xmIns.oracle.com/adf/faces/rich">
<jsp:directive._page contentType="text/html;charset=UTF-8"/>

3-10

Chapter 3
Creating a View Page

<f:view>
<af:document title="EditCustomer" id="d1">
<af:form id="f1"></af:form>
</af:document>
</f:view>
</jsp:root>

If you chose to use one of the quick layouts, then JDeveloper also adds the
components necessary to display the layout. For example, the code below is what
JDeveloper generates when you choose a two-column layout where the first column is
locked and the second column stretches to fill up available browser space, and you
also choose to apply themes.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
<jsp:directive.page contentType="text/html;charset=UTF-8"/>
<f:view>
<af:document title="EditCustomer" id="d1">
<af:form id="f1">
<af:panelGridLayout id="pgll">
<af:gridRow height="100%" id="gr1">
<af:gridCell width="100px" halign="stretch"
valign="stretch" id="gcl">
<I-- Left -->
</af:gridCell>
<af:gridCell width="100%" halign="stretch"
valign="stretch" id="gc2">
<af:decorativeBox theme="dark" id="db2">
<f:facet name="center">
<af:decorativeBox theme="medium" id="dbl">
<f:facet name="center">
<I-- Content -->
</f:facet>
</af:decorativeBox>
</f:facet>
</af:decorativeBox>
</af:gridCell>
</af:gridRow>
</af:panelGridLayout>
</af:form>
</af:document>
</f:view>
</jsp:root>

If you chose to automatically create a backing bean using the Managed Bean tab of
the dialog, JDeveloper also creates and registers a backing bean for the page, and
binds any existing components to the bean, as shown in the code below.

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;

public class MyFile {
private RichForm f1;
private RichDocument d1;

public void setF1(RichForm 1) {
this.fl = f1;

ORACLE 3-11

ORACLE

}

public RichForm getF1() {
return f1;

}

public void setD1(RichDocument d1) {
this.documentl = di;

}

public RichDocument getD1() {
return di;

}

Tip:

Chapter 3
Creating a View Page

You can access the backing bean source from the JSF page by right-clicking
the page in the editor, and choosing Go to and then selecting the bean from

the list.

Additionally, JDeveloper adds the following libraries to the view project:

ADF Faces Runtime 11

ADF Common Runtime

ADF DVT Faces Runtime

ADF DVT Faces Databinding Runtime

ADF DVT Faces Databinding MDS Runtime
Oracle JEWT

JDeveloper also adds entries to the web.xml file. Following is the web.xml file created
once you create a JSF page.

<?xml version = "1.0" encoding = "windows-1252"?>
<web-app xmIns="http://java.sun.com/xml/ns/javaee” xmIns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3 0.xsd"
version="3.0">
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>resources</servlet-name>
<servlet-class>
org.apache.myfaces.trinidad.webapp.ResourceServiet
</servlet-class>
</servlet>
<servlet>
<servlet-name>BIGRAPHSERVLET</servlet-name>

<servlet-class>oracle.adf.view.faces.bi.webapp.GraphServlet</servlet-class>

</servlet>
<servlet>

3-12

ORACLE

Chapter 3
Creating a View Page

<servlet-name>BIGAUGESERVLET</servlet-name>
<servlet-class>oracle.adf.view.faces.bi.webapp.GaugeServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>MapProxyServlet</servlet-name>
<servlet-class>oracle.adf.view.faces.bi.webapp.MapProxyServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/afr/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>BIGRAPHSERVLET</servlet-name>
<url-pattern>/servlet/GraphServlet/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>BIGAUGESERVLET</servlet-name>
<url-pattern>/servlet/GaugeServlet/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>MapProxyServlet</servlet-name>
<url-pattern>/mapproxy/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/bi/*</url-pattern>
</servlet-mapping>
<context-param>
<param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
<param-value>*_jsf;*.xhtml</param-value>
</context-param>
<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>
</context-param>
<context-param>
<param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<description>If this parameter is true, there will be an automatic check of the
modification date of your JSPs, and saved state will be discarded when JSP"s change.
It will also automatically check if your skinning css files have changed without you
having to restart the server. This makes development easier, but adds overhead. For
this reason this parameter should be set to false when your application is
deployed.</description>
<param-name>org.apache .myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
<param-value>false</param-value>
</context-param>
<context-param>
<description>Whether the "Generated by..." comment at the bottom of ADF Faces
HTML pages should contain version number information.</description>
<param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>

3-13

ORACLE

Chapter 3
Creating a View Page

<param-value>false</param-value>
</context-param>
<context-param>
<description>Security precaution to prevent clickjacking: bust frames if the
ancestor window domain(protocol, host, and port) and the frame domain are different.
Another options for this parameter are always and never.</description>
<param-name>org.apache.myfaces.trinidad.security.FRAME_BUSTING</param-name>
<param-value>differentOrigin</param-value>
</context-param>
<context-param>
<param-name>javax.faces.VALIDATE_EMPTY_FIELDS</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS</param-name>
<param-value>auto</param-value>
</context-param>
<context-param>
<param-name>javax.faces.FACELETS_SKIP_XML_INSTRUCT IONS</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>javax.faces.FACELETS_DECORATORS</param-name>
<param-value>
oracle.adfinternal .view.faces.facelets.rich.AdfTagDecorator
</param-value>
</context-param>
<context-param>
<param-name>javax.faces.FACELETS_RESOURCE_RESOLVER</param-name>
<param-value>
oracle.adfinternal .view.faces.facelets.rich.AdfFaceletsResourceResolver
</param-value>
</context-param>
<context-param>
<param-name>oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT</param-name>
<param-value>HTML5</param-value>
</context-param>
<filter>
<filter-name>trinidad</filter-name>
<filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>trinidad</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>
</filter-mapping>
<mime-mapping>
<extension>swf</extension>
<mime-type>application/x-shockwave-flash</mime-type>
</mime-mapping>
<mime-mapping>
<extension>amf</extension>
<mime-type>application/x-amf</mime-type>
</mime-mapping>
</web-app>

3-14

Chapter 3
Creating a View Page

< Note:

The Facelets context parameters are only created if you create a Facelets
page.

In the faces-config.xml file, when you create a JSF page, JDeveloper creates an
entry that defines the default render kit (used to display the components in an HTML
client) for ADF Faces, as shown below.

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="2.1" xmIns="http://java.sun.com/xml/ns/javaee">
<application>
<default-render-kit-id>oracle.adf.rich</default-render-kit-id>
</application>
</faces-config>

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (Ul) components in the application, as shown in below.

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<skin-fami ly>skyros</skin-family>
<skin-version>vl</skin-version>
</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source
editor by clicking the Source tab. The Structure window located in the lower left-hand
corner of JDeveloper, provides a hierarchical view of the page.

What You May Need to Know About Updating Your Application to Use
the Facelets Engine

ORACLE

JSF 2.1 web applications can run using either the Facelets engine or JSP servlet
engine. By default, documents with the *_ jsf and *.xhtml extensions are handled by
the Facelets engine, while documents with the *. jsp and *. jspx extensions are
handled by the JSP engine. However, this behavior may be changed by setting the
Javax.faces.FACELETS VIEW_MAPPINGS context parameter in the web.xml file.
Because ADF Faces allows JSP pages to be run with the Facelets engine, you may
decide that you want an existing application of JSP pages to use the Facelets engine.
To do that, insert the following code into your web.xml page.

<context-param>
<param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
<I-- Map both *_.jspx and *.jsf to the Facelets engine -->
<param-value>*_jsf; *.jspx</param-value>
</context-param>

<context-param>
<param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
<param-value>true</param-value>

</context-param>

<context-param>

3-15

Chapter 3
Creating a View Page

<param-name>javax.faces.FACELETS_DECORATORS</param-name>
<param-value>
oracle.adfinternal .view.faces.facelets.rich.AdfTagDecorator
</param-value>
</context-param>

<context-param>
<param-name>
jJavax.faces.FACELETS_RESOURCE_RESOLVER
</param-name>
<param-value>
oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
</param-value>
</context-param>

You then must redeploy your ADF Faces libraries.

Note that if you do change your application to use the Facelets engine, then your
application will use JSF partial state saving, which is not currently compatible with ADF
Faces. You will need to explicitly add the entry shown below.

<context-param>
<param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
<param-value>false</param-value>
</context-param>

Once this incompatibility is resolved, you should re-enable partial state saving by
removing the entry. Check your current release notes at http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.html for the latest
information on partial state saving support.

< Note:

When you switch from the servlet engine to the Facelets engine, you may
find certain parts of your application do not function as expected. For
example, if you have any custom JSP tags, these tags will need to be
reimplemented to work with the Facelets engine. For more information, refer
to the ADF Faces release notes.

What You May Need to Know About Automatic Component Binding

ORACLE

Backing beans are managed beans that contain logic and properties for Ul
components on a JSF page (for information about managed beans, see Creating and
Using Managed Beans). If when you create your JSF page you choose to
automatically expose Ul components by selecting one of the choices in the Page
Implementation option of the Create JSF Page dialog, JDeveloper automatically
creates a backing bean (or uses a managed bean of your choice) for the page. For
each component you add to the page, JDeveloper then inserts a bean property for that
component, and uses the binding attribute to bind component instances to those
properties, allowing the bean to accept and return component instances.

Specifically, JDeveloper does the following when you use automatic component
binding:

3-16

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Chapter 3
Creating a View Page

» Creates a JavaBean using the same name as the JSF file, and places it in the
view.backing package (if you elect to have JDeveloper create a backing bean).

e Creates a managed bean entry in the faces-config.xml file for the backing bean.
By default, the managed bean name is backing_<page name> and the bean uses
the request scope (for information about scopes, see Object Scope Lifecycles).

" Note:

JDeveloper does not create managed bean property entries in the
faces-config.xml file. If you wish the bean to be instantiated with
certain property values, you must perform this configuration in the
faces-config.xml file manually. See How to Configure for ADF Faces in
faces-config.xml .

* Onthe newly created or selected bean, adds a property and accessor methods for
each component tag you place on the JSF page. JDeveloper binds the component
tag to that property using an EL expression as the value for its binding attribute.

» Deletes properties and methods for any components deleted from the page.

Once the page is created and components added, you can then declaratively add
method binding expressions to components that use them by double-clicking the
component in the visual editor, which launches an editor that allows you to select the
managed bean and method to which you want to bind the attribute. When automatic
component binding is used on a page and you double-click the component, skeleton
methods to which the component may be bound are automatically created for you in
the page's backing bean. For example, if you add a button component and then
double-click it in the visual editor, the Bind Action Property dialog displays the page's
backing bean along with a new skeleton action method, as shown in Figure 3-6.

Figure 3-6 Bind Action Property Dialog

Bind Acticn Property - Py
g
Managed Bean: |bads:ing_Edi1J:ustcmer vl Hew, .,
Method: |I:| 1_action |1r|
Help Ok Cancel

You can select from one these methods, or if you enter a new method name,
JDeveloper automatically creates the new skeleton method in the page's backing
bean. You must then add the logic to the method.

ORACLE 3-17

ORACLE

Chapter 3
Creating a View Page

< Note:

When automatic component binding is not used on a page, you must select
an existing managed bean or create a new backing bean to create the
binding.

For example, suppose you created a JSF page with the file name myfile. jsf. If you
chose to let JDeveloper automatically create a default backing bean, then JDeveloper
creates the backing bean as view.backing.MyFile_java, and places it in the \src
directory of the ViewController project. The backing bean is configured as a
managed bean in the faces-config.xml file, and the default managed bean name is
backing_myfile.

The following code from a JSF page uses automatic component binding, and contains
form, inputText, and button components.

<f:view>
<af:document id="d1" binding="#{backing_myfile.d1}">
<af:form id="f1" binding="#{backing_myfile.f1}">
<af:inputText label="Label 1" binding="#{backing_MyFile._it1}"
id="inputTextl"/>
<af:button text="button 1"
binding="#{backing_MyFile.b1}"
id="b1"/>
</af:form>
</af:document>
</f:view>

Following is the corresponding code on the backing bean.

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;

import oracle.adf.view.rich.component.rich.RichForm;

import oracle.adf.view.rich.component.rich.input.RichlnputText;
import oracle.adf.view.rich.component.rich.nav.RichButton;

public class MyFile {
private RichForm f1;
private RichDocument di;
private RichlnputText itl;
private RichButton bl;

public void setForml(RichForm f1) {
this.forml = f1;
}

public RichForm getF1() {
return f1;
}

public void setD1(RichDocument d1) {
this.dl = di;
}

public RichDocument getD1() {
return di;

3-18

ORACLE

}

}

public void setltl(RichlnputText itl) {
this.inputTextl = inputTextl;

}

public RichlnputText getlnputTextl() {
return inputTextl;

}

public void setB1(RichButton bl) {
this.buttonl = buttonl;

}

public RichButton getB1() {
return bl;

}

public String bl_action() {
// Add event code here...
return null;

Chapter 3
Creating a View Page

This code, added to the faces-config.xml file, registers the page's backing bean as a
managed bean.

<managed-bean>

<managed-bean-name>backing_MyFile</managed-bean-name>
<managed-bean-class>view.backing.MyFile</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

¢ Note:

Instead of registering the managed bean in the faces-config.xml file, if you
are using Facelets, you can elect to use annotations in the backing bean for
registration. For information about using annotations in managed and
backing beans, see the Java EE 6 tutorial at http://www.oracle.com/

technetwork/java/Zindex.html.

In addition, when you edit a Java file that is a backing bean for a JSF page, a method
binding toolbar appears in the source editor for you to bind appropriate methods
quickly and easily to selected components in the page. When you select an event,
JDeveloper creates the skeleton method for the event, as shown in Figure 3-7.

3-19

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Chapter 3
Creating a View Page

Figure 3-7 You Can Declaratively Create Skeleton Methods in the Source Editor

@Myﬁle.iava E] @Reso
—_—— — - P —_— — W 2
[d8- b _.-_-;1} S8 BUIBREESE QAMBEE (@ Compaonents: |cb1 v| Events: |Mone D‘ ﬁ'

LIS, uL = uL; Mone
1 attributeChangelistener
actionListener
= public RichDocument getDl() { returnlistensr
return di;
i

= public void setItl(RichInputText itl) |
this.itl = icl:
'

=] public RichInputText getItl(] {
return itl:
'
= public wvoid setChl(RichCommandButton cbl) {
this.chl = chbl:
'

= public RichCommandButton getChli) {
return chil;
'
= public 3tring cbl_action() {
44 Bdd event code here...
return null;

Once you create a page, you can turn automatic component binding off or on, and you
can also change the backing bean to a different Java class. Open the JSF page in the
visual Editor and from the JDeveloper menu, choose Design > Page Properties. Here
you can select or deselect the Auto Bind option, and change the managed bean
class. Click Help for information about using the dialog.

Note:

If you turn automatic binding off, nothing changes in the binding attributes of
existing bound components in the page. If you turn automatic binding on, all
existing bound components and any new components that you insert are
bound to the selected backing bean. If automatic binding is on and you
change the bean selection, all existing bindings and new bindings are
switched to the new bean.

You can always access the backing bean for a JSF page from the page editor by right-
clicking the page, choosing Go to Bean, and then choosing the bean from the list of
beans associated with the JSF.

How to Add ADF Faces Components to JSF Pages

Once you have created a page, you can use the Components window to drag and
drop components onto the page. JDeveloper then declaratively adds the necessary
page code and sets certain values for component attributes.

ORACLE 3-20

ORACLE

Chapter 3
Creating a View Page

Tip:

For detailed procedures and information about adding and using specific
ADF Faces components, see Using Common ADF Faces Components .

Note:

You cannot use ADF Faces components on the same page as MyFaces
Trinidad components (tr: tags) or other Ajax-enabled library components.
You can use Trinidad HTML tags (trh:) on the same page as ADF Faces
components, however you may experience some browser layout issues. You
should always attempt to use only ADF Faces components to achieve your
layout.

Note that your application may contain a mix of pages built using either ADF
Faces or other components.

Before you begin:

It may be helpful to have an understanding of creating a page. See Creating a View
Page.

To add ADF Faces components to a page:

1.
2.

In the Applications window, double-click a JSF page to open it.

If the Components window is not displayed, from the menu choose Window >
Components. By default, the Components window is displayed in the upper right-
hand corner of JDeveloper.

In the Components window, use the dropdown menu to choose ADF Faces.

Tip:

If the ADF Faces page is not available in the Components window, then
you need to add the ADF Faces tag library to the project.

For a Facelets file:

a. Right-click the project node and choose Project Properties.

b. Select JSP Tag Libraries to add the ADF Faces library to the
project. For help, click Help or press F1.

For a JSPX file:

a. Right-click inside the Components window and choose Edit Tab
Libraries.

b. Inthe Customize Components window dialog, shuttle ADF Faces
Components to Selected Libraries, and click OK.

3-21

ORACLE

Chapter 3
Creating a View Page

The components are contained in 6 accordion panels: General Controls (which

contains components like buttons, icons, and menus), Text and Selection, Data
Views (which contains components like tables and trees), Menus and Toolbars,
Layout, and Operations.

Figure 3-8 shows the Components Window displaying the general controls for
ADF Faces.

Figure 3-8 Components Window in JDeveloper

Components
Q
ADF Faces =

—| General Controls

-

Button Context Info
B-

AP |
Icon Image
m @@

Image Link

(Active)

=

+| Text and Selection
+| Data Views
-+ Menus and Toolbars

!

4 Layout
4| Operations

Select the component you wish to use and drag it onto the page.

JDeveloper redraws the page in the visual editor with the newly added component.
In the visual editor, you can directly select components on the page and use the
resulting context menu to add more components.

Tip:

You can also drag and drop components from the Components window into
the Structure window or directly into the code in the source editor.

You can always add components by directly editing the page in the source
editor. To view the page in the source editor, click the Source tab at the
bottom of the window.

3-22

Chapter 3
Creating a View Page

What Happens When You Add Components to a Page

When you drag and drop components from the Components window onto a JSF page,
JDeveloper adds the corresponding code to the JSF page. This code includes the tag
necessary to render the component, as well as values for some of the component
attributes. For example, the following shows the code when you drop an Input Text
and a Button component from the palette.

<af:inputText label="Label 1" id="itl1"/>
<af:button text="button 1" id="b1"/>

Note:

If you chose to use automatic component binding, then JDeveloper also adds
the binding attribute with its value bound to the corresponding property on
the page's backing bean. See What You May Need to Know About
Automatic Component Binding.

When you drop a component that contains mandatory child components (for example
a table or a list), JDeveloper launches a wizard where you define the parent and also
each of the child components. Figure 3-9 shows the Table wizard used to create a
table component and the table's child column components.

Figure 3-9 Table Wizard in JDeveloper

Create ADF Faces Table R =
L

Decide whether you want to bind your table to a data source now, or create it with unbound columns.

[] Bind Data Now

Element Type:
Columns: as 7 ¥
Header Value Component
#{row.col1} afroutputText

col2 #{row.colZ} afioutputText

col3 #{row.col3} afioutputText

col4 #{row.col4} aftoutputText

col5 #{row.col5} afioutputText ~
'y
&

Help OK Cancel

ORACLE 3-23

Chapter 3
Creating a View Page

Below is the code created when you use the wizard to create a table with three
columns, each of which uses an outputText component to display data.

<af:table var="row" rowBandingInterval="0" id="t1">
<af:column sortable="false" headerText="coll" id="c1">
<af:outputText value="#{row.coll}" id="otl"/>
</af:column>
<af:column sortable="false" headerText="col2" id="c2">
<af:outputText value="#{row.col2}" id="ot2"/>
</af:column>
<af:column sortable="false" headerText="col3" id="c3">
<af:outputText value="#{row.col3}" id="ot3"/>
</af:column>
</af:table>

How to Set Component Attributes

Once you drop components onto a page you can use the Properties window
(displayed by default at the bottom right of JDeveloper) to set attribute values for each
component.

Tip:

If the Properties window is not displayed, choose Window > Properties from
the main menu.

Figure 3-10 shows the Properties window displaying the attributes for an inputText
component.

Figure 3-10 JDeveloper Properties Window

Input Text - Label 1 - Properties

Q, Find @
=l Common

o Id: itl R4

Rendered: | <default> (true) '| hd

Appearance

Style

Behavior

Advanced

The Properties window has sections that group similar properties together. For
example, the Properties window groups commonly used attributes for the inputText
component in the Common section, while properties that affect how the component
behaves are grouped together in the Behavior section. Figure 3-11 shows the
Behavior section of the Properties window for an inputText component.

ORACLE 3-24

Chapter 3
Creating a View Page

Figure 3-11 Behavior Section of the Properties window

Input Text - Label 1 - Properties

Q Find @

=1 Behavior
Required: | <default> (false) -
ReadOnly: | <default> (false) '| b
Disabled: | <defaut> (false) -~
Autosubmit: | <default> (false) -~
AutoComplete: | <default> (off) '| ~
AutoTab: [<default> (false) -
PartialTriggers: | |v
Usage: | <default> (auto) '| W
Validation
MaximumLength: l:l ~
Immediate; | <default= (false) '| b

Before you begin:

It may be helpful to have an understanding of the different options when creating a
page. For information, see Creating a View Page.

To set component attributes:

1. Select the component, in the visual editor, in the Structure window, or by selecting
the tag directly in the source editor.

2. In the Properties window, expand the section that contains the attribute you wish
to set.

Tip:

Some attributes are displayed in more than one section. Entering or
changing the value in one section will also change it in any other
sections. You can search for an attribute by entering the attribute name
in the search field at the top of the inspector.

3. Either enter values directly into the fields, or if the field contains a dropdown list,
use that list to select a value. You can also use the dropdown to the right of the
field, which launches a popup containing tools you can use to set the value. These
tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder). For information about using the
Expression Builder, see Creating EL Expressions. This popup also displays a
description of the property, as shown in Figure 3-12.

ORACLE 3-25

Chapter 3
Creating EL Expressions

Figure 3-12 Property Tools and Help

Form - Properties

O, Find| TargetFrame
Expression Builder...
Reset to Default

= Property Help
the target frame for the form.
Can either specify a
user-defined frame name, or use
one of the following values:

& blank: The link opens

-] Appearance
ShortDesc: | | A
Rendered: |<default> (true) v| »

What Happens When You Use the Properties window

When you use the Properties window to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

Tip:

You can always change attribute values by directly editing the page in the
source editor. To view the page in the source editor, click the Source tab at

the bottom of the window.

Creating EL Expressions

ORACLE

In ADF applications, Express Language (EL) expressions provide an important
mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (managed beans). The EL expressions are used by both JavaServer
Faces technology (JSF) and JavaServer Pages (JSP) technology.

You use EL expressions throughout an ADF Faces application to bind attributes to
object values determined at runtime. For example, #{UserList.selectedUsers} might
reference a set of selected users, #{user.name} might reference a particular user's
name, while #{user.role == "manager"} would evaluate whether a user is a
manager or not. At runtime, a generic expression evaluator returns the List, String,
and boolean values of these respective expressions, automating access to the
individual objects and their properties without requiring code.

At runtime, the value of certain JSF Ul components (such as an inputText component
or an outputText component) is determined by its value attribute. While a component
can have static text as its value, typically the value attribute will contain an EL
expression that the runtime infrastructure evaluates to determine what data to display.
For example, an outputText component that displays the name of the currently
logged-in user might have its value attribute set to the expression #{User Info.name}.
Since any attribute of a component (and not just the value attribute) can be assigned a
value using an EL expression, it's easy to build dynamic, data-driven user interfaces.
For example, you could hide a component when a set of objects you need to display is
empty by using a boolean-valued expression like #{not empty
UserList.selectedUsers} in the Ul component's rendered attribute. If the list of

3-26

Chapter 3
Creating EL Expressions

selected users in the object named UserList is empty, the rendered attribute
evaluates to false and the component disappears from the page.

In a typical JSF application, you would create objects like UserList as a managed
bean. The JSF runtime manages instantiating these beans on demand when any EL
expression references them for the first time. When displaying a value, the runtime
evaluates the EL expression and pulls the value from the managed bean to populate
the component with data when the page is displayed. If the user updates data in the Ul
component, the JSF runtime pushes the value back into the corresponding managed
bean based on the same EL expression. For information about creating and using
managed beans, see Creating and Using Managed Beans. For information about EL
expressions, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/
Java/index.html.

" Note:

When using an EL expression for the value attribute of an editable
component, you must have a corresponding set method for the that
component, or else the EL expression will evaluate to read-only, and no
updates to the value will be allowed.

For example, say you have an inputText component (whose ID is itl) on a
page, and you have it's value set to #{myBean. inputValue}. The myBean
managed bean would have to have get and set method as follows, in order
for the inputText value to be updated:

public void setltl(RichlnputText itl) {
this.itl = itl;

}

public RichlnputText getltl() {
return itl;

}

Along with standard EL reachable objects and operands, ADF Faces provides EL
function tags. These are tags that provide certain functionality that you can use within
an EL expression. The format tags can be used to add parameters to String
messages, and the time zone tags can be used to return time zones. For information
about the format tags, see How to Use the EL Format Tags. For information about the
time zone tags, see What You May Need to Know About Selecting Time Zones
Without the inputDate Component.

How to Create an EL Expression

ORACLE

You can create EL expressions declaratively using the JDeveloper Expression Builder.
You can access the builder from the Properties window.

Before you begin:

It may be helpful to have an understanding of EL expressions. See Creating EL
Expressions.

To use the Expression Builder:

3-27

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

ORACLE

Chapter 3
Creating EL Expressions

In the Properties window, locate the attribute you wish to modify and use the
rightmost dropdown menu to choose Expression Builder.

Create expressions using the following features:

Use the Variables dropdown to select items that you want to include in the
expression. These items are displayed in a tree that is a hierarchical
representation of the binding objects. Each icon in the tree represents various
types of binding objects that you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. The EL accessible objects exposed by ADF
Faces are located under the adfFacesContext node, which is under the JSF
Managed Beans node, as shown in Figure 3-13.

Figure 3-13 adfFacesContext Objects in the Expression Builder

Expression Builder

Select values from variables and operators to create an expression or directly type the expression here:

Expression: ‘—@] ;‘J '4’
Variables: |Common | Operands:
Q

-] adfFacesContext

-3 accessibilityMode
D agent
applicationContextManager
-3 backingBeanScopeProvider

-[@@ changeManager
-5 dientValidationDisabled

Create Managed Bean

Description

Help Cancel

Q Tip:

For information about these objects, see the Java API Reference for
Oracle ADF Faces.

Selecting an item in the tree causes it to be moved to the Expression box
within an EL expression. You can also type the expression directly in the
Expression box.

Use the operator buttons to add logical or mathematical operators to the
expression.

Figure 3-14 shows the Expression Builder dialog being used to create an
expression that binds to the value of a label for a component to the label property
of the explorer managed bean.

3-28

Chapter 3
Creating EL Expressions

Figure 3-14 The Expression Builder Dialog

© Expression Builder . Pd
Lag"
| Select values from variables and operators to create an expression or directly type the expression here: |
Expression: H @ ¢

#{explorer .contentViewManager. table ContentView. label}

Variables: |Common | Operands:
Q and

=[] explorer or
E—JD contentViewManager gt

E}--D contentViewTab It
----- [z contentViews 9

-] listTableContentview le
=[] tableContentView =

ne

-7 commandMenultem ot

-7 contentModel

@[] contentTable impty
----- &3 disclosed -
-] fileExplorerBean x
----- =3 icon div
..... = m mod
----- 3 name
----- =3 selected

-7 showDetailltem

Description

Help [a]4 Cancel

Q Tip:

For information about using proper syntax to create EL expressions, see
the Java EE 6 tutorial at http://download.oracle.com/javaee/
index.html.

How to Use the EL Format Tags

ORACLE

ADF EL format tags allow you to create text that uses placeholder parameters, which
can then be used as the value for any component attribute that accepts a String. At
runtime, the placeholders are replaced with the parameter values.

For example, say the current user's name is stored on a managed bean, and you want
to display that name within a message as the value of an outputText component. You
could use the formatString tag as shown below.

<af:outputText value="#{af:formatString("The current user is: {0},
someBean.currentUser)}" />

In this example, the formatString tag takes one parameter whose key “0," resolves to
the value someBean.currentUser.

There are two different types of format tags available, formatString tags and
formatNamed tags. The formatString tags use indexed parameters, while the
formatNamed tags use named parameters. There are four tags for each type, each one
taking a different number of parameters (up to 4). For example, the formatString?2 tag

3-29

http://download.oracle.com/javaee/index.html
http://download.oracle.com/javaee/index.html

Chapter 3
Creating EL Expressions

takes two indexed parameters, and the formatNamed4 tag takes four named
parameters.

When you use a formatNamed tag, you set both the key and the value. The following
example shows a message that uses the formatNamed?2 tag to display the number of
files on a specific disk. This message contains two parameters.

<af:outputText value="#{af:formatNamed2(
"The disk named {disk}, contains {fileNumber} files®, "disk®, bean.disk,
“fileNumber®, bean._fileNumber)}" />

How to Use EL Expressions Within Managed Beans

ORACLE

While JDeveloper creates many needed EL expressions for you, and you can use the
Expression Builder to create those not built for you, there may be times when you
need to access, set, or invoke EL expressions within a managed bean.

The code below shows how you can get a reference to an EL expression and return
(or create) the matching object.

public static Object resolveExpression(String expression) {

FacesContext facesContext = getFacesContext();

Application app = facesContext.getApplication();

ExpressionFactory elFactory = app.getExpressionFactory();

ELContext elContext = facesContext.getELContext();

ValueExpression valueExp =
elFactory.createValueExpression(elContext, expression,

Object.class);

return valueExp.getValue(elContext);

}

This code shows how you can resolve a method expression.

public static Object resloveMethodExpression(String expression,

Class returnType,
Class[] argTypes,
Object[] argValues) {

FacesContext facesContext = getFacesContext();

Application app = facesContext.getApplication();

ExpressionFactory elFactory = app.getExpressionFactory();

ELContext elContext = facesContext.getELContext();

MethodExpression methodExpression =

elFactory.createMethodExpression(elContext, expression, returnType,
argTypes);
return methodExpression.invoke(elContext, argValues);

}

The code below shows how you can set a new object on a managed bean.

public static void setObject(String expression, Object newvalue) {

FacesContext facesContext = getFacesContext();

Application app = facesContext.getApplication();

ExpressionFactory elFactory = app.getExpressionFactory();

ELContext elContext = facesContext.getELContext();

ValueExpression valueExp =
elFactory._createValueExpression(elContext, expression,

Object.class);

//Check that the input newValue can be cast to the property type
//expected by the managed bean.

3-30

Chapter 3
Creating and Using Managed Beans

//Rely on Auto-Unboxing if the managed Bean expects a primitive

Class bindClass = valueExp.getType(elContext);

if (bindClass.isPrimitive() || bindClass.islInstance(newvalue)) {
valueExp.setValue(elContext, newvValue);

}

}

Creating and Using Managed Beans

A managed bean is created with a constructor with no arguments, a set of properties,
and a set of methods that perform functions for a component. In the ADF framework, if
you want to bind component values and objects to managed bean properties or to
reference managed bean methods from component tags, you can use the EL syntax.

Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files and the beans are made available and can be referenced in an EL expression,
allowing access to the beans' properties and methods. Whenever a managed bean is
referenced for the first time and it does not already exist, the Managed Bean Creation
Facility instantiates the bean by calling the default constructor method on the bean. If
any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed beans are
used in a standard JSF application, see the Java EE 6 tutorial at http://
www.oracle.com/technetwork/java/index.html.

" Best Practice:

Use managed beans to store only bookkeeping information, for example the
current user. All application data and processing should be handled by logic
in the business layer of the application.

In a standard JSF application, managed beans are registered in the faces-config.xml
configuration file.

Note:

If you plan on using ADF Model data binding and ADF Controller, then
instead of registering managed beans in the faces-config.xml file, you may
need to register them within ADF task flows. See Using a Managed Bean in
a Fusion Web Application in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Create a Managed Bean in JDeveloper

You can create a managed bean and register it with the JSF application at the same
time using the overview editor for the faces-config.xml file.

Before you begin:

ORACLE 3-31

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

ORACLE

Chapter 3

Creating and Using Managed Beans

It may be helpful to have an understanding of managed beans. See Creating and
Using Managed Beans.

To create and register a managed bean:

1. Inthe Applications window, double-click faces-config.xml.

2. In the editor window, click the Overview tab.

3. Inthe overview editor, click the Managed Beans navigation tab.

Figure 3-15 shows the editor for the faces-config.xml file used by the ADF
Faces Components Demo application that contains the File Explorer application.

Figure 3-15
faces-config. xml

Managed Beans
MNavigation Rules
Validators
Converters
Application
Referenced Beans
Render Kits

Life Cyde

Factory
Components
Behaviors

Artifact Ordering

Managed Beans in the faces-config.xml File

@
@ Managed Beans ok X
Scope Eager -

orade.adfdemo.view.co... [request _
orade.adfdemo.view.co... application

editor orade.adfdemo.view.co... regquest

demolndex orade.adfdemo.view.na... session

demoBranding orade.adfdemo.view.lay... request

aboutBean orade adfdemo. view.we. .. session

demoFind orade.adfdemo. view.we... session

demoCarousel orade.adfdemo. view. tab... session

=] Managed Properties: outputLabelBean 4 X

Name

Class

Managed Property

Click the Add icon to add a row to the Managed Bean table.

In the Create Managed Bean dialog, enter values. Click Help for information about

using the dialog. Select the Generate Class If It Does Not Exist option if you
want JDeveloper to create the class file for you.

3-32

Chapter 3
Creating and Using Managed Beans

< Note:

When determining what scope to register a managed bean with or to
store a value in, keep the following in mind:

e Always try to use the narrowest scope possible.

< If your managed bean takes part in component binding by accepting
and returning component instances (that is, if Ul components on the
page use the binding attribute to bind to component properties on
the bean), then the managed bean must be stored in request or
backingBean scope. If it can't be stored in one of those scopes (for
example, if it needs to be stored in session scope for high
availability reasons), then you need to use the ComponentReference
API. See What You May Need to Know About Component Bindings
and Managed Beans .

e Use the sessionScope scope only for information that is relevant to
the whole session, such as user or context information. Avoid using
the sessionScope scope to pass values from one page to another.

For information about the different object scopes, see Object Scope
Lifecycles.

6. You can optionally add managed properties for the bean. When the bean is
instantiated, any managed properties will be set with the provided value. With the
bean selected in the Managed Bean table, click the New icon to add a row to the
Managed Properties table. In the Properties window, enter a property name (other
fields are optional).

" Note:

While you can declare managed properties using this editor, the
corresponding code is not generated on the Java class. You must add
that code by creating private member fields of the appropriate type, and
then by choosing the Generate Accessors menu item on the context
menu of the code editor to generate the corresponding get and set
methods for these bean properties.

What Happens When You Use JDeveloper to Create a Managed Bean

ORACLE

When you create a managed bean and elect to generate the Java file, JDeveloper
creates a stub class with the given name and a default constructor. Following is the
code that would be added to the MyBean class stored in the view package.

package view;

public class MyBean {
public MyBean() {

}

3-33

Chapter 3
Creating and Using Managed Beans

You now must add the logic required by your page. You can then refer to that logic
using an EL expression that refers to the managed-bean-name given to the managed
bean. For example, to access the mylInfo property on the my_bean managed bean, the
EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the faces-config.xml file, as
shown below.

<managed-bean>
<managed-bean-name>my_bean</managed-bean-name>
<managed-bean-class>view.MyBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

What You May Need to Know About Component Bindings and
Managed Beans

ORACLE

To avoid issues with managed beans, if your bean needs to use component binding
(through the binding attribute on the component), you must store the bean in request
scope. (If your application uses the Fusion technology stack, then you must store it in
backingBean scope. See Using a Managed Bean in a Fusion Web Application in
Developing Fusion Web Applications with Oracle Application Development
Framework.) However, there may be circumstances where you can't store the bean in
request or backingBean scope. For example, there may be managed beans that are
stored in session scope so that they can be deployed in a clustered environment, and
therefore must implement the Serializable interface. When they are serializable,
managed beans that change during a request can be distributed to other servers for
fail-over. However, ADF Faces components (and JSF components in general) are not
serializable. So if a serialized managed bean attempts to access a component using
component binding, the bean will fail serialization because the referenced component
cannot be serialized. There are also thread safety issues with components bound to
serialized managed beans because ADF Faces components are not thread safe.

When you need to store a component reference to a Ul component instance in a
backing bean that is not using request or backingBean scope, you should store a
reference to the component instance using the Trinidad ComponentReference API. The
UlComponentReference.newUlComponentReference() method creates a serializable
reference object that can be used to retrieve a UlComponent instance on the current
page. The following shows how a managed bean might use the
UlComponentReference API to get and set values for a search field.

private ComponentReference<UlInput> searchField;

public void setSearchField(UlInput searchField)

{
if(this.searchField == null)

this.searchField = ComponentReference.newlUlComponentReference(searchField);

}

public Ullnput getSearchField()
{

return searchField ==null ? null : searchField.getComponent();

}

3-34

Chapter 3
Viewing ADF Faces Javadoc

Keep the following in mind when using the UlComponentReference API:

* The APl is thread safe as long as it is called on the request thread.
* The ADF Faces component being passed in must have an ID.

* The reference will break if the component is moved between naming containers or
if the ID on any of the ancestor naming containers has changed.

For information about the UlIComponentReference API, see the Trinidad Javadoc.

Viewing ADF Faces Javadoc

The ADF Faces Javadoc provides information required to work programmatically to
develop ADF Faces applications using the ADF Faces API.

Often, when you are working with ADF Faces, you will need to view the Javadoc for
ADF Faces classes. You can view Javadoc from within JDeveloper.

How to View ADF Faces Source Code and Javadoc

You can view the ADF Faces Javadoc directly from JDeveloper.
To view Javadoc for a class:

1. From the main menu, choose Navigate > Go to Javadoc.

2. Inthe Go to Javadoc dialog, enter the class name you want to view. If you don't
know the exact name, you can begin to type the name and JDeveloper will provide
a list of classes that match the name. ADF Faces components are in the
oracle.adf.view.rich package.

Tip:

When in a Java class file, you can go directly to the Javadoc for a class
name reference or for a JavaScript function call by placing your cursor
on the name or function and pressing Ctrl+D.

ORACLE 3-35

Understanding ADF Faces Architecture

Part Il documents how to work with the ADF Faces architecture, including the client-
side framework, the lifecycle, events, validation and conversion, and partial page
rendering.

Specifically, it contains the following chapters:
e Using ADF Faces Client-Side Architecture
e Using the JSF Lifecycle with ADF Faces

e Handling Events

* Validating and Converting Input

* Rerendering Partial Page Content

ORACLE

Using ADF Faces Client-Side Architecture

This chapter outlines the ADF Faces client-side architecture.
This chapter includes the following sections:

* About Using ADF Faces Architecture

e Adding JavaScript to a Page

* Instantiating Client-Side Components

e Listening for Client Events

e Accessing Component Properties on the Client

* Using Bonus Attributes for Client-Side Components
* Understanding Rendering and Visibility

e Locating a Client Component on a Page

e JavaScript Library Partitioning

About Using ADF Faces Architecture

ORACLE

ADF Faces exposes a complete client-side architecture that wraps the browser
specific Document Object Model (DOM) API and renders ADF Faces components as
client-side JavaScript objects for internal framework use, for use by ADF Faces
component developers and for use by ADF Faces application developers.

ADF Faces extends the JavaServer Faces architecture, adding a client-side
framework on top of the standard server-centric model. The majority of ADF Faces
components are rendered in HTML that is generated on the server-side for a request.
In addition, ADF Faces allows component implementations to extend their reach to the
client using a client-side component and event model.

The ADF Faces framework already contains much of the functionality for which you
would ordinarily need to use JavaScript. In many cases, you can achieve rich
component functionality declaratively, without the use of JavaScript. However, there
may be times when you do need to add your own JavaScript, for example custom
processing in response to a client-side event. In these cases, you can use the client-
side framework.

The JavaScript class that you will interact with most is AdfUlComponent and its
subclasses. An instance of this class is the client-side representation of a server-side
component. You can think of a client-side component as a simple property container
with support for event handling. Client-side components primarily exist to add behavior
to the page by exposing an API contract for both application developers as well as for
the framework itself. It is this contract that allows, among other things, toggling the
enabled state of a button on the client.

Each client component has a set of properties (key/value pairs) and a list of listeners
for each supported event type. All ADF Faces JavaScript classes are prefixed with Adf

4-1

ORACLE

Chapter 4
About Using ADF Faces Architecture

to avoid naming conflicts with other JavaScript libraries. For example, RichButton has
AdfButton, RichDocument has AdfRichDocument, and so on.

In the client-side JavaScript layer, client components exist mostly to provide an API
contract for the framework and for developers. Because client components exist only
to store state and provide an API, they have no direct interaction with the document
object model (DOM) whatsoever. All DOM interaction goes through an intermediary
called the peer. Peers interact with the DOM generated by the Java renderer and
handle updating that state and responding to user interactions.

Peers have a number of other responsibilities, including:

* DOM initialization and cleanup
* DOM event handling

* Geometry management

* Partial page response handling
e Child visibility change handling

This separation isolates the component and application developer from changes in the
DOM implementation of the component and also isolates the need for the application
to know whether a component is implemented in HTML DOM at all (for example the
Flash components).

In JSF, as in most component-based frameworks, an intrinsic property of the
component model is that components can be nested to form a hierarchy, typically
known as the component tree. This simply means that parent components keep track
of their children, making it possible to walk over the component tree to find all
descendents of any given component. While the full component tree exists on the
server, the ADF Faces client-side component tree is sparsely populated.

For performance optimization, client components exist only when they are required,
either due to having a clientListener handler registered on them, or because the
page developer needs to interact with a component on the client side and has
specifically configured the client component to be available. You don't need to
understand the client framework as except for exceptional cases, you use most of the
architectural features declaratively, without having to create any code.

For example, because the framework does not create client components for every
server-side component, there may be cases where you need a client version of a
component instance. Instantiating Client-Side Components, explains how to do this
declaratively. You use the Properties window in JDeveloper to set properties that
determine whether a component should be rendered at all, or simply be made not
visible, as described in Understanding Rendering and Visibility.

Note:

It is also possible for JavaScript components to be present that do not
correspond to any existing server-side component. For example, some ADF
Faces components have client-side behavior that requires popup content.
These components may create AdfRichPopup JavaScript components, even
though no server-side Java RichPopup component may exist.

4-2

Chapter 4
Adding JavaScript to a Page

Other functionality may require you to use the ADF Faces JavaScript API. For
example, Locating a Client Component on a Page, explains how to use the API to
locate a specific client-side component, and Accessing Component Properties on the
Client, documents how to access specific properties.

A common issue with JavaScript-heavy frameworks is determining how best to deliver
a large JavaScript code base to the client. If all the code is in a single JavaScript
library, there will be a long download time, while splitting the JavaScript into too many
libraries will result in a large number of roundtrips. To help mitigate this issue, ADF
Faces aggregates its JavaScript code into partitions. A JavaScript library partition
contains code for components and/or features that are commonly used together. See
JavaScript Library Partitioning.

Adding JavaScript to a Page

ADF Faces exposes JavaScript APIs that application developers use to implement
client-side development use cases. To use JavaScript on an ADF Faces view, you can
either add JavaScript code to the page source or reference it in an external library file.

You can either add inline JavaScript directly to a page or you can import JavaScript
libraries into a page. When you import libraries, you reduce the page content size, the
libraries can be shared across pages, and they can be cached by the browser. You
should import JavaScript libraries whenever possible. Use inline JavaScript only for
cases where a small, page-specific script is needed.

Performance Tip:

linline JavaScript can increase response payload size, will never be cached
in browser, and can block browser rendering. Instead of using inline
JavaScript, consider putting all scripts in JavaScript libraries.

If you must use inline JavaScript, include it only in the pages that need it.
However, if you find that most of your pages use the same JavaScript code,
you may want to consider including the script or import the library in a
template.

If a JavaScript code library becomes too big, you should consider splitting it
into meaningful pieces and include only the pieces needed by the page (and
not placing it in a template). This approach will provide improved
performance, because the browser cache will be used and the HTML content
of the page will be smaller.

How to Use Inline JavaScript

ORACLE

Create the JavaScript on the page and then use a clientListener tag to invoke it.
Before you begin:

It may be helpful to have an understanding of adding JavaScript to a page. For
information, see Adding JavaScript to a Page.

To use inline JavaScript:

4-3

Chapter 4
Adding JavaScript to a Page

Add the MyFaces Trinidad tag library to the root element of the page by adding the
code shown in bold.

<f:view xmlns:f="http://java.sun.com/jsf/core"
xmIns:h="http://java.sun.com/jsf/html"
xmIns:af="http://xmIns.oracle.com/adf/faces/rich"
xmIns:trh="http://myfaces.apache.org/trinidad/html">

In the Components window, from the Layout panel, in the Core Structure group,
drag and drop a Resource onto the page.

Note:

Do not use the f:verbatimtag in a page or template to specify the
JavaScript.

In the Insert Resource dialog, select javascript from the dropdown menu and click
OK.

Create the JavaScript on the page within the <af:resource> tag.
For example, a sayHello function might be included in a JSF page like this:

<af:resource>
function sayHello()

{
alert("Hello, world!")

}

</af:resource>

In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

In the Insert Client Listener dialog, in the Method field, enter the JavaScript
function name. In the Type field, select the event type that should invoke the
function.

How to Import JavaScript Libraries

Use the af:resource tag to access a JavaScript library from a page. This tag should
appear inside the document tag's metaContainer facet.

ORACLE

Before you begin:

It may be helpful to have an understanding of adding JavaScript to a page. For
information, see Adding JavaScript to a Page.

To access a JavaScript library from a page:

1.

Below the document tag, add the code shown in bold below and replace /
mySourceDirectory with the relative path to the directory that holds the JavaScript
library.

<af:document>
<f:facet name="metaContainer>
<af:resource source="/nySour ceDi rectory"/>
</facet>
<af:form></af:form>
</af:document>

4-4

Chapter 4
Instantiating Client-Side Components

2. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

3. Inthe Insert Client Listener dialog, in the Method field, enter the name of the
function. In the Type field, select the event type that should invoke the function.

What You May Need to Know About Accessing Client Event Sources

Often when your JavaScript needs to access a client component, it is within the
context of a listener and must access the event's source component. Use the
getSource() method to get the client component. The following example shows the
sayHel lo function accessing the source client component in order to display its name.

function sayHello(actionEvent)

{

var component=actionEvent._getSource();

//Get the ID for the component
var id=component.getld();

alert(Hello from "+id);
}

For information about accessing client event sources, see Using JavaScript for ADF
Faces Client Events. For information about accessing client-side properties, see
Accessing Component Properties on the Client. For a complete description of how
client events are handled at runtime, see What Happens at Runtime: How Client-Side
Events Work.

Instantiating Client-Side Components

The ADF Faces framework automatically handles JavaScript object instantiation. This
supports interacting with the client components and allows developers to manually
configure a component to have a client side instance.

By default, the framework does not make any guarantees about which components will
have corresponding client-side component instances. To interact with a component on
the client, you will usually register a clientListener handler. When a component has
a registered clientListener handler, it will automatically have client-side
representation. You can also explicitly configure a component to be available on the
client by setting the clientComponent attribute to true.

How to Configure a Component to for a Client-Side Instance

You can manually configure a component to have a client side instance using the
clientComponent attribute.

Performance Tip:

Only set clientComponent to true if you plan on interacting with the
component programmatically on the client.

ORACLE 4.5

Chapter 4
Instantiating Client-Side Components

< Note:

When the framework creates a client component for its own uses, that client
component may only contain information the framework needs at that time.
For example, not all of the attributes may be available.

Before you begin:

It may be helpful to have an understanding of client-side instances. See Instantiating
Client-Side Components.

To configure a component for a client-side instance:

1. Inthe Structure window, select the component that needs a client-side instance.

2. In the Properties window, set ClientSide to true.

What Happens When You Set clientComponent to true

ORACLE

When you set the clientComponent attribute to true, the framework creates an
instance of an AdfUlComponent class for the component. This class provides the API
that you can work with on the client side and also provides basic property accessor
methods (for example, getProperty() and setProperty()), event listener registration,
and event delivery-related APIs. The framework also provides renderer-specific
subclasses (for example, AdfRichOutputText) which expose property-specific
accessor methods (for example, getText() and setText()). These accessor methods
are simply wrappers around the AdfUlComponent class's getProperty() and
setProperty() methods and are provided for coding convenience.

For example, suppose you have an outputText component on the page that will get
its value (and therefore the text to display) from the sayHel lo function. That function
must be able to access the outputText component in order to set its value. For this to
work, there must be a client-side version of the outputText component, as shown in
the following JSF page code. Note that the outputText component has an id value
and the clientComponent attribute is set to true. Also, note there is no value in the
example, because that value will be set by the JavaScript.

<af:button text="Say Hello">
<af:clientListener method="sayHello" type="action"/>
</af:button>

<af:outputText id="greeting" value=""" clientComponent=""true">

Because the outputText component will now have client-side representation, the
JavaScript will be able to locate and work with it.

" Note:

The ADF Faces framework may create client components for its own
purposes, even when there are no client listeners or when the
clientComponent attribute is not set to true. However, these client
components may not be fully functional.

4-6

Chapter 4
Listening for Client Events

Listening for Client Events

ADF Faces client component objects can be created by adding the
af:clientListener tag, which is a declarative way to register a client-side listener
script to be executed when a specific event type occurs. You can apply the client
listener to programmatically created components or to components created for its own
use, and also to control navigating away from a JSF page.

In a traditional JSF application, if you want to process events on the client, you must
listen to DOM-level events. However, these events are not delivered in a portable
manner. The ADF Faces client-side event model is similar to the JSF events model,
but implemented on the client. The client-side event model abstracts from the DOM,
providing a component-level event model and lifecycle, which executes independently
of the server. Consequently, you do not need to listen for click events on buttons.
You can instead listen for AdfActionEvent events, which can be caused by key or
mouse events.

Events sent by clients are all subclasses of the AdfBaseEvent class. Each client event
has a source, which is the component that triggered the event. Events also have a
type (for example, action or dialog), used to determine which listeners are interested
in the event. You register a client listener on the component declaratively using the
af:clientListener tag.

How to Listen for Client Events

ORACLE

You use the af:clientListener tag to call corresponding Javascript in response to a
client event. For example, suppose you have a button that, in response to a click,
should display a “Hello World" alert. You need to first create the JavaScript function
that will respond to the event by displaying the alert. You then add the client listener to
the component that will invoke that function.

Before you begin:

It may be helpful to have an understanding of client event processing. See Listening
for Client Events.

To listen for a client event:

1. Implement the JavaScript function. For example, to display the alert, you might
create the JavaScript function shown below.

function sayHello(event)

alert("Hello, world!")
}

2. In the Components window, from the Operations panel, in the Listeners group,
drag and drop a Client Listener as a child to the component that will raise the
event.

Enter the function created in Step 1, as well as the type of action that the listener
should respond to. The following example shows the code that would be created
for the listener for the sayHello function.

<af:button text="Say Hello">
<af:clientListener method="sayHello" type="action"/>
</af:button>

4-7

Chapter 4
Listening for Client Events

Tip:

Because the button has a registered client listener, the framework will
automatically create a client version of the component.

When the button is clicked, because there is a client version of the component, the
AdfAction client event is invoked. Because a clientListener tag is configured to
listen for the AdfAction event, it causes the sayHello function to execute. For
information about client-side events, see Using JavaScript for ADF Faces Client
Events.

How to Use an ADF Client Listener to Control Navigating Away From a

JSF Page

ORACLE

When the user attempts to close the browser that displays a JSF page in an ADF
Faces application, you can control navigation away from a page by displaying a native
browser confirmation dialog to confirm the navigation. To handle this type of event, the
af:document component supports calling an ADF client listener of type beforeunload
and ensures that the ADF Faces application will not result in an undefined order of
execution that can cause issues in some browsers. Specifically, do not handle this
type of navigation event using the browser native beforeunload handler like
window.addEventListener(“'beforeunload”, function(e) {...}.

With support for the onbeforeunload event in Oracle ADF, you can define a client
event listener to call an event handler on the af:document component. Your ADF
event handler will be called before leaving or reloading the current page occurs, and
the user may cancel the exit entirely within the execution of the ADF Faces framework.
If the user continues to navigate away from the page, the browser will raise the
window.unload event and the ADF Faces application will terminate.

For example, your client listener can handle the ADF beforeunload event in a manner
similar to how the handler for a browser native beforeunload handler operates and
should return a string that prompts the user to cancel the exit.

<af:document>
<af:resource type="javascript'>
function myBeforeUnload(beforeunloadEvent)

{

return "Are you sure that you want to leave?"

}

</af:resource>
<af:clientListener type="beforeunload™ method="myBeforeUnload"/>

When your ADF beforeunload handler is called, if it returns a value other than
undefined, then a browser controlled warning dialog will be displayed asking whether
to actually navigate away from the current page. Depending on the browser, the
returned string may be displayed as part of the warning dialog. The warning message
may also be set by calling the setWarningMessage method on the ADF beforeunload
object passed to the handler.

4-8

Chapter 4
Accessing Component Properties on the Client

Accessing Component Properties on the Client

ORACLE

ADF Faces extends the JavaServer Faces architecture, adding a client-side
framework on top of the standard server-centric model. You can get or set component
attribute properties on the client using JavaScript.

For each built-in property on a component, convenience accessor methods are
available on the component class. For example, you can call the getvValue() method
on a client component and receive the same value that was used on the server.

¢ Note:

All client properties in ADF Faces use the getXyz function naming
convention including boolean properties. The isXyz naming convention for
boolean properties is not used.

Constants are also available for the property names on the class object. For instance,
you can use AdfRichDialog.STYLE_CLASS constant instead of using “styleClass".

¢ Note:

In JavaScript, it is more efficient to refer to a constant than to code the string,
as in some JavaScript execution environments, the latter requires an object
allocation on each invocation.

When a component's property changes, the end result should be that the component's
DOM is updated to reflect its new state, in some cases without a roundtrip to the
server. The component's role in this process is fairly limited: it simply stores away the
new property value and then notifies the peer of the change. The peer contains the
logic for updating the DOM to reflect the new component state.

< Note:

Not all property changes are handled through the peer on the client side.
Some property changes are propagated back to the server and the
component is rerendered using PPR.

Most property values that are set on the client result in automatic synchronization with
the server (although some complex Java objects are not sent to the client at all). There
are however, two types of properties that act differently: secured properties and
disconnected properties.

Secured properties are those that cannot be set on the client at all. For example, say
a malicious client used JavaScript to set the immediate flag on a Link component to
true. That change would then be propagated to the server, resulting in server-side
validation being skipped, causing a possible security hole (for information about using

4-9

Chapter 4
Accessing Component Properties on the Client

the immediate property, see Using the Immediate Attribute). Consequently, the
immediate property is a secured property. Attempts to set secured property from
JavaScript will fail. See How to Unsecure the disabled Property.

ADF Faces does allow you to configure the disabled property so that it can be made
unsecure. This can be useful when you need to use JavaScript to enable and disable
buttons. See Secure Client Properties for a list of the ADF Faces secure client
properties.

Disconnected properties are those that can be set on the client, but that do not
propagate back to the server. These properties have a lifecycle on the client that is
independent of the lifecycle on the server. For example, client form input components
(like AdfRichInputText) have a submittedValue property, just as the Java
EditablevalueHolder components do. However, setting this property does not directly
affect the server. In this case, standard form submission techniques handle updating
the submitted value on the server.

A property can be both disconnected and secured. In practice, such properties act like
disconnected properties on the client: they can be set on the client, but will not be sent
to the server. But they act like secured properties on the server, in that they will refuse
any client attempts to set them.

Secure Client Properties

ORACLE

Secure properties are those that cannot be set on the client, preventing a security
hole. Table 4-1 shows the secure properties on the client components.

Table 4-1 Secure Client Properties
|

Component Secure Property
AdfRichChooseColor colorData
AdfRichComboboxListOfValue disabled
readOnly
AdfRichCommandButton disabled
readOnly
blocking
AdfRichCommandImageLink blocking
disabled
partialSubmit
AdfRichCommandLink readOnly
AdfRichDialog dialogListener
AdfRichDocument failedConnectionText
AdfRichlInputColor disabled
readOnly
colorData
AdfRichlnputDate disabled
readOnly
valuePassThru

4-10

ORACLE

Chapter 4
Accessing Component Properties on the Client

Table 4-1 (Cont.) Secure Client Properties

Component

Secure Property

AdfRichlnputFile

AdfRichlInputListOfvalues

AdfRichInputNumberSlider

AdfRichlInputNumberSplinBox

AdfRichlInputRangeSlider

AdfRichlnputText

AdfRichPopUp

AdfRichUlQuery

AdfRichSelectBooleanCheckbox

AdfRichSelectBooleanRadio

AdfRichSelectManyCheckbox

AdfRichSelectManyChoice

AdfRichSelectManyListBox

disabled
readOnly

disabled
readOnly

disabled
readOnly

disabled
readOnly
maximum

minimum

stepSize
disabled
readOnly

disabled
readOnly
secret

launchPopupListener
model
returnPopupListener
returnPopupDatalistener
createPopupld
conjunctionReadOnly
model

queryListener
queryOperationListener
disabled

readOnly

disabled

readOnly

disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru

4-11

ORACLE

Chapter 4
Accessing Component Properties on the Client

Table 4-1 (Cont.) Secure Client Properties

Component

Secure Property

AdfRichSelectManyShuttle

AdfRichSelectOneChoice

AdfRichSelectOneListBox

AdfRichSelectOneRadio

AdfRichSelectOrderShuttle

AdfRichUITable
AdfRichTextEditor

AdfUIChart
AdfUIColumn
AdfUlICommand

AdfUlComponentRef
AdfUIEditableValueBase

AdfUIMessage.js
AdfUINavigationLevel
AdfUINavigationTree

AdfUlPage

disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru
disabled

readOnly
valuePassThru
filterModel

disabled

readOnly
chartDrillDownListener
sortProperty
actionExpression
returnListener
launchListener
immediate
componentType
immediate

valid

required
localValueSet
submittedvalue
requiredvessageDetail
for

level
rowDisclosureListener
startLevel

immediate
rowDisclosureListener
immediate

4-12

Chapter 4
Accessing Component Properties on the Client

Table 4-1 (Cont.) Secure Client Properties
-

Component

Secure Property

AdfulPoll

AdfUlProgress
AdfUlSelectBoolean
AdfUlSelectlinput

AdfUlSelectRange

AdfUIShowDetai IBase

AdfUISingleStep

AdfUISubform
AdfUlTableBase

AdfUlTreeBase

AdfUlTreeTable
AdfUlValueBase

immediate
pollListener

immediate
selected

actionExpression
returnListener

immediate
rangeChangeListener

immediate
disclosureListener

selectedStep
maxStep

default

rowDisclosureListener
selectionListener
immediate
sortListener
rangeChangelListener
showAll

immediate
rowDisclosureListener
selectionListener
focusRowKey
focusListener
rangeChangeListener
converter

How to Set Property Values on the Client

The ADF Faces framework provides setXYZ convenience functions that call through to
the underlying ADFUIComponent.setProperty function, passing the appropriate
property name (for more information, see the JavaScript APl Reference for Oracle
ADF Faces). The following code shows how you might use the setProperty function
to set the backgroundcolor property on an inputText component to red when the

ORACLE

value changes.

<af:form>

<af:resource type="javascript'>
function color(event) {

var inputComponent = event.getSource();
inputComponent.setproperty("inlineStyle", "background-color:Red");

4-13

Chapter 4
Accessing Component Properties on the Client

</af:resource>
<af:outputText id="it" label="label">
<af:clientListener method="color" type="valueChange"/>
</af:inputText>
</af:form>

By using these functions, you can change the value of a property, and as long as it is
not a disconnected property or a secure property, the value will also be changed on
the server.

What Happens at Runtime: How Client Properties Are Set on the

Client

Calling the setProperty() function on the client sets the property to the new value,
and synchronously fires a PropertyChangeEvent event with the old and new values (as
long as the value is different). Also, setting a property may cause the component to
rerender itself.

How to Unsecure the disabled Property

ORACLE

By default, the disabled property is a secure property. That is, JavaScript cannot be
used to set it on the client. However, you can use the unsecured property to set the
disabled property to be unsecure. You need to manually add this property and the
value of disabled to the code for the component whose disabled property should be
unsecure. For example, the code for a button whose disabled property should be
unsecured would be:

<af:button text="commandButton 1" id="cbl" unsecure="disabled"/>

When the disabled attribute was secured, the application could count on the disabled
attribute to ensure that an action event was never delivered when it shouldn't be.
Therefore, when you do unsecure the disabled attribute, the server can no longer
count on the disabled attribute being correct and so you must to perform the
equivalent check using an actionListeners.

For example, say you have an expense approval page, and on that page, you want
certain managers to be able to only approve invoices that are under $200. For this
reason, you want the approval button to be disabled unless the current user is allowed
to approve the invoice. Without unsecuring the disabled attribute, he approval button
would remain disabled until a round-trip to the server occurs, where logic determines if
the current user can approve the expense. This means that upon rendering, the button
may not display correctly for the current user. To have the button to display correctly
as the page loads, you need to set the unsecure attribute to disabled and then use
JavaScript on the client to determine if the button should be disabled. But now, any
JavaScript (including malicious JavaScript that you have no control over) can do the
same thing.

To avoid the malicious JavaScript, use the actionListener on the button to perform
the logic on the server. Adding the logic to the server ensures that the disabled
attribute does not get changed when it should not. In the expense approval example,
you might have JavaScript that checks that the amount is under $200, and also use
the actionListener on the button to recheck that the current manager has the
appropriate spending authority before performing the approval.

4-14

Chapter 4
Accessing Component Properties on the Client

Similarly, if you allow your application to be modified at runtime, and you allow users to
potentially edit the unsecure and/or the disabled attributes, you must ensure that your
application still performs the same logic as if the round-trip to the server had occurred.

How to “Unsynchronize" Client and Server Property Values

ORACLE

There may be cases when you do not want the value of the property to always be
delivered and synchronized to the server. For example, say you have inputText
components in a form, and as soon as a user changes a value in one of the
components, you want the changed indicator to display. To do this, you might use
JavaScript to set the changed attribute to true on the client component when the
valueChangeEvent event is delivered. Say also, you do not want the changed indicator
to display once the user submits the page, because at that time, the values are saved.

Say you use JavaScript to set the changed attribute to true when the
valueChangeEvent is delivered, like this:

<af:form>
<af:resource type="javascript">
function changed(event) {
var inputComponent = event.getSource();
inputComponent.setChanged(true);

}

</af:resource>
<af:inputText id="it" label="label">
<af:clientListener method="changed" type="valueChange"/>
</af:inputText>
<af:button text="Submit"/>
</af:form>

Using this example, the value of the changed attribute, which is true, will also be sent
to the server, because all the properties on the component are normally synchronized
to the server. So the changed indicator will continue to display.

To make it so the indicator does not display when the values are saved to the server,
you might use one of the following alternatives:

* Move the logic from the client to the server, using an event listener. Use this
alternative when there is an event being delivered to the server, such as the
valueChangeEvent event, as shown here:

<af:form>
<af:inputText label="label"
autoSubmit="true"
changed="#{test.changed}"
valueChangeListener="#{test.valueChange}"/>
<af:button text="Submit"™ />
</af:form>

This example shows the corresponding managed bean code.

import javax.faces.event.ValueChangeEvent;
import oracle.adf.view.rich.context.AdfFacesContext;

public class TestBean {
public TestBean() {}

public void valueChange(ValueChangeEvent valueChangeEvent)

{

4-15

ORACLE

Chapter 4
Accessing Component Properties on the Client

setChanged(true);

AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentinstance();
adfFacesContext.addPartialTarget(valueChangeEvent.getComponent());
FacesContext.getCurrentinstance().renderResponse();

}

public void setChanged(boolean changed)
¢ _changed = changed;

}

public boolean isChanged()

i return _changed;

private boolean _changed;

}

Move the logic to the server, using JavaScript that invokes a custom server event
and a serverListener tag, as shown below. Use this when there is no event being
delivered.

<af:form>
<af:resource type="javascript">
function changed(event)
{
var inputComponent = event.getSource();
AdfCustomEvent.queue(inputComponent, "myCustomEvent”, null, true);

}

</af:resource>

<af:inputText label="label" changed="#{test2.changed}">
<af:serverListener type="myCustomEvent"

method="#{test2.doCustomEvent}"/>

<af:clientListener method="changed" type="valueChange"/>

</af:inputText>

<af:button text="Submit"/>

</af:form>

The following example shows the managed bean code.

package test;
import javax.faces.context.FacesContext;

import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.adf.view.rich_render.ClientEvent;

public class Test2Bean

{
public Test2Bean()

{
}

public void doCustomEvent(ClientEvent event)

{
setChanged(true);

AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentlnstance();
adfFacesContext.addPartialTarget(event.getComponent());
FacesContext.getCurrentinstance() .renderResponse();

}

public void setChanged(boolean changed)

4-16

Chapter 4
Accessing Component Properties on the Client

_changed = changed;

}

public boolean isChanged()
{

}

private boolean _changed;

return _changed;

}

* On the client component, set the changed attribute to true, which will propagate to
the server, but then use an actionListener on the command component to set
the changed attribute back to false. Here is the JSF code:

<af:form>
<af:resource type="javascript'>
function changed(event) {
var inputComponent = event.getSource();
inputComponent._setChanged(true);
}
</af:resource>
<af:inputText binding="#{test3.input}" label="label">
<af:clientListener method="changed" type="valueChange"/>
</af:inputText>
<af:button text="Submit" actionListener="#{test3.clear}"/>
</af:form>

The following sample shows the corresponding managed bean code.

package test;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.input.RichInputText;
public class Test3Bean

¢ public Test3Bean()

{
}

public void clear(ActionEvent actionEvent)

{
}

_input_setChanged(false);

public void setlnput(RichlnputText input)
{

_input = input;

}

public RichlInputText getlnput()
{

}

return _input;

private RichlnputText _input;

ORACLE 4-17

Chapter 4
Using Bonus Attributes for Client-Side Components

Using Bonus Attributes for Client-Side Components

In ADF Faces, bonus attributes are used to return values from server to client. You
can create bonus attributes to a component using the Components window in
JDeveloper.

In some cases you may want to send additional information to the client beyond the
built-in properties. This can be accomplished using bonus attributes. Bonus attributes
are extra attributes that you can add to a component using the clientAttribute tag.
For performance reasons, the only bonus attributes sent to the client are those
specified by clientAttribute.

The clientAttribute tag specifies a name/value pair that is added to the server-side
component's attribute map. In addition to populating the server-side attribute map,
using the clientAttribute tag results in the bonus attribute being sent to the client,
where it can be accessed through the

AdfUlComponent.getProperty(*'bonusAt t ri but eNane') method.

The framework takes care of marshalling the attribute value to the client. The
marshalling layer supports marshalling of a range of object types, including strings,
booleans, numbers, dates, arrays, maps, and so on. For information on marshalling,
see What You May Need to Know About Marshalling and Unmarshalling Data.

¢ Performance Tip:

In order to avoid excessive marshalling overhead, use client-side bonus
attributes sparingly.

< Note:

The clientAttribute tag should be used only for bonus (application-
defined) attributes. If you need access to standard component attributes on
the client, instead of using the clientAttribute tag, simply set the
clientComponent attribute to true. See Instantiating Client-Side
Components.

How to Create Bonus Attributes

ORACLE

You can use the Components window to add a bonus attribute to a component.
Before you begin:

It may be helpful to have an understanding of bonus attributes. See Using Bonus
Attributes for Client-Side Components.

To create bonus attributes:

1. Inthe Structure window, select the component to which you would like to add a
bonus attribute.

4-18

Chapter 4
Understanding Rendering and Visibility

2. In the Components window, from the Operations panel, drag and drop a Client
Attribute as a child to the component.

3. Inthe Properties window, set the Name and Value attributes.

What You May Need to Know About Marshalling Bonus Attributes

Although client-side bonus attributes are automatically delivered from the server to the
client, the reverse is not true. That is, changing or setting a bonus attribute on the
client will have no effect on the server. Only known (nonbonus) attributes are
synchronized from the client to the server. If you want to send application-defined data
back to the server, you should create a custom event. See Sending Custom Events
from the Client to the Server.

Understanding Rendering and Visibility

ORACLE

You can show (render) and hide an ADF Faces component dynamically on your page,
depending on the value of another component. You must set a component's attribute
property to true or false to be a part of JSF tree and to generate HTML code for that
component.

All ADF Faces display components have two attributes that relate to whether or not the
component is displayed on the page for the user to see: rendered and visible.

The rendered attribute has very strict semantics. When rendered is set to false, there
is no way to show a component on the client without a roundtrip to the server. To
support dynamically hiding and showing page contents, the framework adds the
visible attribute. When set to false, the component's markup is available on the
client but the component is not displayed. Therefore calls to the setVisible(true) or
setVisible(false) method will, respectively, show and hide the component within the
browser (as long as rendered is set to true), whether those calls happen from Java or
from JavaScript. However, because visible simply shows and hides the content in
the DOM, it doesn't always provide the same visual changes as using the rendered
would.

¢ Performance Tip:

You should set the visible attribute to false only when you absolutely need
to be able to toggle visibility without a roundtrip to the server, for example in
JavaScript. Nonvisible components still go through the component lifecycle,
including validation.

If you do not need to toggle visibility only on the client, then you should
instead set the rendered attribute to false. Making a component not
rendered (instead of not visible) will improve server performance and client
response time because the component will not have client-side
representation, and will not go through the component lifecycle.

The following example shows two outputText components, only one of which is
rendered at a time. The first outputText component is rendered when no value has
been entered into the inputText component. The second outputText component is
rendered when a value is entered.

4-19

Chapter 4
Understanding Rendering and Visibility

<af:panelGroupLayout layout="horizontal'>
<af:inputText label="Input some text" id="input"
value="#{myBean.inputvalue}"/>
<af:button text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal'>
<af:outputLabel value="You entered:"/>
<af:outputText value="No text entered" id="outputl"
rendered="#{myBean. inputValue==nul 1}"/>
<af:outputText value="#{myBean.inputValue}"
rendered="#{myBean. inputvValue !=null}"/>
</af:panelGroupLayout>

Provided a component is rendered in the client, you can either display or hide the
component on the page using the visible property.

The next example shows how you might achieve the same functionality as shown
above, but in this example, the visible attribute is used to determine which
component is displayed (the rendered attribute is true by default, it does not need to
be explicitly set).

<af:panelGroupLayout layout="horizontal">
<af:inputText label="Input some text" id="input”
value="#{myBean. inputValue}"/>
<af:button text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
<af:outputLabel value="You entered:"/>
<af:outputText value="No text entered" id="outputl”
visible="#{myBean. inputvValue==nul1}"/>
<af:outputText value="#{myBean.inputValue}"
visible="#{myBean.inputvalue '=null}"/>
</af:panelGroupLayout>

However, because using the rendered attribute instead of the visible attribute
improves performance on the server side, you may instead decide to have JavaScript
handle the visibility, as shown in the following JavaScript code.

function showText()

{
var outputl = AdfUlComponent.findComponent("outputl'™)

var output2 = AdfUlComponent.findComponent("output2')
var input = AdfUlComponent.findComponent("input'™)

if (input.getValue() == "")

outputl.setVisible(true);
}

else

{
output2.setVisible(true)

}

How to Set Visibility Using JavaScript

You can create a conditional JavaScript function that can toggle the visible attribute
of components.

ORACLE 4-20

ORACLE

Chapter 4
Understanding Rendering and Visibility

Before you begin:

It may be helpful to have an understanding of how components are displayed. See
Understanding Rendering and Visibility.

To set visibility:

1.

Create the JavaScript that can toggle the visibility. Example 4-1shows a script that
turns visibility on for one outputText component if there is no value; otherwise, the
script turns visibility on for the other outputText component.

For each component that will be needed in the JavaScript function, expand the
Advanced section of the Properties window and set ClientComponent attribute
to true. This creates a client component that will be used by the JavaScript.

For the components whose visibility will be toggled, set the visible attribute to
false.

This example shows the full page code used to toggle visibility with JavaScript.

Example 4-1 JavaScript for Setting Visibility

<f:view>
<af:resource>
function showText()

{

¥

var outputl = AdfUlComponent.findComponent(*'outputl')
var output2 = AdfUlComponent.findComponent("'output2')
var input = AdfUlComponent.findComponent("input')

if (input.value == "")
{
outputl.setVisible(true);

}

else

{
output2.setVisible(true)

}

</af:resource>
<af:document>
<af:form>

<af:panelGroupLayout layout="horizontal">
<af:inputText label="Input some text" id="input"
value="#{myBean. inputValue}" clientComponent="true"
immediate="true"/>
<af:button text="Enter" clientComponent="true">
<af:clientListener method="showText" type="action"/>
</af:button>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
<af:outputLabel value="You entered:" clientComponent="false"/>
<af:outputText value="No text entered" id="outputl"
visible="false" clientComponent="true"/>
<af:outputText value="#{myBean.inputValue}" id="output2"
visible="false" clientComponent="true"/>
</af:panelGroupLayout>

4-21

Chapter 4
Locating a Client Component on a Page

</af:form>
</af:document>
</f:view>

What You May Need to Know About Visible and the isShowing

Function

If the parent of a component has its visible attribute set to false, when the
isVisible function is run against a child component whose visible attribute is set to
true, it will return true, even though that child is not displayed. For example, say you
have a panelGroupLayout component that contains an outputText component as a
child, and the panelGroupLayout component's visible attribute is set to false, while
the outputText component's visible attribute is left as the default (true). On the
client, neither the panelGroupLayout nor the outputText component will be displayed,
but if the isVisible function is run against the outputText component, it will return
true.

For this reason, the framework provides the isShowing() function. This function will
return false if the component's visible attribute is set to false, or if any parent of
that component has visible set to false.

Locating a Client Component on a Page

ORACLE

When you need to find a client component that is not the source of an event, you can
use the AdfUIComponent. findComponent(expr) method. This method is similar to the
JSF UlComponent . findComponent() method, which searches for and returns the
UlComponent object with an ID that matches the specified search expression.

The AdfUlIComponent. findComponent(expr) method simply works on the client instead
of the server.

The following example shows the sayHel lo function finding the outputText
component using the component's ID.

function sayHello(actionEvent)

{

var buttonComponent=actionEvent.getSource();

//Find the client component for the "greeting" af:outputText
var greetingComponent=buttonComponent.findComponent(*'greeting™);

//Set the value for the outputText component
greetingComponent.setValue(""Hello World™)

}

ADF Faces also has the AdfPage.PAGE. findComponentByAbsoluteld(absolute expr)
method. Use this method when you want to hard-code the String for the ID. Use
AdfUlComponent. findComponent(expr) when the client ID is being retrieved from the
component.

4-22

Chapter 4
Locating a Client Component on a Page

< Note:

There is also a confusingly named AdfPage . PAGE . findComponent(clientld)
method, however this function uses implementation-specific identifiers that
can change between releases and should not be used by page authors.

What You May Need to Know About Finding Components in Naming
Containers

If the component you need to find is within a component that is a naming container
(such as pageTemplate, subform, table, and tree), then instead of using the
AdfPage . PAGE. findComponentByAbsoluteld(absolute expr) method, use the
AdfUlComponent. findComponent(expr) method. The expression can be either
absolute or relative.

Tip:

You can determine whether or not a component is a naming container by
reviewing the component tag documentation. The tag documentation states
whether a component is a naming container.

Absolute expressions are built as follows:

" + (namingContainersToJumpUp * ":") + some ending portion of the
clientldOfComponentToFind

For example, to find a table whose ID is tl that is within a panel collection component
whose ID is pcl contained in a region whose ID is rl on page that uses the
myTemplate template, you might use the following:

:myTemplate:rl:pcl:tl

Alternatively, if both the components (the one doing the search and the one being
searched for) share the same NamingContainer component somewhere in the
hierarchy, you can use a relative path to perform a search relative to the component
doing the search. A relative path has multiple leading
NamingContainer.SEPARATOR_CHAR characters, for example:

":" + clientldOfComponentToFind

In the preceding example, if the component doing the searching is also in the same
region as the table, you might use the following:

::somePanelCollection:someTable

ORACLE 4-23

Chapter 4
JavaScript Library Partitioning

Tip:

Think of a naming container as a folder and the clientld as a file path. In
terms of folders and files, you use two sequential periods and a slash (../)
to move up in the hierarchy to another folder. This is the same thing that the
multiple colon (:) characters do in the findComponent() expression. A single
leading colon (:) means that the file path is absolute from the root of the file
structure. If there are multiple leading colon (:) characters at the beginning
of the expression, then the first one is ignored and the others are counted,
one set of periods and a slash (. ./) per colon (:) character.

Note that if you were to use the AdfPage. findComponentByAbsoluteld()
method, no leading colon is needed as, the path always absolute.

When deciding whether to use an absolute or relative path, keep the following in mind:

* If you know that the component you are trying to find will always be in the same
naming container, then use an absolute path.

* If you know that the component performing the search and the component you are
trying to find will always be in the same relative location, then use a relative path.

There are no getChildren() or getFacet() functions on the client. Instead, the
AdfUlComponent._visitChildren() function is provided to visit all children components
or facets (that is all descendents). Because ADF Faces uses a sparse component tree
(that is, client components are created on an as-needed basis, the component that the
getParent() method might return on the client may not be the actual parent on the
server (it could be any ancestor). Likewise, the components that appear to be
immediate children on the client could be any descendants. See the Java AP/
Reference for Oracle ADF Faces.

JavasScript Library Partitioning

ORACLE

In ADF Faces, JavaScript Partitioning feature helps combine individual JavaScript files
from ADF components together into larger collections, thus reducing the number of
downloads. You can use the default partition provided by ADF Faces or create/
configure a JavaScript partition as required by the application.

A common issue with JavaScript-heavy frameworks is determining how best to deliver
a large JavaScript code base to the client. On one extreme, bundling all code into a
single JavaScript library can result in a long download time. On the other extreme,
breaking up JavaScript code into many small JavaScript libraries can result in a large
number of roundtrips. Both approaches can result in the end user waiting
unnecessarily long for the initial page to load.

To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions.
A JavaScript library partition contains code for components and/or features that are
commonly used together. By default, ADF Faces provides a partitioning that is
intended to provide a balance between total download size and total number of
roundtrips.

One benefit of ADF Faces's library partitioning strategy is that it is configurable.
Because different applications make use of different components and features, the
default partitioning provided by ADF Faces may not be ideal for all applications. As

4-24

Chapter 4
JavaScript Library Partitioning

such, ADF Faces allows the JavaScript library partitioning to be customized on a per-
application basis. This partitioning allows application developers to tune the JavaScript
library footprint to meet the needs of their application.

ADF Faces groups its components' JavaScript files into JavaScript features. A
JavaScript feature is a collection of JavaScript files associated with a logical identifier
that describes the feature. For example, the panelStretchLayout client component is
comprised of the following two JavaScript files

e oracle/adf/view/js/component/rich/layout/ AdfRichPanelStretchlLayout.js

« oracle/adfinternal/view/js/laf/dhtml/rich/
AdfDhtmlPanelStretchLayoutPeer.js

These two files are grouped into the AdfRichPanelStretchLayout feature.

JavaScript features are further grouped into JavaScript partitions. JavaScript partitions
allow you to group JavaScript features into larger collections with the goal of
influencing the download size and number of round trips. For example, since the
panelStretchLayout component is often used with the panelSplitter component, the
features for these two components are grouped together in the stretch partition, along
with the other ADF Faces layout components that can stretch their children. At
runtime, when a page is loaded, the framework determines the components used on
the page, and then from that, determines which features are needed (feature names
are the same as the components' constructor name). Only the partitions that contain
those features are downloaded.

Features and partitions are defined using configuration files. ADF Faces ships with a
default features and partitions configuration file. You can overwrite the default
partitions file by creating your own implementation.

By default, JavaScript partitioning is turned on. Whether or not your application uses
JavaScript partitioning is determined by a context parameter in the web.xml file. See
JavaScript Partitioning.

How to Create JavaScript Partitions

ORACLE

You create a JavaScript partition by creating an adf-js-partitions.xml file, and
then adding entries for the features.

" Note:

ADF Faces provides a default adf-js-partitions.xml file (see The adf-js-
partitions.xml File). If you want to change the partition configuration, you
need to create your own complete adf-js-partitions.xml file. At runtime,
the framework will search the WEB-INF directory for that file. If one is not
found, it will load the default partition file.

Before you begin:

It may be helpful to have an understanding of JavaScript partitioning works. For
information, see JavaScript Library Partitioning.

To create JavaScript partitions:

4-25

Chapter 4
JavaScript Library Partitioning

1. Inthe Applications window, right-click WEB-INF and choose New > From Gallery.

2. Inthe New Gallery, expand General, select XML and then XML Document, and
click OK.

Tip:

If you don't see the General node, click the All Technologies tab at the
top of the Gallery.

3. Inthe Create XML File dialog, enter adf-js-partitions.xml as the file name and
save it in the WEB- INF directory.

4. In the source editor, replace the generated code with the following:

<?xml version="1.0" encoding="utf-8" 7>
<partitions xmlns="http://xmlns.oracle.com/adf/faces/partition">

</partitions>
5. Add the following elements to populate a partition with the relevant features.
e partitions: The root element of the configuration file.

e partition: Create as a child to the partitions element. This element must
contain one partition-name child element and one or more feature
elements.

e partition-name: Create as a child to the partition element. Specifies the
name of the partition. This value will be used to produce a unique URL for this
partition's JavaScript library.

» feature: Create as a child to the partition element. Specifies the feature to
be included in this partition. There can be multiple feature elements.

Tip:

Any feature configured in the adf-js-features.xml file that does not
appear in a partition is treated as if it were in its own partition.

The following example shows the partition element for the tree partition that
contains the AdfRichTree and AdfRichTreeTable features.

<partition>
<partition-name>tree</partition-name>
<feature>AdfUlTree</feature>
<feature>AdfUlTreeTable</feature>
<feature>AdfRichTree</feature>
<feature>AdfRichTreeTable</feature>
</partition>

What Happens at Runtime: JavaScript Partitioning

ADF Faces loads the library partitioning configuration files at application initialization
time. First, ADF Faces searches for all adf-js-features.xml files in the META-INF

ORACLE 4-26

ORACLE

Chapter 4
JavaScript Library Partitioning

directory and loads all that are found (including the ADF Faces default feature
configuration file).

For the partition configuration file, ADF Faces looks for a single file named adf-js-
partitions.xml in the WEB-INF directory. If no such file is found, the ADF Faces
default partition configuration is used.

During the render traversal, ADF Faces collects information about which JavaScript
features are required by the page. At the end of the traversal, the complete set of
JavaScript features required by the (rendered) page contents is known. Once the set
of required JavaScript features is known, ADF Faces uses the partition configuration
file to map this set of features to the set of required partitions. Given the set of required
partitions, the HTML <script> references to these partitions are rendered just before
the end of the HTML document.

4-27

Using the JSF Lifecycle with ADF Faces

This chapter describes the JSF page request lifecycle and the additions to the lifecycle
from ADF Faces, and how to use the lifecycle properly in your application.
This chapter includes the following sections:

* About Using the JSF Lifecycle and ADF Faces
e Using the Immediate Attribute

e Using the Optimized Lifecycle

* Using the Client-Side Lifecycle

e Using Subforms to Create Sections on a Page
* Object Scope Lifecycles

e Passing Values Between Pages

About Using the JSF Lifecycle and ADF Faces

ORACLE

The lifecycle of a JavaServer Faces application begins when the client makes an
HTTP request for a page and ends when the server responds with the page, translated
to HTML. You can learn about the different phases of JSF lifecycle and ADF Faces
lifecycle on a page request and how the events are processed before and after each
phase.

ADF Faces applications use both the JSF lifecycle and the ADF Faces lifecycle. The
ADF Faces lifecycle extends the JSF lifecycle, providing additional functionality, such
as a client-side value lifecycle, a subform component that allows you to create
independent submittable sections on a page without the drawbacks (for example, lost
user edits) of using multiple forms on a single page, and additional scopes.

To better understand the lifecycle enhancements that the framework delivers, it is
important that you understand the standard JSF lifecycle. This section provides only
an overview. For a more detailed explanation, refer to the JSF specification at http://
www . jcp.org/Zen/jsr/detail?id=314.

When a JSF page is submitted and a new page is requested, the JSF page request
lifecycle is invoked. This lifecycle handles the submission of values on the page,
validation for components on the current page, navigation to and display of the
components on the resulting page, as well as saving and restoring state. The
FacesServlet object manages the page request lifecycle in JSF applications. The
FacesServlet object creates an object called FacesContext, which contains the
information necessary for request processing, and invokes an object that executes the
lifecycle.

The JSF lifecycle phases use a Ul component tree to manage the display of the faces
components. This tree is a runtime representation of a JSF page: each Ul component
tag in a page corresponds to a Ul component instance in the tree.

Figure 5-1 shows the JSF lifecycle of a page request. As shown, events are processed
before and after each phase.

5-1

http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314

ORACLE

Chapter 5
About Using the JSF Lifecycle and ADF Faces

Figure 5-1 Lifecycle of a Page Request in an ADF Faces Application

Faces Reguest »

Restore View

|
Process events

'

Apply Request Values
|

Process events

v

Process Validations
|

’— Process events

Update Model Values
|

Process events

v

Invoke Application

Process events

v

Render Response —— Faces Response 4,

-

If initial render or no data from submitted page

If walidation fails

If actionSource component set to immediate

In a JSF application, the page request lifecycle is as follows:

Restore View: The component tree is established. If this is not the initial rendering
(that is, if the page was submitted back to server), the tree is restored with the
appropriate state. If this is the initial rendering, the component tree is created and
the lifecycle jumps to the Render Response phase.

Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores the values locally. Most
associated events are queued for later processing. If a component has its
immediate attribute set to true, then the validation, the conversion, and the events
associated with the component are processed during this phase. See Using the
Immediate Attribute.

Process Validations: Local values of components are converted from the input
type to the underlying data type. If the converter fails, this phase continues to
completion (all remaining converters, validators, and required checks are run), but
at completion, the lifecycle jumps to the Render Response phase.

If there are no failures, the required attribute on the component is checked. If the
value is true, and the associated field contains a value, then any associated
validators are run. If the value is true and there is no field value, this phase

5-2

ORACLE

Chapter 5
About Using the JSF Lifecycle and ADF Faces

completes (all remaining validators are executed), but the lifecycle jumps to the
Render Response phase. If the value is false, the phase completes, unless no
value is entered, in which case no validation is run. For information about
conversion and validation, see Validating and Converting Input.

At the end of this phase, converted versions of the local values are set, any
validation or conversion error messages and events are queued on the
FacesContext object, and any value change events are delivered.

Tip:

In short, for an input component that can be edited, the steps for the
Process Validations phase is as follows:

1. If a converter fails, the required check and validators are not run.

2. If the converter succeeds but the required check fails, the validators
are not run.

3. If the converter and required check succeed, all validators are run.
Even if one validator fails, the rest of the validators are run. This is
because when the user fixes the error, you want to give them as
much feedback as possible about what is wrong with the data
entered.

For example suppose you have a dateTimeRange validator that
accepted dates only in the year 2015 and you had a
dateRestrictionVal idator validator that did not allow the user to
pick Sundays. If the user entered November 16, 2014 (a Sunday),
you want to give the feedback that this fails both validators to
maximize the chance the user will enter valid data.

e Update Model Values: The component's validated local values are moved to the
model, and the local copies are discarded.

e Invoke Application: Application-level logic (such as event handlers) is executed.

e Render Response: The components in the tree are rendered. State information is
saved for subsequent requests and for the Restore View phase.

To help illustrate the lifecycle, consider a page that has a simple input text component
where a user can enter a date and then click a button to submit the entered value. A
valueChangeListener method is also registered on the component. The following
shows the code for the example.

<af:form>
<af:inputText value="#{mybean.date}"
valueChangeListener="#{mybean.valueChangelListener}">
<af:convertDateTime dateStyle="long"/>
</af:inputText>
<af:button text="Save" actionListener="#{mybean.actionListener}"/>
</af:form>

Suppose a user enters the string "June 25, 2015" and clicks the submit button.
Figure 5-2 shows how the values pass through the lifecycle and where the different
events are processed.

5-3

Chapter 5
Using the Immediate Attribute

Figure 5-2 Example of Values and Events in the JSF Lifecycle

RESTORE VIEW

!

APPLY REQUEST VALUES

Command button: ActionEvent is queued

Input text: The string “June 25, 2015" saved as a submittedValue

A4

PROCESS VALIDATIONS

Input text: The converter converts the submitted string to a date object. The date object is set
as the local value. The localvalueSet attribute is setto true and the submittedvValue
attribute is set to null. The valueChangeEvent IS queued.

If an invalid entry had been submitted, the converter would have thrown an exception and
placed a message on the queue. The component would remain bound to the original value.
The lifecycle would move to the Render Response phase, and the incorrect submitted value
would render.

. Process events

nput text: valuseChang=Event delivered and valusChang=Listener called.
UPDATE MODEL VALUES

Input text: The date is passed into the model. The lacalvalueSet attribute is set to false
and the localvalue attribute is setto null.

INVOKE APPLICATION

. Process events
. Button: EctionEvent delivered and ActionListener called

v

RENDER RESPONSE

Input text: The component value is accessed by calling the getvalu= method, which evaluates
the expression #{myb=an.date} and returnsthe date fromthe model. The converter calls the
get2s3tring method, which takes the date and converts it to a string. The string “June 25,
2015 is rendered in the component.

If the entered data had failed conversion or validation, the submittedvalue would be shown
instead of the bound value.

Using the Immediate Attribute

ORACLE

In ADF Faces lifecycle or in JSF lifecycle, when a component's immediate attribute is
set to true, the validation, conversion, and events associated with these components
are processed during the Apply Request Values phase rather than in a later phase.
Use this attribute to navigate to another page without processing any data currently in
the input fields of the current screen.

5-4

ORACLE

Chapter 5
Using the Immediate Attribute

You can use the immediate attribute to allow processing of components to move up to
the Apply Request Values phase of the lifecycle. When actionSource components
(such as a commandButton) are set to immediate, events are delivered in the Apply
Request Values phase instead of in the Invoke Application phase. The
actionListener handler then calls the Render Response phase, and the validation
and model update phases are skipped.

For example, you might want to configure a Cancel button to be immediate, and have
the action return a string used to navigate back to the previous page (for information
about navigation, see Working with Navigation Components). Because the Cancel
button is set to immediate, when the user clicks the Cancel button, all validation is
skipped, any entered data is not updated to the model, and the user navigates as
expected, as shown in Figure 5-3.

Figure 5-3 Lifecycle for Button Set to Immediate

RESTORE VIEW

b
APPLY REQUEST VALUES

Command button: ActionEvent is queued

—® actionEvent delivered (actionListener called)

A
PROCESS VALIDATIONS
Skipped

v

UPDATE MODEL VALUES
Skipped

h 4

INVOKE APPLICATION
Skipped

v

RENDER RESPONSE

Navigation occurs

¢ Note:

A button that does not provide any navigation and is set to immediate will
also go directly to the Render Response phase: the Validation, Update
Model, and Invoke Application phases are skipped, so any new values will
not be pushed to the server.

As with command components, for components that invoke disclosure events, (such
as a showDetail component), and for editableValueHolder components

5-5

ORACLE

Chapter 5
Using the Immediate Attribute

(components that hold values that can change, such as an inputText component),
when set to immediate, the events are delivered to the Apply Request Values phase.
However, for editableValueHolder components, instead of skipping phases,
conversion, validation, and delivery of valueChangeEvents events for the immediate
components are done earlier in the lifecycle, during the Apply Request Values phase,
instead of after the Process Validations phase. No lifecycle phases are skipped.

Figure 5-4 shows the lifecycle for an input component whose immediate attribute is set
to true. The input component takes a date entered as a string and stores it as a date
object when the command button is clicked.

Figure 5-4 Immediate Attribute on an Input Component

RESTORE VIEW

l

APPLY REQUEST VALUES
Command button: ac t ionEvent is queusd

Input component: “June 25, 2015" saved as component's submitted value, converted to
java.util.Date, andsaved as the local value on the component. Localvalueis setto
trueand submittedvalueissetto null.

valusChangeEvent is queued.

» valueChangeEvent delivered (valusChangelistener called)
v

PROCESS VALIDATIONS

v

UPDATE MODEL VALUES
ValueExpression.setValue () (boundtovalue attribute)called and local value of
java.util.Dateispassedin.

localvalueissettonull and localvalussSetissetto false.

}

INVOKE APPLICATION

1 » ActionEventdelivered (actionListener called)

A4

RENDER RESPONSE

Converterreturns java . utilDate=asa string, which is then rendered.

Setting immediate to true for an input component can be useful when one or more
input components must be validated before other components. Then, if one of those
components is found to have invalid data, validation is skipped for the other input
components in the same page, thereby reducing the number of error messages shown
for the page.

For example, suppose you have a form used to collect name and address information
and you have the Name field set to required. The address fields need to change,
based on the country chosen in the Country dropdown field. You would set that
dropdown field (displayed using a selectOneChoice component) to immediate so that
when the user selects a country, a validation error doesn’t occur because the name
field is blank. The following example shows the code for the address field (the
switching functionality between countries is not shown)

5-6

ORACLE

Chapter 5
Using the Immediate Attribute

<af:form id="f1">
<af:panelFormLayout id="pfI1">
<af:panelGroupLayout id="pgl2" layout="vertical'>
<af:inputText label="Name" id="itl" value="#{bean.name}"
required=""true"/>
<af:inputText label="Street" id="it2" value="#{bean.street}"/>
<af:panelGroupLayout id="pgll" layout="horizontal'>
<af:inputText label="City" i1d="it3" value="#{bean.city}"/>
<af:inputText label="State" id="it4" value="#{bean.state}"/>
<af:inputText label="Zip" id="1t5" value="#{bean.zip}"/>
</af:panelGroupLayout>
<af:selectOneChoice label="Country" id="socl" immediate="true">
valueChangeListener="bean.countryChanged">
<af:selectltem label="US" value="US" id="sil"/>
<af:selectltem label="Canada" value="Canada" id="si2"/>
</af:selectOneChoice>
</af:panelGroupLayout>
</af:panelFormLayout>
</af:form>

In this example, the selectOneChoice value change event is fired after the Apply
Request Values phase, and so the countryChanged listener method is run before the
Name inputText component is validated. However, remember that for editable
components, phases are not skipped - validation will still be run during this request. To
prevent validation of the other components, you need to call the renderResponse
method directly from your listener method. This call skips the rest of the lifecycle,
including validation and jumps directly to the Render Response phase.

public void countryChanged(ValueChangeEvent event)
FacesContext context = Facescontext.getcurrentinstance();

some code to change the locale of the form

context.renderresponse();

¢ Note:

Be careful when calling RenderResponse(). Any component that goes
through a partial lifecycle will have an incomplete state that may cause
trouble. The values on those components are decoded but not validated and
pushed to model, so you need to clear their submitted value when calling
RenderResponse().

5-7

Chapter 5
Using the Optimized Lifecycle

< Note:

Only use the immediate attribute when the desired functionality is to leave
the page and not ever submit any values other than the immediate
components. In the Cancel example, no values will ever be submitted on the
page. In the address example, we want the page to be rerendered without
ever submitting any other values.

The immediate attribute causes the components to be decoded (and thus
have a submitted value), but not processed further. In the case of an
immediate action component, the other components never reach the
validation or update model phases, where the submitted value would be
converted to a local value and then the local value pushed into the model
and cleared. So values will not be available.

Don’t use the immediate attribute when you want a number of fields to be
processed before other fields. When that is the case, it's best to divide your
page up into separate sub-forms, so that only the fields in the sub-forms are
processed when the lifecycle runs.

There are some cases where setting the immediate attribute to true can lead to better
performance: When you create a navigation train, and have a commandNavigationltem
component in a navigationPane component, you should set the immediate attribute to
true to avoid processing the data from the current page (train stop) while navigating to
the next page. For more information, see SeeHow to Create the Train Model. If an
input component value has to be validated before any other values, the immediate
attribute should be set to true. Any errors will be detected earlier in the lifecycle and
additional processing will be avoided.

How to Use the Immediate Attribute

Using the

ORACLE

Before you begin:

It may be helpful to have an understanding of the immediate attribute. See Using the
Immediate Attribute.

To use the immediate attribute:

1. Onthe JSF page, select the component that you want to be immediate.

2. Inthe Properties window, expand the Behavior section and set the immediate
attribute to true.

Optimized Lifecycle

In ADF Faces, Partial Page Rendering (PPR) optimizes the JSF lifecycle. Use the
event root components to determine boundaries on the page and to allow the lifecycle
to run just on components within that boundary.

ADF Faces provides an optimized lifecycle that runs the JSF page request lifecycle
(including conversion and validation) only for certain components within a boundary on
a page. This partial page lifecycle is called partial page rendering (PPR). Certain
ADF Faces components are considered event root components, and are what
determine the boundaries on which the optimized lifecycle is run. There are two ways

5-8

Using the

ORACLE

Chapter 5
Using the Client-Side Lifecycle

event root components are determined. First, certain components are always
considered event roots. For example, the panelCollection component is an event
root component. It surrounds a table and provides among other things, a toolbar.
Action events triggered by a button on the toolbar will cause the lifecycle to be run only
on the child components of the panelCol lection.

The second way event root components are determined is that certain events
designate an event root. For example, the disclosure event sent when expanding or
collapsing a showDetai l component (see Displaying and Hiding Contents Dynamically)
indicates that the showDetail component is a root, and so the lifecycle is run only on
the showDetail component and any child components. For information about PPR and
event roots, including a list of event root components, see Events and Partial Page
Rendering.

Aside from running on the event root component and its child components, you can
declaratively configure other components outside the event root hierarchy to
participate in the optimized lifecycle. You can also specifically configure only certain
events for a component to trigger the optimized lifecycle, and configure which
components will actually execute or will only be refreshed.

For information about how the ADF Faces framework uses PPR, and how you can use
PPR throughout your application, see Rerendering Partial Page Content.

Client-Side Lifecycle

The ADF Faces framework provides client-side conversion and validation. You can
create your own JavaScript-based converters and validators that run on the page
without a trip to the server.

You can use client-side validation so that when a specific client event is queued, it
triggers client validation of the appropriate form or subform (for information about
subforms, see Using Subforms to Create Sections on a Page). If this client validation
fails, meaning there are known errors, then the events that typically propagate to the
server (for example, a button's actionEvent when a form is submitted) do not go to the
server. Having the event not delivered also means that nothing is submitted and
therefore, none of the client listeners are called. This is similar to server-side validation
in that when validation fails on the server, the lifecycle jumps to the Render Response
phase; the action event, though queued, will never be delivered; and the
actionListener handler method will never be called.

For example, ADF Faces provides the required attribute for input components, and
this validation runs on the client. When you set this attribute to true, the framework will
show an error on the page if the value of the component is null, without requiring a
trip to the server. The following example shows code that has an inputText
component's required attribute set to true, and a button whose actionListener
attribute is bound to a method on a managed bean.

<af:form>
<af:inputText id="inputl" required="true" value="a"/>
<af:button text="Search" actionListener="#{demoForm.search}"/>
</af:form>

When this page is run, if you clear the field of the value of the inputText component
and tab out of the field, the field will redisplay with a red outline. If you then click into
the field, an error message will state that a value is required, as shown in Figure 5-5.

5-9

Chapter 5
Using Subforms to Create Sections on a Page

There will be no trip to the server; this error detection and message generation is all
done on the client.

Figure 5-5 Client-Side Validation Displays an Error Without a Trip to the Server

|l I
Search @ Error: ¥Yalue Required
Enter & walue,

In this same example, if you were to clear the field of the value and click the Search
button, the page would not be submitted because the required field is empty and
therefore an error occurs; the action event would not be delivered, and the method
bound to the action listener would not be executed. This process is what you want,
because there is no reason to submit the page if the client can tell that validation will
fail on the server.

For information about using client-side validation and conversion, see Validating and
Converting Input.

Using Subforms to Create Sections on a Page

ORACLE

ADF Faces provides the subform component, which adds flexibility by defining
subregions whose component values can be submitted separately within a form. The
content of a subform can be validated based on certain criteria.

In the JSF reference implementation, if you want to independently submit a section of
the page, you have to use multiple forms. However multiple forms require multiple
copies of page state, which can result in the loss of user edits in forms that aren't
submitted.

ADF Faces adds support for a subform component, which represents an
independently submittable section of a page. The contents of a subform will be
validated (or otherwise processed) only if a component inside of the subform is
responsible for submitting the page, allowing for comparatively fine-grained control of
the set of components that will be validated and pushed into the model without the
compromises of using entirely separate form elements. When a page using subforms
is submitted, the page state is written only once, and all user edits are preserved.

Best Practice:

Always use only a single form tag per page. Use the subform tag where you
might otherwise be tempted to use multiple form tags.

A subform will always allow the Apply Request Values phase to execute for its child
components, even when the page was submitted by a component outside of the
subform. However, the Process Validations and Update Model Values phases will be
skipped (this differs from an ordinary form component, which, when not submitted,
cannot run the Apply Request Values phase). To allow components in subforms to be
processed through the Process Validations and Update Model Value phases when a
component outside the subform causes a submit action, use the default attribute.

5-10

Chapter 5
Object Scope Lifecycles

When a subform's default attribute is set to true, it acts like any other subform in
most respects, but if no subform on the page has an appropriate event come from its
child components, then any subform with default set to true will behave as if one of
its child components caused the submit. For information about subforms, see Defining
Forms.

Object Scope Lifecycles

ORACLE

When an object is created in a JSF application, it defines or defaults to a given scope;
this object scope describes how widely it is available and who has access to it. You
can use the standard JSF scopes or the ADF Faces scopes that are available for an
object in a JSF application.

At runtime, you pass data to pages by storing the needed data in an object scope
where the page can access it. The scope determines the lifespan of an object. Once
you place an object in a scope, it can be accessed from the scope using an EL
expression. For example, you might create a managed bean named foo, and define
the bean to live in the Request scope. To access that bean, you would use the
expression #{requestScope.foo}.

There are five types of scopes in a standard JSF application:
« applicationScope: The object is available for the duration of the application.
* sessionScope: The object is available for the duration of the session.

e viewScope: The object is available until the user finishes interaction with the
current view. The object is stored in a map on the UlViewRoot object. Note that
this object is emptied upon page refresh or a redirect to the view.

Tip:

If you need the object to survive a page refresh or redirect to the same
view, then use the ADF Faces version of viewScope.

« flashScope: The object is available during a single view transition, and is cleaned
up before moving on to the next view. You can place a parameter value in
flashScope and it will be available to the resulting page, surviving redirects.

e requestScope: The object is available for the duration between the time an HTTP
request is sent until a response is sent back to the client.

In addition to the standard JSF scopes, ADF Faces provides the following scopes:

« pageFlowScope: The object is available as long as the user continues navigating
from one page to another. If the user opens a new browser window and begins
navigating, that series of windows will have its own pageFlowScope scope.

e backingBeanScope: Used for managed beans for page fragments and declarative
components only. The object is available for the duration between the time an
HTTP request is sent until a response is sent back to the client. This scope is
needed because there may be more than one page fragment or declarative
component on a page, and to avoid collisions between values, any values must be
kept in separate scope instances. Use backingBeanScope scope for any managed
bean created for a page fragment or declarative component.

5-11

ORACLE

Chapter 5
Object Scope Lifecycles

» viewScope: The object is available until the ID for the current view changes. Use
viewScope scope to hold values for a given page. Unlike the JSF viewScope,
objects stored in the ADF Faces viewScope will survive page refreshes and
redirects to the same view ID.

< Note:

Because these are not standard JSF scopes, EL expressions must explicitly
include the scope to reference the bean. For example, to reference the
MyBean managed bean from the pageFlowScope scope, your expression
would be #{pageFlowScope .MyBean}.

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher the availability of an object. During their
lifespan, these objects may expose certain interfaces, hold information, or pass
variables and parameters to other objects. For example, a managed bean defined in
sessionScope scope will be available for use during multiple page requests. However,
a managed bean defined in requestScope scope will be available only for the duration
of one page request.

Figure 5-6 shows the time period in which each type of scope is valid, and its
relationship with the page flow.

5-12

Chapter 5
Passing Values Between Pages

Figure 5-6 Relationship Between Scopes and Page Flow

PageD —» PageE |

Page Flow PageA T PageB

No server request New window opens l

Application ” ” N
Scope >

Session
>

Scope

PageFlow >

Scope e 1
-

Request |
Scope >

View — — ~ ~

Scope

Scope

BackingBean
Scope

When determining what scope to register a managed bean with or to store a value in,
always try to use the narrowest scope possible. Use the sessionScope scope only for
information that is relevant to the whole session, such as user or context information.
Avoid using the sessionScope scope to pass values from one page to another.

" Note:

If you are using the full Fusion technology stack, then you have the option to
register your managed beans in various configuration files. See Using a
Managed Bean in a Fusion Web Application in Developing Fusion Web
Applications with Oracle Application Development Framework.

Passing Values Between Pages

ORACLE

Oracle ADF provides the pageFlowScope bean scope that supports storing temporary
values created at runtime. You can use different procedures to access pageFlowScope
from within any Java code in your application or use pageFlowScope without writing
any Java code.

5-13

Chapter 5
Passing Values Between Pages

The ADF Faces pageFlowScope scope makes it easier to pass values from one page
to another, thus enabling you to develop master-detail pages more easily. Values
added to the pageFlowScope scope automatically continue to be available as the user
navigates from one page to another, even if you use a redirect directive. But unlike
session scope, these values are visible only in the current page flow or process. If the
user opens a new window and starts navigating, that series of windows will have its
own process. Values stored in each window remain independent.

" Note:

If you are using the full Fusion technology stack and you need information
about passing values between pages in an ADF bounded task flow, or
between ADF regions and pages, refer to Getting Started with ADF Task
Flows in Developing Fusion Web Applications with Oracle Application
Development Framework.

Like objects stored in any standard JSF scope, objects stored in the pageFlow scope
can be accessed through EL expressions. The only difference with the pageFlow
scope is that the object names must use the pageFlowScope prefix. For example, to
have a button's label provided by a managed bean stored in the pageFlow scope, and
to have a method on the bean called when the button is selected, you might use the
following code on your page:

<af:button text="#{pageFlowScope.buttonBean.label}"
action="#{pageFlowScope.buttonBean.action}"/>

The pageFlowScope is a java.util_Map object that may be accessed from Java code.
The setPropertyListener tag allows you to set property values onto a scope, and
also allows you to define the event the tag should listen for. For example, when you
use the setPropertyListener tag with the type attribute set to action, it provides a
declarative way to cause an action source (for example, button) to set a value before
navigation. You can use the pageFlowScope scope with the setPropertyListener tag
to pass values from one page to another, without writing any Java code in a backing
bean. For example, you might have one page that uses the setPropertyListener tag
and a command component to set a value in the pageFlowScope scope, and another
page whose text components use the pageFlowScope scope to retrieve their values.

You can also use the pageFlowScope scope to set values between secondary windows
such as dialogs. When you launch secondary windows from, for example, a button
component, you can use a launchEvent event and the pageFlowScope scope to pass
values into and out of the secondary windows without overriding values in the parent
process.

How to Use the pageFlowScope Scope Within Java Code

You can access pageFlow scope from within any Java code in your application.
Remember to clear the scope once you are finished.

ORACLE 5-14

Chapter 5
Passing Values Between Pages

< Note:

If your application uses ADF Controller, then you do not have to manually
clear the scope.

Before you begin:

It may be helpful to have an understanding of object scopes. For information, see
Object Scope Lifecycles. You may also want to understand how pageFlow scope is
used to pass values. For information, see Passing Values Between Pages.

To use pageFlowScope in Java code:

1. To get areference to the pageFlowScope scope, use the
org.apache.myfaces.trinidad.context.RequestContext. getPageFlowScope()
method.

For example, to retrieve an object from the pageFlowScope scope, you might use
the following Java code:

import java.util.Map;
import org.apache.myfaces.trinidad.context.RequestContext;

Map pageFlowScope = RequestContext.getCurrentlnstance().getPageFlowScope();
Object myObject = pageFlowScope.get(*'myObjectName™);

2. To clear the pageFlowScope scope, access it and then manually clear it.
For example, you might use the following Java code to clear the scope:

RequestContext afContext = RequestContext.getCurrentinstance();
afContext.getPageFlowScope().clear();

How to Use the pageFlowScope Scope Without Writing Java Code

ORACLE

To use the pageFlowScope scope without writing Java code, use a
setPropertyListener tag in conjunction with a command component to set a value in
the scope. The setPropertylListener tag uses the type attribute that defines the
event type it should listen for. It ignores all events that do not match its type. Once set,
you then can access that value from another page within the page flow.

Tip:

Instead of using the setActionListener tag (which may have been used in
previous versions of ADF Faces), use the setPropertyListener tag and set
the event type to action.

To set a value in the pageFlowScope scope:

1. On the page from where you want to set the value, create a command component
using the Components window. For information about creating command
components, see Using Buttons and Links for Navigation.

5-15

Chapter 5
Passing Values Between Pages

2. In the Components window, from the Listeners group of the Operations panel,
drag a Set Property Listener and drop it as a child to the command component.

Or right-click the component and choose Insert inside Button > ADF Faces >
setPropertyListener.

3. Inthe Insert Set Property Listener dialog, set the From field to the value that will
be set on another component.

For example, say you have a managed bean named MyBean that stores the name
value for an employee, and you want to pass that value to the next page. You
would enter #{myBean.empName} in the From field.

4. Setthe To field to be a value on the pageFlowScope scope.
For example, you might enter #{pageFlowScope.empName} in the To field.
5. From the Type dropdown menu, choose Action.

This allows the listener to listen for the action event associated with the command
component.

6. On the page from which you want to access the value, drop the component that
you want to display the value.

7. Set the value of the component to be the same value as the To value set on the
setPropertylListener tag.

For example, to have an outputText component access the employee name, you
would set the value of that component to be #{pageFlowScope.empName}.

What Happens at Runtime: How Values Are Passed

ORACLE

When a user clicks a button that contains a setPropertyListener tag, the listener
executes and the To value is resolved and retrieved, and then stored as a property on
the pageFlowScope scope. On any subsequent pages that access that property
through an EL expression, the expression is resolved to the value set by the original

page.

5-16

Handling Events

This chapter describes how to handle events on the server as well as on the client.
This chapter includes the following sections:

* About Events and Event Handling

e Using ADF Faces Server Events

e Using JavaScript for ADF Faces Client Events

e Sending Custom Events from the Client to the Server
» Executing a Script Within an Event Response

e Using ADF Faces Client Behavior Tags

e Using Polling Events to Update Pages

About Events and Event Handling

ORACLE

ADF Faces supports server-side action and value change events and can also invoke
client-side action and value change events. ADF Faces provides a list of event types
and event root components.

In traditional JSF applications, event handling typically takes place on the server. JSF
event handling is based on the JavaBeans event model, where event classes and
event listener interfaces are used by the JSF application to handle events generated
by components.

Examples of events in an application include clicking a button or link, selecting an item
from a menu or list, and changing a value in an input field. When a user activity occurs
such as clicking a button, the component creates an event object that stores
information about the event and identifies the component that generated the event.
The event is also added to an event queue. At the appropriate time in the JSF
lifecycle, JSF tells the component to broadcast the event to the corresponding
registered listener, which invokes the listener method that processes the event. The
listener method may trigger a change in the user interface, invoke backend application
code, or both.

Like standard JSF components, ADF Faces command components deliver
ActionEvent events when the components are activated, and ADF Faces input and
select components deliver ValueChangeEvent events when the component local values
change.

For example, in the File Explorer application, the File Menu contains a submenu
whose commandMenultem components allow a user to create a new file or folder. When
users click the Folder commandMenultem, an ActionEvent is invoked. Because the EL
expression set as the value for the component's actionListener attribute resolves to
the createNewDirectory method on the headerManager managed bean, that method
is invoked and a new directory is created.

6-1

Chapter 6
About Events and Event Handling

< Note:

Any ADF Faces component that has built-in event functionality must be
enclosed in the form tag.

While ADF Faces adheres to standard JSF event handling techniques, it also
enhances event handling in two key ways by providing:

e Ajax-based functionality (partial page rendering)

» Aclient-side event model

Events and Partial Page Rendering

Unlike standard JSF events, ADF Faces events support Ajax-style partial postbacks to
enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events
and components can trigger partial page rendering, that is, only portions of a page
refresh upon request and the lifecycle is run only on that portion.

Certain components are considered event root components. Event root components
determine boundaries on the page, and so allow the lifecycle to run just on
components within that boundary (for information about this aspect of the lifecycle, see
Using the Optimized Lifecycle). When an event occurs within an event root, only those
components that are children to the root are refreshed on the page.

An example of an event root component is a popup. When an event happens within a
popup, only the popup and its children are rerenderd, and not the whole page. Another
example is the panelCol lection component that surrounds a table and provides
among other things, a toolbar. Action events triggered by a button on the toolbar will
cause the lifecycle to be run only on the child components of the panelCollection
component.

The following components are considered event root components:

° popup

° region

« panelCollection

e calendar

* editablevalueHolder components (such as inputText)

Additionally, certain events indicate a specific component as an event root component.
For example, the disclosure event sent when a expanding or collapsing a showDetail
component (see Displaying and Hiding Contents Dynamically), indicates that the
showDetai l component is a root. The lifecycle is run only on the showDetail
component (and any child components or other components that point to this as a
trigger), and only they are rerendered when it is expanded or collapsed. For
information about components and their associated events, see Event and Even Root
Components.

ORACLE 6-2

Tip:

Event and Even Root Components

Table 6-1 shows the all event types in ADF Faces, and whether or not the source
component is an event root.

ORACLE

Table 6-1 Events and Event Root Components

Chapter 6

About Events and Event Handling

If components outside of the event root need to be processed when the
event root is processed, then you can programmatically determine which
components should participate, and whether they should be executed in the
lifecycle or simply rendered. See Rerendering Partial Page Content.

Event Type Component Trigger Is Event Root
action All command components false
dialog dialog false
disclosure showDetail, showDetai IHeader true
disclosure showDetailltem true
focus tree, treeTable true
launch All command components NA
launchPopup inputListOfvalues, true
inputComboboxListOfValues
load document NA
poll poll true
popupOpened popup NA
popupOpening popup NA
popupClosed popup NA
propertyChange All components NA
queryEvent query, quickQuery true
queryOperation query, quickQuery true
rangeChange table NA
regionNavigation region NA
return All command components true
returnPopupData inputListOfvalues, true
inputComboboxListOfValues
returnPopup inputListOfvalues, true
inputComboboxListOfValues
rowDisclosure tree, treeTable, treemap, sunburst true
sort treeTable, table true

6-3

Chapter 6
Using ADF Faces Server Events

Table 6-1 (Cont.) Events and Event Root Components

___|
Event Type Component Trigger Is Event Root

valueChange All input and select components (components that true
implement EditableValueHolder)

Client-Side Event Model

In addition to server-side action and value change events, ADF Faces components
also invoke client-side action and value change events, and other kinds of server and
client events. Some events are generated by both server and client components (for
example, selection events); some events are generated by server components only
(for example, launch events); and some events are generated by client components
only (for example, load events).

By default, most client events are propagated to the server. Changes to the
component state are automatically synchronized back to the server to ensure
consistency of state, and events are delivered, when necessary, to the server for
further processing. However, you can configure your event so that it does not
propagate.

In addition, any time you register a client-side event listener on the server-side Java
component, the ADF Faces framework assumes that you require a JavaScript
component, so a client-side component is created.

Client-side JavaScript events can come from several sources: they can be derived
automatically from DOM events, from property change events, or they can be
manually created during the processing of other events.

Using ADF Faces Server Events

ORACLE

ADF Faces supports server-side action and value change events. To process the
events, you must understand the different server-side event types available and the
components that trigger these events.

ADF Faces provides a number of server-side events. Table 6-2 lists the events
generated by ADF Faces components on the server, and the components that trigger
them.

Table 6-2 ADF Faces Server Events
]

Event Triggered by Component...

ActionEvent All command components. See Working with Navigation
Components.

ActiveDataEvent Used to update components based on events. See Using the

Active Data Service inDeveloping Fusion Web Applications with
Oracle Application Development FrameworKk.

AttributeChangeEvent Allinput and select components (components that implement
EditablevalueHolder). See Using Input Components and
Defining Forms .

6-4

ORACLE

Chapter 6
Using ADF Faces Server Events

Table 6-2 (Cont.) ADF Faces Server Events
-

Event Triggered by Component...

CalendarActivity The Calendar component. See Using a Calendar Component .

DurationChangeEvent

CalendarActivityEvent

CalendarDisplay

ChangeEvent

Calendarkvent

CarouselSpinEvent The carousel component. See Displaying Images in a
Carousel.

ColumnSelectionEvent The table and treeTable components. See Using Tables,

ColunnVisibility Trees, and Other Collection-Based Components.

ChangeEvent

ContextInfoEvent
DialogEvent

DisclosureEvent

DropEvent

FocusEvent *

ItemEvent

LaunchEvent
LaunchPopupEvent
LoadEvent **
PollEvent

PopupCanceledEvent
PopupFetchEvent

QueryEvent
QueryOperationEvent

RangeChangeEvent

RegionNavigationEvent

The contextlInfo component. See Displaying Contextual
Information in Popups.

The dialog component. See Using Popup Dialogs, Menus, and
Windows.

The showDetail, showDetailHeader, showDetailltem
components. See Displaying and Hiding Contents Dynamically
and Displaying or Hiding Contents in Panels.

Components that support drag and drop. See Adding Drag and
Drop Functionality.

The tree and treeTable components. See Using Tables, Trees,
and Other Collection-Based Components.

The panelTabbed component. See Displaying or Hiding
Contents in Panels. Also, the navigationPane component. See
Using Navigation Items for a Page Hierarchy.

All command components. See Working with Navigation
Components.

The inputListOfValues and inputComboboxListOfvValues
components. See Using Query Components.

The document component. See How to Configure the document
Tag.

The pol I component. See Using Polling Events to Update
Pages

The popup component. See Using Popup Dialogs, Menus, and
Windows.

The query and quickQuery components. See Using Query
Components.

The table component. See Using Tables, Trees, and Other
Collection-Based Components.

The region component. See Using Task Flows as Regions in
Developing Fusion Web Applications with Oracle Application
Development Framework.

6-5

Chapter 6
Using ADF Faces Server Events

Table 6-2 (Cont.) ADF Faces Server Events

Event Triggered by Component...

ReturnEvent All command components. See Working with Navigation
Components.

ReturnPopupEvent The inputListOfValues and inputComboboxListOfValues

components. See Using Query Components.

ReturnPopupDataEvent The popup component. See Using Popup Dialogs, Menus, and
Windows.

RowDisclosureEvent The tree and treeTable components, as well as the treemap
and sunburst DVT components. See Using Tables, Trees, and
Other Collection-Based Components and Using Treemap and
Sunburst Components .

SelectionEvent The table, tree, and treeTable components, as well as the
treemap and sunburst DVT components. See Using Tables,

Trees, and Other Collection-Based Components and Using
Treemap and Sunburst Components .

SortEvent The table and treeTable components. See Using Tables,
Trees, and Other Collection-Based Components.

ValueChangeEvent All input and select components (components that implement
EditableValueHolder). See Using Input Components and
Defining Forms .

WindowLifecycleEvent Delivered when the LifecycleState of a window changes. See
the Java API Reference for Oracle ADF Faces.

WindowLifecycle Delivered when the current window is unloaded in order to
NavigateEvent navigate to a new location. See the Java API Reference for
Oracle ADF Faces.

* This focus event is generated when focusing in on a specific subtree, which is not the
same as a client-side keyboard focus event.

** The LoadEvent event is fired after the initial page is displayed (data streaming
results may arrive later).

How to Handle Server-Side Events

ORACLE

All server events have event listeners on the associated component(s). You need to
create a handler that processes the event and then associate that handler code with
the listener on the component.

For example, in the File Explorer application, a selection event is fired when a user
selects a row in the table. Because the table's selectionListener attribute is bound to
the tableSelectFileltem handler method on the TableContentView. java managed
bean, that method is invoked in response to the event.

Before you begin:

It may be helpful to have an understanding of server-side events. See Using ADF
Faces Server Events.

To handle server-side events:

6-6

Chapter 6
Using JavaScript for ADF Faces Client Events

1. In a managed bean (or the backing bean for the page that will use the event
listener), create a public method that accepts the event (as the event type) as the
only parameter and returns void. The following example shows the code for the
tableSelectFileltem handler. (For information about creating and using
managed beans, see Creating and Using Managed Beans.)

public void tableSelectFileltem(SelectionEvent selectionEvent)

{
Fileltem data = (Fileltem)this.getContentTable().getSelectedRowData();

setSelectedFileltem(data);
}

Tip:

If the event listener code is likely to be used by more than one page in
your application, consider creating an event listener implementation
class that all pages can access. All server event listener class
implementations must override a processEvent() method, where Event
is the event type.

For example, the LaunchListener event listener accepts an instance of
LaunchEvent as the single argument. In an implementation, you must
override the event processing method, as shown in the following method
signature:

public void processLaunch (LaunchEvent evt)

{

// your code here

}

2. Toregister an event listener method on a component, in the Structure window,
select the component that will invoke the event. In the Properties window, use the
dropdown menu next to the event listener property, and choose Edit.

3. Use the Edit Property dialog to select the managed bean and method created in
Step 1.

The following example shows sample code for registering a selection event
listener method on a table component.

<af:table id="folderTable" var="file"

rowSelection="single"
selectionListener="#{explorer.tableContentView.tableSelectFileltem}"

</af:table>

Using JavaScript for ADF Faces Client Events

ADF Faces can invoke client-side action and value change events. To process client-
side events, you must understand the different event types available and also the
components that trigger these events. To use client-side events, you need to first
create the JavaScript that will handle the event.

Most components can also work with client-side events. Handling events on the client
saves a roundtrip to the server. When you use client-side events, instead of having

ORACLE .

ORACLE

Chapter 6
Using JavaScript for ADF Faces Client Events

managed beans contain the event handler code, you use JavaScript, which can be
contained either on the calling page or in a JavaScript library.

By default, client events are processed only on the client. However, some event types
are also delivered to the server, for example, AdfActionEvent events, which indicate a
button has been clicked. Other events may be delivered to the server depending on
the component state. For example, AdfValueChangeEvent events will be delivered to
the server when the autoSubmit attribute is set to true. You can cancel an event from
being delivered to the server if no additional processing is needed. However, some
client events cannot be canceled. For example, because the popupOpened event type
is delivered after the popup window has opened, this event delivery to the server
cannot be canceled.

¢ Performance Tip:

If no server processing is needed for an event, consider canceling the event
at the end of processing so that the event does not propagate to the server.
See How to Prevent Events from Propagating to the Server.

Best Practice:

Keyboard and mouse events wrap native DOM events using the

AdfUl InputEvent subclass of the AdfBaseEvent class, which provides
access to the original DOM event and also offers a range of convenience
functions for retrieval of key codes, mouse coordinates, and so on. The
AdfBaseEvent class also accounts for browser differences in how these
events are implemented. Consequently, you must avoid invoking the
getNativeEvent() method on the directly, and instead use the

AdfUl InputEvent API.

The clientListener tag provides a declarative way to register a client-side event
handler script on a component. The script will be invoked when a supported client
event type is fired. The following shows an example of a JavaScript function
associated with an action event.

<af:button id="button0"
text="Do something in response to an action">
<af:clientListener method="someJSMethod" type="action"/>
</af:button>

Tip:

Use the clientListener tag instead of the component's JavaScript event
properties.

All ADF Faces components support the JSF 2.0 client behavior API. Client events on
ADF Faces components are also exposed as client behaviors. Client behaviors tags
(like f:ajax) allow you to declaratively attach JavaScript to a component, which will

6-8

Chapter 6

Using JavaScript for ADF Faces Client Events

then execute in response to a client behavior. For example, the following code shows
the f:ajax tag attached to an inputText component. This tag will cause the
outputText component to render when the change client event occurs on the
inputText component.

af:inputText ...>

<f:ajax name="change" render="otl" execute="@this" />

</af:inputText>
<af:outputText id="otl" ...

ADF Faces Client-Side Events

Table 6-3 lists the events generated by ADF Faces client components, whether or not
events are sent to the sever, whether or not the events are cancelable, and the
components that trigger the events.

Table 6-3 ADF Faces Client Events
]

Event Class Event Type Propagates Can Be Triggered by Component
to Server Canceled

AdfActionEvent action Yes Yes All command components
AdfBusyStateEvent busyState No No Triggered by the page
AdfCarouselSpinEvent event Yes No carousel
AdfChooseDateloadEvent load No Yes chooseDate
AdfColumnSelectionEvent event Yes Yes table, treeTable
AdfComponentEvent load Yes Yes document

After the document's contents

have been displayed on the

client, even when PPR

navigation is used. It does not

always correspond to the

onLoad DOM event.
AdfComponentFocusEvent No Yes Any component that can receive

focus
AdfDateSelectionEvent dateSelection No Yes chooseDate
AdfDialogEvent event Yes Yes dialog

When user selects the OK or

Cancel button in a dialog
AdfDisclosureEvent event Yes Yes panelBox, region,

showDetail,

showDetai IHeader,

showDetail ltem

When the disclosure state is

toggled by the user
AdfDomComponentEvent inlineFrameLoad Yes Yes inlineFrame

When the internal iframe fires

its load event.
AdfDropEvent drop Yes No Any component that supports

drag and drop
ORACLE 6-9

Table 6-3 (Cont.) ADF Faces Client Events

Chapter 6

Using JavaScript for ADF Faces Client Events

Event Class Event Type Propagates Can Be Triggered by Component
to Server Canceled
AdfFocusEvent focus Yes Yes tree, treeTable
AdfltemEvent item Yes Yes commandNavigationltemshow
Detailltem
AdfLaunchPopupEvent launch Yes Yes inputListOfvalues,
inputComboboxListOfValues
AdfPollEvent poll Yes Yes poll
AdfPopupCanceledEvent popupCanceled Yes Yes popup
After a popup is unexpectedly
closed or the cancel method is
invoked
AdfPopupClosedEvent popupClosed No No popup
After a popup window or dialog
is closed
AdfPopupOpenedEvent popupOpened No No popup
After a popup window or dialog
is opened
AdfPopupOpeningEvent popupOpening No Yes popup
Prior to opening a popup
window or dialog
AdfPropertyChangeEvent propertyChange No No All components
AdfQueryEvent event Yes Yes query, quickQuery
Upon a query action (that is,
when the user clicks the search
icon or search button)
AdfQueryOperationEvent event Yes Yes query, quickQuery
AdfReturnEvent returnEvent Yes Yes All command components
AdfReturnPopupDataEvent launchEvent Yes Yes inputListOfvalues,
inputComboboxListOfValues
AdfReturnPopupEvent returnPopup Yes Yes inputListOfValues,
inputComboboxListOfValues
AdfRowDisclosureEvent rowDisclosure Yes Yes tree, treeTable
When the row disclosure state is
toggled
AdfRowKeySetChangeEvent selection, Always for Yes table, treeTable, tree
rowDisclosure disclosure
eventon a
table. Yes, if
there is a
selection
listener or a
disclosure
listener on
the server.

ORACLE

6-10

Chapter 6
Using JavaScript for ADF Faces Client Events

Table 6-3 (Cont.) ADF Faces Client Events
]

Event Class Event Type Propagates Can Be Triggered by Component
to Server Canceled

AdfSelectionEvent selection Yes Yes tree, treeTable, table
When the selection state
changes

AdfSortEvent sort Yes Yes treeTable, table
When the user sorts the table
data

AdfValueChangeEvent valueChange Yes Yes All input and select components

(components that implement
EditablevalueHolder)

When the value of an input or
select component is changed

ADF Faces also supports client keyboard and mouse events, as shown in Table 6-4.

Table 6-4 Keyboard and Mouse Event Types Supported

Event Type Event Fires When...

click User clicks a component

dblclick User double-clicks a component

mousedown User moves mouse down on a component

mouseup User moves mouse up on a component

mousemove User moves mouse while over a component
mouseover Mouse enters a component

mouseout Mouse leaves a component

keydown User presses key down while focused on a component
keyup User releases key while focused on a component
keypress When a successful keypress occurs while focused on a component
focus Component gains keyboard focus

blur Component loses keyboard focus

How to Use Client-Side Events

To use client-side events, you need to first create the JavaScript that will handle the
event. You then use a clientListener tag.

ORACLE

Before you begin:

It may be helpful to have an understanding of client-side events. See Using JavaScript
for ADF Faces Client Events.

To use client-side events:

6-11

ORACLE

Chapter 6
Using JavaScript for ADF Faces Client Events

1. Create the JavaScript event handler function. For information about creating
JavaScript, see Adding JavaScript to a Page. Within that functionality, you can add
the following:

» Locate a client component on a page

If you want your event handler to operate on another component, you must
locate that component on the page. For example, in the File Explorer
application, when users choose the Give Feedback menu item in the Help
menu, the associated JavaScript function has to locate the help popup dialog
in order to open it. For information about locating client components, see
Locating a Client Component on a Page.

* Return the original source of the event

If you have more than one of the same component on the page, your
JavaScript function may need to determine which component issued the
event. For example, say more than one component can open the same popup
dialog, and you want that dialog aligned with the component that called it. You
must know the source of the AdfLaunchPopupEvent in order to determine
where to align the popup dialog. See How to Return the Original Source of the
Event.

e Add client attributes

It may be that your client event handler will need to work with certain attributes
of a component. For example, in the File Explorer application, when users
choose the About menu item in the Help menu, a dialog launches that allows
users to provide feedback. The function used to open and display this dialog is
also used by other dialogs, which may need to be displayed differently.
Therefore, the function needs to know which dialog to display along with
information about how to align the dialog. This information is carried in client
attributes. Client attributes can also be used to marshall custom server-side
attributes to the client. See How to Use Client-Side Attributes for an Event.

e Cancel propagation to the server

Some of the components propagate client-side events to the server, as shown
in Table 6-3. If you do not need this extra processing, then you can cancel that
propagation. See How to Prevent Events from Propagating to the Server.

2. Once you create the JavaScript function, you must add an event listener that will
call the event method.

Note:

Alternatively, you can use a JSF 2.0 client behavior tag (such as f:ajax)
to respond to the client event, as all client events on ADF Faces
components are also exposed as client behaviors. See the Java EE 6
tutorial (http://download.oracle.com/javaee/index.html)

a. Select the component to invoke the JavaScript, and in the Properties window,
set ClientComponent to true.

b. Inthe Components window, from the Operations panel, in the Listeners group,
drag a Client Listener and drop it as a child to the selected component.

6-12

http://download.oracle.com/javaee/index.html

Chapter 6
Using JavaScript for ADF Faces Client Events

c. Inthe Insert Client Listener dialog, enter the method and select the type for the
JavaScript function.

The method attribute of the clientListener tag specifies the JavaScript
function to call when the corresponding event is fired. The JavaScript function
must take a single parameter, which is the event object.

The type attribute of the clientListener tag specifies the client event type
that the tag will listen for, such as action or valueChange. Table 6-3 lists the
ADF Faces client events.

The type attribute of the clientListener tag also supports client event types
related to keyboard and mouse events. Table 6-4 lists the keyboard and
mouse event types.

The following example shows the code used to invoke the
showHelpFileExplorerPopup function from the Explorer. js JavaScript file.

<af:commandMenultem id="feedbackMenultem"
text="#{explorerBundle["menuitem. feedback*]}"
clientComponent=""true">
<af:clientListener method="Explorer.showHelpFileExplorerPopup"
type="action"/>
</af:commandMenultem>

d. To add any attributes required by the function, in the Components window,
from the Operations panel, drag a Client Attribute and drop it as a child to the
selected component. Enter the name and value for the attribute in the
Properties window. The following example shows the code used to set
attribute values for the showAboutFileExplorerPopup function.

<af:commandMenultem id="aboutMenultem"
text="#{explorerBundle["menuitem.about"]}"
clientComponent="true">
<af:clientListener method="Explorer._showAboutFileExplorerPopup"
type="action"/>
<af:clientAttribute name="popupCompld"™ value=":fe:aboutPopup"/>
<af:clientAttribute name="align" value="end_after"/>
<af:clientAttribute name="alignld" value="aboutMenultem"/>
</af:commandMenul tem>

" Best Practice:

Keyboard and mouse events wrap native DOM events using the

AdfUl InputEvent subclass of the AdfBaseEvent class, which provides
access to the original DOM event and also offers a range of convenience
functions for retrieval of key codes, mouse coordinates, and so on. The
AdfBaseEvent class also accounts for browser differences in how these
events are implemented. Consequently, you must avoid invoking the
getNativeEvent() method on the directly, and instead use the

AdfUl InputEvent API.

How to Return the Original Source of the Event

The JavaScript method getSource() returns the original source of a client event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in the following example, that could be used by multiple events to set

ORACLE 6-13

Chapter 6
Using JavaScript for ADF Faces Client Events

the alignment on a given popup dialog or window, using client attributes to pass in the
values. Because each event that uses the function may have different values for the
attributes, the function must know which source fired the event so that it can access
the corresponding attribute values (for more about using client attributes, see How to
Use Client-Side Attributes for an Event).

Explorer.showAboutFileExplorerPopup = function(event)

{

var source = event.getSource();

var alignType = source.getProperty(“align™);
var alignCompld = source.getProperty(“alignld™);
var popupCompld = source.getProperty("popupCompld™);

source.show({align:alignType, alignld:alignCompld});

event.cancel();

¥

The getSource() method is called to determine the client component that fired the
current focus event, which in this case is the popup component.

How to Use Client-Side Attributes for an Event

ORACLE

There may be cases when you want the script logic to cause some sort of change on a
component. To do this, you may need attribute values passed in by the event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in the following example, that can be used to set the alignment on a
given popup component, using client attributes to pass in the values. The attribute
values are accessed by calling the getProperty method on the source component.

Explorer.showAboutFileExplorerPopup = function(event)
{
var source = event.getSource();
var alignType = source.getProperty(“align™);
var alignCompld = source.getProperty(“alignld™);
var popupCompld = source.getProperty(*'popupCompld™);

var aboutPopup = event.getSource().findComponent(popupCompld);
aboutPopup.show({align:alignType, alignld:alignCompld});

event._cancel();

}

The values are set on the source component, as shown in the following example.

<af:commandMenultem id="aboutMenultem"
text="#{explorerBundle[*menuitem.about"]}"
clientComponent=""true">
<af:clientListener method="Explorer._showAboutFileExplorerPopup"
type="action"/>
<af:clientAttribute name="popupCompld" value="":aboutPopup"/>
<af:clientAttribute name="align" value="end_after"/>
<af:clientAttribute name="alignld" value="aboutMenultem"/>
</af:commandMenul tem>

Using attributes in this way allows you to reuse the script across different components,
as long as they all trigger the same event.

6-14

Chapter 6
Using JavaScript for ADF Faces Client Events

How to Block Ul Input During Event Execution

There may be times when you do not want the user to be able to interact with the Ul
while a long-running event is processing. For example, suppose your application uses
a button to submit an order, and part of the processing includes creating a charge to
the user's account. If the user were to inadvertently press the button twice, the account
would be charged twice. By blocking user interaction until server processing is
complete, you ensure no erroneous client activity can take place.

The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserinput
function. To prevent all user input while the event is processing, you can call the
preventUser Input function, and a glass pane will cover the entire browser window,
preventing further input until the event has completed a roundtrip to the server.

You can use the preventUser Input function only with custom events, events raised in
a custom client script, or events raised in a custom client component's peer.
Additionally, the event must propagate to the server. The following example shows
how you can use preventUserlnput in your JavaScript.

function queueEvent(event)

{

event.cancel(); // cancel action event
var source = event.getSource();

var params = {};

var type = "customListener";

var immediate = true;

var isPartial = true;

var customEvent = new AdfCustomEvent(source, type, params, immediate);
customEvent._preventUserInput();

customEvent.queue(isPartial);

¥

How to Prevent Events from Propagating to the Server

By default, some client events propagate to the server once processing has completed
on the client. In some circumstances, it is desirable to block this propagation. For
instance, if you are using a button component to execute JavaScript code when the
button is clicked, and there is no actionListener event listener on the server,
propagation of the event is a waste of resources. To block propagation to the server,
you call the cancel () function on the event in your listener. Once the cancel ()
function has been called, the isCanceled() function will return true.

The following example shows the showAboutFileExplorerPopup function, which
cancels its propagation.

Explorer.showAboutFileExplorerPopup = function(event)
{
var source = event.getSource();
var alignType = source.getProperty("align");
var alignCompld = source.getProperty(“alignld™);
var popupCompld = source.getProperty(*'popupCompld™);

var aboutPopup = event.getSource().findComponent(popupCompld);
aboutPopup.show({align:alignType, alignld:alignCompld});

ORACLE 6-15

Chapter 6
Using JavaScript for ADF Faces Client Events

event._cancel();

}

Canceling an event may also block some default processing. For example, canceling
an AdfUl InputEvent event for a context menu will block the browser from showing a
context menu in response to that event.

The cancel () function call will be ignored if the event cannot be canceled, which an
event indicates by returning false from the isCancelable() function (events that
cannot be canceled show "no" in the Is Cancelable column in Table 6-3). This
generally means that the event is a notification that an outcome has already
completed, and cannot be blocked. There is also no way to uncancel an event once it
has been canceled.

How to Indicate No Response is Expected

There may be times when you do not expect the framework to handle the response for
an event. For example, when exporting table content to a spreadsheet, you don't need
to wait for r the call to return To let the framework know that no response is expected,
you use the AdfBaseEvent.noResponseExpected() method.

What Happens at Runtime: How Client-Side Events Work

ORACLE

Event processing in general is taken from the browser's native event loop. The page
receives all DOM events that bubble up to the document, and hands them to the peer
associated with that piece of DOM. The peer is responsible for creating a JavaScript
event object that wraps that DOM event, returning it to the page, which queues the
event (for information about peers and the ADF Faces architecture, see Using ADF
Faces Client-Side Architecture).

The event queue on the page most commonly empties at the end of the browser's
event loop once each DOM event has been processed by the page (typically, resulting
in a component event being queued). However, because it is possible for events to be
gueued independently of any user input (for example, poll components firing their poll
event when a timer is invoked), queueing an event also starts a timer that will force the
event queue to empty even if no user input occurs.

The event queue is a First-In-First-Out queue. For the event queue to empty, the page
takes each event object and delivers it to a broadcast() function on the event source.
This loop continues until the queue is empty. It is completely legitimate (and common)
for broadcasting an event to indirectly lead to queueing a new, derived event. That
derived event will be broadcast in the same loop.

When an event is broadcast to a component, the component does the following:

1. Delivers the event to the peer's DispatchComponentEvent method.
2. Delivers the event to any listeners registered for that event type.

3. Checks if the event should be bubbled, and if so initiates bubbling. Most events do
bubble. Exceptions include property change events (which are not queued, and do
not participate in this process at all) and, for efficiency, mouse move events.

While an event is bubbling, it is delivered to the AdfUlComponent
HandleBubbledEvent function, which offers up the event to the peer's
DispatchComponentEvent function. Note that client event listeners do not receive
the event, only the peers do.

6-16

Chapter 6
Sending Custom Events from the Client to the Server

Event bubbling can be blocked by calling an event's stopBubbling() function,
after which the isBubblingStopped() function will return true, and bubbling will not
continue. As with cancelling, you cannot undo this call.

" Note:

Canceling an event does not stop bubbling. If you want to both cancel an
event and stop it from bubbling, you must call both functions.

4. If none of the prior work has canceled the event, calls the
AdfUlComponent.HandleEvent method, which adds the event to the server event
gueue, if the event requests it.

What You May Need to Know About Using Naming Containers

Several components in ADF Faces are NamingContainer components, such as
pageTemplate, subform, table, and tree. When working with client-side API and
events in pages that contain NamingContainer components, you should use the
findComponent() method on the source component.

For example, because all components in any page within the File Explorer application
eventually reside inside a pageTemplate component, any JavaScript function must use
the getSource() and findComponent() methods, as shown in the following example.
The getSource() method accesses the AdfUlComponent class, which can then be
used to find the component.

function showPopup(event)

{

event._cancel();

var source = event.getSource();

var popup = source.findComponent(*'popup™);
popup.show({align:"after_end", alignld:"button"});

When you use the findComponent() method, the search starts locally at the
component where the method is invoked. For information about working with naming
containers, see Locating a Client Component on a Page.

Sending Custom Events from the Client to the Server

ORACLE

In ADF Faces, you can use a custom event to send any custom data back to the
server from the client. To send a custom event from the client to the server, fire the
client event using a custom event type, write the server listener method on a backing
bean, and have this method process the custom event, and then register the server
listener with the component.

While the clientAttribute tag supports sending bonus attributes from the server to
the client, those attributes are not synchronized back to the server. To send any
custom data back to the server, use a custom event sent through the AdfCustomEvent
class and the serverListener tag.

The AdfCustomEvent.queue() JavaScript method enables you to fire a custom event
from any component whose clientComponent attribute is set to true. The custom
event object contains information about the client event source and a map of

6-17

Chapter 6
Sending Custom Events from the Client to the Server

parameters to include on the event. The custom event can be set for immediate
delivery (that is, during the Apply Request Values phase), or non-immediate delivery
(that is, during the Invoke Application phase).

For example, in the File Explorer application, after entering a file name in the search
field on the left, users can press the Enter key to invoke the search. As the following
example shows, this happens because the inputText field contains a clientListener
that invokes a JavaScript function when the Enter key is pressed.

//Code on the JSF page...
<af:inputText id="searchCriteriaName"
value="#{explorer.navigatorManager.searchNavigator.
searchCriteriaName}"
shortDesc="#{explorerBundle["navigator.filenamesearch"]}">
<af:serverListener type="enterPressedOnSearch"
method="#{explorer.navigatorManager.
searchNavigator.searchOnEnter}"/>
<af:clientListener type="keyPress"
method="Explorer.searchNameHandleKeyPress"/>
</af:inputText>

//Code in JavaScript file...
Explorer.searchNameHandleKeyPress = function (event)

{
if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
{
var source = event.getSource();
AdfCustomEvent.queue(source,
"enterPressedOnSearch",
{3,
false);
}
}

The JavaScript contains the AdfCustomEvent. queue method that takes the event
source, the string enterPressedOnSearch as the custom event type, a null parameter
map, and False for the immediate parameter.

The inputText component on the page also contains the following serverListener
tag:

<af:serverlListener type="enterPressedOnSearch"
method="#{explorer.navigatorManager.
searchNavigator.searchOnEnter}'/>

Because the type value enterPressedOnSearch is the same as the value of the
parameter in the AdfCustomEvent.queue method in the JavaScript, the method that
resolves to the method expression

#{explorer._navigatorManager .searchNavigator.searchOnEnter} will be invoked.

How to Send Custom Events from the Client to the Server

ORACLE

To send a custom event from the client to the server, fire the client event using a
custom event type, write the server listener method on a backing bean, and have this
method process the custom event. Next, register the server listener with the
component.

Before you begin:

6-18

ORACLE

Chapter 6
Sending Custom Events from the Client to the Server

It may be helpful to have an understanding of sending custom events to the server.
See Sending Custom Events from the Client to the Server.

To send custom events:

1.

Create the JavaScript that will handle the custom event using the
AdfCustomEvent.queue() method to provide the event source, custom event type,
and the parameters to send to the server.

For example, the JavaScript used to cause the pressing of the Enter key to invoke
the search functionality uses the AdfCustomEvent.queue method that takes the
event source, the string enterPressedOnSearch as the custom event type, a null
parameter map, and False for the immediate parameter, as shown in he following
example.

Explorer.searchNameHandleKeyPress = function (event)

{
if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
{
var source = event.getSource();
AdfCustomEvent.queue(source,
"enterPressedOnSearch",
.,
false);
}
}

Create the server listener method on a managed bean. This method must be
public and take an oracle.adf.view.rich.render._ClientEvent object and return
a void type. The following example shows the code used in the
SearchNavigatorView managed bean that simply calls another method to execute
the search and then refreshes the navigator.

public void searchOnEnter(ClientEvent clientEvent)

{
doRealSearchForFileltem();

// refresh search navigator
this._refresh();
}

¢ Note:

The Java-to-JavaScript transformation can lose type information for
Numbers, chars, Java Objects, arrays, and nonstring CharSequences.
Therefore, if an object being sent to the server was initially on the server,
you may want to add logic to ensure the correct conversion. See What
You May Need to Know About Marshalling and Unmarshalling Data.

To register the clientListener, in the Components window, from the Operations
panel, drag a Client Listener and drop it as a child to the component that raises
the event.

6-19

Chapter 6
Sending Custom Events from the Client to the Server

< Note:

On the component that will fire the custom client event, the
clientComponent attribute must be set to true to ensure that a client-
side generated component is available.

4. Inthe Insert Client Listener dialog, enter the method and type for the JavaScript
function. Be sure to include a library name if the script is not included on the page.
The type can be any string used to identify the custom event, for example,
enterPressedOnSearch was used in the File Explorer.

5. To register the server listener, in the Components window, from the Operations
panel, drag a Server Listener and drop it as a sibling to the clientListener tag.

6. Inthe Insert Server Listener dialog, enter the string used as the Type value for the
client listener, as the value for this server listener, for example
enterPressedOnSearch.

In the Properties window, for the method attribute, enter an expression that
resolves to the method created in Step 2.

What Happens at Runtime: How Client and Server Listeners Work

Together

At runtime, when the user initiates the event, for example, pressing the Enter key, the
client listener script executes. This script calls the AdfCustomEvent.queue() method,
and a custom event of the specified event type is queued on the input component. The
server listener registered on the input component receives the custom event, and the
associated bean method executes.

What You May Need to Know About Marshalling and Unmarshalling

Data

ORACLE

Marshalling and unmarshalling is the process of converting data objects of a
programming language into a byte stream and back into data objects that are native to
the same or a different programming language. In ADF Faces, marshalling and
unmarshalling refer to transformation of data into a suitable format so that it can be
optimally exchanged between JavaScript on the client end and Java on the server
end.

Note that there could be some loss of information during the conversion process. For
example, say you are using the following custom event to send the number 1 and the
String test, as shown in the following example:

AdfCustomEvent.queue(event.getSource(), "something”, {first:1, second:"test"});

In the server-side listener, the type of the first parameter would become a
Java.lang.Double because numbers are converted to Doubles when going from
JavaScript to Java. However, it might be that the parameter started on the server side
as an int, and was converted to a number when conversion from Java to JavaScript
took place. Now on its return trip to the server, it will be converted to a Double.

Mapping Java to JavaScript provides mapping between Java and JavaScript types.

6-20

Chapter 6
Executing a Script Within an Event Response

Mapping Java to JavaScript

Table 6-5 shows how JavaScript types are mapped to the corresponding Java types in
ADF Faces.

Table 6-5 JavaScript to Java Type Map

__|
JavaScript Type Java Type

Boolean java.lang.Boolean
Number Java.lang.Double
String java.lang.String
Date jJava.util.Date
Array java.util.ArrayList
Object jJava.util .Map

Table 6-6 shows how Java types map back to JavaScript types.

Table 6-6 Java to JavaScript Type Map
|

Java Type JavaScript Type
java.lang.Boolean Boolean
java.lang.Double Number
java.lang. Integer Number
java.lang.Float Number
java.lang.Long Number
java.lang.Short Number
java.lang.Character String

java.lang.CharSequence String
jJava.util.Collection Array

java.util.Date Date
jJava.util . Map Object
Array Array
jJava.awt._Color TrColor

Executing a Script Within an Event Response

Executing JavaScript within an event response is useful when you have a JavaScript
library that does certain operations on the client side, and you want to call these
functions after finishing an action on the server side.

Using the ExtendedRenderKitService class, you can add JavaScript to an event
response, for example, after invoking an action method binding. It can be a simple
message like sending an alert informing the user that the database connection could

ORACLE 6-21

ORACLE

Chapter 6
Executing a Script Within an Event Response

not be established, or a call to a function like hide() on a popup window to
programatically dismiss a popup dialog.

For example, in the File Explorer application, when the user clicks the UpOneFolder
navigation button to move up in the folder structure, the folder pane is repainted to
display the parent folder as selected. The HandleUpOneFolder () method is called in
response to clicking the UpOneFolder button event. It uses the
ExtendedRenderKitService class to add JavaScript to the response.

The following example shows the UpOneFolder code in the page with the
actionListener attribute bound to the HandleUpOneFolder() handler method which
will process the action event when the button is clicked.

<af:btton i1d="upOneFolder"
actionListener="#{explorer_headerManager.handleUpOneFolder}"/>

The following example shows the handleUpOneFolder method that uses the
ExtendedRenderKitService class.

public void handleUpOneFolder(ActionEvent actionEvent)
{
UIXTree folderTree =
feBean.getNavigatorManager () .getFoldersNavigator() .getFoldersTreeComponent();
Object selectedPath =
feBean.getNavigatorManager () .getFoldersNavigator().getFirstSelectedTreePath();

if (selectedPath != null)
{
TreeModel model =
_TeBean.getNavigatorManager () .getFoldersNavigator() .getFoldersTreeModel ();
Object oldRowKey = model.getRowKey();
try
{
model .setRowKey(selectedPath);
Object parentRowKey = model.getContainerRowKey();
it (parentRowKey != null)
{
folderTree.getSelectedRowKeys().clear();
folderTree.getSelectedRowKeys() .add(parentRowKey) ;
// This is an example of how to force a single attribute
// to rerender. The method assumes that the client has an optimized
// setter for "selectedRowKeys" of tree.
FacesContext context = FacesContext.getCurrentinstance();
ExtendedRenderKitService erks =
Service.getRenderKitService(context,
ExtendedRenderKitService.class);
String clientRowKey = folderTree.getClientRowKeyManager() .
getClientRowKey(context, folderTree, parentRowKey);
String clientld = folderTree.getClientld(context);
StringBuilder builder = new StringBuilder();
builder.append(*“*AdfPage . PAGE. findComponent("");
builder.append(clientld);
builder.append("") .setSelectedRowKeys({"");
builder.append(clientRowKey);
builder.append("":true});™);
erks.addScript(context, builder.toString());
}
}
finally

{

6-22

Chapter 6
Using ADF Faces Client Behavior Tags

model . setRowKey (oldRowKey) ;

// Only really needed if using server-side rerendering

// of the tree selection, but performing it here saves

// a roundtrip (Just one, to fetch the table data, instead

// of one to process the selection event only after which

// the table data gets fetched!)

_feBean.getNavigatorManager() .getFoldersNavigator() .openSelectedFolder();

}

Using ADF Faces Client Behavior Tags

Client behavior tags in ADF Faces execute on the client side. ADF Faces provides a
list of client behavior tags that you can use in place of client listeners.

ORACLE

ADF Faces client behavior tags provide declarative solutions to common client
operations that you would otherwise have to write yourself using JavaScript, and
register on components as client listeners. By using these tags instead of writing your
own JavaScript code to implement the same operations, you reduce the amount of
JavaScript code that needs to be downloaded to the browser.

ADF Faces provides these client behavior tags that you can use in place of client
listeners:

panelDashboardBehavior: Enables the runtime insertion of a child component into
a panelDasboard component to appear more responsive. See How to Use the
panelDashboard Component.

insertTextBehavior: Enables a command component to insert text at the cursor
in an inputText component. See How to Add the Ability to Insert Text into an
inputText Component.

richTextEditorInsertBehavior: Enables a command component to insert text
(including preformatted text) at the cursor in a richTextEditor component. See
How to Add the Ability to Insert Text into a richTextEditor Component.

autoSuggestBehavior: Enables list of values components to show items in a
dropdown list that match what the user is typing. See About List-of-Values
Components.

showPopupBehavior: Enables a command component to launch a popup
component. See Declaratively Invoking a Popup.

showPrintablePageBehavior: Enables a command component to generate and
display a printable version of the page. See Displaying a Page for Print.

checkUncommittedDataBehavior: Enables a command component to display a
warning when the immediate attribute is set to true and a user attempts to
navigate away from the page. For details see Working with Navigation
Components.

scrol IComponentIntoViewBehavior: Enables a command component to jump to a
named component when clicked. See How to Use the
scrollComponentintoViewBehavior Tag.

6-23

Chapter 6
Using ADF Faces Client Behavior Tags

Tip:

ADF Faces also provides a server-side scrol 1IComponentintoView API
that can be used when the component that is to be scrolled to may not
yet be rendered on the page.

For example, if you have a table and you want to be able to scroll to a
specific row, that row may be out of view when the table is first rendered.
You can use the scrollIComponentIntoView API as part of the data fetch
event. See the Java API Reference for Oracle ADF Faces.

» target: Enables a component to declaratively execute or render a list of

components when a specified event occurs. See Using the Target Tag to Execute
PPR.

Client behavior tags cancel server-side event delivery automatically. Therefore, any
actionListener or action attributes on the parent component will be ignored. This
cannot be disabled. If you want to also trigger server-side functionality, you should use
either a client-side event (see Using JavaScript for ADF Faces Client Events), or add
an additional client listener that uses AdfCustomEvent and af:serverListener to
deliver a server-side event (see Sending Custom Events from the Client to the Server).

How to Use the scrollComponentintoViewBehavior Tag

ORACLE

Use the scrollComponentIntoViewBehavior tag when you want the user to be able to
jump to a particular component on a page. This action is similar to an anchor in HTML.
For example, you may want to allow users to jump to a particular part of a page using
a commandLink component. For the richTextEditor and inlineFrame components,
you can jump to a subcomponent. For example, Figure 6-1 shows a richTextEditor
component with a number of sections in its text. The command links below the editor
allow the user to jump to specific parts of the text.

Figure 6-1 scrollComponentintoViewBehavior Tag in an Editor

Font Z

BI/U S, g5

] 5

©¢Hdla Fa W

EE| LR

0][aE

&

=== i=

Introduction

The ADF Table component uses a model to access the data in the underlying list.

£ >
Introduction| The Table Model| Columns

You can also configure the tag to have focus switched to the component to which the
user has scrolled.

Before you begin:

6-24

Chapter 6
Using Polling Events to Update Pages

It may be helpful to have an understanding of behavior tags. See Using ADF Faces
Client Behavior Tags.

To use the scrollComponentintoViewBehavior tag:

1.

Create a command component that the user will click to jump to the named
component. For procedures, see How to Use Buttons and Links for Navigation and
Deliver ActionEvents.

In the Components window, from the Operations panel, drag and drop a Scroll
Component Into View Behavior as a child to the command component.

In the Insert Scroll Component Into View Behavior dialog, use the dropdown arrow
to select Edit and then navigate to select the component to which the user should
jump.

In the Properties window, set the focus attribute to true if you want the
component to have focus after the jump.

For a richTextEditor or inlineFrame component, optionally enter a value for the
subTargetld attribute. This ID is defined in the value of the richTextEditor or
inlineFrame component.

For example, the value of the subTargetld attribute for the

scrol IComponentintoViewBehavior tag shown in Figure 6-1 is Introduction. The
value of the richTextEditor is bound to the property shown in the following
example. Note that Introduction is the ID for the first header.

private static final String _RICH_SECTIONED VALUE =
"<div>\n" +
<h2>\n" +
Introduction</h2>\n" +
<p>\n" +
The ADF Table component is used to display a list of structured data.
For example,\n" +
" if we have a data structure called Person that has two properties -
firstname and\n" +
lastname, we could use a Table with two columns - one for firstname,
and the other\n" +
for lastname - to display a list of Person objects.\n" +
</p>\n" +
</div>\n" +
<div>\n" +
<h2>\n" +
The Table Model</h2>\n" +
<p>\n" +

</div>";

Using Polling Events to Update Pages

The ADF Faces poll component can be used to deliver poll events to the server as a
means to periodically update page components. To use the poll component, you must
create a handler method to handle the functionality for the polling event.

ORACLE

ADF Faces provides the poll component whose pol IEvent can be used to
communicate with the server at specified intervals. For example, you might use the
poll component to update an outputText component, or to deliver a heartbeat to the
server to prevent users from being timed out of their session.

6-25

Chapter 6
Using Polling Events to Update Pages

You need to create a listener for the pol IEvent that will be used to do the processing
required at poll time. For example, if you want to use the poll component to update the
value of an outputText component, you would implement a pol IEventListener
method that would check the value in the data source and then update the component.

You can configure the interval time to determine how often the poll component will
deliver its poll event. You also configure the amount of time after which the page will
be allowed to time out. This can be useful, as the polling on a page causes the session
to never time out. Each time a request is sent to the server, a session time out value is
written to the page to determine when to cause a session time out. Because the poll
component will continually send a request to the server (based on the interval time),
the session will never time out. This is expensive both in network usage and in
memory.

To avoid this issue, the web.xml configuration file contains the
oracle._adf.view.rich.poll.TIMEOUT context-parameter, which specifies how long a
page should run before it times out. A page is considered eligible to time out if there is
no keyboard or mouse activity. The default timeout period is set at ten minutes. So if
user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the
framework stops polling, and from that point on, the page participates in the standard
server-side session timeout (see Session Timeout Warning).

If the application does time out, when the user moves the mouse or uses the keyboard
again, a new session timeout value is written to the page, and polling starts again.

You can override this time for a specific page using the poll component's timeout
attribute.

How to Use the Poll Component

ORACLE

When you use the poll component, you normally also create a handler method to
handle the functionality for the polling event.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Polling Events to Update Pages.

To use a poll component:

1. In a managed bean, create a handler for the poll event. For information about
managed beans, see Creating and Using Managed Beans.

2. In the Components window, from the Operations panel, drag and drop a Poll onto
the page.

3. Inthe Properties window, expand the Common section and set the following:

* Interval: Enter the amount of time in milliseconds between poll events. Set to
0 to disable polling.

* PollListener: Enter an EL expression that evaluates to the method in Step 1.

* Timeout: If you want to override the global timeout value in the web.xml file,
set Timeout to the amount of time in milliseconds after which the page will
stop polling and the session will time out.

6-26

Validating and Converting Input

This chapter describes how to add conversion and validation capabilities to ADF
Faces input components in your application. It also describes how to add custom JSF
conversion and validation, how to handle and display any errors, including those not
caused by validation.

This chapter includes the following sections:

* About ADF Faces Converters and Validators
» Conversion, Validation, and the JSF Lifecycle
* Adding Conversion

e Creating Custom ADF Faces Converters

e Adding Validation

e Creating Custom JSF Validation

About ADF Faces Converters and Validators

ORACLE

ADF Faces provides the ability to both convert and validate user provided data to help
ensure data integrity. Use the Converters to convert the values on ADF forms to the
type that the application accepts them and use Validators to impose validations on the
input components.

ADF Faces input components support conversion capabilities. A web application can
store data of many types, such as int, long, and date in the model layer. When
viewed in a client browser, however, the user interface has to present the data in a
manner that can be read or modified by the user. For example, a date field in a form
might represent a java.util.Date object as a text string in the format mm/dd/yyyy.
When a user edits a date field and submits the form, the string must be converted
back to the type that is required by the application. Then the data is validated against
any rules and conditions. Conversely, data stored as something other than a String
type can be converted to a String for display and updating. Many components, such
as af:inputDate, automatically provide a conversion capability.

ADF Faces input components also support validation capabilities. You can add one or
more validator tags to the component. In addition, you can create your own custom
validators to suit your business needs.

Validators and converters have a default hint message that is displayed to users when
they click in the associated field. For converters, the hint usually tells the user the
correct format to use for input values, based on the given pattern. For validators, the
hint is used to convey what values are valid, based on the validation configured for the
component. If conversion or validation fails, associated error messages are displayed
to the user. These messages can be displayed in dialogs, or they can be displayed on
the page itself next to the component whose conversion or validation failed. For
information about displaying messages in an ADF Faces application, see Displaying
Tips, Messages, and Help.

7-1

Chapter 7
Conversion, Validation, and the JSF Lifecycle

ADF Faces converters is a set of converters that extends the standard JSF converters.
Since ADF Faces converters for input components operate on the client-side, errors in
conversion can be caught at the client and thus avoid a round trip to the server. You
can easily drag and drop ADF Faces converters into an input component.

ADF Faces validators also augment the standard JSF validators. ADF Faces
validators can operate on both the client and server side. The client-side validators are
in written JavaScript and validation errors caught on the client-side can be processed
without a round-trip to the server.

ADF Faces Converters and Validators Use Cases and Examples

You use ADF Faces converters to convert input from an input component into the
format the model expects. A typical use case is using an input component for entering
numbers and including a converter to convert the string entered by the user into a
number for the model to process. For example, an af: inputText component is used
for a product Id attribute. You add the af:convertNumber converter to the

af: inputText component to convert from String to Number. Another example is when
you have an inputText component for an attribute for the cost of a product. You can
use af:convertNumber to convert the input string into the proper currency format.

You add validators to input components in the same way to validate the input string.
For instance, you can add a validator to the af: inputText component to check that
the number of digits for the product Id are within the proper range. You add
af:validatelLength to af: inputText and set the minimum and maximum attributes to
define the valid digit length.

Additional Functionality for ADF Faces Converters and Validators

You may find it helpful to understand other ADF Faces features before you implement
your converters and validators. Following are links to other sections that may be
useful.

* For detailed information about how conversion and validation works in the JSF
Lifecycle, see Using the JSF Lifecycle with ADF Faces .

e ADF Faces lets you customize the detail portion of a conversion error message
instead of a default message. For information about creating messages, see
Displaying Tips, Messages, and Help.

» Instead of entering values for attributes that take strings as values, you can use
property files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

Conversion, Validation, and the JSF Lifecycle

ORACLE

The conversion and validation capabilities supported by ADF Faces are basically
performed at different phases of JSF lifecycle. You can learn about the phase at which
conversion and validation takes place in JSF lifecycle and also learn about what
happens when the conversion or validation fails.

When a form with data is submitted, the browser sends a request value to the server
for each Ul component whose editable value attribute is bound. Request values are
decoded during the JSF Apply Request Values phase and the decoded value is saved
locally on the component in the submittedValue attribute. If the value requires

7-2

Chapter 7
Adding Conversion

conversion (for example, if it is displayed as a String type but stored as a
java.util.Date object), the data is converted to the correct type during the Process
Validation phase on a per-Ul-component basis.

If validation or conversion fails, the lifecycle proceeds to the Render Response phase
and a corresponding error message is displayed on the page. If conversion and
validation are successful, then the Update Model phase starts and the converted and
validated values are used to update the model.

When a validation or conversion error occurs, the component whose validation or
conversion failed places an associated error message in the queue and invalidates
itself. The current page is then redisplayed with an error message. ADF Faces
components provide a way of declaratively setting these messages.

For detailed information about how conversion and validation works in the JSF
Lifecycle, see Using the JSF Lifecycle with ADF Faces .

Adding Conversion

ORACLE

ADF Faces converters are used to convert input from an input component into the
format the model expects. You can use JDeveloper to automatically inserts a
converter to the Ul component or you can manually insert a converter into a Ul
component.

A web application can store data of many types (such as int, long, date) in the model
layer. When viewed in a client browser, however, the user interface has to present the
data in a manner that can be read or modified by the user. For example, a date field in
a form might represent a java.util _Date object as a text string in the format mm/dd/
yyyy. When a user edits a date field and submits the form, the string must be
converted back to the type that is required by the application. You can set only one
converter on a Ul component.

When you create an af: inputText component and set an attribute that is of a type for
which there is a converter, JDeveloper automatically adds that converter's tag as a
child of the input component. This tag invokes the converter, which will convert the
String type entered by the user back into the type expected by the object.

The JSF standard converters, which handle conversion between String types and
simple data types, implement the javax.faces.convert.Converter interface. The
supplied JSF standard converter classes are:

* BigDecimalConverter
* BiglntegerConverter
* BooleanConverter

e ByteConverter

e CharacterConverter
o DateTimeConverter

* DoubleConverter

e EnumConverter

* FloatConverter

* IntegerConverter

7-3

Chapter 7
Adding Conversion

* LongConverter
e NumberConverter
e ShortConverter

Table 7-1 shows the converters provided by ADF Faces.

Table 7-1 ADF Faces Converters

___|
Converter Tag Name Description

ColorConverter af:convertColor Converts java. lang.String
objects to java.awt.Color objects.
You specify a set of color patterns as
an attribute of the converter.

DateTimeConverter af:convertDateTime Converts java.lang.String
objects to java.util_Date objects.
You specify the pattern and style of
the date as attributes of the
converter.

NumberConverter af:convertNumber Converts java. lang.String
objects to java. lang.Number
objects. You specify the pattern and
type of the number as attributes of
the converter.

As with validators, the ADF Faces converters are also run on the client side.

If no converter is explicitly added, ADF Faces will attempt to create a converter based
on the data type. Therefore, if the value is bound to any of the following types, you do
not need to explicitly add a converter:

e java.util.Date

e java.util_Color

e java.awt.Color

e java.lang.Number
» java.lang.Integer
e java.lang.lLong

e java.lang.Short

e java.lang.Byte

e java.lang.Float

* java.lang.Double

Unlike the converters listed in Table 7-1, the JavaScript-enabled converters are
applied by type and used instead of the standard ones, overriding the class and id
attributes. They do not have associated tags that can be nested in the component.

How to Add a Converter

You can also manually insert a converter into a Ul component.

ORACLE 7-4

Chapter 7
Adding Conversion

Before you begin:
It may be helpful to have an understanding of converters. See Adding Conversion.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To add ADF Faces converters that have tags:

1. Inthe Structure window, right-click the component for which you would like to add
a converter, choose Insert Inside component, then ADF Faces to insert an ADF
Faces converter.

You may also choose JSF > Converter to insert a JSF converter.
2. Choose a converter tag (for example, Convert Date Time) and click OK.

3. Inthe JSF page, select the component, and in the Properties window set values
for the attributes, including any messages for conversion errors. For additional
help, right-click any of the attributes and choose Help.

You can set multiple patterns for some ADF Faces converters. See How to Specify
Multiple Converter Patterns.

ADF Faces lets you customize the detail portion of a conversion error message.
By setting a value for a MessageDetailxyz attribute, where xyz is the conversion
error type (for example, MessageDetai lconvertDate), ADF Faces displays the
custom message instead of a default message, if conversion fails. For information
about creating messages, see Displaying Tips, Messages, and Help.

How to Specify Multiple Converter Patterns

ORACLE

Some converters support multiple patterns. Patterns specify the format of data
accepted for conversion. Multiple patterns allow for more than one format. For
example, a user could enter dates using a slash (/) or hyphen (-) as a separator. Note
that not all converters support multiple patterns, although pattern matching is flexible
and multiple patterns may not be needed.

The following example illustrates the use of a multiple pattern for the af:convertColor
tag in which "255-255-000" and "FFFF00" are both acceptable values.

<af:inputColor colorData="#{adfFacesContext.colorPalette.default49}" id="sic3"
label="Select a color" value="#{demoColor.colorValue4}" chooseld="chooseld">
<af:convertColor patterns="rrr-ggg-bbb RRGGBB #RRGGBB"
transparentAl lowed="false"/>
</af:inputColor>

The following example illustrates the use of an af:convertDateTime tag in which
"6/9/2007" and "2007/9/6" are both acceptable values.

<af:inputDate id="mdf5" value="2004/09/06" label="attached converter">
<af:convertDateTime pattern="yyyy/M/d" secondaryPattern="d/M/yyyy" />
</af:inputDate>

The following example illustrates an af:convertNumber tag with the type attribute set
to currency to accept "$78.57" and "$078.57" as values for conversion.

<af:inputText label="type=currency" value="#{validate.currency}" id="itl">
<af:convertNumber type="currency"/>
</af:inputText>

7-5

Chapter 7
Adding Conversion

How to Specify Negative Numbers for Converters

Negative numbers are used in financial applications and have attribute level support
for client-side conversion using the af:convertNumber tag with the negativePrefix and
negativeSuffix attributes to format negative values using specified prefix and suffix
characters. For example, financial applications often format negative numbers using
parentheses, where (99.00) represents the negative value for 99.00.

These attributes accomplish the same thing as specifying a converter pattern on the
number converter, like #;(#), where the characters following the ";" in the pattern
indicate the negative pattern and the open and close parenthesis in the expression
represent the negative prefix and suffix respectively for negative numbers. However,
converter patterns are not processed on the client side and require a server roundtrip
to format the output.

You can eliminate the need for a server roundtrip to perform the conversion using the
af:convertNumber tag. This client-side conversion will override any implied negative
prefix/suffix using the converter pattern.

The following example illustrates an af: convertNumber tag with the negativePrefix
and negativeSuffix attributes set to "(" and ")" respectively to accept values a user
might enter such as "-99.00" and convert them to "(99.00)". With this setting, the
conversion is handled on the client as soon as the user tabs out of the text input.

<af:inputText label="type=number" id="it3">
<af:convertNumber negativePrefix="(" negativeSuffix=")" type="number"/>
</af:inputText>

What Happens at Runtime: How Converters Work

When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject() method to convert the String value to the
required object type. When there is not an attached converter and if the component is
bound to a bean property in the model, then ADF checks the model's data type and
attempts to find the appropriate converter. If conversion fails, the component's valid
attribute is set to false and JSF adds an error message to a queue that is maintained
by FacesContext. If conversion is successful and there are validators attached to the
component, the converted value is passed to the validators. If no validators are
attached to the component, the converted value is stored as a local value that is later
used to update the model.

What You May Need to Know About Number Converters

ORACLE

af:convertNumber supports either server-side or client-side conversion. The converter
first attempts to perform number formatting, parsing and conversions on the fly within
the browser thereby eliminating the need to perform a server roundtrip for formatting
input numbers. However, client conversion is skipped in the following situations:

» If the pattern attribute is specified. The converter will only run on the server.

e If the input string contains more than 15 digits, which is the maximum precision
supported by JavaScript number. The converter will only run on the server.

7-6

Chapter 7
Adding Conversion

When af:convertNumber displays an input value with more decimal digits than
specified by maxFractionDigits, by default it uses Java's HALF_EVEN method to round
off the value.

If you want af:convertNumber to use a method other than HALF_EVEN (such as
HALF_UP or FLOOR), follow these tips:

* To configure a particular instance of af:convertNumber, set the roundingMode
attribute to the desired value.

For example:
<af:convertNumber roundingMode="FLOOR"™ ... />

e To configure all instances of af:convertNumber in your application, add the
rounding-mode attribute in trinidad-config.xml and set it accordingly.

For example:

<trinidad-config xmIns="http://myfaces.apache.org/trinidad/config">

<rounding-mode>FLOOR</rounding-mode>
</trinidad-config>

The value of roundingMode must be supported by Java's RoundingMode. The value
can be specified as a string in the . jspx or the config file, or as an EL expression
bound to a method that returns RoundingMode type value.

Note:

Input value cannot be rounded at client-side unless the roundingMode is set
to half-up. If roundingMode is not set to hal f-up, the input number is
retained unaltered at client-side for a subsequent postback to perform the
actual rounding on the server-side.

For more information about RoundingMode, see the Java API documentation.

What You May Need to Know About Date Time Converters

You should use a four-digit year pattern with a date converter to avoid ambiguity. If
you are using a two-digit year format as the pattern, all four-digit year values appear
as two digit year values. For example, if you are using a two-digit year format (such as
MM-dd-yy) as the pattern, the date values 03-01-1910 and 03-01-2010 appear as
03-01-10 in the input field and could be interpreted incorrectly, though the server
stores the correct year value.

Figure 7-1 shows the date values as they appear in the inputDate component, with an
outputText component below that shows the original values stored on the server.

Figure 7-1 Date Converter With Two-Digit Year Format

Date converter, with pattern="™MM-dd-yy' | 03-01-10 E"@
3/1/2010
Date converter, with pattern="MM-dd-yy' | 03-01-10 E;E'})

311510

ORACLE .

Chapter 7
Adding Conversion

If you are using a two-digit year format, all strings containing two-digit years will be
resolved into a date within two-digit-year-start and two-digit-year-start + 100.
For example, if two-digit-year-start value is 1912, the string 01/01/50 gets
resolved to 01/01/1950. To enter dates outside this range, the end user should enter a
date with the full (four-digit) year. For information about two-digit-year-start
element and how to configure it, see What You May Need to Know About Elements in

trinidad-config.xml.

" Note:
While using a two-digit year format, two digit years will be placed in the range
determined by two-digit-year-start even if the user is editing an existing
value.

For example, assuming two-digit-year-start is set to 1950 (resolving year
values to the range 1950 through 2050) and the inputDate component has
value 03/01/1776 (displayed as 03/01/76). If the user modifies the value to
03/01/77, the new date would be 03/01/1977, not 03/01/1777 as may be

expected.

If you want to use a 12-hour format (for example, MM/dd/yyyy - hh:mm) as the pattern
with af:convertDateTime, you should also include the am/pm placeholder in the
pattern (for example, MM/dd/yyyy - hh:mm a), otherwise the picker will not show
am/pm options and the user will not be able to save the am/pm information. Figure 7-2
shows the inputDate component with and without am/pm placeholders in their

patterns.

Figure 7-2 Using AM/PM Placeholder With af:convertDateTime

Pattern | yyyy-MM-dd HH:mm E|
InputDate with selected pattern | 2012-04-19 00:01 EE‘})

af.convertDateTime without am/pm placeholder

Pattern | yyyy-MM-dd hh:mm a El
InputDate with selected pattern | 2012-04-19 12:01 AM E"(g

af convertDateTime with amipm placeholder

If you want to display timezone information by including the timezone placeholder (z)
in the convertDateTime pattern (example, yyyy-MM-dd hh:mm:ss a z), note that the
trinidad convertDateTime overrides the display of the timezone names. When used in
conjunction with inputText or outputText, the converter displays the timezone in the
format GMT + x. When used in conjunction with inputDate, the timezone is displayed
from a selection of pre-configured display values, such as (UTC-08:00) Los Angeles
- Pacific Time (PT).

ORACLE 7-8

Chapter 7
Creating Custom ADF Faces Converters

Creating Custom ADF Faces Converters

You can create your own converters to meet your specific business needs. There are
different procedures to create custom ADF Faces server-side converters or client-side
converters.

Custom JSF converters run on the server-side using Java. ADF Faces Converters
behave as JSF converters, but also support client-side conversion and validation using
Javascript.

How to Create a Custom ADF Faces Converter

Creating a custom ADF Faces converter requires writing the business logic for the
conversion and then registering the custom converter with the application. To use the
custom ADF Faces converter, you use the f:converter tag and set the custom ADF
Faces converter as a property of that tag, or you can use the converter attribute on
the input component to bind to that converter.

To create a server-side converter, you must:

* Implement Server-Side (Java) Conversion
* Register ADF Faces Converter in faces-config.xml

The ADF Framework supports client-side conversion and validation to minimize
postbacks to the server. Client-side implementation is generally optional - if no client-
side implementation is available, the framework will simply invoke the server-side
converter during postback, just as in JSF.

Client-side implementation is required if the converter is used in conjunction with
certain components which support client interaction without postback, such as
inputNumberSlider, inputNumberSpinbox, and inputDate. To determine if a client
converter is required for a component, refer to the component's tagdoc.

ADF Faces client-side converters work in the same way standard JSF conversion
works on the server, except that JavaScript is used on the client. JavaScript converter
objects can throw ConverterException exceptions and they support the
getAsObject() and getAsString() methods.

To create a client-side converter, you must:

* Create a Client-Side Version of the Converter

* Modify the Server Converter to Enable Client Conversion

Implement Server-Side (Java) Conversion

ORACLE

ADF Faces converters are implemented on the server-side similarly to custom JSF
converters.

1. Create a Java class that implements the javax.faces.converter.Converter
interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and getAsObject and getAsString methods
to implement the Converter interface.

The getAsObject() method takes the FacesContext instance, the Ul component,
and the String value to be converted to a specified object, for example:

7-9

Chapter 7
Creating Custom ADF Faces Converters

public Object getAsObject(FacesContext context,
UlComponent component,
java.lang.String value){

}

The getAsString() method takes the FacesContext instance, the Ul component,
and the object to be converted to a String value, for example:

public String getAsString(FacesContext context,
UlComponent component,
Object value){

}

For information about these classes, refer to the Javadoc or visit http://
docs.oracle.com/javaee/index.html.

2. Add the needed conversion logic. This logic should use
Javax.faces.convert._ConverterException to throw the appropriate exceptions
and javax.faces.application.FacesMessage to generate the corresponding error
messages.

For information about the Converter interface and the FacesMessage error
handlers, see the Javadoc for javax.faces.convert.ConverterException and
Javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
Javaee/index.html.

If your application saves state on the client, the custom ADF Faces converter must
implement the Serializable interface or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods of
the StateHolder interface. See the Javadoc for the StateHolder interface of
Javax.faces.component package, or visit http://docs.oracle.com/javaee/
index.html.

Register ADF Faces Converter in faces-config.xml

You should register the converter in the faces-config.xml file.

1. Open the faces-config.xml file.

The faces-config.xml file is located in the View_Project > WEB-INF node in the
JDeveloper Applications window.

2. In the editor window, click the Overview tab.
3. Choose Converters and click Add to enter the converter information.

Click Help or press F1 for additional help in registering the converter.

Create a Client-Side Version of the Converter

ORACLE

Write a client JavaScript version of the converter, passing relevant information to a
constructor, as shown in the following example.

function TrConverter()

{
}

/**

7-10

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

Chapter 7
Creating Custom ADF Faces Converters

* Convert the specified model object value, into a String for display

* @param value Model object value to be converted

* @param label label to identify the editablevValueHolder to the user

* @return the value as a string or undefined in case of no converter mechanism is
* available (see TrNumberConverter).

*/

TrConverter.prototype.getAsString = function(value, label){}

/**

* Convert the specified string value into a model data object

* which can be passed to validators

* @param value String value to be converted

* @param label label to identify the editablevValueHolder to the user

* @return the converted value or undefined in case of no converter mechanism is
* available (see TrNumberConverter).

*/

TrConverter.prototype.getAsObject = function(value, label){}

If errors are encountered, the client can throw a TrConverterException exception to
show a TrFacesMessage error message.

The following example shows the signature for TrFacesMessage.

/**
* Message similar to javax.faces.application.FacesMessage
* @param summary - Localized summary message text
* @param detail - Localized detail message text
* @param severity - An optional severity for this message. Use constants
* SEVERITY_INFO, SEVERITY_WARN, SEVERITY_ERROR, and
* SEVERITY_FATAL from the FacesMessage class. Default is
* SEVERITY_INFO
*/
function TrFacesMessage(summary,detail,severity){

}
The following example shows the signature for TrFacesException.

/**

* TrConverterException is an exception thrown by the getAsObject() or getAsString()
* method of a Converter, to indicate that the requested conversion cannot be
performed.

* @param facesMessage the TrFacesMessage associated with this exception

* @param summary Localized summary message text, used to create only if facesMessage
is null

* @param detail Localized detail message text, used only if facesMessage is null

*/

function TrConverterException(facesMessage, summary, detail){

-

Modify the Server Converter to Enable Client Conversion

ORACLE

Change the server converter to implement ClientConverter interface, which indicates
that the class supports client-side conversion. For information on the interface
methods, see the ClientConverter javadoc on http://myfaces.apache.org.

The following example shows a custom javascript converter implementation for social
security number.

7-11

http://myfaces.apache.org

ORACLE

Chapter 7
Creating Custom ADF Faces Converters

function ssnGetAsString(value)

{
return value.substring(0,3) + "-" +
value.substring(3,5) + "-" +
value.substring(5);

}
function ssnGetAsObject(value)

if (lvalue)
return (void 0);

var len=value.length;
var messageKey = SSNConverter .NOT;
if (len<9)

messageKey = SSNConverter.SHORT;
else if (len > 11)

messageKey = SSNConverter.LONG;
else if (len == 9)

if (YisNaN(value))
return value;

else if (len == 11 && value.charAt(3) == "-" && value.charAt(6) == "-")
{

var result = value.substring(0,3) +
value.substring(4,6) +
value.substring(7);

if (YisNaN(result))
return result;
}
if (messageKey!=void(0) && this._messages!=void(0))
return new ConverterException(this._messages[messageKey]);

return (void 0);

}
function SSNConverter(messages)
{
this._messages = messages;
}

SSNConverter.prototype = new Converter();
SSNConverter.prototype.getAsString = ssnGetAsString;

SSNConverter.prototype.getAsObject = ssnGetAsObject;
SSNConverter.SHORT = *S*;
SSNConverter.LONG = "L";
SSNConverter .NOT = *N*;

The following example shows a custom Java class that implements server
implementation for social security number. The details of the Java code has been
removed from the getAsObject() and getAsString() methods.

package oracle.adfdemo.view.faces.convertValidate;
import javax.faces.application.FacesMessage;

import javax.faces.component.UlComponent;
import javax.faces.context.FacesContext;

7-12

ORACLE

Chapter 7
Creating Custom ADF Faces Converters

import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

import oracle.adf.view.faces.converter.ClientConverter;
/**
* <p>Social Security number converter.</p>
*
*/
public class SSNConverter implements Converter, ClientConverter

{
public static final String CONVERTER_ID = "oracle.adfdemo.SSN";

public Object getAsObject(
FacesContext context,
UlComponent component,
String value)

// some Java code ...

}

public String getAsString(
FacesContext context,
UlComponent component,
Object value)

// some Java code ...

}

public String getClientConversion(
FacesContext context,
UlComponent component)
{
// in a real app the messages would be translated
return "new SSNConverter({" +
"S:"value \"{OF\" in \"{1}\" is too short."," +
"L:"Value \"{OF\" in \"{1}\" is too long."," +
“N:*Value \"{OF\" in \"{1}\" " +
"is not a social security number."})";

public String getClientScript(
FacesContext context,
UIComponent component)

// check if the script has already been returned this request
Object scriptReturned =
context.getExternalContext() .getRequestMap() .get (CONVERTER_ID);

// if scriptReturned is null the script hasn"t been returned yet
if (scriptReturned == null)
{
context.getExternalContext() .getRequestMap() - put (CONVERTER_ID,
Boolean.TRUE);
return _sSSNjs;
}
// if scriptReturned is not null, then script has already been returned,
// so don"t return it again.
else
return null;

7-13

Chapter 7
Creating Custom ADF Faces Converters

}
private static final String _sSSNjs =

"function ssnGetAsString(value)"+
"{return value.substring(0,3) + "-" " +
"+ value.substring(3,5) + "-" + value.substring(5);}" +
"function ssnGetAsObject(value)" +
"{if (lvalue)return (void 0);" +
"var len=value.length;"+
"var messageKey = SSNConverter.NOT;" +
"if (len <9)"+
"messageKey = SSNConverter.SHORT;" +
"else if (len > 11)"+
"messageKey = SSNConverter.LONG;"™ +
"else if (len == 9)" +
"{ if (VisNaN(value))" +
"return value;" +
"
"else if (len == 11 && value.charAt(3) == "-" && " +
"value.charAt(6) == "-")" +
"
"var result = value.substring(0,3) + value.substring(4,6) + " +
"value.substring(7);"+
"if (lisNaN(result))"+
"return result;" +
"
"if (messageKey!=void(0) && this._messages!=void(0))" +
"return new ConverterException(this._messages[messageKey]);" +
"return void(0);}" +
"function SSNConverter(messages)" +
"{this._messages = messages;}" +
"SSNConverter.prototype = new Converter();" +
"SSNConverter.prototype.getAsString = ssnGetAsString;" +
"SSNConverter.prototype.getAsObject = ssnGetAsObject;" +

""'SSNConverter.SHORT = "S";" +
"SSNConverter.LONG = "L";" +
""'SSNConverter .NOT = "N";";

}

Using Custom ADF Faces Converter on a JSF Page

If a custom ADF Faces converter is registered in an application under a class for a
specific data type, whenever a component's value references a value binding that has
the same type as the custom converter object, JSF will automatically use the converter
of that class to convert the data. In that case, you do not need to use the converter
attribute to register the custom converter on a component, as shown in the following
code:

<af:inputText value="#{myBean.myProperty}"/>

where myProperty data type has the same type as the custom converter. Alternatively,
you can bind your converter class to the converter attribute of the input component.

What You May Need to Know About Custom ADF Faces Converters

ORACLE

When you define value formatting for a table or chart, the value formatting applies only
on the non-active events and does not apply on the ADS event. The converters, which
are responsible for formatting response data do not work on ADS response. To format

7-14

Chapter 7
Creating Custom ADF Faces Converters

the ADS data, you can use the
oracle.adf.view.rich.ads.USE_COMPONENT_FORMATTER parameter in the web._xml file.
You can set the following values for this parameter:

* NEVER: Apply this option to never use the component converter.

 IF_MODEL_DID_NOT_FORMAT: Apply this option to use the component
converter only if the new value and the formatted value from the active model are
identical.

* ALWAYS: Apply this option to use the component converter if it implements
formatterFactory and returns a not null formatted value.

How to Declaratively Register a Client-Side Only Converter Script

ORACLE

The af:clientConverter tag provides Ul developers with a declarative alternative to
register a custom client-only converter script, while still allowing the use of pre-
programmed methods.

Usually, input or output fields whose data is encrypted by cloud data protection
services cannot be formatted on the server for the risk of data corruption. Such fields
are generally identified by the protected attribute. The af:clientConverter tag is
useful in situations where the data formatting requirements needs be delayed to the
point of page rendering where it is safe to format protected data.

The tag is applied as a child to input or output tags where conversion is needed. It
uses the getAsString and getAsObject attributes to accept an inline JavaScript
expression. The tag also offers the getAsStringMethod and getAsObjectMethod
attributes to call a JavaScript method instead.

To use the af:clientConverter tag:

1. SetclientComponent to true on the parent input or output tag. Presence of client
component is mandatory for the functioning of the client converter.

2. Add an af:clientConverter tag to the input or output element to be formatted.

3. To convert an input to a desired string format, provide the valid JavaScript
expression in the getAsString attribute. Use the value variable to access the field
value.

The following example accepts a nhumeric input and formats it as a credit card
number.

<af:outputText value="1234567890123456" id="outputTextl"
clientComponent="true">

<af:clientConverter getAsString="return value.substr(0,4) + "-" +
value._substr(4,4) + "-" + value.substr(8,4) + "-" +
value.substr(12,4);"/>

</af:outputText>

4. To convert a formatted string back to its original form, provide the valid JavaScript
expression in the getAsObject attribute.

This is useful for internal validation purposes. For example, the credit card field
should have a length restriction validator for a maximum allowed length of 16. In
the absence of a getAsObject implementation, the validator would receive “1234—

7-15

ORACLE

Chapter 7
Creating Custom ADF Faces Converters

5678-9012-3456" which has a length of 19 and would fail the validation. The
following example accepts a formatted input and returns a numeric value.

<af:inputText value="1234567890123456" id="inputTextl"
clientComponent="true">

<af:clientConverter getAsString="return value.substr(0,4) + "-" +

value.substr(4,4) + "-" + value.substr(8,4) + "-" + value.substr(12,4);"
getAsObject="return (value == null || value.length == 0)? value :

value.replace(/-/g, "");" />

</af:inputText>

" Note:

If the converter is applied to an input field, the submitted value is taken
from the field and not from the return value of getAsObject/
getAsObjectMethod.

As an alternative to using JavaScript inline, you can use previously created
methods. To do this, use the getAsStringMethod and getAsObjectMethod
attributes.

If the expression language is too verbose, or if a method exists for reuse, these
two attributes may be used. In the following example, the method
formatCreditCardNumber() is called to tokenize a string input as a credit card
number. The method parseCreditCardNumber() may be invoked to return the
tokenized number to its original format.

< Note:

The implementation of the getAsObject/getAsObjectMethod attributes is
optional if the parent tag has no associated validator.

<af:inputText value="#{demolnput.creditCardNumber}" id="inptl">

<af:clientConverter getAsStringMethod="formatCreditCardNumber"
getAsObjectMethod=""parseCreditCardNumber” hint="Credit Card digits"/>
</af:inputText>

The following example shows the sample methods formatCreditCardNumber()
and parseCreditCardNumber(). Methods can be used inline with the af:resource
tag or be part of a linked external JavaScript file.

<af:resource type="javascript'>
/**

* Formats a given credit card number string into a standard 4 digit
space separated grouping. (XXX XXX XXX XXX)

* @param {String} The unformatted credit card number string that
needs to be formatted

*

* @return {String} The formatted credit card number

*/

7-16

Chapter 7
Adding Validation

function formatCreditCardNumber(value)
{
if (value == null || value.length == 0)
return value;

var retVal = value.substr(0,4) + * *;
retval += value.substr(4,4) + * *
retval += value.substr(8,4) + " *
retval += value.substr(12,4);

return retval;

¥

/**
* Parses the credit card number as formatted by the function
formatCreditCardNumber back to a contiguous numeric string for postback.

* @param {value} The formatted credit card number string that needs

to be parsed
*

* @return {String} The parsed credit card number
*/
function parseCreditCardNumber(value)
{
it (value == null || value.length == 0)
return value;

return value.replace(/ /9,"");
}

</af:resource>

Adding Validation

ADF Faces input components support validation capabilities. You can add validation
for an input component using Ul component attributes, Default ADF Faces validators,
and Custom ADF Faces validators.

You can add validation so that when a user edits or enters data in a field and submits
the form, the data is validated against any set rules and conditions. If validation fails,
the application displays an error message. For example, in Figure 7-3 a specific date
range for user input with a message hint is set by the af:validateDateTimeRange
component and an error message is displayed in the message popup window when an
invalid value is entered.

Figure 7-3 Date Range Validator with Error Message

@ Error: The date is outside the valid range.
The date must be between 1/1/2005 and 12/31,/2007.

Example: 11/29/1998
Enter a date between 1/1/2005 and 12/31/2007.

A valid date must be inside of 2005, 2006, and 2007

Date range validator I 8/1/2011

ORACLE 7-17

Chapter 7
Adding Validation

On the view layer use ADF Faces validation when you want client-side validation. All
validators provided by ADF Faces have a client-side peer. Many components have
attributes that provide validation. See Using Validation Attributes. In addition, ADF
Faces provides separate validation classes that can be run on both the client and the
server. For details, see Using ADF Faces Validators. You can also create your own
validators. For information about custom validators, see How to Create a Custom JSF
Validator.

How to Add Validation

By default, ADF Faces syntactic and semantic validation occurs on both the client and
server side. Client-side validation allows validators to catch and display data without
requiring a round-trip to the server.

ADF Faces provides the following types of validation:

e Ul component attributes: ADF Faces input components provide attributes that can
be used to validate data. For example, you can supply simple validation using the
required attribute on ADF Faces input components to specify whether or not a
value must be supplied. When the required attribute is set to true, the component
must have a value. Otherwise the application displays an error message. See
Using Validation Attributes.

» Default ADF Faces validators: The validators supplied by the JSF framework
provide common validation checks, such as validating date ranges and validating
the length of entered data. See Using ADF Faces Validators.

e Custom ADF Faces validators: You can create your own validators and then select
them to be used in conjunction with Ul components. See Creating Custom JSF
Validation.

When validation is added, validation errors can be displayed inline or in a popup
window on the page. For information about displaying messages created by validation
errors, see Displaying Tips, Messages, and Help.

Using Validation Attributes

Many ADF Faces Ul components have attributes that provide simple validation. For
example, the af: inputDate component has maxValue and minValue attributes to
specify the maximum and minimum number allowed for the Date value.

For additional help with Ul component attributes, in the Properties window, right-click
the attribute name and choose Help.

Using ADF Faces Validators

ADF Faces Validators are separate classes that can be run on the server or client.
Table 7-2 describes the validators and their logic.

ORACLE 7-18

Chapter 7
Adding Validation

Table 7-2 ADF Faces Validators

__|
Validator Tag Name Description

BytelLengthvalidator af:validateBytelLength Validates the byte length
of strings when encoded.
The maximumLength
attribute of inputText is
similar, but it limits the
number of characters
that the user can enter.

DateRestrictionValidator af:validateDateRestriction Validates thatthe
entered date is valid with
some given restrictions.

DateTimeRangeVal idator af:validateDateTimeRange Validates that the
entered date is within a
given range. You specify
the range as attributes of
the validator.

DoubleRangevalidator af:validateDoubleRange Validates that a
component value is
within a specified range.
The value must be
convertible to a floating-
point type.

Lengthvalidator af:validatelLength Validates that the length
of a component value is
within a specified range.
The value must be of
type
java.lang.String.

LongRangeValidator af:validatelLongRange Validates that a
component value is
within a specified range.
The value must be any
numeric type or String
that can be converted to
a long data type.

RegExpValidator af:validateRegExp Validates the data using
Java regular expression
syntax.

Note:

To register a custom validator on a component, use a standard JSF
f:validator tag. For information about using custom validators, see
Creating Custom JSF Validation.

To add ADF Faces validators:

ORACLE 7-19

Chapter 7
Adding Validation

1. Inthe Structure window, right-click the component for which you would like to add
a validator, choose Insert Inside component, then ADF Faces to insert an ADF
Faces validator.

You may also choose JSF > Validator to insert a JSF reference implementation
validator.

2. Choose a validator tag (for example, Validate Date Time Range) and click OK.

3. Inthe JSF page, select the component and in the Properties window, set values
for the attributes, including any messages for validation errors that may occur,
such as empty or incorrect required values.

For additional help, right-click any of the attributes and choose Help.

ADF Faces lets you customize the detail portion of a validation error message. By
setting a value for a MessageDetailxyz attribute, where xyz is the validation error
type (for example, MessageDetai Imaximum), ADF Faces displays the custom
message instead of a default message, if validation fails.

What Happens at Runtime: How Validators Work

When the user submits the page, ADF Faces checks the submitted value and runs
conversion on any non-null value. The converted value is then passed to the
validate() method. If the value is empty, the required attribute of the component is
checked and an error message is generated if indicated. If the submitted value is non-
null, the validation process continues and all validators on the component are called in
order of their declaration.

" Note:

ADF Faces provides extensions to the standard JSF validators, which have
client-side support.

ADF Faces validation is performed during the Process Validations phase. If any errors
are encountered, the components are invalidated and the associated messages are
added to the queue in the FacesContext instance. The Update Model phase only
happens when if there are no errors converting or validating. Once all validation is run
on the components, control passes to the model layer, which runs the Validate Model
Updates phase. As with the Process Validations phase, if any errors are encountered,
the components are invalidated and the associated messages are added to the queue
in the FacesContext instance.

The lifecycle then goes to the Render Response phase and redisplays the current

page. If the component generates an error, ADF Faces automatically highlights the
error. For instance, ADF Faces renders a red box around an inputText component

when there is a validation error, as shown in Figure 7-4.

ORACLE 7-20

Chapter 7
Creating Custom JSF Validation

Figure 7-4 Validation Error

* DepartmentId | 10

* Departmenthlame | had |

ManagerId
LocationId | 1700

First | Previous Mext | Lask
Subrnit;

For information about adding error messages when a validation or conversion error
occurs, see Displaying Hints and Error Messages for Validation and Conversion.

What You May Need to Know About Multiple Validators

You can set zero or more validators on a Ul component. You can set the required
attribute and use validators on a component. However, if you set the required
attribute to true and the value is null or a zero-length string, the component is
invalidated and any other validators registered on the component are not called.

This combination might be an issue if there is a valid case for the component to be
empty. For example, if the page contains a Cancel button, the user should be able to
click that button and navigate off the page without entering any data. To handle this
case, you set the immediate attribute on the Cancel button's component to true. This
attribute allows the action to be executed during the Apply Request Values phase.
Then the default JSF action listener calls FacesContext. renderResponse(), thus
bypassing the validation whenever the action is executed. See Using the JSF Lifecycle
with ADF Faces .

Creating Custom JSF Validation

In ADF Faces, you can add your own validation logic to meet your specific business
needs. You can create custom validation by adding a method that provides the
required validation on a backing bean or by using JSF validators.

If you want custom validation logic for a component on a single page, you can create a
validation method on the page's backing bean.

If you want to create logic that will be reused by various pages within the application,
or if you want the validation to be able to run on the client side, you should create a
JSF validator class. You can then create an ADF Faces version, which will allow the
validator to run on the client.

How to Create a Backing Bean Validation Method

ORACLE

When you want custom validation for a component on a single page, create a method
that provides the required validation on a backing bean.

Before you begin:

It may be helpful to have an understanding of custom JSF validation. See Creating
Custom JSF Validation.

7-21

Chapter 7
Creating Custom JSF Validation

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To add a backing bean validation method:

1. Insert the component that will require validation into the JSF page.
2. In the visual editor, double-click the component.

3. Inthe Bind Validator Property dialog, enter or select the managed bean that will
hold the validation method, or click New to create a new managed bean. Use the
default method signature provided or select an existing method if the logic already
exists.

When you click OK in the dialog, JDeveloper adds a skeleton method to the code
and opens the bean in the source editor.

4. Add the required validation logic. This logic should use the
jJavax.faces.validator.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages.

For information about the Val idator interface and FacesMessage, see the Javadoc
for Javax.faces.validator.ValidatorException and
Javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
jJavaee/index.html.

What Happens When You Create a Backing Bean Validation Method

When you create a validation method, JDeveloper adds a skeleton method to the
managed bean you selected. The following example shows the code JDeveloper
generates.

public void inputText_validator(FacesContext facesContext,
UlComponent uiComponent, Object object) {
// Add event code here...

}

When the form containing the input component is submitted, the method to which the
validator attribute is bound is executed.

How to Create a Custom JSF Validator

ORACLE

Creating a custom validator requires writing the business logic for the validation by
creating a Validator implementation of the interface, and then registering the custom
validator with the application. You can also create a tag for the validator, or you can
use the f:validator tag and the custom validator as an attribute for that tag.

You can then create a client-side version of the validator. ADF Faces client-side
validation works in the same way that standard validation works on the server, except
that JavaScript is used on the client. JavaScript validator objects can throw
ValidatorExceptions exceptions and they support the validate() method.

Before you begin:

It may be helpful to have an understanding of custom JSF validation. See Creating
Custom JSF Validation.

7-22

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

ORACLE

Chapter 7
Creating Custom JSF Validation

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To create a custom JSF validator:

1.

4.

Create a Java class that implements the javax.faces.validator.Validator
interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and a val idate method to implement the
Validator interface.

public void validate(FacesContext facesContext,
UlComponent uiComponent,
Object object)
throws ValidatorException {

}
For information about these classes, refer to the Javadoc or visit http://
docs.oracle.com/javaee/index.html.

Add the needed validation logic. This logic should use the
javax.faces.validate.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages.

For information about the Val idator interface and FacesMessage, see the Javadoc
for javax.faces.validate.ValidatorException and
Javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
javaee/index.html.

If your application saves state on the client, your custom validator must implement
the Serializable interface, or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods
of the StateHolder interface.

See the Javadoc for the StateHolder interface of the javax.faces.component
package.

Register the validator in the faces-config.xml file.
a. Open the faces-config.xml file.

The faces-config.xml file is located in the View_Project > WEB-INF node in
the JDeveloper Applications window.

b. In the editor window, click the Overview tab.
c. Choose Validators and click Add to add the validator information.

Click Help or press F1 for additional help in registering the validator.

To create a client-side version of the validator:

1.

Write a JavaScript version of the validator, passing relevant information to a
constructor.

Implement the interface
org.apache.myfaces.trinidad.validator.ClientValidator, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Validator object. The second method is

7-23

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

Chapter 7
Creating Custom JSF Validation

getClientValidation(), which returns a JavaScript constructor that is used to
instantiate an instance of the validator.

The following example shows a validator in Java.

public String getClientValidation(
FacesContext context,
UlComponent component)

{

return ("'new SSNValidator("Invalid social security number.”,"Value \"{1}\"
must start with \"123\".")");

}

The Java validator calls the JavaScript validator shown in the following example.

function SSNvalidator(summary, detail)

{
this._detail = detail;
this._summary = summary;

}
To use a custom validator on a JSF page:

* To use a custom validator that has a tag on a JSF page, you must manually nest it
inside the component's tag.

The following example shows a custom validator tag nested inside an inputText
component. Note that the tag attributes are used to provide the values for the
validator's properties that were declared in the faces-config.xml file.

<h:inputText id="empnumber" required="true">
<hdemo:emValidator emPatterns="9999]9 9 9 9]9-9-9-9" />
</h:inputText>

To use a custom validator without a custom tag:

To use a custom validator without a custom tag, nest the validator's ID (as configured
in faces-config.xml file) inside the f:validator tag. The validator's ID attribute
supports EL expression such that the application can dynamically determine the
validator to use.

1. From the Structure window, right-click the input component for which you want to
add validation, and choose Insert inside component > JSF > Validator.

2. With input component selected, in the Properties window, select the validator's ID
from the dropdown list and click OK.

JDeveloper inserts code on the JSF page that makes the validator ID a property of
the f:validator tag.

The following example shows the code on a JSF page for a validator using the
f:validator tag.

<af:inputText id="empnumber" required="true">

<f:validator validatorlID="emValidator"/>
</af:inputText>

What Happens When You Use a Custom JSF Validator

When you use a custom JSF validator, the application accesses the validator class
referenced in either the custom tag or the f:validator tag and executes the
validate() method. This method executes logic against the value that is to be

ORACLE 7-24

Chapter 7
Creating Custom JSF Validation

validated to determine if it is valid. If the validator has attributes, those attributes are
also accessed and used in the validation routine. Like standard validators, if the

custom validation fails, associated messages are placed in the message queue in the
FacesContext instance.

ORACLE 7-25

Rerendering Partial Page Content

This chapter describes how to use the partial page render features provided with
ADF Faces components to rerender areas of a page without rerendering the whole

page.
This chapter includes the following sections:

* About Partial Page Rendering

* Using Partial Triggers

e Using the Target Tag to Execute PPR

* Enabling Partial Page Rendering Programmatically
e Using Partial Page Navigation

e Using a Streaming Component to Allow Page Loading

About Partial Page Rendering

ORACLE

Oracle ADF Faces supports enabling Partial Page Rendering (PPR), which enables
refreshing portions of page content without the need to redraw the entire page. You
can use the autoSubmit, partialSubmit, and partialTriggers component attributes
to enable PPR.

Ajax (Asynchronous JavaScript and XML) is a web development technigue for creating
interactive web applications, where web pages appear more responsive by
exchanging small amounts of data with the server behind the scenes, without the
whole web page being rerendered. The effect is to improve a web page's interactivity,
speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page render behavior is
called partial page rendering (PPR). During PPR, the JSF page request lifecycle
(including conversion and validation) is run only for certain components on a page.
Certain ADF Faces components are considered event root components, and are what
determine the boundaries on which this optimized lifecycle is run.

The event root component can be determined in two ways:

» Events: Certain events indicate a component as a root. For example, the
disclosure event sent when expanding or collapsing a showDetail component (see
Displaying and Hiding Contents Dynamically), indicates that the showDetail
component is a root. When the showDetail component is expanded or collapsed,
only that component, and any of its child components, goes through the lifecycle.
Other examples of events identifying a root component are the disclosure event
when expanding nodes on a tree, or the sort event on a table. For a complete list
of events that have corresponding event root components, see in Events and
Partial Page Rendering.

» Components: Certain components are recognized as an implicit boundary, and
therefore a root component. For example, the framework knows a popup dialog is

8-1

ORACLE

Chapter 8
About Partial Page Rendering

a boundary. No matter what event is triggered inside a dialog, the lifecycle does
not run on components outside the dialog. It runs only on the popup.

The following components are considered event root components:
— popup

— region

— panelCollection

— calendar

— editableValueHolder components (such as inputText)

In addition to this built-in PPR functionality, there may be cases when you want
components that are outside of the boundary to be included in the optimized lifecycle.
You can configure this declaratively, using the partial trigger attributes to set up
dependencies so that one component acts as a trigger and another as the listener.
When any event occurs on the trigger component, the lifecycle is run on the trigger
and its children (as described above), and then also on any listener components and
child components to the listener.

For example, suppose you have an inputText component on a page whose required
attribute is set to true. On the same page are radio buttons that when selected cause
the page to either show or hide text in an outputText component, as shown in

Figure 8-1.

Figure 8-1 Required Field and Boolean with Auto-Submit

* Required Field

() show
i Hide

You can see me!

Also assume that you want the user to be able to select a radio button before entering
the required text into the field. While you could set the radio button components to
automatically trigger a submit action and also set their immediate attribute to true so
that they are processed before the inputText component, you would also have to add
a valueChangeEvent listener, and in it, jump to the Render Response phase so that
validation is not run on the input text component when the radio buttons are
processed.

Instead of having to write this code in a listener, you can use the partialTriggers
attribute to have the lifecycle run just on the radio buttons and the output text
component. You would set the radio buttons to be triggers and the panelGroupLayout
component that contains the output text to be the target, as shown in Example 5-4.

Tip:

Because the output text won't be rendered when it's configured to hide, it
cannot be a target. Therefore it is placed in a panelGroupLayout component,
which is then configured to be the target.

8-2

ORACLE

Chapter 8
About Partial Page Rendering

<af:form>
<af:inputText label="Required Field" required="true"/>
<af:selectBooleanRadio id=""show" autoSubmit="true"
text=""Show"
value="#{validate.show}"/>
<af:selectBooleanRadio id="hide" autoSubmit="true" text="Hide"
value="#{validate.hide}"/>
<af:panelGroupLayout partialTriggers="show hide" id="panel">
<af:outputText value="You can see me!" rendered="#{validate.show}"/>
</af:panelGroupLayout>
</af:form>

Because the autoSubmit attribute is set to true on the radio buttons, when they are
selected, a SelectionEvent is fired, for which the radio button is considered the root.
Because the panelGroupLayout component is set to be a target to both radio
components, when that event is fired, only the selectBooleanRadio (the root), the
panelGroupLayout component (the root's target), and its child component (the
outputText component) are processed through the lifecycle. Because the outputText
component is configured to render only when the Show radio button is selected, the
user is able to select that radio button and see the output text, without having to enter
text into the required input field above the radio buttons.

Note however, than when you use the partial trigger attributes to set up dependencies
between components, any event from the trigger component will cause the target
component, and its children, to execute and render. This can result in validation errors.

For example, suppose instead of using an outputText component in the
panelGrouplLayout, you want to use an inputText component whose required
attribute is set to true, as shown in the following example.

<af:form>
<af:selectBooleanRadio id="showl"™ autoSubmit="true" text="Show"
value="#{validate.showl}"/>
<af:selectBooleanRadio id="hidel"™ autoSubmit="true" text="Hide"
value="#{validate.hidel}"/>
<af:panelGroupLayout partialTriggers="showl hidel">
<af:inputText label="Required Field" required="true"
rendered="#{val idate.showl}"/>
</af:panelGroupLayout>
</af:form>

In this example, the inputText component will be validated because the lifecycle runs
on the root (the selectBooleanRadio component), the target (the panelGroupLayout
component), and the target's child (the inputText component). Validation will fail
because the inputText component is marked as required and there is no value, so an
error will be thrown. Because of the error, the lifecycle will skip to the Render
Response phase and the model value bound to the radio button will not be updated.
Therefore, the panelGroupLayout component will not be able to show or hide because
the value of the radio button will not be updated.

For cases like these, you can explicitly configure which targets you want executed and
which targets you want rendered when a specific event (or events) is fired by a
component. In this new example, we want the valueChange event on the
selectBooleanRadio buttons to trigger PPR, but instead of executing the
panelGroupLayout component and its children through the lifecycle, only the radio
buttons should be executed. However, the entire form should be rendered. As that
happens, the inputText component can then determine whether or not to render.
When you need to explicitly determine the events that cause PPR, and the

8-3

Chapter 8
Using Partial Triggers

components that should be executed and rendered, you use the target tag, as shown
in the following example.

<af:panelFormLayout id="pfI1">
<af:selectBooleanRadio id="show2" autoSubmit="true" text="'Show"
value="#{validate.show2}"/>
<af:target events="valueChange" execute="show2 hide2" render="pfl1"/>
<af:selectBooleanRadio id="hide2" autoSubmit="true" text="Hide"
value="#{validate_hide2}"/>

<af:target events="valueChange" execute="hide2 show2" render="pfl1"/>
<af:panelGroupLayout id="pgl1">
<af:inputText label="Required Field" required="true"
rendered="#{val idate.show2}"/>
</af:panelGroupLayout>
</af:panelFormLayout>

In this example, when the valueChange event is fired from either of the
selectBooleanRadio components, only the selectBooleanRadio components will be
executed in the lifecycle, while the entire panelFormLayout component will be
rendered.

Tip:

If your application uses the Fusion technology stack, you can enable the
automatic partial page rendering feature on any page. This causes any
components whose values change as a result of backend business logic to
be automatically rerendered. See What You May Need to Know About Partial
Page Rendering and Iterator Bindings in Developing Fusion Web
Applications with Oracle Application Development Framework.

Additionally, ADF Faces applications can use PPR for navigation. In standard JSF
applications, the navigation from one page to the next requires the new page to be
rendered. When using Ajax-like components, this can cause overhead because of the
time needed to download the different JavaScript libraries and style sheets. To avoid
this costly overhead, the ADF Faces architecture can optionally simulate full-page
transitions while actually remaining on a single page, thereby avoiding the need to
reload JavaScript code and skin styles.

Note:

The browser must have JavaScript enabled for PPR to work.

Using Partial Triggers

ADF Faces components have partialTriggers attribute that developers use to
refresh based on the other component ID added into the partialTrigger attribute.
Use this attribute to dynamically refresh a part of the page.

ORACLE 8-4

ORACLE

Chapter 8
Using Partial Triggers

Using patrtial triggers, one component, referred to as the target component, is
rerendered when any event occurs on another component, referred to as the trigger
component.

For example, as shown in Figure 8-2, the File Explorer application contains a table that
shows the search results in the Search panel. This table (and only this table) is
rendered when the search button is activated. The search button is configured to be
the trigger and the table is configured to be the target. When any event fires from the
button, the table and its components will be processed through the lifecycle (as well as
the button)

Figure 8-2 The Search Button Causes Results Table to Rerender

&8 search

10

L &

> When was it modified?
> What size is it?

Search

Mame Type Size (KB)
File 10-0.jpg Image File 100
File10-2.jpg Image File 100
Folder10 File Folder
File10.js JScript Script File 10
File10.doc Document File 10
\J
Note:

In some cases, you may want a component to be executed or rendered only
when a particular event is fired, not for every event associated with the
trigger component. In these cases, you should use the target tag. See Using
the Target Tag to Execute PPR. When you want some logic to determine
whether a component is to be executed or rendered, you can
programmatically enable PPR. See Enabling Partial Page Rendering
Programmatically.

Trigger components must inform the framework that a PPR request has occurred. On
command components, this is achieved by setting the partialSubmit attribute to true.
Doing this causes the command component to fire a partial page request each time it
is clicked.

For example, say a page includes an inputText component, a button component,
and an outputText component. When the user enters a value for the inputText
component, and then clicks the button component, the input value is reflected in the
outputText component. You would set the partialSubmit attribute to true on the
button component.

However, components other than command components can trigger PPR. ADF Faces
input and select components have the ability to trigger partial page requests
automatically whenever their values change. To make use of this functionality, use the
autoSubmit attribute of the input or select component so that as soon as a value is

8-5

Chapter 8
Using Partial Triggers

entered, a submit occurs, which in turn causes a valueChangeEvent event to occur. It
is this event that notifies the framework to execute a PPR, as long as a target
component is set. In the previous example, you could delete the button component
and instead set the inputText component's autoSubmit attribute to true. Each time
the value changes, a PPR request will be fired.

Tip:

The autoSubmit attribute on an input component and the partialSubmit
attribute on a command component are not the same thing. When
partialSubmit is set to true, then only the components that have values for
their partialTriggers attribute will be processed through the lifecycle.

The autoSubmit attribute is used by input and select components to tell the
framework to automatically do a form submit whenever the value changes.
When a form is submitted and the autoSubmit attribute is set to true, a
valueChangeEvent event is invoked, and the lifecycle runs only on the
components marked as root components for that event, and their children.
See Using the Optimized Lifecycle.

Once PPR is triggered, any component configured to be a target will be processed
through the lifecycle. You configure a component to be a target by setting the
partialTriggers attribute to the relative ID of the trigger component. For information
about relative IDs, see Locating a Client Component on a Page.

In the example, to update the outputText in response to changes to the inputText
component, you would set its partialTriggers attribute to the inputText
component's relative ID.

Note that certain events on components trigger PPR by default, for example the
disclosure event on the showDetail component and the sort event on a table. This
means that any component configured to be a target by having its partialTriggers
attribute set to that component's ID will rerender when these types of events occur.
When you don't want all events to trigger PPR, then instead of using the
partialTriggers attribute, you should use the target tag. This tag allows you to
explicitly set which events will cause PPR.

Another example of when to use the target tag instead of the partialTriggers
attribute is when your trigger component is an inputLov or an inputComboBoxLov, and
the target component is a dependent input component set to required. In this case, a
validation error will be thrown for the input component when the LOV popup is
displayed. If you use the target tag instead, you can explicitly set which components
should execute (the LOV), and which should be rendered (the input component). See
Using the Target Tag to Execute PPR.

How to Use Partial Triggers

For a component to be rendered based on an event caused by another component, it
must declare which other components are the triggers.

ORACLE 8-6

ORACLE

Chapter 8
Using Partial Triggers

Best Practice:

Do not use both partial triggers and the target tag on the same page. When
in doubt, use only the target tag. See Using the Target Tag to Execute
PPR.

Before you begin:

It may be helpful to have an understanding of declarative partial page rendering. See
Using Partial Triggers.

To use partial triggers:

1. Inthe Structure window, select the trigger component (that is, the component
whose action will cause the PPR):

Expand the Common section of the Properties window and set the id attribute
if it is not already set. Note that the value must be unique within that
component's haming container. If the component is not within a naming
container, then the ID must be unique to the page. For information about
naming containers, see Locating a Client Component on a Page.

Tip:
JDeveloper automatically assigns component IDs. You can safely
change this value. A component's ID must be a valid XML name,

that is, you cannot use leading numeric values or spaces in the ID.
JSF also does not permit colons (:) in the ID.

If the trigger component is a command component, expand the Behavior
section of the Properties window, and set the partialSubmit attribute to true.

If the trigger component is an input or select component in a form and you
want the value to be submitted, expand the Behavior section of the Properties
window, and set the autoSubmit attribute of the component to true.

" Note:

Set the autoSubmit attribute to true only if you want the component
to submit its value. If you do not want to submit the value, then some
other logic must cause the component to issue a ValueChangeEvent
event. That event will cause PPR by default and any component that
has the trigger component as its value for the partialTriggers
attribute will be rerendered.

In the Structure window, select the target component that you want to rerender

when a PPR-triggering event takes place.

Expand the Behavior section of the Properties window, click the icon that appears

when you hover over the partialTriggers attribute and choose Edit.

8-7

Chapter 8
Using Partial Triggers

4. In the Edit Property dialog, shuttle the trigger component to the Selected panel
and click OK. If the trigger component is within a naming container, JDeveloper
automatically creates the relative path for you.

Tip:

The selectBooleanRadio components behave like a single component with
partial page rendering;, however, they are in fact multiple components.
Therefore, if you want other components (such as inputText components) to
change based on selecting a different selectBooleanRadio component in a
group, you must group them within a parent component, and set the
partialTriggers attribute of the parent component to point to all of the
SelectBooleanRadio components.

The following example shows a Iink component configured to execute PPR.

<af:link id="deleteFromCart" partialSubmit="true"
actionListener="#{homeBean...}" text="Delete From Cart">

The following example shows an outputText component that will be rerendered when
the link with ID deleteFromCart in the previous example is clicked.

<af:outputText id="estimatedTotal InPopup"
partialTriggers="deleteFromCart"
value="#{shoppingCartBean...}"/>

Tip:

If you need to prevent components from being validated on a page during
PPR, then you should use the target tag. See Using the Target Tag to
Execute PPR.

What You May Need to Know About Using the Browser Back Button

ORACLE

In an ADF Faces application, because some components use PPR (either implicitly or
because they have been configured to listen for a partial trigger), what happens when
a user clicks the browser's back button is slightly different than in an application that
uses simple JSF components.

In an application that uses simple JSF components, when the user clicks the browser's
back button, the browser returns the page to the state of the DOM (document object
model) as it was when last rendered, but the state of the JavaScript is as it was when
the user first entered the page.

For example, suppose a user visited PageA. After the user interacts with components
on the page, say a PPR event took place using JavaScript. Let's call this new version
of the page PageAl. Next, say the user navigates to PageB, then clicks the browser
back button to return to PageA. The user will be shown the DOM as it was on PageAl,
but the JavaScript will not have run, and therefore parts of the page will be as they
were for PageA. This might mean that changes to the page will be lost. Refreshing the
page will run the JavaScript and so return the user to the state it was in PageAl. In an

8-8

Chapter 8
Using the Target Tag to Execute PPR

application that uses ADF Faces, the refresh is not needed; the framework provides
built-in support so that the JavaScript is run when the back button is clicked.

What You May Need to Know About PPR and Screen Readers

Using the

ORACLE

Screen readers do not reread the full page in a partial page request. PPR causes the
screen reader to read the page starting from the component that fired the partial page
request. You should place the target components after the component that triggers the
partial request; otherwise, the screen reader would not read the updated target
components.

Target Tag to Execute PPR

ADF Faces provides the target tag that provides a declarative way to allow a
component to specify the list of targets it wants executed and rendered when an event
is fired by the component. It has complete control on which components the JSF
lifecycle is executed, and which components are rerendered (refreshed).

For components such as tables that have many associated events, PPR will happen
each time an event is triggered, causing any child component of the table, or any
component with the table as a partial trigger, to be executed and rendered. If you want
components to be rendered or executed only for certain events, or if you only want
certain components to execute or render, you can use the target tag.

Using the target tag can be especially useful when you want to skip component
validation under very specific circumstances. For example, say you have a form with a
required field, along with a Submit button and a Cancel button, as shown in

Figure 8-3.

Figure 8-3 Required Field is Processed When Cancel Button is Clicked

i@ Show

Show/Hide Field
Hide
* Required Field

submit || cancel |Cancel Click: 0

Under normal circumstances, when the Cancel button is clicked, all fields in the form
are processed. Because the input text field is required, it will fail validation.

To avoid this failure, you can use the target tag as a child to the Cancel button. Using
the target tag, you can state which targets you want executed and rendered when a
specific event (or events) is fired by the component. In this example, you might
configure the Cancel button's target tag so that only that button is executed, as shown
in the following example.

<af:panelFormLayout id="pfl1" labelAlignment="top">

<af:panelLabelAndMessage id="plam12" for="it3">
<af:inputText label="Required Field" required="true"
rendered="#{val idate.show3}" id="it3"/>
</af:panellLabelAndVMessage>
<af:panelGroupLayout layout="horizontal" id="pgl9">
<af:button text="submit" partialSubmit="true" id="ch2"
<af:target execute="@this i1t3" render="pfl1"/>
</af:button>

8-9

Chapter 8
Using the Target Tag to Execute PPR

<af:button actionListener="#{validate.handleCancel}"
partialSubmit="true" text="cancel" id="cbhl">
<af:target execute="@this"/>
</af:button>
</af:panelGroupLayout>
</af:panelFormLayout>

In this example, when the Submit button is clicked, that button and the inputText
component are executed, and the contents of the panelFormLayout component are
rendered. However, when the Cancel button is clicked, only the Cancel button is
executed. Nothing is rendered as a result of the click.

Another common validation issue can occur when you have an LOV component and a
dependent input text component. For example, say you have an inputListOfvalues
component from which the user selects an employee name. You want the Employee
Number input text field to be automatically populated once the user selects the name
from the LOV, and you also want this field to be required.

If you were to use partial triggers by setting the LOV as the trigger, and the input text
component as a target, the input text component would fail validation when the popup
closes. When the user clicks the search icon, the inputText component will be
validated because the lifecycle runs on both the root (the inputListOfvalues
component) and the target (the inputText component). Validation will fail because the
inputText component is marked as required and there is no value, as shown in
Figure 8-4

Figure 8-4 Validation Error is Thrown Because a Value is Required

@ Error: A value is required. |
Ename % You must enter a value.

* Empno |

Instead, you can use a target tag as a child to the inputListOfValues component,
and configure it so that only the inputListOfValues component is executed, but the
input text component is rendered with the newly selected value, as shown in the
following example.

<af:panelFormLayout id="pfl2">
<af:inputListOfvalues label="Ename" id="lov21" required="true"
value="#{validateLOV._ename}" autoSubmit="true"
popupTitle="Search and Select: Ename" searchDesc="Choose a name"
model="#{validateLOV. listOfValuesModel}"
validator="#{val idateLOV.validate}">
<af:target execute="@this" render="itl1"/>
</af:inputListOfvalues>
<af:inputText label="Empno" value="#{validatelLOV.empno}" required="true"
id="itl"/>

</af:panelFormLayout>

How to Use the Target Tag to Enable Partial Page Rendering

You place the target tag as a child to the component whose event will cause the
PPR. For example, for the form shown in Figure 8-3, you would place the target tag as

ORACLE 8-10

ORACLE

Chapter 8
Using the Target Tag to Execute PPR

a child to the Cancel button. You then explicitly name the events and components to
participate in PPR.

" Best Practice:

Before you begin:

Do not use both partial triggers and the target tag on the same page. When
in doubt, use only the target tag.

It may be helpful to have an understanding of form components. See Using the Target
Tag to Execute PPR.

To use the target tag:

1. Inthe Components window, from the Operations panel, drag a target and drop it
as a child to the component that triggers events for which you want to control the

PPR.

2. In the Properties window, set the following:

» Events: Enter a space delimited list of events that you want the target tag to
handle for the component. The following events are supported:

action

calendar

calendarActivity

calendarActivity

durationChange

calendarDisplayChange

carouselSpin
contextinfo
dialog
disclosure
focus

item

launch
launchPopup
poll
popupCanceled
popupFetch
query
gueryOperation

rangeChange

8-11

ORACLE

Chapter 8
Using the Target Tag to Execute PPR

— regionNavigation
— return

— returnPopupData
— returnPopup

— rowDisclosure

— selection

- sort

— valueChange

Any events that the component executes that you do not list will be handled as
usual by the framework.

You can also use the @all keyword if you want the target to control all events
for the component.

The default is @all.

Execute: Enter a space delimited list of component IDs for the components
that should be executed in response to the event(s) listed for the event
attribute. Instead of component IDs, you can use the following keywords:

— (@this: Only the parent component of the target will be executed.

— @all: All components within the same af:form tag will be executed. Using
this means that in effect, no PPR will occur, as all components will
execute as in a normal page lifecycle.

— (@default: Execution of components will be handled using event root
components or partial triggers, in other words, as if no target tag were
used. This value is the default.

" Note:

While the JSF f:ajax tag supports the @none keyword, the
af:target tag does not.

Render: Enter a space delimited list of component IDs for the components
that should be rendered in response to the event(s) listed for the event
attribute. Instead of component IDs, you can use the following keywords:

— (@this: Only the parent component of the target will be rendered.
— @all: All components within the same af:form tag will be rendered.

— (@default: Rendering of components will be determined by the framework.
This value is the default.

The following example shows the code for the form with the radio buttons and
required field shown in Figure 8-3. For the first target tag, because it's a child to
the show3 radio button, and it is configured to execute the show3 and hide3 radio
buttons and render the panelFormLayout, when that button is selected, only the
two radio buttons are run through the lifecycle and the entire form is rendered. The
inputText component is not executed because it is not in the execute list, but it is
rendered because it is included in the form.

8-12

Chapter 8
Enabling Partial Page Rendering Programmatically

The target tag is also used on the Submit and Cancel buttons. For the Submit
button, because the input text component should be processed through the
lifecycle, it is listed along with the Submit button as values for its target's execute
attribute. However, for the Cancel button, because the input text component
should not be processed, it is not listed for that target's execute attribute, and so
will not throw a validation error.

<af:panelFormLayout id="pfI1">
<af:panelLabelAndMessage label="Show/Hide Field" id="plam11">
<af:selectBooleanRadio 1d="show3" autoSubmit="true" text="Show"
group="group3"
value="#{val idate.show3}">
<af:target execute="show3 hide3" render="pfl1"/>
</af:selectBooleanRadio>
<af:selectBooleanRadio 1d="hide3" autoSubmit="true" text="Hide"
group="group3"
value="#{validate.hide3}">
<af:target execute="hide3 show3" render="pfl1"/>
</af:selectBooleanRadio>
</af:panelLabelAndVMessage>
<af:panelLabelAndMessage label="Required Field" id="plaml2"
showRequired=""true">
<af:inputText label="Required Field" required="true" simple="true"
rendered="#{val idate.show3}" id="1t3"/>
</af:panelLabelAndVMessage>
<af:panelGroupLayout layout="horizontal" id="pgl9">
<f:facet name="separator'>
<af:spacer width="2px" id="s7"/>
</f:facet>

<af:commandButton text="submit" partialSubmit="true"
disabled="#{validate.hide3}" id="cb2">
<af:target execute="@this it3" render="pfl1"/>
</af:commandButton>
<af:commandButton actionListener="#{validate._handleCancel}"
partialSubmit="true" text="cancel" id="cbl">
<af:target execute="@this" render="ot10"/>
</af:commandButton>

<af:outputText clientComponent=""true"

value="Cancel Click: #{validate.clickCount}" id="ot10"/>
</af:panelGroupLayout>

Enabling Partial Page Rendering Programmatically

The partial page rendering feature of ADF Faces can be implemented
programmatically with the help of certain framework objects, such as FaceContext and
AdfFacesContext. Use the addPartialTarget method to enable partial page rendering
programmatically.

When you want a target to be rerendered based on specific logic, you can enable
partial page rendering programmatically.

How to Enable Partial Page Rendering Programmatically

You use the addPartialTarget method to enable partial page rendering.

How to enable PPR programmatically:

ORACLE 8-13

Chapter 8
Using Partial Page Navigation

1. Create a listener method for the event that should cause the target component to
be rerendered.

Use the addPartialTarget() method to add the component (using its ID) as a
partial target for an event, so that when that event is triggered, the partial target
component is rerendered. Using this method associates the component you want
to have rerendered with the event that is to trigger the rerendering.

For example, the File Explorer application contains the
NavigatorManager.refresh() method. When invoked, the navigator accordion is
rerendered.

public void refresh()
{

for (BaseNavigatorView nav: getNavigators())

{

nav.refresh();

}

AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentinstance();
adfFacesContext.addPartialTarget(_navigatorAccordion);

}

2. Inthe JSF page, select the target component. In the Properties window, enter a
component ID and set ClientComponent to true.

" Note:

You must set the clientComponent attribute to true to ensure that a
client ID will be generated.

3. Inthe Properties window, find the listener for the event that will cause the refresh
and bind it to the listener method created in Step 1.

Using Partial Page Navigation

ORACLE

In ADF Faces, navigation between pages can be made much faster by using Ajax
technologies to call the new page, which skips the initialization steps. To use this
partial page navigation feature, you must first enable partial page rendering.

Instead of performing a full page transition in the traditional way, you can configure an
ADF Faces application to have navigation triggered through a PPR request. The new
page is sent to the client using PPR. Partial page navigation is disabled by default.

When partial page navigation is used, in order to keep track of location (for example,
for bookmarking purposes, or when a refresh occurs), the framework makes use of the
hash portion of the URL. This portion of the URL contains the actual page being
displayed in the browser.

Additionally, JavaScript and CSS will not be loaded for each page. You must use the
resource tag to include JavaScript and CSS content specific to the current page.
Using the <f:verbatim> or <trh:stylesheet> tags will not work. See Adding
JavaScript to a Page.

When partial page navigation is enabled in an application, get requests are supported
for the button and link components:

8-14

Chapter 8
Using Partial Page Navigation

< Note:

PPR get requests are not supported in Internet Explorer. When using that
browser, URLs will be loaded using a standard get request.

For other browsers, get requests for these components are only supported
for pages within an application.

How to Use Partial Page Navigation

You can turn partial page navigation on by setting the
oracle.adf.view.rich.pprNavigation.OPTIONS context parameter in the web.xml file
to on.

Before you begin:

It may be helpful to have an understanding of partial page navigation. See Using
Partial Page Navigation.

To use partial page navigation:
1. Double-click the web.xml file.

2. Inthe source editor, change the oracle.adf.view.rich.pprNavigation.OPTIONS
parameter to one of the following:

» on: Enables partial page navigation.

Note:

If you set the parameter to on, then you need to set the
partialSubmit attribute to true for any command components
involved in navigation.

» onWithForcePPR: Enables partial page navigation and notifies the framework
to use the PPR channel for all action events, even those that do not result in
navigation. Since partial page navigation requires that the action event be sent
over PPR channel, use this option to easily enable partial page navigation.

When partial page navigation is used, normally only the visual contents of the
page are rerendered (the header content remains constant for all pages).
However, the entire document will be rerendered when an action on the page
is defined to use full page submit and also when an action does not result in
navigation.

What You May Need to Know About PPR Navigation

Before using PPR navigation, you should be aware of the following:

* When using PPR navigation, all pages involved in this navigation must use the
same CSS skin.

ORACLE 8-15

Chapter 8
Using a Streaming Component to Allow Page Loading

* You must use the resource tag to include JavaScript and CSS content specific to
the current page.

e Unlike regular page navigation, partial navigation will not result in JavaScript
globals (variables and functions defined in global scope) being unloaded. This
happens because the window object survives partial page transition. Applications
wishing to use page-specific global variables and/or functions must use the
AdfPage.getPageProperty() and AdfPage.setPageProperty() methods to store
these objects.

Using a Streaming Component to Allow Page Loading

ADF Faces supports a streaming component in a JSF page that allows components to
delay their rendering until a streaming request is fulfilled. A placeholder is displayed
until the data is fetched from the data source.

The streaming component lets the page continue to load while database queries are
being run. It utilizes NOSCRIPT components which are non-element based
components that support partial page rendering and data streaming. You can use this
component for infolets in a JSF page. An infolet is small region within a JSF page that
displays the data fetched from different data sources. Streaming components can be
used for infolets in a JSF page or for the individual components within an infolet of the
JSF page.

When there is a streaming request by the client for an infolet or a component, the
streaming framework launches background threads for a data model so that the data
is fetched in parallel from different data sources. During the data fetch, the streaming
component renders a placeholder on the screen in the initial rendering and the actual
content replaces the placeholder when it becomes available. This placeholder can be
a text or an image. You can use the image component or outputText component for
the placeholder to display an image or to display text during the process of data fetch.

How to Implement an Instance of AsyncFetch to Fetch Streaming Data

ORACLE

The ADF Faces streaming component implements the AsyncFetch interface to fetch
the data asynchronously on a streaming request. AsyncFetch is an interface to be
implemented by the data models that support fetching data on the thread other then
the request thread.

To use a streaming component, you must first configure a managed bean in adfc-
config.xml file. In the below example, streamingBean is configured as a managed
bean.

A streaming component contains a value attribute that accepts an implementation
class instance of oracle._adf.view.rich.model .AsyncFetch. AsyncFetch is an
interface that supports fetching data on threads. The component will query AsyncFetch
class to see if the data is available on the first rendering. If it is not, a placeholder will
be rendered. This can be achieved by a placeholder streaming facet. A streaming
facet contains the placeholder components, typically text or graphics. The example
below shows how an image with a short description is added to a streaming facet.
Once the data is fetched during the streaming request, the streaming framework
rerenders the component first and then the children are rendered, replacing the
streaming facet on the client with the children content.

8-16

Chapter 8
Using a Streaming Component to Allow Page Loading

The following example shows the JSF page code for streaming.

<af:streaming id="s4" value="#{streamingBean.dataStore4}">
<f:facet name="placeholder">
<?audit suppress oracle.jdeveloper.jsp.check-valid-parent?>
<af:image id="placeholder4" source="/images/streaming-load.gif"
shortDesc="Please wait..." inlineStyle="margin: 4px;"/>
</f:facet>
<af:panelHeader text="Links" size="5" id="ph4">
<af:panelGroupLayout id="pgl5">
<af:iterator value="#{streamingBean.streamingDatad.data}"
var="link" id="1i4">
<af:goLink text="#{link.name}" id="11"
destination="#{link.url}" targetFrame="link" styleClass="singleRow"/>
</af:iterator>
</af:panelGroupLayout>
</af:panelHeader>
</af:streaming>

In the above example, streamingBean is configured as a managed bean. The
streamingBean.dataStore4 value attribute represents the content fetched from the
data source to be rendered. The placeholder streaming facet contains the
streaming-load.gif image along with a short description of Please wait.... The
dataStore4 get method of streamingBean returns an implementation class instance of
oracle._adf.view.rich.model .AsyncFetch.

< Note:

You can also specify the data to be fetched by the model by providing an EL
expression as a fetch constraint for a streaming component. This EL
expression is passed to the AsyncFetcher methods, which may utilize the
expression as a fetch constraint. See Java API Reference for Oracle ADF
Faces for more information on AsyncFetch and AsyncFetcher methods.

How to Create a Streaming Component

ORACLE

A streaming component permits a component to be rendered in a page during a
streaming request so that the initial page rendering is not delayed when a model is
expected to take a longer time to retrieve its data.

Before you begin:

To use a streaming component, you must first configure a managed bean in adfc-
config.xml file. See Creating and Using Managed Beans for information on how to
create and configure a managed bean.

To create a streaming component:

1. Inthe Components window, from the ADF Faces panel, drag and drop Streaming
onto the JSF page.

2. In the Properties window, expand the Other section, and set the following:

8-17

ORACLE

Chapter 8
Using a Streaming Component to Allow Page Loading

* Constraints: Specify the data to be fetched by the model by providing an EL
expression as a fetch constraint for the streaming component. The EL
expression specified for this attribute is passed to the AsyncFetcher methods,
which may utilize the expression as a fetch constraint.

 Rendered: You can configure whether the component must be rendered or
not using the rendered attribute. If the rendered attribute is set to false, no
output will be delivered.

* Value: Displays the content fetched from the data source to be rendered.

See Tag Reference for Oracle ADF Faces for information on configuring different
attributes for a streaming component.

8-18

Creating Your Layout

Part Il describes how to use the layout components to design a page, and then how to
create page fragments, templates, and how to reuse them in an application.

Specifically, this part contains the following chapters:

* Organizing Content on Web Pages

* Creating and Reusing Fragments, Page Templates, and Components

ORACLE

Organizing Content on Web Pages

This chapter describes how to use several of the ADF Faces layout components to
organize content on web pages.
This chapter includes the following sections:

e About Organizing Content on Web Pages

e Starting to Lay Out a Page

e Arranging Content in a Grid

« Displaying Contents in a Dynamic Grid Using a masonryLayout Component
» Achieving Responsive Behavior Using matchMediaBehavior Tag
e Arranging Contents to Stretch Across a Page

e Using Splitters to Create Resizable Panes

» Arranging Page Contents in Predefined Fixed Areas

e Arranging Content in Forms

e Arranging Contents in a Dashboard

« Displaying and Hiding Contents Dynamically

« Displaying or Hiding Contents in Panels

e Adding a Transition Between Components

» Displaying Items in a Static Box

» Displaying a Bulleted List in One or More Columns

e Grouping Related Items

e Separating Content Using Blank Space or Lines

About Organizing Content on Web Pages

ADF provides the Alta skin by default, that is based on Ul design principles to create a
responsive web page. You can also use a skin other than Alta and create a template
that you can use to design the layout of pages.

A new web application that you create in this release uses the Alta skin by default. To
get the full benefit of the Oracle Alta Ul system, Oracle recommends that you go
beyond simply using the Alta skin and design your application around the Oracle Alta
Ul Design Principles. Designing your application using these principles enables you to
make use of the layouts, responsive designs and components the Oracle Alta Ul
system incorporates to present content to your end users in a clean and uncluttered
way. For information about the Oracle Alta Ul system and the Oracle Alta Ul Design
Principles, see http://www.oracle.com/webfolder/ux/middleware/alta/index.html and for
information about Oracle Alta Ul Patters, see http://www.oracle.com/webfolder/ux/
middleware/alta/patterns/index.html.

ORACLE 9-1

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html

Chapter 9
About Organizing Content on Web Pages

If you are using a skin other than Alta, ADF Faces provides a number of layout
components that can be used to arrange other components on a page. Usually, you
begin building your page with these components. You then add components that
provide other functionality (for example rendering data or rendering buttons) either
inside facets or as child components to these layout components.

Tip:

You can create page templates that allow you to design the layout of pages
in your application. The templates can then be used by all pages in your
application. See Creating and Reusing Fragments, Page Templates, and
Components.

In addition to layout components that simply act as containers, ADF Faces also
provides interactive layout components that can display or hide their content, that
provide transitions between its child components, or that provide sections, lists, or
empty space. Some layout components also provide geometry management
functionality, such as stretching their contents to fit the browser windows as the
window is resized, or the capability to be stretched when placed inside a component
that stretches. ADF Faces Layout Components describes each of the layout
components and their associated geometry management capabilities. For information
about stretching and other geometry management functionality of layout components,
see Geometry Management and Component Stretching.

ADF Faces Layout Components

Table 9-1 briefly describes each of the ADF Faces layout components.

Table 9-1 ADF Faces Layout Components

Component Description Can Stretch Can Be
Children Stretched

Page Management Components

document Creates each of the standard root X
elements of an HTML page: <html>,
<body>, and <head>. All pages must
contain this component. See Starting to
Lay Out a Page.

form Creates an HTML <form> element. See
Starting to Lay Out a Page.

Page Layout Containers

panelGridLayout Used in conjunction with gridRow and X (when the gridRow X (when the
gridCell components to provide an and gridCell dimensionsFr
HTML table-like layout where you define components are om attribute is

the rows and cells, and then place other configured to stretch) set to parent)
components as children to the cells. See
Arranging Content in a Grid.

ORACLE 9-2

Table 9-1 (Cont.) ADF Faces Layout Components

Chapter 9

About Organizing Content on Web Pages

Component Description Can Stretch Can Be
Children Stretched
panelStretchLayout Contains top, bottom, start, center, X X (when the
and end facets where you can place dimensionsFr
other components. See Arranging om attribute is
Contents to Stretch Across a Page. set to parent)
panelSplitter Divides a region into two parts (First X X (when the
facet and second facet) with a dimensionsFr
repositionable divider between the two. om attribute is
You can place other components within set to parent)
the facets. See Using Splitters to Create
Resizable Panes.
panelDashboard Provides a columnar display of child X X (when the
components (usually panelBox dimensionsFr
components). See Arranging Contents om attribute is
in a Dashboard. set to parent)
masonrylLayout Provides a dynamically-sized grid of X
child components. See Displaying
Content in a Dynamic Grid Using a
masonryLayout Component
panelBorderLayout Can have child components, which are
placed in its center, and also contains
12 facets along the border where
additional components can be placed.
These will surround the center. See
Arranging Page Contents in Predefined
Fixed Areas.
panelFormLayout Positions input form controls, such as

inputText components so that their
labels and fields line up vertically. It
supports multiple columns, and contains
a footer facet. See Arranging Content in

Forms.

Components with Show/Hide Capabilities

showDetai IHeader

showDetail ltem

panelBox

ORACLE

Can hide or display contents below the
header. Often used as a child to the
panelHeader component. See
Displaying and Hiding Contents

Dynamically.

Used to hold the content for the different
panes of the panelAccordion or
different tabs of the panelTabbed
component. See Displaying or Hiding
Contents in Panels.

Titled box that can contain child
components. Has a toolbar facet. See
Displaying and Hiding Contents

Dynamically.

X (if the type
attribute is set to

stretch)

X (if it contains a

single child

component and its
stretchChildren
attribute is set to

first)

X (if it is being
stretched or if the
type attribute is set

to stretch)

X (if the type
attribute is set to
stretch)

9-3

Table 9-1 (Cont.) ADF Faces Layout Components

Chapter 9
About Organizing Content on Web Pages

Component

Description

Can Stretch
Children

Can Be
Stretched

panelAccordion

panelTabbed

panelDrawer

panelSpringboard

showDetail

Miscellaneous Containers
deck

panelHeader

panelCollection

ORACLE

Used in conjunction with
showDetai I I'tem components to

display as a panel that can be expanded

or collapsed. See Displaying or Hiding
Contents in Panels.

Used in conjunction with
showDetai I Item components to
display as a set of tabbed panels. See

Displaying or Hiding Contents in Panels.

If you want the tabs to be used in
conjunction with navigational hierarchy,
for example each tab is a different page
or region that contains another set of
navigation items, you may instead want
to use a navigationPane component
in a navigational menu. See Using
Navigation Items for a Page Hierarchy.

Used in conjunction with

showDetai I I'tem components to
display as a set of tabs that can open
and close like a drawer. See Displaying
or Hiding Contents in Panels.

Used in conjunction with

showDetai I I'tem components to
display as a set of icons, either in a grid
or in a strip. When the user clicks an
icon, the associated showDetail ltem
contents display below the strip. See

Displaying or Hiding Contents in Panels.

Hides or displays content through a
toggle icon. See Displaying and Hiding
Contents Dynamically.

Provides animated transitions between
its child components, using the
af:transition tag. See Adding a
Transition Between Components.

Contains child components and provides X (if the type

a header that can include messages,
toolbars, and help topics. See
Displaying Items in a Static Box.

Used in conjunction with collection
components such as table, tree and
treeTable to provide menus, toolbars,
and status bars for those components.
See Displaying Table Menus, Toolbars,
and Status Bars.

X (when the
dimensionsFr
om attribute is
set to parent)

X (when the
dimensionsFr
om attribute is
set to parent)

X X

X (if the type
attribute is set to
stretch)

attribute is set to
stretch)

X (only a single table, X
tree, or tree table)

9-4

Table 9-1 (Cont.) ADF Faces Layout Components

Chapter 9

About Organizing Content on Web Pages

Component Description Can Stretch Can Be
Children Stretched
decorativeBox Creates a container component whose X (in the Center facet) X (when the

inlineFrame

navigationPane

panelList

panelWindow

toolbox

Grouping Containers

panelGroupLayout

group

Spacing Components

facets use style themes to apply a
bordered look to its children. This
component is typically used as a
container for the navigationPane
component that is configured to display
tabs. See Using Navigation Items for a
Page Hierarchy.

Creates an inline iframe tag.

Creates a series of navigation items
representing one level in a navigation
hierarchy. See Using Navigation Items
for a Page Hierarchy.

Renders each child component as a list
item and renders a bullet next to it. Can
be nested to create hierarchical lists.
See Displaying a Bulleted List in One or
More Columns.

Displays child components inside a
popup window. See Declaratively
Creating Popups.

Displays child toolbar and menu
components together. See Using
Toolbars.

Groups child components either
vertically or horizontally. For JSP pages,
used in facets when more than one
component is to be contained in a facet
(Facelet pages can handle multiple
children in a facet). See Grouping
Related Items.

Groups child components without regard
to layout unless handled by the parent
component of the group. For JSP pages,
used in facets when more than one
component is to be contained in a facet
(Facelet pages can handle multiple
children in a facet). See Grouping
Related Items.

dimensionsFr
om attribute is
set to parent)

X

X (if configured
to display tabs)

X (only if set to
scroll or vertical
layout)

separator Creates a horizontal line between items.
See Separating Content Using Blank
Space or Lines.
spacer Creates an area of blank space. See
Separating Content Using Blank Space
or Lines.
ORACLE 9-5

Chapter 9
Starting to Lay Out a Page

Additional Functionality for Layout Components

Once you have added a layout component to your page, you may find that you need to
add functionality such as responding to events. Following are links to other
functionality that layout components can use.

» Templates: Once you create a layout, you can save it as a template. When you
make layout modifications to the template, all pages that consume the template
will automatically reflect the layout changes. See Using Page Templates.

 Themes: Themes add color styling to some of layout components, such as the
panelBox component. For information about themes, see Customizing the
Appearance Using Styles and Skins

» Skins: You can change the icons and other properties of layout components using
skins. See Customizing the Appearance Using Styles and Skins.

* Localization: Instead of entering values for attributes that take strings as values,
you can use property files. These files allow you to manage translation of these
strings. See Internationalizing and Localizing Pages.

* Accessibility: You can make your input components accessible. See Developing
Accessible ADF Faces Pages.

* Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

* Events: Layout components fire both server-side and client-side events that you
can have your application react to by executing some logic. See Handling Events.

* User customization: Some of the components have areas that can be expanded
or collapsed, such as the showDetai lHeader component. You can configure your
application so that the state of the component (expanded or collapsed) can be
saved when the user leaves the page. See Allowing User Customization on JSF
Pages.

Starting to Lay Out a Page

ORACLE

When you layout a page, all the ADF faces components should be enclosed within the
document, so that the document tag creates the root elements for the client page at
runtime. Additionally, the document tag allows the capable components to stretch to fill
the available browser space.

JSF pages that use ADF Faces components must have the document tag enclosed
within a view tag. All other components that make up the page then go in between
<af:document> and </af:document>. The document tag is responsible for rendering
the browser title text, as well as the invisible page infrastructure that allows other
components in the page to be displayed. For example, at runtime, the document tag
creates the root elements for the client page. In HTML output, the standard root
elements of an HTML page, namely, <html>, <head>, and <body>, are generated.

By default, the document tag is configured to allow capable components to stretch to fill
available browser space. You can further configure the tag to allow a specific
component to have focus when the page is rendered, or to provide messages for failed
connections or warnings about navigating before data is submitted. See How to
Configure the document Tag.

9-6

Chapter 9
Starting to Lay Out a Page

Typically, the next component used is the ADF Faces form component. This
component creates an HTML form element that can contain controls that allow a user
to interact with the data on the page.

" Note:

Even though you can have multiple HTML forms on a page, you should have
only a single ADF Faces form tag per page. See Defining Forms.

JDeveloper automatically inserts the view, document, and form tags for you, as shown
in the following example. See Creating a View Page.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html>
<f:view xmIns:f="http://java.sun.com/jsf/core"
xmIns:af="http://xmlIns.oracle.com/adf/faces/rich">
<af:document title="untitledl.jsf" id="d1">
<af:form id="f1"></af:form>
</af:document>
</f:view>

Once those tags are placed in the page, you can use the layout components to control
how and where other components on the page will render. The component that will
hold all other components is considered the root component. Which component you
choose to use as the root component depends on whether you want the contained
components to display their contents so that they stretch to fit the browser window, or
whether you want the contents to flow, using a scrollbar to access any content that
may not fit in the window. For information about stretching and flowing, see Geometry
Management and Component Stretching.

Tip:

Instead of creating your layout yourself, you can use JDeveloper's quick
layout templates, which provide correctly configured components that will
display your page with the layout you want. See Using Quick Start Layouts.

Geometry Management and Component Stretching

ORACLE

Geometry management is the process by which the user, parent components, and
child components negotiate the actual sizes and locations of the components in an
application. For example, a component might be resized when it's first loaded into a
browser, when the browser is resized, or when a user explicitly resizes it.

By default, if there is only a single effective visual root component, that root
component will stretch automatically to consume the browser's viewable area,
provided that component supports geometry management. Examples of geometry
management components are panelGridLayout and panelSplitter. If the root
component supports stretching its child components (and they in turn support being
stretched), the size of the child components will also recompute, and so on down the
component hierarchy until a flowing layout area is reached; that is, an area that does

9-7

Chapter 9
Starting to Lay Out a Page

not support stretching of its child components. You do not have to write any code to
enable the stretching.

Note:

The framework does not consider popup dialogs, popup windows, or non-
inline messages as root components. If a form component is the direct child
component of the document component, the framework will look inside the
form tag for the visual root. For information on sizing a popup, see Using
Popup Dialogs, Menus, and Windows.

As shown in Table 9-1, the panelGridLayout, panelStretchLayout, panelSplitter,
and panelDashboard components are components that can be stretched and can also
stretch their child components. Additionally, when the showDetai l Item component is
used as a direct child of the panelAccordion or panelTabbed component, the contents
in the showDetai I Item component can be stretched. Therefore, the
panelStretchLayout, panelSplitter, panelDashboard, panelAccordion with a
showDetai I Item component, and a panelTabbed with a showDetai Il Item component,
are the components you should use as root components when you want to make the
contents of the page fill the browser window.

For example, Figure 9-1 shows a table placed in the center facet of the
panelStretchLayout component. The table stretches to fill the browser space. When
the entire table does not fit in the browser window, scrollbars are added in the data
body section of the table.

Figure 9-1 Table Inside a Component That Stretches Child Components

File Edit ‘Yiew History EBookmarks Tools Help

- C ‘ar | [| Petpii127.0.0.1:7101/FED_816-FED-context-roatFaces/table. jspx?_afrloap=842 17 - - F
Mo |Mame Size of the file in Kilo | Mo, Date Modified |ColS Cols Col?
LU i 0B 1) 07[1212004 . 07122004 0B ~
13 - 0B 1 07[12/z004 " 07122004 0B
2z [admin.jar 1kE 2 05/11)2004 adrmin. jar 05(11/2004 1KE
3 03 applh 0B 3 0712{z004 applb 07122004 0E
4 |3 applications 0E 4 07/12(2004 applications 07/12/2004 i)z}
5 |3 ronfig 0B 5 07122004 config 07/12/2004 0B
6 |3 connectars 0B [3 07/12(2004 canneckors 07/12[2004 0B
7 I database 0E 7 07/12 (2004 database 07122004 06
5 | default-web-app 0B g 07[12z004 defaul-web-app 07[12[z004 0B
9 [iiop.jar 1,290 KB 9 05/11)2004 iiop. jar 05/11/2004 1,290 KB
10 [iiop_gen_bin.jar I7KEB 1 05/11/2004 fiop_gen_bin.jar 05711/2004 37 KB
11 [iiop_rmic.jar 144 KB 11 05/11/2004 iiop_rmic. jar 057112004 144 KB
12 |3 jazn 0B 12 07[/12(2004 jazn 07/12[2004 0B
13 J jazn.jar 266 KB 13 05/11/2004 jazn.jar 05/11/2004 266 KB
14 [jazncore.jar E53 KB 14 05/11/2004 jazncore. jar 05/11/2004 SE3KE
15 [jaznpluginjar 12 KB 15 05/11/2004 jaznplugin. jar 05/11/2004 12 KB
16) isp 0B 16 07122004 isp 07122004 0B
17 3 b 0B 17 07[1212004 litr 07122004 0B
18 [loadbalancer jar 1KE 18 05/11/2004 Ioadbalancer . jar 05/11/2004 1KB
19 () log 0B 19 071212004 log 07(122004 0B
20 [octijar 5,695 KB 20 05/11/2004 ocd.jar 05/11/2004 5,696 KB
21 J ocdiclient. jar 1,202 KB 21 05/11/2004 ocdjclient. jar 05/11/2004 1,202 KB
2z [ocdj_inkeropjar 4 KB 22 05/11/2004 ocdj_inkerop.jar 05/11/2004 4KB
23 [oispejar 1KEB 23 05/11/2004 ajspc.jar 05/11/2004 1KB v
i€ ¥

Figure 9-2 shows the same table, but nested inside a panelGroupLayout component,
which cannot stretch its child components (for clarity, a dotted red outline has been

ORACLE 9-8

Chapter 9
Starting to Lay Out a Page

placed around the panelGroupLayout component). The table component displays only
a certain number of columns and rows, determined by properties on the table.

Figure 9-2 Table Inside a Component That Does Not Stretch Its Child
Components

File Edit View Higtary Bookmarks Tools Help

(& (o | U Heepefi127.0.0.1:7101jFED_B18-FED-context-roct Faces table.jsp?_afrloop=842 - G- J
. Mo Mame Size of the file in kia | _:
=N 0E A i
1o 0B
2 [adminjar 1KB
13 0 applb 0B
: 4 |0 applications 0B
5 |3 config 0E
6) connectors 0B
7 | database 0B
8 | default-web-apg 0E
g [iiopar 1,290 KB
i 10 [iiop_gen_bin.jar ITKB
i 11 [|.|nn_'m|r.1a| 144 KB
12 13 jaan 0B
113 [jezn.jar 266 KB
114 [fazncore. jar 553 KB ¥
< >

¢ Performance Tip:

The cost of geometry management is directly related to the complexity of
child components. Therefore, try minimizing the number of child components
that are under a parent geometry-managed component.

Nesting Components Inside Components That Allow Stretching

ORACLE

Even though you choose a component that can stretch its child components, only the
following components will actually stretch:

e decorativeBox (when configured to stretch)
e deck

e InputText (when configured to stretch)

» panelAccordion (when configured to stretch)
» panelBox (when configured to stretch)

e panelCollection

» panelDashboard (when configured to stretch)

e panelGridLayout (when configured to stretch)

9-9

ORACLE

Chapter 9
Starting to Lay Out a Page

» panelGroupLayout (with the layout attribute set to scroll or vertical)
e panelHeader (when configured to stretch)

« panelSplitter (when configured to stretch)

* panelStretchLayout (when configured to stretch)

» panelTabbed (when configured to stretch)

* region

» showDetai lHeader (when configured to stretch)

o table (when configured to stretch)

e tree (when configured to stretch)

» treeTable (when configured to stretch)

The following layout components cannot be stretched when placed inside a facet of a
component that stretches its child components:

e panelBorderLayout

e panelFormLayout

« panelGroupLayout (with the layout attribute set to default or horizontal)
* panellLabelAndMessage

e panellList

e showDetail

e tablelLayout (MyFaces Trinidad component)

One interesting way to think about geometry management and resizing is to think of
components as being one of four types of puzzle pieces, as shown in Figure 9-3.

Figure 9-3 Four Categories of Components for Geometry Management

Can siretch . Cannot stretch
children T S children or
children and Can be streched
can be streched be streched

i el |

You can only place components that can be stretched inside components that stretch
their children. If you want to use a component that does not stretch, within the facet of
component that stretches its child components, you must wrap it in a transition
component. Transition components can be stretched but do not stretch their children.
Transition components must always be used between a component that stretches its
children and a component that does not stretch. If you do not, you may see
unexpected results when the component renders.

For example, suppose you want to have a form appear in one side of a panelSplitter
component. Say your root component is the panelStretchLayout, and so is the first
component on your page. You add a panelSplitter component (configured to default

9-10

Chapter 9
Starting to Lay Out a Page

settings) as a child to the panelStretchLayout component, and to the first facet of that
component, you add a panelFormLayout component. Figure 9-4 shows how those
components would fit together. Notice that the panelFormLayout component cannot
"fit" into the panelSplitter component because the panelSplitter can stretch its
children and so will attempt to stretch the panelFormLayout, but the panelFormLayout
cannot be stretched.

Figure 9-4 Order of Components in One Layout Scenario

p:aneISh'etmLaym.lt < panelSplitter < panelFormLayout

When a component does not "fit" into a component that stretches children, you may
get unexpected results when the browser attempts to render the component.

To have a valid layout, when you want to use a component that does not stretch in a
component that stretches its children, you must use a transition component. To fix the
panelFormLayout example, you could surround the panelFormLayout component with
a panelGroupLayout component set to scroll. This component stretches, but does
not stretch its children, as shown in Figure 9-5.

Figure 9-5 Order of Components in Second Layout Scenario

< < nelGroupLayout
panelStretchLayout panelSplitter erpaeing panelFormLayout

In this case, all the components fit together. The panelGroupLayout component will not
attempt to stretch the panelFormLayout, and so it will correctly render. And because
the panelGroupLayout component can be stretched, the layout will not break between
the components that can and cannot stretch.

ORACLE 9-11

Chapter 9
Starting to Lay Out a Page

Tip:

Do not attempt to stretch any of the components in the list of components
that cannot stretch by setting their width to 100%. You may get unexpected
results. Instead, surround the component to be stretched with a component
that can be stretched.

The panelGroupLayout component set to scroll is a good container for
components that cannot stretch, when you want to use those components in
layout with components that do stretch.

Tip:

If you know that you always want your components to stretch or not to
stretch based on the parent's settings, then consider setting the
oracle.adf.view.rich.geometry.DEFAULT DIMENSIONS parameter to auto.
See Geometry Management for Layout and Table Components.

Using Quick Start Layouts

ORACLE

When you use the New Gallery Wizard to create a JSF page (or a page fragment), you
can choose from a variety of predefined quick start layouts. When you choose one of
these layouts, JDeveloper adds the necessary components and sets their attributes to
achieve the look and behavior you want. In addition to saving time, when you use the
quick layouts, you can be sure that layout components are used together correctly to
achieve the desired geometry management.

You can choose from one-, two-, and three-column formats. Within those formats, you
can choose how many separate panes will be displayed in each column, and if those
panes can stretch or remain a fixed size. Figure 9-6 shows the different layouts
available in the two-column format.

9-12

Chapter 9
Starting to Lay Out a Page

Figure 9-6 Quick Layouts

() Create Blank Page () Reference ADF Page Template (%) Copy Quick Start Layout

Categories Types Description

One Column (Scroll)

Two Column

Layouts

il

Three Column

"] Apply color theme to layout components

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Quick Start
Layout Themes. For information about themes, see Customizing the Appearance
Using Styles and Skins

For information about creating pages using the quick layouts, see Creating a View
Page.

Tips for Using Geometry-Managed Components

ORACLE

To ensure your page is displayed as expected in all browsers, use one of the quick
layouts provided by JDeveloper when you create a page. These layouts ensure that
the correct components are used and configured properly. See Using Quick Start
Layouts.

" Best Practice:

Use quick start layouts to avoid layout display issues.

However, if you wish to create your layout yourself, follow these tips for creating a
layout that includes both stretched and flowing components:

» Place the page contents inside a root component that performs geometry
management, either panelStretchLayout, panelGridLayout with gridRow and
gridCell components, panelSplitter, panelAccordion with a showDetail ltem,
or panelTabbed with a showDetai l ltem.

9-13

Chapter 9
Starting to Lay Out a Page

* Never specify a height value with percent units. Instead, build a component

structure out of components that support being stretched and that stretch their
child components. See Nesting Components Inside Components That Allow
Stretching.

* Inside this stretchable structure, create islands of nonstretched or flowing

components by using transition components, such as the panelGroupLayout
component with the layout attribute set to scroll. This component will provide the
transition between stretched and flowing components because it supports being
stretched but will not stretch its child components.

* Never try to stretch something vertically inside a nonstretched or flowing container

because it will not act consistently across web browsers.

* For components contained in a parent flowing component (that is, a component

that does not stretch its children), do not set widths greater than 95%. If you do,
you may get unexpected results.

— If the parent component is 768 pixels or greater, set the styleClass attribute
on the component to be stretched to AFStretchWidth. This style will stretch
the component to what appears to be 100% of the parent container, taking into
account different browsers and any padding or borders on the parent.

— If the parent component is 768 pixels or less, set the styleClass attribute on
the component to be stretched to AFAuxi liaryStretchWidth. This style will
stretch the component to what appears to be 100% of the parent container,
taking into account different browsers and any padding or borders on the
parent.

Note:

The two different styles are needed due to how Microsoft Internet
Explorer 7 computes widths inside scrolling containers (this has
been resolved in Internet Explorer 8). Unless you can control the
version of browser used to access your application, you should use
these styles as described.

* Never use the position style.

« Ensure that the maximized attribute on the document tag is set to true (this is the
default). For information about setting the attribute, see How to Configure the
document Tag.

The remainder of this chapter describes the ADF Faces layout components and how
they can be used to design a page. You can find information about how each
component handles stretching in the respective "What You May Need to Know About
Geometry Management" sections.

How to Configure the document Tag

ORACLE

The document tag contains a number of attributes that you can configure to control
behavior for the page. For example, you can configure the icon that the browser may
insert into the address bar (commonly known as a favicon). Figure 9-7 shows the
Oracle icon in the address bar of the Firefox browser.

9-14

Chapter 9
Starting to Lay Out a Page

Figure 9-7 Small Icon Configured on the document Tag

Smallicon

¥) Oracle Technology Network | World's Largest Cd

Fle Edit View History

O -c

Yahoo! Tools

E Oracle Technology Network | World'...

ORACLE’
TECHNOLOGY NETWORK

You can also configure the tag for the following functionality:

» Focus: You can set which component should have focus when the page is first
rendered.

¢ Uncommitted data: You can have a warning message display if a user attempts to
navigate off the page and the data has not been submitted.

e State saving: You can override the settings in the web.xml file for an individual
page, so that the state of the page should be saved on the client or on the server.

To configure the document tag:

1. Inthe Structure window, select the af:document node.
2. In the Properties window, expand the Common section and set the following:

* InitialFocusld: Use the dropdown menu to choose Edit. In the Edit Property
dialog, select the component that should have focus when the page first
renders.

Because this focus happens on the client, the component you select must
have a corresponding client component. See Instantiating Client-Side
Components.

* Maximized: Set to true if you want the root component to expand to fit all
available browser space. When the document tag's maximized attribute is set
to true, the framework searches for a single visual root component, and
stretches that component to consume the browser's viewable area, provided
that the component can be stretched. Examples of components that support
this are panelStretchLayout and panelSplitter. The document tag's
maximized attribute is set to true by default. See Geometry Management and
Component Stretching.

e Title: Enter the text that should be displayed in the title bar of the browser.
3. Expand the Appearance section and set the following: and for the attribute,.

e FailedConnectionText: Enter the text you want to be displayed if a
connection cannot be made to the server.

e Small Icon Source: Enter the URI to an icon (typically 16 pixels by 16 pixels)
that the browser may insert into the address bar (commonly known as a
favicon). If no value is specified, each browser may do or display something
different.

ORACLE 9-15

ORACLE

Chapter 9
Starting to Lay Out a Page

You can enter a space-delimited list of icons and a browser will typically
display the first value it supports. For example, Microsoft Internet Explorer only
supports . ico for favicons. So given the following value:

/images/small-icon.png /small-icon.ico

Internet Explorer will display smal l-icon. ico, while Firefox would display
small-icon.png.

Use one forward slash (/) in the address if the file is located inside of the web
application's root folder. Use two forward slashes (/) if the file located in the
server's root folder.

Large Icon Source: Enter the URI to an icon (typically 129 pixels by 129
pixels) that a browser may use when bookmarking a page to a device's home
page, as shown in Figure 9-8.

Figure 9-8 Mobile Device Displaying Large Icon

Large icon

‘Safari +CF Hom

If no value is specified, each browser may do or display something different.

You can enter a space-delimited list of icons and a browser will typically
display the first value it supports.

Use one forward slash (/) in the address if the file is located inside of the web
application's root folder. Use two forward slashes (//) if the file located in the
server's root folder.

Tip:

Different versions of the iPhone and iPad use different sized images.
You can use the largest size (129 pixels by 129 pixels) and the
image will be scaled to the needed size.

Expand the Behavior section and set UncommittedDataWarning to on if you
want a warning message displayed to the user when the application detects that
data has not been committed. This can happen because either the user attempts
to leave the page without committing data or there is uncommitted data on the
server. By default, this is set to off

9-16

Chapter 9
Arranging Content in a Grid

< Note:

If your application does not use ADF Controller, the data is considered to
be committed when it is posted to the middle tier. For example, when a
user clicks a button, no warning will be displayed when navigation occurs
in the middle tier regardless of whether the data was actually written to
the back end.

5. Expand the Advanced section and set StateSaving to the type of state saving you
want to use for a page.

For ADF Faces applications, you should configure the application to use client
state saving with tokens, which saves page state to the session and persists a
token to the client. This setting affects the application globally, such that all pages
have state saved to the session and persist tokens with information regarding
state.

You can override the global setting in web.xml to one of the following for the page:

e client: The state is saved fully to the client, without the use of tokens. This
setting keeps the session expired messages from being displayed.

- default: The state of the page is based on whatever is set in web.xml.
» server: The state of the page is saved on the server.

For information about state saving, see Configuration in web.xml .

Arranging Content in a Grid

You can use the ADF Faces panelGridLayout component for simple structures, which
gives you full control on individual cell. You can use this component when you do not
need fine control over alignment. Except few cases, you can also nest a
panelGridLayout components

Use the panelGridLayout component to arrange content in a grid area on a page
(similar to an HTML table) and when you want the content to be able to stretch when
the browser is resized. The panelGridLayout component provides the most flexibility
of the layout components, while producing a fairly small amount of HTML elements.
With it, you have full control over how each individual cell is aligned within its
boundaries.

The panelGridLayout component uses child gridRow components to create rows, and
then within those rows, gridCell components that form columns. You place
components in the gridCell components to display your data, images, or other
content.

Figure 9-9 shows a panelGridLayout component that contains two gridRow
components. Each of the gridRow components contain two gridCell components.
Each of the gridCell components contain one chooseDate component.

ORACLE 9-17

ORACLE

Figure 9-9 Simple Grid Layout with Two Rows Each with Two Cells

gridRow

panelGridLayout

e ——-—
|

gridRow

You can nest panelGridLayout components. In some cases, it is not safe to nest

SUN MON

5 6
12 13
1% 20
26 27

4 | August

TUE

7

[=]

WED THU

20123 b

2

FRI

3
10
17
24
31

SAT

®
N

"V

«

_gridCells

v

'

Chapter 9
Arranging Content in a Grid

4

5
12
15
26

August

6 7
13 14
20 21
27 28

(]

1

8
15
22
29

2012 3 b

SUN MON TUE WED THU FRI

2

3
10
17
24
31

SAT

4

3
12

19

§26

August

& 7
1z 14
20 21
27 28

[=]

1
8
15
22
29

SUN MON TUE WED THU

panelGridLayout. For example, if you set up parent panelGridLayout such that a cell

automatically determines its size from the dimensions of the cell contents and
additionally set up the contents to use a percentage size of the cell (a circular

dependency), then this structure might not render properly in some browsers. Also if
you set dimensions of both the parent and one or more nested grids to automatic, then
the overall layout structure would not get stabilized, because the nested grid impacts

the size of the parent panelGridLayout.

If you want to have the grid stretch its contents to fill up all available browser space,
the following must be true:

e There is only one component inside of the gridCell

e The cell's halign and valign attributes are set to stretch

» The effective width and effective height of the cell are not set to be automatically
determined by other cells or rows, as that would result in a circular dependency.

Each cell will then attempt to anchor the child component to all sides of the cell. If it

can't (for example if the child component cannot be stretched), then the child

component will be placed at the start and top of the cell. Figure 9-10 shows a more
complicated layout created with a parent panelGridLayout component (whose
background is set to pink).

9-18

Chapter 9
Arranging Content in a Grid

Figure 9-10 Complex Grid Layout Created with Nested panelGridLayout
Components

grid1 row1

headergid =~ fleeeeemm o

. Order Information

Order ID 1014
Order Date 10/15/2008
Customer I 116
Order Status Code COMPLETE Order Total 1499.5
Order Shipped Date 10/20/2008

|
gn'd1 Ship to Name and Address

grid1 row2

Ship To Name John Smith
Ship To Phone Number +1 303-555-5555
Ship To Address ID 17
Shipping Option ID 1

grid1 row3

|
4 Gift Wrap
gl"ld1 rowd instruction text

Gift Wrap Flag N
Gift Wrap Message nfa

| ot [reves [Nect JY Last |

gnd1 rowd

QAT rOwe e T Uptea By B] T Gt B 10—~ =~~~ = = =~ Gty o] Cresbon Bt 1L

The first gridRow component of this panelGridLayout contains one gridCell
component. This gridCell component contains another panelGridLayout component
for the header. This header grid contains two gridRow components, each with two
gridCell components. The top right gridCell contains the components for search
functionality, while the bottom left gridCell contains the Oracle logo.

The next four gridRows of the parent panelGridLayout component contain just one
gridCell component each that holds form components and buttons. The last gridRow
component contains one gridCell component that holds another panelGridLayout
component for the footer. This footer is made up of one gridRow component with four
gridCell components, each holding an inputText component.

When placed in a component that stretches it children, by default, the
panelGridLayout stretches to fill its parent container. However, whether or not the
content within the grid is stretched to fill the space is determined by the gridRow and
gridCell components.

By default, the child contents are not stretched. The gridRow component determines
the height. By default, the height is determined by the height of the tallest child
component in the row's cells. The gridCell component determines the width. By
default, the width of a cell is determined by the width of other cells in the column.
Therefore, you must set at least one cell in a column to a determined width. You can
set it to determine the width based on the component in the cell, to a fixed CSS length,
or to a percentage of the remaining space in the grid.

ORACLE"

9-19

Chapter 9
Arranging Content in a Grid

How to Use the panelGridLayout, gridRow, and gridCell Components
to Create a Grid-Based Layout

JDeveloper provides a dialog that declaratively creates a grid based on your input.
You create a grid manually by placing a certain number of gridRow components into a
panelGridLayout component. You then add gridCell components into the gridRow
components, and place components that contain the actual content in the gridCell
components. If you want to nest panelGridLayout components, you place the child
panelGridLayout component into a gridCell component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Content in a Grid.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelGridLayout, gridRow, and gridCell components:

1. Inthe Components window, from the Layout panel, drag and drop a Panel Grid
Layout onto the JSF page.

2. Inthe Create Panel Grid Layout dialog, enter the number of columns and rows for
the grid, set the inner and outer grid margins, then click Next.

When setting the inner and outer grid margins, note the following:
* Inner Grid Margins: Set to a fixed CSS size, for example, 2px.

— Columns: Sets the value of the marginStart property on all gridCell
components, except for the first one (which is handled by the Outer Grid
Margin setting).

— Rows: Sets the value of the marginTop property on all gridRow
components, except for the first one (which is handled by the Outer Grid
Margin setting).

e Outer Grid Margins: Set to a fixed CSS size, for example, 2px.
— Top: Sets the marginTop property on just the top gridRow component.

— Bottom: Sets the marginBottom property on just the last gridRow
component.

— Left: Sets the marginStart property on just the first gridCell component.

— Right: Sets the marginEnd property on just the last gridCell component.

ORACLE 9-20

ORACLE

Chapter 9
Arranging Content in a Grid

< Note:

For marginBottom and marginTop, conflicting unit types will be
ignored. For example, if RowA has marginTop set to 2px and RowB
has marginTop set to 5em, the margin will be 2px, as that is the first
unit type encountered.

When you use the Create Panel Grid Layout dialog, the marginTop
and marginBottom properties are set for you and avoid this conflict.

Note:

If you want the panelGridLayout component to stretch its children, then
set the row heights to a value other than auto and set the cell widths to a
value other than auto. You then need to use the Properties window to set
other properties to allow stretching. See Step 5.

3. On the second page of the dialog, set the width of each cell and height of each
row.

Grid Width: Sets the width property on each of the gridCell component. Set
each column to one of the following:

dontCare: The width of the cell is determined by other cells in the column.
This is the default.

auto: The width of the cell is determined by the components in the
corresponding column. The browser first draws all those components and
the width is adjusted accordingly.

A percentage: If you want the width of the cell's corresponding column to
be a normalized percentage of the remaining space not already used by
other columns, then enter a percentage, for example, 25%.

A fixed CSS size: If you want to constrain the width to a fixed width, enter
a fixed CSS size, for example 20px or 20em.

Note:

Note the following:

— If you want a cell to span columns, then width must be set to
dontCare.

— If cells in a column have different values for their width (for
example, if one is set to auto and another is set to a fixed width),
then the width of the column will be the largest value of the first
unit type encountered.

— Ifall cells in a column are set to dontCare, then the widest cell
based on its child component will determine the width of the
column (as if the cells were all set to auto).

9-21

ORACLE

Chapter 9
Arranging Content in a Grid

» Grid Height: Sets the height property on each of the gridRow components.
Set each row to one of the following:

auto: The height of a row is determined by the components in the row.
The browser first draws the child components and the height of the row is
adjusted accordingly. This is the default.

A percentage: If the panelGridLayout component itself has a fixed height,
or if it is being stretched by its parent component, then enter a percentage,
for example 25%. The height of the row will then be a normalized
percentage of the remaining space not already used by other rows.

A fixed CSS length: If you want to constrain the height to a fixed height,
enter a fixed CSS length, for example 10px or 20em.

Click Finish.

By default, the panelGridLayout component stretches to fill available browser
space. If instead, you want to use the panelGridLayout component as a child to a
component that does not stretch its children, then you need to change how the
panelGridLayout component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

" Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the dimensionsFrom
attribute when you want to override the global setting.

By default, DEFAULT _DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

In the Properties window, set DimensionsFrom to one of the following:

e children: the panelGridLayout component will get its dimensions from its
child components.

¢ Note:

If you use this setting, you cannot set the height of the child row
components as percentages, because space in the
panelGridLayout is not divided up based on availability. You can
use the Properties window to change the height of the rows that you
set when you completed the dialog.

9-22

ORACLE

Chapter 9
Arranging Content in a Grid

e parent: the size of the panelGridLayout component will be determined in the

following order:
— From the inlineStyle attribute.

— If no value exists for inlineStyle, then the size is determined by the
parent container.

— If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

< Note:

If you use this setting, you can set the height of the child row
components as percentages.

e auto: If the parent component to the panelGridLayout component allows
stretching of its child, then the panelGridLayout component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelGridLayout component will be based on the size of its child component.
This is the default.

If you want the panelGridLayout to stretch its children, then you need to set the
following:

e Set height on the rows to a value other than auto.

* Set width on the cells to a value other than auto.

* Set halign on the gridCell components to stretch.

e Setvalign on the gridCell components to stretch.

* Place only one child component into the gridCell components.

If you want the cell to take up more than one column, set ColumnSpan to the
number of columns it should span. The default is 1.

Note:

If you set columnSpan to more than 1, then the value of the width
attribute must be set to dontCare.

If you want the cell to take up more than one row, set RowSpan to the number of
rows it should span. The default is 1.

Set Halign to determine the horizontal alignment for the cell's contents. If you want
the contents aligned to the start of the cell (the left in LTR locale), set it to start
(the default). You can also set it to center or end. If you want the
panelGridLayout to stretch, then set Halign to stretch (for information about
getting the panelGridLayout component to stretch, see Step 5.)

Set Valign to determine the vertical alignment for the cell's contents. If you want
the contents aligned to the top of the cell, set it to top (the default). You can also
set it to middle or bottom. If you want the panelGridLayout to stretch, then set
Valign to stretch (for information about getting the panelGridLayout component
to stretch, see Step 5).

9-23

Chapter 9
Arranging Content in a Grid

What You May Need to Know About Geometry Management and the
panelGridLayout Component

The panelGridLayout component can stretch its child components and it can also be
stretched. The following components can be stretched inside the panelGridLayout
component:

ORACLE

decorativeBox (when configured to stretch)
deck

calendar

inputText (when configured to stretch)
panelAccordion (when configured to stretch)
panelBox (when configured to stretch)
panelCollection

panelDashboard (when configured to stretch)

panelGridLayout (when gridRow and gridCell components are configured to
stretch)

panelGroupLayout (only with the layout attribute set to scroll or vertical)
panelHeader (when configured to stretch)

panelSplitter (when configured to stretch)

panelStretchLayout (when configured to stretch)

panelTabbed (when configured to stretch)

region

showDetai IHeader (when configured to stretch)

table (when configured to stretch)

tree (when configured to stretch)

treeTable (when configured to stretch)

The following components cannot be stretched when placed inside the
panelGridLayout component:

panelBorderLayout

panelFormLayout

panelGroupLayout (only with the layout attribute set to default or horizontal)
panelLabelAndMessage

panelList

showDetai l

tablelLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into a component that stretches its
child components. Therefore, if you need to place a component that cannot be

9-24

Chapter 9
Arranging Content in a Grid

stretched into a gridCell of a panelGridLayout component, then you must configure
the panelGridLayout, gridRow, and gridCell components so that they do not stretch
their children.

What You May Need to Know About Determining the Structure of Your

Grid

ORACLE

When you are given a mock-up of a page, you may not know how to break it down into
a grid. Follow these tips to help determine your columns, rows, and grid separations
for consecutive grids.

To design your grid:

1.

Either print out the design on a piece of paper or open it up in a graphics program
where you will be able to draw colored lines on top of the design.

Draw vertical lines representing potential column divisions in one color (for
example, in red).

Draw horizontal lines for potential row divisions in another color, (for example, in
green).

Now that you have a basic grid structure, use a third color (for example, yellow) to
draw X marks where you see cells that need to span multiple columns or rows.

Figure 9-11 shows a design that might be broken down into four columns, four
rows, and multiple places where column spans are needed.

Figure 9-11 Lines Show Potential Columns, Rows, and Spans

Cenndr Adams Some Company
cxecufive Direcior 123 Main S
ARYOWnN, LIS A
prm— b —

Phonel303-555-1851

Ppe— | —
Email Jconnor.adams@some

V.

After your first attempt, you may find that your column lines really don't make
sense. For example, in Figure 9-11, the two middle columns contained cells that
needed to span into a nearby column. This is an indication that there should
instead be two separate grids.

Use a fourth color (for example, magenta) to draw a line where the division makes
sense and repeat the process again.

Figure 9-12 shows the same design but using two consecutive grids, one on top of
the other.

9-25

Chapter 9
Arranging Content in a Grid

Figure 9-12 Consecutive Grids to Simplify Column Spanning

Connor Adams Some Company

Executive Director 123 Main St.
Anytown, USA

Phone |303-555-1851

Email jconnor.adams@some

6. Now that you can visually see where the content goes and where you need to use
span columns or rows, you can code your gridRow and gridCell components.
You can also accurately specify the sizes for your cells, as well as the horizontal
and vertical alignments of your cells.

Q Tip:

When you see in your grid that fields with labels span columns, instead
of using the built-in labels, configure the fields to hide those labels
(usually using the simple attribute), and instead use a separate
outputLabel component for the label.

For example, in Figure 9-12, the labels for the Phone and Email field are
in the first column, while the fields themselves are in the second column.
To create this layout, instead of using the labels in the corresponding
inputText component, you would:

a. Place the inputText components for the phone and email fields in
the second column.

b. Setthe simple attribute on those components to true, so the built-in
labels don't display.

c. Add new outputLabel components to the first column for the labels.

Figure 9-13 shows the final grid design. There are two vertically stacked grids. The
top grid contains two columns and two rows. The bottom grid contains three
columns and two rows, with the last column spanning the two rows.

ORACLE 9-26

Chapter 9
Arranging Content in a Grid

Figure 9-13 Final Grid Design

Grid 1
Column 1 Column 2
Row 1 | Connor Adams Some Company]
" 5 Executive Director 123 Main St.
ot Anytown, USA
Grid 2
Column 1 Column 2 Column 3
Row 1))
’ ‘ Phone |303-555-1851
Row 2 ‘ Email [connor.adams@some..

" Best Practice Tip:

You should not have more than three layers of panelGridLayout
components.

What You May Need to Know About Determining Which Layout
Component to Use

The panelGridLayout component provides the most flexibility of the layout
components, while producing a fairly small amount of HTML elements. With it, you
have full control over how each individual cell is aligned within its boundaries.
Conversely, the panelGroupLayout provides very little control over how individual
children of the structure are presented, and the panelStretchLayout only produces a
small number of grid structures, often requiring the nesting of multiple
panelStretchLayout components. Nesting multiple components means more HTML
elements are needed, and also that the code will be more difficult to maintain.
Therefore, for complex layouts, use the panelGridLayout component.

Use the panelGroupLayout for simple structures where you don't need fine control
over alignment, for example to align a series of button components. If you find yourself
nesting multiple panelGroupLayout components, this is an indication that
panelGridLayout would be more appropriate.

ORACLE 9-27

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

Displaying Contents in a Dynamic Grid Using a
masonryLayout Component

You can use the ADF Faces masonryLayout component when you want the content to
be rendered dynamically. This component takes any ADF Faces component as a
child.

The masonryLayout component displays its contents in a grid that has dynamic
rendering capabilities. It can take any ADF Faces component as a child, respectively
called a tile. Tiles can span columns and rows. When the Ul is provided, users can
insert, delete, reorder and resize the tiles.

When the masonrylLayout component renders, each tile is processed in the order that it
occurs in the code and is positioned in the first location that accommodates it. The
location is determined using the reading direction of the client browser (left-to-right or
right-to-left), and then top-to-bottom. If the next available location is not large enough
for the tile, a gap will be left and the tile placed in the next available space. A
subsequent tile that fits may be placed in the gap. If no tiles fit, then the gap remains.
When the window size changes, if necessary, the masonryLayout renders a different
numbers of rows or columns, based on the size of the tiles. The size of the tiles does
not change.

For example, Figure 9-14 shows a masonrylLayout component with three columns and
two rows.

Figure 9-14 masonryLayout Displaying Three Columns

H +H®R R ke 4R

Hydrogen Carbon Helium

N +H® o Rk S +[R

Nitrogen Oneygen Phosphorus

As the display area width is reduced, the masonryLayout reduces the number of
columns to two, and the number of rows to three, while increasing the number of rows
to three. The tiles remain the same size, as shown in Figure 9-15.

ORACLE 9-28

ORACLE

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

Figure 9-15 masonryLayout Displaying the Same Tiles in a Smaller Space

H +H® +|%

Hydrogen Carbon
He ﬂ ® N ﬂ &
Helium Mitrogen

0 +HX p +|%

Oaxygen Phosphaorus

If you want a set number of columns, you set a fixed width or maximum width on the
layout. If you want to limit the height of the layout, you set a fixed height or maximum
height on the layout and enable scrolling to handle any overflow.

You set the size of a tile using the AFMasonryTi leSize style classes on the tile
component. For example, if you use a panelBox as a tile, and you want it to span two
columns and 1 row, you would set the style class on the panelBox to
AFMasonryTileSize2x1 (all available style classes are noted in How to Use a
masonryLayout Component).

Listeners are available on the masonryLayout component to handle resizing,
reordering, inserting and deleting tiles. You need to create the code to handle these
actions, as well as the Ul to initiate the actions. The masonryLayout component
doesn't fire the events - the components that render the tiles do. You need to add
these components to the page and have the masonryLayout component listen for their
events.

9-29

ORACLE

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

Instead of creating those components and wiring them to the layout, you can use the
masonrylLayoutBehavior tag. This tag provides a declarative way to use a command
component to initiate the layout changes. It also renders visual changes to the layout
before the component tree is actually modified. Because this opening up of space
happens before the action event is sent to the server, the user will see immediate
feedback while the listener for the command component modifies the component tree.

For example, Figure 9-16 shows a masonrylLayout component used in the right panel
of a panelSplitter component. In the left panel, list items displayed as links represent
each panelBox tile in the masonryLayout. When all tiles are displayed, the links are all
inactive. However, if a user deletes one of the tiles, the corresponding link becomes
active. The user can click the link to reinsert the tile. By using the
masonrylLayoutBehavior tag with the commandLink component, the user sees the
movement of the tiles and the space for the inserted tile much sooner.

Figure 9-16 Links to Add Tiles Use the masonryLayoutBehavior tag

H ﬂﬁ He ﬂx
Hydrogen Helium
nsert Neon
nsert Argon
nsert Krypton
N & o R e +R
Nitrogen Oxygen Phosphorus
]
5 +| %

Sul phur

You do not have to use this tag to provide any insert, delete, resize, or reordering. The
tag simply provides visual feedback more quickly. Without it, users would not see the
visual changes until the new content is retrieved from the server.

The masonryLayout component will stretch if the parent component allows stretching
of its child. If the parent does not stretch its children then the size of the
masonrylLayout component will be based on the contents of its child components.

9-30

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

How to Use a masonryLayout Component

After you add a masonryLayout to a page, if you want to allow insertion, deletion,
reordering, or resizing of child components, you need to implement a method to
handle each of those actions, as well as the components to initiate those actions. You
then add any child components as tiles to the layout. If you want to allow rearranging
the child components, you need to add a componentDragSource tag to the child
components. You can also use the masonrylLayoutBehavior tag to make the
masonrylLayout component appear more responsive to the layout changes.

ORACLE

To use the masonrylLayout component:

1.

In the Component Palette, from the ADF Faces panel drag and drop a Masonry
Layout onto the page.

In the Property Inspector, expand the Other section.

By default, the layout will be dynamically sized to fit its container, based on the
size of the children. If you want a set number of columns, set a fixed width or
maximum width on the layout. If you want to limit the height of the layout, set a
fixed height or maximum height on the layout and enable scrolling to handle any
overflow.

From the Component Palette, drag and drop child components.

In the Property Inspector, with the child component selected, expand the Style
section and set StyleClass to determine how many columns and rows the tiles
should span. The available values that are supported by pre-defined style classes
are:

* AFMasonryTileSizelx1: 1 column by 1 row

e AFMasonryTileSizelx1l: 1 column by 2 rows

* AFMasonryTileSizelx3: 1 column by 3 rows

e AFMasonryTileSize2x2: 2 columns by 2 rows

* AFMasonryTileSize2x3:

1
1
1

* AFMasonryTileSize2x1: 2 columns by 1 row
2
2 columns by 3 rows
3

e AFMasonryTileSize3x1: 3 columns by 1 row

* AFMasonryTileSize3x2: 3 columns by 2 rows

Note: The masonrylLayout component recognizes tile size style class names for
spans up to and including 10x10. For tile sizes of span 3x3 and greater (up to
10x10 maximum), your application may define style classes for the desired span.
Instead of using pre-defined style classes, you can create style classes with the
naming pattern AFMasonryTi leSize<colSpan>x<rowSpan>, where colspan and
rowspan are the numbers indicating the respective spans in the layout grid. Ensure
that you define the style classes in your skinning style sheet if you are defining
your own style classes in addition to the pre-defined set. For example, the
following defines a 4x4 span tile size:

AFMasonryTileSize4x4 {

-tr-rule-ref: selector(".AFMasonryTileSizeBase:alias");
width: 728px;

9-31

ORACLE

6.

10.

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

height: 728px;

}

If you want users to be able to change the layout of the tiles, do the following:

a.

In the Component Palette, from the Operations panel, drag and drop a
Component Drag Source as a child to each of the child components that
render the tiles.

Create a managed bean and implement a handler method for each associated
layout change, such as insert, delete, and reorder. Once created, use the
Property Inspector to bind the corresponding listener property on the
masonrylLayout component to the method.

The reordering event is considered a drop event, so you must use the Drag
and Drop framework. The masonryLayout is the dropTarget, and will need to
use a dataFlavor tag to restrict the drop. For information about creating a
handler for a drop event, see About Drag and Drop Functionality. The
following page code shows the tags for drag and drop functionality. The child
panelBox components are handled by an iterator.

<af:masonryLayout binding="#{editor.component}" id="ml1"
reorderListener="#{demoMasonryLayout.handleBasicReorder}">
<af:dropTarget actions="MOVE"
dropListener="#{demoMasonryLayout.handleDrop}">
<af:dataFlavor flavorClass="javax.faces.component.UlComponent"
discriminant="masonryTile"/>
</af:dropTarget>
<af:iterator var="row" varStatus="stat"
value="#{demoMasonryLayout.basicData}" id="itl">
<af:panelBox i1d="pbl" text="#{row.symbol}"
showDisclosure=""false"
styleClass="#{row.symbol == "H" ?
"AFMasonryTileSize2x1" :

"AFMasonryTileSizelx1"}'">
<af:componentDragSource discriminant="masonryTile"/>
<af:outputText id="otl" value="#{row.name}"/>

</af:panelBox>
</af:iterator>
</af:masonrylLayout>

If you are not going to use the masonrylLayoutBehavior tag, then add components
to the page to initiate each of the layout changes. Bind their listener properties to
the handler methods created in Step 6. Skip the remaining steps.

If you wish to use a masonryLayoutBehavior tag, drag and drop a command
component that will be used to initiate the layout change.

In the Component Palette, from the ADF Faces panel, drag a Masonry Layout
Behavior tag and drop it as a child to each command component.

In the Property Inspector, enter the following:

for: Enter the ID for the associated masonrylLayout component

index: Enter an EL expression that resolves to a method that determines the
index at which the component will be inserted into the layout. When you use
the masonryLayoutBehavior tag, a placeholder element is inserted into the
DOM tree where the actual component will be rendered once it is returned

9-32

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

from the server. Because the insertion placeholder gets added before the
insertion occurs on the server, you must specify the location where you are
planning to insert the child component, and this location must be the same
location specified by your handler methods that do the actual change, in order
to preserve the context both before and after the change.

» operation: Enter the layout change as one of the following:
— insert (default)
— delete
— resize

The following page code shows links used with a masonryLayoutBehavior tag to
resize and delete tiles from the layout. Code for other layout changes would be
similar.

<af:link id="cil2" shortDesc="Expand" partialSubmit="true"
rendered="#{1row.expanded}" icon="/images/
field_groups_add_ena.png"
hoverlcon="/images/field_groups_add_ovr.png"
depressedlcon="/images/field_groups_add_dwn.png">
<af:setPropertyListener type="action" from="#{row.symbol}"
to="#{demoMasonrylLayout.currentSymbol}"/>
<af:masonrylLayoutBehavior operation="resize" for="mll"

sizeStyleClass="#{row.expandedSizeStyleClass}"/>
</af:link>
<af:link id="cil3" shortDesc="Collapse" partialSubmit="true"
rendered="#{row.expanded}" icon="/images/
field_groups_remove_ena.png"
hoverlcon="/images/field_groups_remove_ovr.png"
depressedlcon="/images/field_groups_remove_dwn.png'>
<af:setPropertyListener type="action" from="#{row.symbol}"
to="#{demoMasonrylLayout.currentSymbol}"/>
<af:masonrylLayoutBehavior operation="resize" for="mll"
sizeStyleClass="#{row.sizeStyleClass}"/>
</af:link>
<af:link id="cill" shortDesc="Delete" partialSubmit="true"
icon="/images/delete_ena.png"
hoverlcon="/images/delete_ovr._png"
depressedlcon="/images/delete_dwn.png'>
<af:setPropertyListener type="action" from="#{row.symbol}"
to="#{demoMasonrylLayout.currentSymbol}"/>
<af:masonrylLayoutBehavior for="mll" operation="delete"/>
</af:link>

Achieving Responsive Behavior Using matchMediaBehavior
Tag
Using the matchMediaBehavior tag you can create a responsive user interface. You

can control the alignment of almost every component in the screen to the available
viewport size.

ORACLE 9-33

ORACLE

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

The matchMediaBehavior tag is a declarative way to define properties for a component
for different @media rules. It uses the standard media queries and matches them with
the rules specified by each of the behavior tags. Once the rule matches, it applies the
property defined through the behavior tag on the component and refreshes the
component to display the intended change. If the media query does not match any
rules, a default value is used.

The three main attributes of the matchMediaBehavior tag are as follows:

* MatchedPropertyValue: The value that should be set in the property name when
there is a media match.

* MediaQuery: The media query on which the tag is listening on.

e PropertyName: The property that has to undergo a change during a media
operation.

" Note:

You can specify EL expressions for the MatchedPropertyValue and
MediaQuery attributes. In the Expression Builder dialog, you can directly type
the expression or select values from variables and operators to create an
expression. See How to Create an EL Expression.

The matchMediaBehavior tag enables you to create a responsive user interface where
components align themselves to the available width and height of the device. This
behavior can be added under layout components or components that are capable of
realigning on Partial Page Rendering (PPR). The matchMediaBehavior tag gives you
more control over component level attributes unlike masonryLayout component, which
deals with overall layout. The usage of matchMediaBehavior tag is explained in the
following example.

In the Figure 9-17 example, the content is displaying horizontally across the page
width.

9-34

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

Figure 9-17 matchMediaBehavior — Horizontal Layout

Resize the viewpart to see the behavior in aclion. Also this page can be viewed in any mobile or tablet to get a better picture

A panelList ihat resligns rews and columns to fit inte speropriate soeen size. The breskpoint is 788px in this case.

o ltem 1 o ltem2 *ltem 3 *ltem 4 + ltem &

A panelFarmLayout that resligns top ta fit into sppropriste soeen size. The breskpoint is TE8px in this case.
Inpuffext component 1 Enter some thing here
A Radio Option &)
Select Many ListBox [7] All
[E] optien 1
[[] optien 2

[E] optien 3

[C] optien 2

Inputfext component 2 Enter some thing here

Inputfext component 3 Enter some thing hers
A pansiGroupLayout that resligns vertically to fit into sppropriste soraen size. The braskpoint is 1024px in this case.

First Part of the Panel Group Layout Second Part of the Panel Group Layout

This will come on top in cese screen size goes below 1024px This will go down in cese sareen size goes below 1024px.

A panelGroupLayout that realigns vertically according to the screen orientation

orientation:Landscape - horizontal and for orientation:portrait - vertical. This can be tested with a device which supports orientation

B I u.i &= [T Amange ¥ menuButton v Go to Tag Guide page

&, Print Content = Show Attachment

In the Figure 9-18, the content is displayed vertically when the page is viewed in a
smaller screen area. In this case, the components under panelListLayout and
panelFormLayout realigns themselves vertically when the screen area is below 786
pixels and the components under panelGroupLayout realigns themselves vertically
when the screen area is below 1024 pixels.

ORACLE 9-35

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

Figure 9-18 matchMediaBehavior — Vertical Layout

Resize the viewport to see the behavior in action. Also this page can be viewed in any mobile or tablet to get a better picture

A panelList that realigns rows and columns to fit into appropriate screen size. The breakpoint is 768px in this case.

= ltem 1 * ltem 4
» ftem 2 * ftem S
® ftem 3

A panelFormLayout that realigns top to fit into appropriate screen size. The breakpoint is 768px in this caze.

InputText component 1

Enter some thing here.

A Radio Option

Select Many List Box

1 An

[T option 1

[T option 2

[option 3

[option 4
InputText component 2
Enter some thing here.

InputText component 3

Enter some thing here.

A panelGroupLayout that realigns vertically to fit into appropriate screen size. The breakpeint is 1024px in this caze.
First Part of the Panel Group Layout
Thiz wil come on top in caze screen size goes below 1024px.

Second Part of the Panel Group Layout

Thiz wil go down in case screen size goes below 1024px.

A panelGroupLayout that realigns vertically according to the screen orientati...

orientation:Landscape - horizontal and for orientation: portrait - vertical. This can be tested with a device which supports
origntation

nfg.ii

Arrange » menuButton v Go to Tag Guide page

.E,, Print Content = Show Attachment

The following code example describes the usage of matchMediaBehavior tag.

<af:outputText value="A panellList that realigns rows and columns to fit into
appropriate screen size.
The breakpoint is 768px in this case." id="ot2"/>
<af:panelList maxColumns="5" id="pl1" shortDesc="Links" rows="1"
inlineStyle="text-align:left;">
<af:matchMediaBehavior propertyName="maxColumns"
matchedPropertyVvalue="2"

ORACLE 9-36

ORACLE

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

mediaQuery="screen and (max-width: 768px)"/>
<af:matchMediaBehavior propertyName="rows" matchedPropertyValue="3"
mediaQuery="screen and (max-width: 768px)"/>
<af:commandLink id="link_id_1">ltem 1</af:commandLink>
<af:commandLink id="link_id_2">Item 2</af:commandLink>
<af:commandLink id="link_id_3">Item 3</af:commandLink>
<af:commandLink id="link_id_4">ltem 4</af:commandLink>
<af:commandLink id="link_id_5">Item 5</af:commandLink>
</af:panellList>
<af:outputText value="A panelFormLayout that realigns top to fit into appropriate
screen size.
The breakpoint is 768px in this case." id="ot3"/>
<af:panelFormLayout id="pfI1" clientComponent=""true"
labelAlignment="start">
<af:matchMediaBehavior propertyName="l1abelAlignment"
matchedPropertyValue="top"
mediaQuery="screen and (max-width: 768px)"/>
<af:inputText label="InputText component 1" placeholder="Enter some
thing here." id="1t0"/>
<af:selectBooleanRadio id="rb" group="rbGroup" shortDesc="shortDesc
text" label="A Radio Option"/>
<af:selectManyListbox id="rs" label="Select Many List Box"
shortDesc="Select Option">
<af:selectltem label="option 1" id="si5"/>
<af:selectltem label="option 2" id="si6"/>
<af:selectltem label="option 3" id="si7"/>
<af:selectltem label="option 4" id="si8"/>
</af:selectManyListbox>
<af:inputText label="InputText component 2" placeholder="Enter some
thing here." id="i1t1"/>
<af:inputText label="InputText component 3" placeholder="Enter some
thing here." id="1t2"/>
<f:facet name="footer"></f:facet>
</af:panelFormLayout>
<af:outputText value="A panelGroupLayout that realigns vertically to fit into
appropriate screen size.
The breakpoint is 1024px in this case." id="ot4"/>
<af:panelGroupLayout id="pgl5" clientComponent="true"
layout="horizontal">
<af:matchMediaBehavior propertyName="layout"
matchedPropertyVvalue="vertical"
mediaQuery="screen and (max-width: 1024px)"/>
<af:panelStretchLayout i1d="psl1" dimensionsFrom="children">
<f:facet name="center'">
<af:panelGroupLayout id="pgl3">
<af:panelHeader text="First Part of the Panel Group Layout"
id="ph7" headerLevel="6"></af:panelHeader>
<af:outputText value="This will come on top in case screen
size goes below 1024px." id="ot5"/>
</af:panelGroupLayout>

The following code example describes the usage of matchMediaBehavior tag for
listView. The matchMediaBehavior component works with the fetchSize property of
the listView component only if listView includes both fetchSize and rows attributes.

<af:listView var="item" emptyText="empty" fetchSize="7" rows="7" id="1v1"
value="#{mybean.mapEntries}">

<af:matchMediaBehavior matchedPropertyValue="4" propertyName="rows"
mediaQuery="screen and (max-height: 500px)"/>

<af:matchMediaBehavior matchedPropertyValue="4" propertyName="fetchSize"
mediaQuery="screen and (max-height: 500px)"/>

9-37

Chapter 9
Arranging Contents to Stretch Across a Page

<af:matchMediaBehavior matchedPropertyValue="7" propertyName="rows"
mediaQuery="screen and (min-height: 500px)"/>
<af:matchMediaBehavior matchedPropertyValue="7" propertyName="fetchSize"
mediaQuery="screen and (min-height: 500px)"/>
<af:listltem id="1i1">
<af:panelGroupLayout layout="horizontal" id="pgl2">
<af:outputFormatted value="#{item.key}" id="ofl1"/>
<af:spacer width="10" height="10" id="s1"/>
<af:outputFormatted value="#{item.value}" id="of2"/>
</af:panelGroupLayout>
</af:listltem>
</af:listView>

Arranging Contents to Stretch Across a Page

ORACLE

The ADF Faces panelStretchLayout component stretch the components placed within
its facets. If you want to stretch the contents when the browser is resized, you can use
this component.

Use the panelStretchLayout component to arrange content in defined areas on a
page and when you want the content to be able to stretch when the browser is resized.
The panelStretchLayout component is one of the components that can stretch
components placed in its facets. Figure 9-19 shows the component's facets: top,
bottom, start, end, and center.

Figure 9-19 Facets in the panelStretchLayout Component

Top

Start Center End

Bottom

" Note:

Figure 9-19 shows the facets when the language reading direction of the
application is configured to be left-to-right. If instead the language direction is
right-to-left, the start and end facets are switched.

When you set the height of the top and bottom facets, any contained components are
stretched up to fit the height. Similarly, when you set the width of the start and end
facets, any components contained in those facets are stretched to that width. If no
components are placed in the facets, then that facet does not render. That is, that
facet will not take up any space. If you want that facet to take up the set space but
remain blank, insert a spacer component. See Separating Content Using Blank Space

9-38

Chapter 9
Arranging Contents to Stretch Across a Page

or Lines. Child Components components in the center facet are then stretched to fill
up any remaining space. For information about component stretching, see Geometry
Management and Component Stretching.

Instead of setting the height of the top or bottom facet, or width of the start or end facet
to a dimension, you can set the height or width to auto. This allows the facet to size
itself to use exactly the space required by the child components of the facet. Space will
be allocated based on what the web browser determines is the required amount of
space to display the facet content.

¢ Performance Tip:

Using auto as a value will degrade performance of your page. You should
first attempt to set a height or width and use the auto attribute sparingly.

The File Explorer application uses a panelStretchLayout component as the root
component in the template. Child components are placed only in the center and
bottom facets. Therefore, whatever is in the center facet stretches the full width of the
window, and from the top of the window to the top of the bottom facet, whose height is
determined by the bottomHeight attribute. The following example shows abbreviated
code from the fileExplorerTemplate file.

<af:panelStretchLayout
bottomHeight="#{attrs.footerGlobalSize}">
<f:facet name="center">
<af:panelSplitter orientation="vertical"” ...>

</af:panelSplitter

</f:facet>

<f:facet name="bottom">
<af:panelGroupLayout layout="vertical">

</af:panelGroupLayout>
</f:facet>
</af:panelStretchLayout>

The template uses an EL expression to determine the value of the bottomHeight
attribute. This expression resolves to the value of the footerGlobalSize attribute
defined in the template, which by default is 0. Any page that uses the template can
override this value. For example, the index. jspx page uses this template and sets the
value to 30. Therefore, when the File Explorer application renders, the contents in the
panelStretchLayout component begin 30 pixels from the bottom of the page.

How to Use the panelStretchLayout Component

ORACLE

The panelStretchLayout component cannot have any direct child components.
Instead, you place components within its facets. The panelStretchLayout is one of
the components that can be configured to stretch any components in its facets to fit
the browser. You can nest panelStretchLayout components. See Nesting
Components Inside Components That Allow Stretching.

9-39

ORACLE

Chapter 9
Arranging Contents to Stretch Across a Page

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Contents to Stretch Across a Page.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelStretchLayout component:

1.

In the Components window, from the Layout panel, drag and drop a Panel Stretch
Layout onto the JSF page.

In the Properties window, expand the Common section and set the attributes as
needed.

When there are child components in the top, bottom, start, and end facets, these
components occupy space that is defined by the topHeight, bottomHeight,
startWidth, and endWidth attributes. For example, topHeight attribute specifies
the height of the top facet, and startWidth attribute specifies the width of the
start facet. Child components in top and bottom facets are stretched up to the
height set by topHeight and bottomHeight attributes, respectively, and child
components in start and end facets are stretched up to the width set by
startWidth and endWidth attributes, respectively. Instead of setting a numeric
dimension, you can set the topHeight, bottomHeight, startWidth and endWidth
attributes to auto and the browser will determine the amount of space required to
display the content in the facets.

" Note:

If you set a facet to use auto as a value for the width or height of that
facet, the child component does not have to be able to stretch. In fact, it
must use a stable, standalone width that is not dependent upon the width
of the facet.

For example, you should not use auto on a facet whose child component
can stretch their children automatically. These components have their
own built-in stretched widths by default which will then cause them to
report an unstable offsetWidth value, which is used by the browser to
determine the amount of space.

Additionally, you should not use auto in conjunction with a child
component that uses a percentage length for its width. The facet content
cannot rely on percentage widths or be any component that would
naturally consume the entire width of its surrounding container.

If you do not explicitly specify a value, by default, the value for the topHeight,
bottomHeight, startWidth, and endWidth attributes is 50 pixels each. The widths
of the top and bottom facets, and the heights of the start and end facets are
derived from the width and height of the parent component of
panelStretchLayout.

9-40

ORACLE

Chapter 9
Arranging Contents to Stretch Across a Page

Tip:

If a facet does not contain a child component, it is not rendered and
therefore does not take up any space. You must place a child
component into a facet in order for that facet to occupy the configured
space.

The panelStretchLayout component can be configured to stretch to fill available
browser space, or if you want to place the panelStretchLayout component inside
a component that does not stretch its children, you can configure the
panelStretchLayout component to not stretch.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Set DimensionsFrom to one of the following:

» children: Instead of stretching, the panelStretchLayout component will get
its dimensions from its child component.

< Note:

If you use this setting, you cannot use a percentage to set the height
of the top and bottom facets. If you do, those facets will try to get
their dimensions from the size of this panelStretchLayout
component, which will not be possible, as the panelStretchLayout
component will be getting its height from its contents, resulting in a
circular dependency If a percentage is used for either facet, it will be
disregarded and the default 50px will be used instead.

Additionally, you cannot set the height of the panelStretchLayout
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelStretchLayout height and the child component
height.

9-41

Chapter 9
Arranging Contents to Stretch Across a Page

» parent: the size of the panelStretchLayout component will be determined in
the following order:

— From the inlineStyle attribute.

— If no value exists for inlineStyle, then the size is determined by the
parent container (that is, the panelStretchLayout component will stretch).

— If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

e auto: If the parent component to the panelStretchLayout component allows
stretching of its child, then the panelStretchLayout component will stretch to
fill the parent. If the parent does not stretch its children then the size of the
panelStretchLayout component will be based on the size of its child
component.

To place content in the component, drag and drop the desired component into any
of the facets. If you want the child component to stretch, it must be a component
that supports being stretched. See What You May Need to Know About Geometry
Management and the panelStretchLayout Component.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a
container, such as a panelGrouplLayout or group component. Facets on a Facelets
page can accept more than one component. Child components must also be able
to be stretched in order for all contained components to stretch.

Tip:
If any facet is not visible in the visual editor:

a. Right-click the panelStretchLayout component in the Structure
window.

b. From the context menu, choose Facets - Panel Stretch Layout
>facet name. Facets in use on the page are indicated by a
checkmark in front of the facet name.

What You May Need to Know About Geometry Management and the
panelStretchLayout Component

ORACLE

The panelStretchLayout component can stretch its child components and it can also
be stretched. The following components can be stretched inside the facets of the
panelStretchLayout component:

decorativeBox (when configured to stretch)
deck

calendar

inputText (when configured to stretch)
panelAccordion (when configured to stretch)
panelBox (when configured to stretch)

panelCollection

9-42

Chapter 9
Using Splitters to Create Resizable Panes

» panelDashboard (when configured to stretch)

e panelGroupLayout (only with the layout attribute set to scroll or vertical)
» panelHeader (when configured to stretch)

« panelSplitter (when configured to stretch)

» panelStretchLayout (when configured to stretch)
» panelTabbed (when configured to stretch)

° region

* showDetai IHeader (when configured to stretch)

e table (when configured to stretch)

» tree (when configured to stretch)

* treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelStretchLayout component:

e panelBorderLayout

e panelFormLayout

« panelGroupLayout (only with the layout attribute set to default or horizontal)
» panellLabelAndMessage

e panellList

e showDetail

* tablelLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place a component that
cannot be stretched into a facet of the panelStretchLayout component, wrap that
component in a transition component that can stretch.

For example, if you want to place content in a panelBox component (configured to not
stretch) within a facet of the panelStretchLayout component, you could place a
panelGroupLayout component with its layout attribute set to scroll in a facet of the
panelStretchLayout component, and then place the panelBox component in that
panelGroupLayout component. See Nesting Components Inside Components That
Allow Stretching.

Using Splitters to Create Resizable Panes

ORACLE

Using the ADF Faces panelSplitter component, you can display the content in multiple
panes. This component stretches itself and also its child components. When a panel is
collapsed, the content in the other panel is automatically resized.

When you have groups of unique content to present to users, consider using the
panelSplitter component to provide multiple panes separated by adjustable splitters.
The ADF Faces Components Demo application uses a panelSplitter to separate the
component demo area from the editor area, as shown in Figure 9-20. Users can
change the size of the panes by dragging the splitter, and can also collapse and
restore the panel that displays the editor. When a panel is collapsed, the panel
contents are hidden; when a panel is restored, the contents are displayed.

9-43

ORACLE

Chapter 9
Using Splitters to Create Resizable Panes

Figure 9-20 ADF Faces Components Demo Application Uses panelSplitter to
Separate Contents

Eile = Edit = View v Help «

narkable Link

Current Location: [QlEZ 281

1 2 Folders A Table | [F Tree Table | = List
] My Files

View v AiDetach
[Foldero e

[Mame Size (KB) Type Date Modified Properties
Bx FU or : [w] File1.doc 10 Document File 09/07/2012 7:04PM Proper ties
3 Folder File Lhtml 10 HTML File 09/07/2012 7:04PM Properties
[T Foldera File 1.pdf 10 PDF File 09/07/2012 7:04 PM Properties
[Folders Filel.xls 10 XLS File 09/07/2012 7:04 PM Properties
[Folders
3 Folder?
[3 Folders
[Folders q B
» [Folder10
> £ Folder11
> [Folder12
» £ Folder13
» £ Folder14
> [Folder1s
» £ Folder1s
» [Folder17
» [Folder1s 4 I 3
» £ Folder1s
»» @ Search

The panelSplitter component lets you organize contents into two panes separated
by an adjustable splitter. The panes can either line up on a horizontal line (as does the
splitter shown in Figure 9-20) or on a vertical line. The ADF Faces Components Demo
application uses another panelSplitter component to separate the application's
global menu from the main body of the page. Figure 9-21 shows the panelSplitter
component expanded to show the menu, which includes access to the documentation
and source.

Figure 9-21 panelSplitter with a Vertical Split Expanded

File Explorer

on the splitte

0 Table (5] TreeTable = List

View» [fiDetach
MName Size (KB) Type Properties
[w] File 1.doc 10 Document File 09/07/2012 7:04PM Propertes
[@) Fie1.html 10 HTML File 09/07/2012 7:04PM Properties
[5] File 1.pdf 10 POF File 09/07/2012 7:04PM Properties
iﬂ File1.xds 10 XLS File 09/07/2012 7:04PM Properties

Clicking the arrow button on a splitter collapses the panel that holds the global menu,
and the menu items are no longer shown, as shown in Figure 9-22.

9-44

Chapter 9
Using Splitters to Create Resizable Panes

Figure 9-22 panelSplitter with a Vertical Split Collapsed

Amow button
Fle v Edtw View~ Helpw on the splitter

[N W N ichoemo | v | Refresh i EEg | o Bookmarkable Link

(o, C I LLE My Files'\Folder 1

B0 Table i3] Tree Table

View v [Detach
Name Size (KB) Type Date Modified Properties
[w] File1.doc 10 Document File 09/07/2012 7:04 PM Properties
@ File1.html 10 HTML Fie 09/07/2012 7:04PM Properties
TIEI File 1.pdf 10 POF File 09/07/2012 7:04PM Properties
2] File 1.5ds 10 XLS File 09/07/2012 7:04PM Properties

5

[Folder 18
(23 Folder19
(23 Folder20

@8 Search

You place components inside the facets of the panelSplitter component. The
panelSplitter component uses geometry management to stretch its child
components at runtime. This means when the user collapses one panel, the contents
in the other panel are explicitly resized to fill up available space.

Note:

While the user can change the values of the splitterPosition and

col lapsed attributes by resizing or collapsing the panes, those values will
not be retained once the user leaves the page unless you configure your
application to use change persistence. For information about enabling and
using change persistence, see Allowing User Customization on JSF Pages.

How to Use the panelSplitter Component

ORACLE

The panelSplitter component lets you create two panes separated by a splitter.
Each splitter component has two facets, namely, first and second, which correspond
to the first panel and second panel, respectively. Child components can reside inside
the facets only. To create more than two panes, you nest the panelSplitter
components.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Splitters to Create Resizable Panes.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelSplitter component:

9-45

ORACLE

Chapter 9
Using Splitters to Create Resizable Panes

In the Components window, from the Layout panel, drag and drop a Panel Splitter
onto the JSF page.

In the Properties window, expand the Common section.

Set Orientation to vertical to create two vertical panes (one on top of the other).
By default, the value is horizontal, which means horizontal panes are placed left-
to-right (or right-to-left, depending on the language reading direction).

Set SplitterPosition and PositionedFromEnd to determine the initial placement
of the splitter. By default, the value of the splitterPosition attribute is 200
pixels, and the positionedFromend attribute is false. This setting means that ADF
Faces measures the initial position of the adjustable splitter from the start or top
panel (depending on the orientation attribute value). For example, if the
orientation attribute is set to horizontal, the splitterPosition attribute is 200
and the positionedFromend attribute is false (all default values), then ADF Faces
places the splitter 200 pixels from the start panel, as shown in Figure 9-23.

Figure 9-23 Splitter Position Measured from Start Panel

First facet Second Facet

If the positionedFromEnd attribute is set to true, then ADF Faces measures the
initial position of the splitter from the end (or bottom panel, depending on the
orientation value). Figure 9-24 shows the position of the splitter measured 200
pixels from the end panel.

Figure 9-24 Splitter Position Measured from End Panel

First facet Second Facet

»
I

Set collapsed to determine whether or not the splitter is in a collapsed (hidden)
state. By default, the col lapsed attribute is false, which means both panes are

9-46

ORACLE

Chapter 9
Using Splitters to Create Resizable Panes

displayed. When the user clicks the arrow button on the splitter, the col lapsed
attribute is set to true and one of the panes is hidden.

ADF Faces uses the collapsed and positionedFromEnd attributes to determine
which panel (that is, the first or second panel) to hide (collapse) when the user
clicks the arrow button on the splitter. When the col lapsed attribute is set to true
and the positionedFromend attribute is false, the first panel is hidden and the
second panel stretches to fill up the available space. When the col lapsed attribute
is true and the positionedFromend attribute is true, the second panel is hidden
instead. Visually, the user can know which panel will be collapsed by looking at the
direction of the arrow on the button: when the user clicks the arrow button on the
splitter, the panel collapses in the direction of the arrow.

By default, the panelSplitter component stretches to fill available browser space.
If you want to place the panelSplitter into a component that does not stretch its
children, then you need to change how the panelSplitter component handles
stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

In the Properties window, set DimensionsFrom to one of the following:

« children: Instead of stretching, the panelSplitter component will get its
dimensions from its child component.

9-47

Chapter 9
Using Splitters to Create Resizable Panes

< Note:

If you use this setting and you set the orientation attribute to
vertical, then the contents of the collapsible panel will not be
determined by its child component, but instead will be determined by
the value of splitterPosition attribute. The size of the other pane
will be determined by its child component.

Additionally, you cannot set the height of the panelSplitter
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelSplitter height and the child component height.

e parent: The size of the panelSplitter component will be determined in the
following order:

— From the inlineStyle attribute.

— If no value exists for inlineStyle, then the size is determined by the
parent container.

— If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

e auto: If the parent component to the panelSplitter component allows
stretching of its child, then the panelSplitter component will stretch to fill the
parent. If the parent does not stretch its children then the size of the
panelSplitter component will be based on the size of its child component.

7. To place content in the component, drag and drop the desired component into the
first and second facets. When you have the orientation set to horizontal, the
first facet is the left facet. When you have the orientation set to vertical, the
first facet is the top facet. If you want the child component to stretch, it must be a
component that supports stretching. See What You May Need to Know About
Geometry Management and the panelSplitter Component.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a
container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

Tip:
If any facet is not visible in the visual editor:
a. Right-click the panelSplitter component in the Structure window.

b. From the context menu, choose Facets - Panel Splitter >facet
name. Facets in use on the page are indicated by a checkmark in
front of the facet name.

8. To create more than two panes, insert another Panel Splitter component into a
facet to create nested splitter panes, as shown in Figure 9-25.

ORACLE 9-48

Chapter 9
Using Splitters to Create Resizable Panes

Figure 9-25 Nested panelSplitter Components

outpUtTextl outpUtText2

outputText3

The following example shows the code generated by JDeveloper when you nest
splitter components.

<af:panelSplitter ...>
<f:facet name="first">
<I-- first panel child components components here -->
</f:facet>
<f:facet name="second">
<I-- Contains nested splitter component -->
<af:panelSplitter orientation="vertical"” ...>
<f:facet name="first">
<I-- first panel child components components here -->
</f:facet>
<f:facet name="second">
<I1-- second panel child components components here -->
</f:facet>
</af:panelSplitter>
</f:facet>
</af:panelSplitter>

9. If you want to perform some operation when users collapse or expand a panel,
attach a client-side JavaScript using the clientListener tag for the collapsed
attribute and a propertyChange event type. For information about client-side
events, see Handling Events.

What You May Need to Know About Geometry Management and the
panelSplitter Component

The panelSplitter component can stretch its child components and it can also be
stretched. The following components can be stretched inside the first or second facet
of the panelSplitter component:

e decorativeBox (when configured to stretch)

e deck

« calendar

e inputText (when configured to stretch)

e panelAccordion (when configured to stretch)

» panelBox (when configured to stretch)

ORACLE 9-49

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

» panelCollection (when configured to stretch)

e panelDashboard (when configured to stretch)

» panelGroupLayout (only with the Tayout attribute set to scroll or vertical)
» panelHeader (when configured to stretch)

« panelSplitter (when configured to stretch)

» panelStretchLayout (when configured to stretch)
e panelTabbed (when configured to stretch)

* region

« showDetai lHeader (when configured to stretch)

» table (when configured to stretch)

* tree (when configured to stretch)

e treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelSplitter component:

* panelBorderLayout

e panelFormLayout

« panelGroupLayout (only with the layout attribute set to default or horizontal)
e panelLabelAndMessage

e panelList

* showDetail

e tablelLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched into a facet of the panelSplitter component, wrap that
component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow
within a facet of the panelSplitter component, you could place a panelGroupLayout
component with its layout attribute set to scroll in a facet of the panelSplitter
component, and then place the panelBox component in that panelGroupLayout
component. See Nesting Components Inside Components That Allow Stretching.

Arranging Page Contents in Predefined Fixed Areas

ORACLE

Using the ADF Faces panelBorderLayout component, you can arrange the content in
fixed areas. This component does not stretch even if it is placed in a component that
stretches its child components.

The panelBorderLayout component uses facets to contain components in predefined
areas of a page. Instead of a center facet, the panelBorder layout component takes 0
to n direct child components (also known as indexed children), which are rendered
consecutively in the center. The facets then surround the child components.

Figure 9-26 shows the facets of the panelBorderLayout component: top, inner top,
bottom, inner bottom, start, inner start, end, and inner end.

9-50

ORACLE

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

Figure 9-26 Facets in panelBorderLayout

Top
Inner Top
Left/ 'nget; Direct é”lgﬁ{ | Right/
Start Start Child End End
Inner Bottom

Bottom

The 12 supported facets of the panelBorderLayout component are:

top: Renders child components above the center area.
bottom: Renders child components below the center area.

start: Supports multiple reading directions. This facet renders child components
on the left of the center area between top and bottom facet child components, if
the reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the right of the center area. When your
application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

end: Supports multiple reading directions. This facet renders child components on
the right of the center area between top and bottom facet child components, if the
reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the left of the center area. When your
application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

left: Supports only one reading direction. This facet renders child components on
the left of the center area between top and bottom facet child components. When
the reading direction is left-to-right, the left facet has precedence over the start
facet if both the left and start facets are used (that is, contents in the start
facet will not be displayed). If the reading direction is right-to-left, the left facet
also has precedence over the end facet if both left and end facets are used.

right: Supports only one reading direction. This facet renders child components
on the right of the center area between top and bottom facet child components. If
the reading direction is left-to-right, the right facet has precedence over the end
facet if both right and end facets are used. If the reading direction is right-to-left,
the right facet also has precedence over the start facet, if both right and start
facets are used.

innerTop: Renders child components above the center area but below the top
facet child components.

9-51

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

* 1nnerBottom: Renders child components below the center area but above the
bottom facet child components.

» innerLeft: Renders child components similar to the left facet, but renders
between the innerTop and innerBottom facets, and between the left facet and
the center area.

e innerRight: Renders child components similar to the right facet, but renders
between the innerTop facet and the innerBottom facet, and between the right
facet and the center area.

e innerStart: Renders child components similar to the innerLeft facet, if the
reading direction is left-to-right. Renders child components similar to the
innerRight facet, if the reading direction is right-to-left.

e innerEnd: Renders child components similar to the innerRight facet, if the
reading direction is left-to-right. Renders child components similar to the
innerLeft facet, if the reading direction is right-to-left.

The panelBorderLayout component does not support stretching its child components,
nor does it stretch when placed in a component that stretches its child components.
Therefore, the size of each facet is determined by the size of the component it
contains. If instead you want the contents to stretch to fill the browser window,
consider using the panelStretchLayout component instead. See Arranging Contents
to Stretch Across a Page.

How to Use the panelBorderLayout Component to Arrange Page
Contents in Predefined Fixed Areas

ORACLE

There is no restriction to the number of panelBorderLayout components you can have
on a JSF page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Page Contents in Predefined Fixed Areas.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelBorderLayout component:

1. Inthe Components window, from the Layout panel, drag and drop a Panel Border
Layout onto the JSF page.

2. From the Components window, drag and drop the component that will be used to
display contents in the center of the window as a child component to the
panelBorderLayout component.

Child components are displayed consecutively in the order in which you inserted
them. If you want some other type of layout for the child components, wrap the
components inside the panelGroupLayout component. See Grouping Related
Items.

3. To place contents that will surround the center, drag and drop the desired
component into each of the facets.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a

9-52

Chapter 9
Arranging Content in Forms

container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

Tip:
If any facet is not visible in the visual editor:

a