
Oracle® Fusion Middleware
Developing Web User Interfaces with Oracle
ADF Faces

12c (12.2.1.4.0)
E80056-01
September 2019

Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces, 12c (12.2.1.4.0)

E80056-01

Copyright © 2008, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Robin Whitmore (lead), Kathryn Munn, Cindy Hall, Walter Egan, Ralph Gordon, Vaibhav
Gupta, Krithika Gangadhar, Sandhya Hombardi, Sandhya Sriram

Contributors: ADF Faces development team, Frank Nimphius, Laura Akel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxix

Documentation Accessibility xxxix

Related Documents xxxix

Conventions xl

Part I Getting Started with ADF Faces

1 Introduction to ADF Faces

About ADF Faces 1-1

ADF Faces Framework 1-2

ADF Faces Components 1-4

2 ADF Faces Components Demo Application

About the ADF Faces Components Demo Application 2-1

Downloading and Installing the ADF Faces Components Demo Application 2-9

3 Getting Started with ADF Faces and JDeveloper

About Developing Declaratively in JDeveloper 3-1

Creating an Application Workspace 3-2

How to Create an ADF Faces Application Workspace 3-2

What Happens When You Create an Application Workspace 3-3

Defining Page Flows 3-4

How to Define a Page Flow 3-5

What Happens When You Use the Diagrammer to Create a Page Flow 3-6

Creating a View Page 3-7

How to Create JSF Pages 3-10

What Happens When You Create a JSF Page 3-10

What You May Need to Know About Updating Your Application to Use the
Facelets Engine 3-15

iii

What You May Need to Know About Automatic Component Binding 3-16

How to Add ADF Faces Components to JSF Pages 3-20

What Happens When You Add Components to a Page 3-23

How to Set Component Attributes 3-24

What Happens When You Use the Properties window 3-26

Creating EL Expressions 3-26

How to Create an EL Expression 3-27

How to Use the EL Format Tags 3-29

How to Use EL Expressions Within Managed Beans 3-30

Creating and Using Managed Beans 3-31

How to Create a Managed Bean in JDeveloper 3-31

What Happens When You Use JDeveloper to Create a Managed Bean 3-33

What You May Need to Know About Component Bindings and Managed Beans 3-34

Viewing ADF Faces Javadoc 3-35

How to View ADF Faces Source Code and Javadoc 3-35

Part II Understanding ADF Faces Architecture

4 Using ADF Faces Client-Side Architecture

About Using ADF Faces Architecture 4-1

Adding JavaScript to a Page 4-3

How to Use Inline JavaScript 4-3

How to Import JavaScript Libraries 4-4

What You May Need to Know About Accessing Client Event Sources 4-5

Instantiating Client-Side Components 4-5

How to Configure a Component to for a Client-Side Instance 4-5

What Happens When You Set clientComponent to true 4-6

Listening for Client Events 4-7

How to Listen for Client Events 4-7

How to Use an ADF Client Listener to Control Navigating Away From a JSF
Page 4-8

Accessing Component Properties on the Client 4-9

Secure Client Properties 4-10

How to Set Property Values on the Client 4-13

What Happens at Runtime: How Client Properties Are Set on the Client 4-14

How to Unsecure the disabled Property 4-14

How to “Unsynchronize" Client and Server Property Values 4-15

Using Bonus Attributes for Client-Side Components 4-18

How to Create Bonus Attributes 4-18

What You May Need to Know About Marshalling Bonus Attributes 4-19

iv

Understanding Rendering and Visibility 4-19

How to Set Visibility Using JavaScript 4-20

What You May Need to Know About Visible and the isShowing Function 4-22

Locating a Client Component on a Page 4-22

What You May Need to Know About Finding Components in Naming Containers
4-23

JavaScript Library Partitioning 4-24

How to Create JavaScript Partitions 4-25

What Happens at Runtime: JavaScript Partitioning 4-26

5 Using the JSF Lifecycle with ADF Faces

About Using the JSF Lifecycle and ADF Faces 5-1

Using the Immediate Attribute 5-4

How to Use the Immediate Attribute 5-8

Using the Optimized Lifecycle 5-8

Using the Client-Side Lifecycle 5-9

Using Subforms to Create Sections on a Page 5-10

Object Scope Lifecycles 5-11

Passing Values Between Pages 5-13

How to Use the pageFlowScope Scope Within Java Code 5-14

How to Use the pageFlowScope Scope Without Writing Java Code 5-15

What Happens at Runtime: How Values Are Passed 5-16

6 Handling Events

About Events and Event Handling 6-1

Events and Partial Page Rendering 6-2

Event and Even Root Components 6-3

Client-Side Event Model 6-4

Using ADF Faces Server Events 6-4

How to Handle Server-Side Events 6-6

Using JavaScript for ADF Faces Client Events 6-7

ADF Faces Client-Side Events 6-9

How to Use Client-Side Events 6-11

How to Return the Original Source of the Event 6-13

How to Use Client-Side Attributes for an Event 6-14

How to Block UI Input During Event Execution 6-15

How to Prevent Events from Propagating to the Server 6-15

How to Indicate No Response is Expected 6-16

What Happens at Runtime: How Client-Side Events Work 6-16

What You May Need to Know About Using Naming Containers 6-17

v

Sending Custom Events from the Client to the Server 6-17

How to Send Custom Events from the Client to the Server 6-18

What Happens at Runtime: How Client and Server Listeners Work Together 6-20

What You May Need to Know About Marshalling and Unmarshalling Data 6-20

Mapping Java to JavaScript 6-21

Executing a Script Within an Event Response 6-21

Using ADF Faces Client Behavior Tags 6-23

How to Use the scrollComponentIntoViewBehavior Tag 6-24

Using Polling Events to Update Pages 6-25

How to Use the Poll Component 6-26

7 Validating and Converting Input

About ADF Faces Converters and Validators 7-1

ADF Faces Converters and Validators Use Cases and Examples 7-2

Additional Functionality for ADF Faces Converters and Validators 7-2

Conversion, Validation, and the JSF Lifecycle 7-2

Adding Conversion 7-3

How to Add a Converter 7-4

How to Specify Multiple Converter Patterns 7-5

How to Specify Negative Numbers for Converters 7-6

What Happens at Runtime: How Converters Work 7-6

What You May Need to Know About Number Converters 7-6

What You May Need to Know About Date Time Converters 7-7

Creating Custom ADF Faces Converters 7-9

How to Create a Custom ADF Faces Converter 7-9

Implement Server-Side (Java) Conversion 7-9

Register ADF Faces Converter in faces-config.xml 7-10

Create a Client-Side Version of the Converter 7-10

Modify the Server Converter to Enable Client Conversion 7-11

Using Custom ADF Faces Converter on a JSF Page 7-14

What You May Need to Know About Custom ADF Faces Converters 7-14

How to Declaratively Register a Client-Side Only Converter Script 7-15

Adding Validation 7-17

How to Add Validation 7-18

Using Validation Attributes 7-18

Using ADF Faces Validators 7-18

What Happens at Runtime: How Validators Work 7-20

What You May Need to Know About Multiple Validators 7-21

Creating Custom JSF Validation 7-21

How to Create a Backing Bean Validation Method 7-21

vi

What Happens When You Create a Backing Bean Validation Method 7-22

How to Create a Custom JSF Validator 7-22

What Happens When You Use a Custom JSF Validator 7-24

8 Rerendering Partial Page Content

About Partial Page Rendering 8-1

Using Partial Triggers 8-4

How to Use Partial Triggers 8-6

What You May Need to Know About Using the Browser Back Button 8-8

What You May Need to Know About PPR and Screen Readers 8-9

Using the Target Tag to Execute PPR 8-9

How to Use the Target Tag to Enable Partial Page Rendering 8-10

Enabling Partial Page Rendering Programmatically 8-13

How to Enable Partial Page Rendering Programmatically 8-13

Using Partial Page Navigation 8-14

How to Use Partial Page Navigation 8-15

What You May Need to Know About PPR Navigation 8-15

Using a Streaming Component to Allow Page Loading 8-16

How to Implement an Instance of AsyncFetch to Fetch Streaming Data 8-16

How to Create a Streaming Component 8-17

Part III Creating Your Layout

9 Organizing Content on Web Pages

About Organizing Content on Web Pages 9-1

ADF Faces Layout Components 9-2

Additional Functionality for Layout Components 9-6

Starting to Lay Out a Page 9-6

Geometry Management and Component Stretching 9-7

Nesting Components Inside Components That Allow Stretching 9-9

Using Quick Start Layouts 9-12

Tips for Using Geometry-Managed Components 9-13

How to Configure the document Tag 9-14

Arranging Content in a Grid 9-17

How to Use the panelGridLayout, gridRow, and gridCell Components to Create
a Grid-Based Layout 9-20

What You May Need to Know About Geometry Management and the
panelGridLayout Component 9-24

What You May Need to Know About Determining the Structure of Your Grid 9-25

vii

What You May Need to Know About Determining Which Layout Component to
Use 9-27

Displaying Contents in a Dynamic Grid Using a masonryLayout Component 9-28

How to Use a masonryLayout Component 9-31

Achieving Responsive Behavior Using matchMediaBehavior Tag 9-33

Arranging Contents to Stretch Across a Page 9-38

How to Use the panelStretchLayout Component 9-39

What You May Need to Know About Geometry Management and the
panelStretchLayout Component 9-42

Using Splitters to Create Resizable Panes 9-43

How to Use the panelSplitter Component 9-45

What You May Need to Know About Geometry Management and the
panelSplitter Component 9-49

Arranging Page Contents in Predefined Fixed Areas 9-50

How to Use the panelBorderLayout Component to Arrange Page Contents in
Predefined Fixed Areas 9-52

Arranging Content in Forms 9-53

How to Use the panelFormLayout Component 9-55

What You May Need to Know About Responsive Mode in the panelFormLayout
Component 9-59

What You May Need to Know About Using the group Component with the
panelFormLayout Component 9-61

Arranging Contents in a Dashboard 9-64

How to Use the panelDashboard Component 9-68

What You May Need to Know About Geometry Management and the
panelDashboard Component 9-71

Displaying and Hiding Contents Dynamically 9-72

How to Use the showDetail Component 9-78

How to Use the showDetailHeader Component 9-80

How to Use the panelBox Component 9-84

What You May Need to Know About Disclosure Events 9-86

What You May Need to Know About Skinning and the showDetail Component 9-87

What You May Need to Know About Skinning and the showDetailHeader
Component 9-88

What You May Need to Know About Skinning and the panelBox Component 9-88

Displaying or Hiding Contents in Panels 9-88

How to Use the panelAccordion Component 9-96

How to Use the panelTabbed Component 9-99

How to Use the panelDrawer Component 9-102

How to Use the panelSpringboard Component 9-104

What You May Need to Know About Switching Between Grid and Strip Mode 9-105

How to Use the showDetailItem Component to Display Content 9-105

viii

What You May Need to Know About Geometry Management and the
showDetailItem Component 9-110

What You May Need to Know About showDetailItem Disclosure Events 9-112

What You May Need to Know About Skinning and the panelTabbed Component 9-113

Adding a Transition Between Components 9-116

How to Use the Deck Component 9-117

What You May Need to Know About Geometry Management and the deck
Component 9-119

Displaying Items in a Static Box 9-120

How to Use the panelHeader Component 9-122

How to Use the decorativeBox Component 9-126

What You May Need to Know About Geometry Management and the
decorativeBox Component 9-127

What You May Need to Know About Skinning and the panelHeader Component 9-128

What You May Need to Know About Skinning and the decorativeBox
Component 9-128

Displaying a Bulleted List in One or More Columns 9-129

How to Use the panelList Component 9-130

What You May Need to Know About Creating a List Hierarchy 9-131

Grouping Related Items 9-132

How to Use the panelGroupLayout Component 9-135

What You May Need to Know About Geometry Management and the
panelGroupLayout Component 9-137

Separating Content Using Blank Space or Lines 9-137

How to Use the spacer Component 9-139

How to Use the Separator Component 9-139

10

Creating and Reusing Fragments, Page Templates, and
Components

About Reusable Content 10-1

Reusable Components Use Cases and Examples 10-3

Additional Functionality for Reusable Components 10-4

Using Page Templates 10-4

How to Create a Page Template 10-9

What Happens When You Create a Page Template 10-14

How to Create JSF Pages Based on Page Templates 10-14

What Happens When You Use a Template to Create a Page 10-17

What Happens at Runtime: How Page Templates Are Resolved 10-17

What You May Need to Know About Page Templates and Naming Containers 10-18

Using Page Fragments 10-18

How to Create a Page Fragment 10-21

ix

What Happens When You Create a Page Fragment 10-22

How to Use a Page Fragment in a JSF Page 10-23

What Happens at Runtime: How Page Fragments are Resolved 10-23

What You May Need to Know About Accessing a Page From a Different View ID
10-23

Using Declarative Components 10-24

How to Create a Declarative Component 10-27

What Happens When You Create a Declarative Component 10-32

How to Deploy Declarative Components 10-34

How to Use Declarative Components in JSF Pages 10-34

What Happens When You Use a Declarative Component on a JSF Page 10-36

What Happens at Runtime: Declarative Components 10-37

Adding Resources to Pages 10-37

How to Add Resources to Page Templates and Declarative Components 10-38

What Happens at Runtime: How to Add Resources to the Document Header 10-38

Part IV Using Common ADF Faces Components

11

Using Input Components and Defining Forms

About Input Components and Forms 11-1

Input Component Use Cases and Examples 11-3

Additional Functionality for Input Components and Forms 11-5

Defining Forms 11-6

How to Add a Form to a Page 11-8

How to Add a Subform to a Page 11-8

How to Add a Button to Reset the Form 11-9

Using the inputText Component 11-9

How to Add an inputText Component 11-11

How to Add the Ability to Insert Text into an inputText Component 11-14

Using the Input Number Components 11-15

How to Add an inputNumberSlider or an inputRangeSlider Component 11-17

How to Add an inputNumberSpinbox Component 11-18

Using Color and Date Choosers 11-18

How to Add an inputColor Component 11-20

How to Add an InputDate Component 11-22

What You May Need to Know About Including a Default Value for an InputDate
Component 11-25

What You May Need to Know About Setting the Time Value for an InputDate
Component 11-26

What You May Need to Know About Selecting Time Zones Without the
inputDate Component 11-26

x

What You May Need to Know About Multi-Selection Support in the chooseDate
Component 11-28

What You May Need to Know About Creating a Custom Time Zone List 11-30

Using Selection Components 11-31

How to Use Selection Components 11-35

What You May Need to Know About the contentDelivery Attribute on the
SelectManyChoice Component 11-38

Using Shuttle Components 11-39

How to Add a selectManyShuttle or selectOrderShuttle Component 11-41

What You May Need to Know About Using a Client Listener for Selection
Events 11-43

Using the richTextEditor Component 11-44

How to Add a richTextEditor Component 11-47

How to Add the Ability to Insert Text into a richTextEditor Component 11-49

How to Customize the Toolbar 11-50

About richTextEditor for UIWebView User-Agent 11-52

Using File Upload 11-52

How to Use the inputFile Component 11-56

How to Configure the inputFile Component to Upload Multiple Files 11-57

What You May Need to Know About Temporary File Storage 11-59

What You May Need to Know About Uploading Multiple Files 11-60

What You May Need to Know About Customizing User Interface of inputFile
Component 11-61

Using Code Editor 11-63

How to Add a codeEditor Component 11-67

12

Using Tables, Trees, and Other Collection-Based Components

About Collection-Based Components 12-1

Collection-Based Component Use Cases and Examples 12-3

Additional Functionality for Collection-Based Components 12-6

Common Functionality in Collection-Based Components 12-7

Displaying Data in Rows and Nodes 12-7

Content Delivery 12-8

Row Selection 12-13

Editing Data in Tables, Trees, and Tree Tables 12-14

Using Popup Dialogs in Tables, Trees, and Tree Tables 12-16

Accessing Client Collection Components 12-18

Geometry Management for the Table, Tree, and Tree Table Components 12-18

Displaying Data in Tables 12-21

Columns and Column Data 12-22

Formatting Tables 12-23

xi

Formatting Columns 12-25

How to Display a Table on a Page 12-28

What Happens When You Add a Table to a Page 12-41

What Happens at Runtime: Data Delivery 12-42

What You May Need to Know About Programmatically Enabling Sorting for
Table Columns 12-42

What You May Need to Know About Performing an Action on Selected Rows in
Tables 12-43

What You May Need to Know About Dynamically Determining Values for
Selection Components in Tables 12-44

What You May Need to Know About Read Only Tables 12-45

Adding Hidden Capabilities to a Table 12-46

How to Use the detailStamp Facet 12-48

What Happens at Runtime: The rowDisclosureEvent 12-49

Enabling Filtering in Tables 12-50

How to Add Filtering to a Table 12-51

Displaying Data in Trees 12-52

How to Display Data in Trees 12-55

What Happens When You Add a Tree to a Page 12-58

What Happens at Runtime: Tree Component Events 12-59

What You May Need to Know About Programmatically Expanding and
Collapsing Nodes 12-59

What You May Need to Know About Programmatically Selecting Nodes 12-61

Displaying Data in Tree Tables 12-61

How to Display Data in a Tree Table 12-63

Passing a Row as a Value 12-63

Displaying Table Menus, Toolbars, and Status Bars 12-64

How to Add a panelCollection with a Table, Tree, or Tree Table 12-66

Displaying a Collection in a List 12-68

How to Display a Collection in a List 12-72

What You May Need to Know About Scrollbars in a List View 12-73

Displaying Images in a Carousel 12-74

How to Create a Carousel 12-79

What You May Need to Know About the Carousel Component and Different
Browsers 12-85

Exporting Data from Table, Tree, or Tree Tables 12-85

How to Export Table, Tree, or Tree Table Data to an External Format 12-88

What Happens at Runtime: How Row Selection Affects the Exported Data 12-90

Accessing Selected Values on the Client from Collection-Based Components 12-90

How to Access Values from a Selection in Stamped Components. 12-90

What You May Need to Know About Accessing Selected Values 12-92

xii

13

Using List-of-Values Components

About List-of-Values Components 13-1

Additional Functionality for List-of-Values Components 13-9

Creating the ListOfValues Data Model 13-10

How to Create the ListOfValues Data Model 13-10

Using the inputListOfValues Component 13-11

How to Use the InputListOfValues Component 13-11

What You May Need to Know About Dynamically Creating Auto Suggest
Behavior for LOV Components 13-14

What You May Need to Know About Skinning the Search and Select Dialogs in
the LOV Components 13-14

Using the InputComboboxListOfValues Component 13-15

How to Use the InputComboboxListOfValues Component 13-15

Using the InputSearch Component 13-17

How to Use the InputSearch Component 13-21

What You May Need to Know About InputSearch Component Tags and REST
Data 13-22

What You May Need to Know About InputSearch Attributes 13-23

What You May Need to Know About SearchSection Attributes 13-33

How to Customize InputSearch Component Display Modes 13-36

How to Add Custom Buttons to Suggestions Popup 13-39

What You May Need to Know About SuggestionSection Component 13-41

How to Set Attributes of Suggestion Section 13-41

What You May Need to Know About suggestionSection Attributes 13-42

How to Specify Dependency-Based Filtering on InputSearch Components 13-44

14

Using Query Components

About Query Components 14-1

Query Component Use Cases and Examples 14-4

Additional Functionality for the Query Components 14-4

Creating the Query Data Model 14-4

How to Create the Query Data Model 14-15

Using the quickQuery Component 14-16

How to Add the quickQuery Component Using a Model 14-16

How to Use a quickQuery Component Without a Model 14-17

What Happens at Runtime: How the Framework Renders the quickQuery
Component and Executes the Search 14-19

Using the query Component 14-19

How to Add the Query Component 14-24

xiii

15

Using Menus, Toolbars, and Toolboxes

About Menus, Toolbars, and Toolboxes 15-1

Menu Components Use Cases and Examples 15-2

Additional Functionality for Menu and Toolbar Components 15-4

Using Menus in a Menu Bar 15-5

How to Create and Use Menus in a Menu Bar 15-10

Using Toolbars 15-17

How to Create and Use Toolbars 15-19

What Happens at Runtime: How the Size of Menu Bars and Toolbars Is
Determined 15-24

What You May Need to Know About Toolbars 15-24

16

Using Popup Dialogs, Menus, and Windows

About Popup Dialogs, Menus, and Windows 16-1

Popup Dialogs, Menus, Windows Use Cases and Examples 16-3

Additional Functionality for Popup Dialogs, Menus, and Windows 16-4

What You May Need to Know About ADF Faces Window Manager
Configuration 16-4

Declaratively Creating Popups 16-6

How to Create a Dialog 16-8

How to Create a Panel Window 16-13

How to Create a Context Menu 16-16

How to Create a Note Window 16-17

What Happens at Runtime: Popup Component Events 16-19

What You May Need to Know About Dialog Events 16-20

What You May Need to Know About Animation and Popups 16-21

Controlling Display Behavior of Popups 16-22

How to Dismiss a Popup Component Automatically 16-23

What Happens When a Popup Component is Automatically Dismissed 16-23

Declaratively Invoking a Popup 16-23

How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag 16-24

What Happens When You Use af:showPopupBehavior Tag to Invoke a Popup 16-25

Programmatically Invoking a Popup 16-26

How to Programmatically Invoke a Popup 16-28

What Happens When You Programmatically Invoke a Popup 16-28

Displaying Contextual Information in Popups 16-29

How to Create Contextual Information 16-30

Controlling the Automatic Cancellation of Inline Popups 16-31

How to Disable the Automatic Cancellation of an Inline Popup 16-32

xiv

What Happens When You Disable the Automatic Cancellation of an Inline
Popup 16-32

Resetting Input Fields in a Popup 16-33

How to Reset the Input Fields in a Popup 16-34

What Happens When You Configure a Popup to Reset Its Input Fields 16-34

17

Using a Calendar Component

About Creating a Calendar Component 17-1

Calendar Use Cases and Examples 17-4

Additional Functionality for the Calendar 17-5

Creating the Calendar 17-6

Calendar Classes 17-6

How to Create a Calendar 17-7

Configuring the Calendar Component 17-8

How to Configure the Calendar Component 17-8

What Happens at Runtime: Calendar Events and PPR 17-12

Adding Functionality Using Popup Components 17-13

How to Add Functionality Using Popup Components 17-14

Customizing the Toolbar 17-16

How to Customize the Toolbar 17-17

Styling the Calendar 17-19

How to Style Activities 17-20

What Happens at Runtime: Activity Styling 17-22

How to Customize Dates 17-22

18

Using Output Components

About Output Text, Image, Icon, and Media Components 18-1

Output Components Use Case and Examples 18-2

Additional Functionality for Output Components 18-3

Displaying Output Text and Formatted Output Text 18-3

How to Display Output Text 18-5

What You May Need to Know About Allowed Format and Character Codes in
the outputFormatted Component 18-6

Displaying Icons 18-8

How to Display Icons 18-8

Displaying Images 18-9

How to Display Images 18-9

Using Images as Links 18-10

How to Use Images as Links 18-10

Displaying Application Status Using Icons 18-11

xv

Playing Video and Audio Clips 18-12

How to Allow Playing of Audio and Video Clips 18-13

19

Displaying Tips, Messages, and Help

About Displaying Tips and Messages 19-1

Messaging Components Use Cases and Examples 19-4

Additional Functionality for Message Components 19-8

Displaying Tips for Components 19-9

How to Display Tips for Components 19-9

Displaying Hints and Error Messages for Validation and Conversion 19-10

How to Define Custom Validator and Converter Messages for a Component
Instance 19-13

How to Define Custom Validator and Converter Messages for All Instances of a
Component 19-14

How to Display Component Messages Inline 19-15

How to Display Global Messages Inline 19-16

What Happens at Runtime: How Messages Are Displayed 19-16

Grouping Components with a Single Label and Message 19-17

How to Group Components with a Single Label and Message 19-19

Displaying Help for Components 19-20

How to Create Help Providers 19-24

How to Create a Resource Bundle-Based Provider 19-25

How to Create an XLIFF Provider 19-26

How to Create a Managed Bean Provider 19-27

How to Create an External URL Help Provider 19-28

How to Create a Custom Java Class Help Provider 19-30

How to Register the Help Provider 19-31

How to Access Help Content from a UI Component 19-34

How to Use JavaScript to Launch an External Help Window 19-34

What You May Need to Know About Skinning and Definition Help 19-35

Combining Different Message Types 19-36

20

Working with Navigation Components

About Navigation Components 20-1

Navigation Components Use Cases and Examples 20-2

Additional Functionality for Navigation Components 20-6

Common Functionality in Navigation Components 20-7

Using Buttons and Links for Navigation 20-7

How to Use Buttons and Links for Navigation and Deliver ActionEvents 20-9

How to Use Buttons and Links for Navigation Without Delivering ActionEvents 20-12

xvi

What You May Need to Know About Using Partial Page Navigation 20-13

Configuring a Browser's Context Menu for Links 20-13

How to Configure a Browser's Context Menu for Command Links 20-14

What Happens When You Configure a Browser's Context Menu for Command
Links 20-15

Using Buttons or Links to Invoke Functionality 20-15

How to Use an Action Component to Download Files 20-15

How to Use an Action Component to Reset Input Fields 20-18

Using Navigation Items for a Page Hierarchy 20-19

How to Create Navigation Cases for a Page Hierarchy 20-23

Using a Menu Model to Create a Page Hierarchy 20-24

How to Create the Menu Model Metadata 20-26

What Happens When You Use the Create ADF Menu Model Wizard 20-34

How to Bind the navigationPane Component to the Menu Model 20-35

How to Use the breadCrumbs Component with a Menu Model 20-39

How to Use the menuBar Component with a Menu Model 20-41

What Happens at Runtime: How the Menu Model Creates a Page Hierarchy 20-43

What You May Need to Know About Using Custom Attributes 20-45

Creating a Simple Navigational Hierarchy 20-46

How to Create a Simple Page Hierarchy 20-48

How to Use the breadCrumbs Component 20-52

What You May Need to Know About Removing Navigation Tabs 20-53

What You May Need to Know About the Size of Navigation Tabs 20-54

What You May Need to Know About Skinning and Navigation Tabs 20-54

Using Train Components to Create Navigation Items for a Multistep Process 20-55

How to Create the Train Model 20-60

How to Configure Managed Beans for the Train Model 20-62

How to Bind to the Train Model in JSF Pages 20-66

21

Determining Components at Runtime

About Determining Components at Runtime 21-1

Creating the Model for a Dynamic Component 21-4

How to Create the Model Without Groups 21-4

How to Create the Model Using Groups 21-7

Adding a Dynamic Component as a Form to a Page 21-9

How to Add a Dynamic Component as a Form without Groups to a Page 21-9

How to Add a Dynamic Component as a Form with Groups to a Page 21-10

Adding a Dynamic Component as a Table to a Page 21-12

How to Add a Dynamic Component as a Table Without Groups to a Page 21-13

How to Add a Dynamic Component as a Table with Groups to a Page 21-13

Using Validation and Conversion with Dynamic Components 21-15

xvii

Using Dynamic and Static Components Together 21-16

Part V Using ADF Data Visualization Components

22

Introduction to ADF Data Visualization Components

About ADF Data Visualization Components 22-1

Chart Component Use Cases and Examples 22-1

Picto Chart Use Cases and Examples 22-3

Gauge Component Use Cases and Examples 22-6

NBox Use Cases and Examples 22-8

Pivot Table Component Use Cases and Examples 22-11

Geographic Map Component Use Cases and Examples 22-11

Thematic Map Component Use Cases and Examples 22-12

Gantt Chart Component Use Cases and Examples 22-13

Timeline Component Use Cases and Examples 22-14

Hierarchy Viewer Component Use Cases and Examples 22-15

Treemap and Sunburst Components Use Cases and Examples 22-16

Diagram Use Cases and Examples 22-18

Tag Cloud Component Use Cases and Examples 22-21

Additional Functionality for Data Visualization Components 22-22

Common Functionality in Data Visualization Components 22-23

Content Delivery 22-23

Automatic Partial Page Rendering (PPR) 22-25

Active Data Support 22-25

Text Resources from Application Resource Bundles 22-26

Providing Data for ADF Data Visualization Components 22-27

23

Using Chart Components

About the Chart Component 23-1

Chart Component Use Cases and Examples 23-1

End User and Presentation Features of Charts 23-9

Chart Data Labels 23-9

Chart Element Labels 23-10

Chart Sizing 23-10

Chart Legends 23-11

Chart Styling 23-11

Chart Series Hiding 23-12

Chart Reference Objects 23-12

Chart Series Effects 23-13

xviii

Chart Series Customization 23-13

Chart Data Cursor 23-14

Chart Time Axis 23-15

Chart Categorical Axis 23-16

Chart Popups and Context Menus 23-18

Chart Selection Support 23-18

Chart Zoom and Scroll 23-19

Legend and Marker Dimming 23-20

Pie Chart Other Slice Support 23-21

Exploding Slices in Pie Charts 23-22

Active Data Support (ADS) 23-22

Chart Animation 23-23

Chart Image Formats 23-23

Additional Functionality for Chart Components 23-23

Using the Chart Component 23-24

Chart Component Data Requirements 23-24

Area, Bar, and Line Chart Data Requirements 23-25

Bubble Chart Data Requirements 23-25

Combination Chart Data Requirements 23-25

Funnel Chart Data Requirements 23-26

Pie Chart Data Requirements 23-26

Scatter Chart Data Requirements 23-26

Spark Chart Data Requirements 23-26

Stock Chart Data Requirements 23-26

Configuring Charts 23-27

How to Add a Chart to a Page 23-31

What Happens When You Add a Chart to a Page 23-34

Adding Data to Charts 23-34

How to Add Data to Area, Bar, Combination, and Line Charts 23-34

How to Add Data to Pie Charts 23-38

How to Add Data to Bubble or Scatter Charts 23-41

How to Add Data to Funnel Charts 23-44

How to Add Data to Stock Charts 23-46

How to Add Data to Spark Charts 23-49

Customizing Chart Display Elements 23-53

How to Configure Chart Labels 23-53

How to Configure Chart Data Labels 23-54

How to Configure Chart Element Labels 23-56

How to Configure Chart Axis Labels 23-57

How to Configure Chart Legends 23-58

How to Format Chart Numerical Values 23-60

xix

How to Format Numeric Values on a Chart's Value, Value Label, or Axis
Values 23-62

How to Format Numeric Values on a Chart's Axis Label 23-62

How to Specify Numeric Patterns, Currency, or Percent 23-63

Customizing a Chart Axis 23-63

How to Configure a Time Axis 23-63

How to Customize the Chart Axis 23-67

Configuring Dual Y-Axis 23-71

Adding Reference Objects to a Chart 23-71

How to Add a Reference Object to a Chart 23-75

What You May Need to Know About Adding Reference Objects to Charts 23-77

How to Configure a Stacked Chart 23-77

Customizing Chart Series 23-78

How to Customize a Chart Series 23-79

How to Configure Series Fill Effects on All Series in a Chart 23-82

Customizing Chart Groups 23-83

How to Customize a Chart Group 23-83

How to Configure Hierarchical Labels Using Chart Groups 23-84

How to Configure the Pie Chart Other Slice 23-87

How to Explode Pie Chart Slices 23-88

How to Configure Animation 23-89

What You May Need to Know About Skinning and Customizing Chart Display
Elements 23-90

Adding Interactive Features to Charts 23-90

How to Add a Data Cursor 23-90

How to Configure Hide and Show Behavior 23-91

How to Configure Legend and Marker Dimming 23-93

How to Configure Selection Support 23-93

How to Configure Popups and Context Menus 23-96

How to Configure Chart Zoom and Scroll 23-97

How to Configure Chart Overview Window 23-99

24

Using Picto Chart Components

About the Picto Chart Component 24-1

Picto Chart Use Cases and Examples 24-1

End User and Presentation Features of Picto Charts 24-4

Additional Functionality for Picto Chart Components 24-5

Using the Picto Chart Component 24-6

Picto Chart Data Requirements 24-6

How to Add a Picto Chart to a Page 24-7

What Happens When You Add a Picto Chart to a Page 24-8

xx

Configuring Picto Charts 24-8

25

Using Gauge Components

About the Gauge Component 25-1

Gauge Component Use Cases and Examples 25-1

End User and Presentation Features of Gauge Components 25-3

Gauge Shape Variations 25-4

Gauge Thresholds 25-5

Gauge Visual Effects 25-5

Active Data Support (ADS) 25-6

Gauge Animation 25-6

Gauge Tooltips 25-6

Gauge Popups and Context Menus 25-7

Gauge Value Change Support 25-7

Gauge Reference Lines (Status Meter Gauges) 25-8

Additional Functionality of Gauge Components 25-8

Using the Gauge Component 25-9

Gauge Component Data Requirements 25-9

How to Add a Gauge to a Page 25-10

What Happens When You Add a Gauge to a Page 25-12

How to Add Data to Gauges 25-12

Configuring Gauges 25-14

Configuring Dial Gauges 25-15

Configuring LED Gauges 25-15

Configuring Rating Gauges 25-15

Configuring Status Meter Gauges 25-15

Customizing Gauge Display Elements 25-16

How to Configure Gauge Thresholds 25-16

Formatting Gauge Style Elements 25-19

How to Change Gauge Size and Apply CSS Styles 25-19

How to Format Gauge Text 25-20

What You May Need to Know About Skinning and Formatting Gauge Style
Elements 25-21

How to Format Numeric Data Values in Gauges 25-22

How to Disable Gauge Visual Effects 25-23

How to Configure Gauge Animation 25-23

How to Configure Status Meter Gauge Reference Lines 25-24

Adding Interactivity to Gauges 25-25

How to Configure Gauge Tooltips 25-25

How to Add a Popup or Context Menu to a Gauge 25-26

xxi

How to Configure Value Change Support for a Gauge 25-27

26

Using NBox Components

About the NBox Component 26-1

NBox Use Cases and Examples 26-1

End User and Presentation Features of NBoxes 26-4

Additional Functionality for NBox Components 26-4

Using the NBox Component 26-5

NBox Data Requirements 26-5

Configuring NBoxes 26-6

How to Add an NBox to a Page 26-7

What Happens When You Add an NBox to a Page 26-9

27

Using Pivot Table Components

About the Pivot Table Component 27-1

Pivot Table and Pivot Filter Bar Component Use Cases and Examples 27-1

End User and Presentation Features of Pivot Table Components 27-4

Pivot Filter Bar 27-4

Pivoting 27-4

Editing Data Cells 27-5

Data and Header Sorting 27-7

Drilling 27-8

Scrolling and Page Controls 27-9

Persistent Header Layers 27-11

Split View of Large Data Sets 27-11

Sizing 27-13

Header Cell Word Wrapping 27-14

Active Data Support (ADS) 27-15

Additional Functionality for the Pivot Table Component 27-15

Using the Pivot Table Component 27-16

Pivot Table Data Requirements 27-17

Configuring Pivot Tables 27-17

How to Add a Pivot Table to a Page 27-18

Configuring Pivot Table Display Size and Style 27-21

What Happens When You Add a Pivot Table to a Page 27-22

What You May Need to Know About Displaying Large Data Sets 27-22

What You May Need to Know About Pivot Tables on Touch Devices 27-23

What You May Need to Know About Skinning and Customizing the Appearance
of Pivot Tables 27-23

Configuring Header and Data Cell Stamps 27-23

xxii

Using var and varStatus Properties 27-24

How to Configure Header and Data Cell Stamps 27-27

Using Pivot Filter Bars 27-31

Using a Pivot Filter Bar with a Pivot Table 27-32

Using a Pivot Filter Bar with a Graph 27-32

What You May Need to Know About Skinning and Customizing the Appearance
of Pivot Filter Bars 27-33

Adding Interactivity to Pivot Tables 27-33

Using Selection in Pivot Tables 27-33

Using Partial Page Rendering 27-34

Exporting from a Pivot Table 27-34

Displaying Pivot Tables in Printable Pages 27-36

Formatting Pivot Table Cell Content With CellFormat 27-36

Using a CellFormat Object for a Data Cell 27-37

Specifying a Cell Format 27-37

Configuring Stoplight and Conditional Formatting Using CellFormat 27-39

28

Using Gantt Chart Components

About the Gantt Chart Components 28-1

Gantt Chart Component Use Cases and Examples 28-2

End User and Presentation Features 28-3

Gantt Chart Regions 28-3

Information Panel 28-4

Toolbar 28-4

Scrolling, Zooming, and Panning 28-6

Showing Dependencies 28-7

Context Menus 28-8

Row Selection 28-9

Editing Tasks 28-10

Server-Side Events 28-10

Printing 28-11

Content Delivery 28-11

Additional Functionality for Gantt Chart Components 28-11

Using the Gantt Chart Components 28-12

Data for a Project Gantt Chart 28-12

Data for a Resource Utilization Gantt Chart 28-14

Data for a Scheduling Gantt Chart 28-15

Gantt Chart Tasks and Resources 28-17

Configuring Gantt Charts 28-18

How to Add a Gantt Chart to a Page 28-19

What Happens When You Add a Gantt Chart to a Page 28-22

xxiii

Customizing Gantt Chart Tasks and Resources 28-23

Creating a New Task Type 28-23

Configuring Stacked Bars in Resource Utilization Gantt Charts 28-24

Configuring a Resource Capacity Line 28-25

Displaying Resource Attribute Details 28-25

Configuring Background Bars in Scheduling Gantt Charts 28-27

Customizing Gantt Chart Display Elements 28-30

Customizing Gantt Chart Toolbars and Menus 28-30

Creating Custom Toolbar and Menu Items 28-33

Customizing Gantt Chart Context Menus 28-34

How to Customize the Time Axis of a Gantt Chart 28-37

Creating and Customizing a Gantt Chart Legend 28-39

How to Specify Custom Data Filters 28-40

Specifying Nonworking Days in a Gantt Chart 28-41

How to Specify Weekdays as Nonworking Days 28-41

How to Identify Specific Dates as Nonworking Days 28-42

How to Apply Read-Only Values to Gantt Chart Features 28-42

What You May Need to Know About Skinning and Customizing the Appearance
of Gantt Charts 28-46

Adding Interactive Features to Gantt Charts 28-46

Performing an Action on Selected Tasks or Resources 28-46

Using Page Controls for a Gantt Chart 28-47

Configuring Synchronized Scrolling Between Gantt Charts 28-48

Printing a Gantt Chart 28-51

Print Options 28-51

Action Listener to Handle the Print Event 28-52

Adding a Double-Click Event to a Task Bar 28-53

Using Gantt Charts as a Drop Target or Drag Source 28-53

29

Using Timeline Components

About Timeline Components 29-1

Timeline Use Cases and Examples 29-1

End User and Presentation Features 29-2

Timeline Overview Options 29-2

Layout Options 29-3

Timeline Item Selection 29-4

Content Delivery 29-4

Timeline Image Formats 29-5

Timeline Display in Printable or Emailable Pages 29-5

Additional Functionality for Timeline Components 29-6

Using Timeline Components 29-7

xxiv

Timeline Component Data Requirements 29-7

Configuring Timelines 29-9

How to Add a Timeline to a Page 29-10

What Happens When You Add a Timeline to a Page 29-12

Adding Data to Timeline Components 29-13

How to Add Data to a Timeline 29-13

What You May Need to Know About Configuring Data for a Dual Timeline 29-15

What You May Need to Know About Adding Data to Timelines 29-16

Customizing Timeline Display Elements 29-16

Customizing Timeline Items 29-17

Configuring a Timeline Item Duration 29-17

How to Add a Custom Time Scale to a Timeline 29-18

What You May Need to Know About Skinning and Customizing the Appearance
of Timelines 29-19

Adding Interactive Features to Timelines 29-19

How to Add Popups to Timeline Items 29-19

Configuring Timeline Context Menus 29-20

30

Using Map Components

About Map Components 30-1

Map Component Use Cases and Examples 30-1

End User and Presentation Features of Maps 30-5

Geographic Map End User and Presentation Features 30-5

Thematic Map End User and Presentation Features 30-8

Additional Functionality for Map Components 30-11

Using the Geographic Map Component 30-12

Configuring Geographic Map Components 30-12

How to Add a Geographic Map to a Page 30-14

What Happens When You Add a Geographic Map to a Page 30-17

What You May Need to Know About Active Data Support for Map Point Themes 30-18

Customizing Geographic Map Display Attributes 30-18

How to Adjust the Map Size 30-18

How to Specify Strategy for Map Zoom Control 30-19

How to Customize and Use Map Selections 30-20

How to Customize the Map Legend 30-22

What You May Need to Know About Skinning and Customizing the Appearance
of Geographic Maps 30-23

Customizing Geographic Map Themes 30-24

How to Customize Zoom Levels for a Theme 30-24

How to Customize the Labels of a Map Theme 30-24

How to Customize Color Map Themes 30-25

xxv

How to Customize Point Images in a Point Theme 30-26

What Happens When You Customize the Point Images in a Map 30-27

How to Customize the Bars in a Bar Graph Theme 30-28

What Happens When You Customize the Bars in a Map Bar Graph Theme 30-29

How to Customize the Slices in a Pie Graph Theme 30-29

What Happens When You Customize the Slices in a Map Pie Graph Theme 30-30

Adding a Toolbar to a Geographic Map 30-30

How to Add a Toolbar to a Map 30-31

What Happens When You Add a Toolbar to a Map 30-31

Using Thematic Map Components 30-32

Configuring Thematic Maps 30-32

Using the Layer Browser 30-37

How to Add a Thematic Map to a Page 30-38

What Happens When You Add a Thematic Map to a Page 30-42

What You May Need to Know About Thematic Map Image Formats 30-43

Defining Thematic Map Base Maps 30-43

Using Prebuilt Base Maps 30-43

Defining a Custom Base Map Using Map Provider APIs 30-44

Defining a Custom Base Map Using Image Files 30-47

Customizing Thematic Map Display Attributes 30-50

How to Customize Thematic Map Labels 30-50

How to Configure Tooltips to Display Data 30-52

How to Format Numeric Data Values in Area and Marker Labels 30-53

How to Configure Thematic Map Data Zooming 30-54

How to Configure Invisible Area Layers 30-56

What You May Need to Know About Skinning and Customizing the Appearance
of a Thematic Map 30-58

Adding Interactive Features to Thematic Maps 30-58

How to Configure Selection and Action Events in Thematic Maps 30-58

How to Add Popups to Thematic Map Areas and Markers 30-60

How to Configure Animation Effects 30-64

How to Add Drag and Drop to Thematic Map Components 30-65

31

Using Hierarchy Viewer Components

About Hierarchy Viewer Components 31-1

Hierarchy Viewer Use Cases and Examples 31-1

End User and Presentation Features 31-2

Layouts 31-2

Navigation 31-5

Panning 31-5

Control Panel 31-5

xxvi

Printing 31-7

Bi-directional Support 31-7

State Management 31-7

Additional Functionality for Hierarchy Viewer Components 31-7

Using Hierarchy Viewer Components 31-8

Configuring Hierarchy Viewer Components 31-9

How to Add a Hierarchy Viewer to a Page 31-10

What Happens When You Add a Hierarchy Viewer to a Page 31-13

What You May Need to Know About Hierarchy Viewer Rendering and Image
Formats 31-14

Managing Nodes in a Hierarchy Viewer 31-15

How to Specify Node Content 31-16

How to Configure the Controls on a Node 31-18

Specifying a Node Definition for an Accessor 31-20

Associating a Node Definition with a Particular Set of Data Rows 31-21

How to Specify Ancestor Levels for an Anchor Node 31-21

Using Panel Cards 31-22

How to Create a Panel Card 31-22

What Happens at Runtime: How the Panel Card Component Is Rendered 31-24

Configuring Navigation in a Hierarchy Viewer 31-24

How to Configure Upward Navigation in a Hierarchy Viewer 31-25

How to Configure Same-Level Navigation in a Hierarchy Viewer 31-25

What Happens When You Configure Same-Level Navigation in a Hierarchy
Viewer 31-26

Customizing the Appearance of a Hierarchy Viewer 31-27

How to Adjust the Display Size and Styles of a Hierarchy Viewer 31-27

Including Images in a Hierarchy Viewer 31-28

How to Configure the Display of the Control Panel 31-29

How to Configure the Display of Links and Labels 31-30

How to Disable the Hover Detail Window 31-31

What You May Need to Know About Skinning and Customizing the Appearance
of a Hierarchy Viewer 31-32

Adding Interactivity to a Hierarchy Viewer Component 31-32

How to Configure Node Selection Action 31-32

Configuring a Hierarchy Viewer to Invoke a Popup Window 31-33

Configuring Hierarchy Viewer Drag and Drop 31-34

How to Configure Hierarchy Viewer Drag and Drop 31-37

What You May Need to Know About Configuring Hierarchy Viewer Drag and
Drop 31-45

Adding Search to a Hierarchy Viewer 31-45

How to Configure Searching in a Hierarchy Viewer 31-45

xxvii

What You May Need to Know About Configuring Search in a Hierarchy Viewer 31-48

32

Using Treemap and Sunburst Components

About the Treemap and Sunburst Components 32-1

Treemap and Sunburst Use Cases and Examples 32-1

End User and Presentation Features of Treemaps and Sunbursts 32-3

Treemap and Sunburst Layouts 32-3

Attribute Groups 32-5

Legend Support 32-6

Pattern Support 32-6

Node Selection Support 32-7

Tooltip Support 32-8

Popup Support 32-8

Context Menus 32-9

Drilling Support 32-10

Other Node Support 32-13

Drag and Drop Support 32-14

Sorting Support 32-15

Treemap and Sunburst Image Formats 32-16

Advanced Node Content 32-16

Printing and Email Support 32-18

Active Data Support (ADS) 32-18

Isolation Support (Treemap Only) 32-18

Treemap Group Node Header Customization (Treemap Only) 32-19

Additional Functionality for Treemap and Sunburst Components 32-20

Using the Treemap and Sunburst Components 32-21

Treemap and Sunburst Data Requirements 32-22

Using the Treemap Component 32-23

Configuring Treemaps 32-23

How to Add a Treemap to a Page 32-24

What Happens When You Add a Treemap to a Page 32-26

Using the Sunburst Component 32-27

Configuring Sunbursts 32-27

How to Add a Sunburst to a Page 32-29

What Happens When You Add a Sunburst to a Page 32-31

Adding Data to Treemap and Sunburst Components 32-31

How to Add Data to Treemap or Sunburst Components 32-31

What You May Need to Know about Adding Data to Treemaps and Sunbursts 32-34

Customizing Treemap and Sunburst Display Elements 32-34

Configuring Treemap and Sunburst Display Size and Style 32-34

xxviii

What You May Need to Know About Skinning and Configuring Treemap and
Sunburst Display Size and Style 32-34

Configuring Pattern Display 32-35

Configuring Treemap and Sunburst Attribute Groups 32-35

How to Configure Treemap and Sunburst Discrete Attribute Groups 32-36

How to Configure Treemap or Sunburst Continuous Attribute Groups 32-39

What You May Need to Know About Configuring Attribute Groups 32-41

How to Configure Treemap and Sunburst Legends 32-41

Configuring the Treemap and Sunburst Other Node 32-42

How to Configure the Treemap and Sunburst Other Node 32-42

What You May Need to Know About Configuring the Treemap and Sunburst
Other Node 32-45

Configuring Treemap and Sunburst Sorting 32-46

Configuring Treemap and Sunburst Advanced Node Content 32-46

How to Add Advanced Node Content to a Treemap 32-46

How to Add Advanced Root Node Content to a Sunburst: 32-47

What You May Need to Know About Configuring Advanced Node Content
on Treemaps 32-48

How to Configure Animation in Treemaps and Sunbursts 32-48

Configuring Labels in Treemaps and Sunbursts 32-49

How to Configure Treemap Leaf Node Labels 32-49

How to Configure Sunburst Node Labels 32-50

Configuring Sunburst Node Radius 32-51

How to Configure a Sunburst Node Radius 32-52

What You May Need to Know about Configuring the Sunburst Node Radius 32-53

Configuring Treemap Node Headers and Group Gap Display 32-53

How to Configure Treemap Node Headers 32-53

What You May Need to Know About Treemap Node Headers 32-54

How to Customize Treemap Group Gaps 32-54

Adding Interactive Features to Treemaps and Sunbursts 32-55

Configuring Treemap and Sunburst Tooltips 32-55

Configuring Treemap and Sunburst Popups 32-56

How to Add Popups to Treemap and Sunburst Components 32-56

What You May Need to Know About Adding Popups to Treemaps and
Sunburst Components 32-59

Configuring Treemap and Sunburst Selection Support 32-60

How to Add Selection Support to Treemap and Sunburst Components 32-60

What You May Need to Know About Adding Selection Support to Treemaps
and Sunbursts 32-62

Configuring Treemap and Sunburst Context Menus 32-63

How to Configure Treemap and Sunburst Context Menus 32-63

What You May Need to Know About Configuring Treemap and Sunburst
Context Menus 32-69

xxix

Configuring Treemap and Sunburst Drilling Support 32-70

How to Configure Treemap and Sunburst Drilling Support 32-70

What You May Need to Know About Treemaps and Drilling Support 32-71

How to Add Drag and Drop to Treemaps and Sunbursts 32-71

Configuring Isolation Support (Treemap Only) 32-77

How to Disable Isolation Support 32-78

What You May Need to Know About Treemaps and Isolation Support 32-78

33

Using Diagram Components

About the Diagram Component 33-1

Diagram Use Cases and Examples 33-1

End User and Presentation Features of Diagrams 33-4

Additional Functionality for Diagram Components 33-9

Using the Diagram Component 33-10

Diagram Data Requirements 33-11

Configuring Diagrams 33-11

What You May Need to Know About Using the Default Diagram Layout 33-14

How to Add a Diagram to a Page 33-15

What Happens When You Add a Diagram to a Page 33-17

How to Create Diagram Nodes 33-17

Using the Diagram Layout Framework 33-18

Layout Requirements and Processing 33-19

Configuring Diagram Layouts 33-20

How to Register a Custom Layout 33-20

Designing Simple Client Layouts 33-21

34

Using Tag Cloud Components

About the Tag Cloud Component 34-1

Tag Cloud Use Cases and Examples 34-1

End User and Presentation Features of Tag Clouds 34-2

Additional Functionality for Tag Cloud Components 34-4

Using the Tag Cloud Component 34-5

Tag Cloud Data Requirements 34-6

How to Add a Tag Cloud to a Page 34-6

What Happens When You Add a Tag Cloud to a Page 34-7

Configuring Tag Clouds 34-7

Part VI Completing Your View

xxx

35

Customizing the Appearance Using Styles and Skins

About Customizing the Appearance Using Styles and Skins 35-1

Customizing the Appearance Use Cases and Examples 35-3

Additional Functionality for Customizing the Appearance 35-4

Changing the Style Properties of a Component 35-4

How to Set an Inline Style 35-5

How to Set a Style Class 35-6

Enabling End Users to Change an Application's ADF Skin 35-7

How to Enable End Users Change an Application's ADF Skin 35-8

What Happens at Runtime: How End Users Change an Application's ADF Skin 35-9

Using Scalar Vector Graphics Image Files 35-9

What You May Need to Know About Inline SVG Support in ADF Faces 35-10

36

Internationalizing and Localizing Pages

About Internationalizing and Localizing ADF Faces Pages 36-1

Internationalizing and Localizing Pages Use Cases and Examples 36-2

Additional Functionality for Internationalizing and Localizing Pages 36-3

Using Automatic Resource Bundle Integration in JDeveloper 36-3

How to Set Resource Bundle Options 36-4

What Happens When You Set Resource Bundle Options 36-5

How to Create an Entry in a JDeveloper-Generated Resource Bundle 36-6

What Happens When You Create an Entry in a JDeveloper-Generated
Resource Bundle 36-7

Manually Defining Resource Bundles and Locales 36-7

How to Create a Resource Bundle as a Property File or an XLIFF File 36-8

How to Create a Resource Bundle as a Java Class 36-10

How to Edit a Resource Bundle File 36-11

How to Register a Locale for Your Application 36-13

How to Register a Resource Bundle in Your Application 36-14

How to Use Resource Bundles in Your Application 36-15

What You May Need to Know About ADF Skins and Control Hints 36-16

What You May Need to Know About Overriding a Resource Bundle in a
Customizable Application 36-16

Configuring Pages for an End User to Specify Locale at Runtime 36-17

How to Configure a Page for an End User to Specify Locale 36-17

What Happens When You Configure a Page to Specify Locale 36-19

What Happens at Runtime: How an End User Specifies a Locale 36-20

Configuring Optional ADF Faces Localization Properties 36-20

How to Configure Optional Localization Properties 36-21

xxxi

37

Developing Accessible ADF Faces Pages

About Accessibility Support In ADF Faces 37-1

Additional Information for Accessibility Support in ADF Pages 37-2

Accessibility Support Guidelines at Sign-In 37-2

Specifying Component-Level Accessibility Properties 37-3

ADF Faces Component Accessibility Guidelines 37-3

Using ADF Faces Table Components with a Screen Reader 37-7

ADF Data Visualization Components Accessibility Guidelines 37-8

How to Define Access Keys for an ADF Faces Component 37-9

How to Define Localized Labels and Access Keys 37-10

Creating Accessible Pages 37-11

How to Use Partial Page Rendering 37-13

How to Use Scripting 37-13

How to Use Styles 37-16

How to Use Page Structures and Navigation 37-17

How to Use Images and Tables 37-18

How to Use WAI-ARIA Landmark Regions 37-19

Creating Accessible Active Data Components 37-20

How to Customize the Screen Reader Response for Scalar Active Data
Components 37-23

How to Customize the Screen Reader Response for Collection-Based Active
Data Components 37-24

What You May Need to Know About Pass-Through Attributes 37-27

Running Accessibility Audit Rules 37-30

How to Create an Audit Profile 37-30

How to Run Audit Report 37-31

38

Allowing User Customization on JSF Pages

About User Customization 38-1

User Customization Use Cases and Examples 38-8

Implementing Session Change Persistence 38-8

How to Implement Session Change Persistence 38-9

What Happens When You Configure Your Application to Use Change
Persistence 38-9

What Happens at Runtime: How Changes are Persisted 38-9

What You May Need to Know About Using Change Persistence on Templates
and Regions 38-9

xxxii

39

Adding Drag and Drop Functionality

About Drag and Drop Functionality 39-1

Additional Functionality for Drag and Drop 39-4

Adding Drag and Drop Functionality for Attributes 39-5

How to add Drag and Drop Functionality 39-5

Adding Drag and Drop Functionality for Objects 39-6

How to Add Drag and Drop Functionality for a Single Object 39-7

What Happens at Runtime: How to Use Keyboard Modifiers 39-10

What You May Need to Know About Using the ClientDropListener 39-11

Adding Drag and Drop Functionality for Collections 39-11

How to Add Drag and Drop Functionality for Collections 39-12

What You May Need to Know About the dragDropEndListener 39-14

Adding Drag and Drop Functionality for Components 39-15

How to Add Drag and Drop Functionality for Components 39-16

Adding Drag and Drop Functionality Into and Out of a panelDashboard Component 39-17

How to Add Drag and Drop Functionality Into a panelDashboard Component 39-18

How to Add Drag and Drop Functionality Out of a panelDashboard Component 39-19

Adding Drag and Drop Functionality to a Calendar 39-21

How to Add Drag and Drop Functionality to a Calendar 39-21

What You May Need to Know About Dragging and Dropping in a Calendar 39-22

Adding Drag and Drop Functionality for DVT Components 39-23

Adding Drop Functionality for DVT Pareto and Stock Graphs 39-23

How to Add Drop Functionality to Pareto and Stock Graphs 39-23

Adding Drag and Drop Functionality for DVT Gantt Charts 39-25

How to Add Drag and Drop Functionality for a DVT Gantt Component 39-26

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and
Treemaps 39-29

Drag and Drop Example for DVT Hierarchy Viewers 39-29

Drag and Drop Example for DVT Sunbursts 39-30

Drag and Drop Example for DVT Treemaps 39-31

How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer,
Sunburst, or Treemap Component 39-32

Adding Drag and Drop Functionality for Timeline Components 39-37

40

Using Different Output Modes

About Using Different Output Modes 40-1

Output Mode Use Cases 40-2

Displaying a Page for Print 40-4

How to Use the showPrintablePageBehavior Tag 40-4

Creating Emailable Pages 40-5

xxxiii

How to Create an Emailable Page 40-6

How to Test the Rendering of a Page in an Email Client 40-7

What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable
Pages 40-8

41

Using the Active Data Service with an Asynchronous Backend

About the Active Data Service 41-1

Active Data Service Use Cases and Examples 41-2

Process Overview for Using Active Data Service 41-2

Implementing the ActiveModel Interface in a Managed Bean 41-3

What You May Need to Know About Maintaining Read Consistency 41-6

What You May Need to Know About Navigating Away From the ADS Enabled Page 41-7

Passing the Event Into the Active Data Service 41-7

Registering the Data Update Event Listener 41-8

Configuring the ADF Component to Display Active Data 41-9

Part VII Appendices

A ADF Faces Configuration

About Configuring ADF Faces A-1

Configuration in web.xml A-1

How to Configure for JSF and ADF Faces in web.xml A-2

What You May Need to Know About Required Elements in web.xml A-3

What You May Need to Know About ADF Faces Context Parameters in web.xml
A-4

State Saving A-5

Debugging A-6

File Uploading A-6

Save Query Mode A-7

Resource Debug Mode A-7

User Customization A-8

Enabling the Application for Real User Experience Insight A-8

Assertions A-8

Dialog Prefix A-9

Compression for CSS Class Names A-9

Control Caching When You Have Multiple ADF Skins in an Application A-9

Test Automation A-9

UIViewRoot Caching A-9

Themes and Tonal Styles A-10

xxxiv

Partial Page Rendering A-10

Partial Page Navigation A-10

Postback Payload Size Optimization A-11

JavaScript Partitioning A-11

Framebusting A-12

Version Number Information A-14

Suppressing Auto-Generated Component IDs A-14

ADF Faces Caching Filter A-14

Configuring Native Browser Context Menus for Command Links A-15

Internet Explorer Compatibility View Mode A-16

Session Timeout Warning A-16

JSP Tag Execution in HTTP Streaming A-17

Clean URLs A-17

Page Loading Splash Screen A-17

Graph and Gauge Image Format A-18

Geometry Management for Layout and Table Components A-18

Rendering Tables Initially as Read Only A-19

Scrollbar Behavior in Tables A-19

Production Project Stage A-20

Toggle Example Hints A-21

What You May Need to Know About Other Context Parameters in web.xml A-21

Configuration in faces-config.xml A-22

How to Configure for ADF Faces in faces-config.xml A-22

Configuration in adf-config.xml A-24

How to Configure ADF Faces in adf-config.xml A-24

Defining Caching Rules for ADF Faces Caching Filter A-24

Configuring Flash as Component Output Format A-26

Using Content Delivery Networks A-27

What You May Need to Know About Skin Style Sheets and CDN A-30

What You May Need to Know About Preparing Your Resource Files for
CDNs A-30

Configuration in adf-settings.xml A-31

How to Configure for ADF Faces in adf-settings.xml A-32

What You May Need to Know About Elements in adf-settings.xml A-32

Help System A-33

Caching Rules A-33

Configuration in trinidad-config.xml A-34

How to Configure ADF Faces Features in trinidad-config.xml A-35

What You May Need to Know About Elements in trinidad-config.xml A-36

Animation Enabled A-36

Skin Family A-36

xxxv

Time Zone and Year A-37

Enhanced Debugging Output A-37

Page Accessibility Level A-37

Language Reading Direction A-38

Currency Code and Separators for Number Groups and Decimal Points A-38

Formatting Dates and Numbers Locale A-39

Output Mode A-39

Number of Active PageFlowScope Instances A-39

File Uploading A-39

Custom File Uploaded Processor A-40

Client-Side Validation and Conversion A-40

What You May Need to Know About Configuring a System Property A-40

Configuration in trinidad-skins.xml A-41

Using the RequestContext EL Implicit Object A-41

Performance Tuning A-44

B Message Keys for Converter and Validator Messages

About ADF Faces Default Messages B-1

Message Keys and Setter Methods B-2

Converter and Validator Message Keys and Setter Methods B-2

af:convertColor B-2

af:convertDateTime B-2

af:convertNumber B-3

af:validateByteLength B-5

af:validateDateRestriction B-5

af:validateDateTimeRange B-6

af:validateDoubleRange B-7

af:validateLength B-8

af:validateRegExp B-9

C Keyboard Shortcuts

About Keyboard Shortcuts C-1

Tab Traversal C-2

Tab Traversal Sequence on a Page C-2

Tab Traversal Sequence in a Table C-3

Shortcut Keys C-5

Accelerator Keys C-5

Access Keys C-7

Shortcut Keys for Common Components C-9

xxxvi

Shortcut Keys for Widgets C-10

Shortcut Keys for Rich Text Editor Component C-11

Shortcut Keys for Table, Tree, and Tree Table Components C-12

Shortcut Keys for ADF Data Visualization Components C-15

Shortcut Keys for Calendar Component C-22

Default Cursor or Focus Placement C-24

The Enter Key C-25

D Creating Web Applications for Touch Devices Using ADF Faces

About Creating Web Applications for Touch Devices Using ADF Faces D-1

How ADF Faces Behaves in Mobile Browsers on Touch Devices D-1

Best Practices When Using ADF Faces Components in a Mobile Browser D-6

E Quick Start Layout Themes

F Code Samples

Samples for Chapter 4, "Using ADF Faces Client-Side Architecture" F-1

The adf-js-partitions.xml File F-1

Samples for Chapter 29, "Using Map Components" F-8

Sample Code for Thematic Map Custom Base Map F-8

Sample Code for Thematic Map Custom Base Map Area Layer F-13

Samples for Chapter 31, "Using Treemap and Sunburst Components" F-14

Sample Code for Treemap and Sunburst Census Data Example F-14

Code Sample for Sunburst Managed Bean F-20

Samples for Chapter 32, "Using Diagram Components" F-21

Code Sample for Default Client Layout F-22

Code Sample for Simple Circle Layout F-27

Code Sample for Simple Vertical Layout F-30

G Troubleshooting ADF Faces

About Troubleshooting ADF Faces G-1

Getting Started with Troubleshooting the View Layer of an ADF Application G-2

Using Test Automation for ADF Faces G-5

Enabling Test Automation for ADF Faces G-5

Simulating Mouse Events in ADF Faces Test Automation G-7

Resolving Common Problems G-9

Application Displays an Unexpected White Background G-9

Application is Missing Expected Images G-9

xxxvii

ADF Skin Does Not Render Properly G-10

ADF Data Visualization Components Fail to Display as Expected G-10

High Availability Application Displays a NotSerializableException G-10

Unable to Reproduce Problem in All Web Browsers G-11

Application is Missing Content G-12

Browser Displays an ADF_Faces-60098 Error G-12

Browser Displays an HTTP 404 or 500 Error G-12

Browser Fails to Navigate Between Pages G-13

Using My Oracle Support for Additional Troubleshooting Information G-13

xxxviii

Preface

Welcome to Developing Web User Interfaces with Oracle ADF Faces!

Audience
This document is intended for developers who need to create the view layer of a web
application using the rich functionality of ADF Faces components.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following related documents:

• Developing ADF Skins

• Understanding Oracle Application Development Framework

• Developing Applications with Oracle JDeveloper

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Administering Oracle ADF Applications

• Developing Applications with Oracle ADF Desktop Integration

• Java API Reference for Oracle ADF Faces

• Java API Reference for Oracle ADF Data Visualization Components

• JavaScript API Reference for Oracle ADF Faces

• Tag Reference for Oracle ADF Faces

• Tag Reference for Oracle ADF Faces Skin Selectors

• Tag Reference for Oracle ADF Faces Data Visualization Tools

• Java API Reference for Oracle ADF Lifecycle

xxxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Java API Reference for Oracle ADF Resource Bundle

• Oracle JDeveloper 12c Release Notes, included with your JDeveloper 12c
installation, and on Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xl

What's New in This Guide for Release 12c
(12.2.1.4.0)

The following topics introduce the new and changed features of ADF Faces and other
significant changes, which are described in this guide.

New and Changed Features for Release 12c (12.2.1.4.0)
Oracle Fusion Middleware Release 12c (12.2.1.4.0) of Oracle JDeveloper and Oracle
Application Development Framework (Oracle ADF) includes the following new and
changed development features, which are described in this guide.

• Common ADF Faces Components

– ADF Faces supports filtering from a list of values to search and highlight the
matched suggestion by using the new inputSearch component. You must use
the ADF inputSearch component with REST resource and inputSearch
supports tag attributes to understand REST data. See Using the InputSearch
Component.

– ADF Faces supports a new streaming component in a JSF page. It allows the
components to delay their rendering until a streaming request is fulfilled. See
Using a Streaming Component to Allow Page Loading.

– ADF Faces supports most recently used (MRU) suggestions lists with the new
suggestionSection component when used on a parent inputSearch
component. The component creates and manages the MRU suggestion list
based on the frequency and recentness of the suggestions used. See How to
Set Attributes of Suggestion Section.

– ADF Faces supports new query component options to configure
personalization behavior for the Saved Search dropdown to optimize
performance for searches over all records. Also, you can implement an event
handler for more query operation actions, including include saving a search,
personalizing a search, and resetting a search. See Creating the Query Data
Model.

– ADF Faces supports a new save query mode on the query component to
prevent users from creating a new search, updating an existing search, or
deleting an existing saved search, when the user is in preview mode. See
Save Query Mode.

– ADF Faces supports a vertical compressed layout on the panelTabbed
component. See What You May Need to Know About Skinning and the
panelTabbed Component.

– ADF Faces supports using inline Scalar Vector Graphics (SVG) images via
CSS and Javascript for ADF Faces components to access various elements
available within the SVG DOM. See Using Scalar Vector Graphics Image
Files. Additionally, ADF supports styling inline Scalar Vector Graphics (SVG)
by adding a style class in skin file and referencing it in the SVG content. See
What You May Need to Know About Inline SVG Support in ADF Faces.

– ADF Faces supports configuring the inputDate component to show a default
value for either the date or both the date and the time. Also, you can now

41

specify the date picker functionality to expose and to optionally specify the
number of months to be shown at once in the date picker. See What You May
Need to Know About Including a Default Value for an InputDate Component
and How to Add an InputDate Component.

– ADF Faces supports implementing event handlers to handle data selection in
the chooseDate component based on selection modifier keys (Ctrl and Shift
keys). See What You May Need to Know About Multi-Selection Support in the
chooseDate Component.

– ADF Faces supports new web.xml context parameters to configure the session
timeout to override window timeout and to set a maximum window cache size.
See What You May Need to Know About ADF Faces Window Manager
Configuration.

• Creating Your Layout

– ADF supports configuring the panelFormLayout component to be responsive
so that it modifies the form layout dynamically, depending on the space
available. See What You May Need to Know About Responsive Mode in the
panelFormLayout Component.

– ADF supports accessing a page from a different viewID by using a new public
interface QueryResultsLayoutIdentifier to map a logical viewID to an actual
viewID. See What You May Need to Know About Accessing a Page From a
Different View ID.

• ADF Data Converters

– ADF Faces supports defining value formatting for a table or chart with Active
Data Service (ADS) data by using the new
oracle.adf.view.rich.ads.USE_COMPONENT_FORMATTER context parameter in
the web.xml file. See What You May Need to Know About Custom ADF Faces
Converters.

Other Significant Changes in this Document for Release 12c
(12.2.1.4.0)

For Release 12c (12.2.1.4.0), this document has been updated in several ways.
Following are the sections that have been added or changed.

Part III Creating Your Layout

• Revised a showDetailHeader component section to explain that if disclosed
property is set to false (for a collapsed state), then any validation present for child
components will not be performed as the child components are not visible. See
How to Use the showDetailHeader Component.

Part IV Using Common ADF Faces Components

• Revised an LOV component section to carry forward the value entered in the input
field of inputListOfValues and inputComboboxListOfValues components to the
appropriate search field in the search dialog. See About List-of-Values
Components.

• Revised a listView component section to note that you must include the fetchSize
and rows attributes on the component for the matchMediaBehavior tag to work
properly. See Achieving Responsive Behavior Using matchMediaBehavior Tag.

Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

42

Part VI Completing Your View

• Revised an accessibility section for active data service (ADS) components to
remove the type=email attribute on the input fields in the generated DOM sample.
Also added a note to explain that the passthrough attribute is stamped on the
outermost element. See What You May Need to Know About Pass-Through
Attributes.

Part VII Appendices

• Revised a keyboard shortcuts section to include Ctrl+right arrow and Ctrl+ left
arrow to expand and collapse nodes in the TreeTable component. Also removed
references to Screen Reader Mode. See Shortcut Keys for Table, Tree, and Tree
Table Components.

Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

43

Part I
Getting Started with ADF Faces

Part I introduces you to the ADF Faces components and their architecture, the ADF
Faces Components Demo application, and how to start developing with ADF Faces
using JDeveloper.

Specifically, this part contains the following chapters:

• Introduction to ADF Faces

• ADF Faces Components Demo Application

• Getting Started with ADF Faces and JDeveloper

1
Introduction to ADF Faces

This chapter introduces ADF Faces, providing an overview of the framework
functionality and each of the different component types found in the library.

This chapter includes the following sections:

• About ADF Faces

• ADF Faces Framework

• ADF Faces Components

For definitions of unfamiliar terms found in this and other books, see the Glossary.

About ADF Faces
ADF Faces is the view/controller part of the Oracle ADF end-to-end framework. ADF
Faces has more than 150 Ajax-enabled components that help you to quickly build
applications that are robust, responsive, and easy to use.

ADF Faces is a set of over 150 Ajax-enabled JavaServer Faces (JSF) components as
well as a complete framework, all built on top of the JSF 2.0 standard. In its
beginnings, ADF Faces was a first-generation set of JSF components, and has since
been donated to the Apache Software Foundation. That set is now known as Apache
MyFaces Trinidad (currently available through the Apache Software Foundation), and
remains as the foundation of today's ADF Faces.

With ADF Faces and the advent of JSF 2.0, you can implement Ajax-based
applications relatively easily with a minimal amount of hand-coded JavaScript. For
example, you can easily build a stock trader's dashboard application that allows a
stock analyst to use drag and drop to add new stock symbols to a table view, which
then gets updated by the server model using an advanced push technology. To close
new deals, the stock trader could navigate through the process of purchasing new
stocks for a client, without having to leave the actual page. Much of this functionality
can be implemented declaratively using Oracle JDeveloper, a full-featured
development environment with built-in support for ADF Faces components, allowing
you to quickly and easily build the view layer of your web application.

Note:

Because ADF Faces adheres to the standards of the JSF technology, this
guide is mostly concerned with content that is in addition to, or different from,
JSF standards. Therefore, you should have a basic understanding of how
JSF works before beginning to develop with ADF Faces. To learn about JSF,
see http://www.oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html.

1-1

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

ADF Faces Framework
ADF Faces is built on top of the JavaServer Faces (JSF) 2.0 framework that provides
a commercial Java framework for building enterprise applications. It provides Java EE
and web standards based application development in a productive (declarative, visual)
way.

ADF Faces framework offers complete rich functionality, including the following:

• Built to the JavaServer Faces (JSF) 2.0 and later specification

Currently, ADF Faces supports JSF 2.2, including Facelets. Several of the JSF 2.0
features have parallel functionality in ADF Faces. To understand the functionality
introduced in JSF 2.0 and the functional overlap that exists between ADF Faces
and JSF 2.0, see the JavaServer Faces 2.0 Overview and Adoption Roadmap in
Oracle ADF Faces and Oracle JDeveloper 11g whitepaper on OTN at http://
www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-
jsf20-190927.pdf.

• Large set of fully featured rich components that are optimized to run in browsers
on a desktop or a tablet device.

The library provides over 150 Rich Internet Application (RIA) components,
including geometry-managed layout components, text and selection components,
sortable and hierarchical data tables and trees, menus, in-page dialogs, and
general controls. See ADF Faces Components. For information about running
ADF Faces on tablets, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Widespread Ajax support

Many ADF Faces components have ajax-style functionality implemented natively.
For example, the ADF Faces table component lets you scroll through the table,
sort the table by clicking a column header, mark a row or several rows for
selection, and even expand specific rows in the table, all without requiring the
page to be submitted to the server, and with no coding needed. In ADF Faces, this
functionality is implemented as partial page rendering (PPR), as described in
Rerendering Partial Page Content.

• Limited need for developers to write JavaScript

ADF Faces hides much of the complex JavaScript from you. Instead, you
declaratively control how components function. You can implement a rich,
functional, attractive web UI using ADF Faces in a declarative way that does not
require the use of any JavaScript at all.

That said, there may be cases when you do want to add your own functionality to
ADF Faces, and you can easily do that using the client-side component and event
framework. See Using ADF Faces Client-Side Architecture.

• Enhanced lifecycle on both server and client

ADF Faces extends the standard JSF 2.0 page request lifecycle. Examples
include a client-side value lifecycle, a subform component that allows you to create
independent submittable regions on a page without needing multiple forms, and an
optimized lifecycle that can limit the parts of the page submitted for processing.
See Using the JSF Lifecycle with ADF Faces.

• Event handling

Chapter 1
ADF Faces Framework

1-2

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf

ADF Faces adheres to standard JSF event handling techniques, as well as
offering complete a client-side event model. For information about events, see
Handling Events.

• Partial page navigation

ADF Faces applications can use PPR for navigation, which eliminates the need to
repeatedly load JavaScript libraries and stylesheets when navigating between
pages. See Using Partial Page Navigation.

• Client-side validation, conversion, and messaging

ADF Faces validators can operate on both the client and server side. Client-side
validators are in written JavaScript and validation errors caught on the client-side
can be processed without a round-trip to the server. See Validating and
Converting Input.

• Server-side push and streaming

The ADF Faces framework includes server-side push that allows you to provide
real-time data updates for ADF Faces components, as described in Using the
Active Data Service with an Asynchronous Backend.

• Active geometry management

ADF Faces provides a client-side geometry management facility that allows
components to determine how best to make use of available screen real-estate.
The framework notifies layout components of browser resize activity, and they in
turn are able to resize their children. This allows certain components to stretch or
shrink, filling up any available browser space. See Geometry Management and
Component Stretching.

• Advanced templating and declarative components

You can create page templates, as well as page fragments and composite
components made up of multiple components, which can be used throughout your
application, as described in Creating and Reusing Fragments, Page Templates,
and Components.

• Advanced visualization components

ADF Faces includes data visualization components, which are Flash- and PNG-
enabled components capable of rendering dynamic charts, graphs, gauges, and
other graphics that provide a real-time view of underlying data. See Using ADF
Data Visualization Components.

• Skinning

You can create your own look and feel by implementing skins for ADF Faces
components. Oracle provides tools, where you can declaratively create and modify
your skins. See Customizing the Appearance Using Styles and Skins.

• Output modes

You can make it so that pages that normally display in an HTML browser can be
displayed in another mode, such as email or print view, as described in Using
Different Output Modes .

• Internationalization

You can configure your JSF page or application to use different locales so that it
displays the correct language based on the language setting of a user's browser,
as described in Internationalizing and Localizing Pages.

• Accessibility

Chapter 1
ADF Faces Framework

1-3

ADF Faces components have built-in accessibility that work with a range of
assistive technologies, including screen readers. ADF Faces accessibility audit
rules provide direction to create accessible images, tables, frames, forms, error
messages, and popup windows using accessible HTML markup. See Developing
Accessible ADF Faces Pages.

• User-driven personalization

Many ADF Faces components allow users to change the display of the component
at runtime. By default, these changes live only as long as the page request.
However, you can configure your application so that the changes can be persisted
through the length of the user's session. See Allowing User Customization on JSF
Pages.

• Drag and drop

The ADF Faces framework allows the user to move data from one location to
another by dragging and dropping one component onto another, as described in
Adding Drag and Drop Functionality.

• Integration with other Oracle ADF technologies

You can use ADF Faces in conjunction with the other Oracle ADF technologies,
including ADF Business Components, ADF Controller, and ADF data binding. For
information about using ADF Faces with the ADF technology stack, see Creating a
Databound Web User Interface in Developing Fusion Web Applications with
Oracle Application Development Framework.

• Integrated declarative development with Oracle JDeveloper

JDeveloper is a full-featured development environment with built-in declarative
support for ADF Faces components, including a visual layout editor, a
Components window that allows you to drag and drop an ADF Faces component
onto a page, and a Properties window where you declaratively configure
component functionality. For information about using JDeveloper, see Getting
Started with ADF Faces and JDeveloper.

ADF Faces Components
The ADF Faces components provide numerous user-interface additives with built-in
functionality such as layout, backgrounds, data views, color, and so on that can be
customized and re-used in your application.

ADF Faces components generally fall into the following categories:

• Layout components

Layout components act as containers to determine the layout of the page, ADF
Faces layout components also include interactive container components that can
show or hide content, or that provide sections, lists, or empty spaces. JDeveloper
provides prebuilt quick-start layouts that declaratively add layout components to
your page based on how you want the page to look. For information about layout
components and geometry management, see Organizing Content on Web Pages.

In addition to standard layout components, ADF Faces also provides the following
specialty layout components:

– Explorer-type menus and toolbar containers: Allow you to create menu bars
and toolbars. Menus and toolbars allow users to select from a specified list of

Chapter 1
ADF Faces Components

1-4

options (in the case of a menu) or buttons (in the case of a toolbar) to cause
some change to the application. See Using Menus, Toolbars, and Toolboxes.

– Secondary windows: Display data in popup windows or dialogs. The dialog
framework in ADF Faces provides an infrastructure to support building pages
for a process displayed in a new popup browser window separate from the
parent page. Multiple dialogs can have a control flow of their own. See Using
Popup Dialogs, Menus, and Windows.

– Core structure components and tags: Provide the tags needed to create pages
and layouts, such as documents, forms and subforms, and resources. These
tags are discussed in various chapters.

• Text and selection components

These components allow you to display text, from a simple output text component
to input components, including selection components, to a complex list of value
component.

– Output components: Display text and graphics, and can also play video and
music clips. ADF Faces also includes a carousel component that can display
graphics in a revolving carousel. See Using Output Components.

– Input components: Allow users to enter data or other types of information,
such as color selection or date selection. ADF Faces also provides simple lists
from which users can choose the data to be posted, as well as a file upload
component. For information about input components, see Using Input
Components and Defining Forms .

– List-of-Values (LOV) components: Allow users to make selections from lists
driven by a model that contains functionality like searching for a specific value
or showing values marked as favorites. These LOV components are useful
when a field used to populate an attribute for one object might actually be
contained in a list of other objects, as with a foreign key relationship in a
database. See Using List-of-Values Components.

• Data Views

ADF Faces provides a number of different ways to display complex data.

– Table and tree components: Display structured data in tables or expandable
trees. ADF Faces tables provide functionality such as sorting column data,
filtering data, and showing and hiding detailed content for a row. Trees have
built-in expand/collapse behavior. Tree tables combine the functionality of
tables with the data hierarchy functionality of trees. See Using Tables, Trees,
and Other Collection-Based Components.

– Data visualization components: Allow users to view and analyze complex data
in real time. ADF Data Visualization components include graphs, gauges, pivot
tables, timelines, geographic and thematic maps, Gantt charts, hierarchy
viewers, and treemap and sunbursts that display row set and hierarchical data,
for example an organization chart. See Introduction to ADF Data Visualization
Components.

– Query components: Allow users to query data. The query component can
support multiple search criteria, dynamically adding and deleting criteria,
selectable search operators, match all/any selections, seeded or saved
searches, a basic or advanced mode, and personalization of searches. See
Using Query Components.

– Specialty display components: The calendar component displays activities in
day, week, month, or list view. You can implement popup components that

Chapter 1
ADF Faces Components

1-5

allow users to create, edit, or delete activities. See Using a Calendar
Component. The carousel component allows you to display a collection of
images in a scrollable manner. See Displaying Images in a Carousel.

• Messaging and help: The framework provides the ability to display tooltips,
messages, and help for input components, as well as the ability to display global
messages for the application. The help framework allows you to create messages
that can be reused throughout the application. You create a help provider using a
Java class, a managed bean, an XLIFF file, or a standard properties file, or you
can link to an external HTML-based help system. See Displaying Tips, Messages,
and Help.

• Hierarchical menu model: ADF Faces provides navigation components that render
items such as tabs and breadcrumbs for navigating hierarchical pages. The
framework provides an XML-based menu model that, in conjunction with a
metadata file, contains all the information for generating the appropriate number of
hierarchical levels on each page, and the navigation items that belong to each
level. See Working with Navigation Components.

• General controls

General controls include the components used to navigate, as well as to display
images and icons,

– Navigation components: Allow users to go from one page to the next. ADF
Faces navigation components include buttons and links, as well as the
capability to create more complex hierarchical page flows accessed through
different levels of menus. See Working with Navigation Components.

– Images and icon components: Allow you to display images as simple as icons,
to as complex as video. See Using Output Components.

• Operations

While not components, these tags work with components to provide additional
functionality, such as drag and drop, validation, and a variety of event listeners.
These operational tags are discussed with the components that use them.

Chapter 1
ADF Faces Components

1-6

2
ADF Faces Components Demo Application

This chapter describes the ADF Faces Components Demo application that can be
used in conjunction with this developers guide.
This chapter contains the following sections:

• About the ADF Faces Components Demo Application

• Downloading and Installing the ADF Faces Components Demo Application

About the ADF Faces Components Demo Application
The ADF Faces Components demo application showcases the various components
and framework capabilities and allows users to try different property settings on the
selected component. The components demo is provided with full source code.

ADF Faces includes the ADF Faces Components Demo application that allows you
both to experiment with running samples of the components and architecture features
and to view the source code.

The ADF Faces Components Demo application contains the following:

• Tag guide: Demonstrations of ADF Faces components, validators, converters, and
miscellaneous tags, along with a property editor to see how changing attribute
values affects the component. Figure 2-1 shows the demonstration of the
selectManyCheckbox component. Each demo provides a link to the associated tag
documentation.

2-1

Figure 2-1 Tag Demonstration

• Feature demos: Various pages that demonstrate different ways you can use ADF
components. For example, the File Explorer is an application with a live data
model that displays a directory structure and allows you to create, save, and move
directories and files. This application is meant to showcase the components and
features of ADF Faces in a working application, as shown in Figure 2-2.

Chapter 2
About the ADF Faces Components Demo Application

2-2

Figure 2-2 File Explorer Application

Other pages demonstrate the main architectural features of ADF Faces, such as
layout components, Ajax postback functionality, and drag and drop. Figure 2-3
shows the demonstration on using the AutoSubmit attribute and partial page
rendering.

Chapter 2
About the ADF Faces Components Demo Application

2-3

Figure 2-3 Framework Demonstration

• Visual designs: Demonstrations of how you can use types of components in
different ways to achieve different UI designs. Figure 2-4 shows how you can
achieve different looks for a toolbar.

Chapter 2
About the ADF Faces Components Demo Application

2-4

Figure 2-4 Toolbar Design Demonstration

• Styles: Demonstration of how setting inline styles and content styles affects
components. Figure 2-5 shows different styles applied to the panelBox component.

Figure 2-5 Styles Demonstration

• Commonly confused components: A comparison of components that provide
similar functionality. Figure 2-6 shows the differences between the various
components that display selection lists.

Chapter 2
About the ADF Faces Components Demo Application

2-5

Figure 2-6 Commonly Confused Components

Additional Components of the File Explorer in the Demo Application

Because the File Explorer is a complete working application, many sections in this
guide use that application to illustrate key points, or to provide code samples. The
source for the File Explorer application can be found in the fileExplorer directory.

The File Explorer application uses the fileExplorerTemplate page template. This
template contains a number of layout components that provide the basic look and feel
for the application. For information about layout components, see Organizing Content
on Web Pages. For information about using templates, see Creating and Reusing
Fragments, Page Templates, and Components.

The left-hand side of the application contains a panelAccordion component that holds
two areas: the directory structure and a search field with a results table, as shown in
Figure 2-7.

Figure 2-7 Directory Structure Panel and Search Panel

Chapter 2
About the ADF Faces Components Demo Application

2-6

You can expand and collapse both these areas. The directory structure is created
using a tree component. The search area is created using input components, a
button, and a table component. For information about using panelAccordion
components, see Displaying or Hiding Contents in Panels. For information about using
input components, see Using Input Components and Defining Forms . For information
about using buttons, see Working with Navigation Components. For information about
using tables and trees, see Using Tables, Trees, and Other Collection-Based
Components.

The right-hand side of the File Explorer application uses tabbed panes to display the
contents of a directory in either a table, a tree table or a list, as shown in Figure 2-8.

Figure 2-8 Directory Contents in Tabbed Panels

The table and tree table have built-in toolbars that allow you to manipulate how the
contents are displayed. In the table an list, you can drag a file or subdirectory from one
directory and drop it into another. In all tabs, you can right-click a file, and from the
context menu, you can view the properties of the file in a popup window. For
information about using tabbed panes, see Displaying or Hiding Contents in Panels.
For information about table and tree table toolbars, see Displaying Table Menus,
Toolbars, and Status Bars. For information about using context menus and popup
windows, see Using Popup Dialogs, Menus, and Windows.

The top of the File Explorer application contains a menu and a toolbar, as shown in
Figure 2-9.

Figure 2-9 Menu and Toolbar

Chapter 2
About the ADF Faces Components Demo Application

2-7

The menu options allow you to create and delete files and directories and change how
the contents are displayed. The Help menu opens a help system that allows users to
provide feedback in dialogs, as shown in Figure 2-10.

Figure 2-10 Help System

The help system consists of a number of forms created with various input components,
including a rich text editor. For information about menus, see Using Menus in a Menu
Bar. For information about creating help systems, see Displaying Help for
Components. For information about input components, see Using Input Components
and Defining Forms .

Within the toolbar of the File Explorer are controls that allow you navigate within the
directory structure, as well as controls that allow you to change the look and feel of the
application by changing its skin. Figure 2-11 shows the File Explorer application using
the simple skin.

Chapter 2
About the ADF Faces Components Demo Application

2-8

Figure 2-11 File Explorer Application with the Simple Skin

For information about toolbars, see Using Toolbars. For information about using skins,
see Customizing the Appearance Using Styles and Skins.

Downloading and Installing the ADF Faces Components
Demo Application

You can download and install the ADF Faces Components Demo application from
Oracle Technology Network (OTN) web site; you can open and view the demo using
JDeveloper when you want to view samples of ADF Faces components and to
understand features.

In order to view the demo application (both the code and at runtime), install
JDeveloper, and then download and open the application within JDeveloper.

You can download the ADF Faces Components Demo application from the Oracle
Technology Network (OTN) web site. Navigate to http://www.oracle.com/
technetwork/developer-tools/adf/overview/ index-092391.html and click the
ADF Faces Components Demo link in the Download section of the page. The
resulting page provides detailed instructions for downloading the WAR file that
contains the application, along with instructions for deploying the application to a
standalone server, or for running the application using the Integrated WebLogic Server
included with JDeveloper.

If you do not want to install the application, you can run the application directly from
OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.

Chapter 2
Downloading and Installing the ADF Faces Components Demo Application

2-9

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html

3
Getting Started with ADF Faces and
JDeveloper

This chapter describes how to use JDeveloper to declaratively create ADF Faces
applications.
This chapter includes the following sections:

• About Developing Declaratively in JDeveloper

• Creating an Application Workspace

• Defining Page Flows

• Creating a View Page

• Creating EL Expressions

• Creating and Using Managed Beans

• Viewing ADF Faces Javadoc

About Developing Declaratively in JDeveloper
The ADF framework provides a visual and declarative approach to Java EE
development. It supports rapid application development based on ready-to-use design
patterns, metadata-driven and visual tools.

Using JDeveloper with ADF Faces and JSF provides a number of areas where page
and managed bean code is generated for you declaratively, including creating EL
expressions and automatic component binding. Additionally, there are a number of
areas where XML metadata is generated for you declaratively, including metadata that
controls navigation and configuration.

At a high level, the development process for an ADF Faces view project usually
involves the following:

• Creating an Application Workspace

• Defining Page Flows

• Creating a View Page using either Facelets or JavaServer Pages (JSPs).

• Deploying the application. See Deploying ADF Applications in Administering
Oracle ADF Applications. If your application uses ADF Faces with the ADF Model
layer, ADF Controller, and ADF Business Components, see Deploying Fusion
Web Applications in Developing Fusion Web Applications with Oracle Application
Development Framework.

Ongoing tasks throughout the development cycle will likely include the following:

• Creating and Using Managed Beans

• Creating EL Expressions

• Viewing ADF Faces Javadoc

3-1

JDeveloper also includes debugging and testing capabilities. See Testing and
Debugging ADF Components in Developing Fusion Web Applications with Oracle
Application Development Framework.

Creating an Application Workspace
An application workspace is a directory that helps the ADF application developer to
gather various source code files and resources and work with them as a cohesive unit.
It is the one of the first steps in building a new application.

The first steps in building a new application are to assign it a name and to specify the
directory where its source files will be saved. You can either create an application that
just contains the view layer, or you can add an ADF Faces project to an existing
application.

Note:

This document covers only how to create the ADF Faces project in an
application, without regard to the business services used or the binding to
those services. For information about how to use ADF Faces with the ADF
Model layer, ADF Controller, and ADF Business Components, see Getting
Started with Your Web Interface in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Create an ADF Faces Application Workspace
You create an application workspace using the Create Application wizard.

To create an application:

1. In the menu, choose File > New > Application.

2. In the New Gallery, select Custom Application and click OK.

3. In the Create Custom Application dialog, set a name, directory location, and
package prefix of your choice and click Next.

4. In the Name Your Project page, you can optionally change the name and location
for your view project. On the Project Features tab, shuttle ADF Faces to Selected.
The necessary libraries and metadata files for ADF Faces will be added to your
project. Click Next.

5. In the Configure Java Settings page, optionally change the package name, Java
source path, and output directory for any Java classes you might create. Click
Finish.

Chapter 3
Creating an Application Workspace

3-2

Tip:

You can also add ADF Faces to an existing project (for example, a view
project in a JEE web application). To do so:

a. Right-click the project and choose Project Properties.

b. In the Project Properties dialog, select Features, then click the Add
(green plus) icon, and shuttle ADF Faces to the Selected pane.

What Happens When You Create an Application Workspace
When you create an application workspace using the Custom template, and then
select ADF Faces for your project, JDeveloper creates a project that contains all the
source and configuration files needed for an ADF Faces application. Additionally,
JDeveloper adds the following libraries to your project:

• JSF 2.2

• JSTL 1.2

• JSP Runtime

Once the projects are created for you, you can rename them. Figure 3-1 shows the
workspace for a new ADF Faces application.

Figure 3-1 New Workspace for an ADF Faces Application

Chapter 3
Creating an Application Workspace

3-3

JDeveloper also sets configuration parameters in the configuration files based on the
options chosen when you created the application. In the web.xml file, these are
configurations needed to run a JSF application (settings specific to ADF Faces are
added when you create a JSF page with ADF Faces components). Following is the
web.xml file generated by JDeveloper when you create a new ADF Faces application.

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

Configurations required for specific ADF Faces features are covered in the respective
chapters of this guide. For example, any configuration needed in order to use the
Change Persistence framework is covered in Allowing User Customization on JSF
Pages. For comprehensive information about configuring an ADF Faces application,
see ADF Faces Configuration.

Defining Page Flows
Defining the page flow of your ADF Faces application refers to how the UI elements
are arranged in pages, designing the right sequence of pages, how pages interact with
each other and how they can be modularized and communicate with each other as
well. Navigation cases and rules are used to define the page flow.

Once you create your application workspace, often the next step is to design the flow
of your UI. As with standard JSF applications, ADF Faces applications use navigation
cases and rules to define the page flow. These definitions are stored in the faces-
config.xml file. JDeveloper provides a diagrammer through which you can
declaratively define your page flow using icons.

Figure 3-2 shows the navigation diagram created for a simple page flow that contains
two pages: a DisplayCustomer page that shows data for a specific customer, and an
EditCustomer page that allows a user to edit the customer information. There is one
navigation rule that goes from the display page to the edit page and one navigation
rule that returns to the display page from the edit page.

Chapter 3
Defining Page Flows

3-4

Figure 3-2 Navigation Diagram in JDeveloper

Note:

If you plan on using ADF Model data binding and ADF Controller, then you
use ADF task flows to define your navigation rules. See “Getting Started with
ADF Task Flows" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Best Practice:

ADF Controller extends the JSF default controller. While you can technically
use the JSF controller and ADF Controller in your application, you should
use only one or the other.

With the advent of JSF 2.0, you no longer need to create a navigation case for simple
navigation between two pages. If no matching navigation case is found after checking
all available rules, the navigation handler checks to see whether the action outcome
corresponds to a view ID. If a view matching the action outcome is found, an implicit
navigation to the matching view occurs. For information on how navigation works in a
JSF application, see the Java EE 6 tutorial (http://download.oracle.com/javaee/
index.html).

How to Define a Page Flow
You use the navigation diagrammer to declaratively create a page flow using Facelets
or JSPX pages. When you use the diagrammer, JDeveloper creates the XML
metadata needed for navigation to work in your application in the faces-config.xml
file.

Before you begin:

It may be helpful to have an understanding of page flows. For information, see
Defining Page Flows.

To create a page flow:

1. In the Applications window, double-click the faces-config.xml file for your
application. By default, this is in the Web Content/WEB-INF node of your project.

Chapter 3
Defining Page Flows

3-5

http://download.oracle.com/javaee/index.html
http://download.oracle.com/javaee/index.html

2. In the editor window, click the Diagram tab to open the navigation diagrammer.

3. If the Components window is not displayed, from the main menu choose Window
> Components. By default, the Components window is displayed in the upper
right-hand corner of JDeveloper.

4. In the Components window, use the dropdown menu to choose ADF Task Flow.

The components are contained in three accordion panels: Source Elements,
Components, and Diagram Annotations. Figure 3-3 shows the Components
window displaying JSF navigation components.

Figure 3-3 Components in JDeveloper

5. Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

Tip:

You can also use the overview editor to create navigation rules and
navigation cases by clicking the Overview tab. For help with the editor, click
Help or press F1.

Additionally, you can manually add elements to the faces-config.xml file by
directly editing the page in the source editor. To view the file in the source
editor, click the Source tab.

Once the navigation for your application is defined, you can create the pages and add
the components that will execute the navigation. For information about using
navigation components on a page, see Working with Navigation Components.

What Happens When You Use the Diagrammer to Create a Page Flow
When you use the diagrammer to create a page flow, JDeveloper creates the
associated XML entries in the faces-config.xml file. This code shows the XML
generated for the navigation rules displayed in Figure 3-2.

Chapter 3
Defining Page Flows

3-6

<navigation-rule>
 <from-view-id>/DisplayCustomer</from-view-id>
 <navigation-case>
 <from-outcome>edit</from-outcome>
 <to-view-id>/EditCustomer</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/EditCustomer</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/DisplayCustomer</to-view-id>
 </navigation-case>
</navigation-rule>

Creating a View Page
The JSF pages you create for your ADF Faces application using JavaServer Faces
can be Facelets documents (.jsf) or JSP documents written in XML syntax (.jspx).You
can define the look and feel for the new page, and you can specify whether or not
components on the page are exposed in a managed bean, to allow programmatic
manipulation of the UI components.

From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSF page files. You can choose to create either a
Facelets page or a JSP page. Facelet pages use the extension *.jsf. Facelets is a
JSF-centric declarative XML view definition technology that provides an alternative to
using the JSP engine.

If instead you create a JSP page for an ADF Faces application, you create an XML-
based JSP document, which uses the extension *.jspx. Using an XML-based
document has the following advantages:

• It simplifies treating your page as a well-formed tree of UI component tags.

• It discourages you from mixing Java code and component tags.

• It allows you to easily parse the page to create documentation or audit reports.

Best Practice:

Use Facelets to take advantage of the following:

• The Facelets layer was created specifically for JSF, which results in
reduced overhead and improved performance during tag compilation and
execution.

• Facelets is considered the primary view definition technology in JSF 2.0.

• Some future performance enhancements to the JSF standard will only
be available with Facelets.

ADF Faces provides a number of components that you can use to define the overall
layout of a page. JDeveloper contains predefined quick start layouts that use these
components to provide you with a quick and easy way to correctly build the layout.
You can choose from one, two, or three column layouts, and then determine how you

Chapter 3
Creating a View Page

3-7

want the columns to behave. For example, you may want one column's width to be
locked, while another column stretches to fill available browser space. Figure 3-4
shows the quick start layouts available for a two-column layout with the second column
split between two panes. For information about the layout components, see Organizing
Content on Web Pages.

Figure 3-4 Quick Layouts

Best Practice:

Creating a layout that works correctly in all browsers can be time consuming.
Use a predefined quick layout to avoid any potential issues.

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Quick Start
Layout Themes. For information about themes, see Customizing the Appearance
Using Styles and Skins

When you know you want to use the same layout on many pages in your application,
ADF Faces allows you to create and use predefined page templates. When creating
templates, the template developer can not only determine the layout of any page that
will use the template, but can also provide static content that must appear on all
pages, as well as create placeholder attributes that can be replaced with valid values
for each individual page.

For example, ADF Faces ships with the Oracle Three-Column-Layout template. This
template provides areas for specific content, such as branding, a header, and

Chapter 3
Creating a View Page

3-8

copyright information, and also displays a static logo and busy icon, as shown in
Figure 3-5.

Figure 3-5 Oracle Three Column Layout Template

Whenever a template is changed, for example if the layout changes, any page that
uses the template will also be automatically updated. For information about creating
and using templates, see Using Page Templates.

Best Practice:

Use templates to ensure consistency and so that in the future, you can easily
update multiple pages in an application.

At the time you create a JSF page, you can also choose to create an associated
backing bean for the page. Backing beans allow you to access the components on the
page programmatically. For information about using backing beans with JSF pages,
see What You May Need to Know About Automatic Component Binding.

Best Practice:

Create backing beans only for pages that contain components that must be
accessed and manipulated programmatically. Use managed beans instead if
you need only to provide additional functionality accessed through EL
expressions on component attributes (such as listeners).

Once your page files are created, you can add UI components and work with the page
source.

Chapter 3
Creating a View Page

3-9

How to Create JSF Pages
You create JSF pages (either Facelets or JSP) using the Create JSF Page dialog.

Before you begin:

It may be helpful to have an understanding of the different options when creating a
page. See Creating a View Page.

To create a JSF page:

1. In the Applications window, right-click the node (directory) where you would like
the page to be saved, and choose New > Page.

OR

From a navigation diagram, double-click a page icon for a page that has not yet
been created.

2. Complete the Create JSF Page dialog. For help, click Help in the dialog. For
information about the Managed Bean page, which can be used to automatically
create a backing bean and associated bindings, see What You May Need to Know
About Automatic Component Binding.

Note:

While a Facelets page can use any extension you'd like, a Facelets page
must use the .jsf extension to be customizable. See Allowing User
Customization on JSF Pages.

What Happens When You Create a JSF Page
When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates
the physical file and adds the code necessary to import the component libraries and
display a page. The code created depends on whether or not you chose to create a
Facelets or JSP page.

The following shows the code for a Facelets page when it is first created by
JDeveloper.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE html>
<f:view xmlns:f="http://java.sun.com/jsf/core" xmlns:af="http://xmlns.oracle.com/adf/
faces/rich">
 <af:document title="DisplayCustomer.jsf" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
</f:view>

Below is the code for a .jspx page when it is first created by JDeveloper.

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>

Chapter 3
Creating a View Page

3-10

 <f:view>
 <af:document title="EditCustomer" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
 </f:view>
</jsp:root>

If you chose to use one of the quick layouts, then JDeveloper also adds the
components necessary to display the layout. For example, the code below is what
JDeveloper generates when you choose a two-column layout where the first column is
locked and the second column stretches to fill up available browser space, and you
also choose to apply themes.

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="EditCustomer" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1">
 <af:gridRow height="100%" id="gr1">
 <af:gridCell width="100px" halign="stretch"
 valign="stretch" id="gc1">
 <!-- Left -->
 </af:gridCell>
 <af:gridCell width="100%" halign="stretch"
 valign="stretch" id="gc2">
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center">
 <!-- Content -->
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:decorativeBox>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

If you chose to automatically create a backing bean using the Managed Bean tab of
the dialog, JDeveloper also creates and registers a backing bean for the page, and
binds any existing components to the bean, as shown in the code below.

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;

 public void setF1(RichForm f1) {
 this.f1 = f1;

Chapter 3
Creating a View Page

3-11

 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.document1 = d1;
 }

 public RichDocument getD1() {
 return d1;
 }
}

Tip:

You can access the backing bean source from the JSF page by right-clicking
the page in the editor, and choosing Go to and then selecting the bean from
the list.

Additionally, JDeveloper adds the following libraries to the view project:

• ADF Faces Runtime 11

• ADF Common Runtime

• ADF DVT Faces Runtime

• ADF DVT Faces Databinding Runtime

• ADF DVT Faces Databinding MDS Runtime

• Oracle JEWT

JDeveloper also adds entries to the web.xml file. Following is the web.xml file created
once you create a JSF page.

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>
 org.apache.myfaces.trinidad.webapp.ResourceServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.GraphServlet</servlet-class>
 </servlet>
 <servlet>

Chapter 3
Creating a View Page

3-12

 <servlet-name>BIGAUGESERVLET</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.GaugeServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MapProxyServlet</servlet-name>
 <servlet-class>oracle.adf.view.faces.bi.webapp.MapProxyServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <url-pattern>/servlet/GraphServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <url-pattern>/servlet/GaugeServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MapProxyServlet</servlet-name>
 <url-pattern>/mapproxy/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/bi/*</url-pattern>
 </servlet-mapping>
 <context-param>
 <param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <param-value>*.jsf;*.xhtml</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <description>If this parameter is true, there will be an automatic check of the
modification date of your JSPs, and saved state will be discarded when JSP's change.
It will also automatically check if your skinning css files have changed without you
having to restart the server. This makes development easier, but adds overhead. For
this reason this parameter should be set to false when your application is
deployed.</description>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <description>Whether the 'Generated by...' comment at the bottom of ADF Faces
HTML pages should contain version number information.</description>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>

Chapter 3
Creating a View Page

3-13

 <param-value>false</param-value>
 </context-param>
 <context-param>
 <description>Security precaution to prevent clickjacking: bust frames if the
ancestor window domain(protocol, host, and port) and the frame domain are different.
Another options for this parameter are always and never.</description>
 <param-name>org.apache.myfaces.trinidad.security.FRAME_BUSTING</param-name>
 <param-value>differentOrigin</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.VALIDATE_EMPTY_FIELDS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS</param-name>
 <param-value>auto</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_XML_INSTRUCTIONS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_DECORATORS</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfTagDecorator
 </param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_RESOURCE_RESOLVER</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
 </param-value>
 </context-param>
 <context-param>
 <param-name>oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT</param-name>
 <param-value>HTML5</param-value>
 </context-param>
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>
 <mime-mapping>
 <extension>swf</extension>
 <mime-type>application/x-shockwave-flash</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>amf</extension>
 <mime-type>application/x-amf</mime-type>
 </mime-mapping>
</web-app>

Chapter 3
Creating a View Page

3-14

Note:

The Facelets context parameters are only created if you create a Facelets
page.

In the faces-config.xml file, when you create a JSF page, JDeveloper creates an
entry that defines the default render kit (used to display the components in an HTML
client) for ADF Faces, as shown below.

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="2.1" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (UI) components in the application, as shown in below.

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>skyros</skin-family>
 <skin-version>v1</skin-version>
</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source
editor by clicking the Source tab. The Structure window located in the lower left-hand
corner of JDeveloper, provides a hierarchical view of the page.

What You May Need to Know About Updating Your Application to Use
the Facelets Engine

JSF 2.1 web applications can run using either the Facelets engine or JSP servlet
engine. By default, documents with the *.jsf and *.xhtml extensions are handled by
the Facelets engine, while documents with the *.jsp and *.jspx extensions are
handled by the JSP engine. However, this behavior may be changed by setting the
javax.faces.FACELETS_VIEW_MAPPINGS context parameter in the web.xml file.
Because ADF Faces allows JSP pages to be run with the Facelets engine, you may
decide that you want an existing application of JSP pages to use the Facelets engine.
To do that, insert the following code into your web.xml page.

<context-param>
 <param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <!-- Map both *.jspx and *.jsf to the Facelets engine -->
 <param-value>*.jsf; *.jspx</param-value>
 </context-param>

 <context-param>
 <param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
 </context-param>

 <context-param>

Chapter 3
Creating a View Page

3-15

 <param-name>javax.faces.FACELETS_DECORATORS</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfTagDecorator
 </param-value>
 </context-param>

 <context-param>
 <param-name>
 javax.faces.FACELETS_RESOURCE_RESOLVER
 </param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
 </param-value>
 </context-param>

You then must redeploy your ADF Faces libraries.

Note that if you do change your application to use the Facelets engine, then your
application will use JSF partial state saving, which is not currently compatible with ADF
Faces. You will need to explicitly add the entry shown below.

 <context-param>
 <param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
 <param-value>false</param-value>
 </context-param>

Once this incompatibility is resolved, you should re-enable partial state saving by
removing the entry. Check your current release notes at http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.html for the latest
information on partial state saving support.

Note:

When you switch from the servlet engine to the Facelets engine, you may
find certain parts of your application do not function as expected. For
example, if you have any custom JSP tags, these tags will need to be
reimplemented to work with the Facelets engine. For more information, refer
to the ADF Faces release notes.

What You May Need to Know About Automatic Component Binding
Backing beans are managed beans that contain logic and properties for UI
components on a JSF page (for information about managed beans, see Creating and
Using Managed Beans). If when you create your JSF page you choose to
automatically expose UI components by selecting one of the choices in the Page
Implementation option of the Create JSF Page dialog, JDeveloper automatically
creates a backing bean (or uses a managed bean of your choice) for the page. For
each component you add to the page, JDeveloper then inserts a bean property for that
component, and uses the binding attribute to bind component instances to those
properties, allowing the bean to accept and return component instances.

Specifically, JDeveloper does the following when you use automatic component
binding:

Chapter 3
Creating a View Page

3-16

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

• Creates a JavaBean using the same name as the JSF file, and places it in the
view.backing package (if you elect to have JDeveloper create a backing bean).

• Creates a managed bean entry in the faces-config.xml file for the backing bean.
By default, the managed bean name is backing_<page_name> and the bean uses
the request scope (for information about scopes, see Object Scope Lifecycles).

Note:

JDeveloper does not create managed bean property entries in the
faces-config.xml file. If you wish the bean to be instantiated with
certain property values, you must perform this configuration in the
faces-config.xml file manually. See How to Configure for ADF Faces in
faces-config.xml .

• On the newly created or selected bean, adds a property and accessor methods for
each component tag you place on the JSF page. JDeveloper binds the component
tag to that property using an EL expression as the value for its binding attribute.

• Deletes properties and methods for any components deleted from the page.

Once the page is created and components added, you can then declaratively add
method binding expressions to components that use them by double-clicking the
component in the visual editor, which launches an editor that allows you to select the
managed bean and method to which you want to bind the attribute. When automatic
component binding is used on a page and you double-click the component, skeleton
methods to which the component may be bound are automatically created for you in
the page's backing bean. For example, if you add a button component and then
double-click it in the visual editor, the Bind Action Property dialog displays the page's
backing bean along with a new skeleton action method, as shown in Figure 3-6.

Figure 3-6 Bind Action Property Dialog

You can select from one these methods, or if you enter a new method name,
JDeveloper automatically creates the new skeleton method in the page's backing
bean. You must then add the logic to the method.

Chapter 3
Creating a View Page

3-17

Note:

When automatic component binding is not used on a page, you must select
an existing managed bean or create a new backing bean to create the
binding.

For example, suppose you created a JSF page with the file name myfile.jsf. If you
chose to let JDeveloper automatically create a default backing bean, then JDeveloper
creates the backing bean as view.backing.MyFile.java, and places it in the \src
directory of the ViewController project. The backing bean is configured as a
managed bean in the faces-config.xml file, and the default managed bean name is
backing_myfile.

The following code from a JSF page uses automatic component binding, and contains
form, inputText, and button components.

<f:view>
 <af:document id="d1" binding="#{backing_myfile.d1}">
 <af:form id="f1" binding="#{backing_myfile.f1}">
 <af:inputText label="Label 1" binding="#{backing_MyFile.it1}"
 id="inputText1"/>
 <af:button text="button 1"
 binding="#{backing_MyFile.b1}"
 id="b1"/>
 </af:form>
 </af:document>
</f:view>

Following is the corresponding code on the backing bean.

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;
import oracle.adf.view.rich.component.rich.input.RichInputText;
import oracle.adf.view.rich.component.rich.nav.RichButton;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;
 private RichInputText it1;
 private RichButton b1;

 public void setForm1(RichForm f1) {
 this.form1 = f1;
 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.d1 = d1;
 }

 public RichDocument getD1() {
 return d1;

Chapter 3
Creating a View Page

3-18

 }

 public void setIt1(RichInputText it1) {
 this.inputText1 = inputText1;
 }

 public RichInputText getInputText1() {
 return inputText1;
 }

 public void setB1(RichButton b1) {
 this.button1 = button1;
 }

 public RichButton getB1() {
 return b1;
 }

 public String b1_action() {
 // Add event code here...
 return null;
 }
}

This code, added to the faces-config.xml file, registers the page's backing bean as a
managed bean.

<managed-bean>
 <managed-bean-name>backing_MyFile</managed-bean-name>
 <managed-bean-class>view.backing.MyFile</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

Note:

Instead of registering the managed bean in the faces-config.xml file, if you
are using Facelets, you can elect to use annotations in the backing bean for
registration. For information about using annotations in managed and
backing beans, see the Java EE 6 tutorial at http://www.oracle.com/
technetwork/java/index.html.

In addition, when you edit a Java file that is a backing bean for a JSF page, a method
binding toolbar appears in the source editor for you to bind appropriate methods
quickly and easily to selected components in the page. When you select an event,
JDeveloper creates the skeleton method for the event, as shown in Figure 3-7.

Chapter 3
Creating a View Page

3-19

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Figure 3-7 You Can Declaratively Create Skeleton Methods in the Source Editor

Once you create a page, you can turn automatic component binding off or on, and you
can also change the backing bean to a different Java class. Open the JSF page in the
visual Editor and from the JDeveloper menu, choose Design > Page Properties. Here
you can select or deselect the Auto Bind option, and change the managed bean
class. Click Help for information about using the dialog.

Note:

If you turn automatic binding off, nothing changes in the binding attributes of
existing bound components in the page. If you turn automatic binding on, all
existing bound components and any new components that you insert are
bound to the selected backing bean. If automatic binding is on and you
change the bean selection, all existing bindings and new bindings are
switched to the new bean.

You can always access the backing bean for a JSF page from the page editor by right-
clicking the page, choosing Go to Bean, and then choosing the bean from the list of
beans associated with the JSF.

How to Add ADF Faces Components to JSF Pages
Once you have created a page, you can use the Components window to drag and
drop components onto the page. JDeveloper then declaratively adds the necessary
page code and sets certain values for component attributes.

Chapter 3
Creating a View Page

3-20

Tip:

For detailed procedures and information about adding and using specific
ADF Faces components, see Using Common ADF Faces Components .

Note:

You cannot use ADF Faces components on the same page as MyFaces
Trinidad components (tr: tags) or other Ajax-enabled library components.
You can use Trinidad HTML tags (trh:) on the same page as ADF Faces
components, however you may experience some browser layout issues. You
should always attempt to use only ADF Faces components to achieve your
layout.

Note that your application may contain a mix of pages built using either ADF
Faces or other components.

Before you begin:

It may be helpful to have an understanding of creating a page. See Creating a View
Page.

To add ADF Faces components to a page:

1. In the Applications window, double-click a JSF page to open it.

2. If the Components window is not displayed, from the menu choose Window >
Components. By default, the Components window is displayed in the upper right-
hand corner of JDeveloper.

3. In the Components window, use the dropdown menu to choose ADF Faces.

Tip:

If the ADF Faces page is not available in the Components window, then
you need to add the ADF Faces tag library to the project.

For a Facelets file:

a. Right-click the project node and choose Project Properties.

b. Select JSP Tag Libraries to add the ADF Faces library to the
project. For help, click Help or press F1.

For a JSPX file:

a. Right-click inside the Components window and choose Edit Tab
Libraries.

b. In the Customize Components window dialog, shuttle ADF Faces
Components to Selected Libraries, and click OK.

Chapter 3
Creating a View Page

3-21

The components are contained in 6 accordion panels: General Controls (which
contains components like buttons, icons, and menus), Text and Selection, Data
Views (which contains components like tables and trees), Menus and Toolbars,
Layout, and Operations.

Figure 3-8 shows the Components Window displaying the general controls for
ADF Faces.

Figure 3-8 Components Window in JDeveloper

4. Select the component you wish to use and drag it onto the page.

JDeveloper redraws the page in the visual editor with the newly added component.
In the visual editor, you can directly select components on the page and use the
resulting context menu to add more components.

Tip:

You can also drag and drop components from the Components window into
the Structure window or directly into the code in the source editor.

You can always add components by directly editing the page in the source
editor. To view the page in the source editor, click the Source tab at the
bottom of the window.

Chapter 3
Creating a View Page

3-22

What Happens When You Add Components to a Page
When you drag and drop components from the Components window onto a JSF page,
JDeveloper adds the corresponding code to the JSF page. This code includes the tag
necessary to render the component, as well as values for some of the component
attributes. For example, the following shows the code when you drop an Input Text
and a Button component from the palette.

<af:inputText label="Label 1" id="it1"/>
<af:button text="button 1" id="b1"/>

Note:

If you chose to use automatic component binding, then JDeveloper also adds
the binding attribute with its value bound to the corresponding property on
the page's backing bean. See What You May Need to Know About
Automatic Component Binding.

When you drop a component that contains mandatory child components (for example
a table or a list), JDeveloper launches a wizard where you define the parent and also
each of the child components. Figure 3-9 shows the Table wizard used to create a
table component and the table's child column components.

Figure 3-9 Table Wizard in JDeveloper

Chapter 3
Creating a View Page

3-23

Below is the code created when you use the wizard to create a table with three
columns, each of which uses an outputText component to display data.

<af:table var="row" rowBandingInterval="0" id="t1">
 <af:column sortable="false" headerText="col1" id="c1">
 <af:outputText value="#{row.col1}" id="ot1"/>
 </af:column>
 <af:column sortable="false" headerText="col2" id="c2">
 <af:outputText value="#{row.col2}" id="ot2"/>
 </af:column>
 <af:column sortable="false" headerText="col3" id="c3">
 <af:outputText value="#{row.col3}" id="ot3"/>
 </af:column>
</af:table>

How to Set Component Attributes
Once you drop components onto a page you can use the Properties window
(displayed by default at the bottom right of JDeveloper) to set attribute values for each
component.

Tip:

If the Properties window is not displayed, choose Window > Properties from
the main menu.

Figure 3-10 shows the Properties window displaying the attributes for an inputText
component.

Figure 3-10 JDeveloper Properties Window

The Properties window has sections that group similar properties together. For
example, the Properties window groups commonly used attributes for the inputText
component in the Common section, while properties that affect how the component
behaves are grouped together in the Behavior section. Figure 3-11 shows the
Behavior section of the Properties window for an inputText component.

Chapter 3
Creating a View Page

3-24

Figure 3-11 Behavior Section of the Properties window

Before you begin:

It may be helpful to have an understanding of the different options when creating a
page. For information, see Creating a View Page.

To set component attributes:

1. Select the component, in the visual editor, in the Structure window, or by selecting
the tag directly in the source editor.

2. In the Properties window, expand the section that contains the attribute you wish
to set.

Tip:

Some attributes are displayed in more than one section. Entering or
changing the value in one section will also change it in any other
sections. You can search for an attribute by entering the attribute name
in the search field at the top of the inspector.

3. Either enter values directly into the fields, or if the field contains a dropdown list,
use that list to select a value. You can also use the dropdown to the right of the
field, which launches a popup containing tools you can use to set the value. These
tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder). For information about using the
Expression Builder, see Creating EL Expressions. This popup also displays a
description of the property, as shown in Figure 3-12.

Chapter 3
Creating a View Page

3-25

Figure 3-12 Property Tools and Help

What Happens When You Use the Properties window
When you use the Properties window to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

Tip:

You can always change attribute values by directly editing the page in the
source editor. To view the page in the source editor, click the Source tab at
the bottom of the window.

Creating EL Expressions
In ADF applications, Express Language (EL) expressions provide an important
mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (managed beans). The EL expressions are used by both JavaServer
Faces technology (JSF) and JavaServer Pages (JSP) technology.

You use EL expressions throughout an ADF Faces application to bind attributes to
object values determined at runtime. For example, #{UserList.selectedUsers} might
reference a set of selected users, #{user.name} might reference a particular user's
name, while #{user.role == 'manager'} would evaluate whether a user is a
manager or not. At runtime, a generic expression evaluator returns the List, String,
and boolean values of these respective expressions, automating access to the
individual objects and their properties without requiring code.

At runtime, the value of certain JSF UI components (such as an inputText component
or an outputText component) is determined by its value attribute. While a component
can have static text as its value, typically the value attribute will contain an EL
expression that the runtime infrastructure evaluates to determine what data to display.
For example, an outputText component that displays the name of the currently
logged-in user might have its value attribute set to the expression #{UserInfo.name}.
Since any attribute of a component (and not just the value attribute) can be assigned a
value using an EL expression, it's easy to build dynamic, data-driven user interfaces.
For example, you could hide a component when a set of objects you need to display is
empty by using a boolean-valued expression like #{not empty
UserList.selectedUsers} in the UI component's rendered attribute. If the list of

Chapter 3
Creating EL Expressions

3-26

selected users in the object named UserList is empty, the rendered attribute
evaluates to false and the component disappears from the page.

In a typical JSF application, you would create objects like UserList as a managed
bean. The JSF runtime manages instantiating these beans on demand when any EL
expression references them for the first time. When displaying a value, the runtime
evaluates the EL expression and pulls the value from the managed bean to populate
the component with data when the page is displayed. If the user updates data in the UI
component, the JSF runtime pushes the value back into the corresponding managed
bean based on the same EL expression. For information about creating and using
managed beans, see Creating and Using Managed Beans. For information about EL
expressions, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/
java/index.html.

Note:

When using an EL expression for the value attribute of an editable
component, you must have a corresponding set method for the that
component, or else the EL expression will evaluate to read-only, and no
updates to the value will be allowed.

For example, say you have an inputText component (whose ID is it1) on a
page, and you have it's value set to #{myBean.inputValue}. The myBean
managed bean would have to have get and set method as follows, in order
for the inputText value to be updated:

 public void setIt1(RichInputText it1) {
 this.it1 = it1;
 }

 public RichInputText getIt1() {
 return it1;
 }

Along with standard EL reachable objects and operands, ADF Faces provides EL
function tags. These are tags that provide certain functionality that you can use within
an EL expression. The format tags can be used to add parameters to String
messages, and the time zone tags can be used to return time zones. For information
about the format tags, see How to Use the EL Format Tags. For information about the
time zone tags, see What You May Need to Know About Selecting Time Zones
Without the inputDate Component.

How to Create an EL Expression
You can create EL expressions declaratively using the JDeveloper Expression Builder.
You can access the builder from the Properties window.

Before you begin:

It may be helpful to have an understanding of EL expressions. See Creating EL
Expressions.

To use the Expression Builder:

Chapter 3
Creating EL Expressions

3-27

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

1. In the Properties window, locate the attribute you wish to modify and use the
rightmost dropdown menu to choose Expression Builder.

2. Create expressions using the following features:

• Use the Variables dropdown to select items that you want to include in the
expression. These items are displayed in a tree that is a hierarchical
representation of the binding objects. Each icon in the tree represents various
types of binding objects that you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. The EL accessible objects exposed by ADF
Faces are located under the adfFacesContext node, which is under the JSF
Managed Beans node, as shown in Figure 3-13.

Figure 3-13 adfFacesContext Objects in the Expression Builder

Tip:

For information about these objects, see the Java API Reference for
Oracle ADF Faces.

Selecting an item in the tree causes it to be moved to the Expression box
within an EL expression. You can also type the expression directly in the
Expression box.

• Use the operator buttons to add logical or mathematical operators to the
expression.

Figure 3-14 shows the Expression Builder dialog being used to create an
expression that binds to the value of a label for a component to the label property
of the explorer managed bean.

Chapter 3
Creating EL Expressions

3-28

Figure 3-14 The Expression Builder Dialog

Tip:

For information about using proper syntax to create EL expressions, see
the Java EE 6 tutorial at http://download.oracle.com/javaee/
index.html.

How to Use the EL Format Tags
ADF EL format tags allow you to create text that uses placeholder parameters, which
can then be used as the value for any component attribute that accepts a String. At
runtime, the placeholders are replaced with the parameter values.

For example, say the current user's name is stored on a managed bean, and you want
to display that name within a message as the value of an outputText component. You
could use the formatString tag as shown below.

<af:outputText value="#{af:formatString('The current user is: {0},
 someBean.currentUser)}" />

In this example, the formatString tag takes one parameter whose key “0," resolves to
the value someBean.currentUser.

There are two different types of format tags available, formatString tags and
formatNamed tags. The formatString tags use indexed parameters, while the
formatNamed tags use named parameters. There are four tags for each type, each one
taking a different number of parameters (up to 4). For example, the formatString2 tag

Chapter 3
Creating EL Expressions

3-29

http://download.oracle.com/javaee/index.html
http://download.oracle.com/javaee/index.html

takes two indexed parameters, and the formatNamed4 tag takes four named
parameters.

When you use a formatNamed tag, you set both the key and the value. The following
example shows a message that uses the formatNamed2 tag to display the number of
files on a specific disk. This message contains two parameters.

<af:outputText value="#{af:formatNamed2(
 'The disk named {disk}, contains {fileNumber} files', 'disk', bean.disk,
'fileNumber', bean.fileNumber)}" />

How to Use EL Expressions Within Managed Beans
While JDeveloper creates many needed EL expressions for you, and you can use the
Expression Builder to create those not built for you, there may be times when you
need to access, set, or invoke EL expressions within a managed bean.

The code below shows how you can get a reference to an EL expression and return
(or create) the matching object.

public static Object resolveExpression(String expression) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);
 return valueExp.getValue(elContext);
 }

This code shows how you can resolve a method expression.

public static Object resloveMethodExpression(String expression,
 Class returnType,
 Class[] argTypes,
 Object[] argValues) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 MethodExpression methodExpression =
 elFactory.createMethodExpression(elContext, expression, returnType,
 argTypes);
 return methodExpression.invoke(elContext, argValues);
 }

The code below shows how you can set a new object on a managed bean.

public static void setObject(String expression, Object newValue) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);

 //Check that the input newValue can be cast to the property type
 //expected by the managed bean.

Chapter 3
Creating EL Expressions

3-30

 //Rely on Auto-Unboxing if the managed Bean expects a primitive
 Class bindClass = valueExp.getType(elContext);
 if (bindClass.isPrimitive() || bindClass.isInstance(newValue)) {
 valueExp.setValue(elContext, newValue);
 }
}

Creating and Using Managed Beans
A managed bean is created with a constructor with no arguments, a set of properties,
and a set of methods that perform functions for a component. In the ADF framework, if
you want to bind component values and objects to managed bean properties or to
reference managed bean methods from component tags, you can use the EL syntax.

Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files and the beans are made available and can be referenced in an EL expression,
allowing access to the beans' properties and methods. Whenever a managed bean is
referenced for the first time and it does not already exist, the Managed Bean Creation
Facility instantiates the bean by calling the default constructor method on the bean. If
any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed beans are
used in a standard JSF application, see the Java EE 6 tutorial at http://
www.oracle.com/technetwork/java/index.html.

Best Practice:

Use managed beans to store only bookkeeping information, for example the
current user. All application data and processing should be handled by logic
in the business layer of the application.

In a standard JSF application, managed beans are registered in the faces-config.xml
configuration file.

Note:

If you plan on using ADF Model data binding and ADF Controller, then
instead of registering managed beans in the faces-config.xml file, you may
need to register them within ADF task flows. See Using a Managed Bean in
a Fusion Web Application in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Create a Managed Bean in JDeveloper
You can create a managed bean and register it with the JSF application at the same
time using the overview editor for the faces-config.xml file.

Before you begin:

Chapter 3
Creating and Using Managed Beans

3-31

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

It may be helpful to have an understanding of managed beans. See Creating and
Using Managed Beans.

To create and register a managed bean:

1. In the Applications window, double-click faces-config.xml.

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Managed Beans navigation tab.

Figure 3-15 shows the editor for the faces-config.xml file used by the ADF
Faces Components Demo application that contains the File Explorer application.

Figure 3-15 Managed Beans in the faces-config.xml File

4. Click the Add icon to add a row to the Managed Bean table.

5. In the Create Managed Bean dialog, enter values. Click Help for information about
using the dialog. Select the Generate Class If It Does Not Exist option if you
want JDeveloper to create the class file for you.

Chapter 3
Creating and Using Managed Beans

3-32

Note:

When determining what scope to register a managed bean with or to
store a value in, keep the following in mind:

• Always try to use the narrowest scope possible.

• If your managed bean takes part in component binding by accepting
and returning component instances (that is, if UI components on the
page use the binding attribute to bind to component properties on
the bean), then the managed bean must be stored in request or
backingBean scope. If it can't be stored in one of those scopes (for
example, if it needs to be stored in session scope for high
availability reasons), then you need to use the ComponentReference
API. See What You May Need to Know About Component Bindings
and Managed Beans .

• Use the sessionScope scope only for information that is relevant to
the whole session, such as user or context information. Avoid using
the sessionScope scope to pass values from one page to another.

For information about the different object scopes, see Object Scope
Lifecycles.

6. You can optionally add managed properties for the bean. When the bean is
instantiated, any managed properties will be set with the provided value. With the
bean selected in the Managed Bean table, click the New icon to add a row to the
Managed Properties table. In the Properties window, enter a property name (other
fields are optional).

Note:

While you can declare managed properties using this editor, the
corresponding code is not generated on the Java class. You must add
that code by creating private member fields of the appropriate type, and
then by choosing the Generate Accessors menu item on the context
menu of the code editor to generate the corresponding get and set
methods for these bean properties.

What Happens When You Use JDeveloper to Create a Managed Bean
When you create a managed bean and elect to generate the Java file, JDeveloper
creates a stub class with the given name and a default constructor. Following is the
code that would be added to the MyBean class stored in the view package.

package view;

public class MyBean {
 public MyBean() {
 }
}

Chapter 3
Creating and Using Managed Beans

3-33

You now must add the logic required by your page. You can then refer to that logic
using an EL expression that refers to the managed-bean-name given to the managed
bean. For example, to access the myInfo property on the my_bean managed bean, the
EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the faces-config.xml file, as
shown below.

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

What You May Need to Know About Component Bindings and
Managed Beans

To avoid issues with managed beans, if your bean needs to use component binding
(through the binding attribute on the component), you must store the bean in request
scope. (If your application uses the Fusion technology stack, then you must store it in
backingBean scope. See Using a Managed Bean in a Fusion Web Application in
Developing Fusion Web Applications with Oracle Application Development
Framework.) However, there may be circumstances where you can't store the bean in
request or backingBean scope. For example, there may be managed beans that are
stored in session scope so that they can be deployed in a clustered environment, and
therefore must implement the Serializable interface. When they are serializable,
managed beans that change during a request can be distributed to other servers for
fail-over. However, ADF Faces components (and JSF components in general) are not
serializable. So if a serialized managed bean attempts to access a component using
component binding, the bean will fail serialization because the referenced component
cannot be serialized. There are also thread safety issues with components bound to
serialized managed beans because ADF Faces components are not thread safe.

When you need to store a component reference to a UI component instance in a
backing bean that is not using request or backingBean scope, you should store a
reference to the component instance using the Trinidad ComponentReference API. The
UIComponentReference.newUIComponentReference() method creates a serializable
reference object that can be used to retrieve a UIComponent instance on the current
page. The following shows how a managed bean might use the
UIComponentReference API to get and set values for a search field.

...
private ComponentReference<UIInput> searchField;
...
public void setSearchField(UIInput searchField)
{
 if(this.searchField == null)
 this.searchField = ComponentReference.newUIComponentReference(searchField);
}

public UIInput getSearchField()
{
 return searchField ==null ? null : searchField.getComponent();
}
....

Chapter 3
Creating and Using Managed Beans

3-34

Keep the following in mind when using the UIComponentReference API:

• The API is thread safe as long as it is called on the request thread.

• The ADF Faces component being passed in must have an ID.

• The reference will break if the component is moved between naming containers or
if the ID on any of the ancestor naming containers has changed.

For information about the UIComponentReference API, see the Trinidad Javadoc.

Viewing ADF Faces Javadoc
The ADF Faces Javadoc provides information required to work programmatically to
develop ADF Faces applications using the ADF Faces API.

Often, when you are working with ADF Faces, you will need to view the Javadoc for
ADF Faces classes. You can view Javadoc from within JDeveloper.

How to View ADF Faces Source Code and Javadoc
You can view the ADF Faces Javadoc directly from JDeveloper.

To view Javadoc for a class:

1. From the main menu, choose Navigate > Go to Javadoc.

2. In the Go to Javadoc dialog, enter the class name you want to view. If you don't
know the exact name, you can begin to type the name and JDeveloper will provide
a list of classes that match the name. ADF Faces components are in the
oracle.adf.view.rich package.

Tip:

When in a Java class file, you can go directly to the Javadoc for a class
name reference or for a JavaScript function call by placing your cursor
on the name or function and pressing Ctrl+D.

Chapter 3
Viewing ADF Faces Javadoc

3-35

Part II
Understanding ADF Faces Architecture

Part II documents how to work with the ADF Faces architecture, including the client-
side framework, the lifecycle, events, validation and conversion, and partial page
rendering.

Specifically, it contains the following chapters:

• Using ADF Faces Client-Side Architecture

• Using the JSF Lifecycle with ADF Faces

• Handling Events

• Validating and Converting Input

• Rerendering Partial Page Content

4
Using ADF Faces Client-Side Architecture

This chapter outlines the ADF Faces client-side architecture.
This chapter includes the following sections:

• About Using ADF Faces Architecture

• Adding JavaScript to a Page

• Instantiating Client-Side Components

• Listening for Client Events

• Accessing Component Properties on the Client

• Using Bonus Attributes for Client-Side Components

• Understanding Rendering and Visibility

• Locating a Client Component on a Page

• JavaScript Library Partitioning

About Using ADF Faces Architecture
ADF Faces exposes a complete client-side architecture that wraps the browser
specific Document Object Model (DOM) API and renders ADF Faces components as
client-side JavaScript objects for internal framework use, for use by ADF Faces
component developers and for use by ADF Faces application developers.

ADF Faces extends the JavaServer Faces architecture, adding a client-side
framework on top of the standard server-centric model. The majority of ADF Faces
components are rendered in HTML that is generated on the server-side for a request.
In addition, ADF Faces allows component implementations to extend their reach to the
client using a client-side component and event model.

The ADF Faces framework already contains much of the functionality for which you
would ordinarily need to use JavaScript. In many cases, you can achieve rich
component functionality declaratively, without the use of JavaScript. However, there
may be times when you do need to add your own JavaScript, for example custom
processing in response to a client-side event. In these cases, you can use the client-
side framework.

The JavaScript class that you will interact with most is AdfUIComponent and its
subclasses. An instance of this class is the client-side representation of a server-side
component. You can think of a client-side component as a simple property container
with support for event handling. Client-side components primarily exist to add behavior
to the page by exposing an API contract for both application developers as well as for
the framework itself. It is this contract that allows, among other things, toggling the
enabled state of a button on the client.

Each client component has a set of properties (key/value pairs) and a list of listeners
for each supported event type. All ADF Faces JavaScript classes are prefixed with Adf

4-1

to avoid naming conflicts with other JavaScript libraries. For example, RichButton has
AdfButton, RichDocument has AdfRichDocument, and so on.

In the client-side JavaScript layer, client components exist mostly to provide an API
contract for the framework and for developers. Because client components exist only
to store state and provide an API, they have no direct interaction with the document
object model (DOM) whatsoever. All DOM interaction goes through an intermediary
called the peer. Peers interact with the DOM generated by the Java renderer and
handle updating that state and responding to user interactions.

Peers have a number of other responsibilities, including:

• DOM initialization and cleanup

• DOM event handling

• Geometry management

• Partial page response handling

• Child visibility change handling

This separation isolates the component and application developer from changes in the
DOM implementation of the component and also isolates the need for the application
to know whether a component is implemented in HTML DOM at all (for example the
Flash components).

In JSF, as in most component-based frameworks, an intrinsic property of the
component model is that components can be nested to form a hierarchy, typically
known as the component tree. This simply means that parent components keep track
of their children, making it possible to walk over the component tree to find all
descendents of any given component. While the full component tree exists on the
server, the ADF Faces client-side component tree is sparsely populated.

For performance optimization, client components exist only when they are required,
either due to having a clientListener handler registered on them, or because the
page developer needs to interact with a component on the client side and has
specifically configured the client component to be available. You don't need to
understand the client framework as except for exceptional cases, you use most of the
architectural features declaratively, without having to create any code.

For example, because the framework does not create client components for every
server-side component, there may be cases where you need a client version of a
component instance. Instantiating Client-Side Components, explains how to do this
declaratively. You use the Properties window in JDeveloper to set properties that
determine whether a component should be rendered at all, or simply be made not
visible, as described in Understanding Rendering and Visibility.

Note:

It is also possible for JavaScript components to be present that do not
correspond to any existing server-side component. For example, some ADF
Faces components have client-side behavior that requires popup content.
These components may create AdfRichPopup JavaScript components, even
though no server-side Java RichPopup component may exist.

Chapter 4
About Using ADF Faces Architecture

4-2

Other functionality may require you to use the ADF Faces JavaScript API. For
example, Locating a Client Component on a Page, explains how to use the API to
locate a specific client-side component, and Accessing Component Properties on the
Client, documents how to access specific properties.

A common issue with JavaScript-heavy frameworks is determining how best to deliver
a large JavaScript code base to the client. If all the code is in a single JavaScript
library, there will be a long download time, while splitting the JavaScript into too many
libraries will result in a large number of roundtrips. To help mitigate this issue, ADF
Faces aggregates its JavaScript code into partitions. A JavaScript library partition
contains code for components and/or features that are commonly used together. See
JavaScript Library Partitioning.

Adding JavaScript to a Page
ADF Faces exposes JavaScript APIs that application developers use to implement
client-side development use cases. To use JavaScript on an ADF Faces view, you can
either add JavaScript code to the page source or reference it in an external library file.

You can either add inline JavaScript directly to a page or you can import JavaScript
libraries into a page. When you import libraries, you reduce the page content size, the
libraries can be shared across pages, and they can be cached by the browser. You
should import JavaScript libraries whenever possible. Use inline JavaScript only for
cases where a small, page-specific script is needed.

Performance Tip:

IInline JavaScript can increase response payload size, will never be cached
in browser, and can block browser rendering. Instead of using inline
JavaScript, consider putting all scripts in JavaScript libraries.

If you must use inline JavaScript, include it only in the pages that need it.
However, if you find that most of your pages use the same JavaScript code,
you may want to consider including the script or import the library in a
template.

If a JavaScript code library becomes too big, you should consider splitting it
into meaningful pieces and include only the pieces needed by the page (and
not placing it in a template). This approach will provide improved
performance, because the browser cache will be used and the HTML content
of the page will be smaller.

How to Use Inline JavaScript
Create the JavaScript on the page and then use a clientListener tag to invoke it.

Before you begin:

It may be helpful to have an understanding of adding JavaScript to a page. For
information, see Adding JavaScript to a Page.

To use inline JavaScript:

Chapter 4
Adding JavaScript to a Page

4-3

1. Add the MyFaces Trinidad tag library to the root element of the page by adding the
code shown in bold.

<f:view xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:trh="http://myfaces.apache.org/trinidad/html">

2. In the Components window, from the Layout panel, in the Core Structure group,
drag and drop a Resource onto the page.

Note:

Do not use the f:verbatim tag in a page or template to specify the
JavaScript.

3. In the Insert Resource dialog, select javascript from the dropdown menu and click
OK.

4. Create the JavaScript on the page within the <af:resource> tag.

For example, a sayHello function might be included in a JSF page like this:

<af:resource>
 function sayHello()
 {
 alert("Hello, world!")
 }
</af:resource>

5. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

6. In the Insert Client Listener dialog, in the Method field, enter the JavaScript
function name. In the Type field, select the event type that should invoke the
function.

How to Import JavaScript Libraries
Use the af:resource tag to access a JavaScript library from a page. This tag should
appear inside the document tag's metaContainer facet.

Before you begin:

It may be helpful to have an understanding of adding JavaScript to a page. For
information, see Adding JavaScript to a Page.

To access a JavaScript library from a page:

1. Below the document tag, add the code shown in bold below and replace /
mySourceDirectory with the relative path to the directory that holds the JavaScript
library.

<af:document>
 <f:facet name="metaContainer">
 <af:resource source="/mySourceDirectory"/>
 </facet>
 <af:form></af:form>
</af:document>

Chapter 4
Adding JavaScript to a Page

4-4

2. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

3. In the Insert Client Listener dialog, in the Method field, enter the name of the
function. In the Type field, select the event type that should invoke the function.

What You May Need to Know About Accessing Client Event Sources
Often when your JavaScript needs to access a client component, it is within the
context of a listener and must access the event's source component. Use the
getSource() method to get the client component. The following example shows the
sayHello function accessing the source client component in order to display its name.

function sayHello(actionEvent)
{
 var component=actionEvent.getSource();

 //Get the ID for the component
 var id=component.getId();

 alert("Hello from "+id);
}

For information about accessing client event sources, see Using JavaScript for ADF
Faces Client Events. For information about accessing client-side properties, see
Accessing Component Properties on the Client. For a complete description of how
client events are handled at runtime, see What Happens at Runtime: How Client-Side
Events Work.

Instantiating Client-Side Components
The ADF Faces framework automatically handles JavaScript object instantiation. This
supports interacting with the client components and allows developers to manually
configure a component to have a client side instance.

By default, the framework does not make any guarantees about which components will
have corresponding client-side component instances. To interact with a component on
the client, you will usually register a clientListener handler. When a component has
a registered clientListener handler, it will automatically have client-side
representation. You can also explicitly configure a component to be available on the
client by setting the clientComponent attribute to true.

How to Configure a Component to for a Client-Side Instance
You can manually configure a component to have a client side instance using the
clientComponent attribute.

Performance Tip:

Only set clientComponent to true if you plan on interacting with the
component programmatically on the client.

Chapter 4
Instantiating Client-Side Components

4-5

Note:

When the framework creates a client component for its own uses, that client
component may only contain information the framework needs at that time.
For example, not all of the attributes may be available.

Before you begin:

It may be helpful to have an understanding of client-side instances. See Instantiating
Client-Side Components.

To configure a component for a client-side instance:

1. In the Structure window, select the component that needs a client-side instance.

2. In the Properties window, set ClientSide to true.

What Happens When You Set clientComponent to true
When you set the clientComponent attribute to true, the framework creates an
instance of an AdfUIComponent class for the component. This class provides the API
that you can work with on the client side and also provides basic property accessor
methods (for example, getProperty() and setProperty()), event listener registration,
and event delivery-related APIs. The framework also provides renderer-specific
subclasses (for example, AdfRichOutputText) which expose property-specific
accessor methods (for example, getText() and setText()). These accessor methods
are simply wrappers around the AdfUIComponent class's getProperty() and
setProperty() methods and are provided for coding convenience.

For example, suppose you have an outputText component on the page that will get
its value (and therefore the text to display) from the sayHello function. That function
must be able to access the outputText component in order to set its value. For this to
work, there must be a client-side version of the outputText component, as shown in
the following JSF page code. Note that the outputText component has an id value
and the clientComponent attribute is set to true. Also, note there is no value in the
example, because that value will be set by the JavaScript.

<af:button text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:button>

<af:outputText id="greeting" value="" clientComponent="true">

Because the outputText component will now have client-side representation, the
JavaScript will be able to locate and work with it.

Note:

The ADF Faces framework may create client components for its own
purposes, even when there are no client listeners or when the
clientComponent attribute is not set to true. However, these client
components may not be fully functional.

Chapter 4
Instantiating Client-Side Components

4-6

Listening for Client Events
ADF Faces client component objects can be created by adding the
af:clientListener tag, which is a declarative way to register a client-side listener
script to be executed when a specific event type occurs. You can apply the client
listener to programmatically created components or to components created for its own
use, and also to control navigating away from a JSF page.

In a traditional JSF application, if you want to process events on the client, you must
listen to DOM-level events. However, these events are not delivered in a portable
manner. The ADF Faces client-side event model is similar to the JSF events model,
but implemented on the client. The client-side event model abstracts from the DOM,
providing a component-level event model and lifecycle, which executes independently
of the server. Consequently, you do not need to listen for click events on buttons.
You can instead listen for AdfActionEvent events, which can be caused by key or
mouse events.

Events sent by clients are all subclasses of the AdfBaseEvent class. Each client event
has a source, which is the component that triggered the event. Events also have a
type (for example, action or dialog), used to determine which listeners are interested
in the event. You register a client listener on the component declaratively using the
af:clientListener tag.

How to Listen for Client Events
You use the af:clientListener tag to call corresponding Javascript in response to a
client event. For example, suppose you have a button that, in response to a click,
should display a “Hello World" alert. You need to first create the JavaScript function
that will respond to the event by displaying the alert. You then add the client listener to
the component that will invoke that function.

Before you begin:

It may be helpful to have an understanding of client event processing. See Listening
for Client Events.

To listen for a client event:

1. Implement the JavaScript function. For example, to display the alert, you might
create the JavaScript function shown below.

function sayHello(event)
 {
 alert("Hello, world!")
 }

2. In the Components window, from the Operations panel, in the Listeners group,
drag and drop a Client Listener as a child to the component that will raise the
event.

Enter the function created in Step 1, as well as the type of action that the listener
should respond to. The following example shows the code that would be created
for the listener for the sayHello function.

<af:button text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:button>

Chapter 4
Listening for Client Events

4-7

Tip:

Because the button has a registered client listener, the framework will
automatically create a client version of the component.

When the button is clicked, because there is a client version of the component, the
AdfAction client event is invoked. Because a clientListener tag is configured to
listen for the AdfAction event, it causes the sayHello function to execute. For
information about client-side events, see Using JavaScript for ADF Faces Client
Events.

How to Use an ADF Client Listener to Control Navigating Away From a
JSF Page

When the user attempts to close the browser that displays a JSF page in an ADF
Faces application, you can control navigation away from a page by displaying a native
browser confirmation dialog to confirm the navigation. To handle this type of event, the
af:document component supports calling an ADF client listener of type beforeunload
and ensures that the ADF Faces application will not result in an undefined order of
execution that can cause issues in some browsers. Specifically, do not handle this
type of navigation event using the browser native beforeunload handler like
window.addEventListener("beforeunload", function(e) {...}.

With support for the onbeforeunload event in Oracle ADF, you can define a client
event listener to call an event handler on the af:document component. Your ADF
event handler will be called before leaving or reloading the current page occurs, and
the user may cancel the exit entirely within the execution of the ADF Faces framework.
If the user continues to navigate away from the page, the browser will raise the
window.unload event and the ADF Faces application will terminate.

For example, your client listener can handle the ADF beforeunload event in a manner
similar to how the handler for a browser native beforeunload handler operates and
should return a string that prompts the user to cancel the exit.

...
<af:document>
 <af:resource type="javascript">
 function myBeforeUnload(beforeunloadEvent)
 {
 return "Are you sure that you want to leave?"
 }
 </af:resource>
 <af:clientListener type="beforeunload" method="myBeforeUnload"/>

When your ADF beforeunload handler is called, if it returns a value other than
undefined, then a browser controlled warning dialog will be displayed asking whether
to actually navigate away from the current page. Depending on the browser, the
returned string may be displayed as part of the warning dialog. The warning message
may also be set by calling the setWarningMessage method on the ADF beforeunload
object passed to the handler.

Chapter 4
Listening for Client Events

4-8

Accessing Component Properties on the Client
ADF Faces extends the JavaServer Faces architecture, adding a client-side
framework on top of the standard server-centric model. You can get or set component
attribute properties on the client using JavaScript.

For each built-in property on a component, convenience accessor methods are
available on the component class. For example, you can call the getValue() method
on a client component and receive the same value that was used on the server.

Note:

All client properties in ADF Faces use the getXyz function naming
convention including boolean properties. The isXyz naming convention for
boolean properties is not used.

Constants are also available for the property names on the class object. For instance,
you can use AdfRichDialog.STYLE_CLASS constant instead of using “styleClass".

Note:

In JavaScript, it is more efficient to refer to a constant than to code the string,
as in some JavaScript execution environments, the latter requires an object
allocation on each invocation.

When a component's property changes, the end result should be that the component's
DOM is updated to reflect its new state, in some cases without a roundtrip to the
server. The component's role in this process is fairly limited: it simply stores away the
new property value and then notifies the peer of the change. The peer contains the
logic for updating the DOM to reflect the new component state.

Note:

Not all property changes are handled through the peer on the client side.
Some property changes are propagated back to the server and the
component is rerendered using PPR.

Most property values that are set on the client result in automatic synchronization with
the server (although some complex Java objects are not sent to the client at all). There
are however, two types of properties that act differently: secured properties and
disconnected properties.

Secured properties are those that cannot be set on the client at all. For example, say
a malicious client used JavaScript to set the immediate flag on a Link component to
true. That change would then be propagated to the server, resulting in server-side
validation being skipped, causing a possible security hole (for information about using

Chapter 4
Accessing Component Properties on the Client

4-9

the immediate property, see Using the Immediate Attribute). Consequently, the
immediate property is a secured property. Attempts to set secured property from
JavaScript will fail. See How to Unsecure the disabled Property.

ADF Faces does allow you to configure the disabled property so that it can be made
unsecure. This can be useful when you need to use JavaScript to enable and disable
buttons. See Secure Client Properties for a list of the ADF Faces secure client
properties.

Disconnected properties are those that can be set on the client, but that do not
propagate back to the server. These properties have a lifecycle on the client that is
independent of the lifecycle on the server. For example, client form input components
(like AdfRichInputText) have a submittedValue property, just as the Java
EditableValueHolder components do. However, setting this property does not directly
affect the server. In this case, standard form submission techniques handle updating
the submitted value on the server.

A property can be both disconnected and secured. In practice, such properties act like
disconnected properties on the client: they can be set on the client, but will not be sent
to the server. But they act like secured properties on the server, in that they will refuse
any client attempts to set them.

Secure Client Properties
Secure properties are those that cannot be set on the client, preventing a security
hole. Table 4-1 shows the secure properties on the client components.

Table 4-1 Secure Client Properties

Component Secure Property

AdfRichChooseColor colorData

AdfRichComboboxListOfValue disabled

readOnly

AdfRichCommandButton disabled

readOnly

blocking

AdfRichCommandImageLink blocking

disabled

partialSubmit

AdfRichCommandLink readOnly

AdfRichDialog dialogListener

AdfRichDocument failedConnectionText

AdfRichInputColor disabled

readOnly

colorData

AdfRichInputDate disabled

readOnly

valuePassThru

Chapter 4
Accessing Component Properties on the Client

4-10

Table 4-1 (Cont.) Secure Client Properties

Component Secure Property

AdfRichInputFile disabled

readOnly

AdfRichInputListOfValues disabled

readOnly

AdfRichInputNumberSlider disabled

readOnly

AdfRichInputNumberSplinBox disabled

readOnly

maximum

minimum

stepSize

AdfRichInputRangeSlider disabled

readOnly

AdfRichInputText disabled

readOnly

secret

AdfRichPopUp launchPopupListener

model

returnPopupListener

returnPopupDataListener

createPopupId

AdfRichUIQuery conjunctionReadOnly

model

queryListener

queryOperationListener

AdfRichSelectBooleanCheckbox disabled

readOnly

AdfRichSelectBooleanRadio disabled

readOnly

AdfRichSelectManyCheckbox disabled

readOnly

valuePassThru

AdfRichSelectManyChoice disabled

readOnly

valuePassThru

AdfRichSelectManyListBox disabled

readOnly

valuePassThru

Chapter 4
Accessing Component Properties on the Client

4-11

Table 4-1 (Cont.) Secure Client Properties

Component Secure Property

AdfRichSelectManyShuttle disabled

readOnly

valuePassThru

AdfRichSelectOneChoice disabled

readOnly

valuePassThru

AdfRichSelectOneListBox disabled

readOnly

valuePassThru

AdfRichSelectOneRadio disabled

readOnly

valuePassThru

AdfRichSelectOrderShuttle disabled

readOnly

valuePassThru

AdfRichUITable filterModel

AdfRichTextEditor disabled

readOnly

AdfUIChart chartDrillDownListener

AdfUIColumn sortProperty

AdfUICommand actionExpression

returnListener

launchListener

immediate

AdfUIComponentRef componentType

AdfUIEditableValueBase immediate

valid

required

localValueSet

submittedValue

requiredMessageDetail

AdfUIMessage.js for

AdfUINavigationLevel level

AdfUINavigationTree rowDisclosureListener

startLevel

immediate

AdfUIPage rowDisclosureListener

immediate

Chapter 4
Accessing Component Properties on the Client

4-12

Table 4-1 (Cont.) Secure Client Properties

Component Secure Property

AdfUIPoll immediate

pollListener

AdfUIProgress immediate

AdfUISelectBoolean selected

AdfUISelectInput actionExpression

returnListener

AdfUISelectRange immediate

rangeChangeListener

AdfUIShowDetailBase immediate

disclosureListener

AdfUISingleStep selectedStep

maxStep

AdfUISubform default

AdfUITableBase rowDisclosureListener

selectionListener

immediate

sortListener

rangeChangeListener

showAll

AdfUITreeBase immediate

rowDisclosureListener

selectionListener

focusRowKey

focusListener

AdfUITreeTable rangeChangeListener

AdfUIValueBase converter

How to Set Property Values on the Client
The ADF Faces framework provides setXYZ convenience functions that call through to
the underlying ADFUIComponent.setProperty function, passing the appropriate
property name (for more information, see the JavaScript API Reference for Oracle
ADF Faces). The following code shows how you might use the setProperty function
to set the backgroundcolor property on an inputText component to red when the
value changes.

<af:form>
 <af:resource type="javascript">
 function color(event) {
 var inputComponent = event.getSource();
 inputComponent.setproperty("inlineStyle", "background-color:Red");
 }

Chapter 4
Accessing Component Properties on the Client

4-13

 </af:resource>
 <af:outputText id="it" label="label">
 <af:clientListener method="color" type="valueChange"/>
 </af:inputText>
</af:form>

By using these functions, you can change the value of a property, and as long as it is
not a disconnected property or a secure property, the value will also be changed on
the server.

What Happens at Runtime: How Client Properties Are Set on the
Client

Calling the setProperty() function on the client sets the property to the new value,
and synchronously fires a PropertyChangeEvent event with the old and new values (as
long as the value is different). Also, setting a property may cause the component to
rerender itself.

How to Unsecure the disabled Property
By default, the disabled property is a secure property. That is, JavaScript cannot be
used to set it on the client. However, you can use the unsecured property to set the
disabled property to be unsecure. You need to manually add this property and the
value of disabled to the code for the component whose disabled property should be
unsecure. For example, the code for a button whose disabled property should be
unsecured would be:

<af:button text="commandButton 1" id="cb1" unsecure="disabled"/>

When the disabled attribute was secured, the application could count on the disabled
attribute to ensure that an action event was never delivered when it shouldn't be.
Therefore, when you do unsecure the disabled attribute, the server can no longer
count on the disabled attribute being correct and so you must to perform the
equivalent check using an actionListeners.

For example, say you have an expense approval page, and on that page, you want
certain managers to be able to only approve invoices that are under $200. For this
reason, you want the approval button to be disabled unless the current user is allowed
to approve the invoice. Without unsecuring the disabled attribute, he approval button
would remain disabled until a round-trip to the server occurs, where logic determines if
the current user can approve the expense. This means that upon rendering, the button
may not display correctly for the current user. To have the button to display correctly
as the page loads, you need to set the unsecure attribute to disabled and then use
JavaScript on the client to determine if the button should be disabled. But now, any
JavaScript (including malicious JavaScript that you have no control over) can do the
same thing.

To avoid the malicious JavaScript, use the actionListener on the button to perform
the logic on the server. Adding the logic to the server ensures that the disabled
attribute does not get changed when it should not. In the expense approval example,
you might have JavaScript that checks that the amount is under $200, and also use
the actionListener on the button to recheck that the current manager has the
appropriate spending authority before performing the approval.

Chapter 4
Accessing Component Properties on the Client

4-14

Similarly, if you allow your application to be modified at runtime, and you allow users to
potentially edit the unsecure and/or the disabled attributes, you must ensure that your
application still performs the same logic as if the round-trip to the server had occurred.

How to “Unsynchronize" Client and Server Property Values
There may be cases when you do not want the value of the property to always be
delivered and synchronized to the server. For example, say you have inputText
components in a form, and as soon as a user changes a value in one of the
components, you want the changed indicator to display. To do this, you might use
JavaScript to set the changed attribute to true on the client component when the
valueChangeEvent event is delivered. Say also, you do not want the changed indicator
to display once the user submits the page, because at that time, the values are saved.

Say you use JavaScript to set the changed attribute to true when the
valueChangeEvent is delivered, like this:

<af:form>
 <af:resource type="javascript">
 function changed(event) {
 var inputComponent = event.getSource();
 inputComponent.setChanged(true);
 }
 </af:resource>
 <af:inputText id="it" label="label">
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:button text="Submit"/>
</af:form>

Using this example, the value of the changed attribute, which is true, will also be sent
to the server, because all the properties on the component are normally synchronized
to the server. So the changed indicator will continue to display.

To make it so the indicator does not display when the values are saved to the server,
you might use one of the following alternatives:

• Move the logic from the client to the server, using an event listener. Use this
alternative when there is an event being delivered to the server, such as the
valueChangeEvent event, as shown here:

<af:form>
 <af:inputText label="label"
 autoSubmit="true"
 changed="#{test.changed}"
 valueChangeListener="#{test.valueChange}"/>
 <af:button text="Submit" />
</af:form>

This example shows the corresponding managed bean code.

import javax.faces.event.ValueChangeEvent;
import oracle.adf.view.rich.context.AdfFacesContext;

public class TestBean {
 public TestBean() {}

 public void valueChange(ValueChangeEvent valueChangeEvent)
 {

Chapter 4
Accessing Component Properties on the Client

4-15

 setChanged(true);
 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(valueChangeEvent.getComponent());
 FacesContext.getCurrentInstance().renderResponse();
 }

 public void setChanged(boolean changed)
 {
 _changed = changed;
 }

 public boolean isChanged()
 {
 return _changed;
 }
 private boolean _changed;
}

• Move the logic to the server, using JavaScript that invokes a custom server event
and a serverListener tag, as shown below. Use this when there is no event being
delivered.

<af:form>
 <af:resource type="javascript">
 function changed(event)
 {
 var inputComponent = event.getSource();
 AdfCustomEvent.queue(inputComponent, "myCustomEvent", null, true);
 }
 </af:resource>
 <af:inputText label="label" changed="#{test2.changed}">
 <af:serverListener type="myCustomEvent"
 method="#{test2.doCustomEvent}"/>
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:button text="Submit"/>
</af:form>

The following example shows the managed bean code.

package test;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.context.AdfFacesContext;
import oracle.adf.view.rich.render.ClientEvent;

public class Test2Bean
{
 public Test2Bean()
 {
 }

 public void doCustomEvent(ClientEvent event)
 {
 setChanged(true);
 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(event.getComponent());
 FacesContext.getCurrentInstance().renderResponse();
 }

 public void setChanged(boolean changed)

Chapter 4
Accessing Component Properties on the Client

4-16

 {
 _changed = changed;
 }

 public boolean isChanged()
 {
 return _changed;
 }
 private boolean _changed;

}

• On the client component, set the changed attribute to true, which will propagate to
the server, but then use an actionListener on the command component to set
the changed attribute back to false. Here is the JSF code:

<af:form>
 <af:resource type="javascript">
 function changed(event) {
 var inputComponent = event.getSource();
 inputComponent.setChanged(true);
 }
 </af:resource>
 <af:inputText binding="#{test3.input}" label="label">
 <af:clientListener method="changed" type="valueChange"/>
 </af:inputText>
 <af:button text="Submit" actionListener="#{test3.clear}"/>
</af:form>

The following sample shows the corresponding managed bean code.

package test;

import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.input.RichInputText;

public class Test3Bean
{
 public Test3Bean()
 {
 }

 public void clear(ActionEvent actionEvent)
 {
 _input.setChanged(false);
 }

 public void setInput(RichInputText input)
 {
 _input = input;
 }

 public RichInputText getInput()
 {
 return _input;
 }

 private RichInputText _input;
}

Chapter 4
Accessing Component Properties on the Client

4-17

Using Bonus Attributes for Client-Side Components
In ADF Faces, bonus attributes are used to return values from server to client. You
can create bonus attributes to a component using the Components window in
JDeveloper.

In some cases you may want to send additional information to the client beyond the
built-in properties. This can be accomplished using bonus attributes. Bonus attributes
are extra attributes that you can add to a component using the clientAttribute tag.
For performance reasons, the only bonus attributes sent to the client are those
specified by clientAttribute.

The clientAttribute tag specifies a name/value pair that is added to the server-side
component's attribute map. In addition to populating the server-side attribute map,
using the clientAttribute tag results in the bonus attribute being sent to the client,
where it can be accessed through the
AdfUIComponent.getProperty("bonusAttributeName") method.

The framework takes care of marshalling the attribute value to the client. The
marshalling layer supports marshalling of a range of object types, including strings,
booleans, numbers, dates, arrays, maps, and so on. For information on marshalling,
see What You May Need to Know About Marshalling and Unmarshalling Data.

Performance Tip:

In order to avoid excessive marshalling overhead, use client-side bonus
attributes sparingly.

Note:

The clientAttribute tag should be used only for bonus (application-
defined) attributes. If you need access to standard component attributes on
the client, instead of using the clientAttribute tag, simply set the
clientComponent attribute to true. See Instantiating Client-Side
Components.

How to Create Bonus Attributes
You can use the Components window to add a bonus attribute to a component.

Before you begin:

It may be helpful to have an understanding of bonus attributes. See Using Bonus
Attributes for Client-Side Components.

To create bonus attributes:

1. In the Structure window, select the component to which you would like to add a
bonus attribute.

Chapter 4
Using Bonus Attributes for Client-Side Components

4-18

2. In the Components window, from the Operations panel, drag and drop a Client
Attribute as a child to the component.

3. In the Properties window, set the Name and Value attributes.

What You May Need to Know About Marshalling Bonus Attributes
Although client-side bonus attributes are automatically delivered from the server to the
client, the reverse is not true. That is, changing or setting a bonus attribute on the
client will have no effect on the server. Only known (nonbonus) attributes are
synchronized from the client to the server. If you want to send application-defined data
back to the server, you should create a custom event. See Sending Custom Events
from the Client to the Server.

Understanding Rendering and Visibility
You can show (render) and hide an ADF Faces component dynamically on your page,
depending on the value of another component. You must set a component's attribute
property to true or false to be a part of JSF tree and to generate HTML code for that
component.

All ADF Faces display components have two attributes that relate to whether or not the
component is displayed on the page for the user to see: rendered and visible.

The rendered attribute has very strict semantics. When rendered is set to false, there
is no way to show a component on the client without a roundtrip to the server. To
support dynamically hiding and showing page contents, the framework adds the
visible attribute. When set to false, the component's markup is available on the
client but the component is not displayed. Therefore calls to the setVisible(true) or
setVisible(false) method will, respectively, show and hide the component within the
browser (as long as rendered is set to true), whether those calls happen from Java or
from JavaScript. However, because visible simply shows and hides the content in
the DOM, it doesn't always provide the same visual changes as using the rendered
would.

Performance Tip:

You should set the visible attribute to false only when you absolutely need
to be able to toggle visibility without a roundtrip to the server, for example in
JavaScript. Nonvisible components still go through the component lifecycle,
including validation.

If you do not need to toggle visibility only on the client, then you should
instead set the rendered attribute to false. Making a component not
rendered (instead of not visible) will improve server performance and client
response time because the component will not have client-side
representation, and will not go through the component lifecycle.

The following example shows two outputText components, only one of which is
rendered at a time. The first outputText component is rendered when no value has
been entered into the inputText component. The second outputText component is
rendered when a value is entered.

Chapter 4
Understanding Rendering and Visibility

4-19

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}"/>
 <af:button text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 rendered="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 rendered="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

Provided a component is rendered in the client, you can either display or hide the
component on the page using the visible property.

The next example shows how you might achieve the same functionality as shown
above, but in this example, the visible attribute is used to determine which
component is displayed (the rendered attribute is true by default, it does not need to
be explicitly set).

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}"/>
 <af:button text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 visible="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 visible="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

However, because using the rendered attribute instead of the visible attribute
improves performance on the server side, you may instead decide to have JavaScript
handle the visibility, as shown in the following JavaScript code.

function showText()
{
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.getValue() == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }

How to Set Visibility Using JavaScript
You can create a conditional JavaScript function that can toggle the visible attribute
of components.

Chapter 4
Understanding Rendering and Visibility

4-20

Before you begin:

It may be helpful to have an understanding of how components are displayed. See
Understanding Rendering and Visibility.

To set visibility:

1. Create the JavaScript that can toggle the visibility. Example 4-1shows a script that
turns visibility on for one outputText component if there is no value; otherwise, the
script turns visibility on for the other outputText component.

2. For each component that will be needed in the JavaScript function, expand the
Advanced section of the Properties window and set ClientComponent attribute
to true. This creates a client component that will be used by the JavaScript.

3. For the components whose visibility will be toggled, set the visible attribute to
false.

This example shows the full page code used to toggle visibility with JavaScript.

Example 4-1 JavaScript for Setting Visibility

<f:view>
<af:resource>
 function showText()
 {
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.value == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }
</af:resource>
<af:document>
 <af:form>
 <af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}" clientComponent="true"
 immediate="true"/>
 <af:button text="Enter" clientComponent="true">
 <af:clientListener method="showText" type="action"/>
 </af:button>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:" clientComponent="false"/>
 <af:outputText value="No text entered" id="output1"
 visible="false" clientComponent="true"/>
 <af:outputText value="#{myBean.inputValue}" id="output2"
 visible="false" clientComponent="true"/>
 </af:panelGroupLayout>

Chapter 4
Understanding Rendering and Visibility

4-21

 </af:form>
 </af:document>
</f:view>

What You May Need to Know About Visible and the isShowing
Function

If the parent of a component has its visible attribute set to false, when the
isVisible function is run against a child component whose visible attribute is set to
true, it will return true, even though that child is not displayed. For example, say you
have a panelGroupLayout component that contains an outputText component as a
child, and the panelGroupLayout component's visible attribute is set to false, while
the outputText component's visible attribute is left as the default (true). On the
client, neither the panelGroupLayout nor the outputText component will be displayed,
but if the isVisible function is run against the outputText component, it will return
true.

For this reason, the framework provides the isShowing() function. This function will
return false if the component's visible attribute is set to false, or if any parent of
that component has visible set to false.

Locating a Client Component on a Page
When you need to find a client component that is not the source of an event, you can
use the AdfUIComponent.findComponent(expr) method. This method is similar to the
JSF UIComponent.findComponent() method, which searches for and returns the
UIComponent object with an ID that matches the specified search expression.

The AdfUIComponent.findComponent(expr) method simply works on the client instead
of the server.

The following example shows the sayHello function finding the outputText
component using the component's ID.

function sayHello(actionEvent)
{
 var buttonComponent=actionEvent.getSource();

 //Find the client component for the "greeting" af:outputText
 var greetingComponent=buttonComponent.findComponent("greeting");

 //Set the value for the outputText component
 greetingComponent.setValue("Hello World")
}

ADF Faces also has the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr)
method. Use this method when you want to hard-code the String for the ID. Use
AdfUIComponent.findComponent(expr) when the client ID is being retrieved from the
component.

Chapter 4
Locating a Client Component on a Page

4-22

Note:

There is also a confusingly named AdfPage.PAGE.findComponent(clientId)
method, however this function uses implementation-specific identifiers that
can change between releases and should not be used by page authors.

What You May Need to Know About Finding Components in Naming
Containers

If the component you need to find is within a component that is a naming container
(such as pageTemplate, subform, table, and tree), then instead of using the
AdfPage.PAGE.findComponentByAbsoluteId(absolute expr) method, use the
AdfUIComponent.findComponent(expr) method. The expression can be either
absolute or relative.

Tip:

You can determine whether or not a component is a naming container by
reviewing the component tag documentation. The tag documentation states
whether a component is a naming container.

Absolute expressions are built as follows:

":" + (namingContainersToJumpUp * ":") + some ending portion of the
clientIdOfComponentToFind

For example, to find a table whose ID is t1 that is within a panel collection component
whose ID is pc1 contained in a region whose ID is r1 on page that uses the
myTemplate template, you might use the following:

:myTemplate:r1:pc1:t1

Alternatively, if both the components (the one doing the search and the one being
searched for) share the same NamingContainer component somewhere in the
hierarchy, you can use a relative path to perform a search relative to the component
doing the search. A relative path has multiple leading
NamingContainer.SEPARATOR_CHAR characters, for example:

":" + clientIdOfComponentToFind

In the preceding example, if the component doing the searching is also in the same
region as the table, you might use the following:

::somePanelCollection:someTable

Chapter 4
Locating a Client Component on a Page

4-23

Tip:

Think of a naming container as a folder and the clientId as a file path. In
terms of folders and files, you use two sequential periods and a slash (../)
to move up in the hierarchy to another folder. This is the same thing that the
multiple colon (:) characters do in the findComponent() expression. A single
leading colon (:) means that the file path is absolute from the root of the file
structure. If there are multiple leading colon (:) characters at the beginning
of the expression, then the first one is ignored and the others are counted,
one set of periods and a slash (../) per colon (:) character.

Note that if you were to use the AdfPage.findComponentByAbsoluteId()
method, no leading colon is needed as, the path always absolute.

When deciding whether to use an absolute or relative path, keep the following in mind:

• If you know that the component you are trying to find will always be in the same
naming container, then use an absolute path.

• If you know that the component performing the search and the component you are
trying to find will always be in the same relative location, then use a relative path.

There are no getChildren() or getFacet() functions on the client. Instead, the
AdfUIComponent.visitChildren() function is provided to visit all children components
or facets (that is all descendents). Because ADF Faces uses a sparse component tree
(that is, client components are created on an as-needed basis, the component that the
getParent() method might return on the client may not be the actual parent on the
server (it could be any ancestor). Likewise, the components that appear to be
immediate children on the client could be any descendants. See the Java API
Reference for Oracle ADF Faces.

JavaScript Library Partitioning
In ADF Faces, JavaScript Partitioning feature helps combine individual JavaScript files
from ADF components together into larger collections, thus reducing the number of
downloads. You can use the default partition provided by ADF Faces or create/
configure a JavaScript partition as required by the application.

A common issue with JavaScript-heavy frameworks is determining how best to deliver
a large JavaScript code base to the client. On one extreme, bundling all code into a
single JavaScript library can result in a long download time. On the other extreme,
breaking up JavaScript code into many small JavaScript libraries can result in a large
number of roundtrips. Both approaches can result in the end user waiting
unnecessarily long for the initial page to load.

To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions.
A JavaScript library partition contains code for components and/or features that are
commonly used together. By default, ADF Faces provides a partitioning that is
intended to provide a balance between total download size and total number of
roundtrips.

One benefit of ADF Faces's library partitioning strategy is that it is configurable.
Because different applications make use of different components and features, the
default partitioning provided by ADF Faces may not be ideal for all applications. As

Chapter 4
JavaScript Library Partitioning

4-24

such, ADF Faces allows the JavaScript library partitioning to be customized on a per-
application basis. This partitioning allows application developers to tune the JavaScript
library footprint to meet the needs of their application.

ADF Faces groups its components' JavaScript files into JavaScript features. A
JavaScript feature is a collection of JavaScript files associated with a logical identifier
that describes the feature. For example, the panelStretchLayout client component is
comprised of the following two JavaScript files

• oracle/adf/view/js/component/rich/layout/ AdfRichPanelStretchLayout.js

• oracle/adfinternal/view/js/laf/dhtml/rich/
AdfDhtmlPanelStretchLayoutPeer.js

These two files are grouped into the AdfRichPanelStretchLayout feature.

JavaScript features are further grouped into JavaScript partitions. JavaScript partitions
allow you to group JavaScript features into larger collections with the goal of
influencing the download size and number of round trips. For example, since the
panelStretchLayout component is often used with the panelSplitter component, the
features for these two components are grouped together in the stretch partition, along
with the other ADF Faces layout components that can stretch their children. At
runtime, when a page is loaded, the framework determines the components used on
the page, and then from that, determines which features are needed (feature names
are the same as the components' constructor name). Only the partitions that contain
those features are downloaded.

Features and partitions are defined using configuration files. ADF Faces ships with a
default features and partitions configuration file. You can overwrite the default
partitions file by creating your own implementation.

By default, JavaScript partitioning is turned on. Whether or not your application uses
JavaScript partitioning is determined by a context parameter in the web.xml file. See
JavaScript Partitioning.

How to Create JavaScript Partitions
You create a JavaScript partition by creating an adf-js-partitions.xml file, and
then adding entries for the features.

Note:

ADF Faces provides a default adf-js-partitions.xml file (see The adf-js-
partitions.xml File). If you want to change the partition configuration, you
need to create your own complete adf-js-partitions.xml file. At runtime,
the framework will search the WEB-INF directory for that file. If one is not
found, it will load the default partition file.

Before you begin:

It may be helpful to have an understanding of JavaScript partitioning works. For
information, see JavaScript Library Partitioning.

To create JavaScript partitions:

Chapter 4
JavaScript Library Partitioning

4-25

1. In the Applications window, right-click WEB-INF and choose New > From Gallery.

2. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

Tip:

If you don't see the General node, click the All Technologies tab at the
top of the Gallery.

3. In the Create XML File dialog, enter adf-js-partitions.xml as the file name and
save it in the WEB-INF directory.

4. In the source editor, replace the generated code with the following:

<?xml version="1.0" encoding="utf-8" ?>
<partitions xmlns="http://xmlns.oracle.com/adf/faces/partition">

</partitions>

5. Add the following elements to populate a partition with the relevant features.

• partitions: The root element of the configuration file.

• partition: Create as a child to the partitions element. This element must
contain one partition-name child element and one or more feature
elements.

• partition-name: Create as a child to the partition element. Specifies the
name of the partition. This value will be used to produce a unique URL for this
partition's JavaScript library.

• feature: Create as a child to the partition element. Specifies the feature to
be included in this partition. There can be multiple feature elements.

Tip:

Any feature configured in the adf-js-features.xml file that does not
appear in a partition is treated as if it were in its own partition.

The following example shows the partition element for the tree partition that
contains the AdfRichTree and AdfRichTreeTable features.

<partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
</partition>

What Happens at Runtime: JavaScript Partitioning
ADF Faces loads the library partitioning configuration files at application initialization
time. First, ADF Faces searches for all adf-js-features.xml files in the META-INF

Chapter 4
JavaScript Library Partitioning

4-26

directory and loads all that are found (including the ADF Faces default feature
configuration file).

For the partition configuration file, ADF Faces looks for a single file named adf-js-
partitions.xml in the WEB-INF directory. If no such file is found, the ADF Faces
default partition configuration is used.

During the render traversal, ADF Faces collects information about which JavaScript
features are required by the page. At the end of the traversal, the complete set of
JavaScript features required by the (rendered) page contents is known. Once the set
of required JavaScript features is known, ADF Faces uses the partition configuration
file to map this set of features to the set of required partitions. Given the set of required
partitions, the HTML <script> references to these partitions are rendered just before
the end of the HTML document.

Chapter 4
JavaScript Library Partitioning

4-27

5
Using the JSF Lifecycle with ADF Faces

This chapter describes the JSF page request lifecycle and the additions to the lifecycle
from ADF Faces, and how to use the lifecycle properly in your application.
This chapter includes the following sections:

• About Using the JSF Lifecycle and ADF Faces

• Using the Immediate Attribute

• Using the Optimized Lifecycle

• Using the Client-Side Lifecycle

• Using Subforms to Create Sections on a Page

• Object Scope Lifecycles

• Passing Values Between Pages

About Using the JSF Lifecycle and ADF Faces
The lifecycle of a JavaServer Faces application begins when the client makes an
HTTP request for a page and ends when the server responds with the page, translated
to HTML. You can learn about the different phases of JSF lifecycle and ADF Faces
lifecycle on a page request and how the events are processed before and after each
phase.

ADF Faces applications use both the JSF lifecycle and the ADF Faces lifecycle. The
ADF Faces lifecycle extends the JSF lifecycle, providing additional functionality, such
as a client-side value lifecycle, a subform component that allows you to create
independent submittable sections on a page without the drawbacks (for example, lost
user edits) of using multiple forms on a single page, and additional scopes.

To better understand the lifecycle enhancements that the framework delivers, it is
important that you understand the standard JSF lifecycle. This section provides only
an overview. For a more detailed explanation, refer to the JSF specification at http://
www.jcp.org/en/jsr/detail?id=314.

When a JSF page is submitted and a new page is requested, the JSF page request
lifecycle is invoked. This lifecycle handles the submission of values on the page,
validation for components on the current page, navigation to and display of the
components on the resulting page, as well as saving and restoring state. The
FacesServlet object manages the page request lifecycle in JSF applications. The
FacesServlet object creates an object called FacesContext, which contains the
information necessary for request processing, and invokes an object that executes the
lifecycle.

The JSF lifecycle phases use a UI component tree to manage the display of the faces
components. This tree is a runtime representation of a JSF page: each UI component
tag in a page corresponds to a UI component instance in the tree.

Figure 5-1 shows the JSF lifecycle of a page request. As shown, events are processed
before and after each phase.

5-1

http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314

Figure 5-1 Lifecycle of a Page Request in an ADF Faces Application

In a JSF application, the page request lifecycle is as follows:

• Restore View: The component tree is established. If this is not the initial rendering
(that is, if the page was submitted back to server), the tree is restored with the
appropriate state. If this is the initial rendering, the component tree is created and
the lifecycle jumps to the Render Response phase.

• Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores the values locally. Most
associated events are queued for later processing. If a component has its
immediate attribute set to true, then the validation, the conversion, and the events
associated with the component are processed during this phase. See Using the
Immediate Attribute.

• Process Validations: Local values of components are converted from the input
type to the underlying data type. If the converter fails, this phase continues to
completion (all remaining converters, validators, and required checks are run), but
at completion, the lifecycle jumps to the Render Response phase.

If there are no failures, the required attribute on the component is checked. If the
value is true, and the associated field contains a value, then any associated
validators are run. If the value is true and there is no field value, this phase

Chapter 5
About Using the JSF Lifecycle and ADF Faces

5-2

completes (all remaining validators are executed), but the lifecycle jumps to the
Render Response phase. If the value is false, the phase completes, unless no
value is entered, in which case no validation is run. For information about
conversion and validation, see Validating and Converting Input.

At the end of this phase, converted versions of the local values are set, any
validation or conversion error messages and events are queued on the
FacesContext object, and any value change events are delivered.

Tip:

In short, for an input component that can be edited, the steps for the
Process Validations phase is as follows:

1. If a converter fails, the required check and validators are not run.

2. If the converter succeeds but the required check fails, the validators
are not run.

3. If the converter and required check succeed, all validators are run.
Even if one validator fails, the rest of the validators are run. This is
because when the user fixes the error, you want to give them as
much feedback as possible about what is wrong with the data
entered.

For example suppose you have a dateTimeRange validator that
accepted dates only in the year 2015 and you had a
dateRestrictionValidator validator that did not allow the user to
pick Sundays. If the user entered November 16, 2014 (a Sunday),
you want to give the feedback that this fails both validators to
maximize the chance the user will enter valid data.

• Update Model Values: The component's validated local values are moved to the
model, and the local copies are discarded.

• Invoke Application: Application-level logic (such as event handlers) is executed.

• Render Response: The components in the tree are rendered. State information is
saved for subsequent requests and for the Restore View phase.

To help illustrate the lifecycle, consider a page that has a simple input text component
where a user can enter a date and then click a button to submit the entered value. A
valueChangeListener method is also registered on the component. The following
shows the code for the example.

<af:form>
 <af:inputText value="#{mybean.date}"
 valueChangeListener="#{mybean.valueChangeListener}">
 <af:convertDateTime dateStyle="long"/>
 </af:inputText>
 <af:button text="Save" actionListener="#{mybean.actionListener}"/>
</af:form>

Suppose a user enters the string "June 25, 2015" and clicks the submit button.
Figure 5-2 shows how the values pass through the lifecycle and where the different
events are processed.

Chapter 5
About Using the JSF Lifecycle and ADF Faces

5-3

Figure 5-2 Example of Values and Events in the JSF Lifecycle

Using the Immediate Attribute
In ADF Faces lifecycle or in JSF lifecycle, when a component's immediate attribute is
set to true, the validation, conversion, and events associated with these components
are processed during the Apply Request Values phase rather than in a later phase.
Use this attribute to navigate to another page without processing any data currently in
the input fields of the current screen.

Chapter 5
Using the Immediate Attribute

5-4

You can use the immediate attribute to allow processing of components to move up to
the Apply Request Values phase of the lifecycle. When actionSource components
(such as a commandButton) are set to immediate, events are delivered in the Apply
Request Values phase instead of in the Invoke Application phase. The
actionListener handler then calls the Render Response phase, and the validation
and model update phases are skipped.

For example, you might want to configure a Cancel button to be immediate, and have
the action return a string used to navigate back to the previous page (for information
about navigation, see Working with Navigation Components). Because the Cancel
button is set to immediate, when the user clicks the Cancel button, all validation is
skipped, any entered data is not updated to the model, and the user navigates as
expected, as shown in Figure 5-3.

Figure 5-3 Lifecycle for Button Set to Immediate

Note:

A button that does not provide any navigation and is set to immediate will
also go directly to the Render Response phase: the Validation, Update
Model, and Invoke Application phases are skipped, so any new values will
not be pushed to the server.

As with command components, for components that invoke disclosure events, (such
as a showDetail component), and for editableValueHolder components

Chapter 5
Using the Immediate Attribute

5-5

(components that hold values that can change, such as an inputText component),
when set to immediate, the events are delivered to the Apply Request Values phase.
However, for editableValueHolder components, instead of skipping phases,
conversion, validation, and delivery of valueChangeEvents events for the immediate
components are done earlier in the lifecycle, during the Apply Request Values phase,
instead of after the Process Validations phase. No lifecycle phases are skipped.

Figure 5-4 shows the lifecycle for an input component whose immediate attribute is set
to true. The input component takes a date entered as a string and stores it as a date
object when the command button is clicked.

Figure 5-4 Immediate Attribute on an Input Component

Setting immediate to true for an input component can be useful when one or more
input components must be validated before other components. Then, if one of those
components is found to have invalid data, validation is skipped for the other input
components in the same page, thereby reducing the number of error messages shown
for the page.

For example, suppose you have a form used to collect name and address information
and you have the Name field set to required. The address fields need to change,
based on the country chosen in the Country dropdown field. You would set that
dropdown field (displayed using a selectOneChoice component) to immediate so that
when the user selects a country, a validation error doesn’t occur because the name
field is blank. The following example shows the code for the address field (the
switching functionality between countries is not shown)

Chapter 5
Using the Immediate Attribute

5-6

<af:form id="f1">
 <af:panelFormLayout id="pfl1">
 <af:panelGroupLayout id="pgl2" layout="vertical">
 <af:inputText label="Name" id="it1" value="#{bean.name}"
 required="true"/>
 <af:inputText label="Street" id="it2" value="#{bean.street}"/>
 <af:panelGroupLayout id="pgl1" layout="horizontal">
 <af:inputText label="City" id="it3" value="#{bean.city}"/>
 <af:inputText label="State" id="it4" value="#{bean.state}"/>
 <af:inputText label="Zip" id="it5" value="#{bean.zip}"/>
 </af:panelGroupLayout>
 <af:selectOneChoice label="Country" id="soc1" immediate="true">
 valueChangeListener="bean.countryChanged">
 <af:selectItem label="US" value="US" id="si1"/>
 <af:selectItem label="Canada" value="Canada" id="si2"/>
 </af:selectOneChoice>
 </af:panelGroupLayout>
 </af:panelFormLayout>
</af:form>

In this example, the selectOneChoice value change event is fired after the Apply
Request Values phase, and so the countryChanged listener method is run before the
Name inputText component is validated. However, remember that for editable
components, phases are not skipped - validation will still be run during this request. To
prevent validation of the other components, you need to call the renderResponse
method directly from your listener method. This call skips the rest of the lifecycle,
including validation and jumps directly to the Render Response phase.

public void countryChanged(ValueChangeEvent event)
 FacesContext context = Facescontext.getcurrentInstance();
. . .
 some code to change the locale of the form
. . .
context.renderresponse();

Note:

Be careful when calling RenderResponse(). Any component that goes
through a partial lifecycle will have an incomplete state that may cause
trouble. The values on those components are decoded but not validated and
pushed to model, so you need to clear their submitted value when calling
RenderResponse().

Chapter 5
Using the Immediate Attribute

5-7

Note:

Only use the immediate attribute when the desired functionality is to leave
the page and not ever submit any values other than the immediate
components. In the Cancel example, no values will ever be submitted on the
page. In the address example, we want the page to be rerendered without
ever submitting any other values.

The immediate attribute causes the components to be decoded (and thus
have a submitted value), but not processed further. In the case of an
immediate action component, the other components never reach the
validation or update model phases, where the submitted value would be
converted to a local value and then the local value pushed into the model
and cleared. So values will not be available.

Don’t use the immediate attribute when you want a number of fields to be
processed before other fields. When that is the case, it’s best to divide your
page up into separate sub-forms, so that only the fields in the sub-forms are
processed when the lifecycle runs.

There are some cases where setting the immediate attribute to true can lead to better
performance: When you create a navigation train, and have a commandNavigationItem
component in a navigationPane component, you should set the immediate attribute to
true to avoid processing the data from the current page (train stop) while navigating to
the next page. For more information, see SeeHow to Create the Train Model. If an
input component value has to be validated before any other values, the immediate
attribute should be set to true. Any errors will be detected earlier in the lifecycle and
additional processing will be avoided.

How to Use the Immediate Attribute
Before you begin:

It may be helpful to have an understanding of the immediate attribute. See Using the
Immediate Attribute.

To use the immediate attribute:

1. On the JSF page, select the component that you want to be immediate.

2. In the Properties window, expand the Behavior section and set the immediate
attribute to true.

Using the Optimized Lifecycle
In ADF Faces, Partial Page Rendering (PPR) optimizes the JSF lifecycle. Use the
event root components to determine boundaries on the page and to allow the lifecycle
to run just on components within that boundary.

ADF Faces provides an optimized lifecycle that runs the JSF page request lifecycle
(including conversion and validation) only for certain components within a boundary on
a page. This partial page lifecycle is called partial page rendering (PPR). Certain
ADF Faces components are considered event root components, and are what
determine the boundaries on which the optimized lifecycle is run. There are two ways

Chapter 5
Using the Optimized Lifecycle

5-8

event root components are determined. First, certain components are always
considered event roots. For example, the panelCollection component is an event
root component. It surrounds a table and provides among other things, a toolbar.
Action events triggered by a button on the toolbar will cause the lifecycle to be run only
on the child components of the panelCollection.

The second way event root components are determined is that certain events
designate an event root. For example, the disclosure event sent when expanding or
collapsing a showDetail component (see Displaying and Hiding Contents Dynamically)
indicates that the showDetail component is a root, and so the lifecycle is run only on
the showDetail component and any child components. For information about PPR and
event roots, including a list of event root components, see Events and Partial Page
Rendering.

Aside from running on the event root component and its child components, you can
declaratively configure other components outside the event root hierarchy to
participate in the optimized lifecycle. You can also specifically configure only certain
events for a component to trigger the optimized lifecycle, and configure which
components will actually execute or will only be refreshed.

For information about how the ADF Faces framework uses PPR, and how you can use
PPR throughout your application, see Rerendering Partial Page Content.

Using the Client-Side Lifecycle
The ADF Faces framework provides client-side conversion and validation. You can
create your own JavaScript-based converters and validators that run on the page
without a trip to the server.

You can use client-side validation so that when a specific client event is queued, it
triggers client validation of the appropriate form or subform (for information about
subforms, see Using Subforms to Create Sections on a Page). If this client validation
fails, meaning there are known errors, then the events that typically propagate to the
server (for example, a button's actionEvent when a form is submitted) do not go to the
server. Having the event not delivered also means that nothing is submitted and
therefore, none of the client listeners are called. This is similar to server-side validation
in that when validation fails on the server, the lifecycle jumps to the Render Response
phase; the action event, though queued, will never be delivered; and the
actionListener handler method will never be called.

For example, ADF Faces provides the required attribute for input components, and
this validation runs on the client. When you set this attribute to true, the framework will
show an error on the page if the value of the component is null, without requiring a
trip to the server. The following example shows code that has an inputText
component's required attribute set to true, and a button whose actionListener
attribute is bound to a method on a managed bean.

<af:form>
 <af:inputText id="input1" required="true" value="a"/>
 <af:button text="Search" actionListener="#{demoForm.search}"/>
</af:form>

When this page is run, if you clear the field of the value of the inputText component
and tab out of the field, the field will redisplay with a red outline. If you then click into
the field, an error message will state that a value is required, as shown in Figure 5-5.

Chapter 5
Using the Client-Side Lifecycle

5-9

There will be no trip to the server; this error detection and message generation is all
done on the client.

Figure 5-5 Client-Side Validation Displays an Error Without a Trip to the Server

In this same example, if you were to clear the field of the value and click the Search
button, the page would not be submitted because the required field is empty and
therefore an error occurs; the action event would not be delivered, and the method
bound to the action listener would not be executed. This process is what you want,
because there is no reason to submit the page if the client can tell that validation will
fail on the server.

For information about using client-side validation and conversion, see Validating and
Converting Input.

Using Subforms to Create Sections on a Page
ADF Faces provides the subform component, which adds flexibility by defining
subregions whose component values can be submitted separately within a form. The
content of a subform can be validated based on certain criteria.

In the JSF reference implementation, if you want to independently submit a section of
the page, you have to use multiple forms. However multiple forms require multiple
copies of page state, which can result in the loss of user edits in forms that aren't
submitted.

ADF Faces adds support for a subform component, which represents an
independently submittable section of a page. The contents of a subform will be
validated (or otherwise processed) only if a component inside of the subform is
responsible for submitting the page, allowing for comparatively fine-grained control of
the set of components that will be validated and pushed into the model without the
compromises of using entirely separate form elements. When a page using subforms
is submitted, the page state is written only once, and all user edits are preserved.

Best Practice:

Always use only a single form tag per page. Use the subform tag where you
might otherwise be tempted to use multiple form tags.

A subform will always allow the Apply Request Values phase to execute for its child
components, even when the page was submitted by a component outside of the
subform. However, the Process Validations and Update Model Values phases will be
skipped (this differs from an ordinary form component, which, when not submitted,
cannot run the Apply Request Values phase). To allow components in subforms to be
processed through the Process Validations and Update Model Value phases when a
component outside the subform causes a submit action, use the default attribute.

Chapter 5
Using Subforms to Create Sections on a Page

5-10

When a subform's default attribute is set to true, it acts like any other subform in
most respects, but if no subform on the page has an appropriate event come from its
child components, then any subform with default set to true will behave as if one of
its child components caused the submit. For information about subforms, see Defining
Forms.

Object Scope Lifecycles
When an object is created in a JSF application, it defines or defaults to a given scope;
this object scope describes how widely it is available and who has access to it. You
can use the standard JSF scopes or the ADF Faces scopes that are available for an
object in a JSF application.

At runtime, you pass data to pages by storing the needed data in an object scope
where the page can access it. The scope determines the lifespan of an object. Once
you place an object in a scope, it can be accessed from the scope using an EL
expression. For example, you might create a managed bean named foo, and define
the bean to live in the Request scope. To access that bean, you would use the
expression #{requestScope.foo}.

There are five types of scopes in a standard JSF application:

• applicationScope: The object is available for the duration of the application.

• sessionScope: The object is available for the duration of the session.

• viewScope: The object is available until the user finishes interaction with the
current view. The object is stored in a map on the UIViewRoot object. Note that
this object is emptied upon page refresh or a redirect to the view.

Tip:

If you need the object to survive a page refresh or redirect to the same
view, then use the ADF Faces version of viewScope.

• flashScope: The object is available during a single view transition, and is cleaned
up before moving on to the next view. You can place a parameter value in
flashScope and it will be available to the resulting page, surviving redirects.

• requestScope: The object is available for the duration between the time an HTTP
request is sent until a response is sent back to the client.

In addition to the standard JSF scopes, ADF Faces provides the following scopes:

• pageFlowScope: The object is available as long as the user continues navigating
from one page to another. If the user opens a new browser window and begins
navigating, that series of windows will have its own pageFlowScope scope.

• backingBeanScope: Used for managed beans for page fragments and declarative
components only. The object is available for the duration between the time an
HTTP request is sent until a response is sent back to the client. This scope is
needed because there may be more than one page fragment or declarative
component on a page, and to avoid collisions between values, any values must be
kept in separate scope instances. Use backingBeanScope scope for any managed
bean created for a page fragment or declarative component.

Chapter 5
Object Scope Lifecycles

5-11

• viewScope: The object is available until the ID for the current view changes. Use
viewScope scope to hold values for a given page. Unlike the JSF viewScope,
objects stored in the ADF Faces viewScope will survive page refreshes and
redirects to the same view ID.

Note:

Because these are not standard JSF scopes, EL expressions must explicitly
include the scope to reference the bean. For example, to reference the
MyBean managed bean from the pageFlowScope scope, your expression
would be #{pageFlowScope.MyBean}.

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher the availability of an object. During their
lifespan, these objects may expose certain interfaces, hold information, or pass
variables and parameters to other objects. For example, a managed bean defined in
sessionScope scope will be available for use during multiple page requests. However,
a managed bean defined in requestScope scope will be available only for the duration
of one page request.

Figure 5-6 shows the time period in which each type of scope is valid, and its
relationship with the page flow.

Chapter 5
Object Scope Lifecycles

5-12

Figure 5-6 Relationship Between Scopes and Page Flow

When determining what scope to register a managed bean with or to store a value in,
always try to use the narrowest scope possible. Use the sessionScope scope only for
information that is relevant to the whole session, such as user or context information.
Avoid using the sessionScope scope to pass values from one page to another.

Note:

If you are using the full Fusion technology stack, then you have the option to
register your managed beans in various configuration files. See Using a
Managed Bean in a Fusion Web Application in Developing Fusion Web
Applications with Oracle Application Development Framework.

Passing Values Between Pages
Oracle ADF provides the pageFlowScope bean scope that supports storing temporary
values created at runtime. You can use different procedures to access pageFlowScope
from within any Java code in your application or use pageFlowScope without writing
any Java code.

Chapter 5
Passing Values Between Pages

5-13

The ADF Faces pageFlowScope scope makes it easier to pass values from one page
to another, thus enabling you to develop master-detail pages more easily. Values
added to the pageFlowScope scope automatically continue to be available as the user
navigates from one page to another, even if you use a redirect directive. But unlike
session scope, these values are visible only in the current page flow or process. If the
user opens a new window and starts navigating, that series of windows will have its
own process. Values stored in each window remain independent.

Note:

If you are using the full Fusion technology stack and you need information
about passing values between pages in an ADF bounded task flow, or
between ADF regions and pages, refer to Getting Started with ADF Task
Flows in Developing Fusion Web Applications with Oracle Application
Development Framework.

Like objects stored in any standard JSF scope, objects stored in the pageFlow scope
can be accessed through EL expressions. The only difference with the pageFlow
scope is that the object names must use the pageFlowScope prefix. For example, to
have a button's label provided by a managed bean stored in the pageFlow scope, and
to have a method on the bean called when the button is selected, you might use the
following code on your page:

<af:button text="#{pageFlowScope.buttonBean.label}"
 action="#{pageFlowScope.buttonBean.action}"/>

The pageFlowScope is a java.util.Map object that may be accessed from Java code.
The setPropertyListener tag allows you to set property values onto a scope, and
also allows you to define the event the tag should listen for. For example, when you
use the setPropertyListener tag with the type attribute set to action, it provides a
declarative way to cause an action source (for example, button) to set a value before
navigation. You can use the pageFlowScope scope with the setPropertyListener tag
to pass values from one page to another, without writing any Java code in a backing
bean. For example, you might have one page that uses the setPropertyListener tag
and a command component to set a value in the pageFlowScope scope, and another
page whose text components use the pageFlowScope scope to retrieve their values.

You can also use the pageFlowScope scope to set values between secondary windows
such as dialogs. When you launch secondary windows from, for example, a button
component, you can use a launchEvent event and the pageFlowScope scope to pass
values into and out of the secondary windows without overriding values in the parent
process.

How to Use the pageFlowScope Scope Within Java Code
You can access pageFlow scope from within any Java code in your application.
Remember to clear the scope once you are finished.

Chapter 5
Passing Values Between Pages

5-14

Note:

If your application uses ADF Controller, then you do not have to manually
clear the scope.

Before you begin:

It may be helpful to have an understanding of object scopes. For information, see
Object Scope Lifecycles. You may also want to understand how pageFlow scope is
used to pass values. For information, see Passing Values Between Pages.

To use pageFlowScope in Java code:

1. To get a reference to the pageFlowScope scope, use the
org.apache.myfaces.trinidad.context.RequestContext. getPageFlowScope()
method.

For example, to retrieve an object from the pageFlowScope scope, you might use
the following Java code:

import java.util.Map;
import org.apache.myfaces.trinidad.context.RequestContext;
. . .
Map pageFlowScope = RequestContext.getCurrentInstance().getPageFlowScope();
Object myObject = pageFlowScope.get("myObjectName");

2. To clear the pageFlowScope scope, access it and then manually clear it.

For example, you might use the following Java code to clear the scope:

RequestContext afContext = RequestContext.getCurrentInstance();
afContext.getPageFlowScope().clear();

How to Use the pageFlowScope Scope Without Writing Java Code
To use the pageFlowScope scope without writing Java code, use a
setPropertyListener tag in conjunction with a command component to set a value in
the scope. The setPropertyListener tag uses the type attribute that defines the
event type it should listen for. It ignores all events that do not match its type. Once set,
you then can access that value from another page within the page flow.

Tip:

Instead of using the setActionListener tag (which may have been used in
previous versions of ADF Faces), use the setPropertyListener tag and set
the event type to action.

To set a value in the pageFlowScope scope:

1. On the page from where you want to set the value, create a command component
using the Components window. For information about creating command
components, see Using Buttons and Links for Navigation.

Chapter 5
Passing Values Between Pages

5-15

2. In the Components window, from the Listeners group of the Operations panel,
drag a Set Property Listener and drop it as a child to the command component.

Or right-click the component and choose Insert inside Button > ADF Faces >
setPropertyListener.

3. In the Insert Set Property Listener dialog, set the From field to the value that will
be set on another component.

For example, say you have a managed bean named MyBean that stores the name
value for an employee, and you want to pass that value to the next page. You
would enter #{myBean.empName} in the From field.

4. Set the To field to be a value on the pageFlowScope scope.

For example, you might enter #{pageFlowScope.empName} in the To field.

5. From the Type dropdown menu, choose Action.

This allows the listener to listen for the action event associated with the command
component.

6. On the page from which you want to access the value, drop the component that
you want to display the value.

7. Set the value of the component to be the same value as the To value set on the
setPropertyListener tag.

For example, to have an outputText component access the employee name, you
would set the value of that component to be #{pageFlowScope.empName}.

What Happens at Runtime: How Values Are Passed
When a user clicks a button that contains a setPropertyListener tag, the listener
executes and the To value is resolved and retrieved, and then stored as a property on
the pageFlowScope scope. On any subsequent pages that access that property
through an EL expression, the expression is resolved to the value set by the original
page.

Chapter 5
Passing Values Between Pages

5-16

6
Handling Events

This chapter describes how to handle events on the server as well as on the client.
This chapter includes the following sections:

• About Events and Event Handling

• Using ADF Faces Server Events

• Using JavaScript for ADF Faces Client Events

• Sending Custom Events from the Client to the Server

• Executing a Script Within an Event Response

• Using ADF Faces Client Behavior Tags

• Using Polling Events to Update Pages

About Events and Event Handling
ADF Faces supports server-side action and value change events and can also invoke
client-side action and value change events. ADF Faces provides a list of event types
and event root components.

In traditional JSF applications, event handling typically takes place on the server. JSF
event handling is based on the JavaBeans event model, where event classes and
event listener interfaces are used by the JSF application to handle events generated
by components.

Examples of events in an application include clicking a button or link, selecting an item
from a menu or list, and changing a value in an input field. When a user activity occurs
such as clicking a button, the component creates an event object that stores
information about the event and identifies the component that generated the event.
The event is also added to an event queue. At the appropriate time in the JSF
lifecycle, JSF tells the component to broadcast the event to the corresponding
registered listener, which invokes the listener method that processes the event. The
listener method may trigger a change in the user interface, invoke backend application
code, or both.

Like standard JSF components, ADF Faces command components deliver
ActionEvent events when the components are activated, and ADF Faces input and
select components deliver ValueChangeEvent events when the component local values
change.

For example, in the File Explorer application, the File Menu contains a submenu
whose commandMenuItem components allow a user to create a new file or folder. When
users click the Folder commandMenuItem, an ActionEvent is invoked. Because the EL
expression set as the value for the component's actionListener attribute resolves to
the createNewDirectory method on the headerManager managed bean, that method
is invoked and a new directory is created.

6-1

Note:

Any ADF Faces component that has built-in event functionality must be
enclosed in the form tag.

While ADF Faces adheres to standard JSF event handling techniques, it also
enhances event handling in two key ways by providing:

• Ajax-based functionality (partial page rendering)

• A client-side event model

Events and Partial Page Rendering
Unlike standard JSF events, ADF Faces events support Ajax-style partial postbacks to
enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events
and components can trigger partial page rendering, that is, only portions of a page
refresh upon request and the lifecycle is run only on that portion.

Certain components are considered event root components. Event root components
determine boundaries on the page, and so allow the lifecycle to run just on
components within that boundary (for information about this aspect of the lifecycle, see
Using the Optimized Lifecycle). When an event occurs within an event root, only those
components that are children to the root are refreshed on the page.

An example of an event root component is a popup. When an event happens within a
popup, only the popup and its children are rerenderd, and not the whole page. Another
example is the panelCollection component that surrounds a table and provides
among other things, a toolbar. Action events triggered by a button on the toolbar will
cause the lifecycle to be run only on the child components of the panelCollection
component.

The following components are considered event root components:

• popup

• region

• panelCollection

• calendar

• editableValueHolder components (such as inputText)

Additionally, certain events indicate a specific component as an event root component.
For example, the disclosure event sent when a expanding or collapsing a showDetail
component (see Displaying and Hiding Contents Dynamically), indicates that the
showDetail component is a root. The lifecycle is run only on the showDetail
component (and any child components or other components that point to this as a
trigger), and only they are rerendered when it is expanded or collapsed. For
information about components and their associated events, see Event and Even Root
Components.

Chapter 6
About Events and Event Handling

6-2

Tip:

If components outside of the event root need to be processed when the
event root is processed, then you can programmatically determine which
components should participate, and whether they should be executed in the
lifecycle or simply rendered. See Rerendering Partial Page Content.

Event and Even Root Components
Table 6-1 shows the all event types in ADF Faces, and whether or not the source
component is an event root.

Table 6-1 Events and Event Root Components

Event Type Component Trigger Is Event Root

action All command components false

dialog dialog false

disclosure showDetail, showDetailHeader true

disclosure showDetailItem true

focus tree, treeTable true

launch All command components NA

launchPopup inputListOfValues,
inputComboboxListOfValues

true

load document NA

poll poll true

popupOpened popup NA

popupOpening popup NA

popupClosed popup NA

propertyChange All components NA

queryEvent query, quickQuery true

queryOperation query, quickQuery true

rangeChange table NA

regionNavigation region NA

return All command components true

returnPopupData inputListOfValues,
inputComboboxListOfValues

true

returnPopup inputListOfValues,
inputComboboxListOfValues

true

rowDisclosure tree, treeTable, treemap, sunburst true

sort treeTable, table true

Chapter 6
About Events and Event Handling

6-3

Table 6-1 (Cont.) Events and Event Root Components

Event Type Component Trigger Is Event Root

valueChange All input and select components (components that
implement EditableValueHolder)

true

Client-Side Event Model
In addition to server-side action and value change events, ADF Faces components
also invoke client-side action and value change events, and other kinds of server and
client events. Some events are generated by both server and client components (for
example, selection events); some events are generated by server components only
(for example, launch events); and some events are generated by client components
only (for example, load events).

By default, most client events are propagated to the server. Changes to the
component state are automatically synchronized back to the server to ensure
consistency of state, and events are delivered, when necessary, to the server for
further processing. However, you can configure your event so that it does not
propagate.

In addition, any time you register a client-side event listener on the server-side Java
component, the ADF Faces framework assumes that you require a JavaScript
component, so a client-side component is created.

Client-side JavaScript events can come from several sources: they can be derived
automatically from DOM events, from property change events, or they can be
manually created during the processing of other events.

Using ADF Faces Server Events
ADF Faces supports server-side action and value change events. To process the
events, you must understand the different server-side event types available and the
components that trigger these events.

ADF Faces provides a number of server-side events. Table 6-2 lists the events
generated by ADF Faces components on the server, and the components that trigger
them.

Table 6-2 ADF Faces Server Events

Event Triggered by Component...

ActionEvent All command components. See Working with Navigation
Components.

ActiveDataEvent Used to update components based on events. See Using the
Active Data Service inDeveloping Fusion Web Applications with
Oracle Application Development Framework.

AttributeChangeEvent All input and select components (components that implement
EditableValueHolder). See Using Input Components and
Defining Forms .

Chapter 6
Using ADF Faces Server Events

6-4

Table 6-2 (Cont.) ADF Faces Server Events

Event Triggered by Component...

CalendarActivity
DurationChangeEvent

CalendarActivityEvent

CalendarDisplay
ChangeEvent

CalendarEvent

The Calendar component. See Using a Calendar Component .

CarouselSpinEvent The carousel component. See Displaying Images in a
Carousel.

ColumnSelectionEvent

ColumnVisibility
ChangeEvent

The table and treeTable components. See Using Tables,
Trees, and Other Collection-Based Components.

ContextInfoEvent The contextInfo component. See Displaying Contextual
Information in Popups.

DialogEvent The dialog component. See Using Popup Dialogs, Menus, and
Windows.

DisclosureEvent The showDetail, showDetailHeader, showDetailItem
components. See Displaying and Hiding Contents Dynamically
and Displaying or Hiding Contents in Panels.

DropEvent Components that support drag and drop. See Adding Drag and
Drop Functionality.

FocusEvent * The tree and treeTable components. See Using Tables, Trees,
and Other Collection-Based Components.

ItemEvent The panelTabbed component. See Displaying or Hiding
Contents in Panels. Also, the navigationPane component. See
Using Navigation Items for a Page Hierarchy.

LaunchEvent All command components. See Working with Navigation
Components.

LaunchPopupEvent The inputListOfValues and inputComboboxListOfValues
components. See Using Query Components.

LoadEvent ** The document component. See How to Configure the document
Tag.

PollEvent The poll component. See Using Polling Events to Update
Pages

PopupCanceledEvent

PopupFetchEvent

The popup component. See Using Popup Dialogs, Menus, and
Windows.

QueryEvent

QueryOperationEvent

The query and quickQuery components. See Using Query
Components.

RangeChangeEvent The table component. See Using Tables, Trees, and Other
Collection-Based Components.

RegionNavigationEvent The region component. See Using Task Flows as Regions in
Developing Fusion Web Applications with Oracle Application
Development Framework.

Chapter 6
Using ADF Faces Server Events

6-5

Table 6-2 (Cont.) ADF Faces Server Events

Event Triggered by Component...

ReturnEvent All command components. See Working with Navigation
Components.

ReturnPopupEvent The inputListOfValues and inputComboboxListOfValues
components. See Using Query Components.

ReturnPopupDataEvent The popup component. See Using Popup Dialogs, Menus, and
Windows.

RowDisclosureEvent The tree and treeTable components, as well as the treemap
and sunburst DVT components. See Using Tables, Trees, and
Other Collection-Based Components and Using Treemap and
Sunburst Components .

SelectionEvent The table, tree, and treeTable components, as well as the
treemap and sunburst DVT components. See Using Tables,
Trees, and Other Collection-Based Components and Using
Treemap and Sunburst Components .

SortEvent The table and treeTable components. See Using Tables,
Trees, and Other Collection-Based Components.

ValueChangeEvent All input and select components (components that implement
EditableValueHolder). See Using Input Components and
Defining Forms .

WindowLifecycleEvent Delivered when the LifecycleState of a window changes. See
the Java API Reference for Oracle ADF Faces.

WindowLifecycle
NavigateEvent

Delivered when the current window is unloaded in order to
navigate to a new location. See the Java API Reference for
Oracle ADF Faces.

* This focus event is generated when focusing in on a specific subtree, which is not the
same as a client-side keyboard focus event.

** The LoadEvent event is fired after the initial page is displayed (data streaming
results may arrive later).

How to Handle Server-Side Events
All server events have event listeners on the associated component(s). You need to
create a handler that processes the event and then associate that handler code with
the listener on the component.

For example, in the File Explorer application, a selection event is fired when a user
selects a row in the table. Because the table's selectionListener attribute is bound to
the tableSelectFileItem handler method on the TableContentView.java managed
bean, that method is invoked in response to the event.

Before you begin:

It may be helpful to have an understanding of server-side events. See Using ADF
Faces Server Events.

To handle server-side events:

Chapter 6
Using ADF Faces Server Events

6-6

1. In a managed bean (or the backing bean for the page that will use the event
listener), create a public method that accepts the event (as the event type) as the
only parameter and returns void. The following example shows the code for the
tableSelectFileItem handler. (For information about creating and using
managed beans, see Creating and Using Managed Beans.)

 public void tableSelectFileItem(SelectionEvent selectionEvent)
 {
 FileItem data = (FileItem)this.getContentTable().getSelectedRowData();
 setSelectedFileItem(data);
 }

Tip:

If the event listener code is likely to be used by more than one page in
your application, consider creating an event listener implementation
class that all pages can access. All server event listener class
implementations must override a processEvent() method, where Event
is the event type.

For example, the LaunchListener event listener accepts an instance of
LaunchEvent as the single argument. In an implementation, you must
override the event processing method, as shown in the following method
signature:

public void processLaunch (LaunchEvent evt)
{
 // your code here
}

2. To register an event listener method on a component, in the Structure window,
select the component that will invoke the event. In the Properties window, use the
dropdown menu next to the event listener property, and choose Edit.

3. Use the Edit Property dialog to select the managed bean and method created in
Step 1.

The following example shows sample code for registering a selection event
listener method on a table component.

<af:table id="folderTable" var="file"
. . .
 rowSelection="single"
 selectionListener="#{explorer.tableContentView.tableSelectFileItem}"
. . .
</af:table>

Using JavaScript for ADF Faces Client Events
ADF Faces can invoke client-side action and value change events. To process client-
side events, you must understand the different event types available and also the
components that trigger these events. To use client-side events, you need to first
create the JavaScript that will handle the event.

Most components can also work with client-side events. Handling events on the client
saves a roundtrip to the server. When you use client-side events, instead of having

Chapter 6
Using JavaScript for ADF Faces Client Events

6-7

managed beans contain the event handler code, you use JavaScript, which can be
contained either on the calling page or in a JavaScript library.

By default, client events are processed only on the client. However, some event types
are also delivered to the server, for example, AdfActionEvent events, which indicate a
button has been clicked. Other events may be delivered to the server depending on
the component state. For example, AdfValueChangeEvent events will be delivered to
the server when the autoSubmit attribute is set to true. You can cancel an event from
being delivered to the server if no additional processing is needed. However, some
client events cannot be canceled. For example, because the popupOpened event type
is delivered after the popup window has opened, this event delivery to the server
cannot be canceled.

Performance Tip:

If no server processing is needed for an event, consider canceling the event
at the end of processing so that the event does not propagate to the server.
See How to Prevent Events from Propagating to the Server.

Best Practice:

Keyboard and mouse events wrap native DOM events using the
AdfUIInputEvent subclass of the AdfBaseEvent class, which provides
access to the original DOM event and also offers a range of convenience
functions for retrieval of key codes, mouse coordinates, and so on. The
AdfBaseEvent class also accounts for browser differences in how these
events are implemented. Consequently, you must avoid invoking the
getNativeEvent() method on the directly, and instead use the
AdfUIInputEvent API.

The clientListener tag provides a declarative way to register a client-side event
handler script on a component. The script will be invoked when a supported client
event type is fired. The following shows an example of a JavaScript function
associated with an action event.

<af:button id="button0"
 text="Do something in response to an action">
 <af:clientListener method="someJSMethod" type="action"/>
</af:button>

Tip:

Use the clientListener tag instead of the component's JavaScript event
properties.

All ADF Faces components support the JSF 2.0 client behavior API. Client events on
ADF Faces components are also exposed as client behaviors. Client behaviors tags
(like f:ajax) allow you to declaratively attach JavaScript to a component, which will

Chapter 6
Using JavaScript for ADF Faces Client Events

6-8

then execute in response to a client behavior. For example, the following code shows
the f:ajax tag attached to an inputText component. This tag will cause the
outputText component to render when the change client event occurs on the
inputText component.

af:inputText ...>
 <f:ajax name="change" render="ot1" execute="@this" />
</af:inputText>
<af:outputText id="ot1" ... />

ADF Faces Client-Side Events
Table 6-3 lists the events generated by ADF Faces client components, whether or not
events are sent to the sever, whether or not the events are cancelable, and the
components that trigger the events.

Table 6-3 ADF Faces Client Events

Event Class Event Type Propagates
to Server

Can Be
Canceled

Triggered by Component

AdfActionEvent action Yes Yes All command components

AdfBusyStateEvent busyState No No Triggered by the page

AdfCarouselSpinEvent event Yes No carousel

AdfChooseDateLoadEvent load No Yes chooseDate

AdfColumnSelectionEvent event Yes Yes table, treeTable

AdfComponentEvent load Yes Yes document

After the document's contents
have been displayed on the
client, even when PPR
navigation is used. It does not
always correspond to the
onLoad DOM event.

AdfComponentFocusEvent No Yes Any component that can receive
focus

AdfDateSelectionEvent dateSelection No Yes chooseDate

AdfDialogEvent event Yes Yes dialog

When user selects the OK or
Cancel button in a dialog

AdfDisclosureEvent event Yes Yes panelBox, region,
showDetail,
showDetailHeader,
showDetailItem

When the disclosure state is
toggled by the user

AdfDomComponentEvent inlineFrameLoad Yes Yes inlineFrame

When the internal iframe fires
its load event.

AdfDropEvent drop Yes No Any component that supports
drag and drop

Chapter 6
Using JavaScript for ADF Faces Client Events

6-9

Table 6-3 (Cont.) ADF Faces Client Events

Event Class Event Type Propagates
to Server

Can Be
Canceled

Triggered by Component

AdfFocusEvent focus Yes Yes tree, treeTable

AdfItemEvent item Yes Yes commandNavigationItemshow
DetailItem

AdfLaunchPopupEvent launch Yes Yes inputListOfValues,
inputComboboxListOfValues

AdfPollEvent poll Yes Yes poll

AdfPopupCanceledEvent popupCanceled Yes Yes popup

After a popup is unexpectedly
closed or the cancel method is
invoked

AdfPopupClosedEvent popupClosed No No popup

After a popup window or dialog
is closed

AdfPopupOpenedEvent popupOpened No No popup

After a popup window or dialog
is opened

AdfPopupOpeningEvent popupOpening No Yes popup

Prior to opening a popup
window or dialog

AdfPropertyChangeEvent propertyChange No No All components

AdfQueryEvent event Yes Yes query, quickQuery

Upon a query action (that is,
when the user clicks the search
icon or search button)

AdfQueryOperationEvent event Yes Yes query, quickQuery

AdfReturnEvent returnEvent Yes Yes All command components

AdfReturnPopupDataEvent launchEvent Yes Yes inputListOfValues,
inputComboboxListOfValues

AdfReturnPopupEvent returnPopup Yes Yes inputListOfValues,
inputComboboxListOfValues

AdfRowDisclosureEvent rowDisclosure Yes Yes tree, treeTable

When the row disclosure state is
toggled

AdfRowKeySetChangeEvent selection,
rowDisclosure

Always for
disclosure
event on a
table. Yes, if
there is a
selection
listener or a
disclosure
listener on
the server.

Yes table, treeTable, tree

Chapter 6
Using JavaScript for ADF Faces Client Events

6-10

Table 6-3 (Cont.) ADF Faces Client Events

Event Class Event Type Propagates
to Server

Can Be
Canceled

Triggered by Component

AdfSelectionEvent selection Yes Yes tree, treeTable, table

When the selection state
changes

AdfSortEvent sort Yes Yes treeTable, table

When the user sorts the table
data

AdfValueChangeEvent valueChange Yes Yes All input and select components
(components that implement
EditableValueHolder)

When the value of an input or
select component is changed

ADF Faces also supports client keyboard and mouse events, as shown in Table 6-4.

Table 6-4 Keyboard and Mouse Event Types Supported

Event Type Event Fires When...

click User clicks a component

dblclick User double-clicks a component

mousedown User moves mouse down on a component

mouseup User moves mouse up on a component

mousemove User moves mouse while over a component

mouseover Mouse enters a component

mouseout Mouse leaves a component

keydown User presses key down while focused on a component

keyup User releases key while focused on a component

keypress When a successful keypress occurs while focused on a component

focus Component gains keyboard focus

blur Component loses keyboard focus

How to Use Client-Side Events
To use client-side events, you need to first create the JavaScript that will handle the
event. You then use a clientListener tag.

Before you begin:

It may be helpful to have an understanding of client-side events. See Using JavaScript
for ADF Faces Client Events.

To use client-side events:

Chapter 6
Using JavaScript for ADF Faces Client Events

6-11

1. Create the JavaScript event handler function. For information about creating
JavaScript, see Adding JavaScript to a Page. Within that functionality, you can add
the following:

• Locate a client component on a page

If you want your event handler to operate on another component, you must
locate that component on the page. For example, in the File Explorer
application, when users choose the Give Feedback menu item in the Help
menu, the associated JavaScript function has to locate the help popup dialog
in order to open it. For information about locating client components, see
Locating a Client Component on a Page.

• Return the original source of the event

If you have more than one of the same component on the page, your
JavaScript function may need to determine which component issued the
event. For example, say more than one component can open the same popup
dialog, and you want that dialog aligned with the component that called it. You
must know the source of the AdfLaunchPopupEvent in order to determine
where to align the popup dialog. See How to Return the Original Source of the
Event.

• Add client attributes

It may be that your client event handler will need to work with certain attributes
of a component. For example, in the File Explorer application, when users
choose the About menu item in the Help menu, a dialog launches that allows
users to provide feedback. The function used to open and display this dialog is
also used by other dialogs, which may need to be displayed differently.
Therefore, the function needs to know which dialog to display along with
information about how to align the dialog. This information is carried in client
attributes. Client attributes can also be used to marshall custom server-side
attributes to the client. See How to Use Client-Side Attributes for an Event.

• Cancel propagation to the server

Some of the components propagate client-side events to the server, as shown
in Table 6-3. If you do not need this extra processing, then you can cancel that
propagation. See How to Prevent Events from Propagating to the Server.

2. Once you create the JavaScript function, you must add an event listener that will
call the event method.

Note:

Alternatively, you can use a JSF 2.0 client behavior tag (such as f:ajax)
to respond to the client event, as all client events on ADF Faces
components are also exposed as client behaviors. See the Java EE 6
tutorial (http://download.oracle.com/javaee/index.html)

a. Select the component to invoke the JavaScript, and in the Properties window,
set ClientComponent to true.

b. In the Components window, from the Operations panel, in the Listeners group,
drag a Client Listener and drop it as a child to the selected component.

Chapter 6
Using JavaScript for ADF Faces Client Events

6-12

http://download.oracle.com/javaee/index.html

c. In the Insert Client Listener dialog, enter the method and select the type for the
JavaScript function.

The method attribute of the clientListener tag specifies the JavaScript
function to call when the corresponding event is fired. The JavaScript function
must take a single parameter, which is the event object.

The type attribute of the clientListener tag specifies the client event type
that the tag will listen for, such as action or valueChange. Table 6-3 lists the
ADF Faces client events.

The type attribute of the clientListener tag also supports client event types
related to keyboard and mouse events. Table 6-4 lists the keyboard and
mouse event types.

The following example shows the code used to invoke the
showHelpFileExplorerPopup function from the Explorer.js JavaScript file.

<af:commandMenuItem id="feedbackMenuItem"
 text="#{explorerBundle['menuitem.feedback']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showHelpFileExplorerPopup"
 type="action"/>
</af:commandMenuItem>

d. To add any attributes required by the function, in the Components window,
from the Operations panel, drag a Client Attribute and drop it as a child to the
selected component. Enter the name and value for the attribute in the
Properties window. The following example shows the code used to set
attribute values for the showAboutFileExplorerPopup function.

 <af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":fe:aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
 </af:commandMenuItem>

Best Practice:

Keyboard and mouse events wrap native DOM events using the
AdfUIInputEvent subclass of the AdfBaseEvent class, which provides
access to the original DOM event and also offers a range of convenience
functions for retrieval of key codes, mouse coordinates, and so on. The
AdfBaseEvent class also accounts for browser differences in how these
events are implemented. Consequently, you must avoid invoking the
getNativeEvent() method on the directly, and instead use the
AdfUIInputEvent API.

How to Return the Original Source of the Event
The JavaScript method getSource() returns the original source of a client event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in the following example, that could be used by multiple events to set

Chapter 6
Using JavaScript for ADF Faces Client Events

6-13

the alignment on a given popup dialog or window, using client attributes to pass in the
values. Because each event that uses the function may have different values for the
attributes, the function must know which source fired the event so that it can access
the corresponding attribute values (for more about using client attributes, see How to
Use Client-Side Attributes for an Event).

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 source.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

The getSource() method is called to determine the client component that fired the
current focus event, which in this case is the popup component.

How to Use Client-Side Attributes for an Event
There may be cases when you want the script logic to cause some sort of change on a
component. To do this, you may need attribute values passed in by the event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in the following example, that can be used to set the alignment on a
given popup component, using client attributes to pass in the values. The attribute
values are accessed by calling the getProperty method on the source component.

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

The values are set on the source component, as shown in the following example.

<af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
</af:commandMenuItem>

Using attributes in this way allows you to reuse the script across different components,
as long as they all trigger the same event.

Chapter 6
Using JavaScript for ADF Faces Client Events

6-14

How to Block UI Input During Event Execution
There may be times when you do not want the user to be able to interact with the UI
while a long-running event is processing. For example, suppose your application uses
a button to submit an order, and part of the processing includes creating a charge to
the user's account. If the user were to inadvertently press the button twice, the account
would be charged twice. By blocking user interaction until server processing is
complete, you ensure no erroneous client activity can take place.

The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserInput
function. To prevent all user input while the event is processing, you can call the
preventUserInput function, and a glass pane will cover the entire browser window,
preventing further input until the event has completed a roundtrip to the server.

You can use the preventUserInput function only with custom events, events raised in
a custom client script, or events raised in a custom client component's peer.
Additionally, the event must propagate to the server. The following example shows
how you can use preventUserInput in your JavaScript.

function queueEvent(event)
{
 event.cancel(); // cancel action event
 var source = event.getSource();

 var params = {};
 var type = "customListener";
 var immediate = true;
 var isPartial = true;
 var customEvent = new AdfCustomEvent(source, type, params, immediate);
 customEvent.preventUserInput();
 customEvent.queue(isPartial);
}

How to Prevent Events from Propagating to the Server
By default, some client events propagate to the server once processing has completed
on the client. In some circumstances, it is desirable to block this propagation. For
instance, if you are using a button component to execute JavaScript code when the
button is clicked, and there is no actionListener event listener on the server,
propagation of the event is a waste of resources. To block propagation to the server,
you call the cancel() function on the event in your listener. Once the cancel()
function has been called, the isCanceled() function will return true.

The following example shows the showAboutFileExplorerPopup function, which
cancels its propagation.

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

Chapter 6
Using JavaScript for ADF Faces Client Events

6-15

 event.cancel();
}

Canceling an event may also block some default processing. For example, canceling
an AdfUIInputEvent event for a context menu will block the browser from showing a
context menu in response to that event.

The cancel() function call will be ignored if the event cannot be canceled, which an
event indicates by returning false from the isCancelable() function (events that
cannot be canceled show "no" in the Is Cancelable column in Table 6-3). This
generally means that the event is a notification that an outcome has already
completed, and cannot be blocked. There is also no way to uncancel an event once it
has been canceled.

How to Indicate No Response is Expected
There may be times when you do not expect the framework to handle the response for
an event. For example, when exporting table content to a spreadsheet, you don't need
to wait for r the call to return To let the framework know that no response is expected,
you use the AdfBaseEvent.noResponseExpected() method.

What Happens at Runtime: How Client-Side Events Work
Event processing in general is taken from the browser's native event loop. The page
receives all DOM events that bubble up to the document, and hands them to the peer
associated with that piece of DOM. The peer is responsible for creating a JavaScript
event object that wraps that DOM event, returning it to the page, which queues the
event (for information about peers and the ADF Faces architecture, see Using ADF
Faces Client-Side Architecture).

The event queue on the page most commonly empties at the end of the browser's
event loop once each DOM event has been processed by the page (typically, resulting
in a component event being queued). However, because it is possible for events to be
queued independently of any user input (for example, poll components firing their poll
event when a timer is invoked), queueing an event also starts a timer that will force the
event queue to empty even if no user input occurs.

The event queue is a First-In-First-Out queue. For the event queue to empty, the page
takes each event object and delivers it to a broadcast() function on the event source.
This loop continues until the queue is empty. It is completely legitimate (and common)
for broadcasting an event to indirectly lead to queueing a new, derived event. That
derived event will be broadcast in the same loop.

When an event is broadcast to a component, the component does the following:

1. Delivers the event to the peer's DispatchComponentEvent method.

2. Delivers the event to any listeners registered for that event type.

3. Checks if the event should be bubbled, and if so initiates bubbling. Most events do
bubble. Exceptions include property change events (which are not queued, and do
not participate in this process at all) and, for efficiency, mouse move events.

While an event is bubbling, it is delivered to the AdfUIComponent
HandleBubbledEvent function, which offers up the event to the peer's
DispatchComponentEvent function. Note that client event listeners do not receive
the event, only the peers do.

Chapter 6
Using JavaScript for ADF Faces Client Events

6-16

Event bubbling can be blocked by calling an event's stopBubbling() function,
after which the isBubblingStopped() function will return true, and bubbling will not
continue. As with cancelling, you cannot undo this call.

Note:

Canceling an event does not stop bubbling. If you want to both cancel an
event and stop it from bubbling, you must call both functions.

4. If none of the prior work has canceled the event, calls the
AdfUIComponent.HandleEvent method, which adds the event to the server event
queue, if the event requests it.

What You May Need to Know About Using Naming Containers
Several components in ADF Faces are NamingContainer components, such as
pageTemplate, subform, table, and tree. When working with client-side API and
events in pages that contain NamingContainer components, you should use the
findComponent() method on the source component.

For example, because all components in any page within the File Explorer application
eventually reside inside a pageTemplate component, any JavaScript function must use
the getSource() and findComponent() methods, as shown in the following example.
The getSource() method accesses the AdfUIComponent class, which can then be
used to find the component.

function showPopup(event)
{
 event.cancel();
 var source = event.getSource();
 var popup = source.findComponent("popup");
 popup.show({align:"after_end", alignId:"button"});
}

When you use the findComponent() method, the search starts locally at the
component where the method is invoked. For information about working with naming
containers, see Locating a Client Component on a Page.

Sending Custom Events from the Client to the Server
In ADF Faces, you can use a custom event to send any custom data back to the
server from the client. To send a custom event from the client to the server, fire the
client event using a custom event type, write the server listener method on a backing
bean, and have this method process the custom event, and then register the server
listener with the component.

While the clientAttribute tag supports sending bonus attributes from the server to
the client, those attributes are not synchronized back to the server. To send any
custom data back to the server, use a custom event sent through the AdfCustomEvent
class and the serverListener tag.

The AdfCustomEvent.queue() JavaScript method enables you to fire a custom event
from any component whose clientComponent attribute is set to true. The custom
event object contains information about the client event source and a map of

Chapter 6
Sending Custom Events from the Client to the Server

6-17

parameters to include on the event. The custom event can be set for immediate
delivery (that is, during the Apply Request Values phase), or non-immediate delivery
(that is, during the Invoke Application phase).

For example, in the File Explorer application, after entering a file name in the search
field on the left, users can press the Enter key to invoke the search. As the following
example shows, this happens because the inputText field contains a clientListener
that invokes a JavaScript function when the Enter key is pressed.

//Code on the JSF page...
<af:inputText id="searchCriteriaName"
 value="#{explorer.navigatorManager.searchNavigator.
 searchCriteriaName}"
 shortDesc="#{explorerBundle['navigator.filenamesearch']}">
 <af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>
 <af:clientListener type="keyPress"
 method="Explorer.searchNameHandleKeyPress"/>
</af:inputText>

//Code in JavaScript file...
Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {
 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

The JavaScript contains the AdfCustomEvent.queue method that takes the event
source, the string enterPressedOnSearch as the custom event type, a null parameter
map, and False for the immediate parameter.

The inputText component on the page also contains the following serverListener
tag:

<af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>

Because the type value enterPressedOnSearch is the same as the value of the
parameter in the AdfCustomEvent.queue method in the JavaScript, the method that
resolves to the method expression
#{explorer.navigatorManager.searchNavigator.searchOnEnter} will be invoked.

How to Send Custom Events from the Client to the Server
To send a custom event from the client to the server, fire the client event using a
custom event type, write the server listener method on a backing bean, and have this
method process the custom event. Next, register the server listener with the
component.

Before you begin:

Chapter 6
Sending Custom Events from the Client to the Server

6-18

It may be helpful to have an understanding of sending custom events to the server.
See Sending Custom Events from the Client to the Server.

To send custom events:

1. Create the JavaScript that will handle the custom event using the
AdfCustomEvent.queue() method to provide the event source, custom event type,
and the parameters to send to the server.

For example, the JavaScript used to cause the pressing of the Enter key to invoke
the search functionality uses the AdfCustomEvent.queue method that takes the
event source, the string enterPressedOnSearch as the custom event type, a null
parameter map, and False for the immediate parameter, as shown in he following
example.

Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {
 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

2. Create the server listener method on a managed bean. This method must be
public and take an oracle.adf.view.rich.render.ClientEvent object and return
a void type. The following example shows the code used in the
SearchNavigatorView managed bean that simply calls another method to execute
the search and then refreshes the navigator.

 public void searchOnEnter(ClientEvent clientEvent)
 {
 doRealSearchForFileItem();

 // refresh search navigator
 this.refresh();
 }

Note:

The Java-to-JavaScript transformation can lose type information for
Numbers, chars, Java Objects, arrays, and nonstring CharSequences.
Therefore, if an object being sent to the server was initially on the server,
you may want to add logic to ensure the correct conversion. See What
You May Need to Know About Marshalling and Unmarshalling Data.

3. To register the clientListener, in the Components window, from the Operations
panel, drag a Client Listener and drop it as a child to the component that raises
the event.

Chapter 6
Sending Custom Events from the Client to the Server

6-19

Note:

On the component that will fire the custom client event, the
clientComponent attribute must be set to true to ensure that a client-
side generated component is available.

4. In the Insert Client Listener dialog, enter the method and type for the JavaScript
function. Be sure to include a library name if the script is not included on the page.
The type can be any string used to identify the custom event, for example,
enterPressedOnSearch was used in the File Explorer.

5. To register the server listener, in the Components window, from the Operations
panel, drag a Server Listener and drop it as a sibling to the clientListener tag.

6. In the Insert Server Listener dialog, enter the string used as the Type value for the
client listener, as the value for this server listener, for example
enterPressedOnSearch.

In the Properties window, for the method attribute, enter an expression that
resolves to the method created in Step 2.

What Happens at Runtime: How Client and Server Listeners Work
Together

At runtime, when the user initiates the event, for example, pressing the Enter key, the
client listener script executes. This script calls the AdfCustomEvent.queue() method,
and a custom event of the specified event type is queued on the input component. The
server listener registered on the input component receives the custom event, and the
associated bean method executes.

What You May Need to Know About Marshalling and Unmarshalling
Data

Marshalling and unmarshalling is the process of converting data objects of a
programming language into a byte stream and back into data objects that are native to
the same or a different programming language. In ADF Faces, marshalling and
unmarshalling refer to transformation of data into a suitable format so that it can be
optimally exchanged between JavaScript on the client end and Java on the server
end.

Note that there could be some loss of information during the conversion process. For
example, say you are using the following custom event to send the number 1 and the
String test, as shown in the following example:

AdfCustomEvent.queue(event.getSource(), "something", {first:1, second:"test"});

In the server-side listener, the type of the first parameter would become a
java.lang.Double because numbers are converted to Doubles when going from
JavaScript to Java. However, it might be that the parameter started on the server side
as an int, and was converted to a number when conversion from Java to JavaScript
took place. Now on its return trip to the server, it will be converted to a Double.

Mapping Java to JavaScript provides mapping between Java and JavaScript types.

Chapter 6
Sending Custom Events from the Client to the Server

6-20

Mapping Java to JavaScript
Table 6-5 shows how JavaScript types are mapped to the corresponding Java types in
ADF Faces.

Table 6-5 JavaScript to Java Type Map

JavaScript Type Java Type

Boolean java.lang.Boolean

Number java.lang.Double

String java.lang.String

Date java.util.Date

Array java.util.ArrayList

Object java.util.Map

Table 6-6 shows how Java types map back to JavaScript types.

Table 6-6 Java to JavaScript Type Map

Java Type JavaScript Type

java.lang.Boolean Boolean

java.lang.Double Number

java.lang.Integer Number

java.lang.Float Number

java.lang.Long Number

java.lang.Short Number

java.lang.Character String

java.lang.CharSequence String

java.util.Collection Array

java.util.Date Date

java.util.Map Object

Array Array

java.awt.Color TrColor

Executing a Script Within an Event Response
Executing JavaScript within an event response is useful when you have a JavaScript
library that does certain operations on the client side, and you want to call these
functions after finishing an action on the server side.

Using the ExtendedRenderKitService class, you can add JavaScript to an event
response, for example, after invoking an action method binding. It can be a simple
message like sending an alert informing the user that the database connection could

Chapter 6
Executing a Script Within an Event Response

6-21

not be established, or a call to a function like hide() on a popup window to
programatically dismiss a popup dialog.

For example, in the File Explorer application, when the user clicks the UpOneFolder
navigation button to move up in the folder structure, the folder pane is repainted to
display the parent folder as selected. The HandleUpOneFolder() method is called in
response to clicking the UpOneFolder button event. It uses the
ExtendedRenderKitService class to add JavaScript to the response.

The following example shows the UpOneFolder code in the page with the
actionListener attribute bound to the HandleUpOneFolder() handler method which
will process the action event when the button is clicked.

<af:btton id="upOneFolder"
. . .
 actionListener="#{explorer.headerManager.handleUpOneFolder}"/>

The following example shows the handleUpOneFolder method that uses the
ExtendedRenderKitService class.

public void handleUpOneFolder(ActionEvent actionEvent)
 {
 UIXTree folderTree =
 feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeComponent();
 Object selectedPath =
 feBean.getNavigatorManager().getFoldersNavigator().getFirstSelectedTreePath();

 if (selectedPath != null)
 {
 TreeModel model =
 _feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeModel();
 Object oldRowKey = model.getRowKey();
 try
 {
 model.setRowKey(selectedPath);
 Object parentRowKey = model.getContainerRowKey();
 if (parentRowKey != null)
 {
 folderTree.getSelectedRowKeys().clear();
 folderTree.getSelectedRowKeys().add(parentRowKey);
 // This is an example of how to force a single attribute
 // to rerender. The method assumes that the client has an optimized
 // setter for "selectedRowKeys" of tree.
 FacesContext context = FacesContext.getCurrentInstance();
 ExtendedRenderKitService erks =
 Service.getRenderKitService(context,
 ExtendedRenderKitService.class);
 String clientRowKey = folderTree.getClientRowKeyManager().
 getClientRowKey(context, folderTree, parentRowKey);
 String clientId = folderTree.getClientId(context);
 StringBuilder builder = new StringBuilder();
 builder.append("AdfPage.PAGE.findComponent('");
 builder.append(clientId);
 builder.append("').setSelectedRowKeys({'");
 builder.append(clientRowKey);
 builder.append("':true});");
 erks.addScript(context, builder.toString());
 }
 }
 finally
 {

Chapter 6
Executing a Script Within an Event Response

6-22

 model.setRowKey(oldRowKey);
 }
 // Only really needed if using server-side rerendering
 // of the tree selection, but performing it here saves
 // a roundtrip (just one, to fetch the table data, instead
 // of one to process the selection event only after which
 // the table data gets fetched!)
 _feBean.getNavigatorManager().getFoldersNavigator().openSelectedFolder();
 }

 }

Using ADF Faces Client Behavior Tags
Client behavior tags in ADF Faces execute on the client side. ADF Faces provides a
list of client behavior tags that you can use in place of client listeners.

ADF Faces client behavior tags provide declarative solutions to common client
operations that you would otherwise have to write yourself using JavaScript, and
register on components as client listeners. By using these tags instead of writing your
own JavaScript code to implement the same operations, you reduce the amount of
JavaScript code that needs to be downloaded to the browser.

ADF Faces provides these client behavior tags that you can use in place of client
listeners:

• panelDashboardBehavior: Enables the runtime insertion of a child component into
a panelDasboard component to appear more responsive. See How to Use the
panelDashboard Component.

• insertTextBehavior: Enables a command component to insert text at the cursor
in an inputText component. See How to Add the Ability to Insert Text into an
inputText Component.

• richTextEditorInsertBehavior: Enables a command component to insert text
(including preformatted text) at the cursor in a richTextEditor component. See
How to Add the Ability to Insert Text into a richTextEditor Component.

• autoSuggestBehavior: Enables list of values components to show items in a
dropdown list that match what the user is typing. See About List-of-Values
Components.

• showPopupBehavior: Enables a command component to launch a popup
component. See Declaratively Invoking a Popup.

• showPrintablePageBehavior: Enables a command component to generate and
display a printable version of the page. See Displaying a Page for Print.

• checkUncommittedDataBehavior: Enables a command component to display a
warning when the immediate attribute is set to true and a user attempts to
navigate away from the page. For details see Working with Navigation
Components.

• scrollComponentIntoViewBehavior: Enables a command component to jump to a
named component when clicked. See How to Use the
scrollComponentIntoViewBehavior Tag.

Chapter 6
Using ADF Faces Client Behavior Tags

6-23

Tip:

ADF Faces also provides a server-side scrollComponentIntoView API
that can be used when the component that is to be scrolled to may not
yet be rendered on the page.

For example, if you have a table and you want to be able to scroll to a
specific row, that row may be out of view when the table is first rendered.
You can use the scrollComponentIntoView API as part of the data fetch
event. See the Java API Reference for Oracle ADF Faces.

• target: Enables a component to declaratively execute or render a list of
components when a specified event occurs. See Using the Target Tag to Execute
PPR.

Client behavior tags cancel server-side event delivery automatically. Therefore, any
actionListener or action attributes on the parent component will be ignored. This
cannot be disabled. If you want to also trigger server-side functionality, you should use
either a client-side event (see Using JavaScript for ADF Faces Client Events), or add
an additional client listener that uses AdfCustomEvent and af:serverListener to
deliver a server-side event (see Sending Custom Events from the Client to the Server).

How to Use the scrollComponentIntoViewBehavior Tag
Use the scrollComponentIntoViewBehavior tag when you want the user to be able to
jump to a particular component on a page. This action is similar to an anchor in HTML.
For example, you may want to allow users to jump to a particular part of a page using
a commandLink component. For the richTextEditor and inlineFrame components,
you can jump to a subcomponent. For example, Figure 6-1 shows a richTextEditor
component with a number of sections in its text. The command links below the editor
allow the user to jump to specific parts of the text.

Figure 6-1 scrollComponentIntoViewBehavior Tag in an Editor

You can also configure the tag to have focus switched to the component to which the
user has scrolled.

Before you begin:

Chapter 6
Using ADF Faces Client Behavior Tags

6-24

It may be helpful to have an understanding of behavior tags. See Using ADF Faces
Client Behavior Tags.

To use the scrollComponentIntoViewBehavior tag:

1. Create a command component that the user will click to jump to the named
component. For procedures, see How to Use Buttons and Links for Navigation and
Deliver ActionEvents.

2. In the Components window, from the Operations panel, drag and drop a Scroll
Component Into View Behavior as a child to the command component.

3. In the Insert Scroll Component Into View Behavior dialog, use the dropdown arrow
to select Edit and then navigate to select the component to which the user should
jump.

4. In the Properties window, set the focus attribute to true if you want the
component to have focus after the jump.

5. For a richTextEditor or inlineFrame component, optionally enter a value for the
subTargetId attribute. This ID is defined in the value of the richTextEditor or
inlineFrame component.

For example, the value of the subTargetId attribute for the
scrollComponentIntoViewBehavior tag shown in Figure 6-1 is Introduction. The
value of the richTextEditor is bound to the property shown in the following
example. Note that Introduction is the ID for the first header.

private static final String _RICH_SECTIONED_VALUE =
 "<div>\n" +
 " <h2>\n" +
 " Introduction</h2>\n" +
 " <p>\n" +
 " The ADF Table component is used to display a list of structured data.
For example,\n" +
 " if we have a data structure called Person that has two properties -
firstname and\n" +
 " lastname, we could use a Table with two columns - one for firstname,
and the other\n" +
 " for lastname - to display a list of Person objects.\n" +
 " </p>\n" +
 " </div>\n" +
 " <div>\n" +
 " <h2>\n" +
 " The Table Model</h2>\n" +
 " <p>\n" +
 . . .
 </div>";

Using Polling Events to Update Pages
The ADF Faces poll component can be used to deliver poll events to the server as a
means to periodically update page components. To use the poll component, you must
create a handler method to handle the functionality for the polling event.

ADF Faces provides the poll component whose pollEvent can be used to
communicate with the server at specified intervals. For example, you might use the
poll component to update an outputText component, or to deliver a heartbeat to the
server to prevent users from being timed out of their session.

Chapter 6
Using Polling Events to Update Pages

6-25

You need to create a listener for the pollEvent that will be used to do the processing
required at poll time. For example, if you want to use the poll component to update the
value of an outputText component, you would implement a pollEventListener
method that would check the value in the data source and then update the component.

You can configure the interval time to determine how often the poll component will
deliver its poll event. You also configure the amount of time after which the page will
be allowed to time out. This can be useful, as the polling on a page causes the session
to never time out. Each time a request is sent to the server, a session time out value is
written to the page to determine when to cause a session time out. Because the poll
component will continually send a request to the server (based on the interval time),
the session will never time out. This is expensive both in network usage and in
memory.

To avoid this issue, the web.xml configuration file contains the
oracle.adf.view.rich.poll.TIMEOUT context-parameter, which specifies how long a
page should run before it times out. A page is considered eligible to time out if there is
no keyboard or mouse activity. The default timeout period is set at ten minutes. So if
user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the
framework stops polling, and from that point on, the page participates in the standard
server-side session timeout (see Session Timeout Warning).

If the application does time out, when the user moves the mouse or uses the keyboard
again, a new session timeout value is written to the page, and polling starts again.

You can override this time for a specific page using the poll component's timeout
attribute.

How to Use the Poll Component
When you use the poll component, you normally also create a handler method to
handle the functionality for the polling event.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Polling Events to Update Pages.

To use a poll component:

1. In a managed bean, create a handler for the poll event. For information about
managed beans, see Creating and Using Managed Beans.

2. In the Components window, from the Operations panel, drag and drop a Poll onto
the page.

3. In the Properties window, expand the Common section and set the following:

• Interval: Enter the amount of time in milliseconds between poll events. Set to
0 to disable polling.

• PollListener: Enter an EL expression that evaluates to the method in Step 1.

• Timeout: If you want to override the global timeout value in the web.xml file,
set Timeout to the amount of time in milliseconds after which the page will
stop polling and the session will time out.

Chapter 6
Using Polling Events to Update Pages

6-26

7
Validating and Converting Input

This chapter describes how to add conversion and validation capabilities to ADF
Faces input components in your application. It also describes how to add custom JSF
conversion and validation, how to handle and display any errors, including those not
caused by validation.
This chapter includes the following sections:

• About ADF Faces Converters and Validators

• Conversion, Validation, and the JSF Lifecycle

• Adding Conversion

• Creating Custom ADF Faces Converters

• Adding Validation

• Creating Custom JSF Validation

About ADF Faces Converters and Validators
ADF Faces provides the ability to both convert and validate user provided data to help
ensure data integrity. Use the Converters to convert the values on ADF forms to the
type that the application accepts them and use Validators to impose validations on the
input components.

ADF Faces input components support conversion capabilities. A web application can
store data of many types, such as int, long, and date in the model layer. When
viewed in a client browser, however, the user interface has to present the data in a
manner that can be read or modified by the user. For example, a date field in a form
might represent a java.util.Date object as a text string in the format mm/dd/yyyy.
When a user edits a date field and submits the form, the string must be converted
back to the type that is required by the application. Then the data is validated against
any rules and conditions. Conversely, data stored as something other than a String
type can be converted to a String for display and updating. Many components, such
as af:inputDate, automatically provide a conversion capability.

ADF Faces input components also support validation capabilities. You can add one or
more validator tags to the component. In addition, you can create your own custom
validators to suit your business needs.

Validators and converters have a default hint message that is displayed to users when
they click in the associated field. For converters, the hint usually tells the user the
correct format to use for input values, based on the given pattern. For validators, the
hint is used to convey what values are valid, based on the validation configured for the
component. If conversion or validation fails, associated error messages are displayed
to the user. These messages can be displayed in dialogs, or they can be displayed on
the page itself next to the component whose conversion or validation failed. For
information about displaying messages in an ADF Faces application, see Displaying
Tips, Messages, and Help.

7-1

ADF Faces converters is a set of converters that extends the standard JSF converters.
Since ADF Faces converters for input components operate on the client-side, errors in
conversion can be caught at the client and thus avoid a round trip to the server. You
can easily drag and drop ADF Faces converters into an input component.

ADF Faces validators also augment the standard JSF validators. ADF Faces
validators can operate on both the client and server side. The client-side validators are
in written JavaScript and validation errors caught on the client-side can be processed
without a round-trip to the server.

ADF Faces Converters and Validators Use Cases and Examples
You use ADF Faces converters to convert input from an input component into the
format the model expects. A typical use case is using an input component for entering
numbers and including a converter to convert the string entered by the user into a
number for the model to process. For example, an af:inputText component is used
for a product Id attribute. You add the af:convertNumber converter to the
af:inputText component to convert from String to Number. Another example is when
you have an inputText component for an attribute for the cost of a product. You can
use af:convertNumber to convert the input string into the proper currency format.

You add validators to input components in the same way to validate the input string.
For instance, you can add a validator to the af:inputText component to check that
the number of digits for the product Id are within the proper range. You add
af:validateLength to af:inputText and set the minimum and maximum attributes to
define the valid digit length.

Additional Functionality for ADF Faces Converters and Validators
You may find it helpful to understand other ADF Faces features before you implement
your converters and validators. Following are links to other sections that may be
useful.

• For detailed information about how conversion and validation works in the JSF
Lifecycle, see Using the JSF Lifecycle with ADF Faces .

• ADF Faces lets you customize the detail portion of a conversion error message
instead of a default message. For information about creating messages, see
Displaying Tips, Messages, and Help.

• Instead of entering values for attributes that take strings as values, you can use
property files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

Conversion, Validation, and the JSF Lifecycle
The conversion and validation capabilities supported by ADF Faces are basically
performed at different phases of JSF lifecycle. You can learn about the phase at which
conversion and validation takes place in JSF lifecycle and also learn about what
happens when the conversion or validation fails.

When a form with data is submitted, the browser sends a request value to the server
for each UI component whose editable value attribute is bound. Request values are
decoded during the JSF Apply Request Values phase and the decoded value is saved
locally on the component in the submittedValue attribute. If the value requires

Chapter 7
Conversion, Validation, and the JSF Lifecycle

7-2

conversion (for example, if it is displayed as a String type but stored as a
java.util.Date object), the data is converted to the correct type during the Process
Validation phase on a per-UI-component basis.

If validation or conversion fails, the lifecycle proceeds to the Render Response phase
and a corresponding error message is displayed on the page. If conversion and
validation are successful, then the Update Model phase starts and the converted and
validated values are used to update the model.

When a validation or conversion error occurs, the component whose validation or
conversion failed places an associated error message in the queue and invalidates
itself. The current page is then redisplayed with an error message. ADF Faces
components provide a way of declaratively setting these messages.

For detailed information about how conversion and validation works in the JSF
Lifecycle, see Using the JSF Lifecycle with ADF Faces .

Adding Conversion
ADF Faces converters are used to convert input from an input component into the
format the model expects. You can use JDeveloper to automatically inserts a
converter to the UI component or you can manually insert a converter into a UI
component.

A web application can store data of many types (such as int, long, date) in the model
layer. When viewed in a client browser, however, the user interface has to present the
data in a manner that can be read or modified by the user. For example, a date field in
a form might represent a java.util.Date object as a text string in the format mm/dd/
yyyy. When a user edits a date field and submits the form, the string must be
converted back to the type that is required by the application. You can set only one
converter on a UI component.

When you create an af:inputText component and set an attribute that is of a type for
which there is a converter, JDeveloper automatically adds that converter's tag as a
child of the input component. This tag invokes the converter, which will convert the
String type entered by the user back into the type expected by the object.

The JSF standard converters, which handle conversion between String types and
simple data types, implement the javax.faces.convert.Converter interface. The
supplied JSF standard converter classes are:

• BigDecimalConverter

• BigIntegerConverter

• BooleanConverter

• ByteConverter

• CharacterConverter

• DateTimeConverter

• DoubleConverter

• EnumConverter

• FloatConverter

• IntegerConverter

Chapter 7
Adding Conversion

7-3

• LongConverter

• NumberConverter

• ShortConverter

Table 7-1 shows the converters provided by ADF Faces.

Table 7-1 ADF Faces Converters

Converter Tag Name Description

ColorConverter af:convertColor Converts java.lang.String
objects to java.awt.Color objects.
You specify a set of color patterns as
an attribute of the converter.

DateTimeConverter af:convertDateTime Converts java.lang.String
objects to java.util.Date objects.
You specify the pattern and style of
the date as attributes of the
converter.

NumberConverter af:convertNumber Converts java.lang.String
objects to java.lang.Number
objects. You specify the pattern and
type of the number as attributes of
the converter.

As with validators, the ADF Faces converters are also run on the client side.

If no converter is explicitly added, ADF Faces will attempt to create a converter based
on the data type. Therefore, if the value is bound to any of the following types, you do
not need to explicitly add a converter:

• java.util.Date

• java.util.Color

• java.awt.Color

• java.lang.Number

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.Byte

• java.lang.Float

• java.lang.Double

Unlike the converters listed in Table 7-1, the JavaScript-enabled converters are
applied by type and used instead of the standard ones, overriding the class and id
attributes. They do not have associated tags that can be nested in the component.

How to Add a Converter
You can also manually insert a converter into a UI component.

Chapter 7
Adding Conversion

7-4

Before you begin:

It may be helpful to have an understanding of converters. See Adding Conversion.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To add ADF Faces converters that have tags:

1. In the Structure window, right-click the component for which you would like to add
a converter, choose Insert Inside component, then ADF Faces to insert an ADF
Faces converter.

You may also choose JSF > Converter to insert a JSF converter.

2. Choose a converter tag (for example, Convert Date Time) and click OK.

3. In the JSF page, select the component, and in the Properties window set values
for the attributes, including any messages for conversion errors. For additional
help, right-click any of the attributes and choose Help.

You can set multiple patterns for some ADF Faces converters. See How to Specify
Multiple Converter Patterns.

ADF Faces lets you customize the detail portion of a conversion error message.
By setting a value for a MessageDetailxyz attribute, where xyz is the conversion
error type (for example, MessageDetailconvertDate), ADF Faces displays the
custom message instead of a default message, if conversion fails. For information
about creating messages, see Displaying Tips, Messages, and Help.

How to Specify Multiple Converter Patterns
Some converters support multiple patterns. Patterns specify the format of data
accepted for conversion. Multiple patterns allow for more than one format. For
example, a user could enter dates using a slash (/) or hyphen (-) as a separator. Note
that not all converters support multiple patterns, although pattern matching is flexible
and multiple patterns may not be needed.

The following example illustrates the use of a multiple pattern for the af:convertColor
tag in which "255-255-000" and "FFFF00" are both acceptable values.

<af:inputColor colorData="#{adfFacesContext.colorPalette.default49}" id="sic3"
 label="Select a color" value="#{demoColor.colorValue4}" chooseId="chooseId">
 <af:convertColor patterns="rrr-ggg-bbb RRGGBB #RRGGBB"
 transparentAllowed="false"/>
</af:inputColor>

The following example illustrates the use of an af:convertDateTime tag in which
"6/9/2007" and "2007/9/6" are both acceptable values.

 <af:inputDate id="mdf5" value="2004/09/06" label="attached converter">
 <af:convertDateTime pattern="yyyy/M/d" secondaryPattern="d/M/yyyy" />
 </af:inputDate>

The following example illustrates an af:convertNumber tag with the type attribute set
to currency to accept "$78.57" and "$078.57" as values for conversion.

<af:inputText label="type=currency" value="#{validate.currency}" id="it1">
 <af:convertNumber type="currency"/>
</af:inputText>

Chapter 7
Adding Conversion

7-5

How to Specify Negative Numbers for Converters
Negative numbers are used in financial applications and have attribute level support
for client-side conversion using the af:convertNumber tag with the negativePrefix and
negativeSuffix attributes to format negative values using specified prefix and suffix
characters. For example, financial applications often format negative numbers using
parentheses, where (99.00) represents the negative value for 99.00.

These attributes accomplish the same thing as specifying a converter pattern on the
number converter, like #;(#), where the characters following the ";" in the pattern
indicate the negative pattern and the open and close parenthesis in the expression
represent the negative prefix and suffix respectively for negative numbers. However,
converter patterns are not processed on the client side and require a server roundtrip
to format the output.

You can eliminate the need for a server roundtrip to perform the conversion using the
af:convertNumber tag. This client-side conversion will override any implied negative
prefix/suffix using the converter pattern.

The following example illustrates an af:convertNumber tag with the negativePrefix
and negativeSuffix attributes set to "(" and ")" respectively to accept values a user
might enter such as "-99.00" and convert them to "(99.00)". With this setting, the
conversion is handled on the client as soon as the user tabs out of the text input.

<af:inputText label="type=number" id="it3">
 <af:convertNumber negativePrefix="(" negativeSuffix=")" type="number"/>
</af:inputText>

What Happens at Runtime: How Converters Work
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject() method to convert the String value to the
required object type. When there is not an attached converter and if the component is
bound to a bean property in the model, then ADF checks the model's data type and
attempts to find the appropriate converter. If conversion fails, the component's valid
attribute is set to false and JSF adds an error message to a queue that is maintained
by FacesContext. If conversion is successful and there are validators attached to the
component, the converted value is passed to the validators. If no validators are
attached to the component, the converted value is stored as a local value that is later
used to update the model.

What You May Need to Know About Number Converters
af:convertNumber supports either server-side or client-side conversion. The converter
first attempts to perform number formatting, parsing and conversions on the fly within
the browser thereby eliminating the need to perform a server roundtrip for formatting
input numbers. However, client conversion is skipped in the following situations:

• If the pattern attribute is specified. The converter will only run on the server.

• If the input string contains more than 15 digits, which is the maximum precision
supported by JavaScript number. The converter will only run on the server.

Chapter 7
Adding Conversion

7-6

When af:convertNumber displays an input value with more decimal digits than
specified by maxFractionDigits, by default it uses Java's HALF_EVEN method to round
off the value.

If you want af:convertNumber to use a method other than HALF_EVEN (such as
HALF_UP or FLOOR), follow these tips:

• To configure a particular instance of af:convertNumber, set the roundingMode
attribute to the desired value.

For example:

<af:convertNumber roundingMode="FLOOR" ... />

• To configure all instances of af:convertNumber in your application, add the
rounding-mode attribute in trinidad-config.xml and set it accordingly.

For example:

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
...
 <rounding-mode>FLOOR</rounding-mode>
</trinidad-config>

The value of roundingMode must be supported by Java's RoundingMode. The value
can be specified as a string in the .jspx or the config file, or as an EL expression
bound to a method that returns RoundingMode type value.

Note:

Input value cannot be rounded at client-side unless the roundingMode is set
to half-up. If roundingMode is not set to half-up, the input number is
retained unaltered at client-side for a subsequent postback to perform the
actual rounding on the server-side.

For more information about RoundingMode, see the Java API documentation.

What You May Need to Know About Date Time Converters
You should use a four-digit year pattern with a date converter to avoid ambiguity. If
you are using a two-digit year format as the pattern, all four-digit year values appear
as two digit year values. For example, if you are using a two-digit year format (such as
MM-dd-yy) as the pattern, the date values 03-01-1910 and 03-01-2010 appear as
03-01-10 in the input field and could be interpreted incorrectly, though the server
stores the correct year value.

Figure 7-1 shows the date values as they appear in the inputDate component, with an
outputText component below that shows the original values stored on the server.

Figure 7-1 Date Converter With Two-Digit Year Format

Chapter 7
Adding Conversion

7-7

If you are using a two-digit year format, all strings containing two-digit years will be
resolved into a date within two-digit-year-start and two-digit-year-start + 100.
For example, if two-digit-year-start value is 1912, the string 01/01/50 gets
resolved to 01/01/1950. To enter dates outside this range, the end user should enter a
date with the full (four-digit) year. For information about two-digit-year-start
element and how to configure it, see What You May Need to Know About Elements in
trinidad-config.xml.

Note:

While using a two-digit year format, two digit years will be placed in the range
determined by two-digit-year-start even if the user is editing an existing
value.

For example, assuming two-digit-year-start is set to 1950 (resolving year
values to the range 1950 through 2050) and the inputDate component has
value 03/01/1776 (displayed as 03/01/76). If the user modifies the value to
03/01/77, the new date would be 03/01/1977, not 03/01/1777 as may be
expected.

If you want to use a 12-hour format (for example, MM/dd/yyyy - hh:mm) as the pattern
with af:convertDateTime, you should also include the am/pm placeholder in the
pattern (for example, MM/dd/yyyy - hh:mm a), otherwise the picker will not show
am/pm options and the user will not be able to save the am/pm information. Figure 7-2
shows the inputDate component with and without am/pm placeholders in their
patterns.

Figure 7-2 Using AM/PM Placeholder With af:convertDateTime

If you want to display timezone information by including the timezone placeholder (z)
in the convertDateTime pattern (example, yyyy-MM-dd hh:mm:ss a z), note that the
trinidad convertDateTime overrides the display of the timezone names. When used in
conjunction with inputText or outputText, the converter displays the timezone in the
format GMT + x. When used in conjunction with inputDate, the timezone is displayed
from a selection of pre-configured display values, such as (UTC-08:00) Los Angeles
- Pacific Time (PT).

Chapter 7
Adding Conversion

7-8

Creating Custom ADF Faces Converters
You can create your own converters to meet your specific business needs. There are
different procedures to create custom ADF Faces server-side converters or client-side
converters.

Custom JSF converters run on the server-side using Java. ADF Faces Converters
behave as JSF converters, but also support client-side conversion and validation using
Javascript.

How to Create a Custom ADF Faces Converter
Creating a custom ADF Faces converter requires writing the business logic for the
conversion and then registering the custom converter with the application. To use the
custom ADF Faces converter, you use the f:converter tag and set the custom ADF
Faces converter as a property of that tag, or you can use the converter attribute on
the input component to bind to that converter.

To create a server-side converter, you must:

• Implement Server-Side (Java) Conversion

• Register ADF Faces Converter in faces-config.xml

The ADF Framework supports client-side conversion and validation to minimize
postbacks to the server. Client-side implementation is generally optional - if no client-
side implementation is available, the framework will simply invoke the server-side
converter during postback, just as in JSF.

Client-side implementation is required if the converter is used in conjunction with
certain components which support client interaction without postback, such as
inputNumberSlider, inputNumberSpinbox, and inputDate. To determine if a client
converter is required for a component, refer to the component's tagdoc.

ADF Faces client-side converters work in the same way standard JSF conversion
works on the server, except that JavaScript is used on the client. JavaScript converter
objects can throw ConverterException exceptions and they support the
getAsObject() and getAsString() methods.

To create a client-side converter, you must:

• Create a Client-Side Version of the Converter

• Modify the Server Converter to Enable Client Conversion

Implement Server-Side (Java) Conversion
ADF Faces converters are implemented on the server-side similarly to custom JSF
converters.

1. Create a Java class that implements the javax.faces.converter.Converter
interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and getAsObject and getAsString methods
to implement the Converter interface.

The getAsObject() method takes the FacesContext instance, the UI component,
and the String value to be converted to a specified object, for example:

Chapter 7
Creating Custom ADF Faces Converters

7-9

public Object getAsObject(FacesContext context,
 UIComponent component,
 java.lang.String value){
 ..
}

The getAsString() method takes the FacesContext instance, the UI component,
and the object to be converted to a String value, for example:

public String getAsString(FacesContext context,
 UIComponent component,
 Object value){
 ..
}

For information about these classes, refer to the Javadoc or visit http://
docs.oracle.com/javaee/index.html.

2. Add the needed conversion logic. This logic should use
javax.faces.convert.ConverterException to throw the appropriate exceptions
and javax.faces.application.FacesMessage to generate the corresponding error
messages.

For information about the Converter interface and the FacesMessage error
handlers, see the Javadoc for javax.faces.convert.ConverterException and
javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
javaee/index.html.

If your application saves state on the client, the custom ADF Faces converter must
implement the Serializable interface or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods of
the StateHolder interface. See the Javadoc for the StateHolder interface of
javax.faces.component package, or visit http://docs.oracle.com/javaee/
index.html.

Register ADF Faces Converter in faces-config.xml
You should register the converter in the faces-config.xml file.

1. Open the faces-config.xml file.

The faces-config.xml file is located in the View_Project > WEB-INF node in the
JDeveloper Applications window.

2. In the editor window, click the Overview tab.

3. Choose Converters and click Add to enter the converter information.

Click Help or press F1 for additional help in registering the converter.

Create a Client-Side Version of the Converter
Write a client JavaScript version of the converter, passing relevant information to a
constructor, as shown in the following example.

function TrConverter()
{
}

/**

Chapter 7
Creating Custom ADF Faces Converters

7-10

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

* Convert the specified model object value, into a String for display
* @param value Model object value to be converted
* @param label label to identify the editableValueHolder to the user
* @return the value as a string or undefined in case of no converter mechanism is
* available (see TrNumberConverter).
*/
TrConverter.prototype.getAsString = function(value, label){}

/**
* Convert the specified string value into a model data object
* which can be passed to validators
* @param value String value to be converted
* @param label label to identify the editableValueHolder to the user
* @return the converted value or undefined in case of no converter mechanism is
* available (see TrNumberConverter).
*/

TrConverter.prototype.getAsObject = function(value, label){}

If errors are encountered, the client can throw a TrConverterException exception to
show a TrFacesMessage error message.

The following example shows the signature for TrFacesMessage.

/**
 * Message similar to javax.faces.application.FacesMessage
 * @param summary - Localized summary message text
 * @param detail - Localized detail message text
 * @param severity - An optional severity for this message. Use constants
 * SEVERITY_INFO, SEVERITY_WARN, SEVERITY_ERROR, and
 * SEVERITY_FATAL from the FacesMessage class. Default is
 * SEVERITY_INFO
 */
function TrFacesMessage(summary,detail,severity){
 ..
}

The following example shows the signature for TrFacesException.

/**
* TrConverterException is an exception thrown by the getAsObject() or getAsString()
* method of a Converter, to indicate that the requested conversion cannot be
performed.
* @param facesMessage the TrFacesMessage associated with this exception
* @param summary Localized summary message text, used to create only if facesMessage
is null
* @param detail Localized detail message text, used only if facesMessage is null
*/
function TrConverterException(facesMessage, summary, detail){
 ..
}

Modify the Server Converter to Enable Client Conversion
Change the server converter to implement ClientConverter interface, which indicates
that the class supports client-side conversion. For information on the interface
methods, see the ClientConverter javadoc on http://myfaces.apache.org.

The following example shows a custom javascript converter implementation for social
security number.

Chapter 7
Creating Custom ADF Faces Converters

7-11

http://myfaces.apache.org

function ssnGetAsString(value)
{
 return value.substring(0,3) + '-' +
 value.substring(3,5) + '-' +
 value.substring(5);
}

function ssnGetAsObject(value)
{
 if (!value)
 return (void 0);

 var len=value.length;
 var messageKey = SSNConverter.NOT;
 if (len < 9)
 messageKey = SSNConverter.SHORT;
 else if (len > 11)
 messageKey = SSNConverter.LONG;
 else if (len == 9)
 {
 if (!isNaN(value))
 return value;
 }
 else if (len == 11 && value.charAt(3) == '-' && value.charAt(6) == '-')
 {
 var result = value.substring(0,3) +
 value.substring(4,6) +
 value.substring(7);

 if (!isNaN(result))
 return result;
 }

 if (messageKey!=void(0) && this._messages!=void(0))
 return new ConverterException(this._messages[messageKey]);

 return (void 0);
}

function SSNConverter(messages)
{
 this._messages = messages;
}

SSNConverter.prototype = new Converter();
SSNConverter.prototype.getAsString = ssnGetAsString;
SSNConverter.prototype.getAsObject = ssnGetAsObject;

SSNConverter.SHORT = 'S';
SSNConverter.LONG = 'L';
SSNConverter.NOT = 'N';

The following example shows a custom Java class that implements server
implementation for social security number. The details of the Java code has been
removed from the getAsObject() and getAsString() methods.

package oracle.adfdemo.view.faces.convertValidate;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;

Chapter 7
Creating Custom ADF Faces Converters

7-12

import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

import oracle.adf.view.faces.converter.ClientConverter;
/**
 * <p>Social Security number converter.</p>
 *
 */
public class SSNConverter implements Converter, ClientConverter
{
public static final String CONVERTER_ID = "oracle.adfdemo.SSN";

public Object getAsObject(
 FacesContext context,
 UIComponent component,
 String value)
{
 // some Java code ...
}

public String getAsString(
 FacesContext context,
 UIComponent component,
 Object value)
{
 // some Java code ...
}

 public String getClientConversion(
FacesContext context,
 UIComponent component)
 {
// in a real app the messages would be translated
 return "new SSNConverter({" +
 "S:'Value \"{0}\" in \"{1}\" is too short.'," +
 "L:'Value \"{0}\" in \"{1}\" is too long.'," +
 "N:'Value \"{0}\" in \"{1}\" " +
 "is not a social security number.'})";
 }

 public String getClientScript(
 FacesContext context,
 UIComponent component)
 {
// check if the script has already been returned this request
Object scriptReturned =
context.getExternalContext().getRequestMap().get(CONVERTER_ID);

// if scriptReturned is null the script hasn't been returned yet
if (scriptReturned == null)
{
 context.getExternalContext().getRequestMap().put(CONVERTER_ID,
 Boolean.TRUE);
 return _sSSNjs;
}
// if scriptReturned is not null, then script has already been returned,
// so don't return it again.
else
 return null;

Chapter 7
Creating Custom ADF Faces Converters

7-13

 }
 private static final String _sSSNjs =
"function ssnGetAsString(value)"+
"{return value.substring(0,3) + '-' " +
 "+ value.substring(3,5) + '-' + value.substring(5);}" +
"function ssnGetAsObject(value)" +
 "{if (!value)return (void 0);" +
 "var len=value.length;"+
 "var messageKey = SSNConverter.NOT;" +
 "if (len < 9)"+
 "messageKey = SSNConverter.SHORT;" +
 "else if (len > 11)"+
 "messageKey = SSNConverter.LONG;" +
 "else if (len == 9)" +
 "{ if (!isNaN(value))" +
 "return value;" +
 "}" +
 "else if (len == 11 && value.charAt(3) == '-' && " +
"value.charAt(6) == '-')" +
 "{" +
"var result = value.substring(0,3) + value.substring(4,6) + " +
"value.substring(7);"+
"if (!isNaN(result))"+
 "return result;" +
 "}" +
 "if (messageKey!=void(0) && this._messages!=void(0))" +
 "return new ConverterException(this._messages[messageKey]);" +
 "return void(0);}" +
"function SSNConverter(messages)" +
 "{this._messages = messages;}" +
"SSNConverter.prototype = new Converter();" +
"SSNConverter.prototype.getAsString = ssnGetAsString;" +
"SSNConverter.prototype.getAsObject = ssnGetAsObject;" +
"SSNConverter.SHORT = 'S';" +
"SSNConverter.LONG = 'L';" +
"SSNConverter.NOT = 'N';";

}

Using Custom ADF Faces Converter on a JSF Page
If a custom ADF Faces converter is registered in an application under a class for a
specific data type, whenever a component's value references a value binding that has
the same type as the custom converter object, JSF will automatically use the converter
of that class to convert the data. In that case, you do not need to use the converter
attribute to register the custom converter on a component, as shown in the following
code:

<af:inputText value="#{myBean.myProperty}"/>

where myProperty data type has the same type as the custom converter. Alternatively,
you can bind your converter class to the converter attribute of the input component.

What You May Need to Know About Custom ADF Faces Converters
When you define value formatting for a table or chart, the value formatting applies only
on the non-active events and does not apply on the ADS event. The converters, which
are responsible for formatting response data do not work on ADS response. To format

Chapter 7
Creating Custom ADF Faces Converters

7-14

the ADS data, you can use the
oracle.adf.view.rich.ads.USE_COMPONENT_FORMATTER parameter in the web.xml file.
You can set the following values for this parameter:

• NEVER: Apply this option to never use the component converter.

• IF_MODEL_DID_NOT_FORMAT: Apply this option to use the component
converter only if the new value and the formatted value from the active model are
identical.

• ALWAYS: Apply this option to use the component converter if it implements
formatterFactory and returns a not null formatted value.

How to Declaratively Register a Client-Side Only Converter Script
The af:clientConverter tag provides UI developers with a declarative alternative to
register a custom client-only converter script, while still allowing the use of pre-
programmed methods.

Usually, input or output fields whose data is encrypted by cloud data protection
services cannot be formatted on the server for the risk of data corruption. Such fields
are generally identified by the protected attribute. The af:clientConverter tag is
useful in situations where the data formatting requirements needs be delayed to the
point of page rendering where it is safe to format protected data.

The tag is applied as a child to input or output tags where conversion is needed. It
uses the getAsString and getAsObject attributes to accept an inline JavaScript
expression. The tag also offers the getAsStringMethod and getAsObjectMethod
attributes to call a JavaScript method instead.

To use the af:clientConverter tag:

1. Set clientComponent to true on the parent input or output tag. Presence of client
component is mandatory for the functioning of the client converter.

2. Add an af:clientConverter tag to the input or output element to be formatted.

3. To convert an input to a desired string format, provide the valid JavaScript
expression in the getAsString attribute. Use the value variable to access the field
value.

The following example accepts a numeric input and formats it as a credit card
number.

<af:outputText value="1234567890123456" id="outputText1"
clientComponent="true">
<af:clientConverter getAsString="return value.substr(0,4) + '-' +
value.substr(4,4) + '-' + value.substr(8,4) + '-' +
value.substr(12,4);"/>
</af:outputText>

4. To convert a formatted string back to its original form, provide the valid JavaScript
expression in the getAsObject attribute.

This is useful for internal validation purposes. For example, the credit card field
should have a length restriction validator for a maximum allowed length of 16. In
the absence of a getAsObject implementation, the validator would receive “1234–

Chapter 7
Creating Custom ADF Faces Converters

7-15

5678–9012–3456” which has a length of 19 and would fail the validation. The
following example accepts a formatted input and returns a numeric value.

<af:inputText value="1234567890123456" id="inputText1"
clientComponent="true">
<af:clientConverter getAsString="return value.substr(0,4) + '-' +
value.substr(4,4) + '-' + value.substr(8,4) + '-' + value.substr(12,4);"
 getAsObject="return (value == null || value.length == 0)? value :
value.replace(/-/g, '');" />
</af:inputText>

Note:

If the converter is applied to an input field, the submitted value is taken
from the field and not from the return value of getAsObject/
getAsObjectMethod.

5. As an alternative to using JavaScript inline, you can use previously created
methods. To do this, use the getAsStringMethod and getAsObjectMethod
attributes.

If the expression language is too verbose, or if a method exists for reuse, these
two attributes may be used. In the following example, the method
formatCreditCardNumber() is called to tokenize a string input as a credit card
number. The method parseCreditCardNumber() may be invoked to return the
tokenized number to its original format.

Note:

The implementation of the getAsObject/getAsObjectMethod attributes is
optional if the parent tag has no associated validator.

<af:inputText value="#{demoInput.creditCardNumber}" id="inpt1">
 <af:clientConverter getAsStringMethod="formatCreditCardNumber"
getAsObjectMethod="parseCreditCardNumber" hint="Credit Card digits"/>
</af:inputText>

The following example shows the sample methods formatCreditCardNumber()
and parseCreditCardNumber(). Methods can be used inline with the af:resource
tag or be part of a linked external JavaScript file.

<af:resource type="javascript">
/**
 * Formats a given credit card number string into a standard 4 digit
space separated grouping. (xxx xxx xxx xxx)
 * @param {String} The unformatted credit card number string that
needs to be formatted
 *
 * @return {String} The formatted credit card number
 */

Chapter 7
Creating Custom ADF Faces Converters

7-16

 function formatCreditCardNumber(value)
 {
 if (value == null || value.length == 0)
 return value;

 var retVal = value.substr(0,4) + ' ';
 retVal += value.substr(4,4) + ' '
 retVal += value.substr(8,4) + ' '
 retVal += value.substr(12,4);

 return retVal;
 }

 /**
 * Parses the credit card number as formatted by the function
formatCreditCardNumber back to a contiguous numeric string for postback.
 * @param {value} The formatted credit card number string that needs
to be parsed
 *
 * @return {String} The parsed credit card number
 */
 function parseCreditCardNumber(value)
 {
 if (value == null || value.length == 0)
 return value;

 return value.replace(/ /g,'');
 }
</af:resource>

Adding Validation
ADF Faces input components support validation capabilities. You can add validation
for an input component using UI component attributes, Default ADF Faces validators,
and Custom ADF Faces validators.

You can add validation so that when a user edits or enters data in a field and submits
the form, the data is validated against any set rules and conditions. If validation fails,
the application displays an error message. For example, in Figure 7-3 a specific date
range for user input with a message hint is set by the af:validateDateTimeRange
component and an error message is displayed in the message popup window when an
invalid value is entered.

Figure 7-3 Date Range Validator with Error Message

Chapter 7
Adding Validation

7-17

On the view layer use ADF Faces validation when you want client-side validation. All
validators provided by ADF Faces have a client-side peer. Many components have
attributes that provide validation. See Using Validation Attributes. In addition, ADF
Faces provides separate validation classes that can be run on both the client and the
server. For details, see Using ADF Faces Validators. You can also create your own
validators. For information about custom validators, see How to Create a Custom JSF
Validator.

How to Add Validation
By default, ADF Faces syntactic and semantic validation occurs on both the client and
server side. Client-side validation allows validators to catch and display data without
requiring a round-trip to the server.

ADF Faces provides the following types of validation:

• UI component attributes: ADF Faces input components provide attributes that can
be used to validate data. For example, you can supply simple validation using the
required attribute on ADF Faces input components to specify whether or not a
value must be supplied. When the required attribute is set to true, the component
must have a value. Otherwise the application displays an error message. See
Using Validation Attributes.

• Default ADF Faces validators: The validators supplied by the JSF framework
provide common validation checks, such as validating date ranges and validating
the length of entered data. See Using ADF Faces Validators.

• Custom ADF Faces validators: You can create your own validators and then select
them to be used in conjunction with UI components. See Creating Custom JSF
Validation.

When validation is added, validation errors can be displayed inline or in a popup
window on the page. For information about displaying messages created by validation
errors, see Displaying Tips, Messages, and Help.

Using Validation Attributes
Many ADF Faces UI components have attributes that provide simple validation. For
example, the af:inputDate component has maxValue and minValue attributes to
specify the maximum and minimum number allowed for the Date value.

For additional help with UI component attributes, in the Properties window, right-click
the attribute name and choose Help.

Using ADF Faces Validators
ADF Faces Validators are separate classes that can be run on the server or client.
Table 7-2 describes the validators and their logic.

Chapter 7
Adding Validation

7-18

Table 7-2 ADF Faces Validators

Validator Tag Name Description

ByteLengthValidator af:validateByteLength Validates the byte length
of strings when encoded.
The maximumLength
attribute of inputText is
similar, but it limits the
number of characters
that the user can enter.

DateRestrictionValidator af:validateDateRestriction Validates that the
entered date is valid with
some given restrictions.

DateTimeRangeValidator af:validateDateTimeRange Validates that the
entered date is within a
given range. You specify
the range as attributes of
the validator.

DoubleRangeValidator af:validateDoubleRange Validates that a
component value is
within a specified range.
The value must be
convertible to a floating-
point type.

LengthValidator af:validateLength Validates that the length
of a component value is
within a specified range.
The value must be of
type
java.lang.String.

LongRangeValidator af:validateLongRange Validates that a
component value is
within a specified range.
The value must be any
numeric type or String
that can be converted to
a long data type.

RegExpValidator af:validateRegExp Validates the data using
Java regular expression
syntax.

Note:

To register a custom validator on a component, use a standard JSF
f:validator tag. For information about using custom validators, see
Creating Custom JSF Validation.

To add ADF Faces validators:

Chapter 7
Adding Validation

7-19

1. In the Structure window, right-click the component for which you would like to add
a validator, choose Insert Inside component, then ADF Faces to insert an ADF
Faces validator.

You may also choose JSF > Validator to insert a JSF reference implementation
validator.

2. Choose a validator tag (for example, Validate Date Time Range) and click OK.

3. In the JSF page, select the component and in the Properties window, set values
for the attributes, including any messages for validation errors that may occur,
such as empty or incorrect required values.

For additional help, right-click any of the attributes and choose Help.

ADF Faces lets you customize the detail portion of a validation error message. By
setting a value for a MessageDetailxyz attribute, where xyz is the validation error
type (for example, MessageDetailmaximum), ADF Faces displays the custom
message instead of a default message, if validation fails.

What Happens at Runtime: How Validators Work
When the user submits the page, ADF Faces checks the submitted value and runs
conversion on any non-null value. The converted value is then passed to the
validate() method. If the value is empty, the required attribute of the component is
checked and an error message is generated if indicated. If the submitted value is non-
null, the validation process continues and all validators on the component are called in
order of their declaration.

Note:

ADF Faces provides extensions to the standard JSF validators, which have
client-side support.

ADF Faces validation is performed during the Process Validations phase. If any errors
are encountered, the components are invalidated and the associated messages are
added to the queue in the FacesContext instance. The Update Model phase only
happens when if there are no errors converting or validating. Once all validation is run
on the components, control passes to the model layer, which runs the Validate Model
Updates phase. As with the Process Validations phase, if any errors are encountered,
the components are invalidated and the associated messages are added to the queue
in the FacesContext instance.

The lifecycle then goes to the Render Response phase and redisplays the current
page. If the component generates an error, ADF Faces automatically highlights the
error. For instance, ADF Faces renders a red box around an inputText component
when there is a validation error, as shown in Figure 7-4.

Chapter 7
Adding Validation

7-20

Figure 7-4 Validation Error

For information about adding error messages when a validation or conversion error
occurs, see Displaying Hints and Error Messages for Validation and Conversion.

What You May Need to Know About Multiple Validators
You can set zero or more validators on a UI component. You can set the required
attribute and use validators on a component. However, if you set the required
attribute to true and the value is null or a zero-length string, the component is
invalidated and any other validators registered on the component are not called.

This combination might be an issue if there is a valid case for the component to be
empty. For example, if the page contains a Cancel button, the user should be able to
click that button and navigate off the page without entering any data. To handle this
case, you set the immediate attribute on the Cancel button's component to true. This
attribute allows the action to be executed during the Apply Request Values phase.
Then the default JSF action listener calls FacesContext.renderResponse(), thus
bypassing the validation whenever the action is executed. See Using the JSF Lifecycle
with ADF Faces .

Creating Custom JSF Validation
In ADF Faces, you can add your own validation logic to meet your specific business
needs. You can create custom validation by adding a method that provides the
required validation on a backing bean or by using JSF validators.

If you want custom validation logic for a component on a single page, you can create a
validation method on the page's backing bean.

If you want to create logic that will be reused by various pages within the application,
or if you want the validation to be able to run on the client side, you should create a
JSF validator class. You can then create an ADF Faces version, which will allow the
validator to run on the client.

How to Create a Backing Bean Validation Method
When you want custom validation for a component on a single page, create a method
that provides the required validation on a backing bean.

Before you begin:

It may be helpful to have an understanding of custom JSF validation. See Creating
Custom JSF Validation.

Chapter 7
Creating Custom JSF Validation

7-21

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To add a backing bean validation method:

1. Insert the component that will require validation into the JSF page.

2. In the visual editor, double-click the component.

3. In the Bind Validator Property dialog, enter or select the managed bean that will
hold the validation method, or click New to create a new managed bean. Use the
default method signature provided or select an existing method if the logic already
exists.

When you click OK in the dialog, JDeveloper adds a skeleton method to the code
and opens the bean in the source editor.

4. Add the required validation logic. This logic should use the
javax.faces.validator.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages.

For information about the Validator interface and FacesMessage, see the Javadoc
for javax.faces.validator.ValidatorException and
javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
javaee/index.html.

What Happens When You Create a Backing Bean Validation Method
When you create a validation method, JDeveloper adds a skeleton method to the
managed bean you selected. The following example shows the code JDeveloper
generates.

public void inputText_validator(FacesContext facesContext,
 UIComponent uiComponent, Object object) {
 // Add event code here...
}

When the form containing the input component is submitted, the method to which the
validator attribute is bound is executed.

How to Create a Custom JSF Validator
Creating a custom validator requires writing the business logic for the validation by
creating a Validator implementation of the interface, and then registering the custom
validator with the application. You can also create a tag for the validator, or you can
use the f:validator tag and the custom validator as an attribute for that tag.

You can then create a client-side version of the validator. ADF Faces client-side
validation works in the same way that standard validation works on the server, except
that JavaScript is used on the client. JavaScript validator objects can throw
ValidatorExceptions exceptions and they support the validate() method.

Before you begin:

It may be helpful to have an understanding of custom JSF validation. See Creating
Custom JSF Validation.

Chapter 7
Creating Custom JSF Validation

7-22

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for ADF Faces Converters and
Validators.

To create a custom JSF validator:

1. Create a Java class that implements the javax.faces.validator.Validator
interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and a validate method to implement the
Validator interface.

public void validate(FacesContext facesContext,
 UIComponent uiComponent,
 Object object)
 throws ValidatorException {
..
}

For information about these classes, refer to the Javadoc or visit http://
docs.oracle.com/javaee/index.html.

2. Add the needed validation logic. This logic should use the
javax.faces.validate.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages.

For information about the Validator interface and FacesMessage, see the Javadoc
for javax.faces.validate.ValidatorException and
javax.faces.application.FacesMessage, or visit http://docs.oracle.com/
javaee/index.html.

3. If your application saves state on the client, your custom validator must implement
the Serializable interface, or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods
of the StateHolder interface.

See the Javadoc for the StateHolder interface of the javax.faces.component
package.

4. Register the validator in the faces-config.xml file.

a. Open the faces-config.xml file.

The faces-config.xml file is located in the View_Project > WEB-INF node in
the JDeveloper Applications window.

b. In the editor window, click the Overview tab.

c. Choose Validators and click Add to add the validator information.

Click Help or press F1 for additional help in registering the validator.

To create a client-side version of the validator:

1. Write a JavaScript version of the validator, passing relevant information to a
constructor.

2. Implement the interface
org.apache.myfaces.trinidad.validator.ClientValidator, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Validator object. The second method is

Chapter 7
Creating Custom JSF Validation

7-23

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

getClientValidation(), which returns a JavaScript constructor that is used to
instantiate an instance of the validator.

The following example shows a validator in Java.

public String getClientValidation(
FacesContext context,
UIComponent component)
{
 return ("new SSNValidator('Invalid social security number.','Value \"{1}\"
 must start with \"123\".')");
}

The Java validator calls the JavaScript validator shown in the following example.

function SSNValidator(summary, detail)
{
 this._detail = detail;
 this._summary = summary;
}

To use a custom validator on a JSF page:

• To use a custom validator that has a tag on a JSF page, you must manually nest it
inside the component's tag.

The following example shows a custom validator tag nested inside an inputText
component. Note that the tag attributes are used to provide the values for the
validator's properties that were declared in the faces-config.xml file.

<h:inputText id="empnumber" required="true">
 <hdemo:emValidator emPatterns="9999|9 9 9 9|9-9-9-9" />
</h:inputText>

To use a custom validator without a custom tag:

To use a custom validator without a custom tag, nest the validator's ID (as configured
in faces-config.xml file) inside the f:validator tag. The validator's ID attribute
supports EL expression such that the application can dynamically determine the
validator to use.

1. From the Structure window, right-click the input component for which you want to
add validation, and choose Insert inside component > JSF > Validator.

2. With input component selected, in the Properties window, select the validator's ID
from the dropdown list and click OK.

JDeveloper inserts code on the JSF page that makes the validator ID a property of
the f:validator tag.

The following example shows the code on a JSF page for a validator using the
f:validator tag.

<af:inputText id="empnumber" required="true">
 <f:validator validatorID="emValidator"/>
</af:inputText>

What Happens When You Use a Custom JSF Validator
When you use a custom JSF validator, the application accesses the validator class
referenced in either the custom tag or the f:validator tag and executes the
validate() method. This method executes logic against the value that is to be

Chapter 7
Creating Custom JSF Validation

7-24

validated to determine if it is valid. If the validator has attributes, those attributes are
also accessed and used in the validation routine. Like standard validators, if the
custom validation fails, associated messages are placed in the message queue in the
FacesContext instance.

Chapter 7
Creating Custom JSF Validation

7-25

8
Rerendering Partial Page Content

This chapter describes how to use the partial page render features provided with
ADF Faces components to rerender areas of a page without rerendering the whole
page.
This chapter includes the following sections:

• About Partial Page Rendering

• Using Partial Triggers

• Using the Target Tag to Execute PPR

• Enabling Partial Page Rendering Programmatically

• Using Partial Page Navigation

• Using a Streaming Component to Allow Page Loading

About Partial Page Rendering
Oracle ADF Faces supports enabling Partial Page Rendering (PPR), which enables
refreshing portions of page content without the need to redraw the entire page. You
can use the autoSubmit, partialSubmit, and partialTriggers component attributes
to enable PPR.

Ajax (Asynchronous JavaScript and XML) is a web development technique for creating
interactive web applications, where web pages appear more responsive by
exchanging small amounts of data with the server behind the scenes, without the
whole web page being rerendered. The effect is to improve a web page's interactivity,
speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page render behavior is
called partial page rendering (PPR). During PPR, the JSF page request lifecycle
(including conversion and validation) is run only for certain components on a page.
Certain ADF Faces components are considered event root components, and are what
determine the boundaries on which this optimized lifecycle is run.

The event root component can be determined in two ways:

• Events: Certain events indicate a component as a root. For example, the
disclosure event sent when expanding or collapsing a showDetail component (see
Displaying and Hiding Contents Dynamically), indicates that the showDetail
component is a root. When the showDetail component is expanded or collapsed,
only that component, and any of its child components, goes through the lifecycle.
Other examples of events identifying a root component are the disclosure event
when expanding nodes on a tree, or the sort event on a table. For a complete list
of events that have corresponding event root components, see in Events and
Partial Page Rendering.

• Components: Certain components are recognized as an implicit boundary, and
therefore a root component. For example, the framework knows a popup dialog is

8-1

a boundary. No matter what event is triggered inside a dialog, the lifecycle does
not run on components outside the dialog. It runs only on the popup.

The following components are considered event root components:

– popup

– region

– panelCollection

– calendar

– editableValueHolder components (such as inputText)

In addition to this built-in PPR functionality, there may be cases when you want
components that are outside of the boundary to be included in the optimized lifecycle.
You can configure this declaratively, using the partial trigger attributes to set up
dependencies so that one component acts as a trigger and another as the listener.
When any event occurs on the trigger component, the lifecycle is run on the trigger
and its children (as described above), and then also on any listener components and
child components to the listener.

For example, suppose you have an inputText component on a page whose required
attribute is set to true. On the same page are radio buttons that when selected cause
the page to either show or hide text in an outputText component, as shown in
Figure 8-1.

Figure 8-1 Required Field and Boolean with Auto-Submit

Also assume that you want the user to be able to select a radio button before entering
the required text into the field. While you could set the radio button components to
automatically trigger a submit action and also set their immediate attribute to true so
that they are processed before the inputText component, you would also have to add
a valueChangeEvent listener, and in it, jump to the Render Response phase so that
validation is not run on the input text component when the radio buttons are
processed.

Instead of having to write this code in a listener, you can use the partialTriggers
attribute to have the lifecycle run just on the radio buttons and the output text
component. You would set the radio buttons to be triggers and the panelGroupLayout
component that contains the output text to be the target, as shown in Example 5-4.

Tip:

Because the output text won't be rendered when it's configured to hide, it
cannot be a target. Therefore it is placed in a panelGroupLayout component,
which is then configured to be the target.

Chapter 8
About Partial Page Rendering

8-2

<af:form>
 <af:inputText label="Required Field" required="true"/>
 <af:selectBooleanRadio id="show" autoSubmit="true"
text="Show"
 value="#{validate.show}"/>
 <af:selectBooleanRadio id="hide" autoSubmit="true" text="Hide"
 value="#{validate.hide}"/>
 <af:panelGroupLayout partialTriggers="show hide" id="panel">
 <af:outputText value="You can see me!" rendered="#{validate.show}"/>
 </af:panelGroupLayout>
</af:form>

Because the autoSubmit attribute is set to true on the radio buttons, when they are
selected, a SelectionEvent is fired, for which the radio button is considered the root.
Because the panelGroupLayout component is set to be a target to both radio
components, when that event is fired, only the selectBooleanRadio (the root), the
panelGroupLayout component (the root's target), and its child component (the
outputText component) are processed through the lifecycle. Because the outputText
component is configured to render only when the Show radio button is selected, the
user is able to select that radio button and see the output text, without having to enter
text into the required input field above the radio buttons.

Note however, than when you use the partial trigger attributes to set up dependencies
between components, any event from the trigger component will cause the target
component, and its children, to execute and render. This can result in validation errors.

For example, suppose instead of using an outputText component in the
panelGroupLayout, you want to use an inputText component whose required
attribute is set to true, as shown in the following example.

<af:form>
 <af:selectBooleanRadio id="show1" autoSubmit="true" text="Show"
 value="#{validate.show1}"/>
 <af:selectBooleanRadio id="hide1" autoSubmit="true" text="Hide"
 value="#{validate.hide1}"/>
 <af:panelGroupLayout partialTriggers="show1 hide1">
 <af:inputText label="Required Field" required="true"
 rendered="#{validate.show1}"/>
 </af:panelGroupLayout>
</af:form>

In this example, the inputText component will be validated because the lifecycle runs
on the root (the selectBooleanRadio component), the target (the panelGroupLayout
component), and the target's child (the inputText component). Validation will fail
because the inputText component is marked as required and there is no value, so an
error will be thrown. Because of the error, the lifecycle will skip to the Render
Response phase and the model value bound to the radio button will not be updated.
Therefore, the panelGroupLayout component will not be able to show or hide because
the value of the radio button will not be updated.

For cases like these, you can explicitly configure which targets you want executed and
which targets you want rendered when a specific event (or events) is fired by a
component. In this new example, we want the valueChange event on the
selectBooleanRadio buttons to trigger PPR, but instead of executing the
panelGroupLayout component and its children through the lifecycle, only the radio
buttons should be executed. However, the entire form should be rendered. As that
happens, the inputText component can then determine whether or not to render.
When you need to explicitly determine the events that cause PPR, and the

Chapter 8
About Partial Page Rendering

8-3

components that should be executed and rendered, you use the target tag, as shown
in the following example.

<af:panelFormLayout id="pfl1">
 <af:selectBooleanRadio id="show2" autoSubmit="true" text="Show"
 value="#{validate.show2}"/>
 <af:target events="valueChange" execute="show2 hide2" render="pfl1"/>
 <af:selectBooleanRadio id="hide2" autoSubmit="true" text="Hide"
 value="#{validate.hide2}"/>

 <af:target events="valueChange" execute="hide2 show2" render="pfl1"/>
 <af:panelGroupLayout id="pgl1">
 <af:inputText label="Required Field" required="true"
 rendered="#{validate.show2}"/>
 </af:panelGroupLayout>
</af:panelFormLayout>

In this example, when the valueChange event is fired from either of the
selectBooleanRadio components, only the selectBooleanRadio components will be
executed in the lifecycle, while the entire panelFormLayout component will be
rendered.

Tip:

If your application uses the Fusion technology stack, you can enable the
automatic partial page rendering feature on any page. This causes any
components whose values change as a result of backend business logic to
be automatically rerendered. See What You May Need to Know About Partial
Page Rendering and Iterator Bindings in Developing Fusion Web
Applications with Oracle Application Development Framework.

Additionally, ADF Faces applications can use PPR for navigation. In standard JSF
applications, the navigation from one page to the next requires the new page to be
rendered. When using Ajax-like components, this can cause overhead because of the
time needed to download the different JavaScript libraries and style sheets. To avoid
this costly overhead, the ADF Faces architecture can optionally simulate full-page
transitions while actually remaining on a single page, thereby avoiding the need to
reload JavaScript code and skin styles.

Note:

The browser must have JavaScript enabled for PPR to work.

Using Partial Triggers
ADF Faces components have partialTriggers attribute that developers use to
refresh based on the other component ID added into the partialTrigger attribute.
Use this attribute to dynamically refresh a part of the page.

Chapter 8
Using Partial Triggers

8-4

Using partial triggers, one component, referred to as the target component, is
rerendered when any event occurs on another component, referred to as the trigger
component.

For example, as shown in Figure 8-2, the File Explorer application contains a table that
shows the search results in the Search panel. This table (and only this table) is
rendered when the search button is activated. The search button is configured to be
the trigger and the table is configured to be the target. When any event fires from the
button, the table and its components will be processed through the lifecycle (as well as
the button)

Figure 8-2 The Search Button Causes Results Table to Rerender

Note:

In some cases, you may want a component to be executed or rendered only
when a particular event is fired, not for every event associated with the
trigger component. In these cases, you should use the target tag. See Using
the Target Tag to Execute PPR. When you want some logic to determine
whether a component is to be executed or rendered, you can
programmatically enable PPR. See Enabling Partial Page Rendering
Programmatically.

Trigger components must inform the framework that a PPR request has occurred. On
command components, this is achieved by setting the partialSubmit attribute to true.
Doing this causes the command component to fire a partial page request each time it
is clicked.

For example, say a page includes an inputText component, a button component,
and an outputText component. When the user enters a value for the inputText
component, and then clicks the button component, the input value is reflected in the
outputText component. You would set the partialSubmit attribute to true on the
button component.

However, components other than command components can trigger PPR. ADF Faces
input and select components have the ability to trigger partial page requests
automatically whenever their values change. To make use of this functionality, use the
autoSubmit attribute of the input or select component so that as soon as a value is

Chapter 8
Using Partial Triggers

8-5

entered, a submit occurs, which in turn causes a valueChangeEvent event to occur. It
is this event that notifies the framework to execute a PPR, as long as a target
component is set. In the previous example, you could delete the button component
and instead set the inputText component's autoSubmit attribute to true. Each time
the value changes, a PPR request will be fired.

Tip:

The autoSubmit attribute on an input component and the partialSubmit
attribute on a command component are not the same thing. When
partialSubmit is set to true, then only the components that have values for
their partialTriggers attribute will be processed through the lifecycle.

The autoSubmit attribute is used by input and select components to tell the
framework to automatically do a form submit whenever the value changes.
When a form is submitted and the autoSubmit attribute is set to true, a
valueChangeEvent event is invoked, and the lifecycle runs only on the
components marked as root components for that event, and their children.
See Using the Optimized Lifecycle.

Once PPR is triggered, any component configured to be a target will be processed
through the lifecycle. You configure a component to be a target by setting the
partialTriggers attribute to the relative ID of the trigger component. For information
about relative IDs, see Locating a Client Component on a Page.

In the example, to update the outputText in response to changes to the inputText
component, you would set its partialTriggers attribute to the inputText
component's relative ID.

Note that certain events on components trigger PPR by default, for example the
disclosure event on the showDetail component and the sort event on a table. This
means that any component configured to be a target by having its partialTriggers
attribute set to that component's ID will rerender when these types of events occur.
When you don't want all events to trigger PPR, then instead of using the
partialTriggers attribute, you should use the target tag. This tag allows you to
explicitly set which events will cause PPR.

Another example of when to use the target tag instead of the partialTriggers
attribute is when your trigger component is an inputLov or an inputComboBoxLov, and
the target component is a dependent input component set to required. In this case, a
validation error will be thrown for the input component when the LOV popup is
displayed. If you use the target tag instead, you can explicitly set which components
should execute (the LOV), and which should be rendered (the input component). See
Using the Target Tag to Execute PPR.

How to Use Partial Triggers
For a component to be rendered based on an event caused by another component, it
must declare which other components are the triggers.

Chapter 8
Using Partial Triggers

8-6

Best Practice:

Do not use both partial triggers and the target tag on the same page. When
in doubt, use only the target tag. See Using the Target Tag to Execute
PPR.

Before you begin:

It may be helpful to have an understanding of declarative partial page rendering. See
Using Partial Triggers.

To use partial triggers:

1. In the Structure window, select the trigger component (that is, the component
whose action will cause the PPR):

• Expand the Common section of the Properties window and set the id attribute
if it is not already set. Note that the value must be unique within that
component's naming container. If the component is not within a naming
container, then the ID must be unique to the page. For information about
naming containers, see Locating a Client Component on a Page.

Tip:

JDeveloper automatically assigns component IDs. You can safely
change this value. A component's ID must be a valid XML name,
that is, you cannot use leading numeric values or spaces in the ID.
JSF also does not permit colons (:) in the ID.

• If the trigger component is a command component, expand the Behavior
section of the Properties window, and set the partialSubmit attribute to true.

• If the trigger component is an input or select component in a form and you
want the value to be submitted, expand the Behavior section of the Properties
window, and set the autoSubmit attribute of the component to true.

Note:

Set the autoSubmit attribute to true only if you want the component
to submit its value. If you do not want to submit the value, then some
other logic must cause the component to issue a ValueChangeEvent
event. That event will cause PPR by default and any component that
has the trigger component as its value for the partialTriggers
attribute will be rerendered.

2. In the Structure window, select the target component that you want to rerender
when a PPR-triggering event takes place.

3. Expand the Behavior section of the Properties window, click the icon that appears
when you hover over the partialTriggers attribute and choose Edit.

Chapter 8
Using Partial Triggers

8-7

4. In the Edit Property dialog, shuttle the trigger component to the Selected panel
and click OK. If the trigger component is within a naming container, JDeveloper
automatically creates the relative path for you.

Tip:

The selectBooleanRadio components behave like a single component with
partial page rendering;, however, they are in fact multiple components.
Therefore, if you want other components (such as inputText components) to
change based on selecting a different selectBooleanRadio component in a
group, you must group them within a parent component, and set the
partialTriggers attribute of the parent component to point to all of the
SelectBooleanRadio components.

The following example shows a link component configured to execute PPR.

<af:link id="deleteFromCart" partialSubmit="true"
 actionListener="#{homeBean...}" text="Delete From Cart">

The following example shows an outputText component that will be rerendered when
the link with ID deleteFromCart in the previous example is clicked.

<af:outputText id="estimatedTotalInPopup"
 partialTriggers="deleteFromCart"
 value="#{shoppingCartBean...}"/>

Tip:

If you need to prevent components from being validated on a page during
PPR, then you should use the target tag. See Using the Target Tag to
Execute PPR.

What You May Need to Know About Using the Browser Back Button
In an ADF Faces application, because some components use PPR (either implicitly or
because they have been configured to listen for a partial trigger), what happens when
a user clicks the browser's back button is slightly different than in an application that
uses simple JSF components.

In an application that uses simple JSF components, when the user clicks the browser's
back button, the browser returns the page to the state of the DOM (document object
model) as it was when last rendered, but the state of the JavaScript is as it was when
the user first entered the page.

For example, suppose a user visited PageA. After the user interacts with components
on the page, say a PPR event took place using JavaScript. Let's call this new version
of the page PageA1. Next, say the user navigates to PageB, then clicks the browser
back button to return to PageA. The user will be shown the DOM as it was on PageA1,
but the JavaScript will not have run, and therefore parts of the page will be as they
were for PageA. This might mean that changes to the page will be lost. Refreshing the
page will run the JavaScript and so return the user to the state it was in PageA1. In an

Chapter 8
Using Partial Triggers

8-8

application that uses ADF Faces, the refresh is not needed; the framework provides
built-in support so that the JavaScript is run when the back button is clicked.

What You May Need to Know About PPR and Screen Readers
Screen readers do not reread the full page in a partial page request. PPR causes the
screen reader to read the page starting from the component that fired the partial page
request. You should place the target components after the component that triggers the
partial request; otherwise, the screen reader would not read the updated target
components.

Using the Target Tag to Execute PPR
ADF Faces provides the target tag that provides a declarative way to allow a
component to specify the list of targets it wants executed and rendered when an event
is fired by the component. It has complete control on which components the JSF
lifecycle is executed, and which components are rerendered (refreshed).

For components such as tables that have many associated events, PPR will happen
each time an event is triggered, causing any child component of the table, or any
component with the table as a partial trigger, to be executed and rendered. If you want
components to be rendered or executed only for certain events, or if you only want
certain components to execute or render, you can use the target tag.

Using the target tag can be especially useful when you want to skip component
validation under very specific circumstances. For example, say you have a form with a
required field, along with a Submit button and a Cancel button, as shown in
Figure 8-3.

Figure 8-3 Required Field is Processed When Cancel Button is Clicked

Under normal circumstances, when the Cancel button is clicked, all fields in the form
are processed. Because the input text field is required, it will fail validation.

To avoid this failure, you can use the target tag as a child to the Cancel button. Using
the target tag, you can state which targets you want executed and rendered when a
specific event (or events) is fired by the component. In this example, you might
configure the Cancel button's target tag so that only that button is executed, as shown
in the following example.

<af:panelFormLayout id="pfl1" labelAlignment="top">
. . .
 <af:panelLabelAndMessage id="plam12" for="it3">
 <af:inputText label="Required Field" required="true"
 rendered="#{validate.show3}" id="it3"/>
 </af:panelLabelAndMessage>
 <af:panelGroupLayout layout="horizontal" id="pgl9">
 <af:button text="submit" partialSubmit="true" id="cb2"
 <af:target execute="@this it3" render="pfl1"/>
 </af:button>

Chapter 8
Using the Target Tag to Execute PPR

8-9

 <af:button actionListener="#{validate.handleCancel}"
 partialSubmit="true" text="cancel" id="cb1">
 <af:target execute="@this"/>
 </af:button>
 </af:panelGroupLayout>
</af:panelFormLayout>

In this example, when the Submit button is clicked, that button and the inputText
component are executed, and the contents of the panelFormLayout component are
rendered. However, when the Cancel button is clicked, only the Cancel button is
executed. Nothing is rendered as a result of the click.

Another common validation issue can occur when you have an LOV component and a
dependent input text component. For example, say you have an inputListOfValues
component from which the user selects an employee name. You want the Employee
Number input text field to be automatically populated once the user selects the name
from the LOV, and you also want this field to be required.

If you were to use partial triggers by setting the LOV as the trigger, and the input text
component as a target, the input text component would fail validation when the popup
closes. When the user clicks the search icon, the inputText component will be
validated because the lifecycle runs on both the root (the inputListOfValues
component) and the target (the inputText component). Validation will fail because the
inputText component is marked as required and there is no value, as shown in
Figure 8-4

Figure 8-4 Validation Error is Thrown Because a Value is Required

Instead, you can use a target tag as a child to the inputListOfValues component,
and configure it so that only the inputListOfValues component is executed, but the
input text component is rendered with the newly selected value, as shown in the
following example.

<af:panelFormLayout id="pfl2">
 <af:inputListOfValues label="Ename" id="lov21" required="true"
 value="#{validateLOV.ename}" autoSubmit="true"
 popupTitle="Search and Select: Ename" searchDesc="Choose a name"
 model="#{validateLOV.listOfValuesModel}"
 validator="#{validateLOV.validate}">
 <af:target execute="@this" render="it1"/>
 </af:inputListOfValues>
 <af:inputText label="Empno" value="#{validateLOV.empno}" required="true"
 id="it1"/>

</af:panelFormLayout>

How to Use the Target Tag to Enable Partial Page Rendering
You place the target tag as a child to the component whose event will cause the
PPR. For example, for the form shown in Figure 8-3, you would place the target tag as

Chapter 8
Using the Target Tag to Execute PPR

8-10

a child to the Cancel button. You then explicitly name the events and components to
participate in PPR.

Best Practice:

Do not use both partial triggers and the target tag on the same page. When
in doubt, use only the target tag.

Before you begin:

It may be helpful to have an understanding of form components. See Using the Target
Tag to Execute PPR.

To use the target tag:

1. In the Components window, from the Operations panel, drag a target and drop it
as a child to the component that triggers events for which you want to control the
PPR.

2. In the Properties window, set the following:

• Events: Enter a space delimited list of events that you want the target tag to
handle for the component. The following events are supported:

– action

– calendar

– calendarActivity

– calendarActivity

– durationChange

– calendarDisplayChange

– carouselSpin

– contextInfo

– dialog

– disclosure

– focus

– item

– launch

– launchPopup

– poll

– popupCanceled

– popupFetch

– query

– queryOperation

– rangeChange

Chapter 8
Using the Target Tag to Execute PPR

8-11

– regionNavigation

– return

– returnPopupData

– returnPopup

– rowDisclosure

– selection

– sort

– valueChange

Any events that the component executes that you do not list will be handled as
usual by the framework.

You can also use the @all keyword if you want the target to control all events
for the component.

The default is @all.

• Execute: Enter a space delimited list of component IDs for the components
that should be executed in response to the event(s) listed for the event
attribute. Instead of component IDs, you can use the following keywords:

– @this: Only the parent component of the target will be executed.

– @all: All components within the same af:form tag will be executed. Using
this means that in effect, no PPR will occur, as all components will
execute as in a normal page lifecycle.

– @default: Execution of components will be handled using event root
components or partial triggers, in other words, as if no target tag were
used. This value is the default.

Note:

While the JSF f:ajax tag supports the @none keyword, the
af:target tag does not.

• Render: Enter a space delimited list of component IDs for the components
that should be rendered in response to the event(s) listed for the event
attribute. Instead of component IDs, you can use the following keywords:

– @this: Only the parent component of the target will be rendered.

– @all: All components within the same af:form tag will be rendered.

– @default: Rendering of components will be determined by the framework.
This value is the default.

The following example shows the code for the form with the radio buttons and
required field shown in Figure 8-3. For the first target tag, because it's a child to
the show3 radio button, and it is configured to execute the show3 and hide3 radio
buttons and render the panelFormLayout, when that button is selected, only the
two radio buttons are run through the lifecycle and the entire form is rendered. The
inputText component is not executed because it is not in the execute list, but it is
rendered because it is included in the form.

Chapter 8
Using the Target Tag to Execute PPR

8-12

The target tag is also used on the Submit and Cancel buttons. For the Submit
button, because the input text component should be processed through the
lifecycle, it is listed along with the Submit button as values for its target's execute
attribute. However, for the Cancel button, because the input text component
should not be processed, it is not listed for that target's execute attribute, and so
will not throw a validation error.

<af:panelFormLayout id="pfl1">
 <af:panelLabelAndMessage label="Show/Hide Field" id="plam11">
 <af:selectBooleanRadio id="show3" autoSubmit="true" text="Show"
group="group3"
 value="#{validate.show3}">
 <af:target execute="show3 hide3" render="pfl1"/>
 </af:selectBooleanRadio>
 <af:selectBooleanRadio id="hide3" autoSubmit="true" text="Hide"
group="group3"
 value="#{validate.hide3}">
 <af:target execute="hide3 show3" render="pfl1"/>
 </af:selectBooleanRadio>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="Required Field" id="plam12"
showRequired="true">
 <af:inputText label="Required Field" required="true" simple="true"
 rendered="#{validate.show3}" id="it3"/>
 </af:panelLabelAndMessage>
 <af:panelGroupLayout layout="horizontal" id="pgl9">
 <f:facet name="separator">
 <af:spacer width="2px" id="s7"/>
 </f:facet>

 <af:commandButton text="submit" partialSubmit="true"
 disabled="#{validate.hide3}" id="cb2">
 <af:target execute="@this it3" render="pfl1"/>
 </af:commandButton>
 <af:commandButton actionListener="#{validate.handleCancel}"
 partialSubmit="true" text="cancel" id="cb1">
 <af:target execute="@this" render="ot10"/>
 </af:commandButton>

 <af:outputText clientComponent="true"
 value="Cancel Click: #{validate.clickCount}" id="ot10"/>
</af:panelGroupLayout>

Enabling Partial Page Rendering Programmatically
The partial page rendering feature of ADF Faces can be implemented
programmatically with the help of certain framework objects, such as FaceContext and
AdfFacesContext. Use the addPartialTarget method to enable partial page rendering
programmatically.

When you want a target to be rerendered based on specific logic, you can enable
partial page rendering programmatically.

How to Enable Partial Page Rendering Programmatically
You use the addPartialTarget method to enable partial page rendering.

How to enable PPR programmatically:

Chapter 8
Enabling Partial Page Rendering Programmatically

8-13

1. Create a listener method for the event that should cause the target component to
be rerendered.

Use the addPartialTarget() method to add the component (using its ID) as a
partial target for an event, so that when that event is triggered, the partial target
component is rerendered. Using this method associates the component you want
to have rerendered with the event that is to trigger the rerendering.

For example, the File Explorer application contains the
NavigatorManager.refresh() method. When invoked, the navigator accordion is
rerendered.

 public void refresh()
 {
 for (BaseNavigatorView nav: getNavigators())
 {
 nav.refresh();
 }

 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(_navigatorAccordion);
 }

2. In the JSF page, select the target component. In the Properties window, enter a
component ID and set ClientComponent to true.

Note:

You must set the clientComponent attribute to true to ensure that a
client ID will be generated.

3. In the Properties window, find the listener for the event that will cause the refresh
and bind it to the listener method created in Step 1.

Using Partial Page Navigation
In ADF Faces, navigation between pages can be made much faster by using Ajax
technologies to call the new page, which skips the initialization steps. To use this
partial page navigation feature, you must first enable partial page rendering.

Instead of performing a full page transition in the traditional way, you can configure an
ADF Faces application to have navigation triggered through a PPR request. The new
page is sent to the client using PPR. Partial page navigation is disabled by default.

When partial page navigation is used, in order to keep track of location (for example,
for bookmarking purposes, or when a refresh occurs), the framework makes use of the
hash portion of the URL. This portion of the URL contains the actual page being
displayed in the browser.

Additionally, JavaScript and CSS will not be loaded for each page. You must use the
resource tag to include JavaScript and CSS content specific to the current page.
Using the <f:verbatim> or <trh:stylesheet> tags will not work. See Adding
JavaScript to a Page.

When partial page navigation is enabled in an application, get requests are supported
for the button and link components:

Chapter 8
Using Partial Page Navigation

8-14

Note:

PPR get requests are not supported in Internet Explorer. When using that
browser, URLs will be loaded using a standard get request.

For other browsers, get requests for these components are only supported
for pages within an application.

How to Use Partial Page Navigation
You can turn partial page navigation on by setting the
oracle.adf.view.rich.pprNavigation.OPTIONS context parameter in the web.xml file
to on.

Before you begin:

It may be helpful to have an understanding of partial page navigation. See Using
Partial Page Navigation.

To use partial page navigation:

1. Double-click the web.xml file.

2. In the source editor, change the oracle.adf.view.rich.pprNavigation.OPTIONS
parameter to one of the following:

• on: Enables partial page navigation.

Note:

If you set the parameter to on, then you need to set the
partialSubmit attribute to true for any command components
involved in navigation.

• onWithForcePPR: Enables partial page navigation and notifies the framework
to use the PPR channel for all action events, even those that do not result in
navigation. Since partial page navigation requires that the action event be sent
over PPR channel, use this option to easily enable partial page navigation.

When partial page navigation is used, normally only the visual contents of the
page are rerendered (the header content remains constant for all pages).
However, the entire document will be rerendered when an action on the page
is defined to use full page submit and also when an action does not result in
navigation.

What You May Need to Know About PPR Navigation
Before using PPR navigation, you should be aware of the following:

• When using PPR navigation, all pages involved in this navigation must use the
same CSS skin.

Chapter 8
Using Partial Page Navigation

8-15

• You must use the resource tag to include JavaScript and CSS content specific to
the current page.

• Unlike regular page navigation, partial navigation will not result in JavaScript
globals (variables and functions defined in global scope) being unloaded. This
happens because the window object survives partial page transition. Applications
wishing to use page-specific global variables and/or functions must use the
AdfPage.getPageProperty() and AdfPage.setPageProperty() methods to store
these objects.

Using a Streaming Component to Allow Page Loading
ADF Faces supports a streaming component in a JSF page that allows components to
delay their rendering until a streaming request is fulfilled. A placeholder is displayed
until the data is fetched from the data source.

The streaming component lets the page continue to load while database queries are
being run. It utilizes NOSCRIPT components which are non-element based
components that support partial page rendering and data streaming. You can use this
component for infolets in a JSF page. An infolet is small region within a JSF page that
displays the data fetched from different data sources. Streaming components can be
used for infolets in a JSF page or for the individual components within an infolet of the
JSF page.

When there is a streaming request by the client for an infolet or a component, the
streaming framework launches background threads for a data model so that the data
is fetched in parallel from different data sources. During the data fetch, the streaming
component renders a placeholder on the screen in the initial rendering and the actual
content replaces the placeholder when it becomes available. This placeholder can be
a text or an image. You can use the image component or outputText component for
the placeholder to display an image or to display text during the process of data fetch.

How to Implement an Instance of AsyncFetch to Fetch Streaming Data
The ADF Faces streaming component implements the AsyncFetch interface to fetch
the data asynchronously on a streaming request. AsyncFetch is an interface to be
implemented by the data models that support fetching data on the thread other then
the request thread.

To use a streaming component, you must first configure a managed bean in adfc-
config.xml file. In the below example, streamingBean is configured as a managed
bean.

A streaming component contains a value attribute that accepts an implementation
class instance of oracle.adf.view.rich.model.AsyncFetch. AsyncFetch is an
interface that supports fetching data on threads. The component will query AsyncFetch
class to see if the data is available on the first rendering. If it is not, a placeholder will
be rendered. This can be achieved by a placeholder streaming facet. A streaming
facet contains the placeholder components, typically text or graphics. The example
below shows how an image with a short description is added to a streaming facet.
Once the data is fetched during the streaming request, the streaming framework
rerenders the component first and then the children are rendered, replacing the
streaming facet on the client with the children content.

Chapter 8
Using a Streaming Component to Allow Page Loading

8-16

The following example shows the JSF page code for streaming.

<af:streaming id="s4" value="#{streamingBean.dataStore4}">
 <f:facet name="placeholder">
 <?audit suppress oracle.jdeveloper.jsp.check-valid-parent?>
 <af:image id="placeholder4" source="/images/streaming-load.gif"
shortDesc="Please wait..." inlineStyle="margin: 4px;"/>
 </f:facet>
 <af:panelHeader text="Links" size="5" id="ph4">
 <af:panelGroupLayout id="pgl5">
 <af:iterator value="#{streamingBean.streamingData4.data}"
var="link" id="i4">
 <af:goLink text="#{link.name}" id="l1"
destination="#{link.url}" targetFrame="link" styleClass="singleRow"/>
 </af:iterator>
 </af:panelGroupLayout>
 </af:panelHeader>
</af:streaming>

In the above example, streamingBean is configured as a managed bean. The
streamingBean.dataStore4 value attribute represents the content fetched from the
data source to be rendered. The placeholder streaming facet contains the
streaming-load.gif image along with a short description of Please wait.... The
dataStore4 get method of streamingBean returns an implementation class instance of
oracle.adf.view.rich.model.AsyncFetch.

Note:

You can also specify the data to be fetched by the model by providing an EL
expression as a fetch constraint for a streaming component. This EL
expression is passed to the AsyncFetcher methods, which may utilize the
expression as a fetch constraint. See Java API Reference for Oracle ADF
Faces for more information on AsyncFetch and AsyncFetcher methods.

How to Create a Streaming Component
A streaming component permits a component to be rendered in a page during a
streaming request so that the initial page rendering is not delayed when a model is
expected to take a longer time to retrieve its data.

Before you begin:

To use a streaming component, you must first configure a managed bean in adfc-
config.xml file. See Creating and Using Managed Beans for information on how to
create and configure a managed bean.

To create a streaming component:

1. In the Components window, from the ADF Faces panel, drag and drop Streaming
onto the JSF page.

2. In the Properties window, expand the Other section, and set the following:

Chapter 8
Using a Streaming Component to Allow Page Loading

8-17

• Constraints: Specify the data to be fetched by the model by providing an EL
expression as a fetch constraint for the streaming component. The EL
expression specified for this attribute is passed to the AsyncFetcher methods,
which may utilize the expression as a fetch constraint.

• Rendered: You can configure whether the component must be rendered or
not using the rendered attribute. If the rendered attribute is set to false, no
output will be delivered.

• Value: Displays the content fetched from the data source to be rendered.

See Tag Reference for Oracle ADF Faces for information on configuring different
attributes for a streaming component.

Chapter 8
Using a Streaming Component to Allow Page Loading

8-18

Part III
Creating Your Layout

Part III describes how to use the layout components to design a page, and then how to
create page fragments, templates, and how to reuse them in an application.

Specifically, this part contains the following chapters:

• Organizing Content on Web Pages

• Creating and Reusing Fragments, Page Templates, and Components

9
Organizing Content on Web Pages

This chapter describes how to use several of the ADF Faces layout components to
organize content on web pages.
This chapter includes the following sections:

• About Organizing Content on Web Pages

• Starting to Lay Out a Page

• Arranging Content in a Grid

• Displaying Contents in a Dynamic Grid Using a masonryLayout Component

• Achieving Responsive Behavior Using matchMediaBehavior Tag

• Arranging Contents to Stretch Across a Page

• Using Splitters to Create Resizable Panes

• Arranging Page Contents in Predefined Fixed Areas

• Arranging Content in Forms

• Arranging Contents in a Dashboard

• Displaying and Hiding Contents Dynamically

• Displaying or Hiding Contents in Panels

• Adding a Transition Between Components

• Displaying Items in a Static Box

• Displaying a Bulleted List in One or More Columns

• Grouping Related Items

• Separating Content Using Blank Space or Lines

About Organizing Content on Web Pages
ADF provides the Alta skin by default, that is based on UI design principles to create a
responsive web page. You can also use a skin other than Alta and create a template
that you can use to design the layout of pages.
A new web application that you create in this release uses the Alta skin by default. To
get the full benefit of the Oracle Alta UI system, Oracle recommends that you go
beyond simply using the Alta skin and design your application around the Oracle Alta
UI Design Principles. Designing your application using these principles enables you to
make use of the layouts, responsive designs and components the Oracle Alta UI
system incorporates to present content to your end users in a clean and uncluttered
way. For information about the Oracle Alta UI system and the Oracle Alta UI Design
Principles, see http://www.oracle.com/webfolder/ux/middleware/alta/index.html and for
information about Oracle Alta UI Patters, see http://www.oracle.com/webfolder/ux/
middleware/alta/patterns/index.html.

9-1

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html

If you are using a skin other than Alta, ADF Faces provides a number of layout
components that can be used to arrange other components on a page. Usually, you
begin building your page with these components. You then add components that
provide other functionality (for example rendering data or rendering buttons) either
inside facets or as child components to these layout components.

Tip:

You can create page templates that allow you to design the layout of pages
in your application. The templates can then be used by all pages in your
application. See Creating and Reusing Fragments, Page Templates, and
Components.

In addition to layout components that simply act as containers, ADF Faces also
provides interactive layout components that can display or hide their content, that
provide transitions between its child components, or that provide sections, lists, or
empty space. Some layout components also provide geometry management
functionality, such as stretching their contents to fit the browser windows as the
window is resized, or the capability to be stretched when placed inside a component
that stretches. ADF Faces Layout Components describes each of the layout
components and their associated geometry management capabilities. For information
about stretching and other geometry management functionality of layout components,
see Geometry Management and Component Stretching.

ADF Faces Layout Components
Table 9-1 briefly describes each of the ADF Faces layout components.

Table 9-1 ADF Faces Layout Components

Component Description Can Stretch
Children

Can Be
Stretched

Page Management Components

document Creates each of the standard root
elements of an HTML page: <html>,
<body>, and <head>. All pages must
contain this component. See Starting to
Lay Out a Page.

X

form Creates an HTML <form> element. See
Starting to Lay Out a Page.

Page Layout Containers

panelGridLayout Used in conjunction with gridRow and
gridCell components to provide an
HTML table-like layout where you define
the rows and cells, and then place other
components as children to the cells. See
Arranging Content in a Grid.

X (when the gridRow
and gridCell
components are
configured to stretch)

X (when the
dimensionsFr
om attribute is
set to parent)

Chapter 9
About Organizing Content on Web Pages

9-2

Table 9-1 (Cont.) ADF Faces Layout Components

Component Description Can Stretch
Children

Can Be
Stretched

panelStretchLayout Contains top, bottom, start, center,
and end facets where you can place
other components. See Arranging
Contents to Stretch Across a Page.

X X (when the
dimensionsFr
om attribute is
set to parent)

panelSplitter Divides a region into two parts (first
facet and second facet) with a
repositionable divider between the two.
You can place other components within
the facets. See Using Splitters to Create
Resizable Panes.

X X (when the
dimensionsFr
om attribute is
set to parent)

panelDashboard Provides a columnar display of child
components (usually panelBox
components). See Arranging Contents
in a Dashboard.

X X (when the
dimensionsFr
om attribute is
set to parent)

masonryLayout Provides a dynamically-sized grid of
child components. See Displaying
Content in a Dynamic Grid Using a
masonryLayout Component

X

panelBorderLayout Can have child components, which are
placed in its center, and also contains
12 facets along the border where
additional components can be placed.
These will surround the center. See
Arranging Page Contents in Predefined
Fixed Areas.

panelFormLayout Positions input form controls, such as
inputText components so that their
labels and fields line up vertically. It
supports multiple columns, and contains
a footer facet. See Arranging Content in
Forms.

Components with Show/Hide Capabilities

showDetailHeader Can hide or display contents below the
header. Often used as a child to the
panelHeader component. See
Displaying and Hiding Contents
Dynamically.

X (if the type
attribute is set to
stretch)

X (if the type
attribute is set to
stretch)

showDetailItem Used to hold the content for the different
panes of the panelAccordion or
different tabs of the panelTabbed
component. See Displaying or Hiding
Contents in Panels.

X (if it contains a
single child
component and its
stretchChildren
attribute is set to
first.)

panelBox Titled box that can contain child
components. Has a toolbar facet. See
Displaying and Hiding Contents
Dynamically.

X (if it is being
stretched or if the
type attribute is set
to stretch)

X

Chapter 9
About Organizing Content on Web Pages

9-3

Table 9-1 (Cont.) ADF Faces Layout Components

Component Description Can Stretch
Children

Can Be
Stretched

panelAccordion Used in conjunction with
showDetailItem components to
display as a panel that can be expanded
or collapsed. See Displaying or Hiding
Contents in Panels.

X (when the
dimensionsFr
om attribute is
set to parent)

panelTabbed Used in conjunction with
showDetailItem components to
display as a set of tabbed panels. See
Displaying or Hiding Contents in Panels.

If you want the tabs to be used in
conjunction with navigational hierarchy,
for example each tab is a different page
or region that contains another set of
navigation items, you may instead want
to use a navigationPane component
in a navigational menu. See Using
Navigation Items for a Page Hierarchy.

X (when the
dimensionsFr
om attribute is
set to parent)

panelDrawer Used in conjunction with
showDetailItem components to
display as a set of tabs that can open
and close like a drawer. See Displaying
or Hiding Contents in Panels.

X

panelSpringboard Used in conjunction with
showDetailItem components to
display as a set of icons, either in a grid
or in a strip. When the user clicks an
icon, the associated showDetailItem
contents display below the strip. See
Displaying or Hiding Contents in Panels.

X

showDetail Hides or displays content through a
toggle icon. See Displaying and Hiding
Contents Dynamically.

Miscellaneous Containers

deck Provides animated transitions between
its child components, using the
af:transition tag. See Adding a
Transition Between Components.

X X

panelHeader Contains child components and provides
a header that can include messages,
toolbars, and help topics. See
Displaying Items in a Static Box.

X (if the type
attribute is set to
stretch)

X (if the type
attribute is set to
stretch)

panelCollection Used in conjunction with collection
components such as table, tree and
treeTable to provide menus, toolbars,
and status bars for those components.
See Displaying Table Menus, Toolbars,
and Status Bars.

X (only a single table,
tree, or tree table)

X

Chapter 9
About Organizing Content on Web Pages

9-4

Table 9-1 (Cont.) ADF Faces Layout Components

Component Description Can Stretch
Children

Can Be
Stretched

decorativeBox Creates a container component whose
facets use style themes to apply a
bordered look to its children. This
component is typically used as a
container for the navigationPane
component that is configured to display
tabs. See Using Navigation Items for a
Page Hierarchy.

X (in the Center facet) X (when the
dimensionsFr
om attribute is
set to parent)

inlineFrame Creates an inline iframe tag. X

navigationPane Creates a series of navigation items
representing one level in a navigation
hierarchy. See Using Navigation Items
for a Page Hierarchy.

X (if configured
to display tabs)

panelList Renders each child component as a list
item and renders a bullet next to it. Can
be nested to create hierarchical lists.
See Displaying a Bulleted List in One or
More Columns.

panelWindow Displays child components inside a
popup window. See Declaratively
Creating Popups.

toolbox Displays child toolbar and menu
components together. See Using
Toolbars.

Grouping Containers

panelGroupLayout Groups child components either
vertically or horizontally. For JSP pages,
used in facets when more than one
component is to be contained in a facet
(Facelet pages can handle multiple
children in a facet). See Grouping
Related Items.

X (only if set to
scroll or vertical
layout)

group Groups child components without regard
to layout unless handled by the parent
component of the group. For JSP pages,
used in facets when more than one
component is to be contained in a facet
(Facelet pages can handle multiple
children in a facet). See Grouping
Related Items.

Spacing Components

separator Creates a horizontal line between items.
See Separating Content Using Blank
Space or Lines.

spacer Creates an area of blank space. See
Separating Content Using Blank Space
or Lines.

Chapter 9
About Organizing Content on Web Pages

9-5

Additional Functionality for Layout Components
Once you have added a layout component to your page, you may find that you need to
add functionality such as responding to events. Following are links to other
functionality that layout components can use.

• Templates: Once you create a layout, you can save it as a template. When you
make layout modifications to the template, all pages that consume the template
will automatically reflect the layout changes. See Using Page Templates.

• Themes: Themes add color styling to some of layout components, such as the
panelBox component. For information about themes, see Customizing the
Appearance Using Styles and Skins

• Skins: You can change the icons and other properties of layout components using
skins. See Customizing the Appearance Using Styles and Skins.

• Localization: Instead of entering values for attributes that take strings as values,
you can use property files. These files allow you to manage translation of these
strings. See Internationalizing and Localizing Pages.

• Accessibility: You can make your input components accessible. See Developing
Accessible ADF Faces Pages.

• Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Events: Layout components fire both server-side and client-side events that you
can have your application react to by executing some logic. See Handling Events.

• User customization: Some of the components have areas that can be expanded
or collapsed, such as the showDetailHeader component. You can configure your
application so that the state of the component (expanded or collapsed) can be
saved when the user leaves the page. See Allowing User Customization on JSF
Pages.

Starting to Lay Out a Page
When you layout a page, all the ADF faces components should be enclosed within the
document, so that the document tag creates the root elements for the client page at
runtime. Additionally, the document tag allows the capable components to stretch to fill
the available browser space.
JSF pages that use ADF Faces components must have the document tag enclosed
within a view tag. All other components that make up the page then go in between
<af:document> and </af:document>. The document tag is responsible for rendering
the browser title text, as well as the invisible page infrastructure that allows other
components in the page to be displayed. For example, at runtime, the document tag
creates the root elements for the client page. In HTML output, the standard root
elements of an HTML page, namely, <html>, <head>, and <body>, are generated.

By default, the document tag is configured to allow capable components to stretch to fill
available browser space. You can further configure the tag to allow a specific
component to have focus when the page is rendered, or to provide messages for failed
connections or warnings about navigating before data is submitted. See How to
Configure the document Tag.

Chapter 9
Starting to Lay Out a Page

9-6

Typically, the next component used is the ADF Faces form component. This
component creates an HTML form element that can contain controls that allow a user
to interact with the data on the page.

Note:

Even though you can have multiple HTML forms on a page, you should have
only a single ADF Faces form tag per page. See Defining Forms.

JDeveloper automatically inserts the view, document, and form tags for you, as shown
in the following example. See Creating a View Page.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE html>
<f:view xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:document title="untitled1.jsf" id="d1">
 <af:form id="f1"></af:form>
 </af:document>
</f:view>

Once those tags are placed in the page, you can use the layout components to control
how and where other components on the page will render. The component that will
hold all other components is considered the root component. Which component you
choose to use as the root component depends on whether you want the contained
components to display their contents so that they stretch to fit the browser window, or
whether you want the contents to flow, using a scrollbar to access any content that
may not fit in the window. For information about stretching and flowing, see Geometry
Management and Component Stretching.

Tip:

Instead of creating your layout yourself, you can use JDeveloper's quick
layout templates, which provide correctly configured components that will
display your page with the layout you want. See Using Quick Start Layouts.

Geometry Management and Component Stretching
Geometry management is the process by which the user, parent components, and
child components negotiate the actual sizes and locations of the components in an
application. For example, a component might be resized when it's first loaded into a
browser, when the browser is resized, or when a user explicitly resizes it.

By default, if there is only a single effective visual root component, that root
component will stretch automatically to consume the browser's viewable area,
provided that component supports geometry management. Examples of geometry
management components are panelGridLayout and panelSplitter. If the root
component supports stretching its child components (and they in turn support being
stretched), the size of the child components will also recompute, and so on down the
component hierarchy until a flowing layout area is reached; that is, an area that does

Chapter 9
Starting to Lay Out a Page

9-7

not support stretching of its child components. You do not have to write any code to
enable the stretching.

Note:

The framework does not consider popup dialogs, popup windows, or non-
inline messages as root components. If a form component is the direct child
component of the document component, the framework will look inside the
form tag for the visual root. For information on sizing a popup, see Using
Popup Dialogs, Menus, and Windows.

As shown in Table 9-1, the panelGridLayout, panelStretchLayout, panelSplitter,
and panelDashboard components are components that can be stretched and can also
stretch their child components. Additionally, when the showDetailItem component is
used as a direct child of the panelAccordion or panelTabbed component, the contents
in the showDetailItem component can be stretched. Therefore, the
panelStretchLayout, panelSplitter, panelDashboard, panelAccordion with a
showDetailItem component, and a panelTabbed with a showDetailItem component,
are the components you should use as root components when you want to make the
contents of the page fill the browser window.

For example, Figure 9-1 shows a table placed in the center facet of the
panelStretchLayout component. The table stretches to fill the browser space. When
the entire table does not fit in the browser window, scrollbars are added in the data
body section of the table.

Figure 9-1 Table Inside a Component That Stretches Child Components

Figure 9-2 shows the same table, but nested inside a panelGroupLayout component,
which cannot stretch its child components (for clarity, a dotted red outline has been

Chapter 9
Starting to Lay Out a Page

9-8

placed around the panelGroupLayout component). The table component displays only
a certain number of columns and rows, determined by properties on the table.

Figure 9-2 Table Inside a Component That Does Not Stretch Its Child
Components

Performance Tip:

The cost of geometry management is directly related to the complexity of
child components. Therefore, try minimizing the number of child components
that are under a parent geometry-managed component.

Nesting Components Inside Components That Allow Stretching
Even though you choose a component that can stretch its child components, only the
following components will actually stretch:

• decorativeBox (when configured to stretch)

• deck

• inputText (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox (when configured to stretch)

• panelCollection

• panelDashboard (when configured to stretch)

• panelGridLayout (when configured to stretch)

Chapter 9
Starting to Lay Out a Page

9-9

• panelGroupLayout (with the layout attribute set to scroll or vertical)

• panelHeader (when configured to stretch)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• showDetailHeader (when configured to stretch)

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following layout components cannot be stretched when placed inside a facet of a
component that stretches its child components:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (with the layout attribute set to default or horizontal)

• panelLabelAndMessage

• panelList

• showDetail

• tableLayout (MyFaces Trinidad component)

One interesting way to think about geometry management and resizing is to think of
components as being one of four types of puzzle pieces, as shown in Figure 9-3.

Figure 9-3 Four Categories of Components for Geometry Management

You can only place components that can be stretched inside components that stretch
their children. If you want to use a component that does not stretch, within the facet of
component that stretches its child components, you must wrap it in a transition
component. Transition components can be stretched but do not stretch their children.
Transition components must always be used between a component that stretches its
children and a component that does not stretch. If you do not, you may see
unexpected results when the component renders.

For example, suppose you want to have a form appear in one side of a panelSplitter
component. Say your root component is the panelStretchLayout, and so is the first
component on your page. You add a panelSplitter component (configured to default

Chapter 9
Starting to Lay Out a Page

9-10

settings) as a child to the panelStretchLayout component, and to the first facet of that
component, you add a panelFormLayout component. Figure 9-4 shows how those
components would fit together. Notice that the panelFormLayout component cannot
"fit" into the panelSplitter component because the panelSplitter can stretch its
children and so will attempt to stretch the panelFormLayout, but the panelFormLayout
cannot be stretched.

Figure 9-4 Order of Components in One Layout Scenario

When a component does not "fit" into a component that stretches children, you may
get unexpected results when the browser attempts to render the component.

To have a valid layout, when you want to use a component that does not stretch in a
component that stretches its children, you must use a transition component. To fix the
panelFormLayout example, you could surround the panelFormLayout component with
a panelGroupLayout component set to scroll. This component stretches, but does
not stretch its children, as shown in Figure 9-5.

Figure 9-5 Order of Components in Second Layout Scenario

In this case, all the components fit together. The panelGroupLayout component will not
attempt to stretch the panelFormLayout, and so it will correctly render. And because
the panelGroupLayout component can be stretched, the layout will not break between
the components that can and cannot stretch.

Chapter 9
Starting to Lay Out a Page

9-11

Tip:

Do not attempt to stretch any of the components in the list of components
that cannot stretch by setting their width to 100%. You may get unexpected
results. Instead, surround the component to be stretched with a component
that can be stretched.

The panelGroupLayout component set to scroll is a good container for
components that cannot stretch, when you want to use those components in
layout with components that do stretch.

Tip:

If you know that you always want your components to stretch or not to
stretch based on the parent's settings, then consider setting the
oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter to auto.
See Geometry Management for Layout and Table Components.

Using Quick Start Layouts
When you use the New Gallery Wizard to create a JSF page (or a page fragment), you
can choose from a variety of predefined quick start layouts. When you choose one of
these layouts, JDeveloper adds the necessary components and sets their attributes to
achieve the look and behavior you want. In addition to saving time, when you use the
quick layouts, you can be sure that layout components are used together correctly to
achieve the desired geometry management.

You can choose from one-, two-, and three-column formats. Within those formats, you
can choose how many separate panes will be displayed in each column, and if those
panes can stretch or remain a fixed size. Figure 9-6 shows the different layouts
available in the two-column format.

Chapter 9
Starting to Lay Out a Page

9-12

Figure 9-6 Quick Layouts

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Quick Start
Layout Themes. For information about themes, see Customizing the Appearance
Using Styles and Skins

For information about creating pages using the quick layouts, see Creating a View
Page.

Tips for Using Geometry-Managed Components
To ensure your page is displayed as expected in all browsers, use one of the quick
layouts provided by JDeveloper when you create a page. These layouts ensure that
the correct components are used and configured properly. See Using Quick Start
Layouts.

Best Practice:

Use quick start layouts to avoid layout display issues.

However, if you wish to create your layout yourself, follow these tips for creating a
layout that includes both stretched and flowing components:

• Place the page contents inside a root component that performs geometry
management, either panelStretchLayout, panelGridLayout with gridRow and
gridCell components, panelSplitter, panelAccordion with a showDetailItem,
or panelTabbed with a showDetailItem.

Chapter 9
Starting to Lay Out a Page

9-13

• Never specify a height value with percent units. Instead, build a component
structure out of components that support being stretched and that stretch their
child components. See Nesting Components Inside Components That Allow
Stretching.

• Inside this stretchable structure, create islands of nonstretched or flowing
components by using transition components, such as the panelGroupLayout
component with the layout attribute set to scroll. This component will provide the
transition between stretched and flowing components because it supports being
stretched but will not stretch its child components.

• Never try to stretch something vertically inside a nonstretched or flowing container
because it will not act consistently across web browsers.

• For components contained in a parent flowing component (that is, a component
that does not stretch its children), do not set widths greater than 95%. If you do,
you may get unexpected results.

– If the parent component is 768 pixels or greater, set the styleClass attribute
on the component to be stretched to AFStretchWidth. This style will stretch
the component to what appears to be 100% of the parent container, taking into
account different browsers and any padding or borders on the parent.

– If the parent component is 768 pixels or less, set the styleClass attribute on
the component to be stretched to AFAuxiliaryStretchWidth. This style will
stretch the component to what appears to be 100% of the parent container,
taking into account different browsers and any padding or borders on the
parent.

Note:

The two different styles are needed due to how Microsoft Internet
Explorer 7 computes widths inside scrolling containers (this has
been resolved in Internet Explorer 8). Unless you can control the
version of browser used to access your application, you should use
these styles as described.

• Never use the position style.

• Ensure that the maximized attribute on the document tag is set to true (this is the
default). For information about setting the attribute, see How to Configure the
document Tag.

The remainder of this chapter describes the ADF Faces layout components and how
they can be used to design a page. You can find information about how each
component handles stretching in the respective "What You May Need to Know About
Geometry Management" sections.

How to Configure the document Tag
The document tag contains a number of attributes that you can configure to control
behavior for the page. For example, you can configure the icon that the browser may
insert into the address bar (commonly known as a favicon). Figure 9-7 shows the
Oracle icon in the address bar of the Firefox browser.

Chapter 9
Starting to Lay Out a Page

9-14

Figure 9-7 Small Icon Configured on the document Tag

You can also configure the tag for the following functionality:

• Focus: You can set which component should have focus when the page is first
rendered.

• Uncommitted data: You can have a warning message display if a user attempts to
navigate off the page and the data has not been submitted.

• State saving: You can override the settings in the web.xml file for an individual
page, so that the state of the page should be saved on the client or on the server.

To configure the document tag:

1. In the Structure window, select the af:document node.

2. In the Properties window, expand the Common section and set the following:

• InitialFocusId: Use the dropdown menu to choose Edit. In the Edit Property
dialog, select the component that should have focus when the page first
renders.

Because this focus happens on the client, the component you select must
have a corresponding client component. See Instantiating Client-Side
Components.

• Maximized: Set to true if you want the root component to expand to fit all
available browser space. When the document tag's maximized attribute is set
to true, the framework searches for a single visual root component, and
stretches that component to consume the browser's viewable area, provided
that the component can be stretched. Examples of components that support
this are panelStretchLayout and panelSplitter. The document tag's
maximized attribute is set to true by default. See Geometry Management and
Component Stretching.

• Title: Enter the text that should be displayed in the title bar of the browser.

3. Expand the Appearance section and set the following: and for the attribute,.

• FailedConnectionText: Enter the text you want to be displayed if a
connection cannot be made to the server.

• Small Icon Source: Enter the URI to an icon (typically 16 pixels by 16 pixels)
that the browser may insert into the address bar (commonly known as a
favicon). If no value is specified, each browser may do or display something
different.

Chapter 9
Starting to Lay Out a Page

9-15

You can enter a space-delimited list of icons and a browser will typically
display the first value it supports. For example, Microsoft Internet Explorer only
supports .ico for favicons. So given the following value:

/images/small-icon.png /small-icon.ico

Internet Explorer will display small-icon.ico, while Firefox would display
small-icon.png.

Use one forward slash (/) in the address if the file is located inside of the web
application's root folder. Use two forward slashes (//) if the file located in the
server's root folder.

• Large Icon Source: Enter the URI to an icon (typically 129 pixels by 129
pixels) that a browser may use when bookmarking a page to a device's home
page, as shown in Figure 9-8.

Figure 9-8 Mobile Device Displaying Large Icon

If no value is specified, each browser may do or display something different.

You can enter a space-delimited list of icons and a browser will typically
display the first value it supports.

Use one forward slash (/) in the address if the file is located inside of the web
application's root folder. Use two forward slashes (//) if the file located in the
server's root folder.

Tip:

Different versions of the iPhone and iPad use different sized images.
You can use the largest size (129 pixels by 129 pixels) and the
image will be scaled to the needed size.

4. Expand the Behavior section and set UncommittedDataWarning to on if you
want a warning message displayed to the user when the application detects that
data has not been committed. This can happen because either the user attempts
to leave the page without committing data or there is uncommitted data on the
server. By default, this is set to off

Chapter 9
Starting to Lay Out a Page

9-16

Note:

If your application does not use ADF Controller, the data is considered to
be committed when it is posted to the middle tier. For example, when a
user clicks a button, no warning will be displayed when navigation occurs
in the middle tier regardless of whether the data was actually written to
the back end.

5. Expand the Advanced section and set StateSaving to the type of state saving you
want to use for a page.

For ADF Faces applications, you should configure the application to use client
state saving with tokens, which saves page state to the session and persists a
token to the client. This setting affects the application globally, such that all pages
have state saved to the session and persist tokens with information regarding
state.

You can override the global setting in web.xml to one of the following for the page:

• client: The state is saved fully to the client, without the use of tokens. This
setting keeps the session expired messages from being displayed.

• default: The state of the page is based on whatever is set in web.xml.

• server: The state of the page is saved on the server.

For information about state saving, see Configuration in web.xml .

Arranging Content in a Grid
You can use the ADF Faces panelGridLayout component for simple structures, which
gives you full control on individual cell. You can use this component when you do not
need fine control over alignment. Except few cases, you can also nest a
panelGridLayout components
Use the panelGridLayout component to arrange content in a grid area on a page
(similar to an HTML table) and when you want the content to be able to stretch when
the browser is resized. The panelGridLayout component provides the most flexibility
of the layout components, while producing a fairly small amount of HTML elements.
With it, you have full control over how each individual cell is aligned within its
boundaries.

The panelGridLayout component uses child gridRow components to create rows, and
then within those rows, gridCell components that form columns. You place
components in the gridCell components to display your data, images, or other
content.

Figure 9-9 shows a panelGridLayout component that contains two gridRow
components. Each of the gridRow components contain two gridCell components.
Each of the gridCell components contain one chooseDate component.

Chapter 9
Arranging Content in a Grid

9-17

Figure 9-9 Simple Grid Layout with Two Rows Each with Two Cells

You can nest panelGridLayout components. In some cases, it is not safe to nest
panelGridLayout. For example, if you set up parent panelGridLayout such that a cell
automatically determines its size from the dimensions of the cell contents and
additionally set up the contents to use a percentage size of the cell (a circular
dependency), then this structure might not render properly in some browsers. Also if
you set dimensions of both the parent and one or more nested grids to automatic, then
the overall layout structure would not get stabilized, because the nested grid impacts
the size of the parent panelGridLayout.

If you want to have the grid stretch its contents to fill up all available browser space,
the following must be true:

• There is only one component inside of the gridCell

• The cell's halign and valign attributes are set to stretch

• The effective width and effective height of the cell are not set to be automatically
determined by other cells or rows, as that would result in a circular dependency.

Each cell will then attempt to anchor the child component to all sides of the cell. If it
can't (for example if the child component cannot be stretched), then the child
component will be placed at the start and top of the cell. Figure 9-10 shows a more
complicated layout created with a parent panelGridLayout component (whose
background is set to pink).

Chapter 9
Arranging Content in a Grid

9-18

Figure 9-10 Complex Grid Layout Created with Nested panelGridLayout
Components

The first gridRow component of this panelGridLayout contains one gridCell
component. This gridCell component contains another panelGridLayout component
for the header. This header grid contains two gridRow components, each with two
gridCell components. The top right gridCell contains the components for search
functionality, while the bottom left gridCell contains the Oracle logo.

The next four gridRows of the parent panelGridLayout component contain just one
gridCell component each that holds form components and buttons. The last gridRow
component contains one gridCell component that holds another panelGridLayout
component for the footer. This footer is made up of one gridRow component with four
gridCell components, each holding an inputText component.

When placed in a component that stretches it children, by default, the
panelGridLayout stretches to fill its parent container. However, whether or not the
content within the grid is stretched to fill the space is determined by the gridRow and
gridCell components.

By default, the child contents are not stretched. The gridRow component determines
the height. By default, the height is determined by the height of the tallest child
component in the row's cells. The gridCell component determines the width. By
default, the width of a cell is determined by the width of other cells in the column.
Therefore, you must set at least one cell in a column to a determined width. You can
set it to determine the width based on the component in the cell, to a fixed CSS length,
or to a percentage of the remaining space in the grid.

Chapter 9
Arranging Content in a Grid

9-19

How to Use the panelGridLayout, gridRow, and gridCell Components
to Create a Grid-Based Layout

JDeveloper provides a dialog that declaratively creates a grid based on your input.
You create a grid manually by placing a certain number of gridRow components into a
panelGridLayout component. You then add gridCell components into the gridRow
components, and place components that contain the actual content in the gridCell
components. If you want to nest panelGridLayout components, you place the child
panelGridLayout component into a gridCell component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Content in a Grid.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelGridLayout, gridRow, and gridCell components:

1. In the Components window, from the Layout panel, drag and drop a Panel Grid
Layout onto the JSF page.

2. In the Create Panel Grid Layout dialog, enter the number of columns and rows for
the grid, set the inner and outer grid margins, then click Next.

When setting the inner and outer grid margins, note the following:

• Inner Grid Margins: Set to a fixed CSS size, for example, 2px.

– Columns: Sets the value of the marginStart property on all gridCell
components, except for the first one (which is handled by the Outer Grid
Margin setting).

– Rows: Sets the value of the marginTop property on all gridRow
components, except for the first one (which is handled by the Outer Grid
Margin setting).

• Outer Grid Margins: Set to a fixed CSS size, for example, 2px.

– Top: Sets the marginTop property on just the top gridRow component.

– Bottom: Sets the marginBottom property on just the last gridRow
component.

– Left: Sets the marginStart property on just the first gridCell component.

– Right: Sets the marginEnd property on just the last gridCell component.

Chapter 9
Arranging Content in a Grid

9-20

Note:

For marginBottom and marginTop, conflicting unit types will be
ignored. For example, if RowA has marginTop set to 2px and RowB
has marginTop set to 5em, the margin will be 2px, as that is the first
unit type encountered.

When you use the Create Panel Grid Layout dialog, the marginTop
and marginBottom properties are set for you and avoid this conflict.

Note:

If you want the panelGridLayout component to stretch its children, then
set the row heights to a value other than auto and set the cell widths to a
value other than auto. You then need to use the Properties window to set
other properties to allow stretching. See Step 5.

3. On the second page of the dialog, set the width of each cell and height of each
row.

• Grid Width: Sets the width property on each of the gridCell component. Set
each column to one of the following:

– dontCare: The width of the cell is determined by other cells in the column.
This is the default.

– auto: The width of the cell is determined by the components in the
corresponding column. The browser first draws all those components and
the width is adjusted accordingly.

– A percentage: If you want the width of the cell's corresponding column to
be a normalized percentage of the remaining space not already used by
other columns, then enter a percentage, for example, 25%.

– A fixed CSS size: If you want to constrain the width to a fixed width, enter
a fixed CSS size, for example 20px or 20em.

Note:

Note the following:

– If you want a cell to span columns, then width must be set to
dontCare.

– If cells in a column have different values for their width (for
example, if one is set to auto and another is set to a fixed width),
then the width of the column will be the largest value of the first
unit type encountered.

– If all cells in a column are set to dontCare, then the widest cell
based on its child component will determine the width of the
column (as if the cells were all set to auto).

Chapter 9
Arranging Content in a Grid

9-21

• Grid Height: Sets the height property on each of the gridRow components.
Set each row to one of the following:

– auto: The height of a row is determined by the components in the row.
The browser first draws the child components and the height of the row is
adjusted accordingly. This is the default.

– A percentage: If the panelGridLayout component itself has a fixed height,
or if it is being stretched by its parent component, then enter a percentage,
for example 25%. The height of the row will then be a normalized
percentage of the remaining space not already used by other rows.

– A fixed CSS length: If you want to constrain the height to a fixed height,
enter a fixed CSS length, for example 10px or 20em.

Click Finish.

4. By default, the panelGridLayout component stretches to fill available browser
space. If instead, you want to use the panelGridLayout component as a child to a
component that does not stretch its children, then you need to change how the
panelGridLayout component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the dimensionsFrom
attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

In the Properties window, set DimensionsFrom to one of the following:

• children: the panelGridLayout component will get its dimensions from its
child components.

Note:

If you use this setting, you cannot set the height of the child row
components as percentages, because space in the
panelGridLayout is not divided up based on availability. You can
use the Properties window to change the height of the rows that you
set when you completed the dialog.

Chapter 9
Arranging Content in a Grid

9-22

• parent: the size of the panelGridLayout component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

Note:

If you use this setting, you can set the height of the child row
components as percentages.

• auto: If the parent component to the panelGridLayout component allows
stretching of its child, then the panelGridLayout component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelGridLayout component will be based on the size of its child component.
This is the default.

5. If you want the panelGridLayout to stretch its children, then you need to set the
following:

• Set height on the rows to a value other than auto.

• Set width on the cells to a value other than auto.

• Set halign on the gridCell components to stretch.

• Set valign on the gridCell components to stretch.

• Place only one child component into the gridCell components.

6. If you want the cell to take up more than one column, set ColumnSpan to the
number of columns it should span. The default is 1.

Note:

If you set columnSpan to more than 1, then the value of the width
attribute must be set to dontCare.

7. If you want the cell to take up more than one row, set RowSpan to the number of
rows it should span. The default is 1.

8. Set Halign to determine the horizontal alignment for the cell's contents. If you want
the contents aligned to the start of the cell (the left in LTR locale), set it to start
(the default). You can also set it to center or end. If you want the
panelGridLayout to stretch, then set Halign to stretch (for information about
getting the panelGridLayout component to stretch, see Step 5.)

9. Set Valign to determine the vertical alignment for the cell's contents. If you want
the contents aligned to the top of the cell, set it to top (the default). You can also
set it to middle or bottom. If you want the panelGridLayout to stretch, then set
Valign to stretch (for information about getting the panelGridLayout component
to stretch, see Step 5).

Chapter 9
Arranging Content in a Grid

9-23

What You May Need to Know About Geometry Management and the
panelGridLayout Component

The panelGridLayout component can stretch its child components and it can also be
stretched. The following components can be stretched inside the panelGridLayout
component:

• decorativeBox (when configured to stretch)

• deck

• calendar

• inputText (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox (when configured to stretch)

• panelCollection

• panelDashboard (when configured to stretch)

• panelGridLayout (when gridRow and gridCell components are configured to
stretch)

• panelGroupLayout (only with the layout attribute set to scroll or vertical)

• panelHeader (when configured to stretch)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• showDetailHeader (when configured to stretch)

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside the
panelGridLayout component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only with the layout attribute set to default or horizontal)

• panelLabelAndMessage

• panelList

• showDetail

• tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into a component that stretches its
child components. Therefore, if you need to place a component that cannot be

Chapter 9
Arranging Content in a Grid

9-24

stretched into a gridCell of a panelGridLayout component, then you must configure
the panelGridLayout, gridRow, and gridCell components so that they do not stretch
their children.

What You May Need to Know About Determining the Structure of Your
Grid

When you are given a mock-up of a page, you may not know how to break it down into
a grid. Follow these tips to help determine your columns, rows, and grid separations
for consecutive grids.

To design your grid:

1. Either print out the design on a piece of paper or open it up in a graphics program
where you will be able to draw colored lines on top of the design.

2. Draw vertical lines representing potential column divisions in one color (for
example, in red).

3. Draw horizontal lines for potential row divisions in another color, (for example, in
green).

4. Now that you have a basic grid structure, use a third color (for example, yellow) to
draw X marks where you see cells that need to span multiple columns or rows.

Figure 9-11 shows a design that might be broken down into four columns, four
rows, and multiple places where column spans are needed.

Figure 9-11 Lines Show Potential Columns, Rows, and Spans

5. After your first attempt, you may find that your column lines really don't make
sense. For example, in Figure 9-11, the two middle columns contained cells that
needed to span into a nearby column. This is an indication that there should
instead be two separate grids.

Use a fourth color (for example, magenta) to draw a line where the division makes
sense and repeat the process again.

Figure 9-12 shows the same design but using two consecutive grids, one on top of
the other.

Chapter 9
Arranging Content in a Grid

9-25

Figure 9-12 Consecutive Grids to Simplify Column Spanning

6. Now that you can visually see where the content goes and where you need to use
span columns or rows, you can code your gridRow and gridCell components.
You can also accurately specify the sizes for your cells, as well as the horizontal
and vertical alignments of your cells.

Tip:

When you see in your grid that fields with labels span columns, instead
of using the built-in labels, configure the fields to hide those labels
(usually using the simple attribute), and instead use a separate
outputLabel component for the label.

For example, in Figure 9-12, the labels for the Phone and Email field are
in the first column, while the fields themselves are in the second column.
To create this layout, instead of using the labels in the corresponding
inputText component, you would:

a. Place the inputText components for the phone and email fields in
the second column.

b. Set the simple attribute on those components to true, so the built-in
labels don't display.

c. Add new outputLabel components to the first column for the labels.

Figure 9-13 shows the final grid design. There are two vertically stacked grids. The
top grid contains two columns and two rows. The bottom grid contains three
columns and two rows, with the last column spanning the two rows.

Chapter 9
Arranging Content in a Grid

9-26

Figure 9-13 Final Grid Design

Best Practice Tip:

You should not have more than three layers of panelGridLayout
components.

What You May Need to Know About Determining Which Layout
Component to Use

The panelGridLayout component provides the most flexibility of the layout
components, while producing a fairly small amount of HTML elements. With it, you
have full control over how each individual cell is aligned within its boundaries.
Conversely, the panelGroupLayout provides very little control over how individual
children of the structure are presented, and the panelStretchLayout only produces a
small number of grid structures, often requiring the nesting of multiple
panelStretchLayout components. Nesting multiple components means more HTML
elements are needed, and also that the code will be more difficult to maintain.
Therefore, for complex layouts, use the panelGridLayout component.

Use the panelGroupLayout for simple structures where you don't need fine control
over alignment, for example to align a series of button components. If you find yourself
nesting multiple panelGroupLayout components, this is an indication that
panelGridLayout would be more appropriate.

Chapter 9
Arranging Content in a Grid

9-27

Displaying Contents in a Dynamic Grid Using a
masonryLayout Component

You can use the ADF Faces masonryLayout component when you want the content to
be rendered dynamically. This component takes any ADF Faces component as a
child.
The masonryLayout component displays its contents in a grid that has dynamic
rendering capabilities. It can take any ADF Faces component as a child, respectively
called a tile. Tiles can span columns and rows. When the UI is provided, users can
insert, delete, reorder and resize the tiles.

When the masonryLayout component renders, each tile is processed in the order that it
occurs in the code and is positioned in the first location that accommodates it. The
location is determined using the reading direction of the client browser (left-to-right or
right-to-left), and then top-to-bottom. If the next available location is not large enough
for the tile, a gap will be left and the tile placed in the next available space. A
subsequent tile that fits may be placed in the gap. If no tiles fit, then the gap remains.
When the window size changes, if necessary, the masonryLayout renders a different
numbers of rows or columns, based on the size of the tiles. The size of the tiles does
not change.

For example, Figure 9-14 shows a masonryLayout component with three columns and
two rows.

Figure 9-14 masonryLayout Displaying Three Columns

As the display area width is reduced, the masonryLayout reduces the number of
columns to two, and the number of rows to three, while increasing the number of rows
to three. The tiles remain the same size, as shown in Figure 9-15.

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

9-28

Figure 9-15 masonryLayout Displaying the Same Tiles in a Smaller Space

If you want a set number of columns, you set a fixed width or maximum width on the
layout. If you want to limit the height of the layout, you set a fixed height or maximum
height on the layout and enable scrolling to handle any overflow.

You set the size of a tile using the AFMasonryTileSize style classes on the tile
component. For example, if you use a panelBox as a tile, and you want it to span two
columns and 1 row, you would set the style class on the panelBox to
AFMasonryTileSize2x1 (all available style classes are noted in How to Use a
masonryLayout Component).

Listeners are available on the masonryLayout component to handle resizing,
reordering, inserting and deleting tiles. You need to create the code to handle these
actions, as well as the UI to initiate the actions. The masonryLayout component
doesn’t fire the events - the components that render the tiles do. You need to add
these components to the page and have the masonryLayout component listen for their
events.

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

9-29

Instead of creating those components and wiring them to the layout, you can use the
masonryLayoutBehavior tag. This tag provides a declarative way to use a command
component to initiate the layout changes. It also renders visual changes to the layout
before the component tree is actually modified. Because this opening up of space
happens before the action event is sent to the server, the user will see immediate
feedback while the listener for the command component modifies the component tree.

For example, Figure 9-16 shows a masonryLayout component used in the right panel
of a panelSplitter component. In the left panel, list items displayed as links represent
each panelBox tile in the masonryLayout. When all tiles are displayed, the links are all
inactive. However, if a user deletes one of the tiles, the corresponding link becomes
active. The user can click the link to reinsert the tile. By using the
masonryLayoutBehavior tag with the commandLink component, the user sees the
movement of the tiles and the space for the inserted tile much sooner.

Figure 9-16 Links to Add Tiles Use the masonryLayoutBehavior tag

You do not have to use this tag to provide any insert, delete, resize, or reordering. The
tag simply provides visual feedback more quickly. Without it, users would not see the
visual changes until the new content is retrieved from the server.

The masonryLayout component will stretch if the parent component allows stretching
of its child. If the parent does not stretch its children then the size of the
masonryLayout component will be based on the contents of its child components.

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

9-30

How to Use a masonryLayout Component
After you add a masonryLayout to a page, if you want to allow insertion, deletion,
reordering, or resizing of child components, you need to implement a method to
handle each of those actions, as well as the components to initiate those actions. You
then add any child components as tiles to the layout. If you want to allow rearranging
the child components, you need to add a componentDragSource tag to the child
components. You can also use the masonryLayoutBehavior tag to make the
masonryLayout component appear more responsive to the layout changes.

To use the masonryLayout component:

1. In the Component Palette, from the ADF Faces panel drag and drop a Masonry
Layout onto the page.

2. In the Property Inspector, expand the Other section.

3. By default, the layout will be dynamically sized to fit its container, based on the
size of the children. If you want a set number of columns, set a fixed width or
maximum width on the layout. If you want to limit the height of the layout, set a
fixed height or maximum height on the layout and enable scrolling to handle any
overflow.

4. From the Component Palette, drag and drop child components.

5. In the Property Inspector, with the child component selected, expand the Style
section and set StyleClass to determine how many columns and rows the tiles
should span. The available values that are supported by pre-defined style classes
are:

• AFMasonryTileSize1x1: 1 column by 1 row

• AFMasonryTileSize1x1: 1 column by 2 rows

• AFMasonryTileSize1x3: 1 column by 3 rows

• AFMasonryTileSize2x1: 2 columns by 1 row

• AFMasonryTileSize2x2: 2 columns by 2 rows

• AFMasonryTileSize2x3: 2 columns by 3 rows

• AFMasonryTileSize3x1: 3 columns by 1 row

• AFMasonryTileSize3x2: 3 columns by 2 rows

Note: The masonryLayout component recognizes tile size style class names for
spans up to and including 10x10. For tile sizes of span 3x3 and greater (up to
10x10 maximum), your application may define style classes for the desired span.
Instead of using pre-defined style classes, you can create style classes with the
naming pattern AFMasonryTileSize<colSpan>x<rowSpan>, where colspan and
rowspan are the numbers indicating the respective spans in the layout grid. Ensure
that you define the style classes in your skinning style sheet if you are defining
your own style classes in addition to the pre-defined set. For example, the
following defines a 4x4 span tile size:

AFMasonryTileSize4x4 {
 -tr-rule-ref: selector(".AFMasonryTileSizeBase:alias");
width: 728px;

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

9-31

height: 728px;
}

6. If you want users to be able to change the layout of the tiles, do the following:

a. In the Component Palette, from the Operations panel, drag and drop a
Component Drag Source as a child to each of the child components that
render the tiles.

b. Create a managed bean and implement a handler method for each associated
layout change, such as insert, delete, and reorder. Once created, use the
Property Inspector to bind the corresponding listener property on the
masonryLayout component to the method.

c. The reordering event is considered a drop event, so you must use the Drag
and Drop framework. The masonryLayout is the dropTarget, and will need to
use a dataFlavor tag to restrict the drop. For information about creating a
handler for a drop event, see About Drag and Drop Functionality. The
following page code shows the tags for drag and drop functionality. The child
panelBox components are handled by an iterator.

<af:masonryLayout binding="#{editor.component}" id="ml1"
 reorderListener="#{demoMasonryLayout.handleBasicReorder}">
 <af:dropTarget actions="MOVE"
 dropListener="#{demoMasonryLayout.handleDrop}">
 <af:dataFlavor flavorClass="javax.faces.component.UIComponent"
 discriminant="masonryTile"/>
 </af:dropTarget>
 <af:iterator var="row" varStatus="stat"
 value="#{demoMasonryLayout.basicData}" id="it1">
 <af:panelBox id="pb1" text="#{row.symbol}"
showDisclosure="false"
 styleClass="#{row.symbol == 'H' ?
'AFMasonryTileSize2x1' :
 'AFMasonryTileSize1x1'}">
 <af:componentDragSource discriminant="masonryTile"/>
 <af:outputText id="ot1" value="#{row.name}"/>
 </af:panelBox>
 </af:iterator>
</af:masonryLayout>

7. If you are not going to use the masonryLayoutBehavior tag, then add components
to the page to initiate each of the layout changes. Bind their listener properties to
the handler methods created in Step 6. Skip the remaining steps.

8. If you wish to use a masonryLayoutBehavior tag, drag and drop a command
component that will be used to initiate the layout change.

9. In the Component Palette, from the ADF Faces panel, drag a Masonry Layout
Behavior tag and drop it as a child to each command component.

10. In the Property Inspector, enter the following:

• for: Enter the ID for the associated masonryLayout component

• index: Enter an EL expression that resolves to a method that determines the
index at which the component will be inserted into the layout. When you use
the masonryLayoutBehavior tag, a placeholder element is inserted into the
DOM tree where the actual component will be rendered once it is returned

Chapter 9
Displaying Contents in a Dynamic Grid Using a masonryLayout Component

9-32

from the server. Because the insertion placeholder gets added before the
insertion occurs on the server, you must specify the location where you are
planning to insert the child component, and this location must be the same
location specified by your handler methods that do the actual change, in order
to preserve the context both before and after the change.

• operation: Enter the layout change as one of the following:

– insert (default)

– delete

– resize

The following page code shows links used with a masonryLayoutBehavior tag to
resize and delete tiles from the layout. Code for other layout changes would be
similar.

<af:link id="cil2" shortDesc="Expand" partialSubmit="true"
 rendered="#{!row.expanded}" icon="/images/
field_groups_add_ena.png"
 hoverIcon="/images/field_groups_add_ovr.png"
 depressedIcon="/images/field_groups_add_dwn.png">
 <af:setPropertyListener type="action" from="#{row.symbol}"
 to="#{demoMasonryLayout.currentSymbol}"/>
 <af:masonryLayoutBehavior operation="resize" for="m11"

sizeStyleClass="#{row.expandedSizeStyleClass}"/>
</af:link>
<af:link id="cil3" shortDesc="Collapse" partialSubmit="true"
 rendered="#{row.expanded}" icon="/images/
field_groups_remove_ena.png"
 hoverIcon="/images/field_groups_remove_ovr.png"
 depressedIcon="/images/field_groups_remove_dwn.png">
 <af:setPropertyListener type="action" from="#{row.symbol}"
 to="#{demoMasonryLayout.currentSymbol}"/>
 <af:masonryLayoutBehavior operation="resize" for="m11"
 sizeStyleClass="#{row.sizeStyleClass}"/>
</af:link>
<af:link id="cil1" shortDesc="Delete" partialSubmit="true"
 icon="/images/delete_ena.png"
 hoverIcon="/images/delete_ovr.png"
 depressedIcon="/images/delete_dwn.png">
 <af:setPropertyListener type="action" from="#{row.symbol}"
 to="#{demoMasonryLayout.currentSymbol}"/>
 <af:masonryLayoutBehavior for="m11" operation="delete"/>
</af:link>

Achieving Responsive Behavior Using matchMediaBehavior
Tag

Using the matchMediaBehavior tag you can create a responsive user interface. You
can control the alignment of almost every component in the screen to the available
viewport size.

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

9-33

The matchMediaBehavior tag is a declarative way to define properties for a component
for different @media rules. It uses the standard media queries and matches them with
the rules specified by each of the behavior tags. Once the rule matches, it applies the
property defined through the behavior tag on the component and refreshes the
component to display the intended change. If the media query does not match any
rules, a default value is used.

The three main attributes of the matchMediaBehavior tag are as follows:

• MatchedPropertyValue: The value that should be set in the property name when
there is a media match.

• MediaQuery: The media query on which the tag is listening on.

• PropertyName: The property that has to undergo a change during a media
operation.

Note:

You can specify EL expressions for the MatchedPropertyValue and
MediaQuery attributes. In the Expression Builder dialog, you can directly type
the expression or select values from variables and operators to create an
expression. See How to Create an EL Expression.

The matchMediaBehavior tag enables you to create a responsive user interface where
components align themselves to the available width and height of the device. This
behavior can be added under layout components or components that are capable of
realigning on Partial Page Rendering (PPR). The matchMediaBehavior tag gives you
more control over component level attributes unlike masonryLayout component, which
deals with overall layout. The usage of matchMediaBehavior tag is explained in the
following example.

In the Figure 9-17 example, the content is displaying horizontally across the page
width.

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

9-34

Figure 9-17 matchMediaBehavior — Horizontal Layout

In the Figure 9-18, the content is displayed vertically when the page is viewed in a
smaller screen area. In this case, the components under panelListLayout and
panelFormLayout realigns themselves vertically when the screen area is below 786
pixels and the components under panelGroupLayout realigns themselves vertically
when the screen area is below 1024 pixels.

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

9-35

Figure 9-18 matchMediaBehavior — Vertical Layout

The following code example describes the usage of matchMediaBehavior tag.

<af:outputText value="A panelList that realigns rows and columns to fit into
appropriate screen size.
 The breakpoint is 768px in this case." id="ot2"/>
 <af:panelList maxColumns="5" id="pl1" shortDesc="Links" rows="1"
inlineStyle="text-align:left;">
 <af:matchMediaBehavior propertyName="maxColumns"
matchedPropertyValue="2"

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

9-36

 mediaQuery="screen and (max-width: 768px)"/>
 <af:matchMediaBehavior propertyName="rows" matchedPropertyValue="3"
 mediaQuery="screen and (max-width: 768px)"/>
 <af:commandLink id="link_id_1">Item 1</af:commandLink>
 <af:commandLink id="link_id_2">Item 2</af:commandLink>
 <af:commandLink id="link_id_3">Item 3</af:commandLink>
 <af:commandLink id="link_id_4">Item 4</af:commandLink>
 <af:commandLink id="link_id_5">Item 5</af:commandLink>
 </af:panelList>
<af:outputText value="A panelFormLayout that realigns top to fit into appropriate
screen size.
 The breakpoint is 768px in this case." id="ot3"/>
 <af:panelFormLayout id="pfl1" clientComponent="true"
labelAlignment="start">
 <af:matchMediaBehavior propertyName="labelAlignment"
matchedPropertyValue="top"
 mediaQuery="screen and (max-width: 768px)"/>
 <af:inputText label="InputText component 1" placeholder="Enter some
thing here." id="it0"/>
 <af:selectBooleanRadio id="rb" group="rbGroup" shortDesc="shortDesc
text" label="A Radio Option"/>
 <af:selectManyListbox id="rs" label="Select Many List Box"
shortDesc="Select Option">
 <af:selectItem label="option 1" id="si5"/>
 <af:selectItem label="option 2" id="si6"/>
 <af:selectItem label="option 3" id="si7"/>
 <af:selectItem label="option 4" id="si8"/>
 </af:selectManyListbox>
 <af:inputText label="InputText component 2" placeholder="Enter some
thing here." id="it1"/>
 <af:inputText label="InputText component 3" placeholder="Enter some
thing here." id="it2"/>
 <f:facet name="footer"></f:facet>
 </af:panelFormLayout>
<af:outputText value="A panelGroupLayout that realigns vertically to fit into
appropriate screen size.
 The breakpoint is 1024px in this case." id="ot4"/>
 <af:panelGroupLayout id="pgl5" clientComponent="true"
layout="horizontal">
 <af:matchMediaBehavior propertyName="layout"
matchedPropertyValue="vertical"
 mediaQuery="screen and (max-width: 1024px)"/>
 <af:panelStretchLayout id="psl1" dimensionsFrom="children">
 <f:facet name="center">
 <af:panelGroupLayout id="pgl3">
 <af:panelHeader text="First Part of the Panel Group Layout"
id="ph7" headerLevel="6"></af:panelHeader>
 <af:outputText value="This will come on top in case screen
size goes below 1024px." id="ot5"/>
 </af:panelGroupLayout>

The following code example describes the usage of matchMediaBehavior tag for
listView. The matchMediaBehavior component works with the fetchSize property of
the listView component only if listView includes both fetchSize and rows attributes.

<af:listView var="item" emptyText="empty" fetchSize="7" rows="7" id="lv1"
value="#{mybean.mapEntries}">
 <af:matchMediaBehavior matchedPropertyValue="4" propertyName="rows"
mediaQuery="screen and (max-height: 500px)"/>
 <af:matchMediaBehavior matchedPropertyValue="4" propertyName="fetchSize"
mediaQuery="screen and (max-height: 500px)"/>

Chapter 9
Achieving Responsive Behavior Using matchMediaBehavior Tag

9-37

 <af:matchMediaBehavior matchedPropertyValue="7" propertyName="rows"
mediaQuery="screen and (min-height: 500px)"/>
 <af:matchMediaBehavior matchedPropertyValue="7" propertyName="fetchSize"
mediaQuery="screen and (min-height: 500px)"/>
 <af:listItem id="li1">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:outputFormatted value="#{item.key}" id="of1"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:outputFormatted value="#{item.value}" id="of2"/>
 </af:panelGroupLayout>
 </af:listItem>
 </af:listView>

Arranging Contents to Stretch Across a Page
The ADF Faces panelStretchLayout component stretch the components placed within
its facets. If you want to stretch the contents when the browser is resized, you can use
this component.
Use the panelStretchLayout component to arrange content in defined areas on a
page and when you want the content to be able to stretch when the browser is resized.
The panelStretchLayout component is one of the components that can stretch
components placed in its facets. Figure 9-19 shows the component's facets: top,
bottom, start, end, and center.

Figure 9-19 Facets in the panelStretchLayout Component

Note:

Figure 9-19 shows the facets when the language reading direction of the
application is configured to be left-to-right. If instead the language direction is
right-to-left, the start and end facets are switched.

When you set the height of the top and bottom facets, any contained components are
stretched up to fit the height. Similarly, when you set the width of the start and end
facets, any components contained in those facets are stretched to that width. If no
components are placed in the facets, then that facet does not render. That is, that
facet will not take up any space. If you want that facet to take up the set space but
remain blank, insert a spacer component. See Separating Content Using Blank Space

Chapter 9
Arranging Contents to Stretch Across a Page

9-38

or Lines. Child Components components in the center facet are then stretched to fill
up any remaining space. For information about component stretching, see Geometry
Management and Component Stretching.

Instead of setting the height of the top or bottom facet, or width of the start or end facet
to a dimension, you can set the height or width to auto. This allows the facet to size
itself to use exactly the space required by the child components of the facet. Space will
be allocated based on what the web browser determines is the required amount of
space to display the facet content.

Performance Tip:

Using auto as a value will degrade performance of your page. You should
first attempt to set a height or width and use the auto attribute sparingly.

The File Explorer application uses a panelStretchLayout component as the root
component in the template. Child components are placed only in the center and
bottom facets. Therefore, whatever is in the center facet stretches the full width of the
window, and from the top of the window to the top of the bottom facet, whose height is
determined by the bottomHeight attribute. The following example shows abbreviated
code from the fileExplorerTemplate file.

<af:panelStretchLayout
 bottomHeight="#{attrs.footerGlobalSize}">
 <f:facet name="center">
 <af:panelSplitter orientation="vertical" ...>
.
.
.
 </af:panelSplitter
 </f:facet>
 <f:facet name="bottom">
 <af:panelGroupLayout layout="vertical">
.
.
.
 </af:panelGroupLayout>
 </f:facet>
</af:panelStretchLayout>

The template uses an EL expression to determine the value of the bottomHeight
attribute. This expression resolves to the value of the footerGlobalSize attribute
defined in the template, which by default is 0. Any page that uses the template can
override this value. For example, the index.jspx page uses this template and sets the
value to 30. Therefore, when the File Explorer application renders, the contents in the
panelStretchLayout component begin 30 pixels from the bottom of the page.

How to Use the panelStretchLayout Component
The panelStretchLayout component cannot have any direct child components.
Instead, you place components within its facets. The panelStretchLayout is one of
the components that can be configured to stretch any components in its facets to fit
the browser. You can nest panelStretchLayout components. See Nesting
Components Inside Components That Allow Stretching.

Chapter 9
Arranging Contents to Stretch Across a Page

9-39

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Contents to Stretch Across a Page.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelStretchLayout component:

1. In the Components window, from the Layout panel, drag and drop a Panel Stretch
Layout onto the JSF page.

2. In the Properties window, expand the Common section and set the attributes as
needed.

When there are child components in the top, bottom, start, and end facets, these
components occupy space that is defined by the topHeight, bottomHeight,
startWidth, and endWidth attributes. For example, topHeight attribute specifies
the height of the top facet, and startWidth attribute specifies the width of the
start facet. Child components in top and bottom facets are stretched up to the
height set by topHeight and bottomHeight attributes, respectively, and child
components in start and end facets are stretched up to the width set by
startWidth and endWidth attributes, respectively. Instead of setting a numeric
dimension, you can set the topHeight, bottomHeight, startWidth and endWidth
attributes to auto and the browser will determine the amount of space required to
display the content in the facets.

Note:

If you set a facet to use auto as a value for the width or height of that
facet, the child component does not have to be able to stretch. In fact, it
must use a stable, standalone width that is not dependent upon the width
of the facet.

For example, you should not use auto on a facet whose child component
can stretch their children automatically. These components have their
own built-in stretched widths by default which will then cause them to
report an unstable offsetWidth value, which is used by the browser to
determine the amount of space.

Additionally, you should not use auto in conjunction with a child
component that uses a percentage length for its width. The facet content
cannot rely on percentage widths or be any component that would
naturally consume the entire width of its surrounding container.

If you do not explicitly specify a value, by default, the value for the topHeight,
bottomHeight, startWidth, and endWidth attributes is 50 pixels each. The widths
of the top and bottom facets, and the heights of the start and end facets are
derived from the width and height of the parent component of
panelStretchLayout.

Chapter 9
Arranging Contents to Stretch Across a Page

9-40

Tip:

If a facet does not contain a child component, it is not rendered and
therefore does not take up any space. You must place a child
component into a facet in order for that facet to occupy the configured
space.

3. The panelStretchLayout component can be configured to stretch to fill available
browser space, or if you want to place the panelStretchLayout component inside
a component that does not stretch its children, you can configure the
panelStretchLayout component to not stretch.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Set DimensionsFrom to one of the following:

• children: Instead of stretching, the panelStretchLayout component will get
its dimensions from its child component.

Note:

If you use this setting, you cannot use a percentage to set the height
of the top and bottom facets. If you do, those facets will try to get
their dimensions from the size of this panelStretchLayout
component, which will not be possible, as the panelStretchLayout
component will be getting its height from its contents, resulting in a
circular dependency If a percentage is used for either facet, it will be
disregarded and the default 50px will be used instead.

Additionally, you cannot set the height of the panelStretchLayout
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelStretchLayout height and the child component
height.

Chapter 9
Arranging Contents to Stretch Across a Page

9-41

• parent: the size of the panelStretchLayout component will be determined in
the following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container (that is, the panelStretchLayout component will stretch).

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto: If the parent component to the panelStretchLayout component allows
stretching of its child, then the panelStretchLayout component will stretch to
fill the parent. If the parent does not stretch its children then the size of the
panelStretchLayout component will be based on the size of its child
component.

4. To place content in the component, drag and drop the desired component into any
of the facets. If you want the child component to stretch, it must be a component
that supports being stretched. See What You May Need to Know About Geometry
Management and the panelStretchLayout Component.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a
container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component. Child components must also be able
to be stretched in order for all contained components to stretch.

Tip:

If any facet is not visible in the visual editor:

a. Right-click the panelStretchLayout component in the Structure
window.

b. From the context menu, choose Facets - Panel Stretch Layout
>facet name. Facets in use on the page are indicated by a
checkmark in front of the facet name.

What You May Need to Know About Geometry Management and the
panelStretchLayout Component

The panelStretchLayout component can stretch its child components and it can also
be stretched. The following components can be stretched inside the facets of the
panelStretchLayout component:

• decorativeBox (when configured to stretch)

• deck

• calendar

• inputText (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox (when configured to stretch)

• panelCollection

Chapter 9
Arranging Contents to Stretch Across a Page

9-42

• panelDashboard (when configured to stretch)

• panelGroupLayout (only with the layout attribute set to scroll or vertical)

• panelHeader (when configured to stretch)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• showDetailHeader (when configured to stretch)

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelStretchLayout component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only with the layout attribute set to default or horizontal)

• panelLabelAndMessage

• panelList

• showDetail

• tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place a component that
cannot be stretched into a facet of the panelStretchLayout component, wrap that
component in a transition component that can stretch.

For example, if you want to place content in a panelBox component (configured to not
stretch) within a facet of the panelStretchLayout component, you could place a
panelGroupLayout component with its layout attribute set to scroll in a facet of the
panelStretchLayout component, and then place the panelBox component in that
panelGroupLayout component. See Nesting Components Inside Components That
Allow Stretching.

Using Splitters to Create Resizable Panes
Using the ADF Faces panelSplitter component, you can display the content in multiple
panes. This component stretches itself and also its child components. When a panel is
collapsed, the content in the other panel is automatically resized.
When you have groups of unique content to present to users, consider using the
panelSplitter component to provide multiple panes separated by adjustable splitters.
The ADF Faces Components Demo application uses a panelSplitter to separate the
component demo area from the editor area, as shown in Figure 9-20. Users can
change the size of the panes by dragging the splitter, and can also collapse and
restore the panel that displays the editor. When a panel is collapsed, the panel
contents are hidden; when a panel is restored, the contents are displayed.

Chapter 9
Using Splitters to Create Resizable Panes

9-43

Figure 9-20 ADF Faces Components Demo Application Uses panelSplitter to
Separate Contents

The panelSplitter component lets you organize contents into two panes separated
by an adjustable splitter. The panes can either line up on a horizontal line (as does the
splitter shown in Figure 9-20) or on a vertical line. The ADF Faces Components Demo
application uses another panelSplitter component to separate the application's
global menu from the main body of the page. Figure 9-21 shows the panelSplitter
component expanded to show the menu, which includes access to the documentation
and source.

Figure 9-21 panelSplitter with a Vertical Split Expanded

Clicking the arrow button on a splitter collapses the panel that holds the global menu,
and the menu items are no longer shown, as shown in Figure 9-22.

Chapter 9
Using Splitters to Create Resizable Panes

9-44

Figure 9-22 panelSplitter with a Vertical Split Collapsed

You place components inside the facets of the panelSplitter component. The
panelSplitter component uses geometry management to stretch its child
components at runtime. This means when the user collapses one panel, the contents
in the other panel are explicitly resized to fill up available space.

Note:

While the user can change the values of the splitterPosition and
collapsed attributes by resizing or collapsing the panes, those values will
not be retained once the user leaves the page unless you configure your
application to use change persistence. For information about enabling and
using change persistence, see Allowing User Customization on JSF Pages.

How to Use the panelSplitter Component
The panelSplitter component lets you create two panes separated by a splitter.
Each splitter component has two facets, namely, first and second, which correspond
to the first panel and second panel, respectively. Child components can reside inside
the facets only. To create more than two panes, you nest the panelSplitter
components.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Splitters to Create Resizable Panes.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelSplitter component:

Chapter 9
Using Splitters to Create Resizable Panes

9-45

1. In the Components window, from the Layout panel, drag and drop a Panel Splitter
onto the JSF page.

2. In the Properties window, expand the Common section.

3. Set Orientation to vertical to create two vertical panes (one on top of the other).
By default, the value is horizontal, which means horizontal panes are placed left-
to-right (or right-to-left, depending on the language reading direction).

4. Set SplitterPosition and PositionedFromEnd to determine the initial placement
of the splitter. By default, the value of the splitterPosition attribute is 200
pixels, and the positionedFromEnd attribute is false. This setting means that ADF
Faces measures the initial position of the adjustable splitter from the start or top
panel (depending on the orientation attribute value). For example, if the
orientation attribute is set to horizontal, the splitterPosition attribute is 200
and the positionedFromEnd attribute is false (all default values), then ADF Faces
places the splitter 200 pixels from the start panel, as shown in Figure 9-23.

Figure 9-23 Splitter Position Measured from Start Panel

If the positionedFromEnd attribute is set to true, then ADF Faces measures the
initial position of the splitter from the end (or bottom panel, depending on the
orientation value). Figure 9-24 shows the position of the splitter measured 200
pixels from the end panel.

Figure 9-24 Splitter Position Measured from End Panel

5. Set collapsed to determine whether or not the splitter is in a collapsed (hidden)
state. By default, the collapsed attribute is false, which means both panes are

Chapter 9
Using Splitters to Create Resizable Panes

9-46

displayed. When the user clicks the arrow button on the splitter, the collapsed
attribute is set to true and one of the panes is hidden.

ADF Faces uses the collapsed and positionedFromEnd attributes to determine
which panel (that is, the first or second panel) to hide (collapse) when the user
clicks the arrow button on the splitter. When the collapsed attribute is set to true
and the positionedFromEnd attribute is false, the first panel is hidden and the
second panel stretches to fill up the available space. When the collapsed attribute
is true and the positionedFromEnd attribute is true, the second panel is hidden
instead. Visually, the user can know which panel will be collapsed by looking at the
direction of the arrow on the button: when the user clicks the arrow button on the
splitter, the panel collapses in the direction of the arrow.

6. By default, the panelSplitter component stretches to fill available browser space.
If you want to place the panelSplitter into a component that does not stretch its
children, then you need to change how the panelSplitter component handles
stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

In the Properties window, set DimensionsFrom to one of the following:

• children: Instead of stretching, the panelSplitter component will get its
dimensions from its child component.

Chapter 9
Using Splitters to Create Resizable Panes

9-47

Note:

If you use this setting and you set the orientation attribute to
vertical, then the contents of the collapsible panel will not be
determined by its child component, but instead will be determined by
the value of splitterPosition attribute. The size of the other pane
will be determined by its child component.

Additionally, you cannot set the height of the panelSplitter
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelSplitter height and the child component height.

• parent: The size of the panelSplitter component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto: If the parent component to the panelSplitter component allows
stretching of its child, then the panelSplitter component will stretch to fill the
parent. If the parent does not stretch its children then the size of the
panelSplitter component will be based on the size of its child component.

7. To place content in the component, drag and drop the desired component into the
first and second facets. When you have the orientation set to horizontal, the
first facet is the left facet. When you have the orientation set to vertical, the
first facet is the top facet. If you want the child component to stretch, it must be a
component that supports stretching. See What You May Need to Know About
Geometry Management and the panelSplitter Component.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a
container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

Tip:

If any facet is not visible in the visual editor:

a. Right-click the panelSplitter component in the Structure window.

b. From the context menu, choose Facets - Panel Splitter >facet
name. Facets in use on the page are indicated by a checkmark in
front of the facet name.

8. To create more than two panes, insert another Panel Splitter component into a
facet to create nested splitter panes, as shown in Figure 9-25.

Chapter 9
Using Splitters to Create Resizable Panes

9-48

Figure 9-25 Nested panelSplitter Components

The following example shows the code generated by JDeveloper when you nest
splitter components.

<af:panelSplitter ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- Contains nested splitter component -->
 <af:panelSplitter orientation="vertical" ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- second panel child components components here -->
 </f:facet>
 </af:panelSplitter>
 </f:facet>
</af:panelSplitter>

9. If you want to perform some operation when users collapse or expand a panel,
attach a client-side JavaScript using the clientListener tag for the collapsed
attribute and a propertyChange event type. For information about client-side
events, see Handling Events.

What You May Need to Know About Geometry Management and the
panelSplitter Component

The panelSplitter component can stretch its child components and it can also be
stretched. The following components can be stretched inside the first or second facet
of the panelSplitter component:

• decorativeBox (when configured to stretch)

• deck

• calendar

• inputText (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox (when configured to stretch)

Chapter 9
Using Splitters to Create Resizable Panes

9-49

• panelCollection (when configured to stretch)

• panelDashboard (when configured to stretch)

• panelGroupLayout (only with the layout attribute set to scroll or vertical)

• panelHeader (when configured to stretch)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• showDetailHeader (when configured to stretch)

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelSplitter component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only with the layout attribute set to default or horizontal)

• panelLabelAndMessage

• panelList

• showDetail

• tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched into a facet of the panelSplitter component, wrap that
component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow
within a facet of the panelSplitter component, you could place a panelGroupLayout
component with its layout attribute set to scroll in a facet of the panelSplitter
component, and then place the panelBox component in that panelGroupLayout
component. See Nesting Components Inside Components That Allow Stretching.

Arranging Page Contents in Predefined Fixed Areas
Using the ADF Faces panelBorderLayout component, you can arrange the content in
fixed areas. This component does not stretch even if it is placed in a component that
stretches its child components.
The panelBorderLayout component uses facets to contain components in predefined
areas of a page. Instead of a center facet, the panelBorder layout component takes 0
to n direct child components (also known as indexed children), which are rendered
consecutively in the center. The facets then surround the child components.

Figure 9-26 shows the facets of the panelBorderLayout component: top, inner top,
bottom, inner bottom, start, inner start, end, and inner end.

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

9-50

Figure 9-26 Facets in panelBorderLayout

The 12 supported facets of the panelBorderLayout component are:

• top: Renders child components above the center area.

• bottom: Renders child components below the center area.

• start: Supports multiple reading directions. This facet renders child components
on the left of the center area between top and bottom facet child components, if
the reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the right of the center area. When your
application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

• end: Supports multiple reading directions. This facet renders child components on
the right of the center area between top and bottom facet child components, if the
reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the left of the center area. When your
application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

• left: Supports only one reading direction. This facet renders child components on
the left of the center area between top and bottom facet child components. When
the reading direction is left-to-right, the left facet has precedence over the start
facet if both the left and start facets are used (that is, contents in the start
facet will not be displayed). If the reading direction is right-to-left, the left facet
also has precedence over the end facet if both left and end facets are used.

• right: Supports only one reading direction. This facet renders child components
on the right of the center area between top and bottom facet child components. If
the reading direction is left-to-right, the right facet has precedence over the end
facet if both right and end facets are used. If the reading direction is right-to-left,
the right facet also has precedence over the start facet, if both right and start
facets are used.

• innerTop: Renders child components above the center area but below the top
facet child components.

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

9-51

• innerBottom: Renders child components below the center area but above the
bottom facet child components.

• innerLeft: Renders child components similar to the left facet, but renders
between the innerTop and innerBottom facets, and between the left facet and
the center area.

• innerRight: Renders child components similar to the right facet, but renders
between the innerTop facet and the innerBottom facet, and between the right
facet and the center area.

• innerStart: Renders child components similar to the innerLeft facet, if the
reading direction is left-to-right. Renders child components similar to the
innerRight facet, if the reading direction is right-to-left.

• innerEnd: Renders child components similar to the innerRight facet, if the
reading direction is left-to-right. Renders child components similar to the
innerLeft facet, if the reading direction is right-to-left.

The panelBorderLayout component does not support stretching its child components,
nor does it stretch when placed in a component that stretches its child components.
Therefore, the size of each facet is determined by the size of the component it
contains. If instead you want the contents to stretch to fill the browser window,
consider using the panelStretchLayout component instead. See Arranging Contents
to Stretch Across a Page.

How to Use the panelBorderLayout Component to Arrange Page
Contents in Predefined Fixed Areas

There is no restriction to the number of panelBorderLayout components you can have
on a JSF page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Page Contents in Predefined Fixed Areas.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelBorderLayout component:

1. In the Components window, from the Layout panel, drag and drop a Panel Border
Layout onto the JSF page.

2. From the Components window, drag and drop the component that will be used to
display contents in the center of the window as a child component to the
panelBorderLayout component.

Child components are displayed consecutively in the order in which you inserted
them. If you want some other type of layout for the child components, wrap the
components inside the panelGroupLayout component. See Grouping Related
Items.

3. To place contents that will surround the center, drag and drop the desired
component into each of the facets.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a

Chapter 9
Arranging Page Contents in Predefined Fixed Areas

9-52

container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

Tip:

If any facet is not visible in the visual editor:

a. Right-click the panelBorderLayout component in the Structure
window.

b. From the context menu, choose Facets - Panel Border Layout
>facet name. Facets in use on the page are indicated by a
checkmark in front of the facet name.

Arranging Content in Forms
Using the ADF Faces panelFormLayout component, you can display the fields and
their labels in one or more columns. You can group the child components within the
panelFormLayout component.
The panelFormLayout component lets you lay out multiple components such as input
fields and selection list fields in one or more columns. The File Explorer application
uses a panelFormLayout component to display file properties. The component is
configured to have the labels right-aligned, as shown in Figure 9-27.

Figure 9-27 Right-Aligned Labels and Left-Aligned Fields in a Form

Figure 9-28 shows the same page with the component configured to display the labels
above the fields.

Figure 9-28 Labels Above Fields in a Form

Chapter 9
Arranging Content in Forms

9-53

You can configure the panelFormLayout component to display the fields with their
labels in one or more columns. Each field in the form is a child component of the
panelFormLayout component. You set the desired number of rows, and if there are
more child components than rows, the remaining child components are placed in a
new column. The following example shows a panelFormLayout component with 10
inputText child components.

<af:panelFormLayout id="pfl1" rows="10">
 <af:inputText label="Label 1" id="it1"/>
 <af:inputText label="Label 2" id="it2"/>
 <af:inputText label="Label 3" id="it3"/>
 <af:inputText label="Label 4" id="it4"/>
 <af:inputText label="Label 5" id="it5"/>
 <af:inputText label="Label 6" id="it6"/>
 <af:inputText label="Label 7" id="it7"/>
 <af:inputText label="Label 8" id="it8"/>
 <af:inputText label="Label 9" id="it9"/>
 <af:inputText label="Label 10" id="it10"/>
</af:panelFormLayout>

Because the panelFormLayout's row attribute is set to 10, all 10 inputText
components appear in one column, as shown in Figure 9-29.

Figure 9-29 All inputText Components Display in One Column

However, if the row attribute were to be set to 8, then the first 8 inputText components
display in the first column and the last two appear in the second column, as shown in
Figure 9-30.

Figure 9-30 Components Displayed in Two Columns

However, the number of rows displayed in each is not solely determined by the
configured number of rows. By default, the panelFormLayout component's maxColumns

Chapter 9
Arranging Content in Forms

9-54

attribute is set to render no more than three columns (two for PDA applications). This
value is what actually determines the number of rows. For example, if you have 25
child components and you set the component to display 5 rows and you leave the
default maximum number of columns set to 3, then the component will actually display
9 rows, even though you have it set to display 5. This is because the maximum
number of columns can override the set number of rows. Because it is set to allow only
up to 3 columns, the component must use 9 rows in order to display all child
components. You would need to set the maximum number of columns to 5 in order to
have the component display just 5 rows.

ADF Faces uses default label and field widths, as determined by the standard HTML
flow in the browser. You can also specify explicit widths to use for the labels and fields.
Regardless of the number of columns in the form layout, the widths you specify apply
to all labels and fields. You specify the widths using either absolute numbers in pixels
or percentage values. If the length of a label does not fit, the text is wrapped.

Tip:

If your page will be displayed in languages other than English, you should
leave extra space in the labels to account for different languages and
characters.

How to Use the panelFormLayout Component
You can use one or more panelFormLayout components on a page to create the
desired form layout.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. SeeArranging Content in Forms.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use panelFormLayout:

1. In the Components window, from the Layout panel, drag and drop a Panel Form
Layout onto the JSF page.

2. In the Properties window, expand the Common section and set the label
alignment.

By default, field labels on the child input components are displayed beside the
fields. To place the labels above the fields, set the labelAlignment attribute to
top.

Note:

When you nest a panelFormLayout component inside another
panelFormLayout component, the label alignment in the nested layout is
top.

Chapter 9
Arranging Content in Forms

9-55

3. Set rows and maxColumns to determine the number of rows and columns in the
panelFormLayout component.

The rows attribute value is the number that ADF Faces uses as the number of
rows after which a new column will start. By default, it is set to 2147483647
(Integer.MAX_VALUE). This means all the child components that are set to
rendered="true" and visible="true" will render in one, single column.

If you want the form to contain more than one column, set the rows attribute to a
multiple of the number of rendered child components, and then set the maxColumns
attribute to the maximum amount of columns that the form should display. The
default value of maxColumns is 3. (On PDAs, the default is 2).

Note:

If the panelFormLayout component is inside another panelFormLayout
component, the inner panelFormLayout component's maxColumns value
is always 1.

For example, if the rows attribute is set to 6 and there are 1 to 6 rendered child
components, the list will be displayed in 1 column. If there are 7 to 12 rendered
child components, the list will be displayed in 2 columns. If there are 13 or more
child components, the list will be displayed in 3 columns. To display all rendered
child components in 1 column, set the rows attribute back to the default value.

If the number of rendered child components would require more columns than
allowed by the maxColumn attribute, then the value of the rows attribute is
overridden. For example, if there are 100 rendered child components, and the
rows attribute is set to 30 and the maxColumns attribute is 3 (default), the list will be
displayed in 3 columns and 34 rows. If the maxColumns attribute is set to 2, the list
will be displayed in 2 columns and 51 rows.

Tip:

Rendered child components refers only to direct child components of the
panelFormLayout component. Therefore, when a component that
renders multiple rows (for example selectManyCheckbox) is a child, all its
rows will be treated as a single rendered child and cannot be split across
separate columns.

4. Set fieldWidth, labelWidth, and layout as needed.

ADF Faces uses default label and field widths, as determined by standard HTML
flow in the browser. You can also specify explicit widths to use for the labels and
fields.

The labelWidth attribute on the panelFormLayout component lets you set the
preferred width for labels; the fieldWidth attribute lets you set the preferred width
for fields. The layout attribute lets you set how the content is spaced out and if
long labels and fields will be truncated.

Chapter 9
Arranging Content in Forms

9-56

Note:

Any value you specify for the labelWidth component is ignored in
layouts where the labelAlignment attribute is set to top, that is, in
layouts where the labels are displayed above the fields.

Regardless of the number of columns in the form layout, the widths you specify
apply to all labels and fields, that is, you cannot set different widths for different
columns. You specify the widths using any CSS unit such as em, px, or %. The
unit used must be the same for both the labelWidth and fieldWidth attribute.

When using percentage values:

• The percentage width you specify is a percent of the entire width taken up by
the panelFormLayout component, regardless of the number of columns to be
displayed.

• The sum of the labelWidth and fieldWidth percentages must add up to
100%. If the sum is less than 100%, the widths will be normalized to equal
100%. For example, if you set the labelWidth to 10% and the fieldWidth to
30%, at runtime the labelWidth would be 33% and the fieldWidth would be
67%.

• If you explicitly set the width of one but not the other (for example, you specify
a percentage for labelWidth but not fieldWidth), ADF Faces automatically
calculates the percentage width that is not specified.

Note:

If your panelFormLayout component contains multiple columns and a
footer, you may see a slight offset between the positioning of the main
form items and the footer items in web browsers that do not honor
fractional divisions of percentages. To minimize this effect, ensure that
the percentage labelWidth is evenly divisible by the number of columns.

Suppose the width of the panelFormLayout component takes up 600 pixels of
space, and the labelWidth attribute is set at 50%. In a one-column display, the
label width will be 300 pixels and the field width will be 300 pixels. In a two-column
display, each column is 300 pixels, so each label width in a column will be 150
pixels, and each field width in a column will be 150 pixels.

The layout attribute can be set to either weighted, which is the default value, or
fixed. If the length of the label text does not fit on a single line with the given label
width, ADF Faces automatically wraps the label text. If the given field width is less
than the minimum size of the child content you have placed inside the
panelFormLayout component, ADF Faces automatically uses the minimum size of
the child content as the field width. However, if the layout attribute is set to fixed,
labels and fields are not wrapped. Instead, they are truncated with CSS ellipses
styling and an automatic title attribute that displays the full text on hover.

Chapter 9
Arranging Content in Forms

9-57

Note:

If the field is wider than the space allocated, the browser will not truncate
the field but instead will take space from the label columns. This
potentially could cause the labels to wrap more than you would like. In
this case, you may want to consider reducing the width of the field
contents (for example, use a smaller contentStyle width on an
inputText component). You could also set the layout attribute to fixed,
which will truncate long labels to fit the allocated space instead of
wrapping them.

5. Insert the desired child components.

Usually you insert labeled form input components, such as Input Text, Select
Many Checkbox, and other similar components that enable users to provide
input.

Tip:

The panelFormLayout component also allows you to use the iterator,
switcher, and group components as direct child components, providing
these components wrap child components that would typically be direct
child components of the panelFormLayout component.

The following example shows the panelFormLayout component as it is used on the
properties.jspx page of the File Explorer application, shown in Figure 9-27.

<af:panelFormLayout rows="5" id="pfl1">
 <af:inputText value="#{fileItemProperties.type}"
 label="#{explorerBundle['fileproperties.type']}"
 readOnly="true" id="it2"/>
 <af:inputText value="#{fileItemProperties.location}"
 label="#{explorerBundle['fileproperties.currentpath']}"
 readOnly="true" id="it3"/>
 <af:inputText value="#{fileItemProperties.size}"
 label="#{explorerBundle['fileproperties.size']}"
 readOnly="true" id="it4"/>
 <af:inputText value="#{fileItemProperties.contains}"
 label="#{explorerBundle['fileproperties.contains']}"
 readOnly="true" id="it5"/>
</af:panelFormLayout>

Tip:

If you use components other than input components (which do not have
label attributes) or if you want to group several input components with
one single label inside a panelFormLayout component, first wrap the
components inside a panelLabelAndMessage component.

6. To group semantically related input components in a form layout, use the group
component to wrap those components that belong in a group. Components placed
within a group will by default, cause the panelFormLayout component to draw a

Chapter 9
Arranging Content in Forms

9-58

separator lines at the beginning and end of the group. You can configure the
group component so that the separator lines will always display, or will never
display by setting the StartBoundary and EndBoundary attributes.

7. To add content below the child input components, insert the desired component
into the footer facet.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a
container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

The following example shows sample code that uses the panelGroupLayout
component to arrange footer child components in a panelFormLayout
component.

<af:panelFormLayout>
 <f:facet name="footer">
 <af:panelGroupLayout layout="horizontal">
 <af:button text="Save"/>
 <af:button text="Cancel"/>
 <f:facet name="separator">
 <af:spacer width="3" height="3"/>
 </f:facet>
 </af:panelGroupLayout>
 </f:facet>
 .
 .
 .
</af:panelFormLayout>

For information about using the panelLabelAndMessage component, see Grouping
Components with a Single Label and Message.

For information about using the group component, see What You May Need to Know
About Using the group Component with the panelFormLayout Component.

What You May Need to Know About Responsive Mode in the
panelFormLayout Component

You can configure the panelFormLayout component to be responsive so that it
modifies the form layout dynamically, depending on the space available. Responsive
form layout allows dynamically adjusting the number of columns in which the children
should be laid out, determining the label position of panelFormLayoutcomponent
children based on the space available for the component. To use panelFormLayout in
responsive mode, set the layout attribute to responsive.

<af:panelFormLayout id="panelFormLayout1" layout="responsive">
 ...
</af:panelFormLayout>

The panelFormLayout component supports four panel dimensions: panel-size-sm
(small), panel-size-md (medium), panel-size-lg (large), and panel-size-xl (extra
large). By default, the panel uses one of these modes when the space available meets
any of the following conditions:

• sm - <768px

• md - >=768px and < 1024px

Chapter 9
Arranging Content in Forms

9-59

• lg - >=1024px and < 1281px

• xl - >=1281px

You can configure different set of values for the panel sizes by using the skinning
property tr-panel-size-[sm/md/lg] in the ADF skin file. A panel dimension that is
greater than the lg dimension limit is automatically an xl dimension.

af|panelFormLayout {
 -tr-panel-size-sm: 768;
 -tr-panel-size-md: 1024;
 -tr-panel-size-lg: 1281; /* anything greater than this is xl */
}

If the panelFormLayout component meets the panel dimensions described above, it
will render a corresponding pseudo class on the component: panel-size-sm, panel-
size-md, panel-size-lg, and panel-size-xl.

The number of columns used to lay out the panelFormLayout component children is
controlled at runtime by the maxColumns attribute. The default value is 3. This attribute
determines the maximum number of available columns to lay out the form fields,
provided that sufficient space is available. If the available space reduces, the
component will auto reduce the columns in which the form fields are laid out.

Note:

Extra wide fields like af:inputText with row attribute set to >1 should be put
in the footer facet of the component in responsive mode. The fields in the
footer are start aligned with fields in the first column of the form layout.

You can position the labels either as top-aligned or start-aligned. By default, the small
panel mode will have form fields with top-aligned labels and all other panel modes will
have start-aligned labels. You can customize the alignment behavior by using the skin
aliases AFTopAlignLabelCell:alias, AFTopAlignLabelContentCell:alias, and
AFStartAlignLabelCell:alias to align the start and top labels in different modes. The
sample CSS to align labels is given below:

af|panelFormLayout:panel-size-sm::responsive-label-cell {
 -tr-rule-ref: selector(".AFTopAlignLabelCell:alias");
}
af|panelFormLayout:panel-size-sm .AFPanelFormLayoutContentCell {
 -tr-rule-ref: selector(".AFTopAlignLabelContentCell:alias");
}

af|panelFormLayout:panel-size-md::responsive-label-cell,
af|panelFormLayout:panel-size-lg::responsive-label-cell,
af|panelFormLayout:panel-size-xl::responsive-label-cell {
 -tr-rule-ref: selector(".AFStartAlignLabelCell:alias");
}

By default, in start-aligned mode, label elements have 33.33% width and the content
element have 66.66% width. You can change these values in the CSS. The sample
CSS to set label and content width is given below:

af|panelFormLayout:panel-size-md::responsive-label-cell,
af|panelFormLayout:panel-size-lg::responsive-label-cell,
af|panelFormLayout:panel-size-xl::responsive-label-cell {

Chapter 9
Arranging Content in Forms

9-60

 -tr-rule-ref: selector(".AFStartAlignLabelCell:alias");
 width: 33.33%;
}
af|panelFormLayout:panel-size-md .AFPanelFormLayoutContentCell,
af|panelFormLayout:panel-size-lg .AFPanelFormLayoutContentCell,
af|panelFormLayout:panel-size-xl .AFPanelFormLayoutContentCell {
 width: 66.66%;
}

What You May Need to Know About Using the group Component with
the panelFormLayout Component

While the group component itself does not render anything, when you use it to group
child components in the panelFormLayout component, by default, visible separators
will display around the child components of each group component. For example, you
might want to group some of the input fields in a form layout created by the
panelFormLayout component. You can also choose to display a title for the group
using its title attribute.

Note:

If the group title is not horizontally longer than the width of the current
panelFormLayout column, the panelFormLayout will stretch horizontally to
accommodate the title.

The startBoundary attribute controls whether or not the separator lines display at the
top of the group, while the endBoundary attribute controls whether or not the separator
lines display at the bottom of the group. If you want the line to display, set the attribute
to show. If you don't want the lines to display, set the attribute to hide. In two adjacent
groups, if you don't want the line to display, the adjoining attributes must both be set to
hide, or one must be set to hide and the other to dontCare. By default, these
attributes are set to dontCare, which means the parent component (in this case the
panelFormLayout component) will display the lines.

The following sample code groups three sets of child components inside a
panelFormLayout component. The first group is set to hide the separator lines.
However, because the second group is configured to display a separator at the start of
the group, the lines will display. The second group is also set to display a title and a
line at the end of the group. Because the third group has the startBoundary attribute
set to dontCare, the line at the bottom of the second group displays.

<af:panelFormLayout maxColumns="1" labelWidth="75" id="pfl4">
 <af:group id="g1" startBoundary="hide" endBoundary="hide">
 <af:selectOneChoice label="Prompt" value="option1" id="soc4">
 <af:selectItem label="Option 1" value="option1" id="si30"/>
 <af:selectItem label="Option 2" value="option2" id="si31"/>
 </af:selectOneChoice>
 <af:selectOneChoice label="Prompt" value="option1" id="soc5">
 <af:selectItem label="Option 1" value="option1" id="si32"/>
 <af:selectItem label="Option 2" value="option2" id="si33"/>
 </af:selectOneChoice>
 <af:panelLabelAndMessage label="Prompt" id="plam6" for="it6">
 <af:panelGroupLayout layout="horizontal" id="pgl4">

Chapter 9
Arranging Content in Forms

9-61

 <af:inputText simple="true" contentStyle="width: 100px;"
 label="inputText" id="it6"/>
 <af:button partialSubmit="true" text="Browse..." id="cb3"/>
 </af:panelGroupLayout>
 </af:panelLabelAndMessage>
 </af:group>
 <af:group id="g2" title="Grouped Set of Forms" startBoundary="show"
 endBoundary="show">
 <af:selectManyListbox label="Prompt" contentStyle="width: 100px"
 id="sml3">
 <af:selectItem label="Option 1" value="option1" id="si34"/>
 <af:selectItem label="Option 2" value="option2" id="si35"/>
 <af:selectItem label="Option 3" value="option3" id="si36"/>
 <af:selectItem label="Option 4" value="option4" id="si37"/>
 </af:selectManyListbox>
 </af:group>
 <af:group id="g3" startBoundary="dontCare" endBoundary="dontCare">
 <af:selectManyCheckbox label="Prompt" id="smc3">
 <af:selectItem label="Value 1" value="value1" id="si38"/>
 <af:selectItem label="Value 2" value="value2" id="si39"/>
 <af:selectItem label="Value 3" value="value3" id="si40"/>
 </af:selectManyCheckbox>
 </af:group>
</af:panelFormLayout>

At runtime the panelFormLayout component renders separator lines before and after
the second group of child components, along with a title, as shown in Figure 9-31.

Figure 9-31 Grouped Components in panelFormLayout

As described in Arranging Content in Forms, the panelFormLayout component uses
certain component attributes to determine how to display its child components
(grouped and ungrouped) in columns and rows. When using the group component to
group related components in a panelFormLayout component that will display its child
components in more than one column, the child components of any group component

Chapter 9
Arranging Content in Forms

9-62

will always be displayed in the same column, that is, child components inside a group
component will never be split across a column.

In JSP pages, facets can only contain one child component (Facelet pages do not
have that restriction). Therefore, when you use the group component to group child
components in the footer facet of the panelFormLayout component, you must place
all the group components and other ungrouped child components in one root group
component, as shown in the following example.

<af:panelFormLayout ...>
 <f:facet name="footer">
 <af:group id="g2">
 <af:inputText rows="2" label="footer item 1" id="it10"/>
 <af:group id="g3">
 <af:inputText columns="5" label="footer group item 1"
 id="it11"/>
 <af:inputText columns="5" label="footer group item 2"
 id="it12"/>
 <af:inputText columns="5" label="footer group item 3"
 id="it13"/>
 </af:group>
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <f:facet name="separator">
 <af:spacer width="10" id="s2"/>
 </f:facet>
 <af:button text="Page 1" partialSubmit="true"
 id="cb3"/>
 <af:button text="Page 2" partialSubmit="true"
 id="cb4"/>
 </af:panelGroupLayout>
 </af:group>
 </f:facet>
 .
 .
 .
</af:panelFormLayout>

Like grouped child components in a panelFormLayout component, at runtime, by
default the panelFormLayout component renders separator lines around the child
components of each group component in the footer facet, as shown in Figure 9-32.

Figure 9-32 Footer in panelGroupLayout with Grouped Components

Chapter 9
Arranging Content in Forms

9-63

Note:

In JSP pages, the footer facet in the panelFormLayout component supports
only two levels of grouped components, that is, you cannot have three or
more levels of nested group components in the footer facet. For example,
the following code is not valid:

<f:facet name="footer">
 <!-- Only one root group -->
 <af:group id-"g1">
 <af:outputText value="Footer item 1" id="ot1"/>
 <!-- Any number of groups at this level -->
 <af:group id="g2">
 <af:outputText value="Group 1 item 1" id="ot2"/>
 <af:outputText value="Group 1 item 2" id="ot3"/>
 <!-- But not another nested group. This is illegal. -->
 <af:group id="g3">
 <af:outputText value="Nested Group 1 item 1" id="ot4"/>
 <af:outputText value="Nested Group 1 item 2" id="ot5"/>
 </af:group>
 </af:group>
 <af:outputText value="Another footer item" id="ot6"/>
 </af:group>
</f:facet>

When a group component is first in a column of a panelFormLayout, a separator line
will not display at the top, even when startBoundary is set to show. The same is true
for the last group component in a column; no separator line will display at the bottom,
even if the endBoundary attribute is set to show.

Arranging Contents in a Dashboard
Use the ADF Faces panelDashboard component to use a panelBox component that
contain content instead of fields. Based on the row height and column attribute, the
panelDashboard arranges it child component and they stretch depending on the
parent component.
The panelDashboard component allows you to arrange its child components in rows
and columns, similar to the panelForm component. However, instead of text
components, the panelDashboard children are panelBox components that contain
content, as shown in Figure 9-33.

Chapter 9
Arranging Contents in a Dashboard

9-64

Figure 9-33 panelDashboard with panelBox Child Components

When you add a panelDashboard component, you configure the number of columns it
will contain, along with the height of each row. The dashboard stretches its children to
fill up the configured space. If all the child components do not fit within the specified
number of columns and row height, then the panelDashboard component displays a
scroll bar.

When placed in a component that stretches it children, by default, the panelDashboard
stretches to fill its parent container, no matter the number of children. This could mean
that you may have blank space in the dashboard when the browser is resized to be
much larger than the dashboard needs.

For example, say you have set the panelDashboard to inherit its size from its parent by
setting the dimensionsFrom attribute to parent. You set columns to 1 and the
rowHeight to 50px. You then add two panelBox components. Because columns is set
to 1, you will have 2 rows. Because the parent component is a panelStretchLayout,
the panelDashboard will stretch to fill the panelStretchLayout, no matter the height of
the boxes, and you end up with extra space, as shown in Figure 9-34 (the color of the
dashboard has been changed to fuchsia to make it more easy to see its boundaries).

Figure 9-34 panelDashboard Stretches to Fill Space

Chapter 9
Arranging Contents in a Dashboard

9-65

If instead you don't want the dashboard to stretch, you can place it in a component that
does not stretch its children, and you can configure the panelDashboard to determine
its size based on its children (by setting the dimensionsFrom attribute to children). It
will then be as tall as the number of rows required to display the children, multiplied by
the rowHeight attribute.

In the previous example, if instead you place the dashboard in a panelGroupLayout
set to scroll, because the rowHeight is set to 50, your panelDashboard will always be
just over 100px tall, no matter the size of the browser window, as shown in
Figure 9-35.

Figure 9-35 panelDashboard Does Not Stretch

The panelDashboard component also supports declarative drag and drop behavior, so
that the user can rearrange the child components. As shown in Figure 9-36, the user
can for example, move panelBox 10 between panelBox 4 and panelBox 5. A shadow
is displayed where the box can be dropped.

Figure 9-36 Drag and Drop Capabilities in panelDashboard

Chapter 9
Arranging Contents in a Dashboard

9-66

Note:

You can also configure drag and drop functionality that allows users to drag
components into and out of the panelDashboard component. See Adding
Drag and Drop Functionality Into and Out of a panelDashboard Component.

Along with the ability to move child components, the panelDashboard component also
provides an API that you can access to allow users to switch child components from
being rendered to not rendered, giving the appearance of panelBoxes being inserted
or deleted. The dashboard uses partial page rendering to redraw the new set of child
components without needing to redraw the entire page.

You can use the panelDashboardBehavior tag to make the rendering of components
appear more responsive. This tag allows the activation of a command component to
apply visual changes to the dashboard before the application code modifies the
component tree on the server. Because this opening up of space happens before the
action event is sent to the server, the user will see immediate feedback while the
action listener for the command component modifies the component tree and prepares
the dashboard for the optimized encoding of the insert.

For example, Figure 9-37 shows a panelDashboard component used in the right panel
of a panelSplitter component. In the left panel, list items displayed as links represent
each panelBox component in the panelDashboard. When all panelBox components are
displayed, the links are all inactive. However, if a user deletes one of the panelBox
components, the corresponding link becomes active. The user can click the link to
reinsert the panelBox. By using the panelDashboardBehavior tag with the
commandLink component, the user sees the inserted box drawing.

Figure 9-37 commandLink Components Use panelDashboardBehavior Tag

If you decide not to use this tag, there will be a slight delay while your action listener is
processing before the user sees any change to the dashboard structure.

Figure 9-38 shows a practical example using a panelDashboard component. Selecting
one of the links at the top of the page changes the panelBoxes displayed in the

Chapter 9
Arranging Contents in a Dashboard

9-67

dashboard. The user can also add panelBoxes by clicking the associated link on the
left-hand side of the page.

Figure 9-38 Practical Example of panelDashboard

How to Use the panelDashboard Component
After you add a panelDashboard to a page, you can configure the dashboard to
determine whether or not it will stretch. Then, add child components, and if you want to
allow rearrangement the components, also add a componentDragSource tag to the
child component. If you want to allow insertion and deletion of components, implement
a listener to handle the action. You can also use the panelDashboardBehavior tag to
make the panelDashboard component appear more responsive to the insertion.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Arranging Contents in a Dashboard.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To use the panelDashboard component:

1. In the Components window, from the Layout panel, drag and drop a Panel
Dashboard onto the page.

2. In the Properties window, expand the Common section.

3. Set columns to the number of columns you want to use to display the child
components. The child components will stretch to fit each column.

4. Set RowHeight to the number of pixels high that each row should be. The child
components will stretch to this height.

5. By default, the panelDashboard component stretches to fill available browser
space. If instead, you want to use the panelDashboard component as a child to a
component that does not stretch its children, then you need to change how the
panelDashboard component handles stretching.

Chapter 9
Arranging Contents in a Dashboard

9-68

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Expand the Appearance section, and set DimensionsFrom to one of the
following:

• children: the panelDashboard component will get its dimensions from its child
components.

Note:

If you use this setting, you cannot set the height of the
panelDashboard component (for example through the inlineStyle
or styleClass attributes). Doing so would cause conflict between the
panelDashboard height and the child component height.

• parent: the size of the panelDashboard component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto: If the parent component to the panelDashboard component allows
stretching of its child, then the panelDashboard component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelDashboard component will be based on the size of its child component.

6. From the Components window, drag and drop child panelBox components.

Chapter 9
Arranging Contents in a Dashboard

9-69

Tip:

The panelDashboard component also supports the region component as
a child component.

7. If you want users to be able to reorder the child components, in the Components
window, from the Operations panel, in the Drag and Drop group, drag and drop a
Component Drag Source as a child to each of the child components.

8. If you want to be able to add and delete components, create a managed bean and
implement a handler method that will handle reordering children when a child is
added or dropped. This event is considered a drop event, so you must use the
Drag and Drop framework. For information about creating a handler for a drop
event, see Adding Drag and Drop Functionality.

To use the optimized lifecycle, have the handler call the panelDashboard
component's prepareOptimizedEncodingOfInsertedChild() method, which
causes the dashboard to send just the inserted child component to be rendered.

Note:

If you plan on using the panelDashboardBehavior tag, then this API
should be called from the associated command component's
actionListener handler.

9. If you have added a componentDragSource tag in Step 7, then you must also
implement a DropEvent handler for the panelDashboard. With the panelDashboard
component selected, expand the Behavior section and bind the DropListener
attribute to that handler method.

10. If you wish to use a panelDashboardBehavior tag, drag and drop a command
component that will be used to initiate the insertion.

11. In the Properties window, bind the ActionListener for the command component to
a handler on a managed bean that will handle the changes to the component tree.
Have the handler call the panelDashboard component's
prepareOptimizedEncodingOfInsertedChild() method, which causes the
dashboard to send just the inserted child component to be rendered. The following
example shows code on a managed bean that handles the insertion of child
components.

public void handleInsert(ActionEvent e)
{
 UIComponent eventComponent = e.getComponent();
 String panelBoxId =
eventComponent.getAttributes().get("panelBoxId").toString();
 UIComponent panelBox = _dashboard.findComponent(panelBoxId);

 // Make this panelBox rendered:
 panelBox.setRendered(true);

 // Becaue the dashboard is already shown, perform an optimized
 // render so the whole dashboard does not have to be re-encoded:
 int insertIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();

Chapter 9
Arranging Contents in a Dashboard

9-70

 for (UIComponent child : children)
 {
 if (child.equals(panelBox))
 {
 // Let the dashboard know that only the one child component should be
 // encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 break;
 }

 if (child.isRendered())
 {
 // Count only rendered children because that is all that the
 // panelDashboard can see:
 insertIndex++;
 }
 }
 // Add the side bar as a partial target because we need to
 // redraw the state of the side bar item that corresponds to the inserted item:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBar);
}

12. In the Components window, from the Operations panel, in the Behavior group,
drag a Panel Dashboard Behavior tag and drop it as a child to the command
component.

13. In the Properties window, enter the following:

• for: Enter the ID for the associated panelDashboard component

• index: Enter an EL expression that resolves to a method that determines the
index of the component to be inserted. When you use the
panelDashboardBehavior tag, a placeholder element is inserted into the DOM
tree where the actual component will be rendered once it is returned from the
server. Because the insertion placeholder gets added before the insertion
occurs on the server, you must specify the location where you are planning to
insert the child component so that if the user reloads the page, the children will
continue to remain displayed in the same order.

What You May Need to Know About Geometry Management and the
panelDashboard Component

This component organizes its children into a grid based on the number of columns and
the rowHeight attribute. The child components that can be stretched inside of the
panelDashboard include:

• inputText (when the rows attribute is set to greater than one, and the simple
attribute is set to true)

• panelBox

• region (when configured to stretch)

• table (when configured to stretch)

If you try to put any other component as a child component to the panelDashboard
component, then the component hierarchy is not valid.

Chapter 9
Arranging Contents in a Dashboard

9-71

Displaying and Hiding Contents Dynamically
The ADF Faces showDetail component enables you to show or hide parts of the
interface at will. You can also create a hierarchy of the content that you want to show
or hide.
Sometimes you want users to have the choice of displaying or hiding content. When
you do not need to show all the functionality of the user interface at once, you can
save a lot of space by using components that enable users to show and hide parts of
the interface at will.

The showDetail component creates a label with a toggle icon that allows users to
disclose (show) or undisclose (hide) contents under the label. When the contents are
undisclosed (hidden), the default label is Show and the expand icon is displayed.
When the contents are disclosed (shown), the default label is Hide, and the collapse
icon is displayed.

For example, the newFileItem page of the File Explorer application uses a showDetail
component to hide and display file properties. The component is configured to hide the
properties when the page is displayed, as shown in Figure 9-39.

Figure 9-39 Collapsed showDetail

When the user clicks the toggle icon, the properties are displayed, as shown in
Figure 9-40.

Figure 9-40 Expanded showDetail

Chapter 9
Displaying and Hiding Contents Dynamically

9-72

If you want to use something more complex than an outputText component to display
the disclosed and undisclosed text, you can add components to the showDetail
component's prompt facet. When set to be visible, any contents in the prompt facet will
replace the disclosed and undisclosed text values. To use the showDetail component,
see How to Use the showDetail Component.

Like the showDetail component, the showDetailHeader component also toggles the
display of contents, but the showDetailHeader component provides the label and
toggle icon in a header, and also provides facets for a menu bar, toolbar, and text.
Additionally, you can configure the showDetailHeader component to be used as a
message for errors, warnings, information, or confirmations.

Tip:

The showDetailHeader component is the same as a panelHeader
component, except that it handles disclosure events. For information about
the panelHeader component, see Displaying Items in a Static Box.

When there is not enough space to display everything in all the facets of the title line,
the showDetailHeader text is truncated and displays an ellipsis, as shown in
Figure 9-41.

Figure 9-41 Text for the showDetailHeader Is Truncated

When there is more than enough room to display the contents, the extra space is
placed between the context facet and the toolbar, as shown in Figure 9-42.

Figure 9-42 Extra Space Is Added Before the Toolbar

The contents of the showDetailHeader component are undisclosed or disclosed below
the header. For example, the newFileItem page of the File Explorer application uses a
showDetailHeader component to display help for creating a new file. By default, the
help is undisclosed, as shown in Figure 9-40. When the user clicks the toggle icon in
the header, the contents are disclosed, as shown in Figure 9-43.

Figure 9-43 showDetailHeader Component Used to Display Help

Chapter 9
Displaying and Hiding Contents Dynamically

9-73

You can also use the showDetailHeader component in conjunction with the
panelHeader component to divide a page into sections and subsections, where some
contents can be hidden. For information about the panelHeader component, see
Displaying Items in a Static Box.

You can nest showDetailHeader components to create a hierarchy of content. Each
nested component takes on a different heading style to denote the hierarchy.
Figure 9-44 shows three nested showDetailHeader components, and their different
styles.

Figure 9-44 Nested showDetailHeader Components Create a Hierarchy

Note:

Heading sizes are determined by default by the physical containment of the
header components. That is, the first header component will render as a
heading level 1. Any header component nested in the first header component
will render as a heading level 2, and so on. You can manually override the
heading level on individual header components using the headerLevel
attribute.

Use the panelBox component when you want information to be able to be displayed or
hidden below the header, and you want the box to be offset from other information on
the page. The File Explorer application uses two panelBox components on the
properties.jspx page to display the attributes and history of a file, as shown in
Figure 9-45.

Chapter 9
Displaying and Hiding Contents Dynamically

9-74

Figure 9-45 Two panelBox Components

Figure 9-46 shows the same page, but with the History panelBox component in an
undisclosed state.

Figure 9-46 Undisclosed panelBox Component

You can set the background color on a panelBox component so that the contents are
further delineated from the rest of the page. Two color combinations (called ramps) are
offered, and each combination contains four levels of color: none, light, medium, and
dark. Figure 9-47 shows the same panel boxes as in Figure 9-45, but with the bottom
panelBox component configured to show the medium tone of the core ramp.

Chapter 9
Displaying and Hiding Contents Dynamically

9-75

Figure 9-47 Panel Boxes Using a Background Color

You can set the size of a panelBox component either explicitly by assigning a pixel
size, or as a percentage of its parent. You can also set the alignment of the title, and
add an icon. In addition, the panelBox component includes the toolbar facet that
allows you to add a toolbar and toolbar buttons to the box.

You can control when the contents of an undisclosed component are sent and
rendered to the client using the contentDelivery attribute. When set to immediate
delivery, any undisclosed content is fetched during the initial request. With lazy
delivery, the page initially goes through the standard lifecycle. However, instead of
fetching the undisclosed content during that initial request, a special separate partial
page rendering (PPR) request is run, and the undisclosed content is then returned.
Because the page has just been rendered, only the Render Response phase executes
for the undisclosed content, allowing the corresponding data to be fetched and
displayed. You can configure it so that the contents are not rendered to the client until
the first request to disclose the content and the contents then remain in the cache
(lazy), or so that the contents are rendered each time there is a request to disclose
them (lazyUncached).

For all three of these components, you can use the childCreation attribute. This
attribute affects JSP tag in determining when the UIComponent children are actually
created. By default, all child components are created when the parent component is
created. If you configure the component to use lazy or lazyUncached, the child
components are not created when the parent tag is certain that a rendered instance of
the component will be created. If there will be a large number of children, to improve
performance you can configure these components so that they create the child
components only when they are disclosed, or so that they create the child components
only when they are disclosed the first time, and from that point on they remain created.

Note:

The childCreation attribute only attempts to delay creation of the child
components. When EL is used as the value for the disclosed attribute or the
disclosure component is being stamped (inside of an iterator for example),
the children will always be created, regardless of the childCreation attribute
value.

Chapter 9
Displaying and Hiding Contents Dynamically

9-76

The showDetailHeader and the panelBox components both can be maximized to
display in the full browser window. You can also configure an icon to display that
allows the user to maximize and then restore the component to normal size.
Figure 9-48 shows the demo application with the panelBox component at its normal
size. Notice the maximize icon in the header.

Figure 9-48 panelBox Demo with panelBox at Normal Size

When a user clicks the maximize icon, the panelBox is redrawn to take up the entire
browser window, as shown in Figure 9-49. The user can click the restore icon to return
the component to its normal size.

Chapter 9
Displaying and Hiding Contents Dynamically

9-77

Figure 9-49 Maximized panelBox component

By default, the component is configured to only show the maximize icon on tablet
devices. One desktops, no icon is visible. You can also configure the component so
that the icon is always displayed or never displayed. Additionally, you can create a
listener that can be used to determine when to maximize the component.

If you want to show and hide multiple large areas of content, consider using the
panelAccordion and panelTabbed components. See Displaying or Hiding Contents in
Panels.

How to Use the showDetail Component
Use the showDetail component to show and hide a single set of content.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying and Hiding Contents Dynamically.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the showDetail component:

Chapter 9
Displaying and Hiding Contents Dynamically

9-78

1. In the Components window, from the Layout panel, drag and drop a Show Detail
onto the JSF page.

2. In the Properties window, expand the Common section and set the attributes as
needed.

Set Disclosed to true if you want the component to show its child components.

Note:

While the user can change the value of the disclosed attribute by
displaying and hiding the contents, the value will not be retained once
the user leaves the page unless you configure your application to allow
user customizations. For information, see Allowing User Customization
on JSF Pages.

Set DisclosedText to the label you want to display next to the toggle icon when
the contents are disclosed (shown). By default, the label is Hide if no value is
specified.

Set UndisclosedText to the label you want to display next to the toggle icon when
the contents are undisclosed (hidden). By default, the label is Show if no value is
specified.

Note:

If you specify a value for disclosedText but not for undisclosedText,
then ADF Faces automatically uses the disclosedText value for both
the disclosed state and undisclosed state. Similarly, if you specify a
value for undisclosedText but not for disclosedText, the
undisclosedText value is used when the contents are hidden or
displayed.

Instead of using text specified in disclosedText and undisclosedText,
you could use the prompt facet to add a component that will render next
to the toggle icon.

You can also change the padding between the showDetail component and any
child component. See What You May Need to Know About Skinning and the
showDetail Component.

3. Expand the Behavior section and set DisclosureListener to a
DisclosureListener method in a backing bean that you want to execute when the
user displays or hides the component's contents.

For information about disclosure events and listeners, see What You May Need to
Know About Disclosure Events.

4. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

• immediate: All child components are created when the showDetail component
is created.

Chapter 9
Displaying and Hiding Contents Dynamically

9-79

• lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

• lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

5. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

• immediate: All undisclosed content is sent when the showDetail component is
created.

• lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

• lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

6. To add content, insert the desired child components inside the showDetail
component.

How to Use the showDetailHeader Component
Use the showDetailHeader component when you want to display a single set of
content under a header, or when you want the content to be used as messages that
can be displayed or hidden. You can also use the showDetailHeader component to
create a hierarchy of headings and content when you want the content to be able to be
hidden.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying and Hiding Contents Dynamically.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the showDetailHeader component:

1. In the Components window, from the Layout panel, drag and drop a Show Detail
Header onto the JSF page.

2. In the Properties window, expand the Common section. Set Text to the text string
you want for the section header label.

3. Set Icon to the URI of the image file you want to use for the section header icon.
The icon image is displayed before the header label.

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible product, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

Chapter 9
Displaying and Hiding Contents Dynamically

9-80

4. If you are using the header to provide specific messaging information, set
MessageType to one of the following values:

• confirmation: The confirmation icon (represented by a note page overlaid
with a green checkmark) replaces any specified icon image.

• error: The error icon (represented by a red circle with an x inside) replaces
any specified icon image. The header label also changes to red.

• info: The info icon (represented by a blue circle with an I inside) replaces any
specified icon image.

• warning: The warning icon (represented by a yellow triangle with an
exclamation mark inside) replaces any specified icon image.

• none: Default. No icon is displayed, unless one is specified for the icon
attribute.

Figure 9-50 shows each of the icons used for message types: a red X for an error,
a yellow triangle with an exclamation point for a warning, a green check for a
confirmation, and a blue circle with an "i" for information.

Figure 9-50 Icons Used for Message Types

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible product, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

5. Set Disclosed to true if you want the component to show its child components.

Chapter 9
Displaying and Hiding Contents Dynamically

9-81

Note:

If you set the value of the disclosed attribute to false, then any
validation present for child components of showDetailHeader will not be
performed, because the child components are not rendered.

While the user can change the value of the disclosed attribute by
displaying and hiding the contents, the value will not be retained once
the user leaves the page unless you configure your application to allow
user customization. For information, see Allowing User Customization on
JSF Pages.

6. Expand the Behavior section and set DisclosureListener to a
disclosureListener method in a backing bean that you want to execute when the
user displays or hides the component's contents.

For information about disclosure events and listeners, see What You May Need to
Know About Disclosure Events.

7. If you want to control how the showDetailHeader component handles geometry
management, expand the Appearance section and set Type. Set it to flow if you
do not want the component to stretch or to stretch its children. The height of the
showDetailHeader component will be determined solely by its children. Set it to
stretch if you want it to stretch and stretch its child (will only stretch a single child
component). Leave it set to the default if you want the parent component of the
showDetailHeader component to determine geometry management. For
information about geometry management, see Geometry Management and
Component Stretching.

8. To add buttons or icons to the header, in the Components window, from the
Layout panel, in the Menus and Toolbar Containers group, drag and drop the
toolbar component into the toolbar facet. Then add any number of button
components into the newly inserted toolbar component. For information about
using the toolbar component, see Using Toolbars.

Note:

Toolbar overflow is not supported in panelHeader components.

9. To add menus to the header, insert menu components into the menuBar facet. For
information about creating menus, see Using Menus in a Menu Bar.

Tip:

You can place menus in the toolbar facet and toolbars (and toolboxes)
in the menu facet. The main difference between these facets is location.
The toolbar facet is before the menu facet.

10. To create a subsection header, insert another showDetailHeader component
inside an existing showDetailHeader component.

Chapter 9
Displaying and Hiding Contents Dynamically

9-82

11. To override the heading level for the component, set headerLevel to the desired
level, for example H1, H2, etc. through H6.

The heading level is used to determine the correct page structure, especially when
used with screen reader applications. By default, headerLevel is set to -1, which
allows the headers to determine their size based on the physical location on the
page. In other words, the first header component will be set to be a H1. Any
header component nested in that H1 component will be set to H2, and so on.

Note:

Screen reader applications rely on the HTML header level assignments
to identify the underlying structure of the page. Make sure your use of
header components and assignment of header levels make sense for
your page.

When using an override value, consider the effects of having headers
inside disclosable sections of the page. For example, if a page has
collapsible areas, you need to be sure that the overridden structure will
make sense when the areas are both collapsed and disclosed.

12. If you want to change just the size of the header text, and not the structure of the
heading hierarchy, set the size attribute.

The size attribute specifies the number to use for the header text and overrides
the skin. The largest number is 0, and it corresponds to an H1 header level; the
smallest is 5, and it corresponds to an H6 header.

By default, the size attribute is -1. This means ADF Faces automatically
calculates the header level style to use from the topmost, parent component.
When you use nested components, you do not have to set the size attribute
explicitly to get the proper header style to be displayed.

Note:

While you can force the style of the text using the size attribute, (where
0 is the largest text), the value of the size attribute will not affect the
hierarchy. It only affects the style of the text.

You can also use skins to change the appearance of the different headers. For
information, see What You May Need to Know About Skinning and the
showDetailHeader Component.

13. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

• immediate: All child components are created when the showDetailHeader
component is created.

• lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

Chapter 9
Displaying and Hiding Contents Dynamically

9-83

• lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

14. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

• immediate: All undisclosed content is sent when the showDetailHeader
component is created.

• lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

• lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

15. If you want users to be able to maximize the showDetailHeader component so that
it renders in the full browser window, in the Other section, set ShowMaximized to
one of the following:

• always: The maximize icon is always displayed.

• never: The maximize icon is never displayed

• auto: The maximize icon is displayed only on mobile devices. This is the
default.

You can also programmatically set the showDetailHeader component to be
maximized. You can use an EL expression as the value of the maximized attribute
to resolve to true, or you can create a listener method that sets that attribute and
listen for it using the maximizeListener attribute.

16. To add content to a section or subsection, insert the desired child components
inside the showDetailHeader component.

How to Use the panelBox Component
You can insert any number of panelBox components on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying and Hiding Contents Dynamically.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use a panelBox component:

1. In the Components window, from the Layout panel, drag and drop a Panel Box
onto the JSF page.

2. In the Properties window, expand the Appearance section, and for Ramp, select
the ramp you wish to use.

The core ramp uses variations of blue, while the highlight ramp uses variations
of yellow. You can change the colors used by creating a custom skin. See What
You May Need to Know About Skinning and the panelBox Component.

3. Set Background to one of the following values: light, medium, dark, or default.
The default background color is transparent.

Chapter 9
Displaying and Hiding Contents Dynamically

9-84

4. Set Text to the text string you want to display as the title in the header portion of
the container.

5. Set Icon to the URI of the icon image you want to display before the header text.

Note:

If both the text and icon attributes are not set, ADF Faces does not
display the header portion of the panelBox component.

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible product, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

6. Set TitleHalign to one of the following values: center, start, end, left, or right.
The value determines the horizontal alignment of the title (including any icon
image) in the header portion of the container.

7. Expand the Behavior section and set DisclosureListener to a
disclosureListener method in a backing bean that you want to execute when the
user shows or hides the component's contents.

For information about disclosure events and listeners, see What You May Need to
Know About Disclosure Events.

8. To add toolbar buttons, in the Components window, from the Layout panel, in the
Menus and Toolbar Containers group, drag and drop a Toolbar into the toolbar
facet. Then insert the desired number of button components into the toolbar
component. For information about using toolbar and button components, see
Using Toolbars.

Tip:

If any facet is not visible in the visual editor:

a. Right-click the panelBox component in the Structure window.

b. From the context menu, choose Facets - Panel Box >Toolbar.
Facets in use on the page are indicated by a checkmark in front of
the facet name.

9. To change the width of the panelBox component, set the inlineStyle attribute to
the exact pixel size you want. Alternatively, you can set the inlineStyle attribute
to a percentage of the outer element that contains the panelBox component. The
following example shows the code you might use for changing the width.

<af:panelBox inlineStyle="width:50%;" ...>
 <!-- child contents here -->
</af:panelBox>

Chapter 9
Displaying and Hiding Contents Dynamically

9-85

10. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

• immediate: All child components are created when the panelBox component is
created.

• lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

• lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

11. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

• immediate: All undisclosed content is sent when the panelBox component is
created.

• lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

• lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

12. If you want users to be able to maximize the panelBox component so that it
renders in the full browser window, in the Other section, set ShowMaximized to
one of the following:

• always: The maximize icon is always displayed.

• never: The maximize icon is never displayed

• auto: The maximize icon is displayed only on mobile devices. This is the
default.

You can also programmatically set the panelBox component to be maximized. You
can use an EL expression as the value of the maximized attribute to resolve to
true, or you can create a listener method that sets that attribute and listen for it
using the maximizeListener attribute.

13. To add contents to the container for display, insert the desired components as
child components to the panelBox component.

Typically, you would insert one child component into the panelBox component, and
then insert the contents for display into the child component. The child component
controls how the contents will be displayed, not the parent panelBox component.

What You May Need to Know About Disclosure Events
The disclosed attribute specifies whether to show (disclose) or hide (undisclose) the
contents under its header. By default, the disclosed attribute is true, that is, the
contents are shown. When the attribute is set to false, the contents are hidden. You
do not have to write any code to enable the toggling of contents from disclosed to
undisclosed, and vice versa. ADF Faces handles the toggling automatically.

When the user clicks the toggle icon to show or hide contents, by default, the
components deliver a org.apache.myfaces.trinidad.event.DisclosureEvent event
to the server. The DisclosureEvent event contains information about the source

Chapter 9
Displaying and Hiding Contents Dynamically

9-86

component and its state: whether it is disclosed (expanded) or undisclosed
(collapsed). The isExpanded() method returns a boolean value that determines
whether to expand (disclose) or collapse (undisclose) the node. If you only want the
component to disclose and undisclose its contents, then you do not need to write any
code.

However, if you want to perform special handling of a DisclosureEvent event, you can
bind the component's disclosureListener attribute to a disclosureListener method
in a backing bean. The disclosureListener method will then be invoked in response
to a DisclosureEvent event, that is, whenever the user clicks the disclosed or
undisclosed icon.

The disclosureListener method must be a public method with a single
disclosureEvent event object and a void return type, like the following:

public void some_disclosureListener(DisclosureEvent disclosureEvent) {
// Add event handling code here
}

By default, DisclosureEvent events are usually delivered in the Invoke Application
phase, unless the component's immediate attribute is set to true. When the immediate
attribute is set to true, the event is delivered in the earliest possible phase, usually the
Apply Request Values phase.

If you want to have a disclosureListener method and you also want to react to the
event on the client, you can use the AdfDisclosureEvent client-side event. The event
root for the client AdfDisclosureEvent event is set to the event source component:
only the event for the panel whose disclosed attribute is true gets sent to the server.
For information about client-side events and event roots, see Handling Events.

The value of the disclosed attribute can be persisted at runtime, that is, when the user
shows or hides contents, ADF Faces can change and then persist the attribute value
so that it remains in that state for the length of the user's session. See Allowing User
Customization on JSF Pages.

Note:

Any ADF Faces component that has built-in event functionality, as the
showDetail, showDetailHeader, and panelBox components do, must be
enclosed in the form component.

What You May Need to Know About Skinning and the showDetail
Component

In the default skin used by ADF Faces, child components of the showDetail
component are indented. You can control the indentation using the child-container
skinning key. For example:

af|showDetail { -tr-layout: flush;}
af|showDetail::child-container {
 padding-left: 10px;
}

Chapter 9
Displaying and Hiding Contents Dynamically

9-87

See Customizing the Appearance Using Styles and Skins.

What You May Need to Know About Skinning and the
showDetailHeader Component

Also by default, the style used for heading sizes for the showDetailHeader component
are controlled by the skin. Heading sizes above 2 will be displayed the same as size 2.
That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same style
as size 2. You can change this by creating a custom skin.

See Customizing the Appearance Using Styles and Skins.

What You May Need to Know About Skinning and the panelBox
Component

The core ramp of the panelBox component uses variations of blue, while the
highlight ramp uses variations of yellow. You can change the colors by creating a
custom skin and configuring various panelBox skinning style selectors.

These style selectors are all augmented by the two pseudo-classes. The first pseudo-
class is ramp which can have values of :core or :highlight. The second pseudo-
class is background which can have the values of :default, :light, :medium,
or :dark. For example, if you want the background color to be lime green on the
content area when the panelBox ramp attribute is set to core and background is set to
default, you could do the following:

af|panelBox::content:core:default {background-color: lime; border: none;}

You can also use the aliases to change the header and content. For
example, .AFPanelBoxContentCoreMedium:alias is included in the af|
panelBox::content:core:medium selector. So if you want to change the background
color of the core medium panelBox content area, you can use
the .AFPanelBoxContentCoreMedium:alias instead of using multiple pseudo-classes.

See Customizing the Appearance Using Styles and Skins.

Displaying or Hiding Contents in Panels
Using the ADF Faces panelAccordion, panelTabbed, panelDrawer, or
panelSpringboard components, you can show or hide multiple areas of content.
When you need to display multiple areas of content that can be hidden and displayed,
you can use the panelAccordion, the panelTabbed, panelDrawer, or
panelSpringboard components. These components use the showDetailItem
component to display the actual contents.

The panelAccordion component creates a series of expandable panes. You can allow
users to expand more than one panel at any time, or to expand only one panel at a
time. When more than one panel is expanded, the user can adjust the height of the
panel by dragging the header of the showDetailItem component.

When a panel is collapsed, only the panel header is displayed; when a panel is
expanded, the panel contents are displayed beneath the panel header (users can
expand the panes by clicking either the panelAccordion component's header or the

Chapter 9
Displaying or Hiding Contents in Panels

9-88

expand icon). The File Explorer application uses the panelAccordion component to
display the Folders and Search panes, as shown in Figure 9-51.

Figure 9-51 panelAccordion Panes

At runtime, when available browser space is less than the space needed to display
expanded panel contents, ADF Faces automatically displays overflow icons that
enable users to select and navigate to those panes that are out of view. Figure 9-52
shows the overflow icon (a chevron) displayed in the lower right-hand corner of the
Folders panel of the File Explorer application, when there is not enough room to
display the Search panel.

Figure 9-52 Overflow Icon In panelAccordion

When the user clicks the overflow icon, ADF Faces displays the overflow popup menu
(as shown in Figure 9-53) for the user to select and navigate to.

Chapter 9
Displaying or Hiding Contents in Panels

9-89

Figure 9-53 Overflow Popup Menu in panelAccordion

You can also configure the panelAccordion so that the panes can be rearranged by
dragging and dropping, as shown in Figure 9-54.

Chapter 9
Displaying or Hiding Contents in Panels

9-90

Figure 9-54 Panes Can Be Reordered by Dragging and Dropping

When the order is changed, the displayIndex attribute on the showDetailItem
components also changes to reflect the new order.

Note:

Items in the overflow cannot be reordered.

To use the panelAccordion component, see How to Use the panelAccordion
Component.

The panelTabbed component creates a series of tabbed panes. Unlike the
panelAccordion panes, the panelTabbed panes are not collapsible or expandable.
Instead, when users select a tab, the contents of the selected tab are displayed. The
tabs may be positioned above, below, above and below (both), to the left, or to the
right of the display area.

Chapter 9
Displaying or Hiding Contents in Panels

9-91

By default, the width of a tab is determined by the text displayed as the label. You can
configure the tabs so that instead, the size of the tab is a certain minimum or
maximum width. In cases where the text will not fit, you can set an ellipsis to display
after the truncated text.

You can configure a panelTabbed component so that the individual tabs can be
removed (closed). You can have it so that all tabs can be removed, all but the last tab
can be removed, or no tabs can be removed.

You can configure when the showDetailItem components that contain the contents for
each of the tabs will be created. When you have a small number of tabs, you can have
all the showDetailItem components created when the panelTabbed component is first
created, regardless of which tab is currently displayed. However, if the panelTabbed
component contains a large number of showDetailItem components, the page might
be slow to render. To enhance performance, you can instead configure the
panelTabbed component to create a showDetailItem component only when its
corresponding tab is selected. You can further configure the delivery method to either
destroy a showDetailItem once the user selects a different tab, or to keep any
selected showDetailItem components in the component tree so that they do not need
to be recreated each time they are accessed.

The File Explorer application uses the panelTabbed component to display the contents
in the main panel, as shown in Figure 9-55.

Figure 9-55 panelTabbed Panes

Chapter 9
Displaying or Hiding Contents in Panels

9-92

Tip:

If you want the tabs to be used in conjunction with navigational hierarchy, for
example, each tab is a different page or region that contains another set of
navigation items, you may want to use a navigation panel component to
create a navigational menu. See Using Navigation Items for a Page
Hierarchy.

The panelTabbed component also provides overflow support for when all tabs cannot
be displayed. How the overflow is handled depends on how you configure the -tr-
layout-type skinning key. See What You May Need to Know About Skinning and the
panelTabbed Component.

Note:

Overflow is only supported when the position attribute is set to above, below,
or both.

Performance Tip:

The number of child components within a panelTabbed component, and the
complexity of the child components, will affect the performance of the
overflow. Set the size of the panel components to avoid overflow when
possible.

To use the panelTabbed component, see How to Use the panelTabbed Component.

The panelDrawer component renders tabs attached to the side of a container
component. By default, the drawer aligns to the parent of the panelDrawer, but you
can choose another close ancestor. It can align to either the start or end of the
associated component. When the user clicks a tab, the drawer opens and the content
of the child showDetailItem becomes visible. Figure 9-56 shows the panelDrawer with
the drawers closed.

Chapter 9
Displaying or Hiding Contents in Panels

9-93

Figure 9-56 panelDrawer Component with Drawers Closed

When the user clicks one of the tabs, the associated drawer opens, as shown in
Figure 9-57.

Figure 9-57 panelDrawer Component with the Last Drawer Opened

How wide the drawer opens depends on how you set the width attribute. If there is no
value for the width attribute, the size of the open drawer is determined by the content
contained in child the showDetailItem component. Otherwise, you can set the width
attribute to a percentage of the component the panelDrawer is aligned to.

Chapter 9
Displaying or Hiding Contents in Panels

9-94

The panelSpringboard component represents its contents as a set of icons that
display in either a grid fashion or in a strip. When you click on an icon, the child
showDetailItem component associated with the clicked icon displays its contents
below the strip.

For example, Figure 9-58 shows a panelSpringboard component that contains 10
child showDetailItem components, configured to display the associated icons in a
grid.

Figure 9-58 panelSpringboard Component in Grid Mode

Figure 9-59 shows the same panelSpringboard component after clicking the Team
icon. The panelSpringboard icons move to the top, into a strip, and the content
associated with the selected icon is displayed.

Figure 9-59 panelSpringboard Component in Strip Mode

Chapter 9
Displaying or Hiding Contents in Panels

9-95

Tip:

In strip view, you can navigate the icon strip using the provided arrow
buttons. In a mobile application, swiping across the content box navigates to
the next (left swipe) or previous (right swipe) icon’s content.

Like the panelSpringboard component, the panelAccordion, panelTabbed, and
panelDrawer components use a showDetailItem component to provide the contents
for each panel. For example, if you want to use four panes, insert four showDetailItem
components inside the panelAccordion, panelTabbed, or panelDrawer components,
respectively. To use the showDetailItem component, see How to Use the
showDetailItem Component to Display Content . You can add a toolbar to the toolbar
facet of the showDetailItem component, and the toolbar will be shown whenever the
showDetailItem is disclosed. Figure 9-55 shows the toolbar used by the
showDetailItem component in the File Explorer application.

The child showDetailItem component can also display a badge, used to denote some
type of information about that item. For example, in the panelSpringboard shown in
Figure 9-58, badges are used to display a number of items for the Home
showDetailItem.

For each of these components except the panelDrawer, you can configure when the
child showDetailItem components will be created. When you have a small number of
showDetailItem components, you can have all of them created when the parent
component is first created. However, if the parent component contains a large number
of showDetailItem components, the page might be slow to render. To enhance
performance, you can instead configure the parent component to create a
showDetailItem component only when it is disclosed (for example, when a tab is
selected). You can further configure the delivery method to either destroy a
showDetailItem once the user discloses a different one, or to keep any selected
showDetailItem component in the component tree so that they do not need to be
recreated each time they are accessed.

The panelAccordion and panelTabbed components can be configured to be stretched,
or they can be configured to instead take their dimensions from the currently disclosed
showDetailItem child. The panelSpringboard component will stretch if the parent
component allows stretching of its child. If the parent does not stretch its children then
the size of the panelSpringboard component will be based on the contents of its child
showDetailItem component.The panelDrawer component will open to the size of its
contained components, unless a specific width is set.

When you configure a panel component to stretch, then you can also configure the
showDetailItem component to stretch a single child as long as it is the only child of
the showDetailItem component.

How to Use the panelAccordion Component
You can use more than one panelAccordion component in a page, typically in
different areas of the page, or nested. After adding the panelAccordion component,
insert a series of showDetailItem components to provide the panes, using one
showDetailItem for one panel. Then insert components into each showDetailItem to
provide the panel contents. For procedures on using the showDetailItem component,
see How to Use the showDetailItem Component to Display Content .

Chapter 9
Displaying or Hiding Contents in Panels

9-96

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying or Hiding Contents in Panels.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelAccordion component:

1. In the Components window, from the Layout panel, drag and drop a Panel
Accordion onto the JSF page.

2. In the Create Panel Accordion dialog, configure the panes for the accordion. For
help with the dialog, click Help or press F1.

3. In the Properties window, expand the Common section.

4. Set the DiscloseNone to true if you want users to be able to collapse all panes.

By default, the value is false. This means one panel must remain expanded at
any time.

5. If you want users to be able to rearrange the panes by dragging and dropping,
expand the Behavior section, and set Reorder to enabled. The default is
disabled.

Note:

If the panelAccordion has components other than showDetailItem
components (see the tip in Step 8), those components can be reordered
on the client only. Therefore, any new order will not be preserved.

6. By default, the panelAccordion component stretches to fill available browser
space. If instead, you want to use the panelAccordion component as a child to a
component that does not stretch its children, then you need to change how the
panelAccordion component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Chapter 9
Displaying or Hiding Contents in Panels

9-97

Set DimensionsFrom to one of the following:

• children: the panelAccordion component will get its dimensions from the
currently disclosed showDetailItem component.

Note:

If you use this setting, you cannot set the height of the
panelAccordion component (for example through the inlineStyle
or styleClass attributes). Doing so would cause conflict between the
panelAccordion height and the child component height.

Similarly, you cannot set the stretchChildren, flex, and
inflexibleHeight attributes on any showDetailItem component, as
those settings would result in a circular reference back to the
panelAccordion to determine size.

• parent: the size of the panelAccordion component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto (default): If the parent component to the panelAccordion component
allows stretching of its child, then the panelAccordion component will stretch
to fill the parent. If the parent does not stretch its children then the size of the
panelAccordion component will be based on the size of its child component.

Note:

If you want the panelAccordion to stretch, and you also want the
showDetailItem to stretch its contents, then you must configure the
showDetailItem in a certain way. For details, see How to Use the
showDetailItem Component to Display Content .

7. You can configure when the child showDetailItem components will be created
using the childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

• immediate: All child components are created when the panelAccordion
component is created.

• lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

• lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

8. JDeveloper added the panes you configured in the Create Panel Accordion dialog
by adding the corresponding showDetailItem components as a children to the

Chapter 9
Displaying or Hiding Contents in Panels

9-98

panelAccordion component. To add more panes, insert the showDetailItem
component inside the panelAccordion component. You can add as many panes
as you wish.

Tip:

Accordion panels also allow you to use the iterator, switcher, and
group components as direct child components, providing these
components wrap child components that would typically be direct child
components of the accordion panel.

To add contents for display in a panel, insert the desired child components into
each showDetailItem component. For procedures, see How to Use the
showDetailItem Component to Display Content .

How to Use the panelTabbed Component
Using the panelTabbed component to create tabbed panes is similar to using the
panelAccordion component to create accordion panes. After adding a panelTabbed
component, you insert a series of showDetailItem components to provide the tabbed
panel contents for display.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying or Hiding Contents in Panels.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelTabbed component:

1. In the Components window, from the Layout panel, drag and drop a Panel
Tabbed onto the JSF page.

2. In the Create Panel Tabbed dialog, configure the panes for the panel. For help
with the dialog, click Help or press F1.

3. In the Properties window, expand the Common section.

4. If you want users to be able to close (remove) tabs, then set TabRemoval. You
can set it to allow all tabs to be removed, or all but the last tab. You must
implement a handler to do the actual removal and configure the listeners for the
associated showDetailItem components. You can override this on an individual
showDetailItem component, so that an individual tab cannot be removed (a close
icon does not display), or so that the closed icon is disabled.

When tabs are configured to be removed, a close icon is displayed at the end of
the tab (whether it was disclosed through clicking or by tabbing through the tabs).

See How to Use the showDetailItem Component to Display Content .

Chapter 9
Displaying or Hiding Contents in Panels

9-99

Note:

Tab removal is only supported when the position attribute is set to above,
below, or both.

5. By default, the size of the tabs is determined by the length of the text used as the
label. You can instead set the tabs to be a certain size, and then have any text that
does not fit display as truncated text with an ellipsis. To do so, set the following:

• maxTabSize: Set to a size in pixels. The tabs will never be larger than this size.
To fill all available tab space, set to infinity. This is the default.

• minTabSize: Set to a size in pixels. The tabs will never be smaller than this
size.

• truncationStyle: Set to ellipsis if you want an ellipsis to display after
truncated text that cannot fit, based on the maxTabSize. If set to none, then if
the text does not fit on the tab, it will simply be truncated. Note that if you do
not set maxTabSize, then the tab will always be as large as the text needs.

Note:

Truncation and expansion are only supported when you set
truncationStyle to ellipsis. If set to none, then maxTabSize and
minTabSize are ignored, and the size of the tab is based on the
length of the text.

6. By default, the panelTabbed component stretches to fill available browser space. If
instead, you want to use the panelTabbed component as a child to a component
that does not stretch its children, then you need to change how the panelTabbed
component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Set DimensionsFrom to one of the following:

Chapter 9
Displaying or Hiding Contents in Panels

9-100

• disclosedChild: the panelTabbed component will get its dimensions from the
currently disclosed showDetailItem component.

Note:

If you use this setting, you cannot set the height of the panelTabbed
component (for example through the inlineStyle or styleClass
attributes). Doing so would cause conflict between the panelTabbed
height and the child component height.

• parent: the size of the panelTabbed component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto (default): If the parent component to the panelTabbed component allows
stretching of its child, then the panelTabbed component will stretch to fill the
parent. If the parent does not stretch its children then the size of the
panelTabbed component will be based on the size of its child component.

7. You can configure when the child showDetailItem components will be created
using the childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

• immediate: All child components are created when the panelTabbed
component is created.

• lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

• lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

8. JDeveloper created the panes you configured in the Create Panel Tabbed dialog
by adding the corresponding showDetailItem components as a children to the
panelTabbed component. To add more panes, insert the showDetailItem
component inside the panelTabbed component. You can add as many panes as
you wish.

Tip:

The panelTabbed component also allow you to use the iterator,
switcher, and group components as direct child components, providing
these components wrap child components that would typically be direct
child components of the tabbed panel.

Chapter 9
Displaying or Hiding Contents in Panels

9-101

To add contents for display in a tab, insert the desired child components into each
showDetailItem component. For procedures, see How to Use the showDetailItem
Component to Display Content .

How to Use the panelDrawer Component
Using the panelDrawer component to create tabbed panes is similar to using the
panelTabbed component to create tabbed panes. After adding a panelDrawer
component, you insert a series of showDetailItem components to provide the drawer
contents for display. You can also control the closing behavior of the panel drawer.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. SeeDisplaying or Hiding Contents in Panels.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelDrawer component:

1. In the Components window, from the Layout panel, drag and drop a Panel Drawer
onto the JSF page.

2. In the Create Panel Drawer dialog, configure the panes for the panel. For help with
the dialog, click Help or press F1.

3. In the Properties window, expand the Common section.

4. Set AlignId to the component to which the panelDrawer should align. Click the
icon that appears when you hover over the property field, and choose Edit to open
the Edit Property: AlignId dialog and choose the component. If you do not set the
alignId attribute, the panelDrawer will align to its parent.

Note:

The panelDrawer does not support overflow content. Therefore, the
component to which the panelDrawer is aligned must be tall enough to
accommodate all the tabs and their contents.

5. Set the width and height of the drawer. By default, the panelDrawer component
stretches to the size of the contents of the showDetailItem component. In turn, the
showDetailItem will allow stretching if the following is true:

• The panelDrawer has width and height attributes defined.

• The showDetailItem contains a single child.

• The child component of the showDetailItem has no value set for the width,
height, margin, border, or padding.

• The child must be capable of being stretched.

Chapter 9
Displaying or Hiding Contents in Panels

9-102

Note:

If the size of the content will change after the drawer is open (for
example you toggle a showDetail inside the drawer which exposes new
content), you should set the width and height attributes to the largest
expected size. Otherwise, the resized content may not display properly.

6. Set MaximumHeight and MaximumWidth as needed. By default, it is set to 100%.

7. To override the closing behavior of the panelDrawer component, set the
AutoDismiss option. You can use this option when you turn on the page
composer and use the page composer tool to edit the items in the panelDrawer.
By default, the AutoDismiss option is set to auto, which is as per the skin
property of af|panelDrawer-tr-auto-dismiss value. You can set one of the
following values to AutoDismiss option in the Other section of the Property
Inspector:

• auto: Displays the panelDrawer according to the skin property af|
panelDrawer-tr-auto-dismiss value.

• focusLoss: Dismisses the panelDrawer when you click outside of the
component and overrides skin property af|panelDrawer-tr-auto-dismiss
value.

• none: Keeps the panelDrawer open even when you click outside of the
component and overrides skin property af|panelDrawer-tr-auto-dismiss
value.

8. Expand the Appearance section and set ShowHandles. By default, it is set to
always, which means the handles will always display. You can also set it to
whenOpen, which will only show the handle when the drawer is open. You will need
to programmatically open the drawer by setting the disclosed attribute on the
corresponding showDetailItem to true. For example, you may want to use buttons
to open the drawers, instead of the handles. The action associated with the button
would set a showDetailItem's disclosed attribute to true.

9. JDeveloper created the panes you configured in the Create Panel Drawer dialog
by adding the corresponding showDetailItem components as a children to the
panelDrawer component. To add more panes, insert the showDetailItem
component inside the panelDrawer component. You can add as many panes as
you wish.

Tip:

Panel Drawers also allow you to use the iterator, switcher, and group
components as direct child components, providing these components
wrap child components that would typically be direct child components of
the panel drawer.

To add contents for display in a drawer, insert the desired child components into
each showDetailItem component. For procedures, see How to Use the
showDetailItem Component to Display Content .

Chapter 9
Displaying or Hiding Contents in Panels

9-103

How to Use the panelSpringboard Component
The panelSpringboard contains a series of showDetailItem components, similar to
the other panel components. Each showDetailItem is represented by an icon. You
insert components into each showDetailItem to provide the panel contents. The
panelSpringboard supports swiping gestures in mobile applications. For procedures
on using the showDetailItem component, see How to Use the showDetailItem
Component to Display Content .

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying or Hiding Contents in Panels.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelSpringboard component:

1. In the Components window, from the Layout panel, drag and drop a Panel
Springboard onto the JSF page.

2. In the Properties window, expand the Appearance section, and set DisplayMode
to determine how the panelSpringboard should display when it is first rendered.
Set it to grid to display only the icons, as shown in Figure 9-58. Set it to strip to
display the icons along the top and the contents of the selected icon below the
strip, as shown in Figure 9-59.

Tip:

If you want to be able to switch between the two modes, you need to add
JavaScript to your page. See What You May Need to Know About
Switching Between Grid and Strip Mode.

3. If you want some logic to execute when the display mode changes, expand the
Advanced section and set SpringboardChangeListener to a method on a bean
that will handle this logic.

4. At runtime, by default, all child showDetailItem components are created when the
panelSpringboard component is created. If there will be a large number of
children, to improve performance you can configure the panelSpringboard either
so that it creates the child showDetailItem component only when the tab is
selected, or so that it creates the child showDetailItem component only when it's
selected the first time, and from that point on it remains created.

You configure when the child components will be created using the childCreation
attribute. To do so, expand the Behavior section, and set ChildCreation to one of
the following:

• immediate: All showDetailItem components are created when the
panelSpringboard component is created.

• lazy: The showDetailItem component is created only when the associated
icon is selected. Once an icon is selected and the associated showDetailItem
is rendered, the showDetailItem component remains created in the
component tree.

Chapter 9
Displaying or Hiding Contents in Panels

9-104

• lazyUncached: The showDetailItem component is created only when the
associated icon is selected. Once another icon is selected, the
showDetailItem component is destroyed.

5. Insert the showDetailItem components inside the panelSpringboard component.
You can add as many as you wish. The order in which you add them as children
will be the order in which they display in the springboard.

Tip:

The panelSpringboard component also allows you to use the iterator,
switcher, and group components as direct child components, providing
these components wrap child components that would typically be direct
child components of the panelSpringboard.

To add contents for display, insert the desired child components into each
showDetailItem component. For procedures, see How to Use the showDetailItem
Component to Display Content .

What You May Need to Know About Switching Between Grid and Strip
Mode

By default, the panelSpringboard renders the first time in grid mode. When a user
clicks an icon, the panelSpringboard fires a SpringboardChangeListener event and
changes to strip mode. If you want to be able to switch between the two modes, you
need to listen for that event, determine the source (the panelSpringboard), and set the
displayMode attribute to the desired mode.

For example, to set the display mode to grid, you might use the JavaScript shown in
the following example.

<af:resource type="javascript">
function backToGrid(actionEvent)
{
 actionEvent.cancel();
 var eventSource = actionEvent.getSource();
 var object_navigator = eventSource.findComponent("panelSpringboardId");
 object_navigator.setProperty(AdfRichPanelSpringboard.DISPLAY_MODE, "grid",
 true);
}

You might then call that code from a link:

<af:link id="logo" text="Back to Grid">
 <af:clientListener type="click" method="backToGrid"/>
</af:link>

For information about using JavaScript on a page, see Using ADF Faces Client-Side
Architecture .

How to Use the showDetailItem Component to Display Content
The showDetailItem components are used as child components to the
panelAccordion, panelTabbed, panelDrawer, or panelSpringboard component only.

Chapter 9
Displaying or Hiding Contents in Panels

9-105

Each showDetailItem component corresponds to one panel. Dialogs for the
panelAccordion, panelTabbed, and panelDrawer components create the
showDetailItem components for you. You need to add the showDetailItem
components to the panelSpringboard component manually. You can also add more
showDetailItem components into the other parent components as needed. You then
insert the child components for display into the showDetailItem components.

The disclosed attribute on a showDetailItem component specifies whether to show
(disclose) or hide (undisclose) the corresponding panel contents. When the disclosed
attribute is false, the contents are hidden (undisclosed). When the attribute is set to
true, the contents are shown (disclosed). You do not have to write any code to enable
the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces
handles the toggling automatically.

The following procedure assumes you have already added a panelAccordion,
panelTabbed, panelDrawer, or panelSpringboard component to the JSF page, as
described in How to Use the panelAccordion Component, How to Use the
panelTabbed Component, How to Use the panelDrawer Component, and How to Use
the panelSpringboard Component, respectively.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying or Hiding Contents in Panels.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To add panel contents using a showDetailItem component:

1. Insert one or more showDetailItem components inside the parent component,
such as panelAccordion, by dragging and dropping a Show Detail Item
component from Layout panel of the Components window.

2. In the Properties window, expand the Appearance section.

3. Set Text to the label you want to display for this panel, tab, or icon. If you used a
dialog to create the panels, this will already be set for you.

4. To add an icon, set Icon to the URI of the image file to use. If you used a dialog to
create the panels, this will already be set for you.You can also set HoverIcon,
DepressedIcon, DisabledIcon.

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible interface, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

5. If the showDetailItem component is being used inside a panelAccordion
component configured to stretch, you can configure the showDetailItem to stretch
and in turn stretch its contents, however, the showDetailItem component must
contain only one child component. You need to set Flex and the StretchChildren
for each showDetailItem component.

Chapter 9
Displaying or Hiding Contents in Panels

9-106

Use the following attributes on each showDetailItem component to control the
flexibility of panel contents:

• Flex: Specifies a nonnegative integer that determines how much space is
distributed among the showDetailItem components of one panelAccordion
component. By default, the value of the flex attribute is 0 (zero), that is, the
panel contents of each showDetailItem component are inflexible. To enable
flexible contents in a panel, specify a flex number larger than 0, for example,
1 or 2. A larger flex value means that the contents will be made larger than
components with lower flex values. For two flexible components, their height
sizes are exactly proportionate to the flex values assigned. If component A
has flex set to 2 and component B has flex set to 1, then the height of
component A is two times the height of component B.

• InflexibleHeight: Specifies the number of pixels a panel will use. The default
is 100 pixels. This means if a panel has a flex value of 0 (zero), ADF Faces
will use 100 pixels for that panel, and then distribute the remaining space
among the nonzero panes. If the contents of a panel cannot fit within the
panelAccordion container given the specified inflexibleHeight value,
ADF Faces automatically moves nearby contents into overflow menus (as
shown in Figure 9-53). Also, if a panel has a nonzero flex value, this will be
the minimum height that the panel will shrink to before causing other panes to
be moved into the overflow menus.

• StretchChildren: When set to first, stretches a single child component.
However, the child component must allow stretching. See What You May
Need to Know About Geometry Management and the showDetailItem
Component.

For example, the File Explorer application uses showDetailItem components to
display contents in the navigator panel. Because the Search Navigator requires
more space when both navigators are expanded, its flex attribute is set to 2 and
the showDetailItem component for the Folders Navigator uses the default flex
value of 1. This setting causes the Search Navigator to be larger than the Folders
Navigator when it is expanded.

Note:

Instead of directly setting the value for the flex attribute, the File
Explorer application uses an EL expression that resolves to a method
used to determine the value. Using an EL expression allows you to
programmatically change the value if you decide at a later point to use
metadata to provide model information.

The user can change the panel heights at runtime, thereby changing the value of
the flex and inflexibleHeight attributes. Those values can be persisted so that
they remain for the duration of the user's session. For information, see Allowing
User Customization on JSF Pages.

Note the following additional information about flexible accordion panel contents:

• There must be two or more panes (showDetailItem components) with flex
values larger than 0 before ADF Faces can enable flexible contents. This is
because ADF Faces uses the flex ratio between two components to
determine how much space to allocate among the panel contents. At runtime,

Chapter 9
Displaying or Hiding Contents in Panels

9-107

two or more panes must be expanded before the effect of flexible contents can
be seen.

• If the showDetailItem component has only one child component and the flex
value is nonzero, and the stretchChildren attribute is set to first,
ADF Faces will stretch that child component regardless of the discloseMany
attribute value on the panelAccordion component.

• When all showDetailItem components have flex values of 0 (zero) and their
panel contents are disclosed, even though the disclosed contents are set to be
inflexible, ADF Faces will stretch the contents of the last disclosed
showDetailItem component as if the component had a flex value of 1, but
only when that showDetailItem component has one child only, and the
stretchChildren attribute is set to first. If the last disclosed panel has more
than one child component or the stretchChildren attribute is set to none, the
contents will not be stretched.

Even with the flex attribute set, there are some limitations regarding geometry
management. See What You May Need to Know About Geometry Management
and the showDetailItem Component.

6. If the showDetailItem component is being used inside a panelSpringboard
component configured to stretch, you can configure the showDetailItem to stretch
and in turn stretch its contents. However, the showDetailItem component must
contain only one child component, and its child must not have any width, height,
margin, border, or padding set on it.

To stretch the contents, set StretchChildren to first for each showDetailItem
component.

Tip:

If the component that will be placed in the showDetailItem does not
support stretching, or if you need to place more than one component as
a child to the showDetailItem, then you must set stretchChildren to
none, as stretching will not be supported.

7. Expand the Behavior section. Set DisclosureListener to the disclosureListener
method in a backing bean you want to execute when this panel, tab, or icon is
selected by the user.

For information about server disclosure events and event listeners, see What You
May Need to Know About Disclosure Events.

8. Set Disabled to true if you want to disable this panel, tab, or icon (that is, the user
will not be able to select the panel or tab).

9. Set Disclosed to true if you want this panel, tab, or icon to show its child
components. If you created a panelAccordion component using a dialog and
selected Disclosed, then this has already been set for you.

When you add a showDetailItem manually, the disclosed attribute is set to
false. This means the contents for this panel, tab, or icon are hidden.

Chapter 9
Displaying or Hiding Contents in Panels

9-108

Note:

There is difference between the disclosed and rendered attributes. If
the rendered attribute value is false, it means that this accordion header
bar or tab link and its corresponding contents are not available at all to
the user. However, if the disclosed attribute is set to false, it means
that the contents of the item are not currently visible, but may be made
visible by the user because the accordion header bar or tab link are still
visible.

If none of the showDetailItem components has the disclosed attribute set to
true, ADF Faces automatically shows the contents of the first enabled
showDetailItem component (except when it is a child of a panelAccordion
component, which has a setting for zero disclosed panes).

Note:

While the user can change the value of the disclosed attribute by
displaying or hiding the contents, the value will not be retained once the
user leaves the page unless you configure your application to allow user
customization. For information, see Allowing User Customization on JSF
Pages.

10. For showDetailItem components used in a panelAccordion component, expand
the Behavior section, and set DisplayIndex to reflect the order in which the
showDetailItem components should appear. If you simply want them to appear in
the order in which they are in the page's code, then leave the default, -1.

Tip:

If some showDetailItem components have -1 as the value for
displayIndex, and others have a positive number, those with the -1
value will display after those with a positive number, in the order they
appear in the page's code.

Tip:

This value can be changed at runtime if the parent panelAccordion
component is configured to allow reordering.

11. If you chose to allow tab removal for a panelTabbed component, expand the
Behavior section and set Remove to one of the following:

• inherit: The corresponding tab can be removed if the parent panelTabbed
component is configured to allow it. This is the default.

• no: The corresponding tab cannot be removed, and will not display a close
icon.

Chapter 9
Displaying or Hiding Contents in Panels

9-109

• disabled: The corresponding tab will display a disabled close icon.

Set ItemListener to an EL expression that resolves to a handler method that will
handle the actual removal of a component.

12. To add toolbar buttons to a panel in a panelAccordion component, in the
Components window, from the Layout panel, in the Menus and Toolbar Containers
group, insert a Toolbar into the toolbar facet of the showDetailItem component
that defines that panel (if you selected Toolbar in the Create Panel Accordion
dialog, then the toolbar component has already been added for you). Then, insert
the desired number of button components into the toolbar component. Although
the toolbar facet is on the showDetailItem component, it is the panelAccordion
component that renders the toolbar and its buttons. For information about using
toolbar and button components, see Using Toolbars.

You can configure the toolbar display by expanding the Other section and setting
the ToolbarVisibility property to one of the following:

• auto: Displays the toolbar either always or disclosed depending on the internal
implementation of panelAccordion. The default is auto.

• always: Displays the toolbar on all detail items even if the items are in
disclosed state.

• disclosed: Displays the toolbar only if detail items are in disclosed state.

Note:

When an accordion panel is collapsed, ADF Faces does not display the
toolbar and its buttons. The toolbar and its buttons are displayed in the
panel header only when the panel is expanded.

13. To add additional information about a showDetailItem (for example, for a
panelSpringboard you may want to display notifications), enter a value for Badge.

14. To add contents to the panel, insert the desired child components into each
showDetailItem component.

What You May Need to Know About Geometry Management and the
showDetailItem Component

The panelAccordion, panelTabbed, panelDrawer and panelSpringboard components
can be configured to stretch when they are placed inside a component that uses
geometry management to stretch its child components. However, by default, the
showDetailItem will not stretch its children.

For the panelAccordion component, the showDetailItem component will stretch only
if the discloseMany attribute on the panelAccordion component is set to true (that is,
when multiple panes may be expanded to show their inflexible or flexible contents), the
showDetailItem component contains only one child component, and the
showDetailItem component's stretchChildren attribute is set to first.

For the other panel components, the showDetailItem component will allow stretching
if:

• It contains only a single child

Chapter 9
Displaying or Hiding Contents in Panels

9-110

• Its stretchChildren attribute is set to first

• The child has no width, height, border, and padding set

• The child must be capable of being stretched

When all of the preceding bullet points are true, the showDetailItem component can
stretch its child component. The following components can be stretched inside the
showDetailItem component:

• decorativeBox (when configured to stretch)

• deck

• calendar

• inputText (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox

• panelCollection (when configured to stretch)

• panelDashboard (when configured to stretch)

• panelGroupLayout (only when the layout attribute is set to scroll or vertical)

• panelLabelAndMessage (when configured to stretch)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a showDetailItem
component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only when the layout attribute is set to default or
horizontal)

• panelHeader

• panelList

• tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch as a child to a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched as a child of a showDetailItem component, you need to wrap
that component in different component that does not stretch its child components.

For example, if you want to place content in a panelList component and have it be
displayed in a showDetailItem component, you might place a panelGroupLayout
component with its layout attribute set to scroll as the chid of the showDetailItem

Chapter 9
Displaying or Hiding Contents in Panels

9-111

component, and then place the panelList component in that component. See
Geometry Management and Component Stretching.

What You May Need to Know About showDetailItem Disclosure
Events

The showDetailItem component inside of panel components supports queuing of
disclosure events so that validation is properly handled on the server and on the client.

In general, for any component with the disclosed attribute, by default, the event root
for the client AdfDisclosureEvent is set to the event source component: only the
event for the panel whose disclosed attribute is true gets sent to the server.
However, for the showDetailItem component that is used inside of panelAccordion,
panelTabbed, or panelDrawer component, the event root is that panel component (that
is, the event source parent component, not the event source component). This
ensures that values from the previously disclosed panel will not get sent to the server.

For example, suppose you have two showDetailItem components inside a
panelTabbed component with the discloseMany attribute set to false and the
discloseNone attribute set to false. Suppose the showDetailItem 1 component is
disclosed but not showDetailItem 2. Given this scenario, the following occurs:

• On the client:

– When a user clicks to disclose showDetailItem 2, a client-only disclosure
event gets fired to set the disclosed attribute to false for the showDetailItem
1 component. If this first event is not canceled, another client disclosure event
gets fired to set the disclosed attribute to true for the showDetailItem 2
component. If this second event is not canceled, the event gets sent to the
server; otherwise, there are no more disclosure changes.

• On the server:

– The server disclosure event is fired to set the disclosed attribute to true on
the showDetailItem 2 component. If this first server event is not canceled,
another server disclosure event gets fired to set the disclosed attribute to
false for the showDetailItem 1 component. If neither server event is
canceled, the new states get rendered, and the user will see the newly
disclosed states on the client; otherwise, the client looks the same as it did
before.

For the panelAccordion component with the discloseMany attribute set to false and
the discloseNone attribute set to true, the preceding information is the same only
when the disclosure change forces a paired change (that is, when two disclosed states
are involved). If only one disclosure change is involved, there will just be one client
and one server disclosure event.

For the panelAccordion component with the discloseMany attribute set to true (and
any discloseNone setting), only one disclosure change is involved; there will just be
one client and one server disclosure event.

For additional information about disclosure events, see What You May Need to Know
About Disclosure Events.

Chapter 9
Displaying or Hiding Contents in Panels

9-112

What You May Need to Know About Skinning and the panelTabbed
Component

You can use the -tr-layout-type skinning key to configure how the panelTabbed
component handles overflow when its parent container is too small to display all the
tabs. This horizontal compressed layout can display either overflow button(s) or can
roll to show hidden tabs, similar to a conveyor belt.

If the panelTabbed component is vertically compressed, then the vertical compressed
layout can roll to show the hidden conveyor belt icons. The expand/collapse icon that
is built over the conveyor belt can be used to either view icons only or to view icons
with text labels.

You can configure panelTabbed components to display the expand/collapse icon in the
web.xml file using the
oracle.adf.view.rich.PANEL_TABBED_DEFAULT_VERTICAL_TAB_MODE property. The
default value for this configuration property is false. To display the expand/collapse
icon for panelTabbed components at application level, set the
oracle.adf.view.rich.PANEL_TABBED_DEFAULT_VERTICAL_TAB_MODE configuration
property to true.

For a vertical compressed layout, ADF provides a verticalTabMode attribute for the
panelTabbed component that determines whether to display the conveyor belt icons
only or to display the conveyor belt icons with text labels. You can set the
verticalTabMode attribute to the following values:

• iconOnly: By default, the value of this attribute is set to iconOnly, which displays
only the conveyor belt icons.

• iconAndText: Displays the conveyor belt icons with text labels.

• auto: Automatically displays the conveyor belt icons with text labels depending on
the browser resolution.

When the verticalTabMode attribute is set to auto, the conveyor belt icons with text
labels are displayed when the browser resolution exceeds the set viewport threshold
value. The viewport threshold value can be configured from the skin. The default value
of the viewport threshold size is 768px. The resizeNotify method of the panelTabbed
component is configured such that when the verticalTabMode attribute is set to auto,
af_iconified class is set to the root element of the panelTabbed component when
viewport size is less than the threshold value. If the viewport size exceeds the
threshold value, then the resizeNotify method is configured to remove the
af_iconified class that was set to the root element of the panelTabbed component.

Note:

When the user clicks the expand/collapse icon, the auto behavior is disabled
until the session expires or until the user moves out of the corresponding
page. This behavior persists on any PPR request within the page and
overrides other settings.

Chapter 9
Displaying or Hiding Contents in Panels

9-113

To display the conveyor belt icons with text labels by default, set the
oracle.adf.view.rich.PANEL_TABBED_DEFAULT_VERTICAL_TAB_MODE configuration
property to true. This will override the default value of verticalTabMode attribute.

Note:

Overflow is only supported when the position attribute is set to above,
below, or both.

Figure 9-60 shows the overflow compressed layout. When the user clicks the overflow
icon, a popup displays showing the items that are hidden.

Figure 9-60 Overflow Compressed Layout

The following example shows how you use the skinning key to configure an overflow
layout.

af|panelTabbed {
 -tr-layout-type: overflow;
}

Figure 9-61 shows the horizontal conveyor compressed layout. When the user clicks
the overflow icon, the tabs that were hidden slide into place, similar to a conveyor belt.
Accordingly, tabs on the other end are hidden.

Figure 9-61 Conveyor Belt Compressed Layout

The following example shows how you can use the skinning key to use a conveyor belt
layout.

af|panelTabbed {
 -tr-layout-type: conveyor;
}

Figure 9-62 shows the vertical conveyor compressed layout with the expand icon at
the top. When the user clicks the overflow icon, the icons that were hidden slide into
place, similar to a conveyor belt. Accordingly, icons on the other end are hidden. When
the user clicks the expand icon, icons with text labels are displayed.

Chapter 9
Displaying or Hiding Contents in Panels

9-114

Figure 9-62 Conveyor Belt Vertical Compressed Layout

Figure 9-63 shows the vertical conveyor compressed layout with icons and text labels
and the collapse icon at the top. When the user clicks the overflow icon, the icons that
were hidden slide into place, similar to a conveyor belt. Accordingly, icons on the other
end are hidden. When the user clicks the collapse icon, only icons are displayed.

Figure 9-63 Conveyor Belt Vertical Compressed Layout with Text Labels

Chapter 9
Displaying or Hiding Contents in Panels

9-115

Note:

In order for the panelTabbed component to support a compressed layout, its
parent component must either stretch its children or be a set width.

Therefore, the following layout configurations are not supported:

• Using a parent container that does not stretch its children.

• Using a parent container that displays multiple children horizontally
without explicit sizes for each child. For example, a panelGroupLayout
with layout='horizontal' would be invalid, but panelSplitter is valid
because it has an explicitly set splitter position.

• Setting the compressed layout component with a styleClass or
inlineStyle that assigns a percentage width value. Note that this
includes assigning styleClass='AFStretchWidth' on a compressed
layout component.

For information about skins, see Customizing the Appearance Using Styles and Skins.

Adding a Transition Between Components
Using the ADF Faces deck component, you can control the transition between the
content. The deck component is just a container component that controls the display of
child components.
When you want to provide a slide show-like transition between content, you use the
deck component as a parent container, and then place other layout components as
children to the deck component. The content in the child layout components will then
transition between each other. You use the transition tag to determine the type of
transition.

Note:

The deck component is simply a container component that keeps track of
which child component to display. The transition tags handle the animation
between the components. You will need to create the navigation controls to
handle the actual transition.

For example, say you want to transition between content in two panelGroupLayout
components. You can wrap them both in a deck component and insert two transition
tags to handle the transition animation going forward and backward, as shown in the
following example.

<af:deck id="deck1" displayedChild="pg10">
 <af:transition triggerType="backNavigate" transition="flipEnd"/>
 <af:transition triggerType="forwardNavigate" transition="fade"/>
 <af:panelGroupLayout id="pg1" layout="scroll">
 <af:panelBox text="PanelBox1" id="pb1" background="light">
 <f:facet name="toolbar"/>
 <af:panelGroupLayout id="pgl1" layout="scroll">
 <af:outputText id="ot1" value="Card 1"/>

Chapter 9
Adding a Transition Between Components

9-116

 <af:image source="/images/icons-large/horizontalBarGraph.png"
 id="i1"/>
 </af:panelGroupLayout>
 </af:panelBox>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl2" layout="scroll">
 <af:outputText id="ot2" value="Card 2"/>
 </af:panelGroupLayout>
 </af:deck

How to Use the Deck Component
The deck component acts as a container and handles determining which component to
display. The transition tag determines the animation to use when going forward or
backward.

To use the deck component:

1. In the Component Palette, from the Layout panel, drag and drop a Deck onto the
page.

2. From the Operations panel, drag and drop a Transition.

3. In the Insert Transition dialog, select a Transition and Transition Type. For a
description of the transitions, see the ADF Faces Tag Reference documentation.

Note:

Not all browser versions support all transitions. See the Tag Reference
document for more information.

If you want both forward and backward transitions, you will need to add two
transition tags, one for each.

4. Add layout components and their content, as children to the deck component.

5. Select the deck component and in the Property Inspector, for DisplayedChild,
enter the ID for the component that you want to display first.

6. The deck component can stretch to fill available browser space. If instead, you
want to use the deck component as a child to a component that does not stretch
its children, then you need to change how the deck component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Chapter 9
Adding a Transition Between Components

9-117

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

To use the dimensionsFrom attribute, set DimensionsFrom to one of the
following:

• children: the deck component will get its dimensions from its child
components.

• parent: the size of the deck component will be determined in the following
order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto: If the parent component to the deck component allows stretching of its
child, then the deck component will stretch to fill the parent. If the parent does
not stretch its children then the size of the deck component will be based on
the size of its child component.

See What You May Need to Know About Geometry Management and the deck
Component.

Note:

When using an animation, you will not see components that use
programmatic geometry management appear in their final state until after
the animation is complete. This effect may be more pronounced
depending on the complexity of your component structure, so you may
need to evaluate whether an animation is appropriate.

7. You need to add components to handle the actual transition. For example, you
might add a poll and commandImageLinks. When a commandImageLink is selected,
the poll recognizes this and advances the deck. For an example, see the deck
component in the ADF Faces Components demo application.

Chapter 9
Adding a Transition Between Components

9-118

What You May Need to Know About Geometry Management and the
deck Component

The deck component can stretch child components and it can also be stretched. The
following components can be stretched inside the deck component:

• inputText (when configured to stretch)

• decorativeBox (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox

• panelCollection

• panelDashboard

• panelGridLayout (when gridRow and gridCell components are configured to
stretch)

• panelGroupLayout (only with the layout attribute set to scroll or vertical)

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• table (when configured to stretch)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the deck
component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only with the layout attribute set to default or horizontal)

• panelHeader

• panelLabelAndMessage

• panelList

• showDetail

• showDetailHeader

• tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch as a child to a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched as a child to the deck component, wrap that component in a
transition component that does not stretch its child components.

For example, if you want to place content in a deck component and have it flow, you
could place a panelGroupLayout component with its layout attribute set to scroll in

Chapter 9
Adding a Transition Between Components

9-119

the deck component, and then place child components in that panelGroupLayout
component. See Nesting Components Inside Components That Allow Stretching.

Displaying Items in a Static Box
When you want to display specific information, create hierarchical content, or want to
transition to a different look and feel on a page, you can use the ADF Faces
panelHeader or decorativeBox component. The panelHeader component displays the
content, whereas the decorativeBox provides the transition.
You can use the panelHeader component when you want header type functionality,
such as message display or associated help topics, but you do not have to provide the
capability to show and hide content.

You can use the decorativeBox component when you need to transition to a different
look and feel on the page. The decorativeBox component uses themes and skinning
keys to control the borders and colors of its different facets. See What You May Need
to Know About Skinning and the decorativeBox Component.

The panelHeader component offers facets for specific types of components and the
ability to open a help topic from the header. The following are the facets supported by
the panelHeader component:

• context: Displays information in the header alongside the header text.

• help: Displays help information. Use only for backward compatibility. Use the
helpTopicId attribute on the panelHeader component instead.

• info: Displays information beneath the header text, aligned to the right.

• legend: If help text is present, displays information to the left of the help content
and under the info facet's content. If help text is not present, the legend content
will be rendered directly under the header.

• toolbar: Displays a toolbar, before the menu bar.

• menuBar: Displays a menu bar, after the toolbar.

Figure 9-64 shows the different facets in the panelHeader component.

Figure 9-64 panelHeader and Its Facets

When there is not enough space to display everything in all the facets of the title line,
the panelHeader text is truncated and displays an ellipsis. When the user hovers over
the truncated text, the full text is displayed in a tooltip, as shown in Figure 9-65.

Chapter 9
Displaying Items in a Static Box

9-120

Figure 9-65 Text for the panelHeader Is Truncated

When there is more than enough room to display the contents, the extra space is
placed between the context facet and the toolbar, as shown in Figure 9-66.

Figure 9-66 Extra Space Is Added Before the Toolbar

You can configure panelHeader components so that they represent a hierarchy of
sections. For example, as shown in Figure 9-67, you can have a main header with a
subheader and then a heading level 1 also with a subheader.

Figure 9-67 Creating Subsections with the panelHeader Component

Create subsections by nesting panelHeader components within each other. When you
nest panelHeader components, the heading text is automatically sized according to the
hierarchy, with the outermost panelHeader component having the largest text.

Note:

Heading sizes are determined by default by the physical containment of the
header components. That is, the first header component will render as a
heading level 1. Any header component nested in the first header component
will render as a heading level 2, and so on. You can manually override the
heading level on individual header components using the headerLevel
attribute.

For information about using the panelHeader component, see How to Use the
panelHeader Component.

The decorativeBox component provides styling capabilities using themes. It has two
facets, top and center. The top facet provides a noncolored area, while the center

Chapter 9
Displaying Items in a Static Box

9-121

facet is the actual box. The height of the top facet depends on whether or not a
component has been put into the top facet. When the facet is set, the topHeight
attribute is used to specify the size the content should occupy.

The color of the box for the center facet depends on the theme and skin used.
Figure 9-68 shows the different themes available by default.

Figure 9-68 Themes Used in a decorativeBox Component

By default, the decorativeBox component stretches to fill its parent component. You
can also configure the decorativeBox component to inherit its dimensions from its
child components. For example, Figure 9-69 shows the dark-theme decorativeBox
configured to stretch to fill its parent, while the medium-theme decorativeBox is
configured to only be as big as its child outputText component.

Figure 9-69 decorativeBox Can Stretch or Not

How to Use the panelHeader Component
You can use one panelHeader component to contain specific information, or you can
use a series of nested panelHeader components to create a hierarchical organization
of content. If you want to be able to hide and display the content, use the
showDetailHeader component instead. See How to Use the showDetailHeader
Component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Items in a Static Box.

Chapter 9
Displaying Items in a Static Box

9-122

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use a panelHeader component:

1. In the Components window, from the Layout panel, drag and drop a Panel Header
onto the page.

2. In the Properties window, expand the Appearance section.

3. Set Text to the label you want to display for this panel.

4. To add an icon before the label, set Icon to the URI of the image file to use.

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible product, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

5. If you are using the header to provide specific messaging information, set
MessageType to one of the following values:

• confirmation: The confirmation icon (represented by a note page overlaid
with a green checkmark) replaces any specified icon image.

• error: The error icon (represented by a red circle with an "x" inside) replaces
any specified icon image. The header label also changes to red.

• info: The info icon (represented by a blue circle with an "I" inside) replaces
any specified icon image.

• none: Default. No icon is displayed.

• warning: The warning icon (represented by a yellow triangle with an
exclamation mark inside) replaces any specified icon image.

Figure 9-70 shows the icons used for the different message types.

Figure 9-70 Icons for Message Types

Chapter 9
Displaying Items in a Static Box

9-123

Note:

Because alternative text cannot be provided for this icon, in order to
create an accessible product, use this icon only when it is purely
decorative. You must provide the meaning of this icon in some
accessible manner.

6. To display help for the header, enter the topic ID for HelpTopicId. For information
about creating and using help topics, see Displaying Help for Components.

7. To override the heading level for the component, set headerLevel to the desired
level, for example H1, H2, etc. through H6.

The heading level is used to determine the correct page structure, especially when
used with screen reader applications. By default, headerLevel is set to -1, which
allows the headers to determine their size based on the physical location on the
page. In other words, the first header component will be set to be a H1. Any
header component nested in that H1 component will be set to H2, and so on.

Note:

Screen reader applications rely on the HTML header level assignments
to identify the underlying structure of the page. Make sure your use of
header components and assignment of header levels make sense for
your page.

When using an override value, consider the effects of having headers
inside disclosable sections of the page. For example, if a page has
collapsible areas, you need to be sure that the overridden structure will
make sense when the areas are both collapsed and disclosed.

8. If you want to change just the size of the header text, and not the structure of the
heading hierarchy, set the size attribute.

The size attribute specifies the number to use for the header text and overrides
the skin. The largest number is 0, and it corresponds to an H1 header level; the
smallest is 5, and it corresponds to an H6 header.

By default, the size attribute is -1. This means ADF Faces automatically
calculates the header level style to use from the topmost, parent component.
When you use nested components, you do not have to set the size attribute
explicitly to get the proper header style to be displayed.

Note:

While you can force the style of the text using the size attribute, (where
0 is the largest text), the value of the size attribute will not affect the
hierarchy. It only affects the style of the text.

Chapter 9
Displaying Items in a Static Box

9-124

In the default skin used by ADF Faces, the style used for sizes above 2 will be
displayed the same as size 2. You can change this by creating a custom skin. See
What You May Need to Know About Skinning and the panelHeader Component.

9. If you want to control how the panelHeader component handles geometry
management, expand the Appearance section and set Type to one of the
following. For information about geometry management, see Geometry
Management and Component Stretching.

• flow: The component will not stretch or stretch its children. The height of the
panelHeader component will be determined solely by its children.

• stretch: The component will stretch and stretch its child (will only stretch a
single child component).

• default: if you want the parent component of the panelHeader component to
determine geometry management.

10. To add toolbar buttons to a panel, insert the toolbar component into the toolbar
facet. Then, insert the desired number of button components into the toolbar
component. For information about using toolbar and buttons, see Using Toolbars.

Note:

Toolbar overflow is not supported in panelHeader components.

11. To add menus to a panel, insert menu components into the menuBar facet. For
information about creating menus in a menu bar, see Using Menus in a Menu Bar.

Tip:

You can place menus in the toolbar facet and toolbars (and toolboxes)
in the menu facet. The main difference between these facets is location.
The toolbar facet is before the menu facet.

12. Add contents to the other facets as needed.

Tip:

If any facet is not visible in the visual editor:

a. Right-click the panelHeader component in the Structure window.

b. From the context menu, choose Facets - Panel Header >facet
name. Facets in use on the page are indicated by a checkmark in
front of the facet name.

13. To add contents to the panel, insert the desired child components into the
panelHeader component.

Chapter 9
Displaying Items in a Static Box

9-125

How to Use the decorativeBox Component
You use the decorativeBox component to provide a colored area or box in a page.
This component is typically used as a container for the navigationPane component
that is configured to display tabs. See Using Navigation Items for a Page Hierarchy.

To create and use a decorativeBox component:

1. In the Components window, from the Layout panel, drag and drop a Decorative
Box onto the page.

2. In the Properties window, expand the Common section and set Top Height to the
height for the top facet.

3. To change the theme, expand the Style and Theme section and choose a
different theme.

4. By default, the decorativeBox component stretches to fill available browser space.
If instead, you want to use the decorativeBox component as a child to a
component that does not stretch its children, then you need to change how the
decorativeBox component handles stretching.

You configure whether the component will stretch or not using the dimensionsFrom
attribute.

Note:

The default value for the dimensionsFrom attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want the
components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to
auto, instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component's default value, as
documented in the following descriptions. See Geometry Management
for Layout and Table Components.

Set DimensionsFrom to one of the following:

• children: the decorativeBox component will get its dimensions from its child
components.

Chapter 9
Displaying Items in a Static Box

9-126

Note:

If you use this setting, you cannot use a percentage to set the height
of the top facet. If you do, the top facet will try to get its dimensions
from the size of this decorativeBox component, which will not be
possible, as the decorativeBox component will be getting its height
from its contents, resulting in a circular dependency. If a percentage
is used, it will be disregarded and the default 50px will be used
instead.

Similarly, you cannot set the height of the decorativeBox (for
example through the inlineStyle or styleClass attributes). Doing
so would cause conflict between the decorativeBox height and the
child component height.

• parent: the size of the decorativeBox component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

• auto: If the parent component to the decorativeBox component allows
stretching of its child, then the decorativeBox component will stretch to fill the
parent. If the parent does not stretch its children then the size of the
decorativeBox component will be based on the size of its child component.

See What You May Need to Know About Geometry Management and the
decorativeBox Component.

What You May Need to Know About Geometry Management and the
decorativeBox Component

The decorativeBox component can stretch child components in its center facet and it
can also be stretched. The following components can be stretched inside the center
facet of the decorativeBox component:

• inputText (when configured to stretch)

• deck

• decorativeBox (when configured to stretch)

• panelAccordion (when configured to stretch)

• panelBox

• panelCollection (when configured to stretch)

• panelDashboard

• panelGroupLayout (only with the layout attribute set to scroll or vertical)

• panelLabelAndMessage (when configured to stretch)

Chapter 9
Displaying Items in a Static Box

9-127

• panelSplitter (when configured to stretch)

• panelStretchLayout (when configured to stretch)

• panelTabbed (when configured to stretch)

• region

• table (when configured to stretch)

• tableLayout (when configured to stretch. Note that this is a MyFaces Trinidad
component)

• tree (when configured to stretch)

• treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
decorativeBox component:

• panelBorderLayout

• panelFormLayout

• panelGroupLayout (only with the layout attribute set to default or horizontal)

• panelHeader

• panelList

• showDetail

• showDetailHeader

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched into a facet of the decorativeBox component, wrap that
component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow
within a facet of the decorativeBox component, you could place a panelGroupLayout
component with its layout attribute set to scroll in the facet of the decorativeBox
component, and then place the panelBox component in that panelGroupLayout
component. See Nesting Components Inside Components That Allow Stretching.

What You May Need to Know About Skinning and the panelHeader
Component

The panelHeader component uses styles specified in the application’s skin to
determine its heading sizes. Heading sizes above 2 will be displayed the same as size
2. That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same
style as size 2. You can change this by creating a custom skin.

See Customizing the Appearance Using Styles and Skins.

What You May Need to Know About Skinning and the decorativeBox
Component

A decorativeBox component that renders using the Skyros skin uses themes and
skinning keys to control the borders and colors of its different facets. For example, if

Chapter 9
Displaying Items in a Static Box

9-128

you use the default theme, the decorativeBox component body is white and the
border is blue, and the top-left corner is rounded. If you use the medium theme, the
body is a medium blue.

Note:

If you use the simple boarders feature of the Skyros skin, then certain border
elements, such as corners, are not rendered at all.

You can further control the style of the decorativeBox component using skins.
Skinning keys can be defined for the following areas of the component:

• top-start

• top

• top-end

• start

• end

• bottom-start

• bottom

• bottom-end

The Alta skin does not use themes. See Customizing the Appearance Using Styles
and Skins.

Displaying a Bulleted List in One or More Columns
Using the ADF Faces panelList component, you can display the content as a bulleted
list. You can nest the panelList component by wrapping them in a group component.
The panelList component is a layout element for displaying a vertical list of child
components with a bullet next to each child, as shown in Figure 9-71. Only child
components whose rendered attribute is set to true and whose visible attribute is
set to true are considered for display by in the list.

Note:

To display dynamic data (for example, a list of data determined at runtime by
JSF bindings), use the selection components, as documented in Using
Selection Components. If you need to create lists that change the model
layer, see Using List-of-Values Components.

Chapter 9
Displaying a Bulleted List in One or More Columns

9-129

Figure 9-71 PanelList Component with Default Disc Bullet

By default, the disc bullet is used to style the child components. There are other styles
you can use, such as square bullets and white circles. You can also split the list into
columns when you have a very long list of items to display.

How to Use the panelList Component
Use one panelList component to create each list of items.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying a Bulleted List in One or More Columns.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelList component:

1. In the Components window, from the Layout panel, drag and drop a Panel List
onto the JSF page.

2. In the Properties window, expand the Common section, and set the listStyle
attribute to a valid CSS 2.1 list style value, such as one of the following:

• list-style-type: disc

• list-style-type: square

• list-style-type: circle

• list-style-type: decimal

• list-style-type: lower-alpha

• list-style-type: upper-alpha

For example, the list-style-type: disc attribute value corresponds to a disc
bullet, and the list-style-type: circle value corresponds to a circle bullet.

For a complete list of the valid style values to use, refer to the CSS 2.1
Specification for generated lists at

http://www.w3.org/TR/CSS21/generate.html

Chapter 9
Displaying a Bulleted List in One or More Columns

9-130

http://www.w3.org/TR/CSS21/generate.html

Tip:

Some browsers support more style options than others, for example,
upper-roman, lower-roman, and lower-greek. Use of these is cautioned
because they will not display consistently across web browsers.

The following example shows the code for setting the list style to a circle.

<af:panelList listStyle="list-style-type: circle" ...>
 <!-- child components here -->
</af:panelList>

3. Insert the desired number of child components (to display as bulleted items) into
the panelList component.

Tip:

Panel lists also allow you to use the iterator, switcher, and group
components as direct child components, providing these components
wrap child components that would typically be direct child components of
the panel list.

For example, you could insert a series of commandLink components or
outputFormatted components.

Note:

By default, ADF Faces displays all rendered child components of a
panelList component in a single column. For details on how to split the list
into two or more columns and for information about using the rows and
maxColumns attributes, see Arranging Content in Forms. The concept of using
the rows and maxColumns attributes for columnar display in the panelList
and panelFormLayout components are the same.

What You May Need to Know About Creating a List Hierarchy
You can nest panelList components to create a list hierarchy. A list hierarchy, as
shown in Figure 9-72, has outer items and inner items, where the inner items
belonging to an outer item are indented under the outer item. Each group of inner
items is created by one nested panelList component.

Chapter 9
Displaying a Bulleted List in One or More Columns

9-131

Figure 9-72 Hierarchical List Created Using Nested panelList Components

To achieve the list hierarchy as shown in Figure 9-72, use a group component to wrap
the components that make up each group of outer items and their respective inner
items. The following example shows the code for how to create a list hierarchy that
has one outer item with four inner items, and another outer item with two inner items.

<af:panelList>
 <!-- First outer item and its four inner items -->
 <af:group>
 <af:commandLink text="item 1"/>
 <af:panelList>
 <af:commandLink text="item 1.1"/>
 <af:commandLink text="item 1.2"/>
 <af:commandLink text="item 1.3"/>
 <af:commandLink text="item 1.4"/>
 </af:panelList>
 </af:group>
 <!-- Second outer item and its two inner items -->
 <af:group>
 <af:commandLink text="item 2"/>
 <af:panelList>
 <af:commandLink text="item 2.1"/>
 <af:commandLink text="item 2.2"/>
 </af:panelList>
 </af:group>
</af:panelList>

By default, the outer list items (for example, item 1 and item 2) are displayed with the
disc bullet, while the inner list items (for example, item 1.1 and item 2.1) have the
white circle bullet.

For information about the panelGroupLayout component, see Grouping Related Items.

Grouping Related Items
Using the ADF Faces group or panelGroupLayout component, you can form a group of
similar or related components. The group component is just a container that can group
related components together, whereas the panelGroupLayout provides a layout for its
child components.
To keep like items together within a parent component, use either the group or
panelGroupLayout component. The group component aggregates or groups together
child components that are related semantically. Unlike the panelGroupLayout
component, the group component does not provide any layout for its child

Chapter 9
Grouping Related Items

9-132

components. Used on its own, the group component does not render anything; only
the child components inside of a group component render at runtime.

You can use any number of group components to group related components together.
For example, you might want to group some of the input fields in a form layout created
by the panelFormLayout component.

The following example shows sample code that groups two sets of child components
inside a panelFormLayout component.

<af:panelFormLayout>
 <af:inputDate label="Pick a date"/>
 <!-- first group -->
 <af:group>
 <af:selectManyCheckbox label="Select all that apply">
 <af:selectItem label="Coffee" value="1"/>
 <af:selectItem label="Cream" value="1"/>
 <af:selectItem label="Low-fat Milk" value="1"/>
 <af:selectItem label="Sugar" value="1"/>
 <af:selectItem label="Sweetener"/>
 </af:selectManyCheckbox>
 <af:inputText label="Special instructions" rows="3"/>
 </af:group>
 <!-- Second group -->
 <af:group>
 <af:inputFile label="File to upload"/>
 <af:inputText label="Enter passcode"/>
 </af:group>
 <af:inputText label="Comments" rows="3"/>
 <af:spacer width="10" height="15"/>
 <f:facet name="footer"/>
</af:panelFormLayout>

The panelGroupLayout component lets you arrange a series of child components
vertically or horizontally without wrapping, or consecutively with wrapping, as shown in
Figure 9-73. The layout attribute value determines the arrangement of the child
components.

Figure 9-73 panelGroupLayout Arrangements

In all arrangements, each pair of adjacent child components can be separated by a
line or white space using the separator facet of the panelGroupLayout component.
See Separating Content Using Blank Space or Lines.

Chapter 9
Grouping Related Items

9-133

When using the horizontal layout, the child components can also be vertically or
horizontally aligned. For example, you could make a short component beside a tall
component align at the top, as shown in Figure 9-74.

Figure 9-74 Top-Aligned Horizontal Layout with panelGroupLayout

Unlike the panelSplitter or panelStretchLayout components, the panelGroupLayout
component does not stretch its child components. Suppose you are already using a
panelSplitter or panelStretchLayout component as the root component for the
page, and you have a large number of child components to flow, but are not to be
stretched. To provide scrollbars when flowing the child components, wrap the child
components in the panelGroupLayout component with its layout attribute set to
scroll, and then place the panelGroupLayout component inside a facet of the
panelSplitter or panelStretchLayout component.

When the layout attribute is set to scroll on a panelGroupLayout component,
ADF Faces automatically provides a scrollbar at runtime when the contents contained
by the panelGroupLayout component are larger than the panelGroupLayout
component itself. You do not have to write any code to enable the scrollbars, or set
any inline styles to control the overflow.

For example, when you use layout components such as the panelSplitter
component that let users display and hide child components contents, you do not have
to write code to show the scrollbars when the contents are displayed, and to hide the
scrollbars when the contents are hidden. Simply wrap the contents the be displayed
inside a panelGroupLayout component, and set the layout attribute to scroll.

In the File Explorer application, the Search Navigator contains a panelSplitter
component used to hide and show the search criteria. When the search criteria are
hidden, and the search results content does not fit into the area, a scrollbar is
rendered, as shown in Figure 9-75.

Chapter 9
Grouping Related Items

9-134

Figure 9-75 Scrollbars Rendered Using panelGroupLayout

Note:

If you include the PanelGroupLayout component while creating an emailable
page, remove the <td width="100%"></td> entry within the <table>… </
table> element in the html source. Otherwise, the footer row will not render
properly in the email client. See Creating Emailable Pages.

How to Use the panelGroupLayout Component
Any number of panelGroupLayout components can be nested to achieve the desired
layout.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Grouping Related Items.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the panelGroupLayout component:

1. In the Components window, from the Layout panel, drag and drop a Panel Group
Layout onto the JSF page.

2. Insert the desired child components into the panelGroupLayout component.

Chapter 9
Grouping Related Items

9-135

Tip:

The panelGroupLayout component also allows you to use the iterator,
switcher, and group components as direct child components, providing
these components wrap child components that would typically be direct
child components of the panelGroupLayout component.

3. To add spacing or separator lines between adjacent child components, insert the
spacer or separator component into the separator facet.

4. In the Properties window, expand the Appearance section. To arrange the child
components in the desired layout, set Layout to one of the following values:

• default: Provides consecutive layout with wrapping.

At runtime, when the contents exceed the browser space available (that is,
when the child components are larger than the width of the parent container
panelGrouplayout), the browser flows the contents onto the next line so that
all child components are displayed.

Note:

ADF Faces uses the bidirectional algorithm when making contents
flow. Where there is a mix of right-to-left content and left-to-right
content, this may result in contents not flowing consecutively.

• horizontal: Uses a horizontal layout, where child components are arranged in
a horizontal line. No wrapping is provided when contents exceed the amount
of browser space available.

In a horizontal layout, the child components can also be aligned vertically and
horizontally. By default, horizontal child components are aligned in the center
with reference to an imaginary horizontal line, and aligned in the middle with
reference to an imaginary vertical line. To change the horizontal and vertical
alignments of horizontal components, use the following attributes:

– halign: Sets the horizontal alignment. The default is center. Other
acceptable values are: start, end, left, right.

For example, set halign to start if you want horizontal child components
to always be left-aligned in browsers where the language reading direction
is left-to-right, and right-aligned in a right-to-left reading direction.

– valign: Sets the vertical alignment. Default is middle. Other acceptable
values are: top, bottom, baseline.

In output text components (such as outputText) that have varied font
sizes in the text, setting valign to baseline would align the letters of the
text along an imaginary line on which the letters sit, as shown in
Figure 9-76. If you set valign to bottom for such text components, the
resulting effect would not be as pleasant looking, because bottom vertical
alignment causes the bottommost points of all the letters to be on the
same imaginary line.

Chapter 9
Grouping Related Items

9-136

Figure 9-76 Bottom and Baseline Vertical Alignment of Text

Note:

The halign and valign attributes are ignored if the layout is not
horizontal.

• scroll: Uses a vertical layout, where child components are stacked vertically,
and a vertical scrollbar is provided when necessary.

• vertical: Uses a vertical layout, where child components are stacked vertically.

What You May Need to Know About Geometry Management and the
panelGroupLayout Component

While the panelGroupLayout component cannot stretch its child components, it can be
stretched when it is the child of a panelSplitter or panelStretchLayout component
and its layout attribute is set to either scroll or vertical.

Separating Content Using Blank Space or Lines
Using the ADF Faces spacer component, you can include some blank space in a
page. You can include vertical as well as horizontal space to even out the contents in
a page. Use the separator component to include a horizontal line.
You can incorporate some blank space in your pages, to space out the components so
that the page appears less cluttered than it would if all the components were
presented immediately next to each other, or immediately below each other. The ADF
Faces component provided specifically for this purpose is the spacer component.

You can include either or both vertical and horizontal space in a page using the height
and width attributes.

The height attribute determines the amount of vertical space to include in the page.
The following example shows a page set up to space out two lengthy outputText
components with some vertical space.

<af:panelGroupLayout layout="vertical">
 <af:outputText value="This is a long piece of text for this page..."/>
 <af:spacer height="10"/>
 <af:outputText value="This is some more lengthy text ..."/>
</af:panelGroupLayout>

Figure 9-77 shows the effect the spacer component has on the page output as viewed
in a browser.

Chapter 9
Separating Content Using Blank Space or Lines

9-137

Figure 9-77 Vertical Space Viewed in a Browser

The width attribute determines the amount of horizontal space to include between
components. The following example shows part of the source of a page set up to
space out two components horizontally.

<af:outputLabel value="Your credit rating is currently:"/>
<af:spacer width="10"/>
<af:outputText value="Level 8"/>

Figure 9-78 shows the effect of spacing components horizontally as viewed in a
browser.

Figure 9-78 Horizontal Space Viewed in a Browser

The separator component creates a horizontal line. Figure 9-79 shows the
properties.jspx file as it would be displayed with a separator component inserted
between the two panelBox components.

Figure 9-79 Using the separator Component to Create a Line

The spacer and separator components are often used in facets of other layout
components. Doing so ensures that the space or line stays with the components they
were meant to separate.

Chapter 9
Separating Content Using Blank Space or Lines

9-138

How to Use the spacer Component
You can use as many spacer components as needed on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Separating Content Using Blank Space or Lines.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the spacer component:

1. In the Components window, from the Layout panel, drag and drop a Spacer to the
JSF page.

2. In the Properties window, expand the Common section. Set the width and height
as needed.

Note:

If the height is specified but not the width, a block-level HTML element is
rendered, thereby introducing a new line effect. If the width is specified,
then, irrespective of the specified value of height, it may not get shorter
than the applicable line-height in user agents that strictly support HTML
standards.

How to Use the Separator Component
You can use as many separator components as needed on a page.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Separating Content Using Blank Space or Lines.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Layout Components.

To create and use the separator component:

1. In the Components window, from the Layout panel, drag and drop a Separator
onto the JSF page.

2. In the Properties window, set the properties as needed.

Chapter 9
Separating Content Using Blank Space or Lines

9-139

10
Creating and Reusing Fragments, Page
Templates, and Components

This chapter describes how to create reusable content and then use that content to
build portions of JSF pages or entire pages. It describes how to use page templates to
define entire page layouts that can be applied to pages. It also describes how to use
page fragments to build complex pages. It then describes how to create reusable
declarative components using existing ADF Faces components.
This chapter includes the following sections:

• About Reusable Content

• Using Page Templates

• Using Page Fragments

• Using Declarative Components

• Adding Resources to Pages

About Reusable Content
ADF Faces provides page templates, page fragments, and declarative components
that you can use as reusable building blocks while designing a web page.
As you build JSF pages for your application, some pages may become complex and
long, making editing complicated and tedious. Some pages may always contain a
group of components arranged in a very specific layout, while other pages may always
use a specific group of components in multiple parts of the page. And at times, you
may want to share some parts of a page or entire pages with other developers.
Whatever the case is, when something changes in the UI, you have to replicate your
changes in many places and pages. Building and maintaining all those pages, and
making sure that some sets or all are consistent in structure and layout can become
increasingly inefficient.

Instead of using individual UI components to build pages, you can use page building
blocks to build parts of a page or entire pages. The building blocks contain the
frequently or commonly used UI components that create the reusable content for use
in one or more pages of an application. Depending on your application, you can use
just one type of building block, or all types in one or more pages. And you can share
some building blocks across applications. When you modify the building blocks, the
JSF pages that use the reusable content are automatically updated as well. Thus, by
creating and using reusable content in your application, you can build web user
interfaces that are always consistent in structure and layout, and an application that is
scalable and extensible.

ADF Faces provides the following types of reusable building blocks:

• Page templates: By creating page templates, you can create entire page layouts
using individual components and page fragments. For example, if you are
repeatedly laying out some components in a specific way in multiple JSF pages,
consider creating a page template for those pages. When you use the page

10-1

template to build your pages, you can be sure that the pages are always
consistent in structure and layout across the application.

The page template and the declarative component share much of the functionality.
The main difference is that the page template supports ADF Model binding and
ADF Controller using a page template model. Using the value attribute, you can
specify which object to use as the bindings inside of the page template. If the
value is a page template model binding, ADF Model page bindings may be used,
and you may use the ADF page definition to determine which view to include.

For information about creating and using page templates, see Using Page
Templates, and How to Create JSF Pages Based on Page Templates.

• Page fragments: Page fragments allow you to create parts of a page. A JSF page
can be made up of one or more page fragments. For example, a large JSF page
can be broken up into several smaller page fragments for easier maintenance. For
information about creating and using page fragments, see Using Page Fragments.

• Declarative components: The declarative components feature allows you to
assemble existing, individual UI components into one composite, reusable
component, which you then declaratively use in one or more pages. For example,
if you are always inserting a group of components in multiple places, consider
creating a composite declarative component that comprises the individual
components, and then reusing that declarative component in multiple places
throughout the application. Declarative components can also be used in page
templates.

The declarative component is deployed as part of an ADF library JAR file. It
features its own TLD file that allows you to put the component in your own
namespace. The declarative component allows you to pass facets into the
component and also any attributes and method expressions. Inside of the
declarative component, the attributes and facets may be accessed using EL
expressions It has a relatively low overhead as it does not involve ADF Model or
ADF Controller, which also means that it does not have support for ADF Model
transactions or ADF Controller page flows.

Note that you should not reference individual components inside of a declarative
component, and individual components within a declarative component should not
reference external components. The reason is that changes in the declarative
component or in the consuming page could cause the partial triggers to no longer
work. For information about creating and using declarative components, see Using
Declarative Components.

Tip:

If your application uses ADF Controller and the ADF Model layer, then you
can also use ADF regions. Regions used in conjunction with ADF bounded
task flows, encapsulate business logic, process flow, and UI components all
in one package, which can then be reused throughout the application. For
complete information about creating and using ADF bounded task flows as
regions, see Using Task Flows as Regions in Developing Fusion Web
Applications with Oracle Application Development Framework.

Page templates, page fragments, and declarative components provide consistent
structure and layout to the pages in an application. These building blocks can not only

Chapter 10
About Reusable Content

10-2

be reused in the same application, but also can be shared across applications. When
update a building block, all the instances where it is used is automatically updated.

Page templates are data-bound templates that support both static areas that do not
change and dynamic areas where they change during runtime. You can use page
fragments to build modular pages. For instance, you can create page fragments for the
header, footer, and company logo and reuse these fragments throughout the
application. You can use declarative components when you have several components
that always used in a group. By creating a declarative component, you can add it to
the tag library and be able to drag and drop the declarative component from the
JDeveloper Components window.

Page templates, declarative components, and regions implement the
javax.faces.component.NamingContainer interface. At runtime, in the pages that
consume reusable content, the page templates, declarative components, or regions
create component subtrees, which are then inserted into the consuming page's single,
JSF component tree. Because the consuming page has its own naming container,
when you add reusable content to a page, take extra care when using mechanisms
such as partialTargets and findComponent(), as you will need to take into account
the different naming containers for the different components that appear on the page.
For information about naming containers, see Locating a Client Component on a
Page.

If you plan to include resources such as CSS or JavaScript, you can use the
af:resource tag to add the resources to the page. If this tag is used in page templates
and declarative components, the specified resources will be added to the consuming
page during JSP execution. See Adding Resources to Pages.

If you are not using an ADF task flow to navigate a portion of the page, you should not
be using regions, but instead use one of the other compound components. Among the
compound components, you should use a page template if you need to use bindings
inside of your compound component and they differ from the bindings of the host
page. You should use a declarative component if you do not need bindings for your
page and do not need to use a bounded task flow as part of your page.

The view parts of a page (fragments, declarative components, and the main page) all
share the same request scope. This may result in a collision when you use the same
fragment or declarative component multiple times on a page, and when they share a
backing bean. You should use backingBeanScope for declarative components and
page templates. For information about scopes, see Object Scope Lifecycles.

You can control whether child components of a page template or declarative
component can be changed by external reference. For example, you can enable or
disable the customization of the child components. Both af:pageTemplateDef and
af:componentDef has a definition attribute that controls access. When definition
is set to public, then the direct child components can be customized, while
definition is set to private, the child components cannot be customized. The default
value is private. You can modify definition by editing the source file or by using the
Properties window.

See Customizing Applications with MDS in Developing Fusion Web Applications with
Oracle Application Development Framework for information about customization.

Reusable Components Use Cases and Examples
The File Explorer application uses a fileExplorerTemplate to provide a consistent
look and feel to all the pages in the application. The facets of the file provide working

Chapter 10
About Reusable Content

10-3

area to place different types of information. The template defines an appCopyright
facet that is used to display copyright information for every page.

The main page of the File Explorer application not only uses the page template, but
also uses page fragments to contain the content for the individual facets of the
template. The header.jspx page fragment contains the menu commands for the
application.

If you have several components that works as a group and repeats in several places,
you can define a declarative component to group these components together. Once
you have created the component, you can use this declarative component like any
other component. For example, you may use several inputText components to denote
first name, last name, and email address. Since this three inputText components will
be used repeatedly in your application, you can create a declarative component for
them.

Additional Functionality for Reusable Components
You may find it helpful to understand other Oracle ADF features before you implement
your reusable components. Following are links to other functionality that are related to
reusable components.

• For information about customization, see Customizing Applications with MDS in
Developing Fusion Web Applications with Oracle Application Development
Framework.

• For information about using the Quick Start Layouts to provide a preconfigured
layout, see Using Quick Start Layouts.

• For information about using model parameters and ADF Model data bindings, see
Using Page Templates in Developing Fusion Web Applications with Oracle
Application Development Framework

• For information about packaging a page template into an ADF Library JAR file for
reuse, see Reusing Application Components in Developing Fusion Web
Applications with Oracle Application Development Framework.

Using Page Templates
Use an ADF Faces page template to define the layout for an entire page, which when
used inherits the defined layout. You can specify fixed as well as dynamic content in a
page template.
Page templates let you define entire page layouts, including values for certain
attributes of the page. When pages are created using a template, they all inherit the
defined layout. When you make layout modifications to the template, all pages that
consume the template will automatically reflect the layout changes. You can either
create the layout of your template yourself, or you can use one of the many quick
layout designs. These predefined layouts automatically insert and configure the correct
components required to implement the layout look and behavior you want. For
example, you may want one column's width to be locked, while another column
stretches to fill available browser space. Figure 10-1 shows the quick layouts available
for a two-column layout with the second column split between two panes. For
information about the layout components, see Organizing Content on Web Pages.

Chapter 10
Using Page Templates

10-4

Figure 10-1 Quick Layouts

To use page templates in an application, you first create a page template definition.
Page template definitions must be either Facelets or JSP XML documents because
page templates embed XML content. In contrast to regular JSF pages where all
components on the page must be enclosed within the f:view tag, page template
definitions cannot contain an f:view tag and must have pageTemplateDef as the root
tag. The page that uses the template must contain the document tag, (by default,
JDeveloper adds the document tag to the consuming page).

A page template can have fixed content areas and dynamic content areas. For
example, if a Help button should always be located at the top right-hand corner of
pages, you could define such a button in the template layout, and when page authors
use the template to build their pages, they do not have to add and configure a Help
button. Dynamic content areas, on the other hand, are areas of the template where
page authors can add contents within defined facets of the template or set property
values that are specific to the type of pages they are building.

The entire description of a page template is defined within the pageTemplateDef tag,
which has two sections. One section is within the xmlContent tag, which contains all
the page template component metadata that describes the template's supported
content areas (defined by facets), and available properties (defined as attributes). The
second section (anything outside of the xmlContent tag) is where all the components
that make up the actual page layout of the template are defined. The components in
the layout section provide a JSF component subtree that is used to render the
contents of the page template.

Facets act as placeholders for content on a page. In a page that consumes a template,
page authors can insert content for the template only in named facets that have
already been defined. This means that when you design a page template, you must
define all possible facets within the xmlContent tag, using a facet element for each
named facet. In the layout section of a page template definition, as you build the
template layout using various components, you use the facetRef tag to reference the

Chapter 10
Using Page Templates

10-5

named facets within those components where content can eventually be inserted into
the template by page authors.

For example, the fileExplorerTemplate template contains a facet for copyright
information and another facet for application information, as shown in the following
example.

<facet> <description>
 <![CDATA[Area to put a link to more information
 about the application.]]>
 </description>
 <facet-name>appAbout</facet-name>
</facet>
<facet>
 <description>
 <![CDATA[The copyright region of the page. If present, this area
 typically contains an outputText component with the copyright
 information.]]>
 </description>
 <facet-name>appCopyright</facet-name>
</facet>

In the layout section of the template as shown in the following example, a
panelGroupLayout component contains a table whose cell contains a reference to the
appCopyright facet and another facet contains a reference to the appAbout facet. This
is where a page developer will be allowed to place that content.

<af:panelGroupLayout layout="vertical">
 <afh:tableLayout width="100%">
 <afh:rowLayout>
 <afh:cellFormat>
 <af:facetRef facetName="appCopyright"/>
 </afh:cellFormat>
 </afh:rowLayout>
 </afh:tableLayout>
 <af:facetRef facetName="appAbout"/>
</af:panelGroupLayout>

Note:

Each named facet can be referenced only once in the layout section of the
page template definition. That is, you cannot use multiple facetRef tags
referencing the same facetName value in the same template definition.

While the pageTemplateDef tag describes all the information and components needed
in a page template definition, the JSF pages that consume a page template use the
pageTemplate tag to reference the page template definition. The following example
shows how the index.jspx page references the fileExplorerTemplate template,
provides values for the template's attributes, and places content within the template's
facet definitions.

At design time, page developers using the template can insert content into the
appCopyright facet, using the f:facet tag.

<af:pageTemplate id="fe"
 viewId="/fileExplorer/templates/fileExplorerTemplate.jspx">
 <f:attribute name="documentTitle"

Chapter 10
Using Page Templates

10-6

 value="#{explorerBundle['global.branding_name']}"/>
 <f:attribute name="headerSize" value="70"/>
 <f:attribute name="navigatorsSize" value="370"/>
.
.
.
 <f:facet name="appCopyright">
 <!-- Copyright info about File Explorer demo -->
 <af:outputFormatted value="#{explorerBundle['about.copyright']}"/>
 </f:facet>
 .
 .
 .
</af:pageTemplate>

At runtime, the inserted content is displayed in the right location on the page, as
indicated by af:facetRef facetName="appCopyright" in the template definition.

Note:

You cannot run a page template as a run target in JDeveloper. You can run
the page that uses the page template.

Page template attributes specify the component properties (for example,
headerGlobalSize) that can be set or modified in the template. While facet element
information is used to specify where in a template content can be inserted, attribute
element information is used to specify what page attributes are available for passing
into a template, and where in the template those attributes can be used to set or
modify template properties. Page templates also support dynamic attributes as an
inline tag. For example, af:pageTemplate headerSize="70" is valid syntax.

For the page template to reference its own attributes, the pageTemplateDef tag must
have a var attribute, which contains an EL variable name for referencing each attribute
defined in the template. For example, in the fileExplorerTemplate template, the
value of var on the pageTemplateDef tag is set to attrs. Then in the layout section of
the template, an EL expression such as #{attrs.someAttributeName} is used in
those component attributes where page authors are allowed to specify their own
values or modify default values.

For example, the fileExplorerTemplate template definition defines an attribute for the
header size, which has a default int value of 100 pixels as shown in the following
example.

<attribute>
 <description>
 Specifies the number of pixels tall that the global header content should
 consume.
 </description>
 <attribute-name>headerGlobalSize</attribute-name>
 <attribute-class>int</attribute-class>
 <default-value>100</default-value>
</attribute>

Chapter 10
Using Page Templates

10-7

In the layout section of the template, the splitterPosition attribute of the
panelSplitter component references the headerGlobalSize attribute in the EL
expression #{attrs.headerGlobalSize}, as shown in the following code:

<af:panelSplitter splitterPosition="#{attrs.headerGlobalSize}" ../>

When page authors use the template, they can modify the headerGlobalSize value
using f:attribute, as shown in the following code:

<af:pageTemplate ..>
 <f:attribute name="headerGlobalSize" value="50"/>
 .
 .
 .
</af:pageTemplate>

At runtime, the specified attribute value is substituted into the appropriate part of the
template, as indicated by the EL expression that bears the attribute name.

Tip:

If you define a resource bundle in a page template, the pages that consume
the template will also be able to use the resource bundle. For information
about using resource bundles, see Manually Defining Resource Bundles and
Locales.

You can nest templates when you need to reuse the same content across multiple
templates. For example, say your application will have three different types of pages,
but the header and footer will always be the same. Instead of having to include the
same header and footer design in three different templates, you can create a header
template and a footer template, and then simply nest those templates into each of the
different page templates.

For a simple page template, it is probably sufficient to place all the components for the
entire layout section into the page template definition file. For a more complex page
template, you can certainly break the layout section into several smaller fragment files
for easier maintenance, and use jsp:include tags to include and connect the various
fragment files.

When you break the layout section of a page template into several smaller fragment
files, all the page template component metadata must be contained within the
xmlContent tag in the main page template definition file. There can be only one
xmlContent tag within a pageTemplateDef tag. You cannot have page template
component metadata in the fragment files; fragment files can contain portions of the
page template layout components only.

Note:

You cannot nest page templates inside other page templates.

Chapter 10
Using Page Templates

10-8

If your template requires resources such as custom styles defined in CSS or
JavaScript, then you need to include these on the consuming page, using the
af:resource tag. See Adding Resources to Pages.

How to Create a Page Template
JDeveloper simplifies creating page template definitions by providing the Create JSF
Page Template wizard, which lets you add named facets and attributes declaratively to
create the template component metadata section of a template. In addition to
generating the metadata code for you, JDeveloper also creates and modifies a
pagetemplate-metadata.xml file that keeps track of all the page templates you create
in a project.

Performance Tip:

Because page templates may be present in every application page,
templates should be optimized so that common overhead is avoided. One
example of overhead is round corners, for example on boxes, which are
quite expensive. Adding them to the template will add overhead to every
page.

Before you begin:

It may be helpful to have an understanding of page templates. See Using Page
Templates.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To create a page template definition:

1. In the Applications window, right-click the node where you wish to create and store
page templates and choose New > ADF Page Template.

2. In the Create a Page Template dialog, enter a file name for the page template
definition.

Page template definitions must be XML documents (with file extension .jspx)
because they embed XML content.

Performance Tip:

Avoid long names because they can have an impact on server-side,
network traffic, and client processing.

3. Accept the directory name for the template definition, or choose a new location.

If the page template is intended to be packaged as an ADF Library, you should not
accept the default directory name. You should try to specify a unique directory
name so that it will be less likely to clash with page templates from other ADF
Libraries.

4. Select either Facelets or JSP XML as the document type.

Chapter 10
Using Page Templates

10-9

5. Enter a Page Template name for the page template definition, and click Next.

6. In the Optionally add starting content page of the Create a a Page Template
dialog, select one of the template choices, then the template, and click Next.

• Blank Template: Select if you want start using a blank page.

• Copy Existing Template: Select if you want to start with an existing template.

• Copy Quick Start Layout: Select if you want to use various predefined
templates featuring one, two, or three column layout.

7. In the Add facet definitions and attribute page of the Create a Page Template
dialog, you can add facets and attributes.

• In the Facet Definitions section, click Add to add a facet name and
description.

Facets are predefined areas on a page template where content can eventually
be inserted when building pages using the template. Each facet must have a
unique name. For example, you could define a facet called main for the main
content area of the page, and a facet called branding for the branding area of
the page.

Tip:

If you plan on nesting templates or using more than one template on
a page, to avoid confusion, use unique names for the facets in all
templates.

• In the Attributes section, click Add to add an attribute.

Attributes are UI component attributes that can be passed into a page when
building pages using the template. Each attribute must have a name and class
type (for example, java.lang.String). Note that whatever consumes the
attribute (for example an attribute on a component that you configure in Step
13) must be able to accept that type. You can assign default values, and you
can specify that the values are mandatory by selecting the Required
checkbox.

• Click Next.

8. If the page template contents use ADF Model data bindings, select the Create
Page Definition checkbox, and click Add to add one or more model parameters.
For information about using model parameters and ADF Model data bindings, see
Using Page Templates in Developing Fusion Web Applications with Oracle
Application Development Framework.

Once you complete the wizard, JDeveloper displays the page template definition
file in the visual editor. The following example shows the code JDeveloper adds for
you when you use the wizard to define the metadata for a page template definition.
You can view this code in the source editor.

Chapter 10
Using Page Templates

10-10

Tip:

Once a template is created, you can add facets and attributes by
selecting the pageTemplateDef tag in the Structure window and using the
Properties window.

Note:

When you change or delete any facet name or attribute name in the
template component metadata, you have to manually change or delete
the facet or attribute name referenced in the layout section of the
template definition, as well as the JSF pages that consume the template.

<af:pageTemplateDef var="attrs">
 <af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <description/>
 <display-name>sampleTemplateDef1</display-name>
 <facet>
 <facet-name>main</facet-name>
 </facet>
 .
 .
 .
 <attribute>
 <attribute-name>Title</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 <default-value>Replace title here</default-value>
 <required>true</required>
 </attribute>
 .
 .
 .
 </component>
 </af:xmlContent>
 .
 .
 .
</af:pageTemplateDef>

9. In the Components window, drag and drop a component to the page.

In the layout section of a page template definition (or in fragment files that contain
a portion of the layout section), you cannot use the f:view tag, because it is
already used in the JSF pages that consume page templates.

Chapter 10
Using Page Templates

10-11

Best Practice Tip:

You should not use the document or form tags in the template. While
theoretically, template definitions can use the document and form tags,
doing so means the consuming page cannot. Because page templates
can be used for page fragments, which in turn will be used by another
page, it is likely that the consuming page will contain these tags. You
should never add a document tag to a page template.

You can add any number of components to the layout section. However, you
should only have one root component in a template. If you did not choose to use
one of the quick start layouts, then typically, you would add a panel component
such as panelStretchLayout or panelGroupLayout, and then add the components
that define the layout into the panel component. See Organizing Content on Web
Pages.

Declarative components and databound components may be used in the layout
section. For information about using declarative components, see Using
Declarative Components. For information about using databound components in
page templates, see Using Page Templates in Developing Fusion Web
Applications with Oracle Application Development Framework.

10. To nest another template into this template, in the Components window, from the
Layout panel, in the Core Structure group, drag and drop a Template onto the
page.

Note:

You cannot nest an ADF databound template in a template that does not
use ADF data binding, or in a declarative component.

Additionally, a nested template cannot be used more than one per
rendering. For example, it cannot be used as a child to a component that
stamps its children, such as a table or tree.

11. In the Insert Template dialog, select the template that you want to nest.

Tip:

The dialog displays all the templates that are included in the current
project or that are provided in an ADF Library. For information about
ADF Libraries, see Reusing Application Components in Developing
Fusion Web Applications with Oracle Application Development
Framework.

12. In the Components window, from the Layout panel, in the Core Structure group,
drag a Facet and drop it to the page.

For example, if you have defined a main facet for the main content area on a page
template, you might add the facetRef tag as a child in the center facet of
panelStretchLayout component to reference the main facet. At design time, when

Chapter 10
Using Page Templates

10-12

the page author drops content into the main facet, the content is placed in the
correct location on the page as defined in the template.

When you use the facetRef tag to reference the appropriate named facet,
JDeveloper displays the Insert Facet dialog. In that dialog, select a facet name
from the dropdown list, or enter a facet name. If you enter a facet name that is not
already defined in the component metadata of the page template definition file,
JDeveloper automatically adds an entry for the new facet definition in the
component metadata within the xmlContent tag.

Note:

Each facet can be referenced only once in the layout section of the page
template definition. That is, you cannot use multiple facetRef tags
referencing the same facetName value in the same template definition.

Note:

If you have nested another template into this template, you must create
facet references for each facet in the nested template as well as this
template.

13. To specify where attributes should be used in the page template, use the page
template's var attribute value to reference the relevant attributes on the
appropriate components in the layout section.

The var attribute of the pageTemplateDef tag specifies the EL variable name that
is used to access the page template's own attributes. As shown in the following
example, the default value of var used by JDeveloper is attrs.

For example, if you have defined a title attribute and added the panelHeader
component, you might use the EL expression #{attrs.title} in the text value of
the panelHeader component, as shown in the following code, to reference the
value of title:

<af:panelHeader text="#{attrs.title}">

14. To include another file in the template layout, use the jsp:include tag wrapped
inside the subview tag to reference a fragment file, as shown in the following code:

<f:subview id="secDecor">
 <jsp:include page="fileExplorerSecondaryDecoration.jspx"/>
</f:subview>

The included fragment file must also be an XML document, containing only
jsp:root at the top of the hierarchy. For information about using fragments, see
How to Use a Page Fragment in a JSF Page.

By creating a few fragment files for the components that define the template
layout, and then including the fragment files in the page template definition, you
can split up an otherwise large template file into smaller files for easier
maintenance.

Chapter 10
Using Page Templates

10-13

What Happens When You Create a Page Template

Note:

If components in your page template use ADF Model data binding, or if you
chose to associate an ADF page definition when you created the template,
JDeveloper automatically creates files and folders related to ADF Model. For
information about the files used with page templates and ADF Model data
binding, see Using Page Templates in Developing Fusion Web Applications
with Oracle Application Development Framework.

The first time you use the wizard to create a page template in a project, JDeveloper
automatically creates the pagetemplate-metadata.xml file, which is placed in the /
ViewController/src/META-INF directory in the file system.

For each page template that you define using the wizard, JDeveloper creates a page
template definition file (for example, sampleTemplateDef1.jspx), and adds an entry to
the pagetemplate-metadata.xml file. The following example shows an example of the
pagetemplate-metadata.xml file.

<pageTemplateDefs xmlns="http://xmlns.oracle.com/adf/faces/rich/pagetemplate">
 <pagetemplate-jsp-ui-def>/sampleTemplateDef1.jspx</pagetemplate-jsp-ui-def>
 <pagetemplate-jsp-ui-def>/sampleTemplateDef2.jspx</pagetemplate-jsp-ui-def>
</pageTemplateDefs>

Note:

When you rename or delete a page template in the Applications window,
JDeveloper renames or deletes the page template definition file in the file
system, but you must manually change or delete the page template entry in
the pagetemplate-metadata.xml file, and update or remove any JSF pages
that use the template.

The pagetemplate-metadata.xml file contains the names and paths of all the page
templates that you create in a project. This file is used to determine which page
templates are available when you use a wizard to create template-based JSF pages,
and when you deploy a project containing page template definitions.

How to Create JSF Pages Based on Page Templates
Typically, you create JSF pages in the same project where page template definitions
are created and stored. If the page templates are not in the same project as where you
are going to create template-based pages, first deploy the page templates project to
an ADF Library JAR file. For information about deploying a project, see Reusing
Application Components in Developing Fusion Web Applications with Oracle
Application Development Framework. Deploying a page template project also allows
you to share page templates with other developers working on the application.

Chapter 10
Using Page Templates

10-14

Note:

If the template uses jsp:include tags, then it cannot be deployed to an ADF
Library to be reused in other applications.

You can use page templates to build JSF pages or page fragments. If you modify the
layout section of a page template later, all pages or page fragments that use the
template are automatically updated with the layout changes.

In the page that consumes a template, you can add content before and after the
pageTemplate tag. In general, you would use only one pageTemplate tag in a page, but
there are no restrictions for using more than one.

JDeveloper simplifies the creation of JSF pages based on page templates by providing
a template selection option in the Create JSF Page or Create JSF Page Fragment
wizard.

Before you begin:

It may be helpful to have an understanding of page templates. See Using Page
Templates.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To create a JSF page or page fragment based on a page template:

1. Follow the instructions in How to Create JSF Pages to open the Create JSF Page
dialog. In the dialog, select a page template to use from the available selections.

Tip:

Only page templates that have been created using the template wizard
in JDeveloper are available for selection when you have selected
ReferenceADF Page Template.

Tip:

Instead of basing the whole page on a template, you can use a template
for an area of a page. For example, you may have a template to be used
just in the headers of your pages. To apply a template to an area of your
page, from the Layout panel of the Components window, drag and drop
a Template into the desired component.

By default, JDeveloper displays the new page or page fragment in the visual
editor. The facets defined in the page template appear as named boxes in the
visual editor. If the page template contains any default values, you should see the
values in the Properties window, and if the default values have some visual
representation (for example, size), that will be reflected in the visual editor, along

Chapter 10
Using Page Templates

10-15

with any content that is rendered by components defined in the layout section of
the page template definition.

2. In the Structure window, expand jsp:root until you see af:pageTemplate (which
should be under af:form).

Within the form tag, you can drop content before and after the pageTemplate tag.

3. Add components by dragging and dropping components from the Components
window in the facets of the template. In the Structure window, within
af:pageTemplate, the facets (for example, f:facet - main) that have been
predefined in the component metadata section of the page template definition are
shown.

The type of components you can drop into a facet may be dependent on the
location of the facetRef tag in the page template definition. For example, if you've
defined a facetRef tag to be inside a table component in the page template
definition, then only column components can be dropped into the facet because
the table component accepts only column components as children.

Tip:

The content you drop into the template facets may contain ADF Model
data binding. In other words, you can drag and drop items from the Data
Controls panel. For information about using ADF Model data binding,
see About Using ADF Model in a Fusion Web Application in Developing
Fusion Web Applications with Oracle Application Development
Framework.

4. In the Structure window, select af:pageTemplate. Then, in the Properties window,
you can see all the attributes that are predefined in the page template definition.
Predefined attributes might have default values.

You can assign static values to the predefined attributes, or you can use EL
expressions (for example, #{myBean.somevalue}). When you enter a value for an
attribute, JDeveloper adds the f:attribute tag to the code, and replaces the
attribute's default value (if any) with the value you assign.

At runtime, the default or assigned attribute value is used or displayed in the
appropriate part of the template, as specified in the page template definition by the
EL expression that bears the name of the attribute (such as
#{attrs.someAttributeName}).

Chapter 10
Using Page Templates

10-16

Note:

In addition to predefined template definition attributes, the Properties
window also shows other attributes of the pageTemplate tag such as Id,
Value, and ViewId.

The ViewId attribute of the pageTemplate tag specifies the page
template definition file to use in the consuming page at runtime.
JDeveloper automatically assigns the ViewId attribute with the
appropriate value when you use the wizard to create a template-based
JSF page. The ViewId attribute value cannot be removed, otherwise a
runtime error will occur, and the parts of the page that are based on the
template will not render.

5. To include resources, such as CSS or JavaScript, you need to use the
af:resource tag. See Adding Resources to Pages.

What Happens When You Use a Template to Create a Page
When you create a page using a template, JDeveloper inserts the pageTemplate tag,
which references the page template definition, as shown in the following example. Any
components added inside the template's facets use the f:facet tag to reference the
facet. Any attribute values you specified are shown in the f:attribute tag.

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document>
 <af:form>
 .
 .
 .
 <af:pageTemplate viewId="/sampleTemplateDef1.jspx" id="template1">
 <f:attribute name="title" value="Some Value"/>
 <f:facet name="main">
 <!-- add contents here -->
 </f:facet>
 </af:pageTemplate>
 .
 .
 .
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

What Happens at Runtime: How Page Templates Are Resolved
When a JSF page that consumes a page template is executed:

• The pageTemplate component in the consuming page, using the viewId attribute
(for example, <af:pageTemplate viewId="/sampleTemplateDef1.jspx"/>),

Chapter 10
Using Page Templates

10-17

locates the page template definition file that contains the template component
metadata and layout.

• The component subtree defined in the layout section of the pageTemplateDef tag
is instantiated and inserted into the consuming page's component tree at the
location identified by the pageTemplate tag in the page.

• The consuming page passes facet contents into the template using the facet tag.
The facet contents of each facet tag are inserted into the appropriate location on
the template as specified by the corresponding facetRef tag in the layout section
of the pageTemplateDef tag.

• The consuming page passes values into the template by using the attribute tag.
The pageTemplateDef tag sets the value of the var attribute so that the
pageTemplate tag can internally reference its own parameters. The pageTemplate
tag just sets the parameters; the runtime maps those parameters into the
attributes defined in the pageTemplateDef tag.

• Using template component metadata, the pageTemplate tag applies any default
values to its attributes and checks for required values.

Note:

Page templates are processed during JSP execution, not during JSF
processing (that is, component tree creation). This means that fragments
built from page templates cannot be used within tags that require the
component tree creation. For example, you could not include a fragment
based on a template within an iterator tag and expect it to be included in a
loop.

For information about what happens when the page template uses ADF Model data
binding, see Using Page Templates in Developing Fusion Web Applications with
Oracle Application Development Framework.

What You May Need to Know About Page Templates and Naming
Containers

The pageTemplate component acts as a naming container for all content in the
template (whether it is direct content in the template definition, or fragment content
included using the jsp:include action). When working in template-based pages, you
should not reference an individual component inside a page template. Changes made
to the page template or its consuming page may cause the partial triggers to work
improperly. See What You May Need to Know About Using Naming Containers.

Using Page Fragments
You can break up complex pages into page fragments, which are incomplete JSF
pages and reuse them in multiple pages. Different portions of a page can be created
as page fragments and a page can use multiple page fragments.
As you build web pages for an application, some pages may quickly become large and
unmanageable. One possible way to simplify the process of building and maintaining
complex pages is to use page fragments.

Chapter 10
Using Page Fragments

10-18

Large, complex pages broken down into several smaller page fragments are easier to
maintain. Depending on how you design a page, the page fragments created for one
page may be reused in other pages. For example, suppose different parts of several
pages use the same form, then you might find it beneficial to create page fragments
containing those components in the form, and reuse those page fragments in several
pages. Deciding on how many page fragments to create for one or more complex
pages depends on your application, the degree to which you wish to reuse portions of
a page between multiple pages, and the desire to simplify complex pages.

Page fragments are incomplete JSF pages. A complete JSF page that uses
ADF Faces must have the document tag enclosed within an f:view tag. The contents
for the entire page are enclosed within the document tag. A page fragment, on the
other hand, represents a portion of a complete page, and does not contain the f:view
or document tags. The contents for the page fragment are simply enclosed within a
jsp:root tag.

When you build a JSF page using page fragments, the page can use one or more
page fragments that define different portions of the page. The same page fragment
can be used more than once in a page, and in multiple pages.

Note:

The view parts of a page (fragments, declarative components, and the main
page) all share the same request scope. This may result in a collision when
you use the same fragment or declarative component multiple times on a
page and the fragments or components share a backing bean. For
information about scopes, see Object Scope Lifecycles.

For example, the File Explorer application uses one main page (index.jspx) that
includes the following page fragments:

• popups.jspx: Contains all the popup code used in the application.

• help.jspx: Contains the help content.

• header.jspx: Contains the toolbars and menus for the application.

• navigators.jspx: Contains the tree that displays the node hierarchy of the
application.

• contentViews.jspx: Contains the content for the node selected in the navigator
pane.

The following example shows the abbreviated code for the included header.jspx page
fragment. Note that it does not contain an f:view or document tag.

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:panelStretchLayout id="headerStretch">
 <f:facet name="center">
 <!-- By default, every toolbar is placed on a new row -->
 <af:toolbox id="headerToolbox"
 binding="#{explorer.headerManager.headerToolbox}">
.
.

Chapter 10
Using Page Fragments

10-19

.
 </af:toolbox>
 </f:facet>
 </af:panelStretchLayout>
</ui:composition>

When you consume a page fragment in a JSF page, at the part of the page that will
use the page fragment contents, you insert the jsp:include tag to include the desired
page fragment file, as shown in the following example, which is abbreviated code from
the index.jspx page.

<?xml version='1.0' encoding='utf-8'?>
<ui:composition xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:trh="http://myfaces.apache.org/trinidad/html">
 <jsp:directive.page contentType="text/html;charset=utf-8"/>
 <f:view>
.
.
.
 <af:document id="fileExplorerDocument"
 title="#{explorerBundle['global.branding_name']}">
 <af:form id="mainForm">
 <!-- Popup menu definition -->
 <jsp:include page="/fileExplorer/popups.jspx"/>
 <jsp:include page="/fileExplorer/help.jspx"/>
.
.
.
 <f:facet name="header">
 <af:group>
 <!-- The file explorer header with all the menus and toolbar buttons -->
 <jsp:include page="/fileExplorer/header.jspx"/>
 </af:group>
 </f:facet>
 <f:facet name="navigators">
 <af:group>
 <!-- The auxiliary area for navigating the file explorer -->
 <jsp:include page="/fileExplorer/navigators.jspx"/>
 </af:group>
 </f:facet>
 <f:facet name="contentViews">
 <af:group>
 <!-- Show the contents of the selected folder in the folders navigator -->
 <jsp:include page="/fileExplorer/contentViews.jspx"/>
 </af:group>
 </f:facet>
.
.
.
 </af:form>
 </af:document>
 </f:view>
</ui:composition>

When you modify a page fragment, the pages that consume the page fragment are
automatically updated with the modifications. With pages built from page fragments,
when you make layout changes, it is highly probable that modifying the page

Chapter 10
Using Page Fragments

10-20

fragments alone is not sufficient; you may also have to modify every page that
consumes the page fragments.

Note:

If the consuming page uses ADF Model data binding, the included page
fragment will use the binding container of the consuming page. Only page
fragments created as part of ADF bounded task flows can have their own
binding container. For information about ADF bounded task flows, see
Getting Started with ADF Task Flows in Developing Fusion Web Applications
with Oracle Application Development Framework.

Like complete JSF pages, page fragments can also be based on a page template, as
shown in the following example. For information about creating and applying page
templates, see Using Page Templates, and How to Create JSF Pages Based on Page
Templates.

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:pageTemplate viewId="/someTemplateDefinition.jspx">
 .
 .
 .
 </af:pageTemplate>
</ui:composition>

How to Create a Page Fragment
Page fragments are just like any JSF page, except you do not use the f:view or
document tags in page fragments. You can use the Create JSF Page Fragment wizard
to create page fragments. When you create page fragments using the wizard,
JDeveloper uses the extension .jsff for the page fragment files. If you do not use the
wizard, you can use .jspx as the file extension (as the File Explorer application does);
there is no special reason to use .jsff other than quick differentiation between
complete JSF pages and page fragments when you are working in the Applications
window in JDeveloper.

Before you begin:

It may be helpful to have an understanding of page fragments. See Using Page
Fragments.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To create a page fragment:

1. In the Applications window, right-click the node where you wish to create and store
page fragments and choose New > ADF Page Fragment.

2. In the Create ADF Page Fragment dialog, enter a name for the page fragment file.

3. Accept the default directory for the page fragment, or choose a new location.

Chapter 10
Using Page Fragments

10-21

By default, JDeveloper saves page fragments in the project's /public_html
directory in the file system. For example, you could change the default directory
to /public_html/fragments.

4. You can have your fragment pre-designed for you by using either a ADF page
template, a Quick Start Layout. or start with a blank page.

• If you want to create a page fragment based on a page template, select the
Reference ADF Page Template radio button and then select a template
name from the dropdown list. For information about using page templates, see
How to Create JSF Pages Based on Page Templates.

• If you want to use a Quick Start Layout, select the Copy Quick Start Layout
radio button and browse to select the layout you want your fragment to use.
Quick Start Layouts provide the correctly configured layout components need
to achieve specific behavior and look. See Using Quick Start Layouts.

When the page fragment creation is complete, JDeveloper displays the page
fragment file in the visual editor.

5. To define the page fragment contents, drag and drop the desired components
from the Components window onto the page.

You can use any ADF Faces or standard JSF component, for example table,
panelHeader, or f:facet.

The following example shows an example of a page fragment that contains a menu
component.

<?xml version='1.0' encoding='UTF-8'?>
<ui:composition xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
<af:pageTemplate viewId="/MytemplateDef1.jspx" id="pt1">
 <!-- page fragment contents start here -->
 <af:menu id="viewMenu"
 <af:group>
 <af:commandMenuItem type="check" text="Folders"/>
 <af:commandMenuItem type="check" text="Search"/>
 </af:group>
 <af:group>
 <af:commandMenuItem type="radio" text="Table"/>
 <af:commandMenuItem type="radio" text="Tree Table"/>
 <af:commandMenuItem type="radio" text="List"/>
 </af:group>
 <af:commandMenuItem text="Refresh"/>
 </menu>
</ui:composition>

What Happens When You Create a Page Fragment
In JDeveloper, because page fragment files use a different file extension from regular
JSF pages, configuration entries are added to the web.xml file for recognizing and
interpreting .jsff files in the application. The following example shows the web.xml
configuration entries needed for .jsff files, which JDeveloper adds for you when you
first create a page fragment using the wizard.

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsff</url-pattern>
 <is-xml>true</is-xml>

Chapter 10
Using Page Fragments

10-22

 </jsp-property-group>
</jsp-config>

By specifying the url-pattern subelement to *.jsff and setting the is-xml
subelement to true in a jsp-property-group element, the application will recognize
that files with extension .jsff are actually JSP documents, and thus must be
interpreted as XML documents.

How to Use a Page Fragment in a JSF Page
To consume a page fragment in a JSF page, add the page using the Components
window. You can use the jsp:include tag to include the desired page fragment file.

Before you begin:

It may be helpful to have an understanding of page fragments. See Using Page
Fragments.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To add a page fragment using the Components Window:

1. In the Components window, in the JSP page, drag a Include and drop it on the
page.

2. In the Insert Include dialog, use the dropdown list to select the JSF page to
include. Optionally, select whether or not to flush the buffer before the page is
included. For help with the dialog, click Help or press F1.

What Happens at Runtime: How Page Fragments are Resolved
When the page that contains the included page(s) is executed, the jsp:include tag
evaluates the view ID during JSF tree component build time and dynamically adds the
content to the parent page at the location of the jsp:include tag. The fragment
becomes part of the parent page after the component tree is built.

What You May Need to Know About Accessing a Page From a
Different View ID

In ADF, the pages are accessed through different views, each with different viewID.
Saved Search, layouts feature uses viewId to derive a unique location within MDS to
save the layout files as binaries. If you open a page template or fragment that contains
a component and attributes and its results from different viewIDs, the results layout will
be saved in different locations in MDS, because the storage location depends on the
viewID of the page. However, this breaks the results layout persistence feature in ADF
Faces. To override the MDS location for one viewID with another viewID of the page
containing results layout and to consolidate all layout files under one viewID, the public
interface QueryResultsLayoutIdentifier should be registered with
ConfigPropertyService key
oracle.adf.view.faces.component.query.resultsLayoutIdentifier as given
below.

public interface QueryResultsLayoutIdentifier
{

Chapter 10
Using Page Fragments

10-23

 public abstract String getViewId(String currentViewId);
}

Also add the ADF Share configuration Configuration Property Service key in
web.xml or as an ADF share property and set the value as
oracle.adf.view.faces.component.query.resultsLayoutIdentifier.

Note:

You need to implement the public interface to return the correct viewId to be
used.

Using Declarative Components
You can create an XML-based declarative component definition that includes facets,
attributes, methods, and tag library, which can be used in multiple pages.
Declarative components are reusable, composite UI components that are made up of
other existing ADF Faces components. Suppose you are reusing the same
components consistently in multiple circumstances. Instead of copying and pasting the
commonly used UI elements repeatedly, you can define a declarative component that
comprises those components, and then reuse that composite declarative component
in multiple places or pages.

Note:

If you want to use ADF Model layer bindings as values for the attributes, then
you should use a page template instead. See Using Page Templates.

To use declarative components in an application, you first create an XML-based
declarative component definition, which is a JSF document written in XML syntax (with
a file extension of .jspx). Declarative component JSF files do not contain the f:view
and document tags, and they must have componentDef as the root tag.

The entire description of a declarative component is defined within two sections. One
section is xmlContent, which contains all the page template component metadata that
describes the declarative component's supported content areas. A declarative
component's metadata includes the following:

• Facets: Facets act as placeholders for the content that will eventually be placed in
the individual components that make up the declarative component. Each
component references one facet. When page designers use a declarative
component, they insert content into the facet, which in turn, allows the content to
be inserted into the component.

Chapter 10
Using Declarative Components

10-24

Tip:

Facets are the only area within a declarative component that can contain
content. That is, when used on a JSF page, a declarative component
may not have any children. Create facets for all areas where content
may be needed.

• Attributes: You define attributes whose values can be used to populate attributes
on the individual components. For example, if your declarative component uses a
panelBox component, you may decide to create an attribute named Title. You
may then design the declarative component so that the value of the Title attribute
is used as the value for the text attribute of the panelBox component. You can
provide default values for attributes that the user can then override.

Tip:

Because users of a declarative component will not be able to directly set
attributes on the individual components, you must be sure to create
attributes for all attributes that you want users to be able to set or
override the default value.

Additionally, if you want the declarative component to be able to use
client-side attributes (for example, attributeDragSource), you must
create that attribute and be sure to include it as a child to the appropriate
component used in the declarative component. See How to Create a
Declarative Component.

• Methods: You can define a method to which you can bind a property on one of the
included components. For example, if your declarative component contains a
button, you can declare a method name and signature and then bind the
actionListener attribute to the declared method. When page developers use the
declarative component, they rebind to a method on a managed bean that contains
the logic required by the component.

For example, say your declarative component contains a button that you knew
always had to invoke an actionEvent method. You might create a declarative
method named method1 that used the signature void
method(javax.faces.event.ActionEvent). You might then bind the
actionListener attribute on the button to the declared method. When page
developers use the declarative component, JDeveloper will ask them to provide a
method on a backing bean that uses the same signature.

• Tag library: All declarative components must be contained within a tag library that
you import into the applications that will use them.

The second section (anything outside of the xmlContent tag) is where all the
components that make up the declarative component are defined. Each component
contains a reference back to the facet that will be used to add content to the
component.

To use declarative components in a project, you first must deploy the library that
contains the declarative component as an ADF Library. You can then add the
deployed ADF Library JAR file to the project's properties, which automatically inserts
the JSP tag library or libraries into the project's properties. Doing so allows the

Chapter 10
Using Declarative Components

10-25

component(s) to be displayed in the Components window so that you can drag and
drop them onto a JSF page.

For example, say you want to create a declarative component that uses a panelBox
component. In the panelBox component's toolbar, you want to include three buttons
that can be used to invoke actionEvent methods on a backing bean. To do this,
create the following:

• One facet named content to hold the content of the panelBox component.

• One attribute named Title to determine the text to display as the panelBox
component's title.

• Three attributes (one for each button, named buttonText1, buttonText2, and
buttonText3) to determine the text to display on each button.

• Three attributes (one for each button, named display1, display2, display3) to
determine whether or not the button will render, because you do not expect all
three buttons will be needed every time the component is used.

• Three declarative methods (one for each button, named method1, method2, and
method3) that each use the actionEvent method signature.

• One panelBox component whose text attribute is bound to the created Title
attribute, and references the content facet.

• Three Button components. The text attribute for each would be bound to the
corresponding buttonText attribute, the render attribute would be bound to the
corresponding display attribute, and the actionListener attribute would be
bound to the corresponding method name.

Figure 10-2 shows how such a declarative component would look in the visual editor.

Figure 10-2 Declarative Component in the Visual Editor

When a page developer drops a declarative component that contains required
attributes or methods onto the page, a dialog opens asking for values.

If the developer set values where only the first two buttons would render, and then
added a panelGroupLayout component with output text, the page would render as
shown in Figure 10-3.

Figure 10-3 Displayed Declarative Component

Chapter 10
Using Declarative Components

10-26

Note:

You cannot use fragments or ADF databound components in the component
layout of a declarative component. If you think some of the components will
need to be bound to the ADF Model layer, then create attributes for those
component attributes that need to be bound. The user of the declarative
component can then manually bind those attributes to the ADF Model layer.

Additionally, because declarative components are delivered in external JAR
files, the components cannot use the jsp:include tag because it will not be
able to find the referenced files.

If your declarative component requires resources such as custom styles defined in
CSS or JavaScript, then you need to include these using the af:resource tag on the
consuming page. See Adding Resources to Pages.

How to Create a Declarative Component
JDeveloper simplifies creating declarative component definitions by providing the
Create ADF Declarative Component wizard, which lets you create facets, and define
attributes and methods for the declarative component. The wizard also creates
metadata in the component-extension tile that describes tag library information for the
declarative component. The tag library metadata is used to create the JSP tag library
for the declarative component.

First you add the template component metadata for facets and attributes inside the
xmlContent section of the componentDef tag. After you have added all the necessary
component metadata for facets and attributes, then you add the components that
define the actual layout of the declarative component in the section outside of the
xmlContent section.

Best Practice Tip:

Because the tag library definition (TLD) for the declarative component must
be generated before the component can be used, the component must be
deployed to a JAR file before it can be consumed. It is best to create an
application that contains only your declarative components. You can then
deploy all the declarative components in a single library for use in multiple
applications.

Before you begin:

It may be helpful to have an understanding of declarative components. See Using
Declarative Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To create a declarative component definition:

Chapter 10
Using Declarative Components

10-27

1. In the Applications window, right-click the node where you wish to create and store
declarative components and click New > From Gallery.

2. In the New Gallery, expand Web Tier, select JSF/Facelets, then ADF Declarative
Component, and click OK.

3. In the Create ADF Declarative Components dialog, enter a name and file name for
the declarative component.

The name you specify will be used as the display name of the declarative
component in the Components window, as well as the name of the Java class
generated for the component tag. Only alphanumeric characters are allowed in the
name for the declarative component, for example, SampleName or myPanelBox.

The file name is the name of the declarative component definition file (for example,
componentDef1.jspx). By default, JDeveloper uses .jspx as the file extension
because declarative component definition files must be XML documents.

4. Accept the default directory name for the declarative component, or choose a new
location.

By default, JDeveloper saves declarative component definitions in the /
ViewController/public_html directory in the file system. For example, you could
save all declarative component definitions in the /View Controller/public_html/
declcomps directory.

5. Enter a package name (for example, dcomponent1). JDeveloper uses the package
name when creating the Java class for the declarative component.

6. Select a tag library to contain the new declarative component. If no tag library
exists, or if you wish to create a new one, click Add Tag Library, and do the
following to create metadata for the tag library:

a. Enter a name for the JSP tag library to contain the declarative component (for
example, dcompLib1).

b. Enter the URI for the tag library (for example, /dcomponentLib1).

c. Enter a prefix to use for the tag library (for example, dc).

7. If you want to be able to add custom logic to your declarative component, select
the Use Custom Component Class checkbox and enter a class name.

8. To add named facets, click the Facet Definitions tab and click the Add icon.

Facets in a declarative component are predefined areas where content can
eventually be inserted. The components you use to create the declarative
component will reference the facets. When page developers use the declarative
components, they will place content into the facets, which in turn will allow the
content to be placed into the individual components. Each facet must have a
unique name. For example, your declarative component has a panelBox
component, you could define a facet named box-main for the content area of the
panelBox component.

9. To add attributes, click Attributes and click Add.

Attributes are UI component attributes that can be passed into a declarative
component. Each attribute must have a name and class type (for example,
java.lang.String). You can assign default values, and you can specify that the
values are mandatory by selecting the Required checkbox.

Chapter 10
Using Declarative Components

10-28

Tip:

You must create attributes for any attributes on the included components
for which you want users to be able to set or change values.

Remember to also add attributes for any tags you may need to add to
support functionality of the component, for example values required by
the attributeDragSource tag used for drag and drop functionality.

10. To add declarative methods, click the Methods tab and click the Add icon.

Declarative methods allow you to bind command component actions or action
listeners to method signatures, which will later resolve to actual methods of the
same signature on backing beans for the page on which the components are
used. You can click the browse (...) icon to open the Method Signature dialog,
which allows you to search for and build your signature.

When you complete the dialog, JDeveloper displays the declarative component
definition file in the visual editor.

Tip:

Once a declarative component is created, you can add facets and
attributes by selecting the componentDef tag in the Structure window,
and using the Properties window.

11. In the Components window, drag and drop a component as a child to the
componentDef tag in the Structure window.

Suppose you dropped a panelBox component. In the Structure window,
JDeveloper adds the component after the xmlContent tag. It does not matter
where you place the components for layout, before or after the xmlContent tag,
but it is good practice to be consistent.

You can use any number of components in the component layout of a declarative
component. Typically, you would add a component such as panelFormLayout or
panelGroupLayout, and then add the components that define the layout into the
panel component.

Chapter 10
Using Declarative Components

10-29

Note:

You cannot use fragments or ADF databound components in the
component layout of a declarative component. If you think some of the
components will need to be bound to the ADF Model layer, then create
attributes for those component attributes. The user of the declarative
component can then manually bind those attributes to the ADF Model
layer. For information about using the ADF Model layer, see Using ADF
Model in a Fusion Web Application in Developing Fusion Web
Applications with Oracle Application Development Framework.

Additionally, because declarative components are delivered in external
JAR files, the components cannot use the jsp:include tag because it
will not be able to find the referenced files.

12. Within those components (in the layout section) where content can eventually be
inserted by page authors using the component, use the facetRef tag to reference
the appropriate named facet.

For example, if you have defined a content facet for the main content area, you
might add the facetRef tag as a child in the panelBox component to reference the
content facet. At design time, when the page developer drops components into
the content facet, the components are placed in the panelBox component.

When you drag Facet from the Components window Core Structure panel and
drop it in the desired location on the page, JDeveloper displays the Insert Facet
Definition dialog. In that dialog, select a facet name from the dropdown list, or
enter a facet name, and click OK. If you enter a facet name that is not already
defined in the component metadata of the definition file, JDeveloper automatically
adds an entry for the new facet definition in the component metadata within the
xmlContent tag.

Note:

Each facet can be referenced only once. That is, you cannot use multiple
facetRef tags referencing the same facetName value in the same
declarative component definition.

13. To specify where attributes should be used in the declarative component, use the
Properties window and the Expression Builder to bind component attribute values
to the created attributes.

For example, if you have defined a Title attribute and added a panelBox as a
component, you might use the dropdown menu next to the text attribute in the
Properties window to open the Expression Builder, as shown in Figure 10-4.

Chapter 10
Using Declarative Components

10-30

Figure 10-4 Opening the Expression Builder for an Attribute in the
Properties Window

In the Expression Builder, you can expand the Scoped Variables > attrs node to
select the created attribute that should be used for the value of the attribute in the
Properties window. For example, Figure 10-5 shows the Title attribute selected in
the Expression Builder. Click OK to add the expression as the value for the
attribute.

Figure 10-5 Expression Builder Displays Created Attributes

14. To specify the methods that buttons in the declarative component should invoke,
use the dropdown menu next to that component's actionListener attribute and
choose Edit to open the Edit Property dialog. This dialog allows you to choose one
of the declarative methods you created for the declarative component.

In the dialog, select Declarative Component Methods, select the declarative
method from the dropdown list, and click OK.

Chapter 10
Using Declarative Components

10-31

What Happens When You Create a Declarative Component
When you first use the Create ADF Declarative Component wizard, JDeveloper
creates the metadata file using the name you entered in the wizard. The entire
definition for the component is contained in the componentDef tag. This tag uses two
attributes. The first is var, which is a variable used by the individual components to
access the attribute values. By default, the value of var is attrs. The second attribute
is componentVar, which is a variable used by the individual components to access the
methods. Be aware that if componentVar is set to component then it is incompatible
with JSF 2.0 and the expression will fail. You will need to set componentVar using a
different variable.

The metadata describing the facets, attributes, and methods is contained in the
xmlContent tag. Facet information is contained within the facet tag, attribute
information is contained within the attribute tag, and method information is contained
within the component-extension tag, as is library information. The following example
shows abbreviated code for the declarative component shown in Figure 10-2.

<af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <display-name>myPanelBox</display-name>
 <facet>
 <description>Holds the content in the panel box</description>
 <facet-name>content</facet-name>
 </facet>
 <attribute>
 <attribute-name>Title</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 <required>true</required>
 </attribute>
 <attribute>
 <attribute-name>buttonText1</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 </attribute>
 . . .
 <component-extension>
 <component-tag-namespace>dcomponent1</component-tag-namespace>
 <component-taglib-uri>/componentLib1</component-taglib-uri>
 <method-attribute>
 <attribute-name>method1</attribute-name>
 <method-signature>
 void method(javax.faces.event.ActionEvent)
 </method-signature>
 </method-attribute>
 <method-attribute>
 <attribute-name>method2</attribute-name>
 <method-signature>
 void method(javax.faces.event.ActionEvent)
 </method-signature>
 </method-attribute>
. . .
 </component-extension>
 </component>
</af:xmlContent>

Metadata for the included components is contained after the xmlContent tag. The
code for these components is the same as it might be in a standard JSF page,
including any attribute values you set directly on the components. Any bindings you

Chapter 10
Using Declarative Components

10-32

created to the attributes or methods use the component's variables in the bindings.
The following example shows the code for the panelBox component with the three
buttons in the toolbar. Notice that the facetRef tag appears as a child to the panelBox
component, as any content a page developer will add will then be a child to the
panelBox component.

<af:panelBox text="#{attrs.Title}" inlineStyle="width:25%;">
 <f:facet name="toolbar">
 <af:group>
 <af:toolbar>
 <af:button text="#{attrs.buttonText1}"
 actionListener="#{component.handleMethod1}"
 rendered="#{attrs.display1}"/>
 <af:button text="#{attrs.buttonText2}"
 rendered="#{attrs.display2}"
 actionListener="#{component.handleMethod2}"/>
 <af:button text="#{attrs.buttonText3}"
 rendered="#{attrs.display3}"
 actionListener="#{component.handleMethod3}"/>
 </af:toolbar>
 </af:group>
 </f:facet>
 <af:facetRef facetName="content"/>
</af:panelBox>

The first time you use the wizard to create a declarative component in a project,
JDeveloper automatically creates the declarativecomp-metadata.xml file, which is
placed in the /ViewController/src/META-INF directory in the file system.

For each declarative component that you define using the wizard, JDeveloper creates
a declarative component definition file (for example, componentDef1.jspx), and adds
an entry to the declarativecomp-metadata.xml file. The following example shows an
example of the declarativecomp-metadata.xml file.

<declarativeCompDefs
 xmlns="http://xmlns.oracle.com/adf/faces/rich/declarativecomp">
 <declarativecomp-jsp-ui-def>
 /componentDef1.jspx
 </declarativecomp-jsp-ui-def>
 <declarativecomp-taglib>
 <taglib-name>
 dcompLib1
 </taglib-name>
 <taglib-uri>
 /componentLib1
 </taglib-uri>
 <taglib-prefix>
 dc
 </taglib-prefix>
 </declarativecomp-taglib>
</declarativeCompDefs>

Chapter 10
Using Declarative Components

10-33

Note:

When you rename or delete a declarative component in the Applications
window, JDeveloper renames or deletes the declarative component definition
file in the file system, but you must manually change or delete the declarative
component entry in the declarativecomp-metadata.xml file, and update or
remove any JSF pages that use the declarative component.

The declarativecomp-metadata.xml file contains the names, paths, and tag library
information of all the declarative components you create in the project. When you
deploy the project, the metadata is used by JDeveloper to create the JSP tag libraries
and Java classes for the declarative components.

JDeveloper also adds entries to the faces-config.xml file.

How to Deploy Declarative Components
Declarative components require a tag library definition (TLD) in order to be displayed.
JDeveloper automatically generates the TLD when you deploy the project. Because of
this, you must first deploy the project that contains your declarative components before
you can use them. This means before you can use declarative components in a
project, or before you can share declarative components with other developers, you
must deploy the declarative component definitions project to an ADF Library JAR file.
For instructions on how to deploy a project to an ADF Library JAR file, see Reusing
Application Components in Developing Fusion Web Applications with Oracle
Application Development Framework.

Briefly, when you deploy a project that contains declarative component definitions,
JDeveloper adds the following for you to the ADF Library JAR file:

• A component tag class (for example, the componentDef1Tag.class) for each
declarative component definition (that is, for each componentDef component)

• One or more JSP TLD files for the declarative components, using information from
the project's declarativecomp-metadata.xml file

To use declarative components in a consuming project, you add the deployed
ADF Library JAR file to the project's properties. For instructions on how to add an ADF
Library JAR file, see Reusing Application Components in Developing Fusion Web
Applications with Oracle Application Development Framework. By adding the deployed
JAR file, JDeveloper automatically inserts the JSP tag library or libraries (which
contain the reusable declarative components) into the project's properties, and also
displays them in the Components window.

How to Use Declarative Components in JSF Pages
In JDeveloper, you add declarative components to a JSF page just like any other UI
components, by selecting and dragging the components from the Components
window, and dropping them into the desired locations on the page. Your declarative
components appear in a page of the palette just for your tag library. Figure 10-6 shows
the page in the Components window for a library with a declarative component.

Chapter 10
Using Declarative Components

10-34

Figure 10-6 Components Window with a Declarative Component

When you drag a declarative component that contains required attributes onto a page,
a dialog opens where you enter values for any defined attributes.

Once the declarative component is added to the page, you must manually bind the
declarative methods to actual methods on managed beans.

Before proceeding with the following procedure, you must already have added the
ADF Library JAR file that contains the declarative components to the project where
you are creating JSF pages that are to consume the declarative components. For
instructions on how to add an ADF Library JAR file, see Reusing Application
Components in Developing Fusion Web Applications with Oracle Application
Development Framework.

Before you begin:

It may be helpful to have an understanding of declarative components. See Using
Declarative Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To use declarative components in a JSF page:

1. In the Applications window, double-click the JSF page (or page template) to open
it in the visual editor.

2. In the Components window, from the tag library panel, drag and drop the
declarative component to the page.

You can add the same declarative component more than once on the same page.

If the declarative component definition contains any required attributes,
JDeveloper opens a dialog for you to enter the required values for the declarative
component that you are inserting.

3. Add components by dragging and dropping components from the Components
window in the facets of the template. In the Structure window, expand the structure
until you see the element for the declarative component, for example,
dc:myPanelBox, where dc is the tag library prefix and myPanelBox is the declarative
component name.

Under that are the facets (for example, f:facet - content) that have been
defined in the declarative component definition. You add components to these
facets.

You cannot add content directly into the declarative component; you can drop
content into the named facets only. The types of components you can drop into a
facet may be dependent on the location of the facetRef tag in the declarative
component definition. For example, if you have defined facetRef to be a child of

Chapter 10
Using Declarative Components

10-35

table in the declarative component definition, then only column components can
be dropped into the facet because table accepts column children only.

Note:

You cannot place any components as direct children of a declarative
component. All content to appear within a declarative component must
be placed within a facet of that component.

4. In the Structure window, again select the declarative component element, for
example, dc:myPanelBox. The Properties window displays all the attributes and
methods that have been predefined in the declarative component definition (for
example, Title). The attributes might have default values.

You can assign static values to the attributes, or you can use EL expressions (for
example, #{myBean.somevalue}). For any of the methods, you must bind to a
method that uses the same signature as the declared method defined on the
declarative component.

At runtime, the attribute value will be displayed in the appropriate location as
specified in the declarative component definition by the EL expression that bears
the name of the attribute (for example, #{attrs.someAttributeName}).

5. If you need to include resources such as CSS or JavaScript, then you need to
include these using the af:resource tag. See Adding Resources to Pages.

What Happens When You Use a Declarative Component on a JSF
Page

After adding a declarative component to the page, the visual editor displays the
component's defined facets as named boxes, along with any content that is rendered
by components defined in the component layout section of the declarative component
definition.

Like other UI components, JDeveloper adds the declarative component tag library
namespace and prefix to the jsp:root tag in the page when you first add a declarative
component to a page, for example:

<jsp:root xmlns:dc="/dcomponentLib1: ..>

In this example, dc is the tag library prefix, and /dcomponentLib1 is the namespace.

JDeveloper adds the tag for the declarative component onto the page. The tag
includes values for the component's attributes as set in the dialog when adding the
component. The following example shows the code for the MyPanelBox declarative
component to which a user has added a panelGroupLayout component that contains
three outputFormatted components.

<dc:myPanelBox title="My Panel Box" buttonText1="Button 1"
 display1="true" display2="true" buttonText2="Button 2"
 display3="false">
 <f:facet name="Content">
 <af:panelGroupLayout layout="scroll">
 <af:outputFormatted value="outputFormatted1"
 styleUsage="instruction"/>

Chapter 10
Using Declarative Components

10-36

 <af:outputFormatted value="outputFormatted2"
 styleUsage="instruction"/>
 <af:outputFormatted value="outputFormatted3"
 styleUsage="instruction"/>
 </af:panelGroupLayout>
 </f:facet>
</dc:myPanelBox>

What Happens at Runtime: Declarative Components
When a JSF page that consumes a declarative component is executed:

• The declarative component tag in the consuming page locates the declarative
component tag class and definition file that contains the declarative component
metadata and layout.

• The component subtree defined in the layout section of the componentDef tag is
instantiated and inserted into the consuming page's component tree at the location
identified by the declarative component tag in the page.

• The componentDef tag sets the value of the var attribute so that the declarative
component can internally reference its own attributes. The declarative component
just sets the attribute values; the runtime maps those values into the attributes
defined in the componentDef tag.

• Using declarative component metadata, the declarative component applies any
default values to its attributes and checks for required values.

• The consuming page passes facet contents into the declarative component by
using the facet tag. The facet contents of each facet tag are inserted into the
appropriate location on the declarative component as specified by the
corresponding facetRef tag in the layout section of the componentDef tag.

Adding Resources to Pages
For reusable contents that include ADF Faces facets, attributes, and methods, you
must use the af:resource tag to define the location of the resource. Without the
resource tag, the resources won’t get added to a page.
You should use the af:resource tag to add CSS or JavaScript to pages, page
templates, or declarative components. This tag is especially useful for page templates
and declarative components because resources can only be added to the page (in the
HTML head element). When you can use this tag in page templates and declarative
components, the resources will be added to the consuming page during JSP
execution. If this tag is not used, browsers may need to re-layout pages that use page
templates and declarative components whenever it encounters a style or link tag. The
resources can be added to the page during any page request, but they must be added
before the document component is rendered.

The resource tag can be used with PPR. During PPR, the following requirements
apply:

• URL resources are compared on the client before being added to the page. This
ensures duplicates are not added.

• CSS resources are removed from the page during a PPR navigation. The new
page will have the new CSS resources.

Chapter 10
Adding Resources to Pages

10-37

• The resource used in the af:resource tag is not the ADF skin CSS. For
information on using the ADF skin, see Customizing the Appearance Using Styles
and Skins.

How to Add Resources to Page Templates and Declarative
Components

You use the af:resource tag to define the location of the resource. The resource will
then be added to the document header of the consuming page.

Before you begin:

It may be helpful to have an understanding of the available resources. See Adding
Resources to Pages.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Reusable Components.

To add resources:

1. In the Components window, from the Layout panel, in the Core Structure group,
drag and drop a Resource to the page.

2. In the Insert Resource dialog, do the following:

• Type: Select css or javascript from the dropdown list.

• Resource: Enter the URI of the source of the external resource to include in
the page. If the URI starts with a slash ('/'), the URI will be made context
relative, if it starts with two slashes ('//'), it will be made server relative. All
others are non-absolute URIs are relative to URI location in the browser. If not
given, the resource content will be taken from the tag body.

3. Click OK.

What Happens at Runtime: How to Add Resources to the Document
Header

During JSP tag execution, the af:resource tag only executes if its parent component
has been created. When it executes, it adds objects to a set in the RichDocument
component. RichDocument then adds the specified resources (CSS or JavaScript) to
the consuming page.

Chapter 10
Adding Resources to Pages

10-38

Part IV
Using Common ADF Faces Components

Part IV documents the different ADF Faces components, including input, collection,
lists, queries, menus, dialogs, calendars, output, messages, navigation, and dynamic
components.

Specifically, this part contains the following chapters:

• Using Input Components and Defining Forms

• Using Tables, Trees, and Other Collection-Based Components

• Using List-of-Values Components

• Using Query Components

• Using Menus, Toolbars, and Toolboxes

• Using Popup Dialogs, Menus, and Windows

• Using a Calendar Component

• Using Output Components

• Displaying Tips, Messages, and Help

• Working with Navigation Components

• Determining Components at Runtime

11
Using Input Components and Defining
Forms

This chapter describes how to define forms and create input components that allow
end users to enter data (such as inputText), select values (such as inputNumber,
inputRange, inputColor, inputDate, and select components), edit text (such as
richTextEditor), and load files (such as inputFile).
This chapter includes the following sections:

• About Input Components and Forms

• Defining Forms

• Using the inputText Component

• Using the Input Number Components

• Using Color and Date Choosers

• Using Selection Components

• Using Shuttle Components

• Using the richTextEditor Component

• Using File Upload

• Using Code Editor

If you want to use an input component that selects from a list of items that may be
potentially large, or may represent relationships between objects (such as creating a
list to represent an attribute that is a foreign key to another object), then you may want
to use a list of values component. For information about those components, see Using
List-of-Values Components.

About Input Components and Forms
The ADF input components is a means by which input data can be submitted to the
application. You can use various input components in your forms that provides built-in
functions to collect input data from the users, such as creating a new file, adding a rich
text editor to the form, or providing a multiple choice list.

Input components accept user input in a variety of formats. The most common formats
are text, numbers, date, and selection lists that appear inside a form and are submitted
when the form is submitted. The entered values or selections may be validated and
converted before they are processed further. Figure 11-1 shows ADF Faces standard
input components.

11-1

Figure 11-1 ADF Faces Input Components

ADF Faces input components also include a number of components that allow users
to select one or multiple values, as shown in Figure 11-2.

Figure 11-2 Select Components

Chapter 11
About Input Components and Forms

11-2

Input Component Use Cases and Examples
Input components are often used to build forms for user input. For example, the File
Explorer application contains a form that allows users to create a new file. As shown in
Figure 11-3, input components allow users to enter the name, the size, select
permissions, and add keywords, and a description for a file. The Name field is
required, as noted by the asterisk. If a user fails to enter a value, an error message is
displayed. That validation and associated error message may be configured on the
component (by setting the required or requiredMessageDetail attribute), or handled
on the server (by setting the showRequired attribute).

Figure 11-3 Form Uses Input Components

The richTextEditor component provides rich text input that can span many lines and
can be formatted using different fonts, sizes, justification, and other editing features
that may be required when you want users to enter more than simple text. For
example, the richTextEditor might be used in a web-based discussion forum,
allowing users to format the text that they need to publish, as shown in Figure 11-4.

Figure 11-4 richTextEditor Used in a Discussion Forum

Chapter 11
About Input Components and Forms

11-3

The inputFile component allows users to browse for a local file to upload to the
application server. For example, an email message might allow users to attach a file to
a message, as shown in Figure 11-5.

Figure 11-5 fileUpload Component

The ADF Faces selection components allows users to make selections from a list of
items instead of typing in values. ADF Faces provides both single choice selection lists
and multi-choice selection lists. Single-choice lists are used to select one value from a
list, such as the desired drink in an online food order, as shown in Figure 11-6.

Figure 11-6 Users Can Select One Value From the selectOneChoice
Component

ADF single-selection components include a dropdown list (as shown in Figure 11-6), a
list box, radio buttons, and checkboxes.

ADF multi-selection components allow users to select more than one value in a list.
For example, instead of being able to select just one drink type, the selectManyChoice
component allows a user to select more than one drink, as shown in Figure 11-7.

Figure 11-7 Users Can Select Multiple Values From the selectManyChoice
Component

ADF multiple choice components include a dropdown list, checkboxes, a checkbox list,
a shuttle, and an ordered shuttle.

Chapter 11
About Input Components and Forms

11-4

Best Practice:

You can use either selection lists or list-of-values (LOV) components to
display a list. LOV components should be used when the selection list is
large. LOV components are model-driven using the ListOfValueModel class
and may be configured programmatically using the API. They present their
selection list inside a popup window that may also include a query panel.
Selection lists simply display a static list of values. LOV components are
single select and allow you to select only one option, hence should not be
used for multiple selections. For information about using LOV components,
see Using List-of-Values Components.

The form components provide a container for other components. The form component
represents a region where values from embedded input components can be
submitted. Only one form component per page is supported. ADF Faces also provides
the subform component, which adds flexibility by defining subregions whose
component values can be submitted separately within a form.

Note:

If you are using an input component that is configured to display a list of
suggestions with the af:autoSuggestBehavior tag and uses
AdfCustomEvent to send custom event to the server, the server listener will
not be executed as af:autoSuggestBehavior tag interrupts the input value
life cycle after Apply request value phase and jumps to render response
phase.

Additional Functionality for Input Components and Forms
You may find it helpful to understand other ADF Faces features before you implement
your input components. Additionally, once you have added an input component or
form to your page, you may find that you need to add functionality such as validation
and accessibility. Following are links to other functionality that input components can
use.

• Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Client components: Input components can be client components. To work with
the components on the client, see Using ADF Faces Client-Side Architecture .

• JavaScript APIs: All input components have JavaScript client APIs that you can
use to set or get property values. See theJavaScript API Reference for Oracle
ADF Faces.

• Events: Input components fire both server-side and client-side events that you
can have your application react to by executing some logic. See Handling Events.

• You can add validation and conversion to input components. See Validating and
Converting Input.

Chapter 11
About Input Components and Forms

11-5

• You can display tips and messages, as well as associate online help with input
components. See Displaying Tips, Messages, and Help.

• There may be times when you want the certain input components to be validated
before other components on the page. See Using the Immediate Attribute.

• You may want other components on the page to update based on selections you
make from a selection component. See Using the Optimized Lifecycle.

• You may want to use the scrollComponentIntoViewBehavior tag with the
richTextEditor component to allow users to jump to specific areas in the
component. See How to Use the scrollComponentIntoViewBehavior Tag.

• You can change the icons used for required and changed notifications using skins.
See Customizing the Appearance Using Styles and Skins.

• You can make your input components accessible. See Developing Accessible
ADF Faces Pages.

• Instead of entering values for attributes that take strings as values, you can use
property files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

• If your application uses ADF Model, then you can create automatically bound
forms using data controls (whether based on ADF Business Components or other
business services). See Creating a Basic Databound Page in Developing Fusion
Web Applications with Oracle Application Development Framework.

Defining Forms
The ADF shuttle component that you add to a page lets users make a single selection
or multiple selections from an available list of values box and add them to a selected
list of values box.

A form is a component that serves as a container for other components. When a
submit action occurs within the form, any modified input values are submitted. For
example, you can create an input form that consists of input and selection
components, and a submit command button, all enclosed within a form. When the user
enters values into the various input fields and clicks the Submit button, those new
input values will be sent for processing.

By default, when you create a JSF page in JDeveloper, it automatically inserts a form
component into the page. When you add components to the page, they will be inserted
inside the form component.

Tip:

If you do not already have an af:form tag on the page, and you drag and
drop an ADF Faces component onto the page, JDeveloper will prompt you to
enclose the component within a form component.

The following example shows two input components and a Submit button that when
clicked will submit both input values for processing.

<af:form id="f1">
 <af:panelFormLayout id="pfl1">
 <af:inputText value="#{myBean.firstName}"

Chapter 11
Defining Forms

11-6

 label="#{FirstName}"
 id="it1">
 </af:inputText>
 <af:inputText value="#{myBean.lastName}"
 label="#{LastName}"
 id="it2">
 </af:inputText>
 <af:button text="Submit" id="b1"/>
 </af:panelFormLayout>
</af:form>

Because there can be only one form component on a page, you can use subforms
within a form to create separate regions whose input values can be submitted. Within
a region, the values in the subform will be validated and processed only if a
component inside the subform caused the values to be submitted. You can also nest a
subform within another subform to create nested regions whose values can be
submitted. For information about subforms, see Using Subforms to Create Sections on
a Page.

The following example shows a form with two subforms, each containing its own input
components and buttons, such as the Submit button. When a Submit button is clicked,
only the input values within that subform will be submitted for processing.

<af:form id="f1">
 <af:subform id="s1">
 <af:panelFormLayout id="pfl1">
 <af:inputText value="#{myBean.firstName}"
 label="#{FirstName}"
 id="it1">
 </af:inputText>
 <af:inputText value="#{myBean.lastName}"
 label="#{LastName}"
 id="it2">
 </af:inputText>
 <af:button text="Submit" id="b1"/>
 </af:panelFormLayout>
 </af:subform>

 <af:subform id="s2">
 <af:panelFormLayout id="pfl2">
 <af:inputText value="#{myBean.primaryPhone}"
 label="#{PrimaryPhone}"
 id="it3">
 </af:inputText>
 <af:inputText value="#{myBean.cellPhone}"
 label="#{CellPhone}"
 id="it4">
 </af:inputText>
 <af:button text="Submit" id="b2"/>
 </af:panelFormLayout>
 </af:subform>
</af:form>

Aside from the basic button, you can add any other command component within a
form and have it operate on any field within the form.

Chapter 11
Defining Forms

11-7

How to Add a Form to a Page
In most cases, JDeveloper will add the form component for you. However, there may
be cases where you must manually add a form, or configure the form with certain
attribute values.

Before you begin:

It may be helpful to have an understanding of form components. See Defining Forms.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add a form to a page:

1. In the Components window, from the Layout panel, in the Core Structure group,
drag and drop a Form onto the page.

2. In the Properties window, expand the Common section, where you can optionally
set the following:

• DefaultCommand: Specify the ID attribute of the command component whose
action should be invoked when the Enter key is pressed and the focus is
inside the form.

• UsesUpload: Specify whether or not the form supports uploading files. The
default is False. For information about uploading files, see Using File Upload.

• TargetFrame: Specify where the new page should be displayed. Acceptable
values are any of the valid values for the target attribute in HTML. The default
is _self.

How to Add a Subform to a Page
You should add subform components within a form component when you need a
section of the page to be capable of independently submitting values.

Before you begin:

It may be helpful to have an understanding of forms and subforms. See Defining
Forms.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

You must add a form component to the page. For procedures, see How to Add a Form
to a Page.

To add subforms to a page:

1. In the Components window, from the Layout panel, in the Core Structure group,
drag and drop a Subform onto the page as a child to a form component.

2. In the Properties window, expand the Common section and set the following:

• Default: Specify whether or not the subform should assume it has submitted
its values. When set to the default value of false, this subform component will
consider itself to be submitted only if no other subform component has been
submitted. When set to true, this subform component assumes it has
submitted its values.

Chapter 11
Defining Forms

11-8

Tip:

A subform is considered submitted if an event is queued by one of its
children or facets for a phase later than Apply Request Values (that
is, for later than decode()). For information about lifecycle phases,
see Using the JSF Lifecycle with ADF Faces .

• Default Command: Specify the ID attribute of the command component
whose action should be invoked when the Enter key is pressed and the focus
is inside the subform.

How to Add a Button to Reset the Form
You add the button component and configure it using af:resetListener to reset other
input components to their default values. The reset button will act upon only those
components within that form or subform.

Before you begin:

It may be helpful to have an understanding of form components. See Defining Forms.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add a button with resetListener to the page:

1. In the Components window, from the General Controls panel, drag and drop a
Button onto the page.

2. In the Properties window, set the following:

• Text: Specify the textual label of the button.

The property is available in the Common section.

• Disabled: Specify whether or not the button should be disabled. For example,
you could enter an EL expression that determines certain conditions under
which the button should be disabled.

The property is available in the Behavior section.

3. In the Components window, from the Operations panel, in the Listeners group,
drag a Reset Listener component and drop it as a child to the button component.

4. In the Insert Reset Listener dialog, select action from the Type dropdown, and
click OK.

Using the inputText Component
The ADF inputText component is a textual input field. You can allow users to submit
textual input data using these components. You can allow users to enter a single row
input text or multiple rows of input text.

Although input components include many variations, such as pickers, sliders, and a
spinbox, the inputText component is the basic input component for entering values.
You can define an inputText component as a single-row input field or as a text area
by setting the rows attribute to more than 1. However, if you want user to enter rich

Chapter 11
Using the inputText Component

11-9

text, consider using the richTextEditor component as described in Using the
richTextEditor Component.

You can allow auto-completion for an inputText component using the autoComplete
attribute. When set to true, the component remembers previous entries, and then
displays those entries when the user types in values that begin to match those entries.

You can hide the input values from being displayed, such as for passwords, by setting
the secret attribute to true. Like other ADF Faces components, the inputText
component supports label, text, and messages. When you want this component to be
displayed without a label, you set the simple attribute to true. Figure 11-8 shows a
single-row inputText component.

Figure 11-8 Single-Row inputText Component

You can make the inputText component display more than one row of text using the
rows attribute. If you set the rows attribute to be greater than one, and you set the
simple attribute to true, then the inputText component can be configured to stretch to
fit its container using the dimensionsFrom attribute. For information about how
components stretch, see Geometry Management and Component Stretching.
Figure 11-10 shows a multi-row inputText component.

You can add multiple inputText components to create an input form. Figure 11-9
shows an input form using two inputText components.

Figure 11-9 Form Created by inputText Components

You can also configure an insertTextBehavior tag that works with command
components to insert given text into an inputText component. The text to be entered
can be a simple string, or it can be the value of another component, for example the
selected list item in a selectOneChoice component. For example, Figure 11-10 shows
an inputText component with some text already entered by a user.

Figure 11-10 inputText Component with Entered Text

Chapter 11
Using the inputText Component

11-10

The user can then select additional text from a dropdown list, click the command
button, and that text appears in the inputText component as shown in Figure 11-11.

Figure 11-11 inputText Component with Inserted Text

How to Add an inputText Component
You can use an inputText component inside any of the layout components described
in Organizing Content on Web Pages.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using the inputText Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputText component:

1. In the Components window, from the Text and Selection panel, drag and drop an
Input Text onto the page.

2. In the Properties window, expand the Common section and set the following:

• Label: Enter a value to specify the text to be used as the label.

If the text to be used is stored in a resource bundle, use the dropdown list to
select Select Text Resource. Use the Select Text Resource dialog either to
search for appropriate text in an existing bundle, or to create a new entry in an
existing bundle. For information about using resource bundles, see
Internationalizing and Localizing Pages.

• Value: Specify the value of the component. If the EL binding for a value points
to a bean property with a get method but no set method, and this is a
component whose value can be edited, then the component will be rendered
in read-only mode.

Note:

If you are using an inputText component to display a Character
Large Object (CLOB), then you will need to create a custom
converter that converts the CLOB to a String. For information about
conversion, see Creating Custom ADF Faces Converters.

Chapter 11
Using the inputText Component

11-11

3. Expand the Appearance section, and set the following:

• Columns: Specify the number of visible characters in the text field.

• Rows: Specify the height of the text control by entering the number of rows to
be shown. The default value is 1, which generates a one-row input field. The
number of rows is estimated based on the default font size of the browser.

If you want to change the default text wrapping behavior when Rows is set to
more than 1, you must also set the wrap attribute.

• DimensionsFrom: Determine how you want the inputText component to
handle geometry management. Set this attribute to one of the following:

– auto: If the parent component to the inputText component allows
stretching of its child, then the inputText component will stretch to fill the
parent component, as long as the rows attribute is set to a number greater
than one and the simple attribute is set to true. If the parent component
does not allow stretching, then the inputText component gets its
dimensions from the content.

– content: The inputText component gets its dimensions from the
component content. This is the default.

– parent: The inputText component gets its dimensions from the
inlineStyle attribute. If no value exists for inlineStyle, then the size is
determined by the parent container.

• Secret: Specify this boolean value that applies only to single-line text controls.
When set to true, the secret attribute hides the actual value of the text from
the user.

• Wrap: Specify the type of text wrapping to be used in a multiple-row text
control. This attribute is ignored for a single-row component. By default, the
attribute is set to soft, which means multiple-row text wraps visually, but does
not include carriage returns in the submitted value. Setting this attribute to off
will disable wrapping: the multiple-row text will scroll horizontally. Setting it to
hard specifies that the value of the text should include any carriage returns
needed to wrap the lines.

• ShowRequired: Specify whether or not to show a visual indication that the
field is required. Note that setting the required attribute to true will also show
the visual indication. You may want to use the showRequired attribute when a
field is required only if another field's value is changed.

• Changed: Specify whether or not to show a blue circle whenever the value of
the field has changed. If you set this to true, you may also want to set the
changedDesc attribute.

• ChangedDesc: Specify the text to be displayed in a tooltip on a mouseover of
the changed icon. By default, the text is "Changed." You can override this by
providing a different value.

• Editable: Determine whether you want the component to always appear
editable. If so, select always. If you want the value to appear as read-only until
the user hovers over it, select onAccess. If you want the value to be inherited
from an ancestor component, select inherit.

Chapter 11
Using the inputText Component

11-12

Note:

If you select inherit, and no ancestor components define the
editable value, then the value always is used.

• AccessKey: Specify the key to press that will access the field.

• LabelAndAccessKey: Instead of specifying a separate label and access key,
you can combine the two, so that the access key is part of the label. Simply
precede the letter to be used as an access key with an ampersand (&).

For example, if the label of a field is Description and you want the D to be the
access key, you would enter &Description.

Note:

Because the value is being stored in the source of the page in XML,
the ampersand (&) character must be escaped, so the value will
actually be represented in the source of the page using the
characters & to represent the ampersand.

• Simple: Set to true if you do not want the label to be displayed.

• Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

Note:

The placeholder value works on browsers that fully support HTML5.

4. If you want to style the label text, expand the Style section and set LabelStyle.
Enter a CSS style property and value. For example, if you do not want the label
text to wrap, you would enter white-space:nowrap; for the value

5. Expand the Behavior section and set the following:

• Required: Specify whether or not a value is required. If set to true, a visual
indication is displayed to let the user know a value must be entered. If a value
is not entered, an exception will occur and the component will fail validation.

• ReadOnly: Specify whether the control is displayed as a field whose value can
be edited, or as an output-style text control.

• AutoSubmit: Specify whether or not the component will automatically submit
when the value changes. For information about using the autoSubmit attribute,
see Using the Optimized Lifecycle.

• AutoComplete: Set to on to allow the component to display previous values
when the user begins to enter a matching value. Set to off if no matches
should be displayed. Default is on.

Chapter 11
Using the inputText Component

11-13

• AutoTab: Specify whether or not focus will automatically move to the next tab
stop when the maximum length for the current component is reached.

• Usage: Specify how the input component will be rendered in HTML 5 browser.
The valid values are auto, text, and search. Default is auto.

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

• MaximumLength: Specify the maximum number of characters per line that
can be entered into the text control. This includes the characters representing
the new line. If set to 0 or less, the maximumLength attribute is ignored. Note
that in some browsers such as Internet Explorer, a new line is treated as two
characters.

• Converter: Specify a converter object. See Adding Conversion.

• Validator: Specify a method reference to a validator method using an EL
expression. See Adding Validation.

6. If you want to disable spellcheck, expand the Other section and set SpellCheck to
off. By default, the spellcheck is set to the spellcheck setting of the browser.

For example, in Mozilla Firefox, the spellcheck feature is enabled by default.

How to Add the Ability to Insert Text into an inputText Component
The insertTextBehavior tag works with command components to insert given text
into an inputText component. The text to be entered can be a simple string, or it can
be the value of another component, for example the selected list item in a
selectOneChoice component. To allow text to be inserted into an inputText
component, add the insertTextBehavior tag as a child to a command component that
will be used to insert the text.

Note:

The insertTextBehavior tag cancels server-side event delivery
automatically; actionListener or action attributes on the parent command
component will be ignored. If you need to also trigger server-side
functionality, you must add an custom client listener to deliver the server-side
event. See Sending Custom Events from the Client to the Server.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using the inputText Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

Before you add an insertTextBehavior tag, you need to create an inputText
component as described in How to Add an inputText Component. Set the
clientComponent attribute to true.

To add text insert behavior:

Chapter 11
Using the inputText Component

11-14

1. Add a command component that the user will click to insert the text. For
procedures, see How to Use Buttons and Links for Navigation and Deliver
ActionEvents.

2. In the Components window, from the Operations panel, in the Behavior group,
drag and drop an Insert Text Behavior as a child to the command component.

3. In the Insert Text Behavior dialog, enter the following:

• For: Use the dropdown arrow to select Edit and then navigate to select the
inputText component into which the text will be inserted.

• Value: Enter the value for the text to be inserted. If you want to insert static
text, then enter that text. If you want the user to be able to insert the value of
another component (for example, the value of a selectOneChoice
component), then enter an EL expression that resolves to that value. The
following example shows page code for an inputText component into which
either the value of a dropdown list or the value of static text can be inserted.

<af:inputText clientComponent="true"
 id="idInputText"
 label="String value"
 value="#{demoInput.value}"
 rows="10"
 columns="60">
</af:inputText>
<af:selectOneChoice id="targetChoice"
 autoSubmit="true"
 value="#{demoInput.choiceInsertText}"
 label="Select text to insert">
 <af:selectItem label="Some Text." value="Some Text." id="si1"/>
 <af:selectItem label="0123456789" value="0123456789" id="si2"/>
 <af:selectItem label="~!@#$%^*" value="~!@#$%^*" id="si3"/>
 <af:selectItem label="Two Lines" value="\\\\nLine 1\\\\nLine 2" id="si4"/>
</af:selectOneChoice>
<af:button text="Insert Selected Text"
 id="firstButton"
 partialTriggers="targetChoice">
 <af:insertTextBehavior for="idInputText"
value="#{demoInput.choiceInsertText}">
 </af:insertTextBehavior>
</af:button>
<af:button text="Insert Static Text" id="b1">
 <af:insertTextBehavior for="idInputText" value="Some Static Text."/>
</af:button>

4. By default, the text will be inserted when the action event is triggered by clicking
the command component. However, you can change this to another client event
by choosing that event from the dropdown menu for the triggerType attribute of
the insertTextBehavior component in the Properties window.

Using the Input Number Components
An ADF input number component is a numerical input field. You can allow users to
submit numerical input data using these components. Some of the number
components are inputNumberSlider in Horizontal and Vertical layout,
inputRangeSlider, and inputNumberSpinbox components.

Chapter 11
Using the Input Number Components

11-15

The slider components present the user with a slider with one or two markers whose
position on the slider corresponds to a value. The slider values are displayed and
include a minus icon at one end and a plus icon at the other. The user selects the
marker and moves it along the slider to select a value. The inputNumberSlider
component has one marker and allows the user to select one value from the slider, as
shown in Figure 11-12 in horizontal layout, and in Figure 11-13 in vertical layout.

Figure 11-12 inputNumberSlider in Horizontal Layout

Figure 11-13 InputNumberSlider in Vertical Layout

The inputRangeSlider component has two markers and allows the user to pick the
end points of a range, as shown in Figure 11-14.

Figure 11-14 inputRangeSlider in horizontal layout

You can also configure the inputNumberSlider and inputRangeSlider components to
add a play/pause button that animates the slider across the component's increment
values, as shown in Figure 11-15.

Figure 11-15 inputRangeSlider with Play/Pause Button

Chapter 11
Using the Input Number Components

11-16

The inputNumberSpinbox is an input component that presents the user with an input
field for numerical values and a set of up- and down-arrow keys to increment or
decrement the current value in the input field, as shown in Figure 11-16.

Figure 11-16 inputNumberSpinbox

How to Add an inputNumberSlider or an inputRangeSlider Component
When you add an inputNumberSlider or an inputRangeSlider component, you can
determine the range of numbers shown and the increment of the displayed numbers.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using the Input Number Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputNumberSlider or inputRangeSlider component:

1. In the Components window, from the Text and Selection panel, drag and drop a
Slider (Number) or Slider (Range) onto the page.

2. In the Properties window, expand the Common section (and for the
inputRangeSlider component, also expand the Data section) and set the
following attributes:

• Label: Specify a label for the component.

• Minimum: Specify the minimum value that can be selected. This value is the
begin value of the slider.

• Maximum: Specify the maximum value that can be selected. This value is the
end value of the slider.

• MinimumIncrement: Specify the smallest possible increment. This is the
increment that will be applied when the user clicks the plus or minus icon.

• MajorIncrement: Specify the distance between two major marks. This value
causes a labeled value to be displayed. For example, the majorIncrement
value of the inputRangeSlider component in Figure 11-14 is 5.0. If set to less
than 0, major increments will not be shown.

• MinorIncrement: Specify the distance between two minor marks. If less than
0, minor increments will not be shown.

• Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

3. Expand the Appearance section and set the Orientation to specify whether the
component will be in horizontal or vertical layout. For information about the other
attributes in this section, see How to Add an inputText Component.

4. Expand the Other section and set AnimationInterval to a value in milliseconds.
Default value is zero.

Chapter 11
Using the Input Number Components

11-17

If the value is greater than zero, a play button appears below the component.
When clicked, it animates the slider across its increment values, stopping at each
increment for the specified number of milliseconds. While animation is playing, the
play button changes to a pause button that stops the animation at the current
increment value.

For example, the animationInterval value of the inputRangeSlider component
in Figure 11-15 is 999.

How to Add an inputNumberSpinbox Component
The inputNumberSpinbox component allows the user to scroll through a set of
numbers to select a value.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using the Input Number Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputNumberSpinbox component:

1. In the Components window, from the Text and Selection panel, drag and drop an
Input Number Spinbox onto the page.

2. In the Properties window, expand the Data section, and set the following:

• Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

• Minimum: Specify the minimum value allowed in the input field.

• Maximum: Specify the maximum value allowed in the input field.

• StepSize: Specify the increment by which the spinbox will increase or
decrease the number in the input field.

3. Expand the Appearance and Behavior sections and set the attributes. For
information about setting these attributes, see How to Add an inputText
Component.

Using Color and Date Choosers
Using the ADF inputColor and inputDate component you can add a color pallet and a
popup calendar in your form.

The inputColor component allows users to pick a color from a a palette. It presents a
text input field for entering code for colors. It also displays a button for picking colors
from a palette in a popup, as shown in Figure 11-17.

Chapter 11
Using Color and Date Choosers

11-18

Figure 11-17 inputColor Component with Popup chooseColor Component

By default, the content delivery for the popup is lazy. When the user clicks the button,
the inputColor component receives a PPR request, and rerenders, displaying a
chooseColor component in a popup component.

Performance Tip:

If the clientComponent attribute on the inputColor component is set to
true, then the popup and chooseColor component are delivered
immediately. If the color palette is large, this could negatively affect initial
page load performance.

The default color code format is the hexadecimal color format. However, you can
override the format using a ColorConverter class.

The inputDate component presents a text input field for entering dates and a button
for picking dates from a popup calendar, as shown in Figure 11-18. The default date
format is the short date format appropriate for the current locale. For example, the
default format in American English (ENU) is mm/dd/yy. However, you can override the
format using a date-time converter (for information about using converters, see Adding
Conversion).

Figure 11-18 inputDate Component

When you add a date-time converter and configure it to show both the date and the
time, the date picker is displayed as a modal dialog with additional controls for the user

Chapter 11
Using Color and Date Choosers

11-19

to enter a time. Additionally, if the converter is configured to show a time zone, a time
zone dropdown list is shown in the dialog, as shown in Figure 11-19.

Figure 11-19 Modal Dialog When Date-Time Converter Is Used

How to Add an inputColor Component
The inputColor component allows users either to enter a value in an input text field,
or to select a color from a color chooser.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Color and Date Choosers.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputColor component:

1. In the Components window, from the Text and Selection panel, drag and drop an
Input Color onto the page.

2. In Properties window, expand the Common section, and set the following:

• Label: Specify a label for the component.

• Compact: Set to true if you do not want to display the input text field, as
shown in Figure 11-20.

Chapter 11
Using Color and Date Choosers

11-20

Figure 11-20 inputColor Component in Compact Mode

3. Expand the Data section and set the following attributes:

• Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

• ColorData: Specify the list of colors to be displayed in the standard color
palette. The number of provided colors can be 49 (7 colors x 7 colors), 64 (8
colors x 8 colors), or 121 (11 colors x 11 colors). The number set for this
attribute will determine the valid value for the width attribute. For example, if
you set the colorData attribute to 49, the width must be 7. If the number does
not match the width, extra color elements in the list will be ignored and missing
color elements will be displayed as no-color. The color list must be an array of
type TrColor on the client side.

• CustomColorData: Specify the list of custom-defined colors. The number of
colors can be 7, 8, or 11. The color list must be an array of type TrColor on
the client side. On the server side, it must be a List of java.awt.Color
objects, or a list of hexadecimal color strings.

• DefaultColor: Specify the default color using hexadecimal color code, for
example #000000.

4. Expand the Appearance section and set the following attributes:

• Width: Specify the width of the standard palette in cells. The valid values are
7, 8, and 11, which correspond to the values of the colorData and
customColorData attributes.

• CustomVisible: Specify whether or not the Custom Color button and custom
color row are to be displayed. When set to true, the Custom Color button
and custom color row will be rendered.

• DefaultVisible: Specify whether or not the Default button is to be displayed.
When set to true, the Default button will be rendered. The Default button
allows the user to easily select the color set as the value for the defaultColor
attribute.

• LastUsedVisible: Specify whether or not the Last Used button is to be
displayed. When set to true the Last Used button will be rendered, which
allows the user to select the color that was most recently used.

• Editable: Set to onAccess if you want the value of the component to appear as
read-only until the user hovers over it. If you want the component to always

Chapter 11
Using Color and Date Choosers

11-21

appear editable, select always. If you want the value to be inherited from an
ancestor component, select inherit.

Note:

If you select inherit, and no ancestor components define the
editable value, then the value always is used.

• Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

Note:

The placeholder value will only work on browsers that fully support
HTML5.

5. If you want to style the label, expand the Style section and set LabelStyle. Enter a
CSS style property and value for the label. For example, if you do not want the
label text to wrap, you would enter white-space:nowrap; for the value.

6. Expand the Behavior section and set the following attribute:

• ChooseId: Specify the ID of the chooseColor component which can be used
to choose the color value. If not set, the inputColor component has its own
default popup dialog with a chooseColor component.

• AutoComplete: Set to true to allow the component to display previous values
when the user begins to enter a matching value. Set to false if no matches
should be displayed. Default is true.

• Usage: Specify how the input component will be rendered in HTML 5 browser.
The valid values are auto, text, and search. Default is auto.

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

How to Add an InputDate Component
The inputDate component allows the user to either enter or select a date.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Color and Date Choosers.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputDate component:

Chapter 11
Using Color and Date Choosers

11-22

1. In the Components window, from the Text and Selection panel, drag and drop an
Input Date onto the page.

2. In the Properties window, expand the Common section, and set the following:

• Label: Specify a label for the component.

• Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

3. In the Other section, set the following:

• Layout: Specify the date picker functionality to expose on the inputdate
component. This attribute provides fine control over the layout and ordering of
various sections of the date picker. The sections that you can expose
correspond to the Layout attribute values. You may combine the following
values in any order to create a layout that makes sense for the given use
case: navigator, compactNavigator, date, time, compactTime, today,
timeZone.

For example, to create an inputdate component where the date picker layout
specifies a mobile-friendly UI that displays a year and month navigation panel
to select the date from a wall style calendar, and also allows time selection,
enter the following attribute values without commas:

navigator date time

The attribute values that you can enter have the following purposes:

– navigator: Renders a mobile-friendly year and month navigation panel
that utilizes the entire panel for tap navigation.

– compactNavigator: Renders a navigation panel in a single row with a
dropdown and a number spinner for month and year selection. Note: This
option reproduces the look and feel of past JDeveloper releases.

– date: Renders the wall calendar styled date selection grid.

– time: Renders a mobile-friendly time selection panel with spin wheels to
select hours, minutes, seconds and meridian.

– compactTime: Renders a single row time selection panel with spinners to
select hours, minutes, seconds and radio controls for meridian selection

– today: Renders a button labeled Today (or Now in time mode) as a quick
shortcut to select the current date or time. This will submit the current date
if enabled in a date only picker, else it will only switch to the current month
in date+time selection mode.

– timeZone: Renders a select one choice dropdown with various time zones
available for selection. Note: This option reproduces the look and feel of
past JDeveloper releases and works well on mobile devices.

The skin property -tr-layout configures default values for the date picker
layout if none is configured on the inputdate component.

• Months: Optionally, specify the number of months to be shown at once in the
date picker. If you want to display more than one month, the additional months
will be rendered side by side with the selected month appearing in the center.
If no value is entered, the attribute value is based on the skin property -tr-
months.

Chapter 11
Using Color and Date Choosers

11-23

4. Optionally expand the Style section and set the LabelStyle attribute to a CSS
style property and value. For example, if you did not want the label text to wrap,
you would enter white-space:nowrap; as the value.

5. Expand the Data section and set the following attributes:

• MinValue: Specify the minimum value allowed for the date value. When set to
a fixed value on a tag, this value will be parsed as an ISO 8601 date. ISO
8601 dates are of the form "yyyy-MM-dd" (for example: 2002-02-15). All other
uses require java.util.Date objects.

• MaxValue: Specify the maximum value allowed for the date value. When set
to a fixed value on a tag, this value will be parsed as an ISO 8601 date. ISO
8601 dates are of the form "yyyy-MM-dd" (for example: 2002-02-15). All other
uses require java.util.Date objects.

• DisableDays: Specify a binding to an implementation of the
org.apache.myfaces.trinidad.model.DateListProvider interface. The
getDateList method should generate a List of individual java.util.Date
objects which will be rendered as disabled. The dates must be in the context
of the given base calendar.

Performance Tip:

This binding requires periodic roundtrips. If you just want to disable
certain weekdays (for example, Saturday and Sunday), use the
disableDaysOfWeek attribute.

• DisableDaysOfWeek: Specify a whitespace-delimited list of weekdays that
should be rendered as disabled in every week. The list should consist of one
or more of the following abbreviations: sun, mon, tue, wed, thu, fri, sat. By
default, all days are enabled.

• DisableMonths: Specify a whitespace-delimited list of months that should be
rendered as disabled in every year. The list should consist of one or more of
the following abbreviations: jan, feb, mar, apr, may, jun, jul, aug,
sep, oct, nov, dec. By default, all months are enabled.

• DefaultValue : the default date would be used only when the picker is
launched on an empty DateTime input field. When set to a literal value, this will
be parsed asyyyy-MM-dd hh:mm:ss or yyyy-MM-dd. In case the time part is not
specified, the time components (hours, minutes, seconds, milliseconds) will be
zeroed-out. The created Date object will be in the application's time zone. See
What You May Need to Know About Including a Default Value for InputDate.

6. Expand the Behavior section and set the following:

• ChooseId. Specify the ID of the chooseDate component which can be used to
choose the date value. If not set, the inputDate component has its own
default popup dialog with a chooseDate component.

• AutoComplete: Set to true to allow the component to display previous values
when the user begins to enter a matching value. Set to false if no matches
should be displayed. Default is true.

• Usage: Specify how the input component will be rendered in HTML 5 browser.
The valid values are auto, text, and search. Default is auto.

Chapter 11
Using Color and Date Choosers

11-24

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

7. Expand the Appearance section and set the following:

• Editable: Set to onAccess if you want the value of the component to appear as
read-only until the user hovers over it. If you want the component to always
appear editable, select always. If you want the value to be inherited from an
ancestor component, select inherit.

Note:

If you select inherit, and no ancestor components define the
editable value, then the value always is used.

• Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

Note:

The placeholder value will only work on browsers that fully support
HTML5.

8. Optionally expand the Data section and set the TimeZoneList attribute to a
custom list of timezones.

What You May Need to Know About Including a Default Value for an
InputDate Component

You can configure the inputDate component to show a default value for either the
date or both the date and the time by using the DefaultValue attribute. The value that
you specify for this attribute is used to display the default values for date and time. You
can specify one of the following values:

• Default date and time: displays the user specified date and time as default date
and time.

• Default date only: displays the user specified date as default date.

Note:

In case a default date and time are not specified, then today's date and
current time will be shown as the default date and time.

You can specify the date and time either as an EL expression or as a literal value.

Chapter 11
Using Color and Date Choosers

11-25

The following example shows how to specify a date and time default value for the
inputDate component, by using an EL expression defined by the testInput backing
bean.

<af:inputDate label="Date with default value" simple="true" id="inputDate"
 DefaultValue="#{testInput .defaultVal}">
 <af:convertDateTime type="both" dateStyle="full" pattern="yyyy-MM-dd
HH:mm:ss"/>
</af:inputDate>

The following example shows how to specify the default value for date and time as a
literal value.

<af:inputDate label="Date with default value" simple="true" id="inputDate"
 DefaultValue="2019-01-01 05:05:05" >
 <af:convertDateTime type="both" dateStyle="full" pattern="yyyy-MM-dd
HH:mm:ss"/>
</af:inputDate>

The following example shows how to specify the default value for date only as a literal
value.

<af:inputDate label="Date with default value" simple="true" id="inputDate"
 DefaultValue="2019-01-01" >
</af:inputDate>

What You May Need to Know About Setting the Time Value for an
InputDate Component

When a user selects a date in the date picker, the page should automatically set the
default time value within the same picker. You can use the
dateSelectionEventHandler method to set the default time value for the inputDate
component, when a user selects a date. To receive date-selection notifications, you
must first register a client listener for the dateSelection event, as shown in the
following sample.

<af:inputDate id="inputDate"
 <af:clientListener type="dateSelection" method="dateSelectionEventHandler"/>
 <af:convertDateTime type="both" dateStyle="short"/>
</af:inputDate>

What You May Need to Know About Selecting Time Zones Without the
inputDate Component

By default, the inputDate component displays a drop down list of time zones if the
associated converter is configured to do so, for example, if you include the time zone
placeholder z in the converter's pattern. The user can only modify the time zone using
this list. The list is configured to display the most common time zones.

However, there may be times when you need to display the list of time zones outside
of the inputDate component. For example, on a Application Preferences page, you
may want to use a selectOneChoice component that allows the user to select the time
zone that will be used to display all inputDates in the application. A backing bean
would handle the conversion between the time zone ID and the java.util.TimeZone
object. Converters for the inputDate instances in the application would then bind the
time zone to that time zone object.

Chapter 11
Using Color and Date Choosers

11-26

You can access this list using either an API on the DateTimeUtils class, or using an
EL expression on a component.

Following are the methods on DateTimeUtils class:

• getCommonTimeZoneSelectItems (): Returns a list of commonly used time zones.

• getCommonTimeZoneSelectItems (String timeZoneId): Returns a list of
commonly used time zones, including the given time zone if it is not part of the list.

To access this list using EL, use one of the following expressions:

• af:getCommonTimeZoneSelectItems

For example:

<f:selectItems value="#{af:getCommonTimeZoneSelectItems()}" id="tzones2" />

• af:getMergedTimeZoneSelectItems (id)

For example:

<f:selectItems
value="#{af:getMergedTimeZoneSelectItems(demoInput.preferredTimeZoneId)}"
id="tzones" />

If you will be using an inputDate component and a selection list for its time zone on
the same page, you must clear out the local value for the inputDate's time zone to
ensure that the value binding for the selection takes precedence. Otherwise, a non-null
local value will take precedence, and the inputDate component will not appear to be
updated.In the following example, the backing bean has a reference using the binding
attribute to the inputDate component. When the user picks a new time zone, the ID is
set and the code gets the converter for the inputDate and clears out its time zone.
When the page is rendered, since the local value for the converter's time zone is null, it
will evaluate #{demoInput.preferredTimeZone} and obtain the updated time zone.

<af:selectOneChoice label="Select a new timezone" id="soc1"
 value="#{demoInput.preferredTimeZoneId}" autoSubmit="true">
 <f:selectItems
 value="#{af:getMergedTimeZoneSelectItems(demoInput.preferredTimeZoneId)}"
 id="tzones" />
</af:selectOneChoice>
<af:inputDate label="First inputDate with timezone bound" id="bound1"
 partialTriggers="tzpick" binding="#{demoInput.boundDate1}">
 <af:convertDateTime type="both" timeStyle="full"
 timeZone="#{demoInput.preferredTimeZone}"/>
</af:inputDate>

DemoInputBean.java
public void setPreferredTimeZoneId(String _preferredTimeZoneId)
{
 TimeZone tz = TimeZone.getTimeZone(_preferredTimeZoneId);
 setPreferredTimeZone (tz);
 this._preferredTimeZoneId = _preferredTimeZoneId;
}

public void setPreferredTimeZone(TimeZone _preferredTimeZone)
{
 this._preferredTimeZone = _preferredTimeZone;
 DateTimeConverter conv1 = (DateTimeConverter)
 _boundDate1.getConverter();
 conv1.setTimeZone(null);
}

Chapter 11
Using Color and Date Choosers

11-27

What You May Need to Know About Multi-Selection Support in the
chooseDate Component

With support from the chooseDate component load and selection events, you can
define a client event listener to call an event handler and handle date selection based
on the selection modifier keys used (Ctrl and Shift keys).

When the user first opens the chooseDate component or when the user navigates
through the months of the calendar, the component generates
AdfChooseDateLoadEvent. Then, when the user selects a date, the chooseDate
component generates AdfDateSelectionEvent along with the selected Date. The
generated selection event includes the selection modifier key information that your
event handler can process.

The AdfDateSelectionEvent API provides the following methods to interact with the
selection event:

• getSelectedDate (): Gets the date in the date cell of the calendar that the user
clicked when AdfDateSelectionEvent was generated.

• getModifiers(): Returns a list of the selection modifier keys with the following
constant values:

– AdfRichChooseDate.SINGLE_SELECTION: Default on desktops. Reflects user
intention to select only 1 date. The previously selected date should get
deselected and the current selected.

– AdfRichChooseDate.MULTI_SELECTION: Default only on touch devices.
Reflects the user intention to select an additional date. The previously selected
date should remain selected and the current date added to the selections. If
the current date is already selected, then deselect/toggle. This is triggered
when the Control/Command modifier is pressed while the selection event is
queued.

– AdfRichChooseDate.RANGE_SELECTION: Reflects the user intention to select a
range of dates. The previously selected date should remain selected and all
the dates between the last selection to the present have to be selected. This is
triggered when the Shift modifier is pressed while the selection event is
queued.

Additionally, the API setSelectedDates() on the RichChooseDate client component
along with component load and selection events allows you to implement multi-
selection capability on the chooseDate component. The component will select the
dates specified when you call setSelectedDates() on the generated event source.
Load and selection events should be used to listen for user clicks (and key modifiers)
to build your own collection of date selections and supply back to the component via
the setSelectedDates() method.

For example, to register for date selection and load events, you can create a client
listener for the chooseDate component:

<af:chooseDate id="chooseDate" >
 <af:clientListener type="dateSelection" method="dateSelectionEventHandler"/>
 <af:clientListener type="load" method="chooseDateLoadHandler"/>
 <af:convertDateTime type="both" dateStyle="short"/>
</af:chooseDate>

Chapter 11
Using Color and Date Choosers

11-28

You can then define an event handler to handle the selected date based on the
selection modifier keys. The following sample adds selected dates to the collection if
the Ctrl key (MULTI_SELECTION) is pressed. If the Ctrl key is not pressed, then the
previous collection is cleared and the selected date is added to it. And, if the Shift key
(RANGE_SELECTION) is pressed, it selects all the dates in range.

<af:resource type="javascript">
 var dates = [];
 var minDate;
 var maxDate ;
 function dateSelectionEventHandler(event) {
 var eventSource = event.getSource();
 var selectedDate = event.getSelectedDate();
 var modifier = event.getModifiers();

 // ctrl or command is pressed
 if (modifier.indexOf(AdfRichChooseDate.MULTI_SELECTION) != -1) {
 dates.push(selectedDate);
 }
 else if
 (modifier.indexOf(AdfRichChooseDate.RANGE_SELECTION) != -1) // shift is
pressed
 {
 if (!minDate || (minDate.getTime() > selectedDate.getTime())) {
 minDate = selectedDate;
 }
 if (!maxDate || (maxDate.getTime() < selectedDate.getTime())) // single
click {
 maxDate = selectedDate;
 }
 var timeDiff = Math.abs(maxDate.getTime() - minDate.getTime());
 var diffDays = Math.ceil(timeDiff / (1000 * 3600 * 24)) +1;
 dates = []
 for (var i = 0; i < diffDays; i++) {
 var selDate = new
 Date(minDate.getFullYear(),minDate.getMonth(), minDate.getDate() +
i, 0,0,0,0);
 if (!eventSource.isDisabled(selDate)) {
 dates.push(selDate);
 }
 }
 }
 else if
 (modifier.indexOf(AdfRichChooseDate.SINGLE_SELECTION) != -1)
 {
 minDate = null;
 maxDate = null;
 dates = [];
 dates.push(selectedDate)
 }
 eventSource.setSelectedDates(dates);
 }

 function chooseDateLoadEventHandler(event) {
 var eventSource = event.getSource();
 eventSource.setSelectedDates(dates);
 }
</af:resource>

Chapter 11
Using Color and Date Choosers

11-29

What You May Need to Know About Creating a Custom Time Zone
List

The inputDate component can be configured to show a custom list of time zones
using the Time Zone List attribute.

In the following example, the inputDate component uses the custom time zone list
defined by the testInput backing bean to show only three US time zones.

<af:inputDate id="idtzl" label="InputDate with timezoneList set"
 timeZoneList="#{testInput.timezoneList}">
<af:convertDateTime type="both" timeStyle="full" timeZone="#{testInput.timezone}/>
</af:inputDate>

testInput.java
public void setTimezoneList(List<String> _timezoneList)
 {
 this._timezoneList = _timezoneList;
 }
 public List<String> getTimezoneList()
 {
 return _timezoneList;
 }
 private List<String> _timezoneList = new ArrayList<String>
 (Arrays.asList("America/Los_Angeles", "America/Denver", "America/New_York"));

Figure 11-21 illustrates the custom time zone list in the inputDate component defined
by the backing bean.

Figure 11-21 Custom Time Zone List in inputDate Component

You can also use the getCustomTimeZoneSelectItems helper EL method to get
custom time zones as a list of SelectItems, which can then be used with components
like selectOneChoice, as shown in the following example.

<af:selectOneChoice label="Select a timezone" id="soctzlel" value="America/New_York">
<f:selectItems value="#{af:getCustomTimeZoneSelectItems('America/New_York',
testInput.timezoneList)}" id="tzonesel" />
</af:selectOneChoice>

Figure 11-22 illustrates the custom time zone list in the selectOneChoice component
defined by the getCustomTimeZoneSelectItems method.

Chapter 11
Using Color and Date Choosers

11-30

Figure 11-22 Custom Time Zone List in selectOneChoice Component

The getCustomTimeZoneSelectItems helper EL method assumes that the input
parameter list is sorted by timezone offset. For more information about
getCustomTimeZoneSelectItems method, see the ADF Faces API documentation.

Using Selection Components
You can allow users to select single or multiple input values by adding ADF selection
components in the form. Some of the different selection components are
selectBooleanCheckbox, selectBooleanRadio, selectManyCheckbox and so on.

The selection components allow the user to select single and multiple values from a
list or group of items. ADF Faces provides a number of different selection components,
ranging from simple boolean radio buttons to list boxes that allow the user to select
multiple items. The list of items within a selection component is made up of a number
of selectItem components

All the selection components except the selectItem component delivers the
ValueChangeEvent and AttributeChangeEvent events. The selectItem component
only delivers the AttributeChangeEvent event. You must create a
valueChangeListener handler or an attributeChangeListener handler, or both for
them.

The selectBooleanCheckbox component value must always be set to a boolean and
not an object. It toggles between selected and unselected states, as shown in
Figure 11-23.

Figure 11-23 selectBooleanCheckbox Component

The selectBooleanCheckbox component also provides a third mixed state that
indicates that the component is neither selected or cleared, as shown in Figure 11-24.
Clicking a mixed state checkbox makes it selected. It toggles between the selected
and cleared states, but it does not return to the mixed state by clicking, or any other
click action.

Figure 11-24 selectBooleanCheckbox Component in Mixed State

The selectBooleanRadio component displays a boolean choice, and must always be
set to a boolean. Unlike the selectBooleanCheckbox component, the
selectBooleanRadio component allows you to group selectBooleanRadio
components together using the same group attribute.

Chapter 11
Using Selection Components

11-31

For example, say you have one boolean that determines whether or not a user is age
10 to 18 and another boolean that determines whether a user is age 19-100. As shown
in Figure 11-25, the two selectBooleanRadio components can be placed anywhere on
the page, they do not have to be next to each other. As long as they share the same
group value, they will have mutually exclusive selection, regardless of their physical
placement on the page.

Tip:

Each selectBooleanRadio component must be bound to a unique boolean.

Figure 11-25 selectBooleanRadio Component

You use the selectOneRadio component to create a list of radio buttons from which
the user can select a single value from a list, as shown in Figure 11-26.

Figure 11-26 selectOneRadio Component

You use the selectManyCheckbox component to create a list of checkboxes from
which the user can select one or more values, as shown in Figure 11-27.

Figure 11-27 selectManyCheckbox Component

The selectOneListbox component creates a component which allows the user to
select a single value from a list of items displayed in a shaded box, as shown in
Figure 11-28.

Chapter 11
Using Selection Components

11-32

Figure 11-28 selectOneListbox Component

The selectManyListbox component creates a component which allows the user to
select many values from a list of items. This component includes an All checkbox that
is displayed at the beginning of the list of checkboxes, as shown in Figure 11-29.

Figure 11-29 selectManyListbox Component

The selectOneChoice component creates a menu-style component, which allows the
user to select a single value from a dropdown list of items. The selectOneChoice
component is intended for a relatively small number of items in the dropdown list.

Best Practice:

If a large number of items is desired, use an inputComboboxListOfValues
component instead. See Using List-of-Values Components.

The selectOneChoice component is shown in Figure 11-30.

Figure 11-30 selectOneChoice Component

You can configure the selectOneChoice component to display in a compact mode, as
shown in Figure 11-31. When in compact mode, the input field is replaced with a
smaller icon.

Figure 11-31 selectOneChoice Component in Compact Mode

Chapter 11
Using Selection Components

11-33

When the user clicks the icon, the dropdown list is displayed, as shown in
Figure 11-32.

Figure 11-32 List for selectOneChoice Component in Compact Mode

The selectManyChoice component creates a menu-style dropdown component, which
allows the user to select multiple values from a dropdown list of items. This component
can be configured to include an All selection item that is displayed at the beginning of
the list of selection items. If the number of choices is greater than 15, a scrollbar will
be presented, as shown in Figure 11-33.

Figure 11-33 selectManyChoice Component

By default, all selectItem child components are built when the selectManyChoice
component is built, as the page is rendered. However, if the way the list items are
accessed is slow, then performance can be hampered. This delay can be especially
troublesome when it is likely that the user will select the items once, and then not
change them on subsequent visits.

For example, suppose you have a selectManyChoice component used to filter what a
user sees on a page, and that the values for the child selectItem components are
accessed from a web service. Suppose also that the user is not likely to change that
selection each time they visit the page. By default, each time the page is rendered, all
the selectItems must be built, regardless of whether or not the user will actually need
to view them. Instead, you can change the contentDelivery attribute on the
selectManyChoice component from immediate (the default) to lazy. The lazy setting
causes the selectItem components to be built only when the user clicks the
dropdown.

For both immediate and lazy, when the user then makes a selection, the values of the
selected selectItem components are displayed in the field. However when lazy

Chapter 11
Using Selection Components

11-34

content delivery is used, on subsequent visits, instead of pulling the selected values
from the selectItem components (which would necessitate building these
components), the values are pulled from the lazySelectedLabel attribute. This
attribute is normally bound to a method that returns an array of Strings representing
the selected items. The selectItem components will not be built until the user goes to
view or change them, using the dropdown.

Note that there are limitations when using the lazy delivery method on the
selectManyChoice component. For information about content delivery for the
selectManyChoice component and its limitations, see What You May Need to Know
About the contentDelivery Attribute on the SelectManyChoice Component.

For the following components, if you want the label to appear above the control, you
can place them in a panelFormLayout component.

• selectOneChoice

• selectOneRadio

• selectOneListbox

• selectManyChoice

• selectManyCheckbox

• selectManyListbox

For the following components, the attributes disabled, immediate, readOnly,
required, requireMessageDetail, and value cannot be set from JavaScript on the
client for security reasons (see How to Set Property Values on the Client):

• selectOneChoice

• selectOneRadio

• selectOneListbox

• selectBooleanRadio

• selectBooleanCheckbox

• selectManyChoice

• selectManyCheckbox

• selectManyListbox

How to Use Selection Components
The procedures for adding selection components are the same for each of the
components. First, you add the selection component and configure its attributes. Then
you add any number of selectItem components for the individual items in the list, and
configure those.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Selection Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To use a selection component:

Chapter 11
Using Selection Components

11-35

1. In the Components window, from the Text and Selection panel, drag and drop a
selection component onto the page.

2. For all selection components except the selectBooleanCheckbox and
selectBooleanRadio components, a dialog opens where you choose either to bind
to a value in a managed bean, or to create a static list. On the second page of the
dialog, you can set the following properties:

• Label: Enter the label for the list.

• RequiredMessageDetail: Enter the message that should be displayed if a
selection is not made by the user. For information about messages, see
Displaying Hints and Error Messages for Validation and Conversion.

• Validator: Enter an EL expression that resolves to a validation method on a
managed bean (see Validating and Converting Input).

• Value: Specify the value of the component. If the EL binding for the value
points to a bean property with a get method but no set method, the
component will be rendered in read-only mode.

Note:

If you are creating a selectBooleanRadio or
selectBooleanCheckbox component, and you enter a value for the
value attribute, you cannot also enter a value for the selected
attribute, as it is a typesafe alias for the value attribute. You cannot
use both.

• ValueChangeListener: Enter an EL expression that resolves to a listener on a
managed bean that handles value change events.

3. Expand the Appearance section of the Properties window and set the attributes,
as described in Table 11-1. Note that only attributes specific to the selection
components are discussed here. Many of the attributes are the same as for input
text components. See How to Add an inputText Component.

Table 11-1 Appearance Attributes for Selection Components

Components Attribute

selectOneRadio,
selectManyCheckbox

Layout: Set to vertical to have the buttons or checkboxes
displayed vertically. Set to horizontal to have them
displayed in a single horizontal line.

selectManyListbox Size: Set to the number of items that should be displayed in
the list. If the number of items in the list is larger than the
size attribute value, a scrollbar will be displayed.

selectManyListbox,
selectManyChoice

SelectAllVisible: Set to true to display an All selection that
allows the user to select all items in the list.

selectOneChoice Mode: Set to compact to display the component only when
the user clicks the dropdown icon.

Chapter 11
Using Selection Components

11-36

Table 11-1 (Cont.) Appearance Attributes for Selection Components

Components Attribute

selectOneRadio,
selectOneListbox,
selectOneChoice

UnselectedLabel: Enter text for the option that represents a
value of null, meaning nothing is selected. If
unselectedLabel is not set and if the component does not
have a selected value, then an option with an empty string as
the label and value is rendered as the first option in the
choice box (if there is not an empty option already defined).
Note that you should set the required attribute to true
when defining an unselectedLabel value. If you do not,
two blank options will appear in the list. Once an option has
been successfully selected, and if unselectedLabel is not
set, then the empty option will not be rendered.

4. Expand the Behavior section of the Properties window and set the attributes, as
described in Table 11-2. Note that only attributes specific to the selection
components are discussed here. Many of the attributes are the same as for input
text components. See How to Add an inputText Component.

Table 11-2 Behavior Attributes for Selection Components

Component Attribute

All except the boolean
selection components

ValuePassThru: Specify whether or not the values are
passed through to the client. When valuePassThru is
false, the value and the options' values are converted to
indexes before being sent to the client. Therefore, when
valuePassThru is false, there is no need to write your own
converter when you are using custom Objects as your values,
options, or both. If you need to know the actual values on the
client-side, then you can set valuePassThru to true. This
will pass the values through to the client, using your custom
converter if it is available; a custom converter is needed if you
are using custom objects. The default is false.

Note that if your selection components uses ADF Model
binding, this value will be ignored.

selectBooleanRadio Group: Enter a group name that will enforce mutual
exclusivity for all other selectBooleanRadio components
with the same group value.

5. If you want the value of a selectOneChoice or selectManyChoice component to
appear as read-only until the user hovers over it, expand the Appearance section
and set Editable to onAccess. If you want the component to always appear
editable, select always. If you want the value to be inherited from an ancestor
component, select inherit.

Note:

If you select inherit, and no ancestor components define the editable
value, then the value always is used.

Chapter 11
Using Selection Components

11-37

6. If you do not want the child selectItem components for the selectManyChoice to
be built each time the page is rendered, do the following:

• Create logic that can store the labels of the selected items and also return
those labels as an array of strings.

• Expand the Advanced section, and set ContentDelivery to lazy.

• Bind LazySelectedLabel to the method that returns the array of the selected
items.

Note that there are limitations to using lazy content delivery. For information about
content delivery for the selectManyChoice component, see What You May Need
to Know About the contentDelivery Attribute on the SelectManyChoice
Component.

7. If you want the af:selectBooleanCheckbox component to show the indeterminate
(or mixed) state that indicates that the component is neither selected or cleared,
expand the Advanced section, and set the nullValueMeans attribute to mixed.

The user cannot make the selectBooleanCheckbox component into the mixed
state with a single click. For example, a checkbox can be used to show the mixed
state when some, not all, children options of the checkbox are enabled or
disabled. The mixed state changes to the selected state when all its children
options are enabled, and it changes to the unselected state when all the children
options under it are disabled. This behavior is not automatic and needs to be
managed by backend application code.

8. For the boolean components, drag and drop any number of selectItem
components as children to the boolean component. These will represent the items
in the list (for other selection components, the dialog in Step 2 automatically added
these for you).

9. With the selectItem component selected, in the Properties window, expand the
Common section, and if not set, enter a value for the value attribute. This will be
the value that will be submitted.

10. Expand the Appearance section, and if not set, enter a value for Label. This will
be the text that is displayed in the list.

11. Expand the Behavior section, and set Disabled to true if you want the item to
appear disabled in the list.

What You May Need to Know About the contentDelivery Attribute on
the SelectManyChoice Component

When the contentDelivery attribute on the selectManyChoice component is set to
immediate (the default), the following happens:

• First visit to the page:

– The selectManyChoice and all selectItem components are built as the page
is rendered. This can cause performance issues if there are many items, or if
the values for the selectItem components are accessed for example, from a
web service.

– When the selectManyChoice component renders, nothing displays in the field,
as there has not yet been a selection.

– When user clicks drop down, all items are shown.

Chapter 11
Using Selection Components

11-38

– When user selects items, the corresponding labels for the selected
selectItem components are shown in field.

– When page is submitted, values are posted back to the model.

• Subsequent visit: The selectManyChoice and all selectItem components are built
again as the page is rendered. Labels for selected selectItem components are
displayed in field. This will cause the same performance issues as on the first visit
to the page.

When the contentDelivery attribute on the selectManyChoice component is set to
lazy, the following happens:

• First visit to the page:

– The selectManyChoice is built as the page is rendered, but the selectItem
components are not.

– When the selectManyChoice component renders, nothing displays in the field,
as there has not yet been a selection.

– When user clicks drop down, the selectItem components are built. While this
is happening, the user sees a "busy" spinner. Once the components are built,
all items are shown.

– When user selects items, the corresponding labels for the selected
selectItem components are shown in field.

– When page is submitted, values are posted back to the model.

• Subsequent visit:

– When page is first rendered, only the selectManyChoice component is built. At
this point, the value of the lazySelectedLabel attribute is used to display the
selected items.

– If user clicks drop down, the selectItem components are built. While this is
happening, the user sees a "busy" spinner. Once the components are built, all
items are shown.

Once the selectItem components are built, the selectManyChoice component
will act as though its contentDelivery attribute is set to immediate, and use
the actual value of the selectItem components to display the selected items.

Following are limitations for using lazy content delivery for the selectManyChoice
component:

• You cannot store the value of the selectManyChoice in Request scope. On
postback, the value attribute is accessed from the model, rather than decoding
what was returned from the client. If the value is stored in Request scope, that
value will be empty. Do not store the value in Request scope.

• On postbacks, converters are not called. If you are relying on converters for
postbacks, then you should not use lazy content delivery.

Using Shuttle Components
The ADF shuttle components comprises of two list boxes and buttons to move items
from one list box to the other. You can allow users to make a single or multiple
selection from the available list of values box and add it to the selected list of values
box.

Chapter 11
Using Shuttle Components

11-39

The selectManyShuttle and selectOrderShuttle components present the user with
two list boxes and buttons to move or shuttle items from one list box to the other. The
user can select a single item or multiple items to shuttle between the leading
(Available values) list box and the trailing (Selected values) list box. For either
component, if you want the label to appear above the control, place them in a
panelFormLayout component.

The selectManyShuttle component is shown in Figure 11-34.

Figure 11-34 selectManyShuttle component

The selectOrderShuttle component additionally includes up and down arrow buttons
that the user can use to reorder values in the Selected values list box, as shown in
Figure 11-35. When the list is reordered, a ValueChangeEvent event is delivered. If you
set the readOnly attribute to true, ensure the values to be reordered are selected
values that will be displayed in the trailing list (Selected values).

Figure 11-35 selectOrderShuttle Component

The value attribute of these components, like any other selectMany component, must
be a List or an Array of values that correspond to a value of one of the contained
selectItem components. If a value of one of the selectItems is in the List or Array,
that item will appear in the trailing list. You can convert a selectManyListbox
component directly into a selectManyShuttle; instead of the value driving which items
are selected in the listbox, it affects which items appear in the trailing list of the
selectOrderShuttle component.

Similar to other select components, the List or Array of items are composed of
selectItem components nested within the selectManyShuttle or
selectOrderShuttle component. The following example shows a sample
selectOrderShuttle component that allows the user to select the top five file types
from a list of file types.

Chapter 11
Using Shuttle Components

11-40

<af:selectOrderShuttle value="#{helpBean.topFive}"
 leadingHeader="#{explorerBundle['help.availableFileTypes']}"
 trailingHeader="#{explorerBundle['help.top5']}"
 simple="true" id="sos1">
 <af:selectItem label="XLS" id="si1"/>
 <af:selectItem label="DOC" id="si2"/>
 <af:selectItem label="PPT" id="si3"/>
 <af:selectItem label="PDF" id="si4"/>
 <af:selectItem label="Java" id="si5"/>
 <af:selectItem label="JWS" id="si6"/>
 <af:selectItem label="TXT" id="si7"/>
 <af:selectItem label="HTML" id="si8"/>
 <af:selectItem label="XML" id="si9"/>
 <af:selectItem label="JS" id="si10"/>
 <af:selectItem label="PNG" id="si11"/>
 <af:selectItem label="BMP" id="si12"/>
 <af:selectItem label="GIF" id="si13"/>
 <af:selectItem label="CSS" id="si14"/>
 <af:selectItem label="JPR" id="si15"/>
 <af:selectItem label="JSPX" id="si16"/>
 <f:validator validatorId="shuttle-validator"/>
</af:selectOrderShuttle>

If you set the reorderOnly attribute of a selectOrdershuttle component to true, the
shuttle function will be disabled, and only the Selected Values listbox appears. The
user can only reorder the items in the listbox, as shown in Figure 11-36.

Figure 11-36 selectOrderShuttle Component in Reorder-Only Mode

How to Add a selectManyShuttle or selectOrderShuttle Component
The procedures for adding shuttle components are the same for both components.
First you add the selection component and configure its attributes. Then you add any
number of selectItem components for the individual items in the list, and configure
those.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Shuttle Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add a selectManyShuttle or selectOrderShuttle component:

1. In the Components window, from the Text and Selection panel, drag and drop a
Shuttle or Shuttle (Ordered) onto the page.

Chapter 11
Using Shuttle Components

11-41

2. A dialog appears where you choose either to bind to a value in a managed bean,
or to create a static list. On the second page of the dialog, you can set the
following:

• Label: Enter the label for the list.

• RequiredMessageDetail: Enter the message that should be displayed if a
selection is not made by the user. For information about messages, see
Displaying Hints and Error Messages for Validation and Conversion.

• Size: Specify the display size (number of items) of the lists. The size specified
must be between 10 and 20 items. If the attribute is not set or has a value less
than 10, the size would have a default or minimum value of 10. If the attribute
value specified is more than 20 items, the size would have the maximum value
of 20.

• Validator: Enter an EL expression that resolves to a validation method on a
managed bean.

• Value: Specify the value of the component. If the EL binding for the value
points to a bean property with a get method but no set method, the
component will be rendered in read-only mode.

• ValueChangeListener: Enter an EL expression that resolves to a listener on a
managed bean that handles value change events.

3. In the Properties window, expand the Appearance section and set the following:

• Layout: Specify whether the component will be in horizontal or vertical layout.
The default is horizontal, meaning the leading and trailing list boxes are
displayed next to each other. When set to vertical, the leading list box is
displayed above the trailing list box.

• LeadingHeader: Specify the header text of the leading list of the shuttle
component.

• LeadingDescShown: Set to true to display a description of the selected item
at the bottom of the leading list box.

• TrailingHeader: Specify the header of the trailing list of the shuttle
component.

• TrailingDescShown: Set to true to display a description of the selected item
at the bottom of the trailing list box.

4. Expand the Behavior section and optionally set the following attributes:

• ValuePassThru: Specify whether or not the values are passed through to the
client. When valuePassThru is false, the value and the options' values are
converted to indexes before being sent to the client. Therefore, when
valuePassThru is false, there is no need to write your own converter when
you are using custom objects as your values, options, or both. If you need to
know the actual values on the client-side, then you can set valuePassThru to
true. This will pass the values through to the client, using your custom
converter if it is available; a custom converter is needed if you are using
custom objects. The default is false.

• ReorderOnly (selectOrderShuttle component only): Specify whether or not
the shuttle component is in reorder-only mode, where the user can reorder the
list of values, but cannot add or remove them.

5. In the Structure window, select one of the selectItem components, and in the
Properties window, set any needed attributes.

Chapter 11
Using Shuttle Components

11-42

Tip:

If you elected to have the leading or trailing list box display a description,
you must set a value for the shortDesc attribute for each selectItem
component.

What You May Need to Know About Using a Client Listener for
Selection Events

You can provide the user with information about each selected item before the user
shuttles it from one list to another list by creating JavaScript code to perform
processing in response to the event of selecting an item. For example, your code can
obtain additional information about that item, then display it as a popup to help the
user make the choice of whether to shuttle the item or not. Figure 11-37 shows a
selectManyShuttle component in which the user selects Meyers and a popup
provides additional information about this selection.

Figure 11-37 selectManyShuttle with selectionListener

You implement this feature by adding a client listener to the selectManyShuttle or
selectOrderShuttle component and then create a JavaScript method to process this
event. The JavaScript code is executed when a user selects an item from the lists. For
information about using client listeners for events, see Listening for Client Events.

How to add a client listener to a shuttle component to handle a selection event:

1. In the Components window, from the Operations panel, in the Listeners group,
drag a Client Listener and drop it as a child to the shuttle component.

2. In the Insert Client Listener dialog, enter a function name in the Method field (you
will implement this function in the next step), and select propertyChange from the
Type dropdown.

If for example, you entered showDetails as the function, JDeveloper would enter
the code shown in bold in the following example.

<af:selectManyShuttle value="#{demoInput.manyListValue1}" id="sms1"
 valuePassThru="true" ...>
 <af:clientListener type="propertyChange" method="showDetails"/>
 <af:selectItem label="coffee" value="bean" id="si1" />
 ...
</af:selectManyShuttle>

Chapter 11
Using Shuttle Components

11-43

This code causes the showDetails function to be called any time the property
value changes.

3. In your JavaScript, implement the function entered in the last step. This function
should do the following:

• Get the shuttle component by getting the source of the event.

• Use the client JavaScript API calls to get information about the selected items.

In the following example, AdfShuttleUtils.getLastSelectionChange is called to get
the value of the last selected item

function showDetails(event)
{
 if(AdfRichSelectManyShuttle.SELECTION == event.getPropertyName())
 {
 var shuttleComponent = event.getSource();
 var lastChangedValue =
AdfShuttleUtils.getLastSelectionChange(shuttleComponent,
event.getOldValue());
 var side = AdfShuttleUtils.getSide(shuttleComponent, lastChangedValue);
 if(AdfShuttleUtils.isSelected(shuttleComponent, lastChangedValue))
 {
 //do something...
 }
 else
 {
 //do something else
 }
 if(AdfShuttleUtils.isLeading(shuttleComponent, lastChangedValue))
 {
 //queue a custom event (see serverListener) to call a java method on the server
 }
 }
}

Using the richTextEditor Component
Using the ADF richTextEditor component you can allow users to edit and add
formatted input content. The richTextEditor provides several options to format the
content.

The richTextEditor component provides an input field that can accept text with
formatting. It also supports label text, and messages. It allows the user to change font
name, size, and style, create ordered lists, justify text, and use a variety of other
features. The richTextEditor component also can be used to edit an HTML source
file. Two command buttons are used to toggle back and forth between editing standard
formatted text and editing the HTML source file. Figure 11-38 shows the rich text editor
component in standard rich text editing Mode.

Chapter 11
Using the richTextEditor Component

11-44

Figure 11-38 The richTextEditor Component in Standard Editing Mode

Figure 11-39 shows the editor in source code editing mode.

Figure 11-39 richTextEditor in Source Editing Mode

Other supported features include:

• Font type

• Font size

• Link/unlink

• Clear styling

• Undo/redo

• Bold/italics/underline

• Subscript/superscript

• Justify (left, middle, right, full)

• Ordered/unordered lists

• Indentation

• Text color/background color

• Rich text editing mode / source code editing mode

• Rich text editing toolbar inline display mode / popup display mode

The value (entered text) of the rich text editor is a well-formed XHTML fragment. Parts
of the value may be altered for browser-specific requirements to allow the value to be
formatted. Also, for security reasons, some features such as script-related tags and
attributes will be removed. There are no guarantees that this component records only
the minimal changes made by the user. Because the editor is editing an XHTML
document, the following elements may be changed:

• Nonmeaningful whitespace

• Element minimization

Chapter 11
Using the richTextEditor Component

11-45

• Element types

• Order of attributes

• Use of character entities

The editor supports only HTML 4 tags, with the exception of:

• Script, noscript

• Frame, frameset, noframes

• Form-related elements (input, select, optgroup, option, textarea, form, button,
label, isindex)

• Document-related elements (html, head, body, meta, title, base, link)

The richTextEditor component provides a footer facet that you can use to display
additional information, or to add user interface elements. For example, Figure 11-40
shows the richTextEditor component with a character counter in its footer facet.

Figure 11-40 The richTextEditor Component with Character Counter in Footer
Facet

The richTextEditor component also supports tags that pull in content (such as
applet, iframe, object, img, and a). For the iframe tag, the content should not be
able to interact with the rest of the page because browsers allow interactions only with
content from the same domain. However, this portion of the page is not under the
control of the application.

While the richTextEditor component does not support font units such as px and em, it
does support font size from 1 to 7 as described in the HTML specification. It does not
support embed or unknown tags (such as <foo>).

On the client, the richTextEditor component does not support getValue and
setValue methods. There is no guarantee the component's value on the client is the
same as the value on the server. Therefore, the richTextEditor does not support
client-side converters and validators. Server-side converters and validators will still
work.

The rich text editor delivers ValueChangeEvent and AttributeChangeEvent events.
Create valueChangeListener and attributeChangeListener handlers for these
events as required.

You can also configure the richTextEditorInsertBehavior tag, which works with
command components to insert given text into the richTextEditor component. The
text to be entered can be a simple string, or it can be preformatted text held, for
example, in a managed bean.

Chapter 11
Using the richTextEditor Component

11-46

By default, the toolbar in the richTextEditor component allows the user to change
many aspects of the text, such as the font, font size and weight, text alignment, and
view mode, as shown in Figure 11-41.

Figure 11-41 Toolbar in richTextEditor Component

Figure 11-42 shows a toolbar that has been customized. Many of the toolbar buttons
have been removed and a toolbar with a custom toolbar button and a menu have been
added.

Figure 11-42 Customized Toolbar for richTextEditor

As Figure 11-43 shows, you can configure the toolbar to display in popup mode when
displaying the toolbar inline (default behavior) with the richTextEditor is not desired.

Figure 11-43 Toolbar Display Mode Set to Popup

How to Add a richTextEditor Component
Once you add a richTextEditor component, you can configure it so that text can be
inserted at a specific place, and you can also customize the toolbar. See How to Add
the Ability to Insert Text into a richTextEditor Component, and How to Customize the
Toolbar.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using the richTextEditor Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add a richTextEditor component:

Chapter 11
Using the richTextEditor Component

11-47

1. In the Components window, from the Text and Selection panel, drag and drop a
Rich Text Editor onto the page.

2. In the Properties window, expand the Common section, and set the value
attribute.

3. Expand the Appearance section and set the following:

• Rows: Specify the height of the edit window as an approximate number of
characters shown.

• Columns: Specify the width of the edit window as an approximate number of
characters shown.

• Label: Specify a label for the component.

4. Expand the Behavior section and set the following:

• EditMode: Select whether you want the editor to be displayed using the
WYSIWYG or source mode.

• ContentDelivery: Specify whether or not the data within the editor should be
fetched when the component is rendered initially. When the contentDelivery
attribute value is immediate, data is fetched and displayed in the component
when it is rendered. If the value is set to lazy, data will be fetched and
delivered to the client during a subsequent request. See Content Delivery.

5. Expand the Other section and set the DimensionsFrom property to one of the
following:

• auto: Resize the richTextEditor component and get dimensions from its
container component, or its own content.

If the parent component to richTextEditor component allows stretching of its
child, then the richTextEditor component will stretch to fill the parent
component. If the parent component does not allow stretching, then the
richTextEditor component gets its dimensions from the content.

If the richTextEditor component is inside a container component, it gets its
dimensions from its parent component. If there is no parent component, the
the richTextEditor component gets resized as per its content.

• content: Resize the richTextEditor component and get dimensions from its
own content. This is the default value.

• parent: Resize the richTextEditor component and get its dimensions from
inlineStyle.

If inlineStyle is not specified, it automatically gets its dimensions from the
container component. If there is no container component and inlineStyle is
not specified, the richTextEditor component gets its dimensions from the
specified skin.

For information about how components stretch, see Geometry Management and
Component Stretching.

Note:

You can also specify an EL expression that evaluates to a String value of
auto, content, or parent.

Chapter 11
Using the richTextEditor Component

11-48

Tip:

You can set the width of a richTextEditor component to full width or 100%.
However, this works reliably only if the editor is contained in a geometry-
managing parent components. It may not work reliably if it is placed in
flowing layout containers such as panelFormLayout or panelGroupLayout.
See Geometry Management and Component Stretching.

How to Add the Ability to Insert Text into a richTextEditor Component
To allow text to be inserted into a richTextEditor component, add the
richTextEditorInsertBehavior tag as a child to a command component that will be
used to insert the text.

Before you begin:

It may be helpful to have an understanding of the rich text editor component. See
Using the richTextEditor Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

You need to create a richTextEditor component as described in How to Add a
richTextEditor Component. Set the clientComponent attribute to true.

To add text insert behavior:

1. Add a command component that the user will click to insert the text. For
procedures, see How to Use Buttons and Links for Navigation and Deliver
ActionEvents.

2. In the Components window, from the Operations panel, in the Behavior group,
drag and drop a Rich Text Editor Insert Behavior as a child to the command
component.

3. In the Rich Text Editor Insert Behavior dialog, enter the following:

• For: Use the dropdown arrow to select Edit and then navigate to select the
richTextEditor component into which the text will be inserted.

• Value: Enter the value for the text to be inserted. If you want to insert static
text, then enter that text. If you want the user to be able to insert the value of
another component (for example, the value of a selectOneChoice
component), then enter an EL expression that resolves to that value. If you
want the user to enter preformatted text, enter an EL expression that resolves
to that text. For example the following code shows preformatted text as the
value for an attribute in the demoInput managed bean.

private static final String _RICH_INSERT_VALUE =
 "<p align=\"center\" style=\"border: 1px solid gray;
 margin: 5px; padding: 5px;\">" +
 "<span style=\"font-family: Comic Sans MS,
 Comic Sans,cursive;\">Store Hours
\n" +
 "Monday through Friday 'til 8:00 pm
\n" +
 "Saturday & Sunday 'til 5:00 pm" +
 "</p>";

Chapter 11
Using the richTextEditor Component

11-49

The following example shows how the text is referenced from the
richTextEditorInsertBehavior tag.

<af:richTextEditor id="idRichTextEditor" label="Rich text value"
 value="#{demoInput.richValue2}"/>
. . .
</af:richTextEditor>
<af:button text="Insert Template Text" id="b1">
 <af:richTextEditorInsertBehavior for="idRichTextEditor"
 value="#{demoInput.richInsertValue}"/>
</af:button>

4. By default, the text will be inserted when the action event is triggered by clicking
the command component. However, you can change this to another client event
by choosing that event from the dropdown menu for the triggerType attribute.

How to Customize the Toolbar
Place the toolbar and toolbar buttons you want to add in custom facets that you create.
Then, reference the facet (or facets) from an attribute on the toolbar, along with
keywords that determine how or where the contained items should be displayed.

To allow text to be inserted into a richTextEditor component, add the
richTextEditorInsertBehavior tag as a child to a command component that will be
used to insert the text.

Before you begin:

It may be helpful to have an understanding of the rich text editor component. See
Using the richTextEditor Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To customize the toolbar:

1. In the JSF page of the Components window, from the Core panel, drag and drop a
Facet for each section of the toolbar you want to add.

For example, to add the custom buttons shown in Figure 11-42, you would add
two <f:facet> tags. Ensure that each facet has a unique name for the page.

Tip:

To ensure that there will be no conflicts with future releases of ADF
Faces, start all your facet names with customToolbar.

2. In the ADF Faces page of the Components window, from the Menus and Toolbars
panel, drag and drop a Toolbar into each facet and add toolbar buttons or other
components and configure as needed.

For information about toolbars and toolbar buttons, see Using Toolbars.

3. With the richTextEditor component selected, in the Properties window, in the
Appearance section, click the dropdown icon for the toolboxLayout attribute and
choose Edit.

4. In the Edit Property: ToolboxLayout dialog, add facet names in the order in which
you want the contents in the custom facets to appear. In addition to those facets,

Chapter 11
Using the richTextEditor Component

11-50

you can also include all, or portions, of the default toolbar, using the following
keywords:

• all: All the toolbar buttons and text in the default toolbar. If all is entered,
then any keyword for noncustom buttons will be ignored.

• font: The font selection and font size buttons.

• history: Undo and redo buttons.

• mode: Rich text mode and source code mode buttons.

• color: Foreground and background color buttons.

• formatAll: Bold, italic, underline, superscript, subscript, strikethrough buttons.
If formatAll is specified, formatCommon and formatUncommon will be ignored.

• formatCommon: Bold, italic, and underline buttons.

• formatUncommon: Superscript, subscript, and strikethrough buttons.

• justify: Left, center, right and full justify buttons.

• list: Bullet and numbered list buttons.

• indent: Outdent and indent buttons.

• link: Add and remove Link buttons.

For example, if you created two facets named customToolbar1 and
customToolbar2, and you wanted the complete default toolbar to appear in
between your custom toolbars, you would enter the following list:

• customToolbar1

• all

• customToolbar2

You can also determine the layout of the toolbars using the following keywords:

• newline: Places the toolbar in the next named facet (or the next keyword from
the list in the toolboxLayout attribute) on a new line. For example, if you
wanted the toolbar in the customToolbar2 facet to appear on a new line, you
would enter the following list:

– customToolbar1

– all

– newline

– customToolbar2

If instead, you did not want to use all of the default toolbar, but only the font,
color, and common formatting buttons, and you wanted those buttons to
appear on a new line, you would enter the following list:

– customToolbar1

– customToolbar2

– newline

– font

– color

– formatCommon

Chapter 11
Using the richTextEditor Component

11-51

• stretch: Adds a spacer component that stretches to fill all available space so
that the next named facet (or next keyword from the default toolbar) is
displayed as right-aligned in the toolbar.

About richTextEditor for UIWebView User-Agent
UIWebView is a user interface control used in iOS applications. It allows a developer to
embed a web browser within the ADF application, allowing access to web pages
without leaving the application.

ADF Faces now supports the default UIWebView user-agent for richTextEditor in
ADF Faces applications. The UIWebView user-agent is a short string that applications
send to identify themselves to web servers when accessing different HTML pages.

When your ADF application connects to a website, it includes a User-Agent field in its
HTTP header. The contents of the user-agent field vary from application to application.
Each application has its own, distinctive user-agent. Essentially, a user-agent identifies
the browser version and the operating system of the device.

The web server can use this information to serve different web pages to different web
browsers and different operating systems. For example, a website could send mobile
pages to mobile browsers or send a Please upgrade your browser message to
supported browsers. The following example shows a typical UIWebView user-agent for
an application:

Mozilla/5.0 (iPhone; CPU iPhone OS 8_2 like Mac OS X) AppleWebKit/600.1.4
(KHTML, like Gecko) Mobile/12D508

Note:

Oracle ADF supports different browsers for desktop and mobile devices. For
the list of supported browsers, click the Certification Information link that
appears for your release on the OTN Documentation page at http://
www.oracle.com/technetwork/developer-tools/jdev/documentation/
index.html.

Using File Upload
The ADF allows you to provide the input by uploading single or multiple files. You can
also update the already submitted file.

The inputFile component provides users with file uploading and updating
capabilities. This component allows the user to select a local file and upload it to a
selectable location on the server (to download a file from the server to the user, see
How to Use an Action Component to Download Files).

The inputFile component delivers the standard ValueChangeEvent event as files are
being uploaded, and it manages the loading process transparently. The value property
of an inputFile component is set to an instance of the
org.apache.myfaces.trinidad.model.UploadedFile class when the file is uploaded.

Chapter 11
Using File Upload

11-52

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

To initiate the upload process you first must configure the page's form to allow
uploads. You then create an action component such as a command button, as shown
in Figure 11-44, that can be used to upload a file.

Figure 11-44 inputFile Component

Once a file has been uploaded, and so the value of the inputFile is not null (either
after the initial load is successful or it has been specified as an initial value), you can
create an Update button that will be displayed instead of the Browse button, as
shown in Figure 11-45. This will allow the user to modify the value of the inputFile
component.

Figure 11-45 inputFile Component in Update Mode

Setting the uploadType attribute to auto or manual displays the progress bar while
uploading a file as shown in Figure 11-46.

Figure 11-46 inputFile Component with Progress Bar

You can also specify that the component be able to load only a specific file by setting
the readOnly property to true, In this mode, only the specified file can be loaded, as
shown in Figure 11-47.

Figure 11-47 inputFile Component in Read-Only Mode

By default, the inputFile component allows upload of one file only, but it can be
configured to upload multiple files. Figure 11-48 shows the inputFile component
configured to upload multiple files.

Chapter 11
Using File Upload

11-53

Figure 11-48 inputFile Component for Multiple Files

The user can select multiple files in the File Upload dialog that opens through the
Browse button, or drag-and-drop multiple files in the drop section of the component.
When files appear in the drop section, the user clicks Upload to upload the files, as
shown in Figure 11-49.

Figure 11-49 inputFile Component Showing Files Ready to Upload

Using Javascript APIs, you can configure the inputFile component to utilize custom
user interface elements. For example, Figure 11-50 shows the inputFile component
with a description field that the user may use to enter a brief description of the selected
file.

Figure 11-50 inputFile Component with Custom User Interface Element

For information about Javascript APIs that you can use to configure the inputFile
component, see the documentation of class AdfFileUploadManager in JavaScript API
Reference for Oracle ADF Faces.

The inputFile component can be placed in either an h:form tag or an af:form tag,
but in either case, you have to set the form tag to support file upload. If you use the

Chapter 11
Using File Upload

11-54

JSF basic HTML h:form, set the enctype to multipart/form-data. This would make
the request into a multipart request to support file uploading to the server. If you are
using the ADF Faces af:form tag, set usesUpload to true, which performs the same
function as setting enctype to multipart/form-data to support file upload.

The ADF Faces framework performs a generic upload of the file. You should create an
actionListener or action method to process the file after it has been uploaded (for
example, processing xml files, pdf files, and so on).

The value of an inputFile component is an instance of the
org.apache.myfaces.trinidad.model.UploadedFile interface. Thus, when the file is
uploaded, the value of the inputFile component becomes the instance of
org.apache.myfaces.trinidad.model.UploadedFile. Therefore, if you need to
access the value (that is, the file itself), you need to use the API for this interface.
Accessing the component itself through the binding attribute only accesses the
component and not the uploaded file.

Note:

The API of the org.apache.myfaces.trinidad.model.UploadedFile
interface lets you get at the actual byte stream of the file, as well as the file's
name, its MIME type, and its size. The API does not allow you to get path
information from the client about from where the file was uploaded.

The uploaded file may be stored as a file in the file system, but may also be stored in
memory; the API hides that difference. The filter ensures that the UploadedFile
content is cleaned up after the request is complete. Because of this, you cannot
usefully cache UploadedFile objects across requests. If you need to keep the file, you
must copy it into persistent storage before the request finishes.

For example, instead of storing the file, add a message stating the file upload was
successful using a managed bean as a response to the ValueChangeEvent event, as
shown in Example 11-1.

You can also handle the upload by binding the value directly to a managed bean, as
shown in Example 11-2.

Note:

If you are using the inputFile component to upload multiple files, note that
the return type of event.getNewValue() is List<UploadedFile>, instead of
UploadedFile. The value binding for the managed bean is also
List<UploadedFile>, not UploadedFile.

Example 11-1 Using valueChangeListener to Display Upload Message

JSF Page Code ----->
<af:form usesUpload="true" id="f1">
 <af:inputFile label="Upload:"
 valueChangeListener="#{managedBean.fileUploaded}" id="if1"/>
 <af:button text="Begin" id="b1"/>

Chapter 11
Using File Upload

11-55

</af:form>

Managed Bean Code ---->
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.event.ValueChangeEvent;
import org.apache.myfaces.trinidad.model.UploadedFile;

public class ABackingBean
{
 ...
 public void fileUploaded(ValueChangeEvent event)
 {
 UploadedFile file = (UploadedFile) event.getNewValue();
 if (file != null)
 {
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message = new FacesMessage(
 "Successfully uploaded file " + file.getFilename() +
 " (" + file.getLength() + " bytes)");
 context.addMessage(event.getComponent().getClientId(context), message);
 // Here's where we could call file.getInputStream()
 }
 }
}

Example 11-2 Example 11-13 Binding the Value to a Managed Bean

JSF Page Code ---->
<af:form usesUpload="true">
 <af:inputFile label="Upload:" value="#{managedBean.file}" id="if1"/>
 <af:button text="Begin" action="#{managedBean.doUpload}" id="b1"/>
</af:form>

Managed Bean Code ---->
import org.apache.myfaces.trinidad.model.UploadedFile;public class AManagedBean
{
 public UploadedFile getFile()
 {
 return _file;
 }
 public void setFile(UploadedFile file)
 {
 _file = file;
 }

 public String doUpload()
 {
 UploadedFile file = getFile();
 // ... and process it in some way
 }
 private UploadedFile _file;

}

How to Use the inputFile Component
A Java class must be bound to the inputFile component. This class will be
responsible for containing the value of the uploaded file.

Chapter 11
Using File Upload

11-56

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using File Upload.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add an inputFile component:

1. Create a Java class that will hold the value of the input file. It must be an instance
of the org.apache.myfaces.trinidad.model.UploadedFile interface.

2. Select the af:form component and set UsesUpload to true.

3. In the Components window, from the Text and Selection panel, drag and drop an
Input File onto the page.

4. Set value to be the class created in Step 1.

5. If you want the value of the component to appear as read-only until the user
hovers over it, expand the Appearance section and set Editable to onAccess. If
you want the component to always appear editable, select always. If you want the
value to be inherited from an ancestor component, select inherit.

Note:

If you select inherit, and no ancestor components define the editable
value, then the value always is used.

6. In the Components window, from the General Controls panel, drag and drop any
command component onto the page. This will be used to initiate the upload
process.

7. With the command component selected, set the actionListener attribute to a
listener that will process the file after it has been uploaded.

How to Configure the inputFile Component to Upload Multiple Files
Use the uploadType and maximumFiles attributes to configure the inputFile
component to upload multiple files.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using File Upload.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To configure an inputFile component to upload multiple files:

1. In the form, select the inputFile component.

2. In the Properties window, expand the Appearance section and set the following:

• autoHeightRows: Specify the number of rows used to size the height of the
inputFile component. The value must be lower than the value of rows.

Chapter 11
Using File Upload

11-57

• rows: Specify the number of files that will appear in the drop section. By
default, it is set to 5.

3. Expand the Advanced section and set the maximumFiles attribute to specify the
number of maximum files the user can upload. By default, it is set to 1 and allows
upload of one file only. When set to less than 1 (for example, -1), it enables
upload of unlimited number of files.

4. Expand the Behavior section and set the uploadType attribute to specify whether
the files would be uploaded automatically, or requires user to click Upload button
to upload files.

Table 11-3 lists the possible values of the uploadType attribute.

Table 11-3 uploadType Values for the inputFile Component

Value Description

submit Upload one file only. The drop section, where the user can
drag-and-drop files, is not displayed.

auto Show the drop section and enable upload of multiple files.
The upload starts immediately when the files appear in drop
section.

If maximumFiles is set to 1, the user can upload multiple files
by selecting one file at a time, instead of selecting multiple
files together.

manual Show the drop section and enable upload of multiple files.
The upload starts when the Upload button is clicked.

If maximumFiles is set to 1, the user can upload multiple files
by selecting one file at a time, instead of selecting multiple
files together.

autoIfMultiple Upload multiple files. The upload starts immediately when the
files appear in the drop section. By default, uploadType is
set to autoIfMultiple.

If maximumFiles is set to 1, the user can select and upload
one file only. The drop section is also not displayed.

manualIfMultiple Upload multiple files. The upload starts when the Upload
button is clicked.

If maximumFiles is set to 1, the user can select and upload
one file only. The drop section is also not displayed.

5. Expand the Other section and set the displayMode attribute to specify whether the
multiple file upload user interface is displayed. By default, it is set to default and
enables the display of multiple file upload user interface. The valid values are
default, dropArea, and none.

Note:

Do not set required to true if uploadType is set to auto and autoSubmit
is set to true, as it might throw validation errors.

Chapter 11
Using File Upload

11-58

See What You May Need to Know About Customizing User Interface of inputFile
Component.

To remove an uploaded file from the drop section, or cancel upload of a file that is
being uploaded, click the Cancel icon next to the file name and the progress bar. To
cancel upload of all files, click the Stop Uploading button, as shown in Figure 11-51.

Figure 11-51 File Being Uploaded Using inputFile Component

What You May Need to Know About Temporary File Storage
Because ADF Faces will temporarily store files being uploaded (either on disk or in
memory), by default it limits the size of acceptable incoming upload requests to avoid
denial-of-service attacks that might attempt to fill a hard drive or flood memory with
uploaded files. By default, only the first 100 kilobytes in any one request will be stored
in memory. Once that has been filled, disk space will be used. Again, by default, that is
limited to 2,000 kilobytes of disk storage for any one request for all files combined.
Once these limits are exceeded, the filter will throw an EOFException.

Files are, by default, stored in the temporary directory used by the
java.io.File.createTempFile() method, which is usually defined by the system
property java.io.tmpdir. Obviously, this will be insufficient for some applications, so
you can configure these values using three servlet context initialization parameters, as
shown in the following example.

 <context-param>
 <!-- Maximum memory per request (in bytes) -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY</param-name>
 <!-- Use 500K -->
 <param-value>512000</param-value>
 </context-param>
 <context-param>
 <!-- Maximum disk space per request (in bytes) -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</param-name>
 <!-- Use 5,000K -->
 <param-value>5120000</param-value>
 </context-param>
 <context-param>
 <!-- directory to store temporary files -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR</param-name>
 <!-- Use a TrinidadUploads subdirectory of /tmp -->
 <param-value>/tmp/TrinidadUploads/</param-value>
 </context-param>
 <context-param>
 <!-- Maximum file size that can be uploaded.-->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_FILE_SIZE</param-name>
 <!-- Use 5,000K -->

Chapter 11
Using File Upload

11-59

 <param-value>5120000</param-value>
 </context-param>
 <!-- This filter is always required; one of its functions is
 file upload. -->
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>

You can customize the file upload process by replacing the entire
org.apache.myfaces.trinidad.webapp.UploadedFileProcessor class with the
<uploaded-file-processor> element in the trinidad-config.xml configuration file.
Replacing the UploadedFileProcessor class makes the parameters listed in the
previous example irrelevant, they are processed only by the default
UploadedFileProcessor class.

The <uploaded-file-processor> element must be the name of a class that
implements the oracle.adf.view.rich.webapp.UploadedFileProcessor interface.
This API is responsible for processing each individual uploaded file as it comes from
the incoming request, and then making its contents available for the rest of the
request. For most applications, the default UploadedFileProcessor class is sufficient,
but applications that need to support uploading very large files may improve their
performance by immediately storing files in their final destination, instead of requiring
ADF Faces to handle temporary storage during the request.

What You May Need to Know About Uploading Multiple Files
The inputFile component uses HTML 5 to support the drag-and-drop functionality
and upload of multiple files. In browsers that do not support HTML 5, a Java applet is
used for drag-and-drop functionality and upload of multiple files, as shown in
Figure 11-52.

Figure 11-52 inputFile Component in a Non-HTML 5 Browser

If the browser does not support HTML5 and Java is also not available, then the drop
section in the inputFile component is not displayed.

The inputFile component can only upload files that are smaller than 2 GB when in
single file upload mode. In multiple file upload mode, the inputFile component can
upload files greater than 2 GB, by default, by splitting them into chunks of 2 GB in size.

Chapter 11
Using File Upload

11-60

The chunk size can be controlled by the parameter
org.apache.myfaces.trinidad.UPLOAD_MAX_CHUNK_SIZE in web.xml whose default
and maximum value is 2 GB. For example:

<context-param>
 <!-- Maximum file chunk size that can be uploaded.-->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_CHUNK_SIZE</param-name>
 <!-- Use 1,000 MB as chunk size -->
 <param-value>1000000000</param-value>
 </context-param>

Note that not all browsers support the uploading of large files using the chunk
functionality. For information about the browser certification, see the Certification
Information page on the Oracle Technology Network at:

http://www.oracle.com/technetwork/developer-tools/jdev/ documentation/
index.html

After uploading all files, you must ensure that the form is submitted, else the
inputFile component data will not be uploaded to the server. If autoSubmit is set to
true on the inputFile component, then the form is submitted automatically after all
the files have finished uploading. After the form has been submitted, the inputFile
component is refreshed and the file list of the drop section becomes empty so that
more files can be uploaded. To show the list of uploaded files, add
ValueChangeListener or bind the value to a managed bean, as described in
Example 11-1.

What You May Need to Know About Customizing User Interface of
inputFile Component

You can customize the user interface of the inputFile component with the
displayMode attribute. If the displayMode attribute is set to none, no user interface is
displayed, and as a developer you will need to create a custom user interface to
invoke the APIs to upload files. If the attribute is set to dropArea, a drop area is
rendered that supports drag and drop of files, and you will be responsible for adding
the rest of the custom user interface. The customized interface of the inputFile
component is visible only when it is configured to upload multiple files.

Figure 11-53 shows the inputFile component with different values for displayMode.

Chapter 11
Using File Upload

11-61

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Figure 11-53 displayMode Attribute Values for inputFile Component

The following example shows an inputFile component with displayMode set to
dropArea, and customized to add input fields and buttons to browse and upload files.
An additional inputText component is added to enter the description of the uploaded
file.

<af:inputFile binding="#{editor.component}" id="bound1" immediate="true"
 maximumFiles="-1"valueChangeListener="#{demoFile.fileUpdate}"
 displayMode="dropArea" uploadType="manual"contentStyle="width:200px;
 height:100px"/>

<af:panelFormLayout maxColumns="2" rows="1">
 <input type="file" id="dmoTpl:cidf1"/>
 <af:inputText clientComponent="true" id="cidd1" label="Please Enter a
 Description"/>
</af:panelFormLayout>

<af:panelFormLayout maxColumns="2" rows="2">
 <af:panelLabelAndMessage for="cidn1" label="Filename:" id="plm1">
 <af:outputText clientComponent="true" id="cidn1"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage for="cids1" label="Filesize:" id="plm2">
 <af:outputText clientComponent="true" id="cids1"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage for="cidp1" label="% Complete:" id="plm3">
 <af:outputText clientComponent="true" id="cidp1"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage for="cidst1" label="Status:" id="plm4">
 <af:outputText clientComponent="true" id="cidst1"/>

Chapter 11
Using File Upload

11-62

 </af:panelLabelAndMessage>
</af:panelFormLayout>

<af:panelFormLayout maxColumns="2" rows="1">
 <af:button id="cup1" text="Upload">
 <af:clientListener method="uploadClick" type="click"/>
 </af:button>
 <af:button id="cl1" text="Clear">
 <af:clientListener method="clearQueue" type="click"/>
 </af:button>
</af:panelFormLayout>

Figure 11-54 shows the inputFile component at runtime.

Figure 11-54 Customized inputFile Component

You can use the JavaScript API methods to customize the behavior of inputFile
component. See the JavaScript API Reference for Oracle ADF Faces.

Using Code Editor
Using the code editor users can edit the code on the go during runtime. This is
achieved using ADF af:codeEditor component.

The af:codeEditor component provides an in-browser code editing solution and
enables the user to display and edit program code at runtime in the Fusion web
application. The input field of the code editor component accepts text, and provides
some common code editing functionalities such as a toolbar, syntactical color coding
of keywords, code completion, basic validation, highlighting errors, and a message
pane for logs. Using the code editor, the user won't need to run separate IDE software
to test program code for errors or warnings.

The code editor component supports Javascript, XML, and Groovy languages, as
shown in Figure 11-55.

Chapter 11
Using Code Editor

11-63

Figure 11-55 Code Editor Component using Javascript, XML, and Groovy

The code editor component provides the following functionalities:

• Line numbering

• Undo and redo operations (also possible using keyboard shortcuts Ctrl+Z and Ctrl
+Y)

• Jump to a specific line

• Find and replace

• Color-coded text

• Highlighting syntaxes and search terms

• Code completion

• Auto-indent

• Auto-format

• Message pane for error messages

• Support for large files with more than thousand lines of code

To add or edit code in code editor, the user can simply click in the editor area and start
typing. Control+Spacebar displays a contextual list of hints for code completion. To

Chapter 11
Using Code Editor

11-64

use other editing features, press F2 to enable edit mode. Once in edit mode, the user
can use Tab to indent and Shift+Tab to backward-indent a line of code. With edit mode
disabled, Tab and Shift+Tab provide navigation to the next and previous components.

The user can use the toolbar (shown in Figure 11-56) to undo and redo the changes,
search and replace text, and jump to a specific line number.

Figure 11-56 Code Editor Toolbar

To search for a string, enter the search term in the Find field, and click Find Next or
Find Previous icons to locate the search string in the code editor. Figure 11-57 shows
the Find field of the toolbar used to search a string in the code editor.

Figure 11-57 Using the Find Field of Code Editor Toolbar

To search a case sensitive string, or replace a search term, open the Find and
Replace dialog from the Find and Replace icon, and perform the operations from the
dialog, as shown in Figure 11-58.

Figure 11-58 Using Find and Replace Dialog of Code Editor

Chapter 11
Using Code Editor

11-65

Note:

If the Whole Words checkbox is selected, the Find and Replace dialog
cannot search for a non-English string in the editor. However, using the
Replace All button, you can replace all instances of the non-English string
while the Whole Words checkbox is selected.

To jump to a specific line number, enter the number in the Go to Line field and click
Jump to line, as shown in Figure 11-59.

Figure 11-59 Using Go To Line Feature of Code Editor

The code editor component can be configured to list all warnings and errors in a
message pane that is also provided with the code editor component. Figure 11-60
shows the message pane listing all XML errors noticed by the XML parser running on
the server.

Figure 11-60 Message Pane of Code Editor

The message pane is a non-editable region that resides below the text area of the
code editor. It is used to display code-related status information, such as validation
support for code compilation, and any error or warning messages. Clicking a message
in the message pane navigates you to the respective code line in the code editor.

You can also configure the code editor to programmatically add various types of
markers. Figure 11-61 shows the code editor with critical error, error, warning, and
information markers.

Chapter 11
Using Code Editor

11-66

Figure 11-61 Using Markers in Code Editor

How to Add a codeEditor Component
When you add a codeEditor component, use the language attribute to configure the
programming language used by the code editor.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Code Editor.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Input Components and Forms.

To add a codeEditor component:

1. In the Components window, from the Text and Selection panel, drag and drop a
Code Editor component onto the page.

2. In the Properties window, expand the Common section, and set Language. The
valid values are javascript, groovy, and xml.

Chapter 11
Using Code Editor

11-67

3. Expand the Appearance section, and set the following:

• LineNumbers: Specify whether line numbers should be visible in the code
editor.

The valid values are yes and no.

• Simple: Set to true if you do not want the label to be displayed.

4. Expand the Behavior section, and set the following

• ReadOnly: Specify whether the code in the code editor can be edited or
displayed as output-style text.

• Disabled: Specify whether or not the code editor should be disabled.

Chapter 11
Using Code Editor

11-68

12
Using Tables, Trees, and Other Collection-
Based Components

This chapter describes how to display structured data in components that can iterate
through collections of data and then display each row in the collection, using the
ADF Faces table, tree and treeTable, listView, and carousel components. If your
application uses the Fusion technology stack, then you can use data controls to create
these components. SeeCreating ADF Databound Tables, Displaying Master-Detail
Data, and Using More Complex Databound ADF Faces Components in Developing
Fusion Web Applications with Oracle Application Development Framework.

This chapter includes the following sections:

• About Collection-Based Components

• Common Functionality in Collection-Based Components

• Displaying Data in Tables

• Adding Hidden Capabilities to a Table

• Enabling Filtering in Tables

• Displaying Data in Trees

• Displaying Data in Tree Tables

• Passing a Row as a Value

• Displaying Table Menus, Toolbars, and Status Bars

• Displaying a Collection in a List

• Displaying Images in a Carousel

• Exporting Data from Table, Tree, or Tree Table

• Accessing Selected Values on the Client from Collection-Based Components

About Collection-Based Components
The basic understanding of what is collection-based components is explained. The
additional functionalities, such as Customizing the toolbar, Active Data and others,
also can be used along with ADF table and tree components.

ADF Faces provides components that you can use to iterate through and display
collections of structured data. Instead of containing a child component for each record
to be displayed, and then binding these components to the individual records, these
components are bound to a complete collection, and they then repeatedly render one
component (for example an outputText component), by stamping the value for each
record.

Structured data can be displayed as a simple table consisting of a number of rows and
one column, using the ListView component, or multiple columns using the ADF Faces
table component. Hierarchical data can be displayed either as tree structures using

12-1

ADF Faces tree component, or in a table format, using ADF Faces tree table
component. A collection of images can be displayed in a carousel component.
Figure 12-1 shows the ADF Faces collection-based components.

Figure 12-1 ADF Faces Collection-Based Components

Chapter 12
About Collection-Based Components

12-2

Tip:

When you do not want to use a table, but still need the same stamping
capabilities, you can use the iterator tag. For example, say you want to
display a list of periodic table elements, and for each element, you want to
display the name, atomic number, symbol, and group. You can use the
iterator tag as shown in the following example.

<af:iterator var="row" first="3" rows="3" varStatus="stat"
 value="#{periodicTable.tableData}" >
 <af:outputText value="#{stat.count}.Index:#{stat.index} of
 #{stat.model.rowCount}"/>
 <af:outputText label="Element Name" value="#{row.name}"/>
 <af:outputText label="Atomic Number" value="#{row.number}"/>
 <af:outputText label="Symbol" value="#{row.symbol}"/>
 <af:outputText label="Group" value="#{row.group}"/>
</af:iterator>

Each child is stamped as many times as necessary. Iteration starts at the
index specified by the first attribute for as many indexes specified by the row
attribute. If the row attribute is set to 0, then the iteration continues until there
are no more elements in the underlying data.

Collection-Based Component Use Cases and Examples
Collection-based components are used to display structured information. For example,
as shown in Figure 12-2, the Table tab in the File Explorer application uses a table to
display the contents of the selected directory.

Figure 12-2 Table Component in the File Explorer Application

Hierarchical data (that is data that has parent/child relationships), such as the directory
in the File Explorer application, can be displayed as expandable trees using the tree
component. Items are displayed as nodes that mirror the parent/child structure of the
data. Each top-level node can be expanded to display any child nodes, which in turn
can also be expanded to display any of their child nodes. Each expanded node can
then be collapsed to hide child nodes. Figure 12-3 shows the file directory in the File
Explorer application, which is displayed using a tree component.

Chapter 12
About Collection-Based Components

12-3

Figure 12-3 Tree Component in the File Explorer Application

Hierarchical data can also be displayed using tree table components. The tree table
also displays parent/child nodes that are expandable and collapsible, but in a tabular
format, which allows the page to display attribute values for the nodes as columns of
data. For example, along with displaying a directory's contents using a table
component, the File Explorer application has another tab that uses the tree table
component to display the contents, as shown in Figure 12-4.

Figure 12-4 Tree Table in the File Explorer Application

Like the tree component, the tree table component can show the parent/child
relationship between items. And like the table component, the tree table component
can also show any attribute values for those items in a column. Most of the features
available on a table component are also available in tree table component.

You can add a toolbar and a status bar to tables, trees, and tree tables by surrounding
them with the panelCollection component. The top panel contains a standard menu
bar as well as a toolbar that holds menu-type components such as menus and menu
options, toolbars and toolbar buttons, and status bars. Some buttons and menus are
added by default. For example, when you surround a table, tree, or tree table with a
panelCollection component, a toolbar that contains the View menu is added. This
menu contains menu items that are specific to the table, tree, or tree table component.

Chapter 12
About Collection-Based Components

12-4

Figure 12-5 shows the tree table from the File Explorer application with the toolbar,
menus, and toolbar buttons created using the panelCollection component.

Figure 12-5 TreeTable with Panel Collection

The listView component is a light-weight table that allows you to display structured
data in a list format. Unlike a table, it does not have columns, which allows you to
easily present data in a variety of patterns, beyond a simple tabular layout.

The components that display the actual data are contained in a single child listItem
component. Figure 12-6 shows a listView component that contains one child
listItem component. The listItem component contains a mix of layout components,
output components and button components.

Figure 12-6 The listView Component Uses listItem Components to Hold Data
for Each Row

The listView component can also display hierarchical data. When a component that
is bound to the parent data is placed in the groupHeaderStamp facet, that data is
displayed in a header. Figure 12-7 shows how the alphabet letters, which are the
parent data, are displayed in headers, while the child personnel data is displayed in
rows below the parent.

Chapter 12
About Collection-Based Components

12-5

Figure 12-7 Hierarchical Data Can be Displayed in Groups

The carousel component displays a collection of images in a revolving carousel, as
shown in Figure 12-8. Users can change the image at the front either by using the
slider at the bottom or by clicking one of the auxiliary images to bring that specific
image to the front.

Figure 12-8 The ADF Faces Carousel

Additional Functionality for Collection-Based Components
You may find it helpful to understand other ADF Faces features before you implement
your collection-based components. Additionally, once you have added a collection-
based component to your page, you may find that you need to add functionality such
as validation and accessibility. Following are links to other functionality that table and
tree components can use.

• Customizing the toolbar: You can customize the toolbar included in the
panelCollection component, which provides menus, toolbars, and status bars for
the table and tree table components. For information about menus, toolbars, and
toolbar buttons, see Using Menus, Toolbars, and Toolboxes.

• Geometry management of the table width: If the table is a child to a component
that stretches its children, then this width setting will be overridden and the table
will automatically stretch to fit its container. For information about how components
stretch, see Geometry Management and Component Stretching.

• Active data: If your application uses active data, then you can have the data in
your tables and trees update automatically, whenever the data in the data source

Chapter 12
About Collection-Based Components

12-6

changes. See Using the Active Data Service in Developing Fusion Web
Applications with Oracle Application Development Framework.

Note:

If you wish to use active data, and your application uses ADF Business
Components, then your tables must conform to the following:

– The table or tree is bound to homogeneous data which contains only
a single attribute.

– The table does not use filtering.

– The tree component's nodeStamp facet contains a single outputText
tag and contains no other tags.

• Events: Collection-based components fire both server-side and client-side events
that you can have your application react to by executing some logic. See Handling
Events.

• Partial page rendering: You may want a collection-based component to refresh
to show new data based on an action taken on another component on the page.
See Using the Optimized Lifecycle.

• Personalization: Users can change the way the component displays at runtime
(for example the user can reorder columns or change column widths), those
values will not be retained once the user leaves the page unless you configure
your application to allow user customization. For information, see Allowing User
Customization on JSF Pages.

• Accessibility: You can make your components accessible. See Developing
Accessible ADF Faces Pages.

• Automatic data binding: If your application uses the Fusion technology stack,
then you can create automatically bound tables and trees based on how your ADF
Business Components are configured. See Creating ADF Databound Tables and
Displaying Master-Detail Data in Developing Web User Interfaces with Oracle ADF
Faces.

Common Functionality in Collection-Based Components
Using the functionalities available with collection-based components you can perform
many functionalities. Some of them are, display data in a row in an ADF table structure
and in node in an ADF tree structure, or you can decide to deliver either one row or
multiple rows of content to the client machine.

Collection-based component share many of the same functionality, such as how data
is delivered and how data can be displayed and edited. It is important that you
understand this shared functionality and how it is configured before you use these
components.

Displaying Data in Rows and Nodes
Instead of containing a child component for each record to be displayed, and then
binding these components to the individual records, collection-based components are
bound to a complete collection, and they then repeatedly render one component (for

Chapter 12
Common Functionality in Collection-Based Components

12-7

example an outputText component) by stamping the value for each record. For
example, say a table contains two child column components. Each column displays a
single attribute value for the row using an output component and there are four records
to be displayed. Instead of binding four sets of two output components to display the
data, the table itself is bound to the collection of all four records and simply stamps
one set of the output components four times. As each row is stamped, the data for the
current row is copied into the var attribute on the table, from which the output
component can retrieve the correct values for the row. For information about how
stamping works, especially with client components, see Accessing Client Collection
Components.

The following example shows the JSF code for a table whose value for the var
attribute is row. Each outputText component in a column displays the data for the row
because its value is bound to a specific property on the variable.

<af:table var="row" value="#{myBean.allEmployees}">
 <af:column>
 <af:outputText value="#{row.firstname}"/>
 </af:column>
 <af:column>
 af:outputText value="#{row.lastname}"/>
 </af:column>
</af:table>

Collection-based components uses a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class and adds on
support for row keys and sorting. In the DataModel class, rows are identified entirely by
index. This can cause problems when the underlying data changes from one request
to the next, for example a user request to delete one row may delete a different row
when another user adds a row. To work around this, the CollectionModel class is
based on row keys instead of indexes.

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the table
component automatically converts the instance into a CollectionModel class, but
without the additional functionality. For information about the CollectionModel class,
see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/
trinidad-1_2/trinidad-api/apidocs/index.html.

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create tables and the collection model will be created for you. See
Creating ADF Databound Tables in Developing Web User Interfaces with
Oracle ADF Faces.

Content Delivery
The collection components are virtualized, meaning not all the rows that are there for
the component on the server are delivered to and displayed on the client. You
configure collection components to fetch a certain number of rows at a time from your
data source. The data can be delivered to the components immediately upon
rendering, when it is available, or lazily fetched after the shell of the component has

Chapter 12
Common Functionality in Collection-Based Components

12-8

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

been rendered (by default, the components fetch data when it is available), as
specified by the setting the ContentDelivery attribute on the component.

With immediate delivery, the data is fetched during the initial request. With lazy
delivery, when a page contains one or more collection components, the page initially
goes through the standard lifecycle. However, instead of fetching the data during that
initial request, a special separate partial page rendering (PPR) request is run, and the
number of rows set as the value of the fetch size for the component is then returned.
Because the page has just been rendered, only the Render Response phase executes
for the components, allowing the corresponding data to be fetched and displayed.
When a user's actions cause a subsequent data fetch (for example scrolling in a table
for another set of rows), another PPR request is executed.

When content delivery is configured to be delivered when it is available, the framework
checks for data availability during the initial request, and if it is available, it sends the
data to the component and inlines it for rendering. If it is not available, the data is
loaded during the separate PPR request, as it is with lazy delivery. Note that in
JDeveloper releases prior to 12.2.1.0, two separate requests are required to send the
data and to inline the data upon rendering the component. If you prefer the content
delivery performance of an earlier release, you can set the ContentDelivery attribute
to lazy; this will force inlining of the data only during a subsequent.

Note:

If your application does not use the Fusion technology stack, then you must
explicitly add support for whenAvailable to your CollectionModel
implementation. For an example, see the WhenAvailableData.java
managed bean in the Faces demo application.

If your application does use the Fusion technology stack, then the
CollectionModel implementation created for you automatically uses these
APIs.

Chapter 12
Common Functionality in Collection-Based Components

12-9

Performance Tip:

Lazy delivery should be used when a data fetch is expected to be an
expensive (slow) operation, for example, slow, high-latency database
connection, or fetching data from slow nondatabase data sources like web
services. Lazy delivery should also be used when the page contains a
number of components other than a table, tree, or tree table. Doing so allows
the initial page layout and other components to be rendered first before the
data is available.

Immediate delivery should be used if the table, tree, or tree table is the only
context on the page, or if the component is not expected to return a large set
of data. In this case, response time will be faster than using lazy delivery (or
in some cases, simply perceived as faster), as the second request will not go
to the server, providing a faster user response time and better server CPU
utilizations. Note however that only the number of rows configured to be the
fetch block will be initially returned. As with lazy delivery, when a user's
actions cause a subsequent data fetch, the next set of rows are delivered.

When available delivery provides the additional flexibility of using immediate
when data is available during initial rendering or falling back on lazy when
data is not initially available. Starting in the JDeveloper 12.2.1.0 release,
when available is the default delivery content delivery mode.

The number of rows that are displayed on the client are just enough to fill the page as
it is displayed in the browser. More rows are fetched as the user scrolls the component
vertically (or if configured to page instead of scroll, when the user navigates to another
set of rows). The fetchSize attribute determines the number of rows requested from
the client to the server on each attempt to fill the component. For a table, the default
value is 25. So if the height of the table is small, the fetch size of 25 is sufficient to fill
the component. However, if the height of the component is large, there might be
multiple requests for the data from the server. Therefore, the fetchSize attribute
should be set to a higher number. For example, if the height of the table is 600 pixels
and the height of each row is 18 pixels, you will need at least 45 rows to fill the table.
With a fetchSize of 25, the table has to execute two requests to the server to fill the
table. For this example, you would set the fetch size to 50.

However, if you set the fetch size too high, it will impact both server and client. The
server will fetch more rows from the data source than needed and this will increase
time and memory usage. On the client side, it will take longer to process those rows
and attach them to the component.

Performance Tip:

Reduce fetchSize whenever possible.

By default, on a desktop device, tables render a scroll bar that allows the users to
scroll through the rows of data. Instead, when you want to configure the table to be
paginated, you can set the scrollPolicy attribute to page. A paginated table displays
a footer that allows the user to jump to specific pages of rows, as shown in
Figure 12-9.

Chapter 12
Common Functionality in Collection-Based Components

12-10

Figure 12-9 Paginated Table

When the viewport is too narrow to display the complete footer, the table displays a
compact footer that shows only the page currently displayed and the navigation
buttons, as shown in Figure 12-10.

Figure 12-10 Paginated Table in Compact Mode

Chapter 12
Common Functionality in Collection-Based Components

12-11

Note:

By default, on tablet devices, tables are rendered to display the table as
paginated and therefore do not display a scroll bar. If instead, you want to
enable scroll bars so the table automatically loads the next set of rows when
the user scrolls to the bottom of the table, you can set the scrollPolicy
attribute to scroll. This option on tablets results in a behavior called implicit
high-water mark scrolling and closely resembles the way virtualized touch
scrolling (scrolling in both horizontal and vertical directions) behaves on
tablet devices. Regular virtualized scrolling which results from setting
scrollPolicy to scroll on a desktop machine is not implemented on tablets
due to performance problems with virtualized scrolling of table data on
tablets. You can, however, customize the caching behavior of implicit high-
water mark scrolling by specifying the number of rows to cache to minimize
database round-trips by setting a value for the maxClientRows attribute.

As with a table configured to scroll, the number of rows on a page is determined by the
fetchSize attribute.

Note:

By default, if you configure your tables to use scroll bars, on iOS operating
systems, the scroll bars appear only when you mouseover the content. You
can configure your application so that this same behavior occurs on other
operating systems as well, by setting the
oracle.adf.view.rich.table.scrollbarBehavior parameter in the
web.xml file. See Scrollbar Behavior in Tables.

Note:

You can hide the scroll bar using the -tr-overflow-style: autohiding-
scrollbar skinning property. For example:

af|table {
 -tr-overflow-style: autohiding-scrollbar
}

For information about skins, see Customizing the Appearance Using Styles
and Skins.

You can also configure the set of data that will be initially displayed using the
displayRow attribute. By default, the first record in the data source is displayed in the
top row or node and the subsequent records are displayed in the following rows or
nodes. You can also configure the component to first display the last record in the
source instead. In this case, the last record is displayed in the bottom row or node of
the component, and the user can scroll up to view the preceding records. Additionally,
you can configure the component to display the selected row. This can be useful if the
user is navigating to the component, and based on some parameter, a particular row

Chapter 12
Common Functionality in Collection-Based Components

12-12

will be programmatically selected. When configured to display the selected row, that
row will be displayed at the top of the table and the user can scroll up or down to view
other rows.

Note:

You cannot use JavaScript to dynamically size a table or tree. The height of
tables, trees and treetables is set the first time they are rendered and cannot
be changed using JavaScript APIs.

Row Selection
You can configure selection to be either for no rows, for a single row, or for multiple
rows using the rowSelection attribute (the carousel component does not allow
multiple row selection). This setting allows you to execute logic against the selected
rows. For example, you may want users to be able to select a row in a table or a node
in a tree, and then to click a button that navigates to another page where the data for
the selected row is displayed and the user can edit it.

Note:

If you configure your component to allow multiple selection, users can select
one row and then press the shift key to select another row, and all the rows
in between will be selected. This selection will be retained even if the
selection is across multiple data fetch blocks. Similarly, you can use the Ctrl
key to select rows that are not next to each other.

For example, if you configure your table to fetch only 25 rows at a time, but
the user selects 100 rows, the framework is able to keep track of the
selection.

When the selected row (or node) of a component changes, the component triggers a
selection event. This event reports which rows were just deselected and which rows
were just selected. While the components handle selection declaratively, if you want to
perform some logic on the selected rows, you need to implement code that can access
those rows and then perform the logic. You can do this in a selection listener method
on a managed bean. See What You May Need to Know About Performing an Action
on Selected Rows in Tables.

Chapter 12
Common Functionality in Collection-Based Components

12-13

Performance Tip:

Users can navigate through the table using a mouse and the scrollbar, or
using the up and down arrow keyboard keys. By default, a selection event is
immediately fired when the user clicks a row. If the user is navigating through
the rows using the arrow keys, this means that a selection event will be fired
for each row, as the user navigates.

If you expect users to navigate through the table using the keys, you can set
the delaySelectionEvent attribute to true, so that there is a 300 millisecond
delay before the selection event is fired. If the user navigates to another row
within the 300 milliseconds, the selection event is canceled.

Editing Data in Tables, Trees, and Tree Tables
You can choose the component used to display the actual data in a table, tree, or tree
table. For example, you may want the data to be read-only, and therefore you might
use an outputText component to display the data. Conversely, if you want the data to
be able to be edited, you might use an inputText component, or if choosing from a
list, one of the SelectOne components. All of these components are placed as children
to the column component (in the case of a table and tree table) or within the nodeStamp
facet (for a tree).

When you decide to use components whose value can be edited to display your data,
you have the option of having the table, tree, or tree table either display all rows as
available for editing at once, or display all but the currently active row as read-only
using the editingMode attribute. For example, Figure 12-11 shows a table whose rows
can all be edited. The page renders using the components that were added to the
page (for example, inputText, inputDate, and inputComboBoxListOfValues
components).

Figure 12-11 Table Whose Rows Can All Be Edited

Figure 12-12 shows the same table (that is, it uses inputText, inputDate, and
inputComboBoxListOfValues components to display the data), but configured so that
only the active row displays the editable components, by setting editingMode to
clickToEdit. Users can then click on another row to make it editable (only one row is
editable at a time). Note that outputText components are used to display the data in
the noneditable rows, even though the same input components as in Figure 12-11

Chapter 12
Common Functionality in Collection-Based Components

12-14

were used to build the page. The only row that actually renders those components is
the active row.

Note:

When you set editingMode to readOnly , all the components in the table will
be rendered as read only, including input components. Also when the entire
table is selected, the editingMode will be set to readOnly.

Figure 12-12 Table Allows Only One Row to Be Edited at a Time

The currently active row is determined by the activeRowKey attribute on the table. By
default, the value of this attribute is the first visible row of the table. When the table (or
tree or tree table) is refreshed, that component scrolls to bring the active row into view,
if it is not already visible. When the user clicks on a row to edit its contents, that row
becomes the active row.

When you allow only a single row (or node) to be edited, the table (or tree or tree
table) performs PPR when the user moves from one row (or node) to the next, thereby
submitting the data (and validating that data) one row at a time. When you allow all
rows to be edited, data is submitted whenever there is an event that causes PPR to
typically occur, for example scrolling beyond the currently displayed rows or nodes.

Note:

Trees and tables support browser copy and paste. When you mouse over a
text field that can be copied, the cursor displays an I-bar. When you click the
mouse to copy the text, that row becomes selected.

Not all editable components make sense to be displayed in a click-to-edit mode. For
example, those that display multiple lines of HTML input elements may not be good
candidates. These components include:

• SelectManyCheckbox

• SelectManyListBox

Chapter 12
Common Functionality in Collection-Based Components

12-15

• SelectOneListBox

• SelectOneRadio

• SelectManyShuttle

Performance Tip:

For increased performance during both rendering and postback, you should
configure your table to allow editing only to a single row.

When you elect to allow only a single row to be edited at a time, the page will
be displayed more quickly, as output components tend to generate less
HTML than input components. Additionally, client components are not
created for the read-only rows. Because the table (or tree, or tree table)
performs PPR as the user moves from one row to the next, only that row's
data is submitted, resulting in better performance than a table that allows all
cells to be edited, which submits all the data for all the rows in the table at
the same time. Allowing only a singe row to be edited also provides more
intuitive validation, because only a single row's data is submitted for
validation, and therefore only errors for that row are displayed.

Using Popup Dialogs in Tables, Trees, and Tree Tables
You can configure your table, tree, or tree table so that popup dialogs will be displayed
based on a user's actions. For example, you can configure a popup dialog to display
some data from the selected row when the user hovers the mouse over a cell or node.
You can also create popup context menus for when a user right-clicks a row in a table
or tree table, or a node in a tree. Additionally, for tables and tree tables, you can create
a context menu for when a user right-clicks anywhere within the table, but not on a
specific row.

Tables, trees, and tree tables all contain the contextMenu facet. You place your popup
context menu within this facet, and the associated menu will be displayed when the
user right-clicks a row. When the context menu is being fetched on the server, the
components automatically establish the currency to the row for which the context
menu is being displayed. Establishing currency means that the current row in the
model for the table now points to the row for which the context menu is being
displayed. In order for this to happen, the popup component containing the menu must
have its contentDelivery attribute set to lazyUncached so that the menu is fetched
every time it is displayed.

Chapter 12
Common Functionality in Collection-Based Components

12-16

Tip:

If you want the context menu to dynamically display content based on the
selected row, set the popup content delivery to lazyUncached and add a
setPropertyListener tag to a method on a managed bean that can get the
current row and then display data based on the current row:

<af:tree value="#{fs.treeModel}"
 contextMenuSelect="false" var="node" ..>
 <f:facet name="contextMenu">
 <af:popup id="myPopup" contentDelivery="lazyUncached">
 <af:setPropertyListener from="#{fs.treeModel.rowData}"
 to="#{dynamicContextMenuTable.currentTreeRowData}"
 type="popupFetch" />
 <af:menu>
 <af:menu text="Node Info (Dynamic)">
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Name - #{dynamicContextMenuTable.currentTreeRowData.name}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Path - #{dynamicContextMenuTable.currentTreeRowData.path}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text="Date -
 #{dynamicContextMenuTable.currentTreeRowData.lastModified}" />
 </af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
...
</af:tree>

The code on the backing bean might look something like this:

public class DynamicContextMenuTableBean
{
 ...
 public void setCurrentTreeRowData(Map currentTreeRowData)
 {
 _currentTreeRowData = currentTreeRowData;
 }

 public Map getCurrentTreeRowData()
 {
 return _currentTreeRowData;
 }

 private Map _currentTreeRowData;
}

Tables and tree tables contain the bodyContextMenu facet. You can add a popup that
contains a menu to this facet, and it will be displayed whenever a user clicks on the
table, but not within a specific row.

Chapter 12
Common Functionality in Collection-Based Components

12-17

For information about creating context menus, see Declaratively Creating Popups.

Accessing Client Collection Components
With ADF Faces, the contents of collection-based components are rendered on the
server. There may be cases when the client needs to access that content on the
server, including:

• Client-side application logic may need to read the row-specific component state.
For example, in response to row selection changes, the application may want to
update the disabled or visible state of other components in the page (usually menu
items or toolbar buttons). This logic may be dependent on row-specific metadata
sent to the client using a stamped inputHidden component. In order to enable this,
the application must be able to retrieve row-specific attribute values from stamped
components.

• Client-side application logic may need to modify row-specific component state. For
example, clicking a stamped command link in a table row may update the state of
other components in the same row.

• The peer may need access to a component instance to implement event handling
behavior (for information about peers, see About Using ADF Faces Architecture).
For example, in order to deliver a client-side action event in response to a mouse
click, the AdfDhtmlCommandLinkPeer class needs a reference to the component
instance which will serve as the event source. The component also holds on to
relevant state, including client listeners as well as attributes that control event
delivery behavior, such as disabled or partialSubmit.

Because there is no client-side support for EL in the ADF Faces framework, nor is
there support for sending entire table models to the client, the client-side code cannot
rely on component stamping to access the value. Instead of reusing the same
component instance on each row, a new JavaScript client component is created on
each row (assuming any component must be created at all for any of the rows).

Therefore, to access row-specific data on the client, you need to use the stamped
component itself to access the value. To do this without a client-side data model, you
use a client-side selection change listener. For detailed instructions, see Accessing
Selected Values on the Client from Collection-Based Components.

Geometry Management for the Table, Tree, and Tree Table
Components

By default, when tables, trees, and tree tables are placed in a component that
stretches its children (for example, a panelCollection component inside a
panelStretchLayout component), the table, tree, or tree table will stretch to fill the
existing space. However, in order for the columns to stretch to fit the table, you must
specify a specific column to stretch to fill up any unused space, using the
columnStretching attribute. Otherwise, the table will only stretch vertically to fit as
many rows as possible. It will not stretch the columns, as shown in Figure 12-13.

Chapter 12
Common Functionality in Collection-Based Components

12-18

Figure 12-13 Table Stretches But Columns Do Not

When placed in a component that does not stretch its children (for example, in a
panelCollection component inside a panelGroupLayout component set to vertical),
by default, a table width is set to 300px (27.27em units which translates to 300px for
an 11px font setting) and the default fetch size is set to return 25 rows, as shown in
Figure 12-14.

Chapter 12
Common Functionality in Collection-Based Components

12-19

Figure 12-14 Table Does Not Stretch

When you place a table in a component that does not stretch its children, you can
control the height of the table so that is never more than a specified number of rows,
using the autoHeightRows attribute. When you set this attribute to a positive integer,
the table height will be determined by the number of rows set. If that number is higher
than the fetchSize attribute, then only the number of rows in the fetchSize attribute
will be returned. You can set autoHeightRows to -1 (the default), to turn off auto-sizing.

Auto-sizing can be helpful in cases where you want to use the same table both in
components that stretch their children and those that don't. For example, say you have
a table that has 6 columns and can potentially display 12 rows. When you use it in a
component that stretches its children, you want the table to stretch to fill the available
space. If you want to use that table in a component that doesn't stretch its children,
you want to be able to "fix" the height of the table. However, if you set a height on the
table, then that table will not stretch when placed in the other component. To solve this
issue, you can set the autoHeightRows attribute, which will be ignored when in a
component that stretches, and will be honored in one that does not.

Chapter 12
Common Functionality in Collection-Based Components

12-20

Note:

The default value for the autoHeightRows attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want table
components to be stretched when the parent can stretch, and to be the size
of the fetchSize attribute when it cannot, set the DEFAULT_DIMENSIONS
parameter instead of the autoHeightRows attribute. Set the autoHeightRows
attribute when you want to override the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
autoHeightRows is -1 (the table will not stretch). See Geometry Management
for Layout and Table Components.

On the other hand, when you do not want to set the autoHeightRows attribute but still
want the table to stretch to fill up the empty vertical space, you can wrap the table with
the panelStretchLayout component and use the viewportBottom attribute. However,
you must explicitly use the AFStretchWidth styleClass and dimensionsFrom
attributes with the viewPortBottom attribute. When you use this setup, the distance
from the bottom of the panelStretchLayout to the bottom of the viewport matches the
number of the pixels in the viewportBottom attribute, so that the table resizes to
consume that empty space.

This setting is however not recommended as a long-term solution because the user
will see the adjustment that takes place when the table is resized after the table
displays at an initial size.

The following example shows the panelStretchLayout component with
viewportBottom attribute code.

<af:panelGroupLayout id="scroller" layout="scroll">
 <af:panelStretchLayout id="wrapper" styleClass="AFStretchWidth"
 <dimensionsFrom="parent" viewportBottom="64">
 <f:facet name="center">
 <af:table ...>...</af:table>
 </f:facet>
 </af:panelStretchLayout>
</af:panelGroupLayout>

Displaying Data in Tables
The ADF tables with collection-based components can be formatted using various
visual aids. Column data can be stored and sorted. Only partial page rendering
happens when the page containing tables is requested by a client.

The immediate children of a table component must be column components. Each
visible column component is displayed as a separate column in the table. Column
components contain components used to display content, images, or provide further
functionality. For information about the features available with the column component,
see Columns and Column Data.

The child components of each column display the data for each row in that column.
The column does not create child components per row; instead, the table uses
stamping to render each row. Each child is stamped once per row, repeatedly for all
the rows. As each row is stamped, the data for the current row is copied into a

Chapter 12
Displaying Data in Tables

12-21

property that can be addressed using an EL expression. You specify the name to use
for this property using the var property on the table. Once the table has completed
rendering, this property is removed or reverted back to its previous value.

Because of this stamping behavior, some components may not work inside the
column. Most components will work without problems, for example any input and
output components. If you need to use multiple components inside a cell, you can
wrap them inside a panelGroupLayout component. Components that themselves
support stamping are not supported, such as tables within a table. For information
about using components whose values are determined dynamically at runtime, see
What You May Need to Know About Dynamically Determining Values for Selection
Components in Tables.

You can use the detailStamp facet in a table to include data that can be optionally
displayed or hidden. When you add a component to this facet, the table displays an
additional column with an expand and collapse icon for each row. When the user clicks
the icon to expand, the component added to the facet is displayed, as shown in
Figure 12-15.

Figure 12-15 Extra Data Can Be Optionally Displayed

When the user clicks on the expanded icon to collapse it, the component is hidden, as
shown in Figure 12-16.

Figure 12-16 Extra Data Can Be Hidden

For information about using the detailStamp facet, see Adding Hidden Capabilities to
a Table.

Columns and Column Data
Columns contain the components used to display the data. As stated previously, only
one child component is needed for each item to be displayed; the values are stamped

Chapter 12
Displaying Data in Tables

12-22

as the table renders. Columns can be sorted, and you can configure whether the sort
should be case-sensitive or case-insensitive. By default, it is case-sensitive.

Columns can also contain a filtering element. Users can enter a value into the filter
and the returned data set will match the value entered in the filter. You can set the
filter to be either case-sensitive or case-insensitive. If the table is configured to allow it,
users can also reorder columns.

Columns have both header and footer facets. The header facet can be used instead of
using the header text attribute of the column, allowing you to use a component that
can be styled. The footer facet is displayed at the bottom of the column. For example,
Figure 12-17 uses footer facets to display the total at the bottom of two columns. If the
number of rows returned is more than can be displayed, the footer facet is still
displayed; the user can scroll to the bottom row.

Figure 12-17 Footer Facets in a Column

Formatting Tables
A table component offers many formatting and visual aids to the user. You can enable
these features and specify how they can be displayed. These features include:

• Row selection: By default, at runtime, users cannot select rows. If you want users
to be able to select rows in order to perform some action on them somewhere else
on the page, or on another page, then enable row selection for the table by setting
the rowSelection attribute. You can configure the table to allow either a single row
or multiple rows to be selected. For information about how to then
programmatically perform some action on the selected rows, see What You May
Need to Know About Performing an Action on Selected Rows in Tables.

• Scrolling/Pagination: By default, on desktop devices, tables render a scroll bar that
allows the user to scroll through all rows. On tablet devices, instead of a scroll bar,
the table is paginated and displays a footer that allows the user to jump to specific
pages of rows. You can change the default by setting the scrollPolicy attribute.

Chapter 12
Displaying Data in Tables

12-23

• Table height: You can set the table height to be absolute (for example, 300 pixels),
or you can determine the height of the table based on the number of rows you
wish to display at a time by setting the autoHeightRows attribute. See Geometry
Management for the Table, Tree, and Tree Table Components.

Note:

When table is placed in a layout-managing container, such as a
panelSplitter component, it will be sized by the container and the
autoHeightRows is not honored.

Note:

You cannot use JavaScript to dynamically size a table. The height of a
table is set the first time is rendered and cannot be changed using
JavaScript APIs.

• Grid lines: By default, an ADF table component draws both horizontal and vertical
grid lines. These may be independently turned off using the
horizontalGridVisible and verticalGridVisible attributes.

• Banding: Groups of rows or columns are displayed with alternating background
colors using the columnBandingInterval attribute. This helps to differentiate
between adjacent groups of rows or columns. By default, banding is turned off.

• Column groups: Columns in a table can be grouped into column groups, by
nesting column components. Each group can have its own column group heading,
linking all the columns together. See Step 14 in How to Display a Table on a Page.

• Editable cells: When you elect to use input text components to display data in a
table, you can configure the table so that all cells can be edited, or so that the user
must explicitly click in the cell in order to edit it. See Editing Data in Tables, Trees,
and Tree Tables.

Performance Tip:

When you choose to have cells be available for editing only when the
user clicks on them, the table will initially load faster. This may be
desirable if you expect the table to display large amounts of data.

• Column stretching: If the widths of the columns do not together fill the whole table,
you can set the columnStretching attribute to determine whether or not to stretch
columns to fill up the space, and if so, which columns should stretch. You can set
the minimum width for columns, so that when there are many columns in a table
and you enable stretching, columns will not be made smaller than the set minimum
width. You can also set a width percentage for each column you want to stretch to
determine the amount of space that column should take up when stretched.

Chapter 12
Displaying Data in Tables

12-24

Note:

If the total sum of the columns' minimum widths equals more than the
viewable space in the viewport, the table will expand outside the
viewport and a scrollbar will appear to allow access outside the viewport.

Performance Tip:

Column stretching is turned off by default. Turning on this feature may
have a performance impact on the client rendering time when used for
complex tables (that is, tables with a large amount of data, or with nested
columns, and so on).

Note:

Columns configured to be row headers or configured to be frozen will not
be stretched because doing so could easily leave the user unable to
access the scrollable body of the table.

• Column selection: You can choose to allow users to be able to select columns of
data. As with row selection, you can configure the table to allow single or multiple
column selection. You can also use the columnSelectionListener to respond to
the ColumnSelectionEvent that is invoked when a new column is selected by the
user. This event reports which columns were just deselected and which columns
were just selected.

• Column reordering: Users can reorder the columns at runtime by simply dragging
and dropping the column headers. By default, column reordering is allowed, and is
handled by a menu item in the panelCollection component. See Displaying
Table Menus, Toolbars, and Status Bars.

• Column freezing: You can configure the table so that columns can be frozen and
so will not scroll out of view. Columns can be frozen on either the left or right side
of the table. This is controlled by the freezeDirection attribute on the table. You
choose the column to start the freeze using the frozen attribute on the column.

Performance Tip:

Use of column freezing increases the complexity of tables and can have
a negative performance impact.

Formatting Columns
Each column component also offers many formatting and visual aids to the user. You
can enable these features and specify how they can be displayed. These features
include:

Chapter 12
Displaying Data in Tables

12-25

• Column sorting: Columns can be configured so that the user can sort the contents
by a given column, either in ascending or descending order using the sortable
attribute. A sort icon on a column header lets the user know that the column can
be sorted. The sort icon toggles depending on the sort order. Other columns that
can be sorted displays the sort icon on the mouse hover. When the user clicks on
the icon to sort a previously unsorted column, the column's content is sorted in
ascending order. Subsequent clicks on the same header sort the content in the
reverse order. For sortable columns, a space is reserved on the right of the
column header for the sort icon.

By default, sorting is case-sensitive. That is, abc would be sorted before ABC. You
can configure the column so that instead, abc would be sorted the same as ABC,
using the sortStrength attribute.

In order for the table to be able to sort, the underlying data model must also
support sorting. See What You May Need to Know About Programmatically
Enabling Sorting for Table Columns.

• Content alignment: You can align the content within the column to either the start,
end, left, right, or center using the align attribute.

Tip:

Use start and end instead of left and right if your application
supports multiple reading directions.

• Column width: The width of a column can be specified as an absolute value in
pixels using the width attribute. If you configure a column to allow stretching, then
you can also set the width as a percentage.

• Column spanning: You can configure a column to span across other columns
using the colSpan attribute. Normally however, you use an EL expression as the
value for the span, to enable only a certain cell in the column to actually span. For
example, Figure 12-18 shows a tree table whose colSpan value resolves to span
all rows to the right, only if the node is a parent node.

Figure 12-18 Column Spans Only When the Node is a Parent

• Line wrapping: You can define whether or not the content in a column can wrap
over lines, using the noWrap attribute. By default, content will not wrap.

• Row headers: You can define the left-most column to be a row header using the
rowHeader attribute. When you do so, the left-most column is rendered with the
same look as the column headers, and will not scroll off the page. Figure 12-19
shows how a table showing departments appears if the first column is configured
to be a row header.

Chapter 12
Displaying Data in Tables

12-26

Figure 12-19 Row Header in a Table

If you elect to use a row header column and you configure your table to allow row
selection, the row header column displays a selection arrow when a users hovers
over the row, as shown in Figure 12-20.

Figure 12-20 Selection Icon in Row Header

For tables that allow multiple selection, users can mouse down and then drag on the
row header to select a contiguous blocks of rows. The table will also autoscroll
vertically as the user drags up or down.

In addition, when an error occurs that results in a message for a component in the row,
the icon for the severity is displayed in the row header. If more than one message
exists, the icon for the maximum severity is displayed. Figure 12-21 shows the error
icon displayed in the row header because a date was entered incorrectly.

Figure 12-21 Row Headers Display Message Icons

Chapter 12
Displaying Data in Tables

12-27

Performance Tip:

Use of row headers increases the complexity of tables and can have a
negative performance impact.

Tip:

While the user can change the way the table displays at runtime (for example
the user can reorder columns or change column widths), those values will
not be retained once the user leaves the page unless you configure your
application to allow user customization. For information, see Allowing User
Customization on JSF Pages.

How to Display a Table on a Page
You use the Create an ADF Faces Table dialog to add a table to a JSF page. You also
use this dialog to add column components for each column you need for the table. You
can also bind the table to the underlying model or bean using EL expressions.

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create tables and the binding will be done for you. SeeCreating
ADF Databound Tables in Developing Fusion Web Applications with Oracle
Application Development Framework.

Once you complete the dialog, and the table and columns are added to the page, you
can use the Properties window to configure additional attributes of the table or
columns, and add listeners to respond to table events. You must have an
implementation of the CollectionModel class to which your table will be bound.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See SeeDisplaying Data in Tables.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See SeeAdditional Functionality for Collection-Based
Components.

To display a table on a page:

1. Create a Java class that extends the
org.apache.myfaces.trinidad.model.CollectionModel class.

Collection components use a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class, but is based on
row keys instead of indexes to support underlying data changes. It also supports
more advanced functionality, such as sorting.

Chapter 12
Displaying Data in Tables

12-28

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the
collection component automatically converts the instance into a CollectionModel
class, but without any additional functionality. For information about the
CollectionModel class, see the MyFaces Trinidad javadoc at http://
myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/
index.html.

2. In the Components window, from the Data Views panel, drag and drop a Table
onto the page.

3. Use the Create ADF Faces Table dialog to bind the table to any existing model
you have. When you bind the table to a valid model, the dialog automatically
shows the columns that will be created. You can then use the dialog to edit the
values for the columns' header and value attributes, and choose the type of
component that will be used to display the data. Alternatively, you can manually
configure columns and bind at a later date. For help with the dialog, click Help or
press F1.

Note:

If you are using an inputText component to display a Character Large
Object (CLOB), then you will need to create a custom converter that
converts the CLOB to a String. For information about conversion, see
Creating Custom ADF Faces Converters.

4. In the Properties window, expand the Common section. If you have already bound
your table to a model, the value attribute should be set. You can use this section to
set the following table-specific attributes:

• RowSelection: Set a value to make the rows selectable. Valid values are:
none, single, and multiple, and multipleNoSelectAll.

Note:

Users can select all rows and all columns in a table by clicking the
column header for the row header if the rowSelection attribute is set
to multiple and that table also contains a row header. If you do not
want users to be able to select all columns and rows, then set
rowSelection to multipleNoSelectAll.

For information about how to then programmatically perform some action on
the selected rows, see What You May Need to Know About Performing an
Action on Selected Rows in Tables.

• ColumnSelection: Set a value to make the columns selectable. Valid values
are: none, single, and multiple.

5. Expand the Columns section. If you previously bound your table using the Create
ADF Faces Table dialog, then these settings should be complete. You can use this
section to change the binding for the table, to change the variable name used to
access data for each row, and to change the display label and components used
for each column.

Chapter 12
Displaying Data in Tables

12-29

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Tip:

If you want to use a component other than those listed, select any
component in the Properties window, and then manually change it:

a. In the Structure window, right-click the component created by the
dialog and choose Convert.

b. Select the desired component from the list. You can then use the
Properties window to configure the new component.

Tip:

If you want more than one component to be displayed in a column, add
the other component manually and then wrap them both in a
panelGroupLayout component. To do so:

a. In the Structure window, right-click the first component and choose
Insert before or Insert after. Select the component to insert.

b. By default the components will be displayed vertically. To have
multiple components displayed next to each other in one column,
press the shift key and select both components in the Structure
window. Right-click the selection and choose Surround With.

c. Select panelGroupLayout.

6. Expand the Appearance section. You use this section to set the appearance of the
table, by setting the following table-specific attributes:

• Width: Specify the width of the table. You can specify the width as either a
number of pixels or as a percentage. The default setting is 300 pixels. If you
configure the table to stretch columns (using the columnStretching attribute),
you must set the width to percentages.

Tip:

If the table is a child to a component that stretches its children, then
this width setting will be overridden and the table will automatically
stretch to fit its container. For information about how components
stretch, see Geometry Management for the Table, Tree, and Tree
Table Components.

• ColumnStretching: If the widths of the columns do not together fill the whole
table, you can set this attribute to determine whether or not to stretch columns
to fill up the space, and if so, which columns should stretch.

Chapter 12
Displaying Data in Tables

12-30

Note:

If the table is placed inside a component that can stretch its children,
only the table will stretch automatically. You must manually configure
column stretching if you want the columns to stretch to fill the table.

Note:

Columns configured to be row headers or configured to be frozen will
not be stretched because doing so could easily leave the user
unable to access the scrollable body of the table.

Performance Tip:

Column stretching is turned off by default. Turning on this feature
may have a performance impact on the client rendering time for
complex tables.

You can set column stretching to one of the following values:

– blank: If you want to have an empty blank column automatically inserted
and have it stretch (so the row background colors will span the entire
width of the table).

– A specifically named column: Any column currently in the table can be
selected to be the column to stretch.

– last: If you want the last column to stretch to fill up any unused space
inside of the window.

– none: The default option where nothing will be stretched. Use this for
optimal performance.

– multiple: All columns that have a percentage value set for their width
attribute will be stretched to that percent, once other columns have been
rendered to their (nonstretched) width. The percentage values will be
weighted with the total. For example, if you set the width attribute on three
columns to 50%, each column will get 1/3 of the remaining space after all
other columns have been rendered.

Tip:

While the widths of columns can change at runtime, those width
values will not be retained once the user leaves the page unless you
configure your application to use change persistence. For
information about enabling and using change persistence, see
Allowing User Customization on JSF Pages.

Chapter 12
Displaying Data in Tables

12-31

• HorizontalGridVisible: Specify whether or not the horizontal grid lines are to
be drawn.

• VerticalGridVisible: Specify whether or not the vertical grid lines are to be
drawn.

• RowBandingInterval: Specify how many consecutive rows form a row group
for the purposes of color banding. By default, this is set to 0, which displays all
rows with the same background color. Set this to 1 if you want to alternate
colors.

• ColumnBandingInterval: Specify the interval between which the column
banding occurs. This value controls the display of the column banding in the
table. For example, columnBandingInterval=1 would display alternately
banded columns in the table.

• FilterVisible: You can add a filter to the table so that it displays only those
rows that match the entered filter criteria. If you configure the table to allow
filtering, you can set the filter to be case-insensitive or case-sensitive. For
information, see Enabling Filtering in Tables.

• ScrollPolicy: By default, on desktop devices, tables render a scroll bar that
allows the user to scroll through all rows. On tablet devices, instead of a scroll
bar, tables are rendered to display the table as paginated.

Set the value to auto to keep this default behavior. Set the value to page to
have the table always display the rows as sets of pages, with a navigation to
those pages in the footer. Set the value to scroll for tablet devices to have
the table always render a scroll bar and scroll with implicit high-water mark
scrolling; this setting is particularly useful to address performance problems
with virtualized scrolling of table data on tablets. You can specify the number
of rows to cache to minimize database roundtrips when the user scrolls back
by setting a value for the maxClientRows attribute.

Set the value to scrollPrefetch for large tables when there are enough rows
left to scroll to ensure smooth scrolling. Prefetching happens in parallel when a
user is scrolling. When you set the value of the scrollPolicy attribute to
scrollPrefetch, a table ensures the following:

– When a table is rendered initially, it fetches more rows than that is enough
to fill the table viewport depending on the configuration of the table. For
example, if the fetchSize is 25 and the viewport is 12 rows high, there are
13 rows left to scroll, which is more than half of fetchSize and no
additional row beyond the first block is fetched. However, if the fetchSize
is 25 and the viewport is 13 rows high, there are only 12 rows left to scroll,
which is less than half of fetchSize and therefore, an additional row will
be fetched.

– On subsequent scrolling of the table, the number of client rows left to
scroll will be continually monitored and fetching of new data blocks is
triggered when the number of rows left to scroll falls below the threshold.
However, on tables with known row count, where virtualized scrollbar is
supported, fetching will not be initiated until the user releases the mouse
button from scrolling.

Chapter 12
Displaying Data in Tables

12-32

Note:

For desktop devices, in order to explicitly set a table to display as
paginated (configured as the default for tablet devices), you must set
the scrollPolicy attribute to page and the autoHeightRows attribute
to 0. If these conditions are not met, the table will display with a scroll
bar (whether it is a child to a stretched or a flowing component). For
information about container components and tables, see Geometry
Management for the Table, Tree, and Tree Table Components.

• Text attributes: You can define text strings that will determine the text
displayed when no rows can be displayed, as well as a table summary and
description for accessibility purposes.

7. Expand the Behavior section. You use this section to configure the behavior of the
table by setting the following table-specific attributes:

• ColumnResizing: Specify whether or not you want the end user to be able to
resize a column's width at runtime. When set to disabled, the widths of the
columns will be set once the page is rendered, and the user will not be able to
change those widths.

Tip:

While the user can change the values of the column width at runtime
when columnResizing is set to true, those width values will not be
retained once the user leaves the page unless you configure your
application to use change persistence. For information about
enabling and using change persistence, see Allowing User
Customization on JSF Pages.

• DisableColumnReordering: By default, columns can be reordered at runtime
using a menu option contained by default in the panelCollection component.
You can change this so that users will not be able to change the order of
columns. (The panelCollection component provides default menus and
toolbar buttons for tables, trees, and tree tables. SeeDisplaying Table Menus,
Toolbars, and Status Bars.)

Note:

While the user can change the order of columns, those values will
not be retained once the user leaves the page unless you configure
your application to allow user customization. See Allowing User
Customization on JSF Pages.

• FetchSize: Set the size of the block that should be returned with each data
fetch. The default is 25.

Chapter 12
Displaying Data in Tables

12-33

Tip:

You should determine the value of the fetchSize attribute by taking
the height of the table and dividing it by the height of each row to
determine how many rows will be needed to fill the table. If the
fetchSize attribute is set too low, it will require multiple trips to the
server to fill the table. If it is set too high, the server will need to fetch
more rows from the data source than needed, thereby increasing
time and memory usage. On the client side, it will take longer to
process those rows and attach them to the component. See Content
Delivery. For slower database access set higher fetchSize in order
to achieve continuous display and scrolling of data.

• ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, data is fetched at the same
time the component is rendered. If the contentDelivery attribute is set to
lazy, data will be fetched and delivered to the client during a subsequent
request. If the attribute is set to whenAvailable (the default), the renderer
checks if the data is available. If it is, the content is delivered immediately. If it
is not, then lazy delivery is used. SeeContent Delivery.

• AutoHeightRows: Specify the number of rows to initially display in the table.
When the returned number of rows exceeds this value, a scrollbar is
displayed. If you want your table to size to be the same as the fetchSize, set
it to 0. If you want the table to stretch to fill its parent container that is
configured to stretch children, set it to -1 (for information about stretching the
table, see Geometry Management for the Table, Tree, and Tree Table
Components.). Otherwise set it to a specific number that is lower than the
current setting for fetchSize.

Note:

Note the following about setting the autoHeightRows attribute:

– Specifying height on the inlineStyle attribute will have no
effect and will be overridden by the value of AutoHeightRows.

– Specifying a min-height or max-height on the inlineStyle
attribute is not recommended and is incompatible with the
autoHeightRows attribute.

– When the component is placed in a layout-managing container,
such as panelSplitter, it will be sized by the container (no
auto-sizing will occur).

Chapter 12
Displaying Data in Tables

12-34

Note:

The default value for the autoHeightRows attribute is handled by the
DEFAULT_DIMENSIONS web.xml parameter. If you always want table
components to be stretched when the parent can stretch, and to be
the size of the fetchSize attribute when it cannot, set the
DEFAULT_DIMENSIONS parameter to auto, instead of setting the
autoHeightRows attribute.

When you set the DEFAULT_DIMENSIONS parameter to auto and
place the table in a parent that does not stretch its children, and
there is no override value for the autoHeightRows attribute, then the
table will take its width from the AFStretchWidth style class, which
by default, will stretch the width of the table to accommodate it's child
column components.

Set the autoHeightRows attribute when you want to override the
global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
autoHeightRows is -1 (the table will not stretch). See Geometry
Management for Layout and Table Components.

• DisplayRow: Specify the row to be displayed in the table during the initial
display. The possible values are first to display the first row at the top of the
table, last to display the last row at the bottom of the table (users will need to
scroll up to view preceding rows) and selected to display the first selected
row in the table.

Note:

The total number of rows from the table model must be known in
order for this attribute to work successfully.

• EditingMode: Specify whether for any editable components, you want all the
rows to be editable (editAll), you want the user to click a row to make it
editable (clickToEdit), or you want the table to be rendered as read only
(readOnly). For information, see Editing Data in Tables, Trees, and Tree
Tables.

Tip:

If you choose clickToEdit, then only the active row can be edited.
This row is determined by the activeRowKey attribute. By default,
when the table is first rendered, the active row is the first visible row.
When a user clicks another row, then that row becomes the active
row. You can change this behavior by setting a different value for the
activeRowKey attribute.

• ContextMenuSelect: Specify whether or not the row is selected when you
right-click to open a context menu. When set to true, the row is selected. For

Chapter 12
Displaying Data in Tables

12-35

information about context menus, see Using Popup Dialogs, Menus, and
Windows.

• FilterModel: Use in conjunction with filterVisible. See Enabling Filtering in
Tables.

• Various listeners: Bind listeners to methods that will execute when the table
invokes the corresponding event. See Handling Events.

8. Expand the Advanced section and set the following table-specific attributes:

• ActiveRowKey: If you choose clickToEdit, then only the active row can be
edited. This row is determined by the activeRowKey attribute. By default, when
the table is first rendered, the active row is the first visible row. When a user
clicks another row, then that row becomes the active row. You can change this
behavior by setting a different value for the activeRowKey attribute.

• DisplayRowKey: Specify the row key to display in the table during initial
display. This attribute should be set programmatically rather than declaratively
because the value may not be strings. Specifying this attribute will override the
displayRow attribute.

Note:

The total number of rows must be known from the table model in
order for this attribute to work successfully.

9. Expand the Other section and set the following:

• BlockRowNavigationOnError: Specify if you want users to be able to
navigate away from a row that contains a validation error. When set to always,
whenever a validation error occurs for a row, the user will always be blocked
from navigating to a different row. When set to never, the user will never be
blocked from navigating to a different row. When set to auto (the default), the
framework will determine if the user can navigate.

For example, there may be cases when the table shares its values with
another component on the page. You might have a table that allows the user
to view a number of different records. When a specific record is selected, its
information is displayed in a form. If the user changes some data in the form
that causes an error, you do not want the user to then be able to scroll away
from that record using the table. So for this example, you might set
BlockRowNavigationOnError to always.

• FreezeDirection: If you want columns to be able to be frozen, specify whether
they should be frozen from the start of the table (the left side in a LTR locale)
or the end of the table (the right side in a LTR locale). You must configure the
column to start to the freeze using that column's frozen attribute.

For example, say you want the first three columns to be frozen. On the table,
you would set freezeDirection to start, and on the third column, you would
set frozen to true.

If you want the last four columns to be frozen, you would set freezeDirection
to end, and on the fourth from last column, you would set frozen to true

• SelectionEventDelay: Set to true if you expect users to navigate through the
table using the up and down arrow keys.

Chapter 12
Displaying Data in Tables

12-36

Users can navigate through the table using a mouse and the scrollbar, or
using the up and down arrow keys. By default, a selection event is
immediately fired when the user clicks a row. If the user is navigating through
the rows using the arrow keys, this means that a selection event will be fired
for each row, as the user navigates.

If you expect users to navigate through the table using the keys, you can set
the selectionEventDelay attribute to true, so that there is a 300 millisecond
delay before the selection event is fired. If the user navigates to another row
within the 300 milliseconds, the selection event is canceled.

10. In the Structure window, select a column. In the Properties window, expand the
Common section, and set the following column-specific attributes:

• HeaderText: Specify text to be displayed in the header of the column. This is
a convenience that generates output equivalent to adding a header facet
containing an outputText component. If you want to use a component other
than outputText, you should use the column's header facet instead (See Step
16). When the header facet is added, any value for the headerText attribute
will not be rendered in a column header.

• Align: Specify the alignment for this column. start, end, and center are used
for left-justified, right-justified, and center-justified respectively in left-to-right
display. The values left or right can be used when left-justified or right-
justified cells are needed, irrespective of the left-to-right or right-to-left display.
The default value is null, which implies that it is skin-dependent and may vary
for the row header column versus the data in the column. For information
about skins, see Customizing the Appearance Using Styles and Skins.

• Sortable: Specify whether or not the column can be sorted. A column that can
be sorted has a header that when clicked, sorts the table by that column's
property. Note that in order for a column to be sortable, the sortable attribute
must be set to true and the underlying model must support sorting by this
column's property. See What You May Need to Know About Programmatically
Enabling Sorting for Table Columns.

Note:

When column selection is enabled, clicking on a column header
selects the column instead of sorting the column. In this case,
columns can be sorted by clicking the ascending/descending sort
indicator.

• SortStrength: Specify the level of difference to be considered significant when
sorting. Choose from one of the following (these values are the same as the
values for the Java Collator object):

– Primary: The sorting considers only the letter itself. Case and any accents
are ignored: abc, ÁBC, ábc, and ABC will be sorted as abc, ÁBC, ábc,ABC (the
order in which they appear). Use this for case-insensitive sorting.

– Secondary: The sorting considers the letter and then any accent. Case is
ignored: abc, ÁBC, ábc, and ABC will be sorted as abc, ABC, ÁBC, ábc. In
locales that do not have accents, this will result in a case-insensitive
search.

Chapter 12
Displaying Data in Tables

12-37

– Tertiary: The sorting will consider the letter, then the accent, and then
the case: abc, ÁBC, ábc, and ABC will be sorted as abc, ABC, ábc, ÁBC. In
locales that do not have accents, this will result in a case-sensitive search.

– Identical: The letters, accents, cases, and any other differences (such as
words with punctuation) will be considered: abc, ab-c, ÁBC, ábc, and ABC
will be sorted as abc, ABC, ábc, ÁBC, ab-c. This will result in a case-
sensitive search, and is the default.

• Filterable: Specify whether or not the column can be filtered. A column that
can be filtered has a filter field on the top of the column header. Note that in
order for a column to be filterable, this attribute must be set to true and the
filterModel attribute must be set on the table. Only leaf columns can be
filtered and the filter component is displayed only if the column header is
present. This column's sortProperty attribute must be used as a key for the
filterProperty attribute in the filterModel class.

Note:

For a column with filtering turned on (filterable=true), you can
specify the input component to be used as the filter criteria input
field. To do so, add a filter facet to the column and add the input
component. See Enabling Filtering in Tables.

11. Expand the Appearance section. Use this section to set the appearance of the
column, using the following column-specific attributes:

• DisplayIndex: Specify the display order index of the column. Columns can be
rearranged and they are displayed in the table based on the displayIndex
attribute. Columns without a displayIndex attribute value are displayed at the
end, in the order in which they appear in the data source. The displayIndex
attribute is honored only for top-level columns, because it is not possible to
rearrange a child column outside of the parent column.

• Width: Specify the width of the column. If the table uses column stretching,
then you must enter a percentage for the width.

In column stretching, column width percentages are treated as weights. For
example, if all columns are given 50% widths, and there are more than three
columns, each column will receive an equal amount of space, while still
respecting the value set for the minWidth attribute.

Because the width as a percentage is a weight rather than an actual
percentage of space, if column stretching is turned on in the table, and only
one column is listed as being stretched by having a percentage width, that
column will use up all remaining space in the table not specified by pixel
widths in the rest of the columns.

• MinimumWidth: Specify the minimum number of pixels for the column width.
When a user attempts to resize the column, this minimum width will be
enforced. Also, when a column is flexible, it will never be stretched to be a size
smaller than this minimum width. If a pixel width is defined and if the minimum
width is larger, the minimum width will become the smaller of the two values.
By default, the minimum width is 10 pixels.

• ShowRequired: Specify whether or not an asterisk should be displayed in the
column header if data is required for the corresponding attribute.

Chapter 12
Displaying Data in Tables

12-38

• HeaderNoWrap and NoWrap: Specify whether or not you want content to
wrap in the header and in the column.

• RowHeader: Set to true if you want this column to be a row header for the
table.

Performance Tip:

Use of row headers increases the complexity of tables and can have
a negative performance impact.

12. Expand the Behavior section. Use this section to configure the behavior of the
columns, using the following column-specific attributes:

• SortProperty: Specify the property that is to be displayed by this column. This
is the property that the framework might use to sort the column's data.

• Frozen: Specify whether the column is frozen; that is it can't be scrolled off the
page. In the table, columns up to the frozen column are locked with the
header, and not scrolled with the rest of the columns. The frozen attribute is
honored only on the top-level column, because it is not possible to freeze a
child column by itself without its parent being frozen.

Note:

By default, columns are frozen from this column to the left. That is,
this column and any column to the left of it, will not scroll. You can
change this by setting the freezeDirection attribute on the table
component to end. By default, it is set to start.

Performance Tip:

Use of frozen columns increases the complexity of tables and can
have a negative performance impact.

• Selected: When set to true, the column will be selected on initial rendering.

13. If you want this column to span over subsequent columns, expand the Other
section and set ColSpan. You can set it to the number of columns you want it to
span, or you can set it to ALL to span to the end of the table. If you don't want all
cells in the column to span, you can use an EL expression that resolves to a
specific cell or cells.

The following example shows how you might set colSpan in a tree table
component where you want only the parent node to span across all columns.

<af:column id="c1" sortable="true" sortProperty="Dname"
 colSpan="#{testBean.container ? 'ALL' : '1'}"
 headerText="DepartmentName">
 <af:outputText value="#{node.Dname}" id="ot2"/>
</af:column>

Chapter 12
Displaying Data in Tables

12-39

The following example shows the corresponding managed bean code.

public class TestBean
{
 public boolean isContainer()
 {
 return _treeTable.isContainer();
 }
}

14. To add a column to an existing table, in the Structure window, right-click the table
and choose Insert Inside Table > Column. To create column groups, drag a
column component and drop it as a child to the component that will be the header.
Continue to add columns to create the group. Set the headerText attribute on the
parent column.

15. To add facets to the table, right-click the table and choose Facets - Table and
choose the type of facet you want to add. You can then add a component directly
to the facet.

Tip:

Because facets on a JSP or JSPX accept one child component only, if
you want to add more than one child component, you must wrap the
child components inside a container, such as a panelGroupLayout or
group component. Facets on a Facelets page can accept more than one
component.

16. To add facets to a column, right-click the column and choose Facets - Column,
and choose the type of facet you want to add. You can then add a component
directly to the facet.

Tip:

Because facets on a JSP or JSPX accept one child component only, if
you want to add more than one child component, you must wrap the
child components inside a container, such as a panelGroupLayout or
group component. Facets on a Facelets page can accept more than one
component.

17. Add components as children to the columns to display your data.

The component's value should be bound to the variable value set on the table's
var attribute and the attribute to be displayed. For example, the table in the File
Explorer application uses file as the value for the var attribute, and the first
column displays the name of the file for each row. Therefore, the value of the
output component used to display the directory name is #{file.name}.

Chapter 12
Displaying Data in Tables

12-40

Tip:

If an input component is the direct child of a column, be sure its width is
set to a width that is appropriate for the width of the column. If the width
is set too large for its parent column, the browser may extend its text
input cursor too wide and cover adjacent columns. For example, if an
inputText component has its size set to 80 pixels and its parent column
size is set to 20 pixels, the table may have an input cursor that covers
the clickable areas of it neighbor columns.

To allow the input component to be automatically sized when it is not the
direct child of a column, set contentStyle="width:auto".

What Happens When You Add a Table to a Page
When you use JDeveloper to add a table onto a page, JDeveloper creates a table with
a column for each attribute. If you bind the table to a model, the columns will reflect the
attributes in the model. If you are not yet binding to model, JDeveloper will create the
columns using the default values. You can change the default values (add/delete
columns, change column headings, and so on) during in the table creation dialog or
later using the Properties window.

The following example shows abbreviated page code for the table in the File Explorer
application.

<af:table id="folderTable" var="file"
 value="#{explorer.contentViewManager.
 tableContentView.contentModel}"
 binding="#{explorer.contentViewManager.
 tableContentView.contentTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 rowselection="multiple"
 contextMenuId=":context1" contentDelivery="immediate"
 columnStretching="last"
 selectionListener="#{explorer.contentViewManager.
 tableContentView.tableFileItem}"
 summary="table data">
 <af:column width="180" sortable="true" sortStrength="identical"
 sortProperty="name"
 headerText="" align="start">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.name']}"/>
 </f:facet>
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 inlineStyle="margin-right:3px; vertical-align:middle;"
 shortDesc="file icon"/>
 <af:outputText value="#{file.name}" noWrap="true"/>
 </af:panelGroupLayout>
 </af:column>
 <af:column width="70" sortable="true" sortStrength="identical"
 sortProperty="property.size">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.size']}"/>
 </f:facet>
 <af:outputText value="#{file.property.size}" noWrap="true"/>
 </af:column>

Chapter 12
Displaying Data in Tables

12-41

...
 <af:column width="100">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['global.properties']}"/>
 </f:facet>
 <af:link text="#{explorerBundle['global.properties']}"
 partialSubmit="true"
 action="#{explorer.launchProperties}"
 returnListener="#{explorer.returnFromProperties}"
 windowWidth="300" windowHeight="300"
 useWindow="true">
 </af:link>
 </af:column>
</af:table>

What Happens at Runtime: Data Delivery
When a page is requested that contains a table, and the content delivery is set to
lazy, the page initially goes through the standard lifecycle. However, instead of
fetching the data during that request, a special separate PPR request is run. Because
the page has just rendered, only the Render Response phase executes, and the
corresponding data is fetched and displayed. If the user's actions cause a subsequent
data fetch (for example scrolling in a table), another PPR request is executed.
Figure 12-22 shows a page containing a table during the second PPR request. A
message is displayed to let the user know that the data is being fetched.

Figure 12-22 Table Fetches Data in a Second PPR Request

When the user clicks a sortable column header, the table component generates a
SortEvent event. This event has a getSortCriteria property, which returns the
criteria by which the table must be sorted, along with the sort strength. The table
responds to this event by calling the setSortCriteria() method on the underlying
CollectionModel instance, and calls any registered SortListener instances.

What You May Need to Know About Programmatically Enabling
Sorting for Table Columns

Sorting can be enabled for a table column only if the underlying model supports
sorting. If the model is a CollectionModel instance, it must implement the following
methods:

• public boolean isSortable(String propertyName)

Chapter 12
Displaying Data in Tables

12-42

• public List getSortCriteria()

• public void setSortCriteria(List criteria)

The criteria in the second and third methods is a list where each item in the list is an
instance of org.apache.myfaces.trinidad.model.SortCriterion, which supports
sort strength.

See the MyFaces Trinidad website at http://myfaces.apache.org/trinidad/
index.html.

If the model is not a CollectionModel instance, the table component wraps that model
into an org.apache.myfaces.trinidad.model.SortableModel instance and converts
the model to a CollectionModel instance that is sortable (SortableModel is a
concrete class that extends CollectionModel and implements sorting functionality). In
this case, the table will examine the actual data to determine which properties are
sortable. Any column that has data that implements java.lang.Comparable will be
sortable. This automatic support for sorting by the table is not as efficient as sorting
directly into a CollectionModel instance but is sufficient for small data sets. Note that
tables with a converted model allow sorting for only one column and therefore multi-
column table sorting (normally done by supplying multiple sort criteria) is not supported
on the converted model.

Note:

When the underlying table model is not a CollectionModel instance and
multi-column sorting is desired, consider using the table inside a
panelCollection component. The panel user interface allows the user to
sort using multiple sort criteria even though automatic sorting provided by the
table with a converted model does not support it. For details about the
panelCollection component, see How to Add a panelCollection with a
Table, Tree, or Tree Table.

What You May Need to Know About Performing an Action on Selected
Rows in Tables

A collection-based component can allow users to select one or more rows and perform
some actions on those rows (the carousel component does not support multiple
selection).

When the selection state of a component changes, the component triggers selection
events. A selectionEvent event reports which rows were just deselected and which
rows were just selected.

To listen for selection events on a component, you can register a listener on the
component either using the selectionListener attribute or by adding a listener to the
component using the addselectionListener() method. The listener can then access
the selected rows and perform some actions on them.

The current selection, that is the selected row or rows, are the RowKeySet object, which
you obtain by calling the getSelectedRowKeys() method for the component. To
change a selection programmatically, you can do either of the following:

Chapter 12
Displaying Data in Tables

12-43

http://myfaces.apache.org/trinidad/index.html
http://myfaces.apache.org/trinidad/index.html

• Add rowKey objects to, or remove rowKey objects from, the RowKeySet object.

• Make a particular row current by calling the setRowIndex() or the setRowKey()
method on the component. You can then either add that row to the selection, or
remove it from the selection, by calling the add() or remove() method on the
RowKeySet object.

The following example shows a portion of a table in which a user can select some
rows then click the Delete button to delete those rows. Note that the actions listener is
bound to the performDelete method on the mybean managed bean.

<af:table binding="#{mybean.table}" rowselection="multiple" ...>
 ...
</af:table>
<af:button text="Delete" actionListener="#{mybean.performDelete}"/>

The following example shows an actions method, performDelete, which iterates
through all the selected rows and calls the markForDeletion method on each one.

public void performDelete(ActionEvent action)
{
 UIXTable table = getTable();
 Iterator selection = table.getSelectedRowKeys().iterator();
 Object oldKey = table.getRowKey();
 try
 {
 while(selection.hasNext())
 {
 Object rowKey = selection.next();
 table.setRowKey(rowKey);
 MyRowImpl row = (MyRowImpl) table.getRowData();
 //custom method exposed on an implementation of Row interface.
 row.markForDeletion();
 }
 }
 finally
 {
 // restore the old key:
 table.setRowKey(oldKey);
 }
}

Note:

When using setRowKey and setRowIndex on table/tree/treeTable to change
the current record for operation, you must restore the old current record after
the operation. Otherwise, failure to restore the old currency can cause
application errors.

What You May Need to Know About Dynamically Determining Values
for Selection Components in Tables

There may be a case when you want to use a selectOne component in a table, but
you need each row to display different choices in a component. Therefore, you need to
dynamically determine the list of items at runtime.

Chapter 12
Displaying Data in Tables

12-44

While you may think you should use a forEach component to stamp out the individual
items, this will not work because forEach does not work with the CollectionModel
instance. It also cannot be bound to EL expressions that use component-managed EL
variables, as those used in the table. The forEach component performs its functions in
the JSF tag execution step while the table performs in the following component
encoding step. Therefore, the forEach component will execute before the table is
ready and will not perform its iteration function.

In the case of a selectOne component, the direct child must be the items component.
While you could bind the items component directly to the row variable (for example,
<f:items value="#{row.Items}"/>, doing so would not allow any changes to the
underlying model.

Instead, you should create a managed bean that creates a list of items, as shown in
the following example.

public List<SelectItem> getItems()
{
 // Grab the list of items
 FacesContext context = FacesContext.getCurrentInstance();
 Object rowItemObj = context.getApplication().evaluateExpressionGet(
 context, "#{row.items}", Object.class);
 if (rowItemObj == null)
 return null;
 // Convert the model objects into items
 List<SomeModelObject> list = (List<SomeModelObject>) rowItemObj;
 List<SelectItem> items = new ArrayList<SelectItem>(list.size());
 for (SomeModelObject entry : list)
 {
 items.add(new SelectItem(entry.getValue(), entry.getLabel());public
 }
 // Return the items
 return items;
}

You can then access the list from the one component on the page:

<af:table var="row">
 <af:column>
 <af:selectOneChoice value="#{row.myValue}">
 <f:Items value="#{page_backing.Items}"/>
 </af:selectOneChoice>
 </af:column>
</af:table>

What You May Need to Know About Read Only Tables
A table can be set as read-only by setting the editingMode attribute to readOnly value.
If the editingMode attribute is set to clickToEdit type, then the table will result in a
regular clickToEdit behavior.

A table can be rendered as editable, read-only, or edit-upon-clicking a row or a node
type by setting an appropriate value on the editingMode attribute. When the
editingMode attribute is set to readyOnly value, all the components of that table will be
rendered as read-only, including input components. If editingMode is set to
clickToEdit value, then that table will result in a regular clickToEdit behavior.

Setting the web.xml parameter
oracle.adf.view.rich.table.clickToEdit.initialRender.readOnly will force all

Chapter 12
Displaying Data in Tables

12-45

clickToEdit type tables in an application to render as read-only only when the tables
are initially loaded. All tables using other editingMode settings will be unaffected. See
Rendering Tables Initially as Read Only.

The var status of the table is updated with a new variable readOnly
(varStatus.readOnly). This will provide information about the current status of the row
if it is read-only or not. Applications can use this variable along with other conditional
operators to decide which component to render. Following is example code using
varStatus.readOnly to render an input text for an editable row and output text for a
read-only row.

• You can add varStatus attribute in your table as follows:

<af:table value="#{bindings.EmpView1.collectionModel}" var="row"
 rows="#{bindings.EmpView1.rangeSize}"
 emptyText="#{bindings.EmpView1.viewable ? 'No data to
display.' : 'Access Denied.'}"
 fetchSize="#{bindings.EmpView1.rangeSize}"
 rowBandingInterval="0" id="t1" inlineStyle="width:1000px;"
editingMode="clickToEdit"
varStatus="vars" binding="#{backingBeanScope.Backing.t1}"
 partialTriggers="::cb4 ::cb5 ::cb6 ::cb7 deptno1Id"
columnSelection="single">

• You can use varStatus attribute in your column definition as follows:

<af:column headerText="switch" id="c100" width="130px">
 <af:inputText value="#{row.bindings.Hiredate.inputValue}"
 required="#{bindings.EmpView1.hints.Hiredate.mandatory}"
 columns="#{bindings.EmpView1.hints.Hiredate.displayWidth}"
 maximumLength="#{bindings.EmpView1.hints.Hiredate.precision}"
 shortDesc="#{bindings.EmpView1.hints.Hiredate.tooltip}"
 id="it2" rendered="#{!vars.readOnly}">
 <af:validator binding="#{row.bindings.Hiredate.validator}"/>
 <af:convertDateTime
pattern="#{bindings.EmpView1.hints.Hiredate.format}"/>
 </af:inputText>
 <af:outputText value="outputtext #{row.Hiredate}" id="ot2"
rendered="#{vars.readOnly}">
 <af:convertDateTime
pattern="#{bindings.EmpView1.hints.Hiredate.format}"/>
 </af:outputText>
</af:column>

Adding Hidden Capabilities to a Table
While displaying the content in an ADF table built with collection-based components
you can hide or display some content using detailStamp facet. The content appears
with a toggle icon, when user clicks on it the hidden text is displayed in a popup
window.

You can use the detailStamp facet in a table to include data that can be displayed or
hidden. When you add a component to this facet, the table displays an additional
column with a toggle icon. When the user clicks the icon, the component added to the

Chapter 12
Adding Hidden Capabilities to a Table

12-46

facet is shown. When the user clicks on the toggle icon again, the component is
hidden. Figure 12-23 shows the additional column that is displayed when content is
added to the detailStamp facet.

Figure 12-23 Table with Unexpanded DetailStamp Facet

Figure 12-24 shows the same table, but with the detailStamp facet expanded for the
first row.

Figure 12-24 Expanded detailStamp Facet

You can use an EL expression for the rendered attribute on the facet to determine
whether or not to display the toggle icon and show details. For example, say on a
shopping cart page you want to use the detailStamp facet to display gift wrapping
information. However, not all order items will have gift wrapping information, so you
only want the toggle icon to display if the order item has the information to display. You
could create a method on managed bean that determines if there is information to
display, and then bind the rendered attribute to that method. Figure 12-25 shows the
same table but with icons displayed only for the rows that have information to display.

Figure 12-25 Conditional detailStamp Facet

Chapter 12
Adding Hidden Capabilities to a Table

12-47

Note:

If you set the table to allow columns to freeze, the freeze will not work when
you display the detailStamp facet. That is, a user cannot freeze a column
while the details are being displayed.

How to Use the detailStamp Facet
To use the detailStamp facet, you insert a component that is bound to the data to be
displayed or hidden into the facet.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Adding Hidden Capabilities to a Table.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To use the detailStamp facet:

1. In the Components window, drag the components you want to appear in the facet
to the detailStamp facet in the Structure window, as shown in Figure 12-26.

Figure 12-26 detailStamp Facet in the Structure Window

Note:

Because facets on a JSP or JSPX accept one child component only, if
you want to add more than one child component, you must wrap the
child components inside a container, such as a panelGroupLayout or
group component. Facets on a Facelets page can accept more than one
component.

Chapter 12
Adding Hidden Capabilities to a Table

12-48

Tip:

If the facet does not appear in the Structure window, right-click the table
and choose Facets - Table > Detail Stamp.

2. If the attribute to be displayed is specific to a current record, replace the JSF code
(which simply binds the component to the attribute), so that it uses the table's
variable to display the data for the current record.

The following example shows abbreviated code used to display the detailStamp
facet shown in Figure 12-24, which shows details about the selected row.

<af:table rowSelection="multiple" var="test1"
 value="#{tableTestData}"
 <f:facet name="detailStamp">
 <af:panelFormLayout rows="4" labelWidth="33%" fieldWidth="67%"
 inlineStyle="width:400px">
 <af:inputText label="Name" value="#{test1.name}"/>
 <af:group>
 <af:inputText label="Size" value="#{test1.size}"/>
 <af:inputText label="Date Modified" value="#{test1.inputDate}"/>
 <af:inputText label="Created by"/>
 </af:group>
 </af:panelFormLayout>
 </f:facet>
</af:table>

3. If you want the detailStamp facet to display its icon and components conditionally,
set the rendered attribute on the facet to a method on a managed bean that will
determine if the facet should be rendered.

Note:

If your application uses the Fusion technology stack, then you can drag
attributes from a data control and drop them into the detailStamp facet. You
don't need to modify the code.

What Happens at Runtime: The rowDisclosureEvent
When the user hides or shows the details of a row, the table generates a
rowDisclosureEvent event. The event tells the table to toggle the details (that is,
either expand or collapse).

The rowDisclosureEvent event has an associated listener. You can bind the
rowDisclosureListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the rowDisclosureEvent event to execute
any needed post-processing.

Chapter 12
Adding Hidden Capabilities to a Table

12-49

Enabling Filtering in Tables
An ADF table built with collection-based components can filter data in the table if the
filterModel attribute object of the table is bound to an instance of the
FilterableQueryDescriptor class.

You can add a filter to a table that can be used so that the table displays only rows
whose values match the filter. When enabled and set to visible, a search criteria input
field displays above each searchable column.

For example, the table in Figure 12-27 has been filtered to display only rows in which
the Location value is 1700.

Figure 12-27 Filtered Table

Filtered table searches are based on Query-by-Example and use the QBE text or date
input field formats. The input validators are turned off to allow for entering characters
for operators such as > and < to modify the search criteria. For example, you can
enter >1500 as the search criteria for a number column. Wildcard characters may also
be supported. Searches can be either case-sensitive or case-insensitive. If a column
does not support QBE, the search criteria input field will not render for that column.

The filtering feature uses a model for filtering data into the table. The table's
filterModel attribute object must be bound to an instance of the
FilterableQueryDescriptor class.

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create tables and filtering will be created for you. See Creating
ADF Databound Tables in Developing Web User Interfaces with Oracle ADF
Faces

In the following example, the table filterVisible attribute is set to true to enable the
filter input fields. For each column to be filtered, you must set the sortProperty
attribute to the associated column in the filterModel instance and the filterable
attribute set to true.

Chapter 12
Enabling Filtering in Tables

12-50

<af:table value="#{myBean.products}" var="row"
 ...
 filterVisible="true"
 ...
 rowselection="single">
 ...
 <af:column sortProperty="ProductID" filterable="true" sortable="true"
 <af:outputText value="#{row.ProductID}">
 ...
 </af:column>
 <af:column sortProperty="Name" filterable="true" sortable="true"
 <af:outputText value="#{row.Name}"/>
 ...
 </af:column>
 <af:column sortProperty="warehouse" filterable="true" sortable="true"
 <af:outputText value="#{row.warehouse}"/>
 ...
 </af:column>
</af:table>

How to Add Filtering to a Table
To add filtering to a table, first create a class that can provide the filtering functionality.
You then bind the table to that class, and configure the table and columns to use
filtering. The table that will use filtering must either have a value for its headerText
attribute, or it must contain a component in the header facet of the column that is to be
filtered. This allows the filter component to be displayed. Additionally, the column must
be configured to be sortable, because the filterModel class uses the sortProperty
attribute.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Enabling Filtering in Tables.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To add filtering to a table:

1. Create a Java class that is a subclass of the FilterableQueryDescriptor class.

The ConjunctionCriterion object returned from the
getFilterConjunctionCriterion method must not be null. For information about
this class, see the ADF Faces Javadoc.

2. Create a table, as described in Displaying Data in Tables.

3. Select the table in the Structure window and set the following attributes in the
Properties window:

• FilterVisible: Set to true to display the filter criteria input field above
searchable column.

• FilterModel: Bind to an instance of the FilterableQueryDescriptor class
created in Step 1.

Chapter 12
Enabling Filtering in Tables

12-51

Tip:

If you want to use a component other than an inputText component for
your filter (for example, an inputDate component), then instead of
setting filterVisible to true, you can add the needed component to
the filter facet. To do so:

a. In the Structure window, right-click the column to be filtered and
choose Insert inside af:column > JSF Core > Filter facet.

b. From the Components window, drag and drop a component into the
facet.

c. Set the value of the component to the corresponding attribute within
the FilterableQueryDescriptor class created in Step 1. Note that
the value must take into account the variable used for the row, for
example:

#{af:inputDate label="Select Date" id="name"
 value="row.filterCriteria.date"}

4. In the Structure window, select a column in the table and in the Properties window,
and set the following for each column in the table:

• Filterable: Set to true.

• FilterFeatures: Set to caseSensitive or caseInsensitive. If not specified,
the case sensitivity is determined by the model.

Displaying Data in Trees
Any hierarchical data can be displayed using ADF tree component.

The ADF Faces tree component displays hierarchical data, such as organization
charts or hierarchical directory structures. In data of these types, there may be a series
of top-level nodes, and each element in the structure may expand to contain other
elements. For example, in an organization chart, any number of employees in the
hierarchy may have any number of direct reports. The tree component can be used to
show that hierarchy, where the direct reports appear as children to the node for the
employee.

The tree component supports multiple root elements. It displays the data in a form that
represents the structure, with each element indented to the appropriate level to
indicate its level in the hierarchy, and connected to its parent. Users can expand and
collapse portions of the hierarchy. Figure 12-28 shows a tree used to display
directories in the File Explorer application.

Chapter 12
Displaying Data in Trees

12-52

Figure 12-28 Tree Component in the File Explorer Application

The ADF Faces tree component uses a model to access the data in the underlying
hierarchy. The specific model class is oracle.adf.view.rich.model.TreeModel,
which extends CollectionModel, described in Displaying Data in Tables.

You must create your own tree model to support your tree. The tree model is a
collection of rows. It has an isContainer() method that returns true if the current row
contains child rows. To access the children of the current row, you call the
enterContainer() method. Calling this method results in the TreeModel instance
changing to become a collection of the child rows. To revert back up to the parent
collection, you call the exitContainer() method.

You may find the org.apache.myfaces.trinidad.model.ChildPropertyTreeModel
class useful when constructing a TreeModel class, as shown in the following example.

List<TreeNode> root = new ArrayList<TreeNode>();
for(int i = 0; i < firstLevelSize; i++)
{
 List<TreeNode> level1 = new ArrayList<TreeNode>();
 for(int j = 0; j < i; j++)
 {
 List<TreeNode> level2 = new ArrayList<TreeNode>();
 for(int k=0; k<j; k++)
 {
 TreeNode z = new TreeNode(null, _nodeVal(i,j,k));
 level2.add(z);
 }
 TreeNode c = new TreeNode(level2, _nodeVal(i,j));
 level1.add(c);
 }
 TreeNode n = new TreeNode(level1, _nodeVal(i));

Chapter 12
Displaying Data in Trees

12-53

 root.add(n);
}
ChildPropertyTreeModel model = new ChildPropertyTreeModel(root, "children");
private String _nodeVal(Integer... args)
{
 StringBuilder s = new StringBuilder();
 for(Integer i : args)
 s.append(i);
 return s.toString();
}

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create trees and the model will be created for you. See Displaying
Master-Detail Data in Developing Web User Interfaces with Oracle ADF
Faces

You can manipulate the tree similar to the way you can manipulate a table. You can do
the following:

• To make a node current, call the setRowIndex() method on the tree with the
appropriate index into the list. Alternatively, call the setRowKey() method with the
appropriate rowKey object.

• To access a particular node, first make that node current, and then call the
getRowData() method on the tree.

• To access rows for expanded or collapsed nodes, call getAddedSet and
getRemovedSet methods on the RowDisclosureEvent. See What You May Need to
Know About Programmatically Expanding and Collapsing Nodes.

• To manipulate the node's child collection, call the enterContainer() method
before calling the setRowIndex() and setRowKey() methods. Then call the
exitContainer() method to return to the parent node.

• To point to a rowKey for a node inside the tree (at any level) use the focusRowKey
attribute. The focusRowKey attribute is set when the user right-clicks on a node and
selects the Show as top (or the Show as top toolbar button in the
panelCollection component).

When the focusRowKey attribute is set, the tree renders the node pointed to by the
focusRowKey attribute as the root node in the Tree and displays a Hierarchical
Selector icon next to the root node. Clicking the Hierarchical Selector icon displays
a Hierarchical Selector dialog which shows the path to the focusRowKey object
from the root node of the tree. How this displays depends on the components
placed in the pathStamp facet.

Note:

You cannot use JavaScript to dynamically size a tree. The height of a tree is
set the first time is rendered and cannot be changed using JavaScript APIs.

Chapter 12
Displaying Data in Trees

12-54

As with tables, trees use stamping to display content for the individual nodes. Trees
contain a nodeStamp facet, which is a holder for the component used to display the
data for each node. Each node is rendered (stamped) once, repeatedly for all nodes.
As each node is stamped, the data for the current node is copied into a property that
can be addressed using an EL expression. Specify the name to use for this property
using the var property on the tree. Once the tree has completed rendering, this
property is removed or reverted back to its previous value.

Because of this stamping behavior, only certain types of components are supported as
children inside an ADF Faces tree. All components that have no behavior are
supported, as are most components that implement the ValueHolder or ActionSource
interfaces.

In the following example, the data for each element is referenced using the variable
node, which identifies the data to be displayed in the tree. The nodeStamp facet
displays the data for each element by getting further properties from the node variable:

<af:tree var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node.firstname}"/>
 </f:facet>
</af:tree>

Trees also contain a pathStamp facet. This facet determines how the content of the
Hierarchical Selector dialog is rendered, just like the nodeStamp facet determines how
the content of the tree is rendered. The component inside the pathStamp facet can be
a combination of simple outputText, image, and outputFormatted tags and cannot not
be any input component (that is, any EditableValueHolder component) because no
user input is allowed in the Hierarchical Selector popup. If this facet is not provided,
then the Hierarchical Selector icon is not rendered.

For example, including an image and an outputText component in the pathStamp
facet causes the tree to render an image and an outputText component for each node
level in the Hierarchical Selector dialog. Use the same EL expression to access the
value. For example, if you want to show the first name for each node in the path in an
outputText component, the EL expression would be <af:outputText
value="#{node.firstname}"/>.

Tip:

The pathStamp facet is also used to determine how default toolbar buttons
provided by the panelCollection component will behave. If you want to use
the buttons, add a component bound to a node value. For information about
using the panelCollection component, see Displaying Table Menus,
Toolbars, and Status Bars.

How to Display Data in Trees
To create a tree, you add a tree component to your page and configure the display
and behavior properties.

Before you begin:

Chapter 12
Displaying Data in Trees

12-55

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Data in Trees.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To add a tree to a page:

1. Create a Java class that extends the
org.apache.myfaces.trinidad.model.TreeModel class.

2. In the Components window, from the Data Views panel, drag and drop a Tree to
open the Insert Tree dialog.

3. Configure the tree as needed. For help with the dialog, click Help or press F1.

4. In the Properties window, expand the Data section and set the following attributes:

• Value: Specify an EL expression for the object to which you want the tree to
be bound. This must be an instance of
org.apache.myfaces.trinidad.model.TreeModel as created in Step 1.

• Var: Specify a variable name to represent each node.

• VarStatus: Optionally enter a variable that can be used to determine the state
of the component. During the Render Response phase, the tree iterates over
the model rows and renders each node. For any given node, the varStatus
attribute provides the following information:

– model: A reference to the CollectionModel instance

– index: The current row index

– rowKey: The unique key for the current node

5. Expand the Appearance section and set the following attributes:

• DisplayRow: Specify the node to display in the tree during the initial display.
The possible values are first to display the first node, last to display the last
node, and selected to display the first selected node in the tree. The default is
first.

• DisplayRowKey: Specify the row key to display in the tree during the initial
display. This attribute should be set only programmatically. Specifying this
attribute will override the displayRow attribute.

• Summary: Optionally enter a summary of the data displayed by the tree.

6. Expand the Behavior section and set the following attributes:

• InitiallyExpanded: Set to true if you want all nodes expanded when the
component first renders.

• EditingMode: Specify whether for any editable components used to display
data in the tree, you want all the nodes to be editable (editAll), you want the
user to click a node to make it editable (clickToEdit), or you want the tree to
be rendered as read only (readOnly). See Editing Data in Tables, Trees, and
Tree Tables.

• ContextMenuSelect: Determines whether or not the node is selected when
you right-click to open a context menu. When set to true, the node is
selected. For information about context menus, see Using Popup Dialogs,
Menus, and Windows.

Chapter 12
Displaying Data in Trees

12-56

• RowSelection: Set a value to make the nodes selectable. Valid values are:
none, single, or multiple. For information about how to then
programmatically perform some action on the selected nodes, see What You
May Need to Know About Programmatically Selecting Nodes.

• ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, data is fetched at the same
time the component is rendered. If the contentDelivery attribute is set to
lazy, data will be fetched and delivered to the client during a subsequent
request. If the attribute is set to whenAvailable (the default), the renderer
checks if the data is available. If it is, the content is delivered immediately. If it
is not, then lazy delivery is used. See Content Delivery.

• FetchSize: Specify the number of rows in the data fetch block. See Content
Delivery.

• AutoHeightRows: Set to the maximum number of nodes to display before a
scroll bar is displayed. The default value is -1 (no automatic sizing for any
number of number). You can set the value to 0 to have the value be the same
as the fetchSize value.

Note:

Note the following about setting the autoHeightRows attribute:

– Specifying height on the inlineStyle attribute will have no
effect and will be overridden by the value of AutoHeightRows.

– Specifying a min-height or max-height on the inlineStyle
attribute is incompatible with the autoHeightRows attribute., and
should not be done.

– When the component is placed in a layout-managing container,
such as panelSplitter, it will be sized by the container (no
auto-sizing will occur). See Geometry Management for the
Table, Tree, and Tree Table Components.

• SelectionListener: Optionally enter an EL expression for a listener that
handles selection events. See What You May Need to Know About
Programmatically Selecting Nodes.

• FocusListener: Optionally enter an EL expression for a listener that handles
focus events.

• RowDisclosureListener: Optionally enter an EL expression for a listener
method that handles node disclosure events.

7. Expand the Advanced section and set the following attributes:

• FocusRowKey: Optionally enter the node that is to be the initially focused
node.

• DisclosedRowKeys: Optionally enter an EL expression to a method on a
backing bean that handles node disclosure. See What You May Need to Know
About Programmatically Expanding and Collapsing Nodes.

• SelectedRowKeys: Optionally enter the keys for the nodes that should be
initially selected. See What You May Need to Know About Programmatically
Selecting Nodes.

Chapter 12
Displaying Data in Trees

12-57

8. To add components to display data in the tree, drag the desired component from
the Components window to the nodeStamp facet. Figure 12-29 shows the
nodeStamp facet for the tree used to display directories in the File Explorer
application.

Figure 12-29 nodeStamp Facet in the Structure Window

The component's value should be bound to the variable value set on the tree's var
attribute and the attribute to be displayed. For example, the tree in the File
Explorer application uses folder as the value for the var attribute, and displays
the name of the directory for each node. Therefore, the value of the output
component used to display the directory name is #{folder.name}.

Tip:

Facets in a JSP or JSPX page can accept only one child component.
Therefore, if you want to use more than one component per node, place
the components in a group component that can be the facet's direct
child, as shown in Figure 12-29 (facets on a Facelets page can accept
more than one child).

What Happens When You Add a Tree to a Page
When you add a tree to a page, JDeveloper adds a nodeStamp facet to stamp out the
nodes of the tree. The following example shows the abbreviated code for the tree in
the File Explorer application that displays the directory structure.

<af:tree id="folderTree"
 var="folder"
 binding="#{explorer.navigatorManager.foldersNavigator
 .foldersTreeComponent}"
 value="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeModel}"
 disclosedRowKeys="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeDisclosedRowKeys}"
 rowSelection="single"
 contextMenuId=":context2"
 selectionListener="#{explorer.navigatorManager.foldersNavigator.
 showSelectedFolderContent}">
 <f:facet name="nodeStamp">
 <af:panelGroupLayout>
 <af:image id="folderNodeStampImg" source="#{folder.icon}"
 inlineStyle="vertical-align:middle; margin-right:3px;
 shortDesc="folder icon"/>

Chapter 12
Displaying Data in Trees

12-58

 <af:outputText id="folderNodeStampText" value="#{folder.name}"/>
 </af:panelGroupLayout>
 </f:facet>
</af:tree>

What Happens at Runtime: Tree Component Events
The tree is displayed in a format with nodes indented to indicate their levels in the
hierarchy. The user can click nodes to expand them to show children nodes. The user
can click expanded nodes to collapse them. When a user clicks one of these icons, the
component generates a RowDisclosureEvent event. You can register a custom
rowDisclosureListener method to handle any processing in response to the event.
See What You May Need to Know About Programmatically Expanding and Collapsing
Nodes.

When a user selects or deselects a node, the tree component invokes a
selectionEvent event. You can register custom selectionListener instances, which
can do post-processing on the tree component based on the selected nodes. See
What You May Need to Know About Programmatically Selecting Nodes.

What You May Need to Know About Programmatically Expanding and
Collapsing Nodes

The RowDisclosureEvent event has two RowKeySet objects: the RemovedSet object for
all the collapsed nodes and the AddedSet object for all the expanded nodes. The
component expands the subtrees under all nodes in the added set and collapses the
subtrees under all nodes in the removed set.

Your custom rowDisclosureListener method can do post-processing, on the tree
component, as shown in the following example.

<af:treeTable id="folderTree" var="directory" value="#{fs.treeModel}"
 binding="#{editor.component}" rowselection="multiple"
 columnselection="multiple" focusRowKey="#{fs.defaultFocusRowKey}"
 selectionListener="#{fs.Table}"
 contextMenuId="treeTableMenu"
 rowDisclosureListener="#{fs.handleRowDisclosure}">

For the contraction of a tree node, you use getRemovedSet in a backing bean method
that handles row disclosure events, as shown in the following example that illustrates
the expansion of a tree node.

public void handleRowDisclosure(RowDisclosureEvent rowDisclosureEvent)
 throws Exception {
 Object rowKey = null;
 Object rowData = null;
 RichTree tree = (RichTree) rowDisclosureEvent.getSource();
 RowKeySet rks = rowDisclosureEvent.getAddedSet();

 if (rks != null) {
 int setSize = rks.size();
 if (setSize > 1) {
 throw new Exception("Unexpected multiple row disclosure
 added row sets found.");
 }

Chapter 12
Displaying Data in Trees

12-59

 if (setSize == 0) {
 // nothing in getAddedSet indicates this is a node
 // contraction, not expansion. If interested only in handling
 // node expansion at this point, return.
 return;
 }

 rowKey = rks.iterator().next();
 tree.setRowKey(rowKey);
 rowData = tree.getRowData();

 // Do whatever is necessary for accessing tree node from
 // rowData, by casting it to an appropriate data structure
 // for example, a Java map or Java bean, and so forth.
 }
}

Trees and tree tables use an instance of the oracle.adf.view.rich.model.RowKeySet
class to keep track of which nodes are expanded. This instance is stored as the
disclosedRowKeys attribute on the component. You can use this instance to control
the expand or collapse state of an node in the hierarchy programmatically, as shown in
the following example. Any node contained by the RowKeySet instance is expanded,
and all other nodes are collapsed. The addAll() method adds all elements to the set,
and the and removeAll() method removes all the nodes from the set.

<af:tree var="node"
 inlineStyle="width:90%; height:300px"
 id="displayRowTable"
 varStatus="vs"
 rowselection="single"
 disclosedRowKeys="#{treeTableTestData.disclosedRowKeys}"
 value="#{treeTableTestData.treeModel}">

The backing bean method that handles the disclosed row keys is shown in the
following example].

public RowKeySet getDisclosedRowKeys()
{
 if (disclosedRowKeys == null)
 {
 // Create the PathSet that we will use to store the initial
 // expansion state for the tree
 RowKeySet treeState = new RowKeySetTreeImpl();
 // RowKeySet requires access to the TreeModel for currency.
 TreeModel model = getTreeModel();
 treeState.setCollectionModel(model);
 // Make the model point at the root node
 int oldIndex = model.getRowIndex();
 model.setRowKey(null);
 for(int i = 1; i<=19; ++i)
 {
 model.setRowIndex(i);
 treeState.setContained(true);
 }
 model.setRowIndex(oldIndex);
 disclosedRowKeys = treeState;
 }
 return disclosedRowKeys;
}

Chapter 12
Displaying Data in Trees

12-60

What You May Need to Know About Programmatically Selecting
Nodes

The tree and tree table components allow nodes to be selected, either a single node
only, or multiple nodes. If the component allows multiple selections, users can select
multiple nodes using Control+click and Shift+click operations.

When a user selects or deselects a node, the tree component fires a selectionEvent
event. This event has two RowKeySet objects: the RemovedSet object for all the
deselected nodes and the AddedSet object for all the selected nodes.

Tree and tree table components keep track of which nodes are selected using an
instance of the class oracle.adf.view.rich.model.RowKeySet. This instance is
stored as the selectedRowKeys attribute on the component. You can use this instance
to control the selection state of a node in the hierarchy programmatically. Any node
contained by the RowKeySet instance is deemed selected, and all other nodes are not
selected. The addAll() method adds all nodes to the set, and the and removeAll()
method removes all the nodes from the set. Tree and tree table node selection works
in the same way as table row selection. You can refer to sample code for table row
selection in What You May Need to Know About Performing an Action on Selected
Rows in Tables.

Displaying Data in Tree Tables
The ADF Tree Table component can display content in a hierarchical structure. Using
this component you can display the content more elaborately than by using a tree
component.

The ADF Faces tree table component displays hierarchical data in the form of a table.
The display is more elaborate than the display of a tree component, because the tree
table component can display columns of data for each tree node in the hierarchy. The
component includes mechanisms for focusing on subtrees within the main tree, as well
as expanding and collapsing nodes in the hierarchy. Figure 12-30 shows the tree table
used in the File Explorer application. Like the tree component, the tree table can
display the hierarchical relationship between the files in the collection. And like the
table component, it can also display attribute values for each file.

Figure 12-30 Tree Table in the File Explorer Application

The immediate children of a tree table component must be column components, in the
same way as for table components. Unlike the table, the tree table component has a
nodeStamp facet which holds the column that contains the primary identifier of an node

Chapter 12
Displaying Data in Tree Tables

12-61

in the hierarchy. The treeTable component supports the same stamping behavior as
the Tree component (see Displaying Data in Trees).

Note:

The nodeStamp facet can only contain one column (which becomes the node
in the tree).

For example, in the File Explorer application (as shown in Figure 12-30), the primary
identifier is the file name. This column is what is contained in the nodeStamp facet. The
other columns, such as Type and Size, display attribute values on the primary
identifier, and these columns are the direct children of the tree table component. This
tree table uses node as the value of the variable that will be used to stamp out the data
for each node in the nodeStamp facet column and each component in the child
columns. The following example shows abbreviated code for the tree table in the File
Explorer application.

<af:treeTable id="folderTreeTable" var="file"
 value="#{explorer.contentViewManager.treeTableContentView.
 contentModel}"
 binding="#{explorer.contentViewManager.treeTableContentView.
 contentTreeTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 columnStretching="last"
 rowSelection="single"
 selectionListener="#{explorer.contentViewManager.
 treeTableContentView.treeTableSelectFileItem}"
 summary="treeTable data">
 <f:facet name="nodeStamp">
 <af:column headerText="#{explorerBundle['contents.name']}"
 width="200" sortable="true" sortProperty="name">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText id="nameStamp" value="#{file.name}"/>
 </af:panelGroupLayout>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText value="#{file.name}"/>
 </af:panelGroupLayout>
 </f:facet>
 <af:column headerText="#{explorerBundle['contents.type']}">
 <af:outputText id="typeStamp" value="#{file.type}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.size']}">
 <af:outputText id="sizeStamp" value="#{file.property.size}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.lastmodified']}"
 width="140">
 <af:outputText id="modifiedStamp"
 value="#{file.property.lastModified}"/>

Chapter 12
Displaying Data in Tree Tables

12-62

 </af:column>
</af:treeTable>

The tree table component supports many of the same attributes as both tables and
trees. For additional information about these attributes see Displaying Data in Tables
and Displaying Data in Trees.

How to Display Data in a Tree Table
You use the Insert Tree Table wizard to create a tree table. Once the wizard is
complete, you can use the Properties window to configure additional attributes on the
tree table.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Data in Tree Tables.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To add a tree table to a page:

1. In the Components window, from the Data Views panel, drag and drop a Tree
Table onto the page to open the Insert Tree Table wizard.

2. Configure the table by completing the wizard. For help with the wizard, click Help
or press F1.

3. Use the Properties window to configure any other attributes.

Tip:

The attributes of the tree table are the same as those on the table and
tree components. Refer to How to Display a Table on a Page, and How
to Display Data in Trees for help in configuring the attributes.

Passing a Row as a Value
The ADF allows you to pass the data of an entire row of a table or a tree residing on
another page within the framework. You can achieve this by using the
setPropertyListener tag. This is helpful when you want to retrieve the data in a table by
a click of a button.

There may be a case where you need to pass an entire row from a collection as a
value. To do this, you pass the variable used in the table to represent the row, or used
in the tree to represent a node, and pass it as a value to a property in the pageFlow
scope. Another page can then access that value from the scope. The
setPropertyListener tag allows you to do this (for more information about the
setPropertyListener tag, including procedures for using it, see Passing Values
Between Pages).

For example, suppose you have a master page with a single-selection table showing
employees, and you want users to be able to select a row and then click a button to
navigate to a new page to edit the data for that row, as shown in the following

Chapter 12
Passing a Row as a Value

12-63

example. The EL variable name emp is used to represent one row (employee) in the
table. The action attribute value of the button component is a static string outcome
showEmpDetail, which allows the user to navigate to the Employee Detail page. The
setPropertyListener tag takes the from value (the variable emp), and stores it with
the to value.

<af:table value="#{myManagedBean.allEmployees}" var="emp"
 rowSelection="single">
 <af:column headerText="Name">
 <af:outputText value="#{emp.name}"/>
 </af:column>
 <af:column headerText="Department Number">
 <af:outputText value="#{emp.deptno}"/>
 </af:column>
 <af:column headertext="Select">
 <af:button text="Show more details" action="showEmpDetail">
 <af:setPropertyListener from="#{emp}"
 to="#{pageFlowScope.empDetail}"
 type="action"/>
 </af:button>
 </af:column>
</af:table>

When the user clicks the button on an employee row, the listener executes, and the
value of #{emp} is retrieved, which corresponds to the current row (employee) in the
table. The retrieved row object is stored as the empDetail property of pageFlowScope
with the #{pageFlowScope.empDetail} EL expression. Then the action event executes
with the static outcome, and the user is navigated to a detail page. On the detail page,
the outputText components get their value from pageFlowScope.empDetail objects,
as shown in the following example.

<h:panelGrid columns="2">
 <af:outputText value="Firstname:"/>
 <af:inputText value="#{pageFlowScope.empDetail.name}"/>
 <af:outputText value="Email:"/>
 <af:inputText value="#{pageFlowScope.empDetail.email}"/>
 <af:outputText value="Hiredate:"/>
 <af:inputText value="#{pageFlowScope.empDetail.hiredate}"/>
 <af:outputText value="Salary:"/>
 <af:inputText value="#{pageFlowScope.empDetail.salary}"/>
</h:panelGrid>

Displaying Table Menus, Toolbars, and Status Bars
Using ADF panelCollection component you can add menus, toolbars, and status bars
to a table. You can also add actions, such as expanding or collapsing the content,
detaching the toolbar from the tree or tree table, and so on.

You can use the panelCollection component to add menus, toolbars, and status bars
to tables, trees, and tree tables. To use the panelCollection component, you add the
table, tree, or tree table component as a direct child of the panelCollection
component. The panelCollection component provides default menus and toolbar
buttons.

Figure 12-31 shows the panelCollection component with the tree table component in
the File Explorer application. The toolbar contains a menu that provides actions that
can be performed on the tree table (such as expanding and collapsing nodes), a
button that allows users to detach the tree table, and buttons that allow users to

Chapter 12
Displaying Table Menus, Toolbars, and Status Bars

12-64

change the rows displayed in the tree table. You can configure the toolbar to not
display certain toolbar items. For example, you can turn off the buttons that allow the
user to detach the tree or table. For information about menus, toolbars, and toolbar
buttons, see Using Menus, Toolbars, and Toolboxes.

Figure 12-31 Panel Collection for Tree Table with Menus and Toolbar

Among other facets, the panelCollection component contains a menu facet to hold
menu components, a toolbar facet for toolbar components, a secondaryToolbar facet
for another set of toolbar components, and a statusbar facet for status items.

The default top-level menu and toolbar items vary depending on the component used
as the child of the panelCollection component:

• Table and tree: Default top-level menu is View.

• Table and tree table with selectable columns: Default top-level menu items are
View and Format.

• Table and tree table: Default toolbar menu is Detach.

• Table and tree table with selectable columns: Default top-level toolbar items are
Freeze, Detach, and Wrap

• Tree and tree table (when the pathStamp facet is used): The toolbar buttons Go
Up, Go To Top, and Show as Top also appear.

The following example shows how the panelCollection component contains menus
and toolbars.

<af:panelCollection
 binding="#{editor.component}">
 <f:facet name="viewMenu">
 <af:group>
 <af:commandMenuItem text="View Item 1..."/>
 <af:commandMenuItem text="View Item 2.."/>
 <af:commandMenuItem text="View Item 3..." disabled="true"/>
 <af:commandMenuItem text="View Item 4"/>
 </af:group>
 </f:facet>

 <f:facet name="menus">

Chapter 12
Displaying Table Menus, Toolbars, and Status Bars

12-65

 <af:menu text="Actions">
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 <af:commandMenuItem text="Update..." disabled="true"/>
 <af:commandMenuItem text="Copy"/>
 <af:commandMenuItem text="Delete"/>
 <af:commandMenuItem text="Remove" accelerator="control A"/>
 <af:commandMenuItem text="Preferences"/>
 </af:menu>
 </f:facet>
 <f:facet name="toolbar">
 <af:toolbar>
 <af:button shortDesc="Create" icon="/new_ena.png">
 </af:button>
 <af:button shortDesc="Update" icon="/update_ena.png">
 </af:button>
 <af:button shortDesc="Delete" icon="/delete_ena.png">
 </af:button>
 </af:toolbar>
 </f:facet>
 <f:facet name="secondaryToolbar">
 </f:facet>
 <f:facet name="statusbar">
 <af:toolbar>
 <af:outputText id="statusText" ... value="Custom Statusbar Message"/>
 </af:toolbar>
 </f:facet>
 <af:table rowselection="multiple" columnselection="multiple"
 ...
 <af:column
 ...
 </af:column>

Tip:

You can make menus detachable in the panelCollection component. See
Using Menus in a Menu Bar. Consider using detached menus when you
expect users to do any of the following:

• Execute similar commands repeatedly on a page.

• Execute similar commands on different rows of data in a large table, tree
table, or tree.

• View data in long and wide tables or tree tables, and trees. Users can
choose which columns or branches to hide or display with a single click.

• Format data in long or wide tables, tree tables, or trees.

How to Add a panelCollection with a Table, Tree, or Tree Table
You add a panelCollection component and then add the table, tree, or tree table
inside the panelCollection component. You can then add and modify the menus and
toolbars for it.

Before you begin:

Chapter 12
Displaying Table Menus, Toolbars, and Status Bars

12-66

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Table Menus, Toolbars, and Status Bars.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To create a panelCollection component with an aggregate display component:

1. In the Components window, from the Layout panel, drag and drop a Panel
Collection onto the page. Add the table, tree, or tree table as a child to that
component.

Alternatively, if the table, tree, or tree table already exists on the page, you can
right-click the component and choose Surround With. Then select Panel
Collection to wrap the component with the panelCollection component.

2. Optionally, customize the panelCollection toolbar by turning off specific toolbar
and menu items. To do so, select the panelCollection component in the
Structure window. In the Properties window, set the featuresOff attribute.
Table 12-1 shows the valid values and the corresponding effect on the toolbar.

Table 12-1 Valid Values for the featuresOff Attribute

Value Will not display...

statusBar status bar

viewMenu View menu

formatMenu Format menu

columnsMenuItem Columns menu item in the View menu

columnsMenuItem:colId
For
example:columnsMenuItem:col1
, col2

Columns with matching IDs in the Columns menu

For example, the value to the left would not display
the columns whose IDs are col1 and col2

freezeMenuItem Freeze menu item in the View menu

detachMenuItem Detach menu item in the View menu

sortMenuItem Sort menu item in the View menu

reorderColumnsMenuItem Reorder Columns menu item in the View menu

resizeColumnsMenuItem Resize Columns menu item in the Format menu

wrapMenuItem Wrap menu item in the Format menu

showAsTopMenuItem Show As Top menu item in the tree's View menu

scrollToFirstMenuItem Scroll To First menu item in the tree's View menu

scrollToLastMenuItem Scroll To Last menu item in the tree's View menu

freezeToolbarItem Freeze toolbar item

detachToolbarItem Detach toolbar item

wrapToolbarItem Wrap toolbar item

showAsTopToolbarItem Show As Top toolbar item

wrap Wrap menu and toolbar items

freeze Freeze menu and toolbar items

detach Detach menu and toolbar items

3. Add your custom menus and toolbars to the component:

Chapter 12
Displaying Table Menus, Toolbars, and Status Bars

12-67

• Menus: Add a menu component inside the menu facet.

• Toolbars: Add a toolbar component inside the toolbar or secondaryToolbar
facet.

• Status items: Add items inside the statusbar facet.

• View menu: Add commandMenuItem components to the viewMenu facet. For
multiple items, use the group component as a container for the
commandMenuItem components.

From the Components window, drag and drop the component into the facet. For
example, drop Menu into the menu facet, then drop Menu Items into the same
facet to build a menu list. For instructions about menus and toolbars, see Using
Menus, Toolbars, and Toolboxes.

Displaying a Collection in a List
Using the ADF listView and listItem components you can display the contents in a
single-column table structure. You can also achieve two-level hierarchy by binding
listView to a TreeModel.

Instead of using a table with multiple columns, you can use the listView and
listItem components to display structured data in a simple table-like format that
contains just one column. Figure 12-32 shows a listView component that contains
one listItem component used to display an error icon, task information, and an action
button, for each row.

Figure 12-32 The listView Component with a listItem Component

As shown in Figure 12-33, instead of using columns to group the data to be displayed,
a mix of layout components and other components, held by one listItem component,
display the actual the data. In this example, the listItem component contains one
large panelGroupLayout component set to display its children horizontally. The
children are three other panelGroupLayout components used to group their children as
columns might in a table. These panelGroupLayout components are also set to display
their children horizontally. The second of these layout components contains one
panelGroupLayout component set to display its child components (in this case three
outputText components) vertically.

Chapter 12
Displaying a Collection in a List

12-68

Figure 12-33 The listItem Component Contains Multiple Components That Display the Data

See Example 12-1 below, for the corresponding code.

You bind the listView component to the collection. The component then repeatedly
renders one listItem component by stamping the value for each item. As each item is
stamped, the data for the current row is copied into a property that can be addressed
by an EL expression that uses the listView component's var attribute. Once the list
has completed rendering, this property is removed or reverted back to its previous
value.

In this example, the listView value is bound to the demolistView.taskModel object.
The properties on this object can be accessed using the var property, which is set to
item. For example, in order to display the task name, the outputText component
value is set to item.taskName.

The listView component can also display a limited, two-level hierarchy. To display a
hierarchy, the listView needs to be bound to a TreeModel instead of a
CollectionModel. The TreeModel can contain one root level and one child level (for
information about the TreeModel class, see Displaying Data in Trees).

As with trees, the listView uses stamping to display content for the individual nodes,
and a facet (named the groupHeaderStamp facet) that acts as a holder for the
component used to display the parent group for the nodes. However, since the
listView only allows two levels, the groupHeaderStamp facet contains the component
used to display only the root level.

Figure 12-34 shows a listView component displaying a simple hierarchy that has
letters of the alphabet as the root, and employee objects as the leaf nodes.

Chapter 12
Displaying a Collection in a List

12-69

Figure 12-34 Simple Hierarchy in a listView Component

The components used to display the employee object are placed in a listItem
component, while the components used to display the letter of the alphabet are placed
in a listItem component inside the groupHeaderStamp facet, as shown in the
following example.

<af:listView id="listView" binding="#{editor.component}"
 var="item" varStatus="vs" groupDisclosurePolicy="noDisclosure"
 value="#{demolistView.ABTreeModel}">
 <af:listItem id="listItem1">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:outputText id="ot2" value="#{item.ename}" styleClass="ABName"/>
 <af:outputText id="ot3" value="#{item.job}" styleClass="ABJob"/>
 </af:panelGroupLayout>
 </af:listItem>
 <f:facet name="groupHeaderStamp">
 <af:listItem id="listItem2" styleClass="ABHeader">
 <af:outputText id="ot1" value="#{item.alphabetHeading}"/>
 </af:listItem>
 </f:facet>
</af:listView>

When you display a hierarchy in a listView component, you can configure it so that
the headers can disclose or hide its child components, as shown in Figure 12-35.

Chapter 12
Displaying a Collection in a List

12-70

Figure 12-35 The listView Component Configured to Provide Collapsing
Headers

By default, the listView component is configured to display all children. You can
change this using the groupDisclosurePolicy attribute.

When a user collapses or expands a group, a RowDisclosureEvent is fired. You can
use the groupDisclosureListener to programmatically expand and collapse nodes.
See What You May Need to Know About Programmatically Expanding and Collapsing
Nodes.

When a user selects or deselects a row or a node, a SelectionEvent is fired. You can
use the selectionListener to programmatically respond to the event. See What You
May Need to Know About Performing an Action on Selected Rows in Tables.

Example 12-1 The listView Component

<af:listView id="listView" binding="#{editor.component}"
 var="item" varStatus="vs" partialTriggers="::pprLV"
 value="#{demolistView.taskModel}"
 selection="multiple">
 <af:listItem id="lvi">
 <af:showPopupBehavior popupId="::ctxtMenu"
 triggerType="contextMenu"/>
 <af:panelGroupLayout id="panelGroupLayout1"
 layout="horizontal"
 styleClass="AFStretchWidth">
 <af:panelGroupLayout id="panelGroupLayout2"
 layout="horizontal"
 inlineStyle="margin-left:20px; width:45px"
 halign="center" valign="middle">
 <af:image rendered="#{vs.index %6 ==1}"
 source="/images/error.png" id="i1"
 shortDesc="Error at Line #{vs.index + 1}"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="panelGroupLayout3" layout="horizontal"
 inlineStyle="width:100%">
 <af:panelGroupLayout id="panelGroupLayout5"
 layout="vertical"
 inlineStyle="min-width:300px">
 <af:outputText id="outputText1" value="#{item.taskName}"
 styleClass="taskName"/>

Chapter 12
Displaying a Collection in a List

12-71

 <af:outputText id="outputText2"
 value="#{item.projectDesc}"
 styleClass="taskProjectDesc"/>
 <af:outputText id="outputText3" value="#{item.created}"
 styleClass="taskCreated"/>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="panelGroupLayout4"
 layout="horizontal" halign="end"
 valign="middle"
 inlineStyle="margin-right:20px">
 <af:button id="cb1" text="Action"
 shortDesc="Click To Invoke Action for Item #{vs.index + 1}">
 <af:showPopupBehavior popupId="::popupDialog"
 alignId="cb1" align="afterStart"/>
 </af:button>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:listItem>
</af:listView>

How to Display a Collection in a List
You use a listView component bound to a CollectionModel instance and one
listItem component to create the list. If you want to display a simple parent-child
hearers, you place a second listItem component in the groupHeaderStamp facet. You
then add layout components and other text components to display the actual data.

To display a collection in a list:

1. Create a Java class for the model to which the list will be bound. If you want the
list to display groups with headers, the model must extend the
org.apache.myfaces.trinidad.model.TreeModel class. If not, it should extend
the org.apache.myfaces.trinidad.model.CollectionModel class.

Tip:

You may also use other model classes, such as java.util.List, array,
and javax.faces.model.DataModel. If you use one of these other
classes, the listView component automatically converts the instance
into a CollectionModel class, but without any additional functionality.
For information about the CollectionModel class, see the MyFaces
Trinidad Javadoc at http://myfaces.apache.org/trinidad/
trinidad-1_2/trinidad-api/apidocs/index.html.

2. In the Components window, from the Data Views panel, drag and drop a List View
on to the page.

3. In the Properties window, expand the Other section and set the following:

• Value: Specify an EL expression to bind the list to the mode created in Step 1.

• Var: Specify a variable name to represent each node.

• First: Specify a row to set as the first row to display in the list.

• FetchSize: Set the size of the block that should be returned with each data
fetch. The default is 25.

Chapter 12
Displaying a Collection in a List

12-72

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

• Rows: Specific the number of rows to display in the range of rows. By default
this is 25 (the same value as the fetchSize attribute).

• SelectedRowKeys: Optionally enter the keys for the nodes that should be
initially selected. See What You May Need to Know About Programmatically
Selecting Nodes.

• Selection: Set a value to make the rows selectable (this is the rowSelection
attribute). Valid values are: none, single, and multiple. For information about
how to then programmatically perform some action on the selected rows, see
What You May Need to Know About Performing an Action on Selected Rows
in Tables.

4. Drag and drop a List Item as a child to the listView component.

5. Drag and drop layout and other components into the listView component, to
create your desired configuration. See Figure 12-33 and Example 12-1 for an
example.

6. If you want the listView component to display a simple hierarchy, drag and drop
a List Item into the groupHeaderStamp facet.Figure 12-36 shows the
groupHeaderStamp facet in the Structure window.

Figure 12-36 The groupHeaderStamp Facet in the Structure Window

7. Drag and drop an Output Text into the listItem component to display your
header text, and configure the outputText component as needed.

What You May Need to Know About Scrollbars in a List View
Similar to tables, you can configure the listView component to use scrollbars. When
you configure the listView component to use scrolling, in iOS operating systems, by
default, the scrollbars only appear when you mouseover the content. Otherwise, they
remain hidden. You can configure your application so that this same behavior occurs
on other operating systems as well, by adding the -tr-overflow-style: autohiding-
scrollbar skinning property to af|listView selector.

af|listView {
 -tr-overflow-style: autohiding-scrollbar
}

Chapter 12
Displaying a Collection in a List

12-73

Note:

On operating systems other than iOS, initially set style attribute to
overflow:hidden for listView root element. For the mouseHover event, set
style attribute to overflow:auto and for the mouseOut event set style attribute
back to overflow:hidden.

Displaying Images in a Carousel
You can display images in a revolving carousel structure using ADF carouselItem
component. You can also configure the display of the carousel structure.

You can display images in a revolving carousel, as shown in Figure 12-37. Users can
change the image at the front either by using the slider at the bottom or by clicking one
of the auxiliary images to bring that specific image to the front.

Figure 12-37 The ADF Faces Carousel

By default, the carousel displays horizontally. The objects within the horizontal
orientation of the carousel are vertically-aligned to the middle and the carousel itself is
horizontally-aligned to the center of its container.

You can configure the carousel so that it can be displayed vertically, as you might
want for a reference Rolodex. By default, the objects within the vertical orientation of
the carousel are horizontally-aligned to the center and the carousel itself is vertically
aligned middle, as shown in Figure 12-38. You can change the alignments using the
carousel's alignment attributes.

Chapter 12
Displaying Images in a Carousel

12-74

Figure 12-38 Vertical Carousel Component

Best Practice:

Generally the carousel should be placed in a parent component that
stretches its children (such as a panelSplitter or panelStretchLayout). If
you do not place the carousel in a component that stretches its children, your
carousel will display at the default dimension of 500px wide and 300px tall.
You can change these dimensions.

Instead of partially displaying the previous and next images, you can configure your
carousel so that it displays images in a filmstrip design, as shown in Figure 12-39, or in
a roomy circular design, as shown in Figure 12-40.

Chapter 12
Displaying Images in a Carousel

12-75

Figure 12-39 Carousel Filmstrip Display

Figure 12-40 Carousel Roomy Circular Display

By default, when the carousel is configured to display in the circular mode, when you
hover over an auxiliary item (that is, and item that is not the current item at the center),
the item is outlined to show that it can be selected (note that this outline will only
appear if your application is using the Skyros and above skins). You can configure the
carousel so that instead, the item pops out and displays at full size, as shown in
Figure 12-41.

Figure 12-41 Auxiliary Item Pops Out on Hover

You can also configure your carousel so that it displays only the current image, as
shown in Figure 12-42.

Chapter 12
Displaying Images in a Carousel

12-76

Figure 12-42 Carousel Can Display Just One Image

You can configure the controls used to browse through the images. You can display a
slider with next and previous arrows that spans more than one image, display only
next and previous buttons, as shown in Figure 12-42, or display next and previous
buttons, along with the slide counter, as shown in Figure 12-43.

Figure 12-43 Next and Previous Buttons Without a Slider

A child carouselItem component displays the objects in the carousel, along with a title
for the object. Instead of creating a carouselItem component for each object to be
displayed, and then binding these components to the individual object, you bind the
carousel component to a complete collection. The component then repeatedly
renders one carouselItem component by stamping the value for each item, similar to
the way a tree stamps out each row of data. As each item is stamped, the data for the
current item is copied into a property that can be addressed using an EL expression
using the carousel component's var attribute. Once the carousel has completed
rendering, this property is removed or reverted back to its previous value. Carousels
contain a nodeStamp facet, which is both a holder for the carouselItem component
used to display the text and short description for each item, and also the parent
component to the image displayed for each item.

For example, the carouselItem JSF page in the ADF Faces Components Demo
shown in Figure 12-37 contains a carousel component that displays an image of each
of the ADF Faces components. The demoCarouselItem (CarouselBean.java)
managed bean contains a list of each of these components. The value attribute of the
carousel component is bound to the items property on that bean, which represents
that list. The carousel component's var attribute is used to hold the value for each item
to display, and is used by both the carouselItem component and image component to

Chapter 12
Displaying Images in a Carousel

12-77

retrieve the correct values for each item. The following example shows the JSF page
code for the carousel. For information about stamping behavior in a carousel, see
Displaying Data in Trees.

<af:carousel id="carousel" binding="#{editor.component}"
 var="item"
 value="#{demoCarousel.items}"
 carouselSpinListener="#{demoCarousel.handleCarouselSpin}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="crslItem" text="#{item.title}" shortDesc="#{item.title}">
 <af:image id="img" source="#{item.url}" shortDesc="#{item.title}"/>
 </af:carouselItem>
 </f:facet>
</af:carousel>

A carouselItem component stretches its sole child component. If you place a single
image component inside of the carouselItem, the image stretches to fit within the
square allocated for the item (as the user spins the carousel, these dimensions shrink
or grow).

Best Practice:

The image component does not provide any geometry management controls
for altering how it behaves when stretched. You should use images that have
equal width and height dimensions in order for the image to retain its proper
aspect ratio when it is being stretched.

The carousel component uses a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class and adds on
support for row keys. In the DataModel class, rows are identified entirely by index.
However, to avoid issues if the underlying data changes, the CollectionModel class is
based on row keys instead of indexes.

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the carousel
component automatically converts the instance into a CollectionModel class, but
without any additional functionality. For information about the CollectionModel class,
see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/
trinidad-1_2/trinidad-api/apidocs/index.html.

Note:

If your application uses the Fusion technology stack, you can create ADF
Business Components over your data source that represent the items, and
the model will be created for you. You can then declaratively create the
carousel, and it will automatically be bound to that model. See the "Using the
ADF Faces Carousel Component" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

The carousel components are virtualized, meaning not all the items that are there for
the component on the server are delivered to and displayed on the client. You

Chapter 12
Displaying Images in a Carousel

12-78

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

configure the carousel to fetch a certain number of rows at a time from your data
source. The data can be delivered to the component either immediately upon
rendering, or lazily fetched after the shell of the component has been rendered. By
default, the carousel lazily fetches data for the initial request. When a page contains
one or more of these components, the page initially goes through the standard
lifecycle. However, instead of the carousel fetching the data during that initial request,
a special separate partial page rendering (PPR) request is run on the component, and
the number of items set as the value of the fetch size for the carousel is then returned.
Because the page has just been rendered, only the Render Response phase executes
for the carousel, allowing the corresponding data to be fetched and displayed. When a
user does something to cause a subsequent data fetch (for example spinning the
carousel for another set of images), another PPR request is executed.

Performance Tip:

You should use lazy delivery when the page contains a number of
components other than a carousel. Using lazy delivery allows the initial page
layout and other components to be rendered first before the data is available.

Use immediate delivery if the carousel is the only context on the page, or if
the carousel is not expected to return a large set of items. In this case,
response time will be faster than using lazy delivery (or in some cases,
simply perceived as faster), as the second request will not go to the server,
providing a faster user response time and better server CPU utilizations.
Note however that only the number of items configured to be the fetch block
will be initially returned. As with lazy delivery, when a user's actions cause a
subsequent data fetch, the next set of items are delivered.

A slider control allows users to navigate through the collection. Normally the thumb on
the slider displays the current object number out of the total number of objects, for
example 6 of 20. When the total number of objects is too high to calculate, the thumb
on the slider will show only the current object number. For example, say a carousel is
used for a company' s employee directory. By default the directory might show faces
for every employee, but it may not know without an expensive database call that there
are exactly 94,409 employees in the system that day.

You can use other components in conjunction with the carousel. For example, you can
add a toolbar or menu bar, and to that, add buttons or menu items that allow users to
perform actions on the current object.

How to Create a Carousel
To create a carousel, you must first create the data model that contains the images to
display. You then bind a carousel component to that model and insert a carouselItem
component into the nodeStamp facet of the carousel. Lastly, you insert an image
component (or other components that contain an image component) as a child to the
carouselItem component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Images in a Carousel.

Chapter 12
Displaying Images in a Carousel

12-79

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

Create the data model that will provide the collection of images to display. The data
model can be a List, Array, DataModel or CollectionModel. If the collection is
anything other than a CollectionModel, the framework will automatically convert it to a
CollectionModel. For information about the CollectionModel class, see the MyFaces
Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/
trinidad-api/apidocs/index.html.

The data model should provide the following information for each of the images to be
displayed in the carousel:

• URL to the images

• Title, which will be displayed below the image in the carousel

• Short description used for text displayed when the user mouses over the image

For examples, see the CarouselBean.java and the CarouselMediaBean.java classes
in the ADF Faces Components Demo application.

To Create a Carousel:

1. In the Components window, from the Data Views panel, drag and drop a Carousel
onto the page.

Best Practice:

Place the carousel in a parent container that stretches its children.

2. In the Properties window, expand the Common section, and set the following:

• Orientation: By default, the carousel displays horizontally. Select vertical if
you want it to display vertically, as shown in Figure 12-38. If you set it to
horizontal, you must configure how the items line up using the halign
attribute. If you set it to vertical, set how the items line up using the valign
attribute.

• Halign: Specify how you want items in a vertical carousel to display. Valid
values are:

– center: Aligns the items so that they have the same centerpoint. This is
the default.

– end: Aligns the items so that the right edges line up (when the browser is
displaying a left-to-right language).

– start: Aligns the items so that the left edges line up (when the browser is
displaying a left-to-right language).

• Valign: Specify how you want items in a horizontal carousel to display. Valid
values are:

– middle: Aligns the items so that they have the same middle point. This is
the default.

– bottom: Aligns the items so that the bottom edges line up.

– top: Aligns the items so that the top edges line up.

Chapter 12
Displaying Images in a Carousel

12-80

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

• Value: Bind the carousel to the model.

3. Expand the Data section and set the following:

• Var: Enter a variable that will be used in EL to access the individual item data.

• VarStatus: Enter a variable that will be used in EL to access the status of the
carousel. Common properties of varStatus include:

– model: Returns the CollectionModel for the component.

– index: Returns the zero-based item index.

4. Expand the Appearance section and set the following:

• EmptyText: Enter text that should display if no items are returned. If using a
resource bundle, use the dropdown menu to choose Select Text Resource.

5. If you do not place the carousel in a parent component that stretches its children,
then the carousel will display at 500px wide by 300px tall. You can change these
settings. To do so, expand the Style section, click the Layout tab, and set a height
and width in pixels.

6. Expand the Behavior section, and set the following:

• FetchSize: Set the size of the block that should be returned with each data
fetch.

• ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, items are fetched at the same
time the carousel is rendered. If the contentDelivery attribute is set to lazy,
items will be fetched and delivered to the client during a subsequent request.

• CarouselSpinListener: Bind to a handler method that handles the spinning of
the carousel when you need logic to be executed when the carousel spin is
executed. The following example shows the handler method on the
CarouselBean which redraws the detail panel when the spin happens.

 public void handleCarouselSpin(CarouselSpinEvent event)
 {
 RichCarousel carousel = (RichCarousel)event.getComponent();
 carousel.setRowKey(event.getNewItemKey());
 ImageInfo itemData = (ImageInfo)carousel.getRowData();
 _currentImageInfo = itemData;

 // Redraw the detail panel so that we can update the selected details.
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_detailPanel);
 }

7. Expand the Advanced section and set CurrentItemKey. Specify which item is
showing when the carousel is initially rendered. The value should be (or evaluate
to) the item's primary key in the CollectionModel.

8. Expand the Other section and set the following:

• AuxiliaryOffset: Enter a value to control the offset shift factor that a carousel
item will have relative to its nearest item towards the current carousel item in
circular DisplayItems mode.

• AuxiliaryPopOut: Select hover so that mousing over an auxiliary item will
render it at full size with the opaque overlay removed.

• AuxiliaryScale: Enter a value to control the size scaling factor that a carousel
item will have relative to its nearest item towards the current carousel item in

Chapter 12
Displaying Images in a Carousel

12-81

circular DisplayItems mode. A value of 1 means the auxiliary items will be the
same size. A value less than 1 means the auxiliary items will become smaller
the further they are from the current item. A value greater than 1 means the
auxiliary items will become larger the further they are from the current item.

• ControlArea: Specify the controls used to browse through the carousel
images. Valid values are:

– full: A slider displays with built-in next and previous buttons, the current
item text, and the image number. This is the default.

– compact: Only the next and previous buttons and item text are displayed.

– small: Next and previous buttons are displayed, along with the current
item text, and the image number.

– none: No slider is displayed.

• DisplayItems: Select circular to have the carousel display multiple images.
Select oneByOne to have the carousel display one image at a time.

Tip:

To achieve a roomy circular design for the DisplayItems in circular
mode, set the AuxiliaryScale to 0.8 and AuxiliaryOffset 0.8. To
display items in a filmstrip design in circular mode, set AuxiliaryScale
to 1.0 and AuxiliaryOffset to 1.1.

9. In the Components window, from the Data Views panel, drag a Carousel Item to
the nodeStamp facet of the Carousel component.

Bind the CarouselItem component's attributes to the properties in the data model
using the variable value set on the carousel's var attribute. For example, if you use
item as the value for the var attribute, the value of the carouselItem's text
attribute would be item.title (given that title is the property used to access the
text used for the carousel items on the data model).

10. In the Components window, from the General Controls panel, drag an image and
drop it as a child to the carouselItem.

Bind the image component's attributes to the properties in the data model using
the variable value set on the carousel's var attribute. For example, if the carousel
uses item as the value for the var attribute, the value of the image's source
attribute would be item.url (given that url is the property used to access the
image).

You can surround the image component with other components if you want more
functionality. For example, Figure 12-44 shows a carousel whose images are
surrounded by a panelGroupLayout component and that also uses a
clientListener to call a JavaScript function to show a menu and a navigation
bar.

Chapter 12
Displaying Images in a Carousel

12-82

Figure 12-44 Using a More Complex Layout in a Carousel

The following example shows the corresponding page code.

<af:carouselItem id="mainItem" text="#{item.title}" shortDesc="#{item.title}">
 <af:panelGroupLayout id="itemPgl" layout="vertical">
 <af:image id="mainImg" source="#{item.url}" shortDesc="#{item.title}"
 styleClass="MyImage">
 <af:clientListener method="handleItemOver" type="mouseOver"/>
 <af:clientListener method="handleItemDown" type="mouseDown"/>
 <af:showPopupBehavior triggerType="contextMenu" popupId="::itemCtx"/>
 </af:image>
 <af:panelGroupLayout id="overHead" styleClass="MyOverlayHeader"
 layout="vertical" clientComponent="true">
 <af:menuBar id="menuBar">
 <af:menu id="menu" text="Menu">
 <af:commandMenuItem id="menuItem1" text="Menu Item 1"/>
 <af:commandMenuItem id="menuItem2" text="Menu Item 2"/>
 <af:commandMenuItem id="menuItem3" text="Menu Item 3"/>
 </af:menu>
 </af:menuBar>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="overFoot" styleClass="MyOverlayFooter"
 layout="vertical" clientComponent="true"
 halign="center">
 <af:panelGroupLayout id="footHorz" layout="horizontal">
 <f:facet name="separator">
 <af:spacer id="footSp" width="8"/>
 </f:facet>
 <af:link . . .
 />
 <af:outputText id="pageInfo" value="Page 1 of 1"/>
 <af:link . . .
 />
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
</af:carouselItem>

The following example shows the corresponding JavaScript.

Chapter 12
Displaying Images in a Carousel

12-83

function handleItemOver(uiInputEvent)
{
 var imageComponent = uiInputEvent.getCurrentTarget();
 var carousel = null;
 var componentParent = imageComponent.getParent();
 while (componentParent != null)
 {
 if (componentParent instanceof AdfRichCarousel)
 {
 carousel = componentParent;
 }
 componentParent = componentParent.getParent();
 }
 if (carousel == null)
 {
 AfLogger.LOGGER.severe("Unable to find the carousel component!");
 return;
 }
 var currentItemKeyPattern = ":"+ carousel.getCurrentItemKey() +":";

var overlayHeaderComponent = imageComponent.findComponent("overHead");
var overlayHeaderId = overlayHeaderComponent.getClientId();
// In IE we get mouseover for other items as well. This is despite having an
// overlay div on top
if(overlayHeaderId.indexOf(currentItemKeyPattern) == -1)
return;
if (overlayHeaderId != window._myHeader)
{
 // ensure only one set of overlays are visible
 hideExistingOverlays();
}
var overlayFooterComponent = imageComponent.findComponent("overFoot");

window._myHeader = overlayHeaderComponent.getClientId();
window._myFooter = overlayFooterComponent.getClientId();

// do not propagate to the server otherwise all stamps will get this property on
// next data fetch
overlayHeaderComponent.setProperty("inlineStyle", "display:block", false,
AdfUIComponent.PROPAGATE_LOCALLY);
 overlayFooterComponent.setProperty("inlineStyle", "display:block",
false, AdfUIComponent.PROPAGATE_LOCALLY);
}

function handleItemDown(uiInputEvent)
 {
 if (uiInputEvent.isLeftButtonPressed())
 {
 // Only hide the overlays if the left button was pressed
 hideExistingOverlays();
 }
 }

Performance Tip:

The simpler the structure for the carousel, the faster it will perform.

Chapter 12
Displaying Images in a Carousel

12-84

What You May Need to Know About the Carousel Component and
Different Browsers

In some browsers, the visual decoration of the carousel's items will be richer. For
example, Safari and Google Chrome display subtle shadows around the carousel's
items, and the noncurrent items have a brightness overlay to help make clear that the
auxiliary items are not the current item, as shown in Figure 12-45.

Figure 12-45 Carousel Component Displayed in Google Chrome

Figure 12-46 shows the same component in Internet Explorer.

Figure 12-46 Carousel Component Displayed in Microsoft Internet Explorer

Exporting Data from Table, Tree, or Tree Tables
You can export data from ADF Gantt chart to an Excel spreadsheet or you can export
as a comma-separated values file. The formatting information is also exported along
with data.

You can export the data from a table, tree, or tree table, or from a table region of the
data visualization project Gantt chart to a Microsoft Excel spreadsheet or to a comma-
separated values (CSV) file. To allow users to export a table, you create an action
source, such as a button or link that will be used to invoke the export, and add an
exportCollectionActionListener component and associate it with the data you wish
to export. The formatting information is included in the exported Excel spreadsheet, so

Chapter 12
Exporting Data from Table, Tree, or Tree Tables

12-85

that the data types are identified correctly and you can use the inbuilt functions of the
MS Excel on various columns. However, if the cell format is not valid, then by default
the text is exported as Text format. You can configure the
exportCollectionActionListener so that all the rows of the source table or tree will
be exported, or so that only the rows selected by the user will be exported.

Tip:

You can also export data from a DVT pivot table. See Exporting from a Pivot
Table.

For example, Figure 12-47 shows the table from the ADF Faces Components Demo
application that includes buttons that allow users to export the data to an Excel
spreadsheet or as a CSV file.

Figure 12-47 Table with Buttons for Exporting Data

When the user clicks a button, the listener processes the exporting of all the rows to a
spreadsheet or CSV. As shown in Figure 12-47, you can also configure the
exportCollectionActionListener component so that only the rows the user selects
are exported.

Only the following can be exported:

• Value of value holder components (such as input and output components).

• Value of selectItem components used in selelctOneChoice and
selectOneListbox components (the value of selectItem components in other
selection components are not exported).

• Value of the text attribute of a command component.

• Value of the shortDesc attribute on image and icon components.

If you do not want the value of the shortDesc attribute on image and icon components
to be exported (for example, if a cell contains an image), you can use the predefined
skipObjectComponent filter method. This method will run before the
exportCollectionActionListener, and will keep any Object components from being
exported. You can also create your own custom filter method to apply any needed
logic before the exportCollectionActionListener runs.

Depending on the browser, and the configuration of the listener, the browser will either
open a dialog, allowing the user to either open or save the file as shown in
Figure 12-48, or the file will be displayed in the browser. For example, if the user is

Chapter 12
Exporting Data from Table, Tree, or Tree Tables

12-86

viewing the page in Microsoft Internet Explorer, and no file name has been specified
on the exportCollectionActionListener component, the file is displayed in the
browser. In Mozilla Firefox, the dialog opens.

Figure 12-48 Exporting to Excel Dialog

If the user chooses to save the file, it can later be opened in a spreadsheet application,
as shown in Figure 12-49. If the user chooses to open the file, what happens depends
on the browser. For example, if the user is viewing the page in Microsoft Internet
Explorer and is exporting a spreadsheet, the spreadsheet opens in the browser
window. If the user is viewing the page in Mozilla Firefox, the spreadsheet opens in
Excel.

Figure 12-49 Exported Data File in Excel

Note:

For spreadsheets, you may receive a warning from Excel stating that the file
is in a different format than specified by the file extension. This warning can
be safely ignored.

Chapter 12
Exporting Data from Table, Tree, or Tree Tables

12-87

How to Export Table, Tree, or Tree Table Data to an External Format
You create a command component, such as a button, link, or menu item, and add the
exportCollectionActionListener inside this component. Then you associate the
data collection you want to export by setting the exportCollectionActionListener
component's exportedId attribute to the ID of the collection component whose data
you wish to export.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Exporting Data from Table, Tree, or Tree Table.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

You should already have a table, tree, or tree table on your page. If you do not, follow
the instructions in this chapter to create a table, tree, or tree table. For example, to add
a table, see Displaying Data in Tables.

Tip:

If you want users to be able to select rows to export, then configure your
table to allow selection. See Formatting Tables.

To export collection data to an external format:

1. In the Components window, from the General Controls panel, drag and drop a
command component, such as a button, to your page.

Tip:

If you want your table, tree, or tree table to have a toolbar that will hold
command components, you can wrap the collection component in a
panelCollection component. This component adds toolbar functionality.
See Displaying Table Menus, Toolbars, and Status Bars.

You may want to change the default label of the command component to a
meaningful name such as Export to a Spreadsheet.

2. In the Components window, from the Operations panel, drag an Export
Collection Action Listener as a child to the command component.

3. In the Insert Export Collection Action Listener dialog, set the following:

• ExportedId: Specify the ID of the table, tree, or tree table to be exported.
Either enter it manually or use the dropdown menu to choose Edit. Use the
Edit Property dialog to select the component.

• Type: Set to excelHTML to export to an Microsoft Excel spreadsheet. Set to
CSV to export to a comma-separated values file.

Chapter 12
Exporting Data from Table, Tree, or Tree Tables

12-88

4. With the exportCollectionActionListener component still selected, in the
Properties window, set the following:

• Filename: Specify the proposed file name for the exported content. When this
attribute is set, a "Save File" dialog will typically be displayed, though this is
ultimately up to the browser. If the attribute is not set, the content will typically
be displayed inline, in the browser, if possible.

• Title: Specify the title of the exported document. Whether or not the title is
displayed and how exactly it is displayed depends on the spreadsheet
application.

• ExportedRows: Specify if you want to export all rows in the table, or only
rows selected by the user. If your table uses the detailStamp facet, you can
elect to either export that data or not (for information about the detailStamp
facet, see Adding Hidden Capabilities to a Table). Set to one of the following:

– all: All rows will be exported. This includes the currently visible rows and
all hidden rows that have not been disclosed in the component UI.

– allWithoutDetails: All rows, except the data in the detailStamp facet,
will be exported.

– disclosed: Only the rows as currently displayed in the page will be
exported. That includes disclosed (shown) nodes plus their leaf nodes.

– disclosedWithoutDetails: Only the rows as currently displayed in the
page will be exported, except for the data in the detailStamp facet.

– selected: Only the rows the user has selected will be exported. Set only if
the underlying collection supports selection.

– selectedWithoutDetails: Only the rows the user has selected will be
exported, except for the data in the detailStamp facet. Set only if the
underlying collection supports selection.

• RowLimit: Enter a number that represents the maximum number of rows that
can be exported. Enter -1 if there should be no limit.

• Charset: By default, UTF-8 is used. You can specify a different character set if
needed.

• FilterName: Enter skipObjectComponent, if you want a built-in method to run
that will skip any Object component from being processed.

• FilterMethod: Enter an EL expression that evaluates to a method that will be
invoked before the ExportCollectionActionListener that will handle any
needed override logic.

The following example shows the code for a table and its
exportCollectionActionListener component. Note that the exportedId value is set
to the table id value.

<af:table contextMenuId="thePopup" selectionListener="#{fs.Table}"
 rowselection="multiple" columnselection="multiple"
 columnBandingInterval="1"
 binding="#{editor.component}" var="test1" value="#{tableTestData}"
 id="table" summary="table data">
 <af:column>
 . . .
 </af:column>
</af:table>
<af:button text="Export To Excel" immediate="true">

Chapter 12
Exporting Data from Table, Tree, or Tree Tables

12-89

 <af:exportCollectionActionListener type="excelHTML" exportedId="table"
 filename="export.xls" title="ADF Faces Export"/>

What Happens at Runtime: How Row Selection Affects the Exported
Data

Exported data is exported in index order, not selected key order. This means that if
you allow selected rows to be exported, and the user selects rows (in this order) 8, 4,
and 2, then the rows will be exported and displayed in Excel in the order 2, 4, 8.

Accessing Selected Values on the Client from Collection-
Based Components

In the ADF framework, the client-support for EL is not available. To access row-
specific data on the client, you must use EL on the collection-based component.

Since there is no client-side support for EL in the ADF Faces framework, nor is there
support for sending entire collection models to the client, if you need to access values
on the client using JavaScript, the client-side code cannot rely on component stamping
to access the value. Instead of reusing the same component instance on each row, a
new JavaScript component is created on each row (assuming any component needs
to be created at all for any of the rows), using the fully resolved EL expressions.

Therefore, to access row-specific data on the client, you need to use the collection-
based component itself to access the value. To do this without a client-side data
model, you use a client-side selection change listener.

How to Access Values from a Selection in Stamped Components.
To access values on the client from a collection-based component, you first need to
make sure the component has a client representation. Then you need to register a
selection change listener on the client and then have that listener handle determining
the selected row, finding the associated stamped component for that row, use the
collection component to determine the row-specific name, and finally interact with the
selected data as needed.

Before you begin:

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Collection-Based Components.

To access selected values from collection-based components:

1. In the Structure window for your page, select the component associated with the
stamped row. For example, in the following example the table uses an outputText
component to display the stamped rows.

<af:table var="row" value="#{data}" rowSelection="single">
 <af:column headerText="Name">
 <af:outputText value="#{row.name}"/>
 </af:column>
</af:table>

Set the following on the component:

Chapter 12
Accessing Selected Values on the Client from Collection-Based Components

12-90

• Expand the Common section of the Properties window and if one is not
already defined, set a unique ID for the component using the Id attribute.

• Expand the Advanced section and set ClientComponent to True.

2. In the Components window, from the Operations panel, drag and drop a Client
Listener as a child to the collection component.

3. In the Insert Client Listener dialog, enter a function name in the Method field (you
will implement this function in the next step), and select selection from the Type
dropdown.

If for example, you entered mySelectedRow as the function, JDeveloper would
enter the code shown in bold in the following example.

<af:table var="row" value="#{data}" rowSelection="single">
 <af:clientListener type="selection" method="mySelectedRow"/>
 ...
</af:table>

This code causes the mySelectedRow function to be called any time the selection
changes.

4. In your JavaScript library, implement the function entered in the last step. This
function should do the following:

• Figure out what row was selected. To do this, use the event object that is
passed into the listener. In the case of selection events, the event object is of
type AdfSelectionEvent. This type provides access to the newly selected row
keys via the getAddedSet() method, which returns a POJSO (plain old
JavaScript object) that contains properties for each selected row key. Once
you have access to this object, you can iterate over the row keys using a "for
in" loop. For example, the code in the following example extracts the first row
key (which in this case, is the only row key).

function showSelectedName(event)
{
 var firstRowKey;
 var addRowKeys=event.getAddedSet();

 for(var rowKey in addedRowKeys)
 {
 firstRowKey=rowKey;
 break;
 }
}

• Find the stamped component associated with the selected row. The client-side
component API AdfUIComponent exposes a findComponent() method that
takes the ID of the component to find and returns the AdfUIComponent
instance. When using stamped components, you need to find a component not
just by its ID, but by the row key as well. In order to support this, the
AdfUITable class provides an overloaded method of findComponent(), which
takes both an ID as well as a row key.

In the case of selection events, the component is the source of the event. So
you can get the collection component from the source of the event and then
use the collection component to find the instance using the ID and row key.
The following example shows this, where nameStamp is the ID of the table.

// The table needs to find the stamped component.
// Fortunately, in the case of selection events, the

Chapter 12
Accessing Selected Values on the Client from Collection-Based Components

12-91

 // table is the event source.
 var table = event.getSource();

 // Use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

5. Add any additional code needed to work with the component. Once you have the
stamped component, you can interact with it as you would with any other
component. For example, the following code shows how to use the stamped
component to get the row-specific value of the name attribute and then display the
name in an alert.

if (nameStamp)
 { // This is the row-specific name
 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }

The following example shows the entire code for the JavaScript.

function showSelectedName(event)
{
 var firstRowKey;
 var addedRowKeys = event.getAddedSet();

 for (var rowKey in addedRowKeys)
 {
 firstRowKey = rowKey;
 break;
 }
 // The table needs to find the stamped component.
 // Fortunately, in the case of selection events, the
 // table is the event source.
 var table = event.getSource();

 // We use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

 if (nameStamp)
 {
 // This is the row-specific name
 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }
}

What You May Need to Know About Accessing Selected Values
Row keys are tokenized on the server, which means that the row key on the client may
have no resemblance to the row key on the server. As such, only row keys that are
served up by the client-side APIs (like AdfSelectionEvent.getAddedSet()) are valid.

Also note that AdfUITable.findComponent(id, rowKey)method may return null if the
corresponding row has been scrolled off screen and is no longer available on the
client. Always check for null return values from AdfUITable.findComponent()
method.

Chapter 12
Accessing Selected Values on the Client from Collection-Based Components

12-92

13
Using List-of-Values Components

This chapter describes how to use a list-of-values component to display a model-
driven list of objects from which a user can select a value. It describes how to create a
data model that uses the list-of-values functionality with the ListOfValues data model.
It also describes how to add the inputListOfValues and inputComboboxListOfValues
components to a page.
This chapter includes the following sections:

• About List-of-Values Components

• Creating the ListOfValues Data Model

• Using the inputListOfValues Component

• Using the InputComboboxListOfValues Component

• Using the InputSearch Component

About List-of-Values Components
The ADF List-of-Values (LOV) input component is a set of values populated either
when the user starts typing the search value in the LOV field or when the user hits the
submit button of the LOV field. This is helpful when you want to display the data to the
users from one list item to another.

ADF Faces provides two list-of-values (LOV) input components that can display
multiple attributes of each list item and can optionally allow the user to search for the
needed item. These LOV components are useful when a field used to populate an
attribute for one object might actually be contained in a list of other objects, as with a
foreign key relationship in a database. For example, suppose you have a form that
allows the user to edit employee information. Instead of having a separate page where
the user first has to find the employee record to edit, that search and select
functionality can be built into the form, as shown in Figure 13-1.

Figure 13-1 List-of-Values Input Field

In this form, the employee name field is an LOV that contains a list of employees.
When the user clicks the search icon of the inputListOfValues component, a Search
and Select popup dialog displays all employees, along with a search field that allows
the user to search for the employee, as shown in Figure 13-2. If the results table is
empty, you can display a custom message via the resultTable facet.

13-1

Figure 13-2 The Search Popup Dialog for a List-of-Values Component

When the user returns to the page, the current information for that employee is
displayed in the form, as shown in Figure 13-3. The user can then edit and save the
data.

Figure 13-3 Form Populated Using LOV Component

Chapter 13
About List-of-Values Components

13-2

As shown in the preceding figures, the inputListOfValues component provides a
popup dialog from which the user can search for and select an item. The list is
displayed in a table. In contrast, the inputComboboxListOfValues component allows
the user two different ways to select an item to input: from a simple dropdown list, or
by searching as you can in the inputListOfValues component.

You can also create custom content to be rendered in the Search and Select dialog by
using the searchContent facet. You define the returnPopupDataValue attribute and
programmatically set it with a value when the user selects an item from the Search
and Select dialog and then closes the dialog. This value will be the return value from
the ReturnPopupEvent to the returnPopupListener. When you implement the
returnPopupListener, you can perform functions such as setting the value of the LOV
component and its dependent components, and displaying the custom content. In the
searchContent facet you can add components such as tables, trees, and input text to
display your custom content.

If you implement both the searchContent facet and the ListOfValues model, the
searchContent facet implementation will take precedence in rendering the Search and
Select dialog. The following example shows the code to display custom content using
a table component.

<af:inputListOfValues model="#{bean.listOfValuesModel}"
...
 returnPopupDataValue="#{bean.returnPopupDataValue}"
 returnPopupListener="#{bean.returnPopupListener}">
 <f:facet name="searchContent">
 <af:table id="t1" value="#{bean.listModel}" var="row"
 selectionListener="#{bean.selected}"
 ...
 </f:facet>
</af:inputListOfValues>

Both components support the auto-complete feature, which allows the user to enter a
partial value in the input field, tab out (or click out), and have the dialog populated with
one or more rows that match the partial criteria. For auto-complete to work, you must
implement logic so that when the user tabs or clicks out after a partial entry, the
entered value is posted back to the server. On the server, your model implementation
filters the list using the partially entered value and performs a query to retrieve the list
of values. ADF Faces provides APIs for this functionality. To configure the LOV input
component to auto-complete using only the Search and Select dialog when no unique
matching row is available, you need to add the following element to the adf-
config.xml file:

You can implement the LOV component to carry forward the value entered in the input
field of inputListOfValues and inputComboboxListOfValues to the appropriate
search field in the search dialog. You can use the setCriterionValue(Object Value)
API method, which sets the search field’s value and also changes the operator of the
search field.

public void setCriterionValue(Object value)

This method is invoked during the launch of advanced search panel and sets the value
of the criterion that matches the LOVs display attribute.

If you want to add the auto-complete feature when the user tabs or clicks out after
entering a partial entry, you will need to disable the custom popup. In your
LaunchPopupListener() code, add launchPopupEvent.setLaunchPopup(false) to

Chapter 13
About List-of-Values Components

13-3

prevent the custom popup from launching when the user tabs or clicks out. Clicking on
the Search link will still launch the Search and Select dialog. The following example
shows the listener code in a managed bean that is used to disable the custom popup.

public void LaunchPopupListener(LaunchPopupEvent launchPopupEvent) {
 if (launchPopupEvent.getPopupType().equals
 (LaunchPopupEvent.PopupType.SEARCH_DIALOG)
 {
 ...

 launchPopupEvent.setLaunchPopup(false);
 }
}

In the situation where the user tabs out and no unique row match is available to auto-
complete a partial input criteria (because duplicate values exist), the Search and
Select dialog is displayed. When the user clicks out with a partial value and no unique
row match is available, the user gets a validation error notifying them of duplicate
values. In this case, you can optionally configure the Search and Select dialog to
launch so the behavior for tab out and click out on duplicate values is the same (by
default the dialog does not display for the click out action). To configure auto-complete
to always use the Search and Select dialog when no unique matching row is available,
you can add the following element to the adf-config.xml file

<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <lov-show-searchdialog-onerror>true</lov-show-searchdialog-onerror>
</adf-faces-config>

If the readOnly attribute is set to true, the input field is disabled. If readOnly is set to
false, then the editMode attribute determines which type of input is allowed. If
editMode is set to select, the value can be entered only by selecting from the list. If
editMode is set to input, then the value can also be entered by typing.

You can also implement the LOV component to automatically display a list of
suggested items when the user types in a partial value. For example, when the user
enters Ad, then a suggested list which partially matches Ad is displayed as a suggested
items list, as shown in Figure 13-4. If there are no matches, a "No results found."
message will be displayed.

Figure 13-4 Suggested Items List for an LOV

The user can select an item from this list to enter it into the input field, as shown in
Figure 13-5.

Chapter 13
About List-of-Values Components

13-4

Figure 13-5 Suggested Items Selected

You add the auto-suggest behavior by adding the af:autoSuggestBehavior tag inside
the LOV component with the tag's suggestItems values set to a method that retrieves
and displays the list. You can create this method in a managed bean. If you are using
ADF Model, the method is implemented by default.

In your LOV model implementation, you can implement a smart list that filters the list
further. You can implement a smart list for both LOV components. If you are using
ADF Model, the inputComboboxListOfValues allows you declaratively select a smart
list filter defined as a view criteria for that LOV. If the smart list is implemented, and
auto-suggest behavior is also used, auto-suggest will search from the smart list first. If
the user waits for two seconds without a gesture, auto-suggest will also search from
the full list and append the results. The maxSuggestedItems attribute specifies the
number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0, a
More link is rendered for the user to click to launch the LOV's Search and Select
dialog. The following example shows the code for an LOV component with both auto-
suggest behavior and a smart list.

af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"/>
 maxSuggestedItems="7"/>

Figure 13-6 shows how a list can be displayed by an inputComboboxListOfValues
component. If the popup dialog includes a query panel or smart list is not being used a
Search link is displayed at the bottom of the dropdown list. If a query panel is not used
or if smart list is enable, a More link is displayed.

Chapter 13
About List-of-Values Components

13-5

Figure 13-6 InputComboboxListOfValues Displays a List of Employee Names

You can control when the contents of the dropdown list are sent and rendered to the
client using the contentDelivery attribute. When set to immediate delivery, the
contents of the list are fetched during the initial request. With lazy delivery, the page
initially goes through the standard lifecycle. However, instead of fetching the list
content during that initial request, a special separate partial page rendering (PPR)
request is run, and the list content is then returned. You can configure the list so that
its contents are not rendered to the client until the first request to disclose the content
and the contents then remain in the cache (lazy), or so that the contents are rendered
each time there is a request to disclose them (lazyUncached), which is the default.

How you set the contentDelivery attribute effects when the LaunchPopupEvent is
queued. When contentDelivery is set to lazyUncached, this event is queued while
displaying the dropdown panel. When contentDelivery is lazy, the event is queued
only the first time the dropdown displays. When set to immediate, the
LaunchPopupEvent is not queued at all.

The dropdown list of the inputComboboxListOfValues component can display the
following:

• Full list: As shown in Figure 13-6, a complete list of items returned by the
ListOfValuesModel.getItems() method.

• Favorites list: A list of recently selected items returned by the
ListOfValuesModel.getRecentItems() method.

Chapter 13
About List-of-Values Components

13-6

• Search link: A link that opens a popup Search and Select dialog. The link is not on
the scrollable region on the dropdown list.

• customActions facet: A facet for adding additional content. Typically, this contains
one or more link components. You are responsible for implementing any logic for
the link to perform its intended action, for example, launching a popup dialog.

The number of columns to be displayed for each row can be retrieved from the model
using the getItemDescriptors() method. The default is to show all the columns.

The popup dialog from within an inputListOfValues component or the optional
search popup dialog in the inputComboboxListOfValues component also provides the
ability to create a new record. For the inputListOfValues component, when the
createPopupId attribute is set on the component, a toolbar component with a button
is displayed with a create icon. At runtime, a button component appears in the LOV
popup dialog, as shown in Figure 13-7.

Figure 13-7 Create Icon in Toolbar of Popup Dialog

When the user clicks the Create button, a popup dialog is displayed that can be used
to create a new record. For the inputComboboxListOfValues, instead of a toolbar, a
link with the label Create is displayed in the customActions facet, at the bottom of
the dialog. This link launches a popup where the user can create a new record. In both
cases, you must provide the code to actually create the new record.

Both the inputListOfValues and the inputComboboxListOfValues components
support the context facet. This facet allows you to add the af:contextInfo control,
which can be used to show contextual information. When the user clicks in this area, it
launches a popup window displaying contextual information.

Chapter 13
About List-of-Values Components

13-7

Tip:

Instead of having to build your own create functionality, you can use ADF
Business Components and ADF data binding. See Creating an Input Table in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Like the query components, the LOV components rely on a data model to provide the
functionality. This data model is the ListOfValuesModel class. This model uses a table
model to display the list of values, and can also access a query model to perform a
search against the list. You must implement the provided interfaces for the
ListOfValuesModel in order to use the LOV components.

Tip:

Instead of having to build your own ListOfValuesModel class, you can use
ADF Business Components to provide the needed functionality. See
Creating Databound Selection Lists and Shuttles in Developing Fusion Web
Applications with Oracle Application Development Framework.

When the user selects an item in the list, the data is returned as a list of objects for the
selected row, where each object is the rowData for a selected row. The list of objects is
available on the ReturnPopupEvent event, which is queued after a selection is made.

If you choose to also implement a QueryModel class, then the popup dialog will include
a Query component that the user can use to perform a search and to filter the list. Note
the following about using the Query component in an LOV popup dialog:

• The saved search functionality is not supported.

• The Query component in the popup dialog and its functionality is based on the
corresponding QueryDescriptor class.

• The only components that can be included in the LOV popup dialog are query,
toolbar, and table.

When the user clicks the Search button to start a search, the
ListOfValuesModel.performQuery() method is invoked and the search is performed.
For more information about the query model, see Using Query Components.

You should use the list-of-values components when you have a more complex
selection process that cannot be handled by the simpler select components. With list-
of-values components, you can filter the selection list using accessors, smart list, auto-
suggest, and other features to fine-tune the list criteria. You can create custom content
in the popup window. You can add code to the returnPopupListener to perform
functions when the popup window closes. A customActions facet can be used to add
additional content. A create feature allows the user to create a new record. The list-of-
values components offer a rich set of data input features for easier data entry.

Chapter 13
About List-of-Values Components

13-8

Additional Functionality for List-of-Values Components
You may find it helpful to understand other ADF Faces features before you implement
your list-of-values components. Additionally, once you have added a list-of-value
component to your page, you may find that you need to add functionality such as
validation and accessibility. Following are links to other functionality that input
components can use.

• Client components: Components can be client components. To work with the
components on the client, see Using ADF Faces Client-Side Architecture .

• JavaScript APIs: All list-of-value components have JavaScript client APIs that you
can use to set or get property values. See the JavaScript API Reference for Oracle
ADF Faces.

• Events: List-of-value components fire both server-side and client-side events that
you can have your application react to by executing some logic. See Handling
Events.

• You can add validation and conversion to list-of-values components. See
Validating and Converting Input.

• You can display tips and messages, as well as associate online help with list-of-
values components. See Displaying Tips, Messages, and Help.

• There may be times when you want the certain list-of-values components to be
validated before other components on the page. See Using the Immediate
Attribute.

• You may want other components on the page to update based on selections you
make from a list-of-values component. See Using the Optimized Lifecycle.

• You can change the appearance of the components using skins. See Customizing
the Appearance Using Styles and Skins.

• You can make your list-of-values components accessible. See Developing
Accessible ADF Faces Pages.

• Instead of entering values for attributes that take strings as values, you can use
property files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

• The LOV components use the query component to populate the search list. For
information on the query component, see Using Query Components.

• Other list components, such as selectOneChoice, also allow users to select from a
list, but they do not include a popup dialog and they are intended for smaller lists.
For information about select choice components, list box components, and radio
buttons, see Using Input Components and Defining Forms .

• If your application uses ADF Model, then you can create automatically bound
forms using data controls (whether based on ADF Business Components or other
business services). See Creating a Basic Databound Page in Developing Fusion
Web Applications with Oracle Application Development Framework.

Chapter 13
About List-of-Values Components

13-9

Creating the ListOfValues Data Model
A ListofValues data model is a collection of interface classes. The ListofValues data
model provides you methods to retrieve a QueryModel and a TableModel to display a
query component or a table.

Before you can use the LOV components, you must have a data model that uses the
ADF Faces API to access the LOV functionality. For information on the LOV data
model, see the Java API Reference for Oracle ADF Faces.

How to Create the ListOfValues Data Model
Before you begin:

It may be helpful to have an understanding of the list-of-values data model. See
Creating the ListOfValues Data Model.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for List-of-Values Components.

To create a ListOfValues model and associated events:

1. Create implementations of each of the interface classes. Table 13-1 provides a
description of the APIs.

Table 13-1 ListOfValues Model API

Method Functionality

autoCompleteValue() Called when the search icon is clicked or the value is
changed and the user presses the Enter key or either tabs
out or clicks out from the input field, as long as
autoSubmit is set to true on the component. This
method decides whether to open the dialog or to auto-
complete the value. The method returns a list of filtered
objects.

valueSelected(value) Called when the value is selected from the Search and
Select dialog and the OK button is clicked. This method
gives the model a chance to update the model based on
the selected value.

isAutoCompleteEnabled() Returns a boolean to decide whether or not the auto
complete is enabled.

getTableModel() Returns the implementation of the TableModel class, on
which the table in the search and select dialog will be
based and created.

getItems() and
getRecentItems()

Return the items and recentItems lists to be displayed
in the combobox dropdown. Valid only for the
inputComboboxListOfValues component. Returns null
for the inputListOfValues component.

getItemDescriptors() Return the list of columnDescriptors to be displayed in
the dropdown list for an inputComboboxListOfValues
component.

Chapter 13
Creating the ListOfValues Data Model

13-10

Table 13-1 (Cont.) ListOfValues Model API

Method Functionality

getQueryModel() and
getQueryDescriptor()

Return the queryModel based on which the query
component inside the Search and Select dialog is created.

performQuery() Called when the search button in the query component is
clicked.

setCriterionValue(Objec
t value)

Sets the value of the criterion that matches the LOV's
display attribute in the advanced search panel. Default
implementation does nothing. Object Value is the
submittedValue of the component..

For an example of a ListOfValues model, see the DemoLOVBean and
DemoComboboxLOVBean classes located in the oracle.adfdemo.view.lov package,
found in the Application Sources directory of the ADF Faces application.

2. For the inputListOfValues component, provide logic in a managed bean (it can
be the same managed bean used to create your LOV model) that accesses the
attribute used to populate the list. The inputComboboxListOfValues component
uses the getItems() and getRecentItems() methods to return the list.

3. For the Search and Select popup dialog used in the InputListOfValues
component, or if you want the InputComboboxListOfValues component to use the
Search and Select popup dialog, implement the
ListOfValuesModel.autoCompleteValue() and
ListOfValuesModel.valueSelected() methods. These methods open the popup
dialog and apply the selected values onto the component.

Using the inputListOfValues Component
Using the inputListOfValues component you can select from list of values to help
populate the LOV field on a page. You can use this component when the list of values
to display is too large.

The inputListOfValues component uses the ListOfValues model you implemented
to access the list of items, as documented in Creating the ListOfValues Data Model.

How to Use the InputListOfValues Component
Before you begin:

It may be helpful to have an understanding of the inputListOfValues component. See
Using the inputListOfValues Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for List-of-Values Components.

You will need to complete this task:

Create a page or page fragment. If you also implemented the search API in the
model, the component would also allows the user to search through the list for the
value.

To add an inputListOfValues component:

Chapter 13
Using the inputListOfValues Component

13-11

1. In the Components window, from the Text and Selection panel, drag an Input List
Of Values and drop it onto the page.

2. In the Properties window, expand the Common section and set the following
attributes:

• model: Enter an EL expression that resolves to your ListOfValuesModel
implementation, as created in How to Create the ListOfValues Data Model.

• value: Enter an EL expression that resolves to the attribute values used to
populate the list, as created in How to Create the ListOfValues Data Model.

3. Expand the Appearance section and set the following attribute values:

• popupTitle: Specify the title of the Search and Select popup dialog.

• searchDesc: Enter text to display as a mouseover tip for the component.

• Placeholder: Specify the text that appears in the inputListOfValues
component if the component is empty and does not have focus. When the
component gets focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
inputListOfValues component.

Note:

The placeholder value will only work on browsers that fully support
HTML5.

The rest of the attributes in this section can be populated in the same manner as
with any other input component. See Using the inputText Component.

4. Expand the Behavior section and set the following attribute values:

• autoSubmit: Set to true if you want the component to automatically submit
the enclosing form when an appropriate action takes place (a click, text
change, and so on). This will allow the auto-complete feature to work.

• createPopupId: If you have implemented a popup dialog used to create a new
object in the list, specify the ID of that popup component. Doing so will display
a toolbar component above the table that contains a button component
bound to the popup dialog you defined. If you have added a dialog to the
popup, then it will intelligently decide when to refresh the table. If you have not
added a dialog to the popup, then the table will be always refreshed.

• launchPopupListener: Enter an EL expression that resolves to a
launchPopupListener that you implement to provide additional functionality
when the popup is launched.

• returnPopupListener: Enter an EL expression that resolves to a
returnPopupListener component that you implement to provide additional
functionality when the value is returned.

• Usage: Specify how the inputListOfValues component will be rendered in
HTML 5 browser. The valid values are auto, text, and search. Default is auto.

If the usage type is search, the inputListOfValues component will render as
an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon
that can be used to clear the search text.

Chapter 13
Using the inputListOfValues Component

13-12

The rest of the attributes in this section can be populated in the same manner as
with any other input component. See Using the inputText Component.

5. If you want users to be able to create a new item, create a popup dialog with the
ID given in Step 4. See Using Popup Dialogs, Menus, and Windows.

6. In the Components window, from the Operations panel, in the Behavior group,
drag an Auto Suggest Behavior and drop it as a child to the inputListOfValues
component.

If you add auto suggest behavior, you must not set the immediate property to
true. Setting immediate to true will cause validation to occur in the Apply Request
Values phase and any validation errors may suppress the displaying of the
suggestion list.

7. In the Properties window, for each of the auto-suggest attributes, enter the:

• EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the
suggestItems. The method signature should be of the form
List<javax.model.SelectItem>
suggestItems(javax.faces.context.FacesContext,
oracle.adf.view.rich.model.AutoSuggestUIHints)

• EL expression that resolves to the smartList method. The method should
return List<javax.model.SelectItem> of the smart list items.

• You can modify the behavior of af:autoSuggestBehavior to start to show the
suggest items only when a user enters more than N characters. For example,
if minimumChar="3", then the suggest list gets displayed only when you enter 3
or more characters.

• Number of items to be displayed in the auto-suggest list. Enter -1 to display
the complete list.

If you are implementing this method in a managed bean, the JSF page entry
should have the format shown in the following example

<af:inputListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 minimumChar="3"
 maxSuggestedItems="7"/>
</af:inputListOfValues>

<af:inputListOfValues value="#{bean.value}" id="inputId">

If the component is being used with a data model such as ADF Model, the
suggestItem method should be provided by the default implementation.

8. If you are not using ADF Model, create the suggestItems method to process and
display the list. The suggestItems method signature is shown in the following
example.

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

Chapter 13
Using the inputListOfValues Component

13-13

What You May Need to Know About Dynamically Creating Auto
Suggest Behavior for LOV Components

When you create an LOV dynamically using af:query, you cannot add
AutoSuggestBehavior to the dynamically created LOV component. To achieve this,
you need to first create the auto suggest behavior dynamically, configure it, and then
add the dynamically created auto suggest behavior to the LOV component that is
dynamically created. You can use the af:query component to create the behavior and
to attach it to the dynamically created LOV component.

To create an auto suggest behavior, use the AutoSuggestBehaviorTag behaviorTag
= new AutoSuggestBehaviorTag() in the af:query component.

To configure the properties of the dynamically created auto suggest behavior, use the
AutoSuggestBehaviorConfig abstract class, which provides an instance that has all
the configurations of AutoSuggestBehavior. The AttributeDescriptor API of
af:query has a getAutoSuggestBehaviorConfig method that has the
AutoSuggestBehavior properties. The query component invokes the
AttributeDescriptor API to read the properties and set it on the
AutoSuggestBehaviorTag instance that you created. To get the properties from
AutoSuggestBehavior, use the following code:

AutoSuggestBehaviorConfig config =
attribeDescriptorInstance.getAutoSuggestBehaviorConfig();
behaviorTag.setMinChars(config.getMinChars());
behaviorTag.setSuggestItems(config.getSuggestItems());

To add the dynamically created behavior to the LOV component, use the following
code:

FacesBean bean = component.getFacesBean();
PropertyKey key = bean.getType().findKey("clientListeners");
ClientListenerSet cls = (ClientListenerSet) bean.getProperty(key);
if (cls == null)
 cls = new ClientListenerSet();
behaviorTag.updateClientListenerSet(component, cls);

What You May Need to Know About Skinning the Search and Select
Dialogs in the LOV Components

By default, the search and select dialogs that the InputComboboxListOfValues and
InputListOfValues components can be resized by end users when they render. You
can disable the end user's ability to resize these dialogs by setting the value of the -
tr-stretch-search-dialog selector key to false in your application's skin file, as
shown in the following example. The default value of the -tr-stretch-search-dialog
selector key is true. For more information about skinning, see the skinning chapter.

af|inputComboboxListOfValues{
 -tr-stretch-search-dialog: false;
}
af|inputListOfValues{
 -tr-stretch-search-dialog: false;
}

Chapter 13
Using the inputListOfValues Component

13-14

Using the InputComboboxListOfValues Component
Using the inputComboboxListOfValues component you can select from a list of values
to populate the LOV field on a page. The component also allows you to add a search
link at the bottom of the populated list dropdown panel to launch the Search and
Select dialog.

The inputComboboxListOfValues component allows a user to select a value from a
dropdown list and populate the LOV field, and possibly other fields, on a page, similar
to the inputListOfValues component. However, it also allows users to view the
values in the list either as a complete list, or by most recently viewed. You can also
configure the component to perform a search in a popup dialog, as long as you have
implemented the query APIs, as documented in Creating the ListOfValues Data Model.

For information about skinning and the Search and Select dialog sizing, see What You
May Need to Know About Skinning the Search and Select Dialogs in the LOV
Components.

How to Use the InputComboboxListOfValues Component
Before you begin:

It may be helpful to have an understanding of the inputComboboxListOfValues
component. See Using the InputComboboxListOfValues Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for List-of-Values Components.

To add an inputComboboxListOfValues component:

1. In the Components window, from the Text and Selection panel, drag an Input
Combobox List Of Values and drop it onto the page.

2. In the Properties window, expand the Common section and set the following
attributes:

• model: Enter an EL expression that resolves to your ListOfValuesModel
implementation, as created in How to Create the ListOfValues Data Model.

• value: Enter an EL expression that resolves to the attribute values used to
populate the list, as created in How to Create the ListOfValues Data Model.

3. Expand the Appearance section and set the following attribute values:

• popupTitle: Specify the title of the Search and Select popup dialog.

• searchDesc: Enter text to display as a mouseover tip for the component.

• Placeholder: Specify the text that appears in the
inputComboboxListOfValues component if the component is empty and does
not have focus. When the component gets focus, or has a value, then the
placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
inputComboboxListOfValues component.

Chapter 13
Using the InputComboboxListOfValues Component

13-15

Note:

The placeholder value will only work on browsers that fully support
HTML5.

The rest of the attributes in this section can be populated in the same manner as
with any other input component. See Using the inputText Component.

4. Expand the Behavior section and set the following attribute values:

• autoSubmit: Set to true if you want the component to automatically submit
the enclosing form when an appropriate action takes place (a click, text
change, and so on). This will allow the auto complete feature to work.

• createPopupId: If you have implemented a popup dialog used to create a new
object in the list, specify the ID of that popup component. Doing so will display
a toolbar component above the table that contains a button component
bound to the dialog you defined. If you have added a dialog to the popup, then
it will intelligently decide when to refresh the table. If you have not added a
dialog to the popup, then the table will always be refreshed.

• launchPopupListener: Enter an EL expression that resolves to a
launchPopupListener handler that you implement to provide additional
functionality when the popup dialog is opened.

• returnPopupListener: Enter an EL expression that resolves to a
returnPopupListener handler that you implement to provide additional
functionality when the value is returned.

• Usage: Specify how the inputComboboxListOfValues component will be
rendered in HTML 5 browser. The valid values are auto, text, and search.
Default is auto.

If the usage type is search, the inputComboboxListOfValues component will
render as an HTML 5 search input type. Some HTML 5 browsers may add a
Cancel icon that can be used to clear the search text.

The rest of the attributes in this section can be populated in the same manner as
with any other input component. See Using the inputText Component.

5. If you want to control when the contents of the dropdown are delivered, expand
the Advanced section, and set the contentDelivery attribute to one of the
following:

• immediate: All undisclosed content is sent when the dropdown list is
disclosed. The LaunchPopupEvent will not be queued.

• lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory. The
LaunchPopupEvent will be queued only the first time the dropdown displays.

• lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed. The LaunchPopupEvent will
be queued while displaying the dropdown panel. This is the default.

6. If you are using a launchPopupListener, you can use the getPopupType() method
of the LaunchPopupEvent class to differentiate the source of the event.
getPopupType() returns DROPDOWN_LIST if the event is a result of the launch of the

Chapter 13
Using the InputComboboxListOfValues Component

13-16

LOV Search and Select dialog, and SEARCH_DIALOG if the event is the result of the
user clicking the Search button in the dialog.

7. If you want users to be able to create a new item, create a popup dialog with the
ID given in Step 5. See Using Popup Dialogs, Menus, and Windows.

8. In the Components window, from the Operations panel, in the Behavior group,
drag an Auto Suggest Behavior and drop it as child to the
inputComboboxListOfValues component.

If you add auto suggest behavior, you must not set the immediate property to
true. Setting immediate to true will cause validation to occur in the Apply Request
Values phase and any validation errors may suppress the displaying of the
suggestion list.

9. In the Properties window, for each of the auto-suggest attributes, enter the:

• EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the
suggestItems. The method signature should be of the form
List<javax.model.SelectItem>
suggestItems(javax.faces.context.FacesContext,
oracle.adf.view.rich.model.AutoSuggestUIHints)

• EL expression that resolves to the smartList method. The method should
return List<javax.model.SelectItem> of the smart list items.

• Number of items to be displayed in the auto-suggest list. Enter -1 to display
the complete list.

If you are implementing this method in a managed bean, the JSF page entry
should have the format shown in the following example.

<af:inputComboboxListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputComboboxListOfValues>

If the component is being used with a data model such as ADF Model, the
suggestItem method should be provided by the default implementation.

10. If you are not using the component with ADF Model, create the suggestItems
method to process and display the list:

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

Using the InputSearch Component
Using the ADF inputSearch component you can filter from a list of values to search
and highlight the matched suggestion. You must use the ADF inputSearch component
with REST resource and inputSearch supports tag attributes to understand REST
data.

The inputSearch component performs filtering and highlights the matched
suggestions on the client. This component fetches the LOV list data from the REST
resource call. For better performance, it is recommended to use

Chapter 13
Using the InputSearch Component

13-17

the inputSearch component with a REST resource that provides around 5000 rows. If
the REST response returns more than 5000 rows or beyond the configured limit, the
first 5000 rows are displayed. The inputSearch component performs filtering as
specified on the component using the filterAttributes and the filter string is case-
insensitive. This component performs search across all attributes that supports the
search criteria contains and startsWith. By default, the display of suggestions is
done using the standard template. You can customize the display of suggestions using
clientside templates. Figure 13-8 displays the sample standard template that shows
the filtering across all attributes and highlights the matched suggestion.

Figure 13-8 Filters Across All Attributes and Matches Suggestions with
Highlighting

The performance of the component is dependent on the appropriate caching strategy
that you use while developing a web page. The inputSearch component uses REST
services to fetch the suggestions. The caching mechanism that you can use is the
default HTTP caching supported by browsers. You can select an appropriate caching
strategy for the REST resource. The inputSearch component will be able to parse the
response if the REST service adheres to the REST format. The REST response
should be in JSON format. A sample REST response is given below, which was used
to generate inputSearch list as displayed in Figure 13-8, where the values of specified
attributes display in the component.

[{
 "id": 2930,
 "dateOfBirth": "Jan 12, 1991",
 "deptName": "Accounting",
 "tags": "Excel, ",
 "email": "Abe.Chamberlain@acme.com",
 "hireDate": "May 16, 2004",

Chapter 13
Using the InputSearch Component

13-18

 "profileKey": "19_M.jpg",
 "lName": "Chamberlain",
 "deptLocation": "Bombay, India",
 "genderCode": "M",
 "fName": "Abe",
 "jobTitle": "Contractor"
 }, {
 "id": 4150,
 "dateOfBirth": "Aug 26, 1982",
 "deptName": "Customer Support",
 "tags": "negotiator, filing, ",
 "email": "Abe.Easter@acme.com",
 "hireDate": "Aug 23, 2000",
 "profileKey": "7_M.jpg",
 "lName": "Easter",
 "deptLocation": "New York, USA",
 "genderCode": "M",
 "fName": "Abe",
 "jobTitle": "Contractor"
 },
 ...

You can customize inputSearch by modifying the source code of the .jspx page. The
following customizations are available for the inputSearch component.

• The inputSearch component understands the REST data with tag attributes. The
data that is to be filtered and displayed should be specified in the tag attributes.
You can specify the values from the REST response data for the tag attributes.
See What You May Need to Know About InputSearch Component Tags and REST
Data.

• The inputSearch component fetches the LOV list data from the REST resource.
Therefore, you must specify the REST resource for af:inputSearch component,
which is the REST endpoint URL. You can use the searchSection tag to specify
the REST resource path.

<af:inputSearch id="iSearch1"
...
 <af:searchSection dataUrl="/#{request.contextPath}/rest/employees" />
</af:inputSearch>

The inputSearch component does client filtering of the suggestions if the
complete suggestions list is sent to the client on a simple request to the dataUrl. If
the results set is paginated with the response having hasMore property set to true,
then the component delegates the filtering to the REST service. For the server
filtering, the searchSection supports an attribute named filterParameters that
takes a JS callback name. The JS method is invoked while making the REST calls
for server filtering and the callback returns the appropriate query parameters for
the REST URL to perform filtering on the REST service. See What You May Need
to Know About SearchSection Attributes.

• By default, the inputSearch component suggestions are displayed in list format.
You can customize the display of inputSearch suggestions either as a list or table.
You can use the contentMode facet to customize the display.

<af:inputSearch contentMode="table/list" ... >
 ...

Figure 13-9 and Figure 13-10 display the default List and Table display modes.

Chapter 13
Using the InputSearch Component

13-19

Figure 13-9 Default List Display

Figure 13-10 Default Table Display

• The inputSearch component supports clientside template to customize the
presentation of suggestions. See How to Customize InputSearch Component
Display Modes.

• You can include other attributes to customize the display, such as short
descriptions, selection converter, and auto submit for inputSearch. See What You
May Need to Know About InputSearch Attributes.

• You can build and configure a list of preferred suggestions and manage this
suggestion list on a client by using the af:suggestionSection tag within the
af:inputSearch component. By default, af:suggestionsSection based list is
shared across inputSearch components which are based on same REST URL.
You can make them private to the inputSearch component by setting the
cacheKeyGenerator attribute value to privateList. See How to Set Attributes of
Suggestion Section.

<af:inputSearch label="Label"
 valueAttribute="id" ...>
 <af:searchSection type="default" dataUrl="/rest/employees" />
 <af:suggestionsSection />
</af:inputSearch>

When REST calls are made, the inputSearch component sets the Accept header
to application/json. The JSON document should have a root property labeled
items and its value should be an array. If an items property is not available, the
first root property for which the value is an array is chosen as the list of
suggestions. You can set the attributes in the suggestionSection to customize the

Chapter 13
Using the InputSearch Component

13-20

sharing and display of suggestion list. See How to Set Attributes of Suggestion
Section.

• The inputSearch component supports dependency-based filtering on the
clientside. See How to Specify Dependency-Based Filtering on InputSearch
Components.

How to Use the InputSearch Component
You customize the inputSearch component by modifying the source code of the .jspx
page. You can modify the tag attributes, modify the REST url, customize the display
mode, or customize the suggestion section. You can also include clientside template
suggestions and dependency-based filtering by modifying the source code. All the
customizations are done by modifying the source code.

Before you begin:

• Ensure that the RESTful web service is running when running the .jspx page that
contains the af:inputSearch component.

• See Using the InputSearch Component to understand the inputSearch
component.

To customize the inputSearch to display data in tabular format:

1. In the .jspx page that contains the af:inputSearch LOV component, click the
Source tab to view the source code.

2. Modify the label attribute to specify a label for the component.

label="Select a person from the list (Filter by name): "

See Figure 13-11 to view the label that is displayed in the output.

3. Specify the value for valueAttribute (id), displayAttributes (fName lName),
and filterAttributes (fName lName jobTitle) to filter by name and job title.

valueAttribute="id"
displayAttributes="fName lName"
filterAttributes="fName lName jobTitle"

See What You May Need to Know About InputSearch Component Tags and REST
Data.

4. Optionally, customize the display of the inputSearch component to display as a
table by using the contentMode facet.

contentMode="table">

See How to Customize InputSearch Component Display Modes.

5. Add a searchSection component and specify the REST endpoint URL in
searchSection.

<af:inputSearch ...
 <af:searchSection type="default"
 dataUrl="/rest/employees?cache=etag&limit=5000" />
</af:inputSearch>

6. Optionally, include the suggestionSection tag to fetch the suggestion list using
the REST data. The following code uses the cacheKeyGenerator attribute to return

Chapter 13
Using the InputSearch Component

13-21

the clientId of the inputSearch component to maintain the suggestion list as
private on the inputSearch component.

<af:suggestionsSection dontCache="tags1" displayCount="15"
cacheKeyGenerator="privateList"/>

See Configuring Suggestion List and How to Set Attributes of Suggestion Section.

The following code example shows the complete code as detailed in the above tasks,
followed by the sample template as shown in Figure 13-11.

<af:inputSearch id="iSearch1"
 label="Select a person from the list (Filter by name): "
 valueAttribute="id"
 displayAttributes="fName lName"
 filterAttributes="fName lName jobTitle tags"
 selectionConverter="#{inputSearchDemo.selectionConverter}"
 autoSubmit="true"
 contentMode="table">
 <f:validator validatorId="oracle.adfdemo.InputSearchDemoValidator" />
 <af:searchSection type="default"
 dataUrl="/#{request.contextPath}/rest/employees?
cache=etag&limit=5000" />
 <af:suggestionsSection dontCache="tags1" displayCount="15"
cacheKeyGenerator="privateList"/>
 <f:facet name="contentStamp">
 <af:sanitized >
 <td>{{fName}} {{lName}}</td>
 <td>{{jobTitle}}</td>
 <td>{{email}}</td>
 <td>{{tags}}</td>
 </af:sanitized>
 </f:facet>
</af:inputSearch>

Figure 13-11 Sample Output of Modified Code

What You May Need to Know About InputSearch Component Tags
and REST Data

The inputSearch component supports three tag attributes to understand the REST
data. The following example shows the sample tag attributes for the inputSearch
component:

<af:inputSearch id="iSearch1"
 valueAttribute="id"
 displayAttributes="fName lName id"

Chapter 13
Using the InputSearch Component

13-22

 filterAttributes="fName lName jobTitle tags">
</af:inputSearch>

• valueAttribute - specify a value that is unique on which the component is
defined. In the REST response data sample shown above, the id attribute
uniquely identifies the suggestion object and hence given as the input for
valueAttribute.

• displayAttributes - specify a collection of item properties from the REST
response data that is to be displayed in the input field on selection. The value to
be displayed in the input field is a combination of fName, lName, and id. Therefore,
these fields are specified in the displayAttributes. If you do not specify a value,
this attribute takes the value of valueAttribute, by default.

• filterAttributes - specify a collection of item properties from the REST
response data, based on which the data is filtered and the values displayed in the
suggestions popup. The value to be displayed should be filtered on fName, lName,
and jobTitle. Therefore, these fields are specified in the filterAttributes. If not
specified, then it takes the value of displayAttributes.
The inputSearch component performs filtering and highlights the matched
suggestions on the client as in Figure 13-8.

What You May Need to Know About InputSearch Attributes
You can customize the filtering and display of suggestions by including attributes in
inputSearch source code. Table 13-2 provides the list of attributes that you can use in
the inputSearch component.

Chapter 13
Using the InputSearch Component

13-23

Table 13-2 Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

accessKey Char Yes A character used to gain quick access to the form
element specified by the for if set, or to this
component itself, if it is a non-simple form element. If
the same access key appears in multiple locations in
the same page of output, the rendering user agent will
cycle among the elements accessed by the similar
keys.

This attribute is sometimes referred to as the
mnemonic.

Note:

The accessKey is
triggered by browser-
specific and platform-
specific modifier keys. It
even has browser-
specific meaning. For
example, Internet
Explorer will set focus
when you press Alt
+accessKey. Firefox
sets focus on some
operating systems when
you press Alt+Shift
+accessKey. Firefox on
other operating systems
sets focus when you
press Ctrl
+accessKey. Refer
your browser
documentation for how it
treats access keys.

attributeCha
ngeListener

javax.el.Me
thodExpres
sion

Only EL A method reference to an attribute change listener.
Attribute change events are not delivered for any
programmatic change to a property. They are only
delivered when a renderer changes a property without
the application's specific request. An example of an
attribute change events might include the width of a
column that supported clientside resizing.

autoSubmit Boolean Yes When set to True on a form element, the component
will automatically submit when an appropriate action
such as, a click, text change takes place. Partial
submit like autoSubmit and any other components
with partialTriggers pointing to this component is
also submitted and re-rendered.

The default value is False.

Chapter 13
Using the InputSearch Component

13-24

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

binding oracle.adf.v
iew.rich.co
mponent.ri
ch.input.Ri
chInputSea
rch

Only EL An EL reference that will store the component
instance on a bean. This can be used to give
programmatic access to a component from a backing
bean, or to move creation of the component to a
backing bean.

changed Boolean Yes When set to true, the changed indicator icon will be
displayed on the component.

The default value is False.

changedDesc String Yes The text commonly used by user agents to display
tool tip text on the changed indicator icon. Default
value is Changed. The behavior of the tool tip is
controlled by the user agent. For example, Firefox 2
truncates long tool tips.

clientCompon
ent

Boolean Yes Specifies if a clientside component is generated or
not. A component may be generated whether or not
this flag is set, but if client Javascript requires the
component object, this must be set to true to
guarantee the component's presence. Client
component objects that are generated today, by
default, may not be present in the future. Setting this
flag is the only way to guarantee a component's
presence, and clients cannot rely on implicit behavior.
However, there may be an impact on performance
when you set this flag, therefore, you should avoid
turning on client components unless absolutely
necessary. For the components outputText and
outputFormatted, setting the clientComponent to
true will render id attribute for the HTML document
object model. This ID attribute can alternatively be
generated by setting
oracle.adf.view.rich.SUPPRESS_IDS to auto in
web.xml.

The default value is False.

columns int Yes The size of the text control specified by the number of
characters shown. The number of columns is
estimated based on the default font size of the
browser.

contentMode oracle.adf.v
iew.rich.co
mponent.ri
ch.input.Ri
chInputSea
rch.Content
Mode

Yes Indicates the rendering mode of contentStamp facet.
Valid values are list and table. For programmatic
usage, use the enumerated constants from
RichInputSearch.ContentMode.

The default value is List.

Chapter 13
Using the InputSearch Component

13-25

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

contentStyle String Yes The style of the content piece of the component. You
can style width by setting this attribute like width:
100px. Because of browser CSS precedence rules,
CSS rendered on a DOM element takes precedence
over external style sheets like the skin file. Therefore
skins will not be able to override what you set on this
attribute.

converter javax.faces
.convert.Co
nverter

Yes A converter object

criteria oracle.adf.v
iew.rich.co
mponent.ri
ch.input.Ri
chInputSea
rch.Criteria

Yes Indicates the search criteria. Valid Values are
startsWith, contains, and auto. For
programmatic usage, use the enumerated constants
from RichInputSearch.Criteria. that displays
startsWith matches before displayingcontains
matches in the suggestions panel.

The default value is auto, which takes contains
search criteria.

customizatio
nId

String Yes This attribute is deprecated. The id attribute should be
used when applying persistent customization. This
attribute will be removed in the next release.

disabled Boolean Yes Specifies whether the element is enabled or disabled.
Unlike a readonly component, a disabled
component is unable to receive focus.

If the component has the potential to have a scrollbar,
and you want the user to be able to scroll through the
component's text or values, use the readOnly
attribute, not the disabled attribute.

The default value is False.

displayAttri
butes

java.util.Lis
t

Yes The collection item properties from the REST
response data whose values represent the selection.
This attribute decides the value to be displayed in the
input field on selection. If displayAttributes is not
specified, it defaults to valueAttribute.

editable String Yes The editable look and feel to use for input
components. You can use the following values:

• always - the input component always look
editable

• onAccess - the input will only look editable when
accessed (hover, focus)

• inherit - indicates to use the component
parent's setting. None of the ancestor
components define always or onAccess, then
inherit will be used, which is the default value.

.

Chapter 13
Using the InputSearch Component

13-26

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

filter String Yes This attribute holds the name of the JS callback that
would perform Array.filter operation on the
collection returned from the REST response. The
component instance will be set as context during JS
callback invocation. The row object passed to the
callback will have the structure below:
• data

: The raw row data
• index: The index for the row
• key: The key value for the row

See Dependency Based Filtering.

filterAttrib
utes

String Yes The collection item properties from the REST
response data to be used for filtering suggestions. If
filterAttributes is not specified, it defaults to
displayAttributes. Where contentStamp facet is
not provided, the values displayed in the suggestions
popup is also decided by this attribute.

Note:

If you specify an
attribute that is not
displayed in the
suggestions panel as a
filterable attribute, it
could be confusing for
the end user to see the
suggestions being
filtered based on such
an attribute.

helpTopicId String Yes The id used to look up a topic in a helpProvider. Help
information should be provided using the
helpTopicId.

It is preferred to use helpTopicId instead of
shortDesc to provide help information.

Chapter 13
Using the InputSearch Component

13-27

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

id String No The identifier for the component. Every component
may be named by a component identifier that must
conform to the following rules:
• They must start with a letter as defined by the

Character.isLetter() method or
underscore (_).

• Subsequent characters must be letters as defined
by the Character.isLetter() method, digits
as defined by the Character.isDigit()
method, dashes (-), or underscores (_). To
minimize the size of responses generated by
JavaServer Faces, it is recommended that
component identifiers be as short as possible. If a
component has been given an identifier, it must
be unique in the namespace of the closest
ancestor to that component that is a
NamingContainer.

immediate Boolean Yes Specifies whether the value is converted and
validated immediately in the Apply Request Values
phase, or is handled in the Process Validators
phase. By default, the values are converted and
validated together in the Process Validators phase.
However, if you need access to the value of a
component during Apply Request Values, for
example, if you need to get the value from an
actionListener on an immediate command button,
then set this to immediate.

The default value is False.

inlineStyle Strin Yes The CSS styles to use for this component and
intended for basic style changes. The inlineStyle
is a set of CSS styles that are applied to the root DOM
element of the component. Because of browser CSS
precedence rules, CSS rendered on a DOM element
takes precedence over external style sheets like the
skin file. Therefore, skins will not be able to override
what you set on this attribute.

If the inlineStyle CSS properties do not affect the
DOM element, then create a skin and use the
skinning keys like ::label or ::icon-style to target a
particular DOM elements.

Chapter 13
Using the InputSearch Component

13-28

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

label String Yes The label of the component. If you want the label to
appear above the control, use a panelFormLayout.

For all input components and compound components
that have an input component part for which a label
can be assigned, the component requires a label. This
can be accomplished in one of the following ways:
• a label value on the component
• a labelAndAccessKey value on the component
• wrapping the component with an

af:panelLabelAndMessage component that
has a label or labelAndAccessKey value and a
for value specifying the component id

• having a corresponding af:outputLabel
component that has a value or
valueAndAccessKey value and a for value
specifying the component id

Note:

Any one of these
approaches is sufficient,
though label or
labelAndAccessKey is
the most convenient and
should be used where
possible

All methods may not be available for all the
components.

labelAndAcce
ssKey

String Yes An attribute that will simultaneously set both the
label and accessKey attributes from a single value,
using conventional ampersand notation.

labelStyle String Yes The CSS styles to use for the label of this component.
The labelStyle is a set of CSS styles that are
applied to the label DOM element of the component.
This allows a label to be styled without requiring a
new skin definition.

Chapter 13
Using the InputSearch Component

13-29

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

partialTrigg
ers

String[] Yes The IDs of the components that should trigger a
partial update. This component listens on the trigger
components. If one of the trigger components
receives an event that causes it to update in some
way, this component will request to be updated too.

Identifiers are relative to the source component, and
must account for NamingContainers. If your
component is already inside of a naming container,
you can use a single colon to start the search from the
root of the page, or multiple colons to move up
through the NamingContainers:
• : starts the search from root of the page
• :: comes out of the component's naming

container and begins the search from there
• ::: comes out of two naming containers and

begins the search from there

placeholder String Yes Text to be displayed in the input component when a
value is not present.

Placeholder text is meant to provide an example,
and does not act as a label for the field. Components
that have placeholders set still require labels.

protectionKe
y

String Yes Protection key for this component.

readOnly Boolean Yes Specifies whether the control is displayed as an
editable field or as an output-style text control. Unlike
a disabled component, a readOnly component is
able to receive focus.

The default value is False.

rendered Boolean Yes Specifies if the component is rendered. When set to
false, no output will be delivered for this component.
The component is not rendered any way and is not
visible on the client.

If you want to change a component's rendered
attribute from false to true using partial page
rendering, set the partialTrigger attribute of its
parent component so the parent refreshes and in turn
will render this component.

The default value is True.

required Boolean Yes Specifies if a non-null, non-empty value must be
entered. If false, required validation logic is not
executed when the value is null or empty.

The default value is False.

requiredMess
ageDetail

String Yes Specifies the message to be displayed, if required
validation fails.

Chapter 13
Using the InputSearch Component

13-30

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

rowCount int Yes Max number of rows shown in the suggestion panel
before scrolling. If -1 is the value, the row count is
determined by the ADF skin property -tr-row-
count.

The default value is -1.

selectionCon
verter

javax.el.Me
thodExpres
sion

Only EL Specifies a method reference to convert the members
of the Map object returned by getSelection()
method. The method should convert both the key and
value returned by getSelection() method to the
appropriate Java types.

shortDesc String Yes Specifies the short description of the component. The
shortDesc text may be used in two different ways,
depending on the component.

For components with images, the shortDesc is often
used to render an HTML alt attribute for the image.
Refer helpTopicId for more information.

shortDesc is also commonly used to render an
HTML title attribute, which is used by user agents
to display tooltip help text.

The behavior for the tooltip is controlled by the
user agent. For example, Firefox 2 truncates long
tooltips.

For form components, the shortDesc is displayed in
a note window.

For components that support the helpTopicId
attribute and are not using the shortDesc as image
alt text, it is recommended that you use helpTopicId
instead of shortDesc as it is more flexible and
provides more accessible descriptive text than the use
of the title attribute.

showRequired Boolean Yes Specifies if the associated control displays a visual
indication of required user input. If a required attribute
is also present, both the required attribute and the
showRequired attribute must be false so that the
visual indication is not displayed.

If you have a field that is initially empty and is required
only if some other field on the page is touched, then
you can use the showRequired attribute.

The default value is False.

Chapter 13
Using the InputSearch Component

13-31

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

simple Boolean Yes Controls if a component provides label support or not.
If the value is set to True, the component does not
display the label. The label, labelAndAccessKey,
accessKey, showRequired, and help facets are
ignored and displays a simpler layout.

You can use this attribute when you use a component
repeatedly used as in table, where a label is not
required.

The default value is False.

styleClass String Yes Specifies a CSS style class to use for this component.
The style class can be defined in a jspx page or in a
skinning CSS file. For example you can use one of
the public style classes, AFInstructionText.

unsecure java.util.Set Yes A whitespace separated list of attributes whose values
can be set only on the server, but should be able to
set on the client. Currently, this is supported only for
the disabled attribute.

Note:

To set a property on the
client, you must use the
setProperty('attrib
ute', newValue)
method, and not the
setXXXAttribute(new
Value) method.

For example, if you have unsecure=disabled, then
on the client you can use the
setProperty('disabled', false), method. The
setDisabled(false) does not work and provides a
javascript error that setDisabled is not a function.

usage String Yes The usage attribute will set the type of the input to
allow for different html types, such as search. The
valid values are auto, text, and search.

The default value is auto which replicates text.

validator javax.faces
.el.Method
Binding

Only EL Specifies a method reference to a validator method.

value Object Yes Specifies the value of the component. If the EL
binding for the value, points to a bean property with a
getter but no setter, and if this is an editable
component, then the component is rendered in a
read-only mode.

Chapter 13
Using the InputSearch Component

13-32

Table 13-2 (Cont.) Attributes Supported by inputSearch Component

Name Type Support
s EL

Description

valueAttribu
te

String Yes Specifies the collection item property in REST
response data on which the component is defined on.
The values of this attribute should be unique.

For example, if the component is used for displaying
and filtering employee details, Employee Number is a
good candidate to be chosen as value attribute.

valueChangeL
istener

javax.faces
.el.Method
Binding

Only EL Specifies a method reference to a value change
listener.

visible Boolean Yes Specifies the visibility of the component. If set to false,
the component is hidden on the client. Unlike the
rendered attribute, this does not affect the lifecycle
on the server.

The component may have its bindings executed, and
the visibility of the component can be toggled on and
off on the client, or toggled with PPR.

When rendered is false, the component is not any
way be rendered, and cannot be made visible on the
client. In most cases, use the rendered property
instead of the visible property.

This attribute is not supported on the following
renderkits: org.apache.myfaces.trinidad.core.

The default value is True.

What You May Need to Know About SearchSection Attributes
The af:searchSection component is basically used to specify the REST endpoint
URL. The af:searchSection supports other attributes that you can use to customize
the search section, such as search type, search id and so on. The following example
shows the code sample of af:searchSection:

<af:inputSearch label="Label" valueAttribute="id">
 <af:searchSection type="default"
 dataUrl="/rest/employees" />
</af:inputSearch>

Table 13-3 lists the attributes that you can use in the af:searchSection.

Chapter 13
Using the InputSearch Component

13-33

Table 13-3 Attributes that You can Use with searchSection

Attribute
Name

Type Supports
EL?

Description

attribut
eChangeL
istener

javax.el.M
ethodExpr
ession

Only EL A method reference to an attribute change listener.
Attribute change events are not delivered for any
programmatic change to a property. They are only
delivered when a renderer changes a property without the
application's specific request. An example of an attribute
change events might include the width of a column that
supported clientside resizing.

binding oracle.adf
.view.rich.
compone
nt.

rich.data.
RichSearc
hSectio

Only EL An EL reference that will store the component instance on
a bean. This can be used to give programmatic access to
a component from a backing bean, or to move creation of
the component to a backing bean.

dataUrl String Yes REST service endpoint URI that provides a list of
suggestions for the search section. This attribute supports
the following types of URIs:

absolute - an absolute path. For example, http://
samplerest.com/rest/Emp

context relative - a path relatively based on the web
application's context root. For example, /rest/Emp

server relative - a path relatively based on the web server
by application name. For example, //RESTWebService-
context-root/rest/Emp

The REST response should strictly be in JSON format.
The component will set the Accept header to application/
json for the REST calls made.

The JSON document should have a root property labeled
items and its value should be an array. If items property is
not available, the first root property whose value is an
array is chosen as the list of suggestions.

Note:

If the REST endpoint is on a
different origin, CORS needs
to be setup on the endpoint.

Chapter 13
Using the InputSearch Component

13-34

Table 13-3 (Cont.) Attributes that You can Use with searchSection

Attribute
Name

Type Supports
EL?

Description

filterPa
rameters

String YES Attribute to set the parameters relevant for filtering of the
suggestions on the REST service. Server filtering is
attempted when the collection size is beyond the
configured fetch limit set on the REST service and the
REST response has hasMore property set. Otherwise the
filtering is completely done on the client and this attribute is
not invoked.

Note:

When filtering is done on the
server side, the dependency
based filtering also happens
on the server and not on the
client.

When the master collection
size is beyond the configured
fetch limit, a converter needs
to be attached to the
inputSearch component to
derive the display value from
the displayAttributes.

This attribute holds the name of the JS callback and JS
callback is invoked when a REST call is being made in
response to user action of filtering. The searchSection
client component instance will be set as context during JS
callback invocation. A request and context objects will be
passed as parameters to the function. The callback returns
the configured passed in request object.

The request object has the following structure:

• queryString: The string set on this property will be
appended as a query parameter to the REST URL
while making the HTTP request call. If the
queryString has a query parameter that is already
present in the base URL, such a query parameter on
the base URL will be replaced with the new value in
queryString.

• method: The request method. For example, GET,
POST. Default is GET

• body: The request body for POST requests
The context object has the following structure:

• criteria:
AdfRichInputSearch.CRITERIA_STARTS_WITH or
AdfRichInputSearch.CRITERIA_CONTAINS, the
search that needs to be performed

• searchTerms: Array of search terms
• filterAttributes: Array of attributes across which the

search needs to be filtered

Chapter 13
Using the InputSearch Component

13-35

Table 13-3 (Cont.) Attributes that You can Use with searchSection

Attribute
Name

Type Supports
EL?

Description

id String No The identifier for the component. Every component may be
named by a component identifier that must conform to the
following rules:

They must start with a letter (as defined by the
Character.isLetter() method) or underscore (_).

Subsequent characters must be letters (as defined by the
Character.isLetter() method), digits as defined by the
Character.isDigit() method, dashes (-), or underscores (_).
To minimize the size of responses generated by Java
Server Faces, it is recommended that component
identifiers be as short as possible. If a component has
been given an identifier, it must be unique in the
namespace of the closest ancestor to that component that
is a NamingContainer (if any).

rendered Boolean Yes The value is set to True, by default. This attribute specifies
if the component is rendered or not. When set to false, no
output will be delivered for this component (the component
will not in any way be rendered, and cannot be made
visible on the client). If you want to change a component's
rendered attribute from false to true using partial page
rendering, set the partialTrigger attribute of its parent
component so the parent refreshes and in turn will render
this component.

type String Yes The type of the search section. Currently, only default
searchSection is supported.

How to Customize InputSearch Component Display Modes
You can customize the display of suggestions on the client by using the client template
feature supported by the inputSearch component. The rendering of the component
and submission of value happens through the JSF lifecycle. The template system
supported by the component is called Mustache, a web template system that may be
embedded into HTML and relies on a template engine to expand the template at
runtime. See Mustache Manual. You can include the value from the REST response
as Mustache tags within the af:sanitized tag of jspx page. You can use the
contentStamp and contentHeader facets in the .jspx page source code to provide the
template. Mustache tags are evaluated for each suggestion object and the expanded
template is rendered as a suggestion item in the suggestions panel.

Basically, the property names in the JavaScript suggestion object are to be referenced
as mustache tags in the template. The component would evaluate the template
replacing the mustache tags with the values in the suggestion object. Depending on
the contentMode attribute, the component evaluates the mustache expressions and
dumps it as is in the HTML either inside a tag or a <tr> tag to display the
suggestion items.

The following example shows the sample code for tabular display without any header,
followed by the sample template as shown in Figure 13-12.

Chapter 13
Using the InputSearch Component

13-36

https://mustache.github.io/mustache.5.html

<af:inputSearch contentMode="table" ... >
 ...
 <f:facet name="contentStamp">
 <af:sanitized >
 <td>{{fName}} {{lName}}</td>
 <td>{{jobTitle}}</td>
 <td>{{email}}</td>
 <td>{{tags}}</td>
 </af:sanitized>
 </f:facet>
</af:inputSearch>

Figure 13-12 Sample Tabular Display

The following example shows the sample code for tabular display with contentHeader,
followed by the sample template as shown in Figure 13-13.

<af:inputSearch contentMode="table" ... >
 ...
 <f:facet name="contentHeader">
 <af:sanitized >
 <th>Name</th>
 <th>Title</th>
 <th>Contact Email</th>
 <th>Specializations</th>
 </af:sanitized>
 </f:facet>
 <f:facet name="contentStamp">
 <af:sanitized >
 <td>{{fName}} {{lName}}</td>
 <td>{{jobTitle}}</td>
 <td>{{email}}</td>
 <td>{{tags}}</td>
 </af:sanitized>
 </f:facet>
</af:inputSearch>

Chapter 13
Using the InputSearch Component

13-37

Figure 13-13 Sample Tabular Display with Header Row

The following example shows the sample code for list display, followed by the sample
template as shown in Figure 13-14.

<af:inputSearch ... >
 ...
 <f:facet name="contentStamp">
 <af:sanitized >
 {{fName}} {{lName}}
 {{jobTitle}}

 Tags: {{tags}}
 </af:sanitized>
 </f:facet>
</af:inputSearch>

Figure 13-14 Sample List Display

The following example shows the sample code for advanced list template, followed by
the sample template as shown in Figure 13-15.

Chapter 13
Using the InputSearch Component

13-38

<af:inputSearch ... >
 ...
 <f:facet name="contentStamp">
 <af:sanitized>
 <div style="height: 68px; line-height: 18px; white-space: nowrap">
 <div style="padding: 0px; margin: 0px; width: 64px; display: inline-block;">
 <img src="../../images/people/{{profileKey}}" height="56" width="56"
 style="vertical-align: bottom; border: 2px solid #B8AE07; padding: 2px;
border-radius: 10px;"/>
 </div>
 <div style="padding-left: 10px; display: inline-block;">
 <div style="color: #4646D0;font-size: medium;">{{fName}} {{lName}}</div>
 <div>{{jobTitle}}</div>
 <div style="font-size: smaller;font-style: italic;">{{email}}</div>
 </div>
 </div>
 </af:sanitized>
 </f:facet>
</af:inputSearch>

Figure 13-15 Sample Advanced List Display

How to Add Custom Buttons to Suggestions Popup
The inputSearch component includes a facet toolbar that renders a section in the
suggestions panel, which you can use to place custom controls such as tool bar items
of your choice. Figure 13-16 displays the suggestion panel.

Chapter 13
Using the InputSearch Component

13-39

Figure 13-16 Suggestions Panel Displaying the Toolbar Facet

The following example shows the sample code for including the toolbar facet.

 <af:searchSection type="default" dataUrl="#{inputSearchDemo.dataUrl}"
partialTriggers="ctb3" />
 <f:facet name="toolbar">
 <af:toolbar id="pgl14">
 <af:group id="g1">
 <af:commandToolbarButton shortDesc="Create" icon="/images/
new_ena.png" id="ctb1">
 <af:showPopupBehavior popupId="createpopup"/>
 </af:commandToolbarButton>
 <af:commandToolbarButton icon="/images/update_ena.png"
shortDesc="Update the searchSection URL on client" id="ctb2">
 <af:clientListener type="action" method="updateSuggestionCount" />
 </af:commandToolbarButton>
 <af:commandToolbarButton icon="/images/uplevel.gif"
actionListener="#{inputSearchDemo.updateDataUrl}"
 shortDesc="Update the searchSection URL on server" id="ctb3"/>
 </af:group>
 <af:group id="g2">
 <af:commandToolbarButton shortDesc="E-mail" icon="/images/
email.gif" id="ctb4"/>
 <af:commandToolbarButton shortDesc="Snapshot" icon="/images/
snapshot.gif" id="ctb5"/>

Chapter 13
Using the InputSearch Component

13-40

 </af:group>
 </af:toolbar>
 </f:facet>

What You May Need to Know About SuggestionSection Component
The suggestionSection component creates and manages the most recently used
(MRU) suggestion lists based on the frequency and recentness of the suggestions
used. The preferred list of suggestion items is stored in the browser’s storage object.
The suggestionSection component manages a list of preferred suggestions and gets
displayed based on the various factors on the client:

• The parent inputSearch component retrieves the list managed by the
suggestionSection and displays the list in the UI.

• The inputSearch component might not display the preferred suggestion list
managed by af:suggestionSection, if the master list is small.

• The length of the master list is determined the first time the suggestion popup is
launched. Therefore, if you launch the suggestion popup without much
suggestions the first time, the inputSearch will still display the preferred
suggestion list even if the length of the suggestion list is small.

• The list managed by the suggestionSection component is a subset of the
suggestions retrieved via the REST service.

The following example shows the suggestionSection tag within theinputSearch
component:

<af:inputSearch label="Label" valueAttribute="id" ...>
 <af:searchSection type="default" dataUrl="/rest/employees" />
 <af:suggestionsSection />
</af:inputSearch>

How to Set Attributes of Suggestion Section
By default, af:suggestionsSection based list is shared across inputSearch
components which are based on same REST URL. You can use the following
attributes in the suggestionSection to customize the sharing and display of
suggestion list.

• cacheKeyGenerator Use this attribute to keep the suggestion list as private per
component or to remove the cache search parameter from the URL to be used as
localStorage key. Setting this attribute manages a list of suggestions completely
on the client.

<af:inputSearch ...>
...
 <af:suggestionsSection cacheKeyGenerator="ignoreCacheAttr"/"privateList" />
</af:inputSearch>

• displayCount Use this attribute to customize the number of items that are to be
displayed in the preferred list.

<af:inputSearch ...>
...
 <af:suggestionsSection displayCount="15" />
</af:inputSearch>

Chapter 13
Using the InputSearch Component

13-41

• dontCache Use this attribute to not to store the specified fields in the browser’s
localStorage for the REST data.

<af:inputSearch ...>
...
 <af:suggestionsSection dontCache="lName jobTitle" />
</af:inputSearch>

In this code sample, the lName and jobTitle attributes from the suggestion items
retrieved from the REST call will not be stored in the localStorage.

See What You May Need to Know About suggestionSection Attributes for other
attributes that you can use with suggestionSection tag.

You can further customize the suggestion list by including a header facet. The
suggestionSection supports only header facet that allows the child components within
af:sanitized. The following example shows the sample code for the header facet that
includes Recent Items as header in the suggestion list.

<af:inputSearch id="iSearch4"
 label="Select a person from the list (Filter by name and job title): "
 valueAttribute="id"
 displayAttributes="fName lName"
 filterAttributes="fName lName jobTitle"
 selectionConverter="#{inputSearchDemo.selectionConverter}">
 <af:searchSection type="default" dataUrl="/rest/employees?
cache=etag&limit=5000" />
 <af:suggestionsSection>
 <f:facet name="header">
 <af:sanitized>
 Recent Items <!-- The "Recent Items" text in the screenshot below is
because of this line -->
 </af:sanitized>
 </f:facet>
 </af:suggestionsSection>
</af:inputSearch>

Figure 13-17 shows the output for the above code.

Figure 13-17 Output of the header Facet in suggestionSection

What You May Need to Know About suggestionSection Attributes
Table 13-4 lists the attributes that you can use in the af:suggestionSection.

Chapter 13
Using the InputSearch Component

13-42

Table 13-4 Attributes Used with suggestionSection

Attribute
Name

Type Supports
EL?

Description

attributeC
hangeList
ener

javax.el.M
ethodExpr
ession

Only EL A method reference to an attribute change listener.
Attribute change events are not delivered for any
programmatic change to a property. They are only
delivered when a renderer changes a property without the
application's specific request. An example of an attribute
change events might include the width of a column that
supported client-side resizing.

binding oracle.adf
.view.rich.
compone
nt.
rich.data.
RichSugg
estionsSe
ction

Only EL An EL reference that will store the component instance on
a bean. This can be used to give programmatic access to
a component from a backing bean, or to move creation of
the component to a backing bean.

cacheKey
Generator

String Yes The attribute holds the name of a JS function. The return
value of this function will be used as the key for client
storage. The normalized URL of the default
searchSection is passed as a parameter to the function,
and the function's "this" keyword refers to the parent
inputSearch component instance. Sample JS method:

 function privateList(normalizedUrl)
{ // "this" refers to parent inputSearch component
return this.getClientId(); }

display
count

int Yes Maximum number of suggestions to be displayed in the UI.
The default value is 5.

dontCache java.util.s
et

Yes A set of attribute names, whose values from the row data
should not be cached on the client.

id String No The identifier for the component. Every component may be
named by a component identifier that must conform to the
following rules:

They must start with a letter (as defined by the
Character.isLetter() method) or underscore (_).

Subsequent characters must be letters (as defined by the
Character.isLetter() method), digits as defined by the
Character.isDigit() method, dashes (-), or underscores (_).
To minimize the size of responses generated by Java
Server Faces, it is recommended that component
identifiers be as short as possible. If a component has
been given an identifier, it must be unique in the
namespace of the closest ancestor to that component that
is a NamingContainer (if any).

Chapter 13
Using the InputSearch Component

13-43

Table 13-4 (Cont.) Attributes Used with suggestionSection

Attribute
Name

Type Supports
EL?

Description

rendered Boolean Yes The value is set to True, by default. This attribute specifies
if the component is rendered or not. When set to false, no
output will be delivered for this component (the component
will not in any way be rendered, and cannot be made
visible on the client). If you want to change a component's
rendered attribute from false to true using partial page
rendering, set the partialTrigger attribute of its parent
component so the parent refreshes and in turn will render
this component.

How to Specify Dependency-Based Filtering on InputSearch
Components

When you use filterAttributes in the inputSearch component the REST response
data is filtered and the values are displayed in the suggestions popup. The
inputSearch component further supports dependency-based filtering on clientside. To
further filter the suggestion list on the clientside, you can use the filter attribute that
holds the name of the JavaScript callback that would perform Array.filter operation
on the collection returned from the REST response. The component instance will be
set as context during JavaScript callback invocation.

The row object passed to the callback will have the structure below:

• data: The raw row data

• index: The index for the row

• key: The key value for the row

The following example shows the sample code snippet for dependency based filtering
that lists the Employee suggestion list based on the Department value, followed by the
sample template as shown in Figure 13-18.

<af:inputSearch label="Employee" filter="filterEmpForDept" ...>
 <af:searchSection type="default" dataUrl="/rest/employees" />
</af:inputSearch>

Sample JS:

var filterValue;
var filterKey = "deptName";
function filterEmpForDept(rowObj, collectionIndex)
{
 // var component = this;
 if (collectionIndex == 0)
 {
 // get the filterValue once for the zeroth row
 // and use the same for subsequent row filtering
 var parentComp = AdfPage.PAGE.findComponent
 ('parent component id whose value will determine the suggestions to be displayed
in inputSearch')
 var parentCompValue = parentComp.getValue();
 filterValue = parentCompValue ? parentComp.getSelectItems()

Chapter 13
Using the InputSearch Component

13-44

[parentComp.getValue()].getLabel() : null;
 }

 if (filterValue && rowObj.data[filterKey] == filterValue)
 return true;
 return false;
}

Figure 13-18 shows different Employee suggestion list based on the Department
value.

Figure 13-18 Dependency-Based Filtering in inputSearch Component

Chapter 13
Using the InputSearch Component

13-45

14
Using Query Components

This chapter describes how to use the query and quickQuery search panel
components. It describes how to configure the query component with search criteria,
how to add and delete search criteria dynamically, and how to create and personalized
saved searches. It also describe how to configure and add the quickQuery component
to the page.
This chapter includes the following sections:

• About Query Components

• Creating the Query Data Model

• Using the quickQuery Component

• Using the query Component

About Query Components
ADF Faces provides query components that allows implementation of search
functionality in your application. Users can personalize searches, save search, and
can perform a query or a quickQuery against a search criteria.

The query and quickQuery components are used to search through data sets. The
query component provides a comprehensive set of search criteria and controls, while
the quickQuery component can be used for searching on a single criterion.

The query component supports the following functionality:

• Selecting and searching against multiple search criteria

• Dynamically adding and deleting criteria items

• Selecting search operators (associated to a single criterion)

• Choosing match all or match any conjunction

• Displaying in a basic or advanced mode

• Creating saved searches

• Personalizing saved searches

By default, the advanced mode of the query component allows the user to add and
delete criteria items to the currently displayed search. However you can implement
your own QueryModel class that can hide certain features in basic mode (and expose
them only in advanced mode). For example, you might display operators only in
advanced mode or display more criteria in advanced mode than in basic mode.

Typically, the results of the query are displayed in a table or tree table, which is
identified using the resultComponentId attribute of the query component. However,
you can display the results in any other output components as well. The component
configured to display the results is automatically rerendered when a search is
performed.

14-1

Figure 14-1 shows an advanced mode query component with three search criteria.

Figure 14-1 Query Component with Three Search Criteria

You can create seeded searches, that is, searches whose criteria are already
determined and from which the user can choose, or you can allow the user to add
criterion and then save those searches. For example, Figure 14-1 shows a seeded
search for an employee. The user can enter values for the criteria on which the search
will execute. The user can also choose the operands (greater than, equals, less than)
and the conjunction (matches all or matches any, which creates either an "and" or "or"
query). The user can click the Add Fields dropdown list to add one or more criteria and
then save that search. If the application is configured to use persistence, then those
search criteria, along with the chosen operands and conjunctions, can be saved and
reaccessed using a given search name (for more information about persistence, see
Allowing User Customization on JSF Pages).

The quickQuery component is a simplified version of the query component. The user
can perform a search on any one of the searchable attributes by selecting it from a
dropdown list. Figure 14-2 shows a quickQuery component in horizontal layout.

Figure 14-2 A QuickQuery Component in Horizontal Layout

Both the query and quickQuery components use the QueryModel class to define and
execute searches. Create the associated QueryModel classes for each specific search
you want users to be able to execute.

Tip:

Instead of having to build your own QueryModel implementation, you can use
ADF Business Components, which provide the needed functionality. See
Creating ADF Databound Search Forms in Developing Fusion Web
Applications with Oracle Application Development Framework.

The QueryModel class manages QueryDescriptor objects, which define a set of
search criteria. The QueryModel class is responsible for creating, deleting, and

Chapter 14
About Query Components

14-2

updating QueryDescriptor objects. The QueryModel class also retrieves saved
searches, both those that are seeded and those that the user personalizes. For
information, refer to the Java API Reference for Oracle ADF Faces.

You must create a QueryDescriptor class for each set of search criteria items. The
QueryDescriptor class is responsible for accessing the criteria and conjunction
needed to build each seeded search. It is also responsible for dynamically adding,
deleting, or adding and deleting criteria in response to end-user's actions. The
QueryDescriptor class also provides various UI hints such as mode, auto-execute,
and so on. For information, refer to the Java API Reference for Oracle ADF Faces.
One QueryModel class can manage multiple QueryDescriptor objects.

When a user creates a new saved search, a new QueryDescriptor object is created
for that saved search. The user can perform various operations on the saved search,
such as deleting, selecting, resetting, and updating. When a search is executed or
changed, in addition to calling the appropriate QueryModel method to return the correct
QueryDescriptor object, a QueryOperationEvent event is broadcast during the Apply
Request Values phase. This event is consumed by the QueryOperationListener
handlers during the Invoke Application phase of the JSF lifecycle. The
QueryOperationEvent event takes the QueryDescriptor object as an argument and
passes it to the listener. ADF Faces provides a default implementation of the listener.
For details of what the listener does, see Table 14-2.

For example, updating a saved search would be accomplished by calling the
QueryModel's update() method. A QueryOperationEvent event is queued, and then
consumed by the QueryOperationListener handler, which performs processing to
change the model information related to the update operation.

The query operation actions that generate a QueryOperationEvent event are:

• Saving a search

• Personalizing a search

• Resetting a search

• Re-ordering a search

• Adding fields to a search

• Deleting a saved search

• Toggling between the basic and advanced mode

• Resetting a saved search

• Selecting a different saved search

• Updating a saved search

• Updating the value of a criterion that has dependent criteria

The hasDependentCriterion method of the AttributeCriterion class can be called
to check to see whether a criterion has dependents. By default, the method returns
false, but it returns true if the criterion has dependent criteria. When that criterion's
value has changed, a QueryOperationEvent is queued for the Update Model Values
JSF lifecycle phase. The model will need a listener to update the values of the
dependent criterion based on the value entered in its root criteria.

Chapter 14
About Query Components

14-3

Query Component Use Cases and Examples
The query component can be used in several different modes to accommodate the
needs of your application. It can be configured with seeded searches and provide
customization and personalization functions.The query component is a feature-rich
component that can be used to implement enterprise search functions.

You can use query and quick query components to build complex transactional search
forms. The query components are model-driven and provide many functional and
display options. The quick query component has a small footprint and provide a simple
search on one attribute. The query component has a larger footprint but provides
multiple criterion searches and other search features.

Additional Functionality for the Query Components
You may find it helpful to understand other ADF Faces features before you implement
your query components. Additionally, once you have added a query or quick query
component to your page, you may find that you need to add functionality such as
validation and accessibility. Following are links to other functionality that query
components can use.

• All query components have JavaScript client APIs that you can use to set or get
property values. See the JavaScript API Reference for Oracle ADF Faces.

• You can display tips and messages, as well as associate online help with query
components. See Displaying Tips, Messages, and Help.

• You can change appearance of the components using skins. See Customizing the
Appearance Using Styles and Skins.

• You can make your query components accessible. See Developing Accessible
ADF Faces Pages.

• Instead of entering values for attributes that take strings as values, you can use
property files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

• If your application uses ADF Model, then you can create automatically bound
search forms using data controls (whether based on ADF Business Components
or other business services). See Creating Databound Search Forms in Developing
Fusion Web Applications with Oracle Application Development Framework.

Creating the Query Data Model
An ADF query data model (QueryModel) describes a saved search. You can use a
query component if you have created a query data model or by adding additional logic
to a managed bean without creating a query data model.

Before you can use the query components, you must to create your QueryModel
classes. For information about the query data model, see the Java API Reference for
Oracle ADF Faces.

Chapter 14
Creating the Query Data Model

14-4

Tip:

You can use the quickQuery component without implementing a QueryModel
class. However, you will have to add some additional logic to a managed
bean. See How to Use a quickQuery Component Without a Model.

Query component has a refresh() method on the UIXQuery component. This method
should be called when the model definition changes and the query component need to
be refreshed (i.e., all its children removed and recreated). When a new criterion is
added to the QueryDescriptor or an existing one is removed, if the underlying model
returns a different collection of criterion objects than what the component subtree
expects, then this method should be called. QueryOperationListener, QueryListener,
and ActionListener should all call this method. The query component itself will be
flushed at the end of the Invoke Application Phase. This method is a no-op when
called during the Render Response Phase.

To better understand what your implementations must accomplish, Table 14-1 and
Table 14-2 map the functionality found in the UI component shown in Figure 14-3 with
the corresponding interface.

Figure 14-3 Query Component and Associated Popup Dialog

Chapter 14
Creating the Query Data Model

14-5

Table 14-1 shows UI artifacts rendered for the query component, the associated class,
class property, and methods used by the artifact.

Table 14-1 Query UI Artifacts and Associated Model Class Operations and
Properties

Figure
Reference

UI Artifact Class Property/Methods
Used

Comments

1 Search panel The QueryDescriptor
instance provides the items
displayed in the panel.

Based on a saved search.

2 Disclosure
icon

Opens or closes the search
panel

3 Match type
radio button

Available through the
getConjunction() method
on the
ConjunctionCriterion
class.

Displays the default conjunction
to use between search fields,
when a query is performed. If a
default is set, and it is the same
for all search fields, it appears
selected. If the search fields are
configured such that a mix of
different conjunctions must be
used between them, then a
value may not be selected on
the UI.

For example, if the All
conjunction type is used
between all the search fields,
then All appears selected. If it
is a mix of All and Any, then
none of the radio buttons
appears selected.

The Match Type will be read
only if the
conjunctionReadOnly
property is set to true. Its not
rendered at all when the
displayMode attribute is set to
simple.

4 Group of
search fields

The collection of search
fields for a
QueryDescriptor object is
represented by a
ConjunctionCriterion
object, returned by the
method
getConjunctionCriterio
n() on the
QueryDescriptor class.
The getCriterionList()
method returns a
List<Criterion> list.

Displays one or more search
fields associated with the
currently selected search.

Chapter 14
Creating the Query Data Model

14-6

Table 14-1 (Cont.) Query UI Artifacts and Associated Model Class Operations
and Properties

Figure
Reference

UI Artifact Class Property/Methods
Used

Comments

5 Search field An AttributeCriterion
class provides information
specific to a search field
instance. An
AttributeCriterion
object is an item in the
List<Criterion> list
returned by
getCriterionList()
method on the
ConjunctionCriterion
class (see #4).

An AttributeDescriptor
class provides static
information pertaining to a
search field. This is available
through the method
getAttribute(), on the
AttributeCriterion
class.

The getConverter()
method of the
AttributeDescriptor
class can be overridden to
return a converter object of
type
javax.faces.convert.Co
nverter. When defined, the
attribute value is converted
using this converter
instance. The default return
value is null.

The
hasDependentCriterion
method in the
AttributeCriterion
class returns true if the
criterion has dependents. If
the criterion has
dependents, then the
dependent criterion fields
are refreshed when the
value for this criterion
changes. By default this
method returns false.

Each search field contains a
label, an operator, one or more
value components (for example,
an input text component), and
an optional delete icon. The
information required to render
these can be either specific to
an instance of a search field (in
a saved search) or it can be
generic and unchanging
regardless of which saved
search it is part of.

For example, assume an
Employee business object
contains the search fields
Employee Name and Salary.

A user can then configure two
different searches: one named
Low Salaried Employees and
one named High Salaried
Employees. Both searches
contain two search fields based
on the Employee and Salary
attributes. Even though both
saved searches are based on
the same attributes of the
Employee object, the search
field Salary is configured to
have its default operator as less
than and value as 50000.00 for
the low Salaried Employees
search and for the High Salaried
Employees search, with a
default operator of greater than
and value of 100000.00.
Selecting the saved searches
on the UI will show the
appropriate operator and values
for that search.

Regardless of the search
selected by the user, the search
field for Salary always has to
render a number component,
and the label always has to
show Salary.

Chapter 14
Creating the Query Data Model

14-7

Table 14-1 (Cont.) Query UI Artifacts and Associated Model Class Operations
and Properties

Figure
Reference

UI Artifact Class Property/Methods
Used

Comments

6 Saved
Searches
dropdown

System- and user-saved
searches are available
through the methods
getSystemQueries() and
getUserQueries() on the
QueryModel class.

Displays a list of available
system- and user-saved
searches. Saved searches are
listed in alphabetical order and
are case-insensitive.

A Personalize option is also
added if the saveQueryMode
property is set to default.
Selecting this option opens a
Personalize dialog, which allows
users to personalize saved
searches. They can duplicate or
update an existing saved
search.

When you create a new saved
search based on an existing
saved search and personalize
the search, the Set as
Default and Run
Automatically settings are
not selected and do not default
to the settings from the original
saved search. This is to ensure
better performance in case if the
newly created search includes
all records, which should only
be used in advanced search.

Table 14-2 shows the behaviors of the different UI artifacts, and the associated
methods invoked to execute the behavior.

Table 14-2 UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

7 Delete icon During the Invoke
Application phase,
the method
removeCriterion(
) on the
QueryDescriptor
class is called
automatically by an
internal
ActionListener
handler registered
with the command
component.

ActionEvent Deletes a search field
from the current
QueryDescriptor
object.

Chapter 14
Creating the Query Data Model

14-8

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

8 Search button During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryEvent event is
queued, to be
broadcast during the
Invoke Application
phase.

During the Update
Model Values phase,
the selected operator
and the values
entered in the search
fields are
automatically
updated to the model
using the EL
expressions added to
the operator and
value components
(see How to Add the
Query Component).
These expressions
should invoke the
get/
setOperator();
get/
setOperators();
and getValues()
methods,
respectively, on the
AttributeCriteri
on class.

During the Invoke
Application phase,
the QueryListener
registered with the
query component is
invoked and this
performs the search.

You must implement
this listener.

QueryEvent Rendered always on
the footer (footer
contents are not
rendered at all when
the displayMode
attribute is simple)

Performs a query using
the selected operator
and the selected Match
radio button (if no
selection is made the
default is used), and
the values entered for
every search field.

Chapter 14
Creating the Query Data Model

14-9

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

9 Reset button During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryOperationEv
ent event is queued
with the operation
type
QueryOperationEv
ent.
Operation.RESET,
to be broadcast
during the Invoke
Application phase.

During the Invoke
Application phase,
the method reset()
on the QueryModel
class is called. This
is done automatically
by an internal
QueryOperationLi
stener handler
registered with the
query component.
You must override
this method to reset
the
QueryDescriptor
object to its original
state.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
handler is
registered with
the query
component that
in turn calls the
model
methods).

Resets the search
fields to its previous
saved state.

Chapter 14
Creating the Query Data Model

14-10

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

10 Save button During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryOperationEv
ent event is queued
with the operation
type
QueryOperationEv
ent.
Operation.SAVE, to
be broadcast during
the Invoke
Application phase.

During the Invoke
Application phase,
the method
create() on the
QueryModel class is
called. After the call
to the create()
method, the
update() method is
called to save the
hints (selected by the
user in the dialog)
onto the new saved
search. This is done
automatically by an
internal
QueryOperationLi
stener handler
registered with the
query component.
You must override
this method to create
a new object based
on the argument
passed in.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
handler is
registered with
the query
component that
in turn calls the
model
methods).

Creates a new saved
search based on the
current saved search
settings, including any
new search fields
added by the user.

Chapter 14
Creating the Query Data Model

14-11

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

11 Add Fields
dropdown list

During the Invoke
Application phase,
the method
addCriterion() on
the
QueryDescriptor
class is called
automatically by an
internal
ActionListener
handler registered
with the command
component. You
must override this
method to create a
new
AttributeCriteri
on object based on
the
AttributeDescrip
tor object (identified
by the name
argument).

ActionEvent Adds an attribute as a
search field to the
existing saved search.

12 Mode (Basic
or Advanced)
button

During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryOperationEv
ent event is queued
with the operation
type
QueryOperationEv
ent.
Operation.MODE_C
HANGE, to be
broadcast during the
Invoke Application
phase.

During the Invoke
Application phase,
the method
changeMode()on the
QueryModel class is
called.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
handler is
registered with
the query
component that
in turn calls the
model
methods).

Clicking the mode
button toggles the
mode.

Chapter 14
Creating the Query Data Model

14-12

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

13 Delete button During the Invoke
Application phase,
the method
delete() on the
QueryModel class is
called. This is done
automatically by an
internal
QueryOperationLi
stener handler
registered with the
query component.
You must override
this method order to
delete the
QueryDescriptor
object.

ActionEvent Deletes the selected
saved search, unless it
is the one currently in
use.

14 Duplicate
button

During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryOperationEv
ent event is queued
with the operation
type
QueryOperationEv
ent.
Operation.DUPLIC
ATE, to be broadcast
during the Invoke
Application phase.

During the Invoke
Application phase,
the method
update() on the
QueryModel class is
called. This is done
automatically by an
internal
QueryOperationLi
stener handler
registered with the
query component.
You must override
this method in order
to update the
QueryDescriptor
object using the
arguments passed
in.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
is registered
with the query
component that
in turn calls the
model
methods).

Duplicates the selected
saved search.

Chapter 14
Creating the Query Data Model

14-13

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

15 Apply button During the Apply
Request Values
phase of the JSF
lifecycle, a
QueryOperationEv
ent event is queued
with the operation
type
QueryOperationEv
ent.
Operation.UPDATE,
to be broadcast
during the Invoke
Application phase.

During the Invoke
Application phase,
the method
update() on the
QueryModel class is
called. This is done
automatically by an
internal
QueryOperationLi
stener handler
registered with the
query component.
You must override
this method in order
to update the
QueryDescriptor
object using the
arguments passed
in.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
is registered
with the query
component that
in turn calls the
model
methods).

Applies changes made
to the selected saved
search.

16 OK button Same as the Apply
button.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
handler is
registered with
the query
component that
in turn calls the
model
methods).

Applies changes made
to the selected saved
search and the dialog
is closed afterwards.

Chapter 14
Creating the Query Data Model

14-14

Table 14-2 (Cont.) UI Artifact Behaviors and Associated Methods

Figure
Reference

UI Artifact Class Method
Invoked

Event
Generated

Comments

17 Cancel button No method defined
for this action.

QueryOperati
onEvent (an
internal
QueryOperati
on Listener
handler is
registered with
the query
component that
in turn calls the
model
methods).

Cancels any edits
made in the dialog.

18 Reorder
button

No method defined
for this action.

ActionEvent Reorders the search
fields in the search
panel.

How to Create the Query Data Model
Begin you begin:

It may be helpful to have an understanding of the query data model. See Creating the
Query Data Model.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Query Components.

To create a query model classes:

1. Create implementations of each of the interface classes. Implement one
QueryModel class and then a QueryDescriptor class with appropriate criteria
(operators and values) for each system-seeded search. For example
implementations of the different model classes for a query, see the classes located
in the oracle.adfdemo.view.query.rich package of the ADF Faces sample
application.

Note:

If your query uses composition (for example, ConjunctionCriterion
1...n with AttributeCriterion/ConjunctionCriterion), this
relationship is not enforced by the abstract interfaces. Your
implementation must decide whether to use composition over
association, and determine how the lifecyle of these objects are
managed.

2. Create a QueryListener handler method on a managed bean that listens for the
QueryEvent event (this will be referenced by a button on the query component).
This listener will invoke the proper APIs in the QueryModel to execute the query.
The following example shows the listener method of a basic QueryListener

Chapter 14
Creating the Query Data Model

14-15

implementation that constructs a String representation of the search criteria. This
String is then displayed as the search result.

 public void processQuery(QueryEvent event)
 {
 DemoQueryDescriptor descriptor = (DemoQueryDescriptor) event.getDescriptor();
 String sqlString = descriptor.getSavedSearchDef().toString();
 setSqlString(sqlString);
 }

Using the quickQuery Component
The ADF Faces quickQuery component is a simplified version of the query component
that allows a search on a single item. You can use a quickQuery component with or
without a model.

The quickQuery component has one dropdown list that allows a user to select an
attribute to search on. The available searchable attributes are drawn from your
implementation of the model or from a managed bean. The user can search against
the selected attribute or against all attributes.

A quickQuery component may be used as the starting point of a more complex search
using a query component. For example, the user may perform a quick query search on
one attribute, and if successful, may want to continue to a more complex search. The
quickQuery component supports this by allowing you to place command components
in the end facet, which you can bind to a method on a managed bean that allows the
user to switch from a quickQuery to a query component.

The quickQuery component renders the searchable criteria in a dropdown list and
then, depending on the type of the criteria chosen at runtime, the quickQuery
component renders different criteria fields based on the attribute type. For example, if
the attribute type is Number, it renders an inputNumberSpinbox component. You do not
need to add these components as long as you have implemented the complete model
for your query. If instead you have the logic in a managed bean and do not need a
complete model, then you create the quickQuery component artifacts manually. See
How to Use a quickQuery Component Without a Model.

How to Add the quickQuery Component Using a Model
Before you begin:

It may be helpful to have an understanding of forms and subforms. See Using the
quickQuery Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Query Components.

You will need to complete this task:

Create a QueryModel class and associated classes. See Creating the Query Data
Model.

To add a quickQuery component:

1. In the Components window, from the Data Views panel, drag a Quick Query and
drop it onto the page.

Chapter 14
Using the quickQuery Component

14-16

2. Expand the Common section of the Properties window and set the following
attributes:

• id: Enter a unique ID for the component.

• layout: Specify if you want the component to be displayed horizontally with the
criterion and value next to each other, as shown in Figure 14-2, or vertically as
shown in Figure 14-4.

Figure 14-4 A quickQuery Component Set to Display Vertically

• model: Enter an EL expression that evaluates to the class that implements the
QueryModel class, as created in Creating the Query Data Model.

• value: Enter an EL expression that evaluates to the class that implements the
QueryDescriptor class, as created in Creating the Query Data Model.

3. Expand the Behavior section and set the following attributes:

• conjunctionReadOnly: Specify whether or not the user should be able to set
the Match Any or Match All radio buttons. When set to false, the user can set
the conjunction. When set to true, the radio buttons will not be rendered.

• queryListener: Enter an EL expression that evaluates to the QueryListener
handler you created in Creating the Query Data Model.

4. Drag and drop a table (or other component that will display the search results)
onto the page. Set the results component's PartialTriggers with the ID of the
quickQuery component. The value of this component should resolve to a
CollectionModel object that contains the filtered results.

5. If you want users to be able to click the Advanced link to turn the quickQuery
component into a full query component, implement logic for the link component in
the End facet of the quickQuery component to hide the quickQuery component
and display the query component.

How to Use a quickQuery Component Without a Model
You can use the quickQuery component without a model, for example if all your query
logic resides in a simple managed bean, including a QueryListener handler that will
execute the search and return the results. You must to manually add and bind the
components required to create the complete quickQuery component.

Before you begin:

It may be helpful to have an understanding of forms and subforms. See Using the
quickQuery Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Query Components.

To add a quickQuery component:

1. On a managed bean, create a valueChangeListener handler for the
selectOneChoice component that will display the attributes on which the user can

Chapter 14
Using the quickQuery Component

14-17

search. The valueChangeListener handler should handle the choice for which
attribute to search on.

2. On a managed bean, create the QueryListener handle to execute the search.
This handle will use the ID of the input component used to enter the search
criterion value, to retrieve the component and the value to execute the query.

3. In the Components window, from the Data Views panel, drag a Quick Query and
drop it onto the page.

4. In the Properties window, expand the Common section, and set the following
attributes:

• id: Enter a unique ID for the component.

• layout: Specify if you want the component to display horizontally with the
criterion and value next to each other, as shown in Figure 14-2, or vertically,
as shown in Figure 14-4.

5. Expand the Behavior section and set the QueryListener attribute to an EL
expression that evaluates to the QueryListener handler created in Step 2.

6. In the Components window, from the Text and Selection panel, drag a Choice and
drop it onto the criteriaItems facet of the quickQuery component. In the dialog,
choose either to enter an EL expression that evaluates to the list of attributes on
which the user can search, or to enter a static list. For help with the dialog, press
F1 or click Help.

7. In the Structure window, select the selectOneChoice component in the
criteriaItems facet, and set the following attributes:

• simple: Set to true so that no label for the component displays.

• valueChangeListener: Enter an EL expression that evaluates to the listener
created in Step 1.

• autoSubmit: Set to true.

8. From the Components window, form the Text and Selection panel, drag a Select
Item onto the selectOneChoice. You can add as many as you need. For
information about using the selectOneChoice and selectItems components, see
Using Selection Components.

9. In the Components window, from the Text and Selection panel, drag an inputText
component as a direct child to the quickQuery component. Set the following
attributes:

• simple: Set to true so that the label is not displayed.

• value: Enter an EL expression that evaluates to the property that will contain
the value that the user enters.

Tip:

If you do not provide an inputText component, then at runtime, a
disabled inputText component and a disabled Go icon will be
rendered.

10. If you want users to be able to click the Advanced link to turn the quickQuery
component into a full query component, implement logic for the link component in

Chapter 14
Using the quickQuery Component

14-18

the End facet of the quickQuery component to hide the quickQuery component
and display the query component.

11. In the Components window, from the Data Views panel, drag a table (or other
component that will display the search results) onto the page. Set the results
component's PartialTriggers with the ID of the quickQuery component. The
value of this component should resolve to a CollectionModel object that contains
the filtered results.

What Happens at Runtime: How the Framework Renders the
quickQuery Component and Executes the Search

When the quickQuery component is bound to a QueryDescriptor object, the
selectOneChoice and inputText components are automatically added at runtime as
the page is rendered. However, you can provide your own components. If you do
provide both the component to display the searchable attributes and the inputText
components, then you need the QueryListener handler to get the name-value pair
from your components.

If you provide only your own component to show the searchable attributes (and use
the default input text component), the framework will display an input text component.
You must have your QueryListener handler get the attribute name from the dropdown
list and the value from the QueryDescriptor.getCurrentCriterion() method to
perform the query.

If you provide only your own component to collect the searchable attribute value (and
use the default selectOneChoice component to provide the attribute name), then the
framework will display the selectOneChoice component. You must have your
QueryListener handler get the attribute name from the
QueryDescriptor.getCurrentCriterion() method and the value from your
component.

If you choose not to bind the QuickQuery component value attribute to a
QueryDescriptor object, and you provide both components, when the Go button is
clicked, the framework queues a QueryEvent event with a null QueryDescriptor
object. The provided QueryListener handler then executes the query using the
changeValueListener handler to access the name and the input component to access
the value. You will need to implement a QueryListener handler to retrieve the attribute
name from your selectOneChoice component and the attribute value from your
inputText component, and then perform a query.

Using the query Component
The ADF Faces query components are used to perform a complete feature search or
a quick query search. You can also combine the search criteria by using the WHERE,
AND, OR clauses.

The query component is used for full feature searches. It has a basic and an advanced
mode, which the user can toggle between by clicking a button.

The features for a basic mode query include:

• Dropdown list of selectable search criteria operators

• Selectable WHERE clause conjunction of either AND or OR (match all or match any)

Chapter 14
Using the query Component

14-19

• Saved (seeded) searches

• Personalized saved searches

The advanced mode query form also includes the ability for the user to dynamically
add search criteria by selecting from a list of searchable attributes. The user can
subsequently delete any criteria that were added.

The user can select from the dropdown list of operators to create a query for the
search. The input fields may be configured to be list-of-values (LOV), number
spinners, date choosers, or other input components.

Note:

If you want a uniform width for all the operator dropdown fields in the search
panel, you can set the following skinning property:

af|query {
 -tr-operator-size: constant;

}

Having an uniform operator field width would vertically align the operator and
search boxes for all the search fields, which results in a more organized
appearance.

For a general overview of skins, see Customizing the Appearance Using
Styles and Skins.

To support selecting multiple items from a list, the model must expose a control hint on
viewCriteriaItem and the underlying attribute must be defined as an LOV in the
corresponding view object. The hint is used to enable or disable the multiple selection
or "in" operator functionality. When multiple selection is enabled, selecting the Equals
or Does not equal operator will render the search criteria field as a selectManyChoice
component. The user can choose multiple items from the list.

The component for the search criteria field depends on the underlying attribute data
type, the operator that was chosen, and whether multiple selection is enabled. For
example, a search field for an attribute of type String with the Contains operator
chosen would be rendered as an inputText component, as shown in Table 14-3.

If the operator is Equals or Does not equal, but multiple selection is not enabled, the
component defaults to the component specified in the Default List Type hint from the
model.

Table 14-3 Rendered Component for Search Criteria Field of Type String

Operator Component Component When Multiple
Select Is Enabled

Starts with af:inputText af:inputText

Ends with af:inputText af:inputText

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Chapter 14
Using the query Component

14-20

Table 14-3 (Cont.) Rendered Component for Search Criteria Field of Type
String

Operator Component Component When Multiple
Select Is Enabled

Less than af:inputText af:inputText

Greater than af:inputText af:inputText

Less than or equal to af:inputText af:inputText

Greater than or equal
to

af:inputText af:inputText

Between af:inputText af:inputText

Not Between af:inputText af:inputText

Contains af:inputText af:inputText

Does not contain af:inputText af:inputText

Contains af:inputText af:inputText

Does not contain af:inputText af:inputText

Is blank None None

Is not blank None None

If the underlying attribute is the Number data type, the component that will be rendered
is shown in Table 14-4.

Table 14-4 Rendered Component for Search Criteria Field of Type Number

Operator Component Component When Multiple
Select Is Enabled

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Less than af:inputNumberSpinBox af:inputNumberSpinBox

Less than or equal to af:inputNumberSpinBox af:inputNumberSpinBox

Greater than af:inputNumberSpinBox af:inputNumberSpinBox

Greater than or equal
to

af:inputNumberSpinBox af:inputNumberSpinBox

Between af:inputNumberSpinBox af:inputNumberSpinBox

Not between af:inputNumberSpinBox af:inputNumberSpinBox

Is blank None None

Is not blank None None

If the underlying attribute is the Date data type, the component that will be rendered is
shown in Table 14-5.

Chapter 14
Using the query Component

14-21

Table 14-5 Rendered Component for Search Criteria Field of Type Date

Operator Component Component When Multiple
Select Is Enabled

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Before af:inputDate af:inputDate

After af:inputDate af:inputDate

On or before af:inputDate af:inputDate

On or after af:inputDate af:inputDate

Between af:inputDate (2) af:inputDate (2)

Not between af:inputDate (2) af:inputDate (2)

Is blank None None

Is not blank None None

If a search criterion's underlying attribute was defined as an LOV, in order for the auto-
complete feature to work, the ListOfValues model instance returned by the
getModelList method of the AttributeCriterion class must return true for its
isAutoCompleteEnabled method. For information about LOV, see Using List-of-Values
Components.

When autoSubmit is set to true, any value change on the search criterion will be
immediately pushed to the model. The query component will automatically flush its
criterion list only when it has dependent criteria. If the criterion instance has no
dependent criteria but autoSubmit is set to true, then the query component will be
only partially refreshed.

A Match All or Match Any radio button group further modifies the query. A Match All
selection is essentially an AND function. The query will return only rows that match all
the selected criteria. A Match Any selection is an OR function. The query will return all
rows that match any one of the criteria items.

After the user enters all the search criteria values (including null values) and selects
the Match All or Match Any radio button, the user can click the Search button to
initiate the query. The query results can be displayed in any output component.
Typically, the output component will be a table or tree table, but you can associate
other display components such as af:forms, af:outputText, and graphics to be the
results component by specifying it in the resultComponentId attribute.

If the Basic or Advanced button is enabled and displayed, the user can toggle
between the two modes. Each mode will display only the search criteria that were
defined for that mode. A search criteria field can be defined to appear only for basic,
only for advanced, or for both modes.

In advanced mode, the control panel also includes an Add Fields button that exposes
a popup list of searchable attributes. When the user selects any of these attributes, a
dynamically generated search criteria input field and dropdown operator list is
displayed. The position of all search criteria input fields, as well as newly added fields,
are determined by the model implementation.

Chapter 14
Using the query Component

14-22

This newly created search criteria field will also have a delete icon next to it. The user
can subsequently click this icon to delete the added field. The originally defined search
criteria fields do not have a delete icon and therefore cannot be deleted by the user.
Figure 14-5 shows an advanced mode query component with a dynamically added
search criteria field named Salary. Notice the delete icon (an X) next to the field.

Figure 14-5 Advanced Mode Query with Dynamically Added Search Criteria

The user can also save the entered search criteria and the mode by clicking the Save
button. A popup dialog allows the user to provide a name for the saved search and
specify hints by selecting checkboxes. A persistent data store is required if the saved
search is to be available beyond the session. For information about persistence, see
Allowing User Customization on JSF Pages.

A seeded search is essentially a saved search that was created by the application
developer. When the component is initialized, any seeded searches associated with
that query component become available for the user to select.

Any user-created saved searches and seeded system searches appear in the Saved
Search dropdown list. The seeded searches and user-saved searches are separated
by a divider. They are sorted alphabetically and are case insensitive.

Users can also personalize the saved and seeded searches for future use.
Personalization of saved searches requires the availability of a persistent data store.
For information about persistence, see Allowing User Customization on JSF Pages.

Along with the default display described previously, you can also configure the query
component to display in a compact mode or simple mode. The compact mode has no
header or border, and the Saved Search dropdown list moves next to the expand or
collapse icon. Figure 14-6 shows the same query component as in Figure 14-5, but set
to compact mode.

Chapter 14
Using the query Component

14-23

Figure 14-6 Query Component in Compact Mode

The simple mode displays the component without the header and footer, and without
the buttons typically displayed in those areas. Figure 14-7 shows the same query
component set to simple mode.

Figure 14-7 Query Component in Simple Mode

The query component supports toolbar and footer facets that allow you to add
additional components to the query, such as buttons. For example, you can create
command components to toggle between the quickQuery and query components and
place those in a toolbar in the toolbar facet.

Because the query component is responsible for rendering its subcomponents (input
fields, selection list, buttons, etc.), you should not use inlineStyle with the query. If
you use inlineStyle, it may result in unexpected display behavior.

How to Add the Query Component
Before you begin:

It may be helpful to have an understanding of forms and subforms. See Using the
query Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Query Components.

You will need to complete this task:

Create a QueryModel class and associated classes. See Creating the Query Data
Model.

To add a query component:

Chapter 14
Using the query Component

14-24

1. In the Components window, from the Data Views panel, drag a Query and drop it
onto the page.

2. In the Properties window, expand the Common section and set the following
attributes:

• id: Set a unique ID for the component.

• model: Enter an EL expression that resolves to the QueryModel class, as
created in Creating the Query Data Model.

• value: Enter an EL expression that resolves to the QueryDescriptor class, as
created in Creating the Query Data Model.

3. Expand the Appearance section and set the following attributes:

• displayMode: Specify if you want the component to display in Default, Simple,
or Compact mode.

• saveQueryMode: Specify if you want saved searches to be displayed and
used at runtime. Set to default if you want the user to be able to view and edit
all saved searches. Set to readOnly if you want the user to only be able to
view and select saved searches, but not update them. Set to hidden if you do
not want any saved searches to be displayed.

Note:

You can set the
oracle.adf.faces.component.query.saveQueryMode context
parameter in web.xml file to control the saveQueryMode setting
globally, at the application level. At runtime, ADF applies the setting
in the web.xml file to all af:query components, where the
saveQueryMode attribute setting on a specific query component
overrides the global setting. See Save Query Mode.

• modeButtonPosition: Specify if you want the button that allows the user to
switch the mode from basic to advanced to be displayed in toolbar (the
default) or in the footer facet.

• modeChangeVisible: Set to false if you want to hide the basic or advanced
toggle button.

4. Expand the Behavior section and set the following:

• conjunctionReadOnly: Set to false if you want the user to be able to select
a radio button to determine if the search should match all criteria (query will
use the AND function) or any criteria (query will use the OR function). When set
to true, the radio buttons will not be rendered.

• queryListener: Enter an EL expression that evaluates to the QueryListener
handler, as created in Creating the Query Data Model.

5. Expand the Other section and set the following:

• CriterionFeatures: Set to matchCaseDisplayed will require all string-based
search criterion to be case-sensitive. Set to requiredDisplayed will require all
criterion be displayed.

Chapter 14
Using the query Component

14-25

• runQueryAutomatically: Select allSavedSearches to enable all system and
user-created saved searches to run automatically upon initial render, changes
in saved search selection, and reset.

Select searchDependent to allow the developer to choose the Run
Automatically option at design time for each system query. Default is
searchDependent.

For new user-created saved searches, if searchDependent is selected, the
Create Saved Search dialog will have the Run Automatically option selected
by default. If allSavedSearches is selected, the Run Automatically option is
not displayed but is set to true implicitly.

6. In the Components window, from the Data Views panel, drag a table (or other
component that will display the search results) onto the page. Set an ID on the
table. The value of this component should resolve to a CollectionModel object
that contains the filtered results.

7. In the Structure window, select the query component and set the
resultComponentID to the ID of the table.

Chapter 14
Using the query Component

14-26

15
Using Menus, Toolbars, and Toolboxes

This chapter describes how to create menus and toolbars using the ADF Faces menu,
menuBar, commandMenuItem, goMenuItem, toolbar, and toolbox components.
For information about creating navigation menus, that is, menus that allow you to
navigate through a hierarchy of pages, see Using Navigation Items for a Page
Hierarchy.

This chapter includes the following sections:

• About Menus, Toolbars, and Toolboxes

• Using Menus in a Menu Bar

• Using Toolbars

About Menus, Toolbars, and Toolboxes
ADF Faces provides menus and toolbars as UI elements that allow a user to choose
from a specified list of options (in the case of a menu) or to click buttons (in the case of
a toolbar) to effect some change to the application. You can select any menu
dropdown or buttons in a toolbar to trigger an action.

Menu bars and toolbars allow you to organize menus, buttons, and other simple
components in a horizontal bar. When a user clicks a menu in the bar, the menu drops
down and the user can select from the menu items, which then causes some action to
happen in the application. Icons in the toolbar also cause some action to happen in the
application. Figure 15-1 shows the different components used to create menus and
toolbars.

15-1

Figure 15-1 Menu and Toolbar Components

Menu Components Use Cases and Examples
Menu components are used to create menus that allow users to add or edit items,
search data, change the view, or launch help. For example, the ADF Faces
Components Demo application contains both a menu bar and a toolbar, as shown in
Figure 15-2.

Chapter 15
About Menus, Toolbars, and Toolboxes

15-2

Figure 15-2 Menu Bar and Toolbar in File Explorer Application

When a user chooses a menu item in the menu bar, the menu component displays a
list of menu items, as shown in Figure 15-3.

Figure 15-3 Menu in the File Explorer Application

As shown in Figure 15-4, menus can be nested.

Figure 15-4 Nested Menu Items

Buttons in a toolbar also allow a user to invoke some sort of action on an application or
to open a context menu that behaves the same as a standard menu.

You can organize toolbars and menu bars using a toolbox. The toolbox gives you the
ability to define relative sizes for the toolbars on the same line and to define several
layers of toolbars and menu bars vertically.

Chapter 15
About Menus, Toolbars, and Toolboxes

15-3

Note:

If you want to create menus and toolbars in a table, then follow the
procedures in Displaying Table Menus, Toolbars, and Status Bars.

If you want to create a context menu for a component (that is, a menu that
launches when a user right-clicks the component), follow the procedures in
How to Create a Context Menu.

Additional Functionality for Menu and Toolbar Components
You may find it helpful to understand other ADF Faces features before you implement
your menu and toolbar components. Additionally, once you have added these
components to the page, you may find that you need to add functionality such as
validation and accessibility. Following are links to other functionality that menu and
toolbar components can use.

• Invoking functionality: ADF Faces offer tags that can be used with menu
command components to invoke functionality, such as downloading a file or
resetting submitted values. See Using Buttons or Links to Invoke Functionality.

• Table menus: You can create menus and toolbars that display above a table and
work only on that table (as opposed to the whole application). See Displaying
Table Menus, Toolbars, and Status Bars.

• Context menus: You can create menus that launch in a popup when a user right-
clicks an item in the UI. See How to Create a Context Menu.

• Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Events: You can use command menu components to launch action events. For
information about events, see Handling Events. For information about action
events specifically, see Using Buttons and Links for Navigation.

• Accessibility: You can use specific attributes on the menu components to create
shortcuts that allow users to open menus using a keyboard. For information about
how to define access keys, see How to Define Access Keys for an ADF Faces
Component. For information about accessibility, see Specifying Component-Level
Accessibility Properties.

• Localization: Instead of entering values for attributes that take strings as values,
you can use property files. These files allow you to manage translation of these
strings. See Internationalizing and Localizing Pages.

• Skins: You can change the look and feel of menus (such as the icon used to
display a selected menu item), along with some basic functionality (such as the
maximum number of menu items that display) by changing the skin. See
Customizing the Appearance Using Styles and Skins.

Chapter 15
About Menus, Toolbars, and Toolboxes

15-4

Using Menus in a Menu Bar
ADF Faces provides a menuBar component that contains various menu items from
which a user can execute a command. You can group multiple menu bars in a toolbox
and can also nest menu components to create submenus.

Use the menuBar component to render a bar that contains the menu bar items (such as
File in the File Explorer application). These items can be menu components, which hold
a vertical menu, as well as commandMenuItem components that invoke some operation
on the application, and goMenuItem components that invoke a URL, as shown in
Figure 15-5.

Figure 15-5 menuBar and Child Components

Menu components can also contain commandMenuItem or goMenuItem components, or
you can nest menu components inside menu components to create submenus. The
different components used to create a menu are shown in Figure 15-6.

Figure 15-6 Components Used to Create a Menu

You can use more than one menu bar by enclosing them in a toolbox. Enclosing them
in a toolbox stacks the menu bars so that the first menu bar in the toolbox is displayed
at the top, and the last menu bar is displayed at the bottom. When you use more than
one menu bar in a single toolbox row (by having them grouped inside the toolbox),
then the flex attribute will determine which menu bar will take up the most space.

If you want menu bars to be displayed next to each other (rather than being stacked),
you can enclose them in a group component.

Chapter 15
Using Menus in a Menu Bar

15-5

Tip:

You can also use the toolbox component to group menu bars with toolbars,
or to group multiple menu bars. Use the group component to group menu
bars and toolbars on the same row.

Within a menu bar, you can set one component to stretch so that the menu bar will
always be the same size as its parent container. For example, in Figure 15-7, the
menu bar is set to stretch a spacer component that is placed between the Disabled
GMI menu and the Component Guide button. When the window is resized, that spacer
component either stretches or shrinks so that the menu bar will always be the same
width as the parent. Using a spacer component like this also ensures that any
components to the right of the spacer will remain right-justified in the menu bar.

Figure 15-7 Spacer Component Stretches and Shrinks

When a window is resized such that all the components within the menu bar can no
longer be displayed, the menu bar displays an overflow icon, identified by the arrow
cursor as shown in Figure 15-8.

Figure 15-8 Overflow Icon in a Menu Bar

Note:

The overflow icon does not display in the Internet Explorer browser. In
Firefox and Chrome, the overflow icon displays only after the user resizes
the browser window.

Clicking that overflow icon displays the remaining components in a popup window, as
shown in Figure 15-9.

Figure 15-9 menu Component in an Overflow Popup Window

Menus and submenus can be made to be detachable and to float on the browser
window. Figure 15-10 shows the Menu 1 submenu in the Detachables menu

Chapter 15
Using Menus in a Menu Bar

15-6

configured to be detachable. The top of the menu is rendered with a bar to indicate
that it can be detached.

Figure 15-10 Detachable Menu

The user can drag the detachable menu to anywhere within the browser. When the
mouse button is released, the menu stays on top of the application until the user
closes it, as shown in Figure 15-11.

Figure 15-11 Floating Detached Menu

Chapter 15
Using Menus in a Menu Bar

15-7

Tip:

Consider using detachable menus when you expect users to:

• Execute similar commands repeatedly on a page.

• Execute similar commands on different rows of data in a large table, tree
table, or tree.

• View data in long and wide tables, tree tables, or trees. Users can
choose which columns or branches to hide or display with a single click.

• Format data in long or wide tables, tree tables, or trees.

The menu and commandMenuItem components can each include an icon image.
Figure 15-12 shows the Delete menu item configured to display a delete icon (a red
X).

Figure 15-12 Icons Can Be Used in Menus

Aside from always displaying graphics, you can configure commandMenuItem
components to display a graphic when the menu item is chosen. For example, you can
configure a commandMenuItem component to display a checkmark when chosen, or you
can group menu items together and configure them to behave like a group of radio
buttons, so that an icon displays next to the label when one of items in the group is
chosen. Figure 15-13 shows the View menu with the Folders menu item configured to
use a checkmark when chosen. The Table, Tree Table, and List menu items are
configured to be radio buttons, and allow the user to choose only one of the group.

Figure 15-13 Icons and Radio Buttons Denote the Chosen Menu Items

You can set the initial selected state of the commandMenuItem component using an EL
expression. However, after that, the value of the selected state must be managed

Chapter 15
Using Menus in a Menu Bar

15-8

through the commandMenuItem component using an action listener. Thus, runtime
selection of the menu item will have no affect on the EL-specified property used to set
the initial state.

You can also configure a commandMenuItem component to have an antonym. Antonyms
display different text when the user chooses a menu item.

Figure 15-14 The Edit Menu of the File Explorer Application

Figure 15-14 shows the commandMenuItem component for the Undo menu item
configured to be an antonym. When the user chooses Undo, the next time the user
returns to the menu, the menu item will display the antonym Restore, as shown in
Figure 15-15.

Figure 15-15 Menu Items Can Be Antonyms

Because an action is expected when a user chooses a menu item, you must bind the
action or actionListener attribute of the commandMenuItem component to some
method that will execute the needed functionality.

Along with commandMenuItem components, a menu can also include one or more
goMenuItem components. These are navigation components similar to the link
component, in that they perform direct page navigation, without delivering an
ActionEvent event. Figure 15-16 shows three goMenuItem components used to
navigate to external web sites.

Figure 15-16 Menus Can Use goMenuItem Components

Aside from menus that are invoked from menu bars, you can also create context
menus that are invoked when a user right-clicks a UI component, and popup menus

Chapter 15
Using Menus in a Menu Bar

15-9

that are invoked when a user clicks a command component. See How to Create a
Context Menu.

Note:

ADF Faces provides a button with built-in functionality that allows a user to
view a printable version of the current page. Menus and menu bars do not
render on these pages. See Using ADF Faces Client Behavior Tags.

By default, the contents of the menu are delivered immediately, as the page is
rendered. If you plan on having a large number of children in a menu (multiple menu
and commandMenuItem components), you can choose to configure the menu to use
lazy content delivery. This means that the child components are not retrieved from
the server until the menu is accessed.

Note:

Content delivery for menus used as popup context menus is determined by
the parent popup dialog, and not the menu itself.

You can also create menus that mainly provide navigation throughout the application,
and are not used to cause any change on a selected item in an application. To create
this type of menu, see Using a Menu Model to Create a Page Hierarchy.

How to Create and Use Menus in a Menu Bar
To create a menu, you first have to create a menu bar to hold the menus. You then
add and configure menu and commandMenuItem components as needed.

Note:

If you want to create menus in a table, follow the procedures outlined in
Displaying Table Menus, Toolbars, and Status Bars.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Menus in a Menu Bar.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Menu and Toolbar Components.

To create and use menus in a menu bar:

1. If you plan on using more than one menu bar or a combination of toolbars and
menu bars, create a toolbox component by dragging and dropping a Toolbox
from the Menus and Toolbars panel of the Components window.

Chapter 15
Using Menus in a Menu Bar

15-10

Tip:

The panelHeader, showDetailHeader, and showDetailItem components
support a toolbar facet for adding toolboxes and toolbars to section
headers and accordion panel headers.

2. Create a menu bar by dragging and dropping a Menu Bar from the Components
window. If you are using a toolbox component, the Menu Bar should be dropped
as a direct child of the toolbox component.

Tip:

Toolboxes also allow you to use the iterator, switcher, and group
components as direct children, providing these components wrap child
components that would usually be direct children of the toolbox. For
information about toolboxes, see Using Toolbars.

3. If grouping more than one menu bar within a toolbox, for each menu bar, expand
the Appearance section and set the flex attribute to determine the relative sizes
of each of the menu bars. The higher the number given for the flex attribute, the
longer the toolbox will be. For the set of menu bars shown in the following
example, menuBar2 will be the longest, menuBar4 will be the next longest, and
because their flex attributes are not set, the remaining menu bars will be the
same size and shorter than menuBar4.

<af:toolbox>
 <af:menuBar id="menuBar1" flex="0">
 <af:menu text="MenuA"/>
 </af:menBar>
 <af:menuBar id="menuBar2" flex="2">
 <af:menu text="MenuB"/>
 </af:menuBar>
 <af:menuBar id="menuBar3" flex="0">
 <af:menu text="MenuC"/>
 </af:menuBar>
 <af:menuBar id="menuBar4" flex="1">
 <af:menu text="MenuD"/>
 </af:toolbar>
</af:toolbox>

Performance Tip:

At runtime, when available browser space is less than the space needed
to display the contents of the toolbox, ADF Faces automatically displays
overflow icons that enable users to select and navigate to those items
that are out of view. The number of child components within a toolbox
component, and the complexity of the children, will affect the
performance of the overflow. You should set the size of the toolbox
component to avoid overflow when possible. See What Happens at
Runtime: How the Size of Menu Bars and Toolbars Is Determined.

Chapter 15
Using Menus in a Menu Bar

15-11

Tip:

You can use the group component to group menu bars (or menu bars
and toolbars) that you want to appear on the same row. If you do not use
the group component, the menu bars will appear on subsequent rows.

For information about how the flex attribute works, see What Happens at
Runtime: How the Size of Menu Bars and Toolbars Is Determined.

4. Insert the desired number of menu components into the menu bar by dragging a
Menu from the Components window, and dropping it as a child to the menuBar
component.

You can also insert commandMenuItem components directly into a menu bar by
dragging and dropping a Menu Item from the Menus and Toolbars panel of the
Components window. Doing so creates a commandMenuItem component that
renders similar to a toolbar button.

Tip:

Menu bars also allow you to use the iterator, switcher, and group
components as direct children, providing these components wrap child
components that would usually be direct children of the menu bar.

5. For each menu component, expand the Appearance section in the Properties
window and set the following attributes:

• Text: Enter text for the menu's label. If you want to also provide an access key
(a letter a user can use to access the menu using the keyboard), then leave
this attribute blank and enter a value for textAndAccessKey instead.

• TextAndAccessKey: Enter the menu label and access key, using
conventional ampersand notation. For example, &File sets the menu
label to File, and at the same time sets the menu access key to the letter F.
For information about access keys and the ampersand notation, see
Specifying Component-Level Accessibility Properties.

• Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

6. If you want the menu to be detachable (as shown in Figure 15-10), expand the
Behavior section in the Properties window and set the Detachable attribute to
true. At runtime, the user can drag the menu to detach it, and drop it anywhere on
the screen (as shown in Figure 15-11).

7. If you want the menu to use lazy content delivery, set the ContentDelivery
attribute to lazy.

Chapter 15
Using Menus in a Menu Bar

15-12

Note:

If you use lazy content delivery, any accelerators set on the child
commandMenuItem components will not work because the contents of the
menu are not known until the menu is accessed. If your menu must
support accelerators, then ContentDelivery must be set to immediate.

Note:

If the menu will be used inside a popup dialog or window, leave
ContentDelivery set to immediate, because the popup dialog or window
will determine the content delivery for the menu.

8. To create a menu item that invokes some sort of action along with navigation, drag
a Menu Item from the Components window and drop it as a child to the menu
component to create a commandMenuItem component. Create a number of
commandMenuItem components to define the items in the vertical menu. If
necessary, you can wrap the commandMenuItem components within a group
component to display the items as a group.

The following example shows simplified code for grouping the Folders and
Search menu items in one group, the Table, Tree Table and List menu items in a
second group, and the Refresh menu item by itself at the end.

<af:menu id="viewMenu"
 <af:group>
 <af:commandMenuItem type="check" text="Folders"/>
 <af:commandMenuItem type="check" text="Search"/>
 </af:group>
 <af:group>
 <af:commandMenuItem type="radio" text="Table"/>
 <af:commandMenuItem type="radio" text="Tree Table"/>
 <af:commandMenuItem type="radio" text="List"/>
 </af:group>
 <af:commandMenuItem text="Refresh"/>
</menu>

Figure 15-17 shows how the menu will be displayed when it is first accessed.

Note:

You can change the skin that ADF Faces components use. See
Customizing the Appearance Using Styles and Skins.

Chapter 15
Using Menus in a Menu Bar

15-13

Figure 15-17 Grouped Menu Items Using the Type Attribute

Tip:

By default, only up to 14 items are displayed in the menu. If more than
14 items are added to a menu, the first 14 are displayed along with a
scrollbar, which can be used to access the remaining items. If you wish
to change the number of visible items, edit the af|menu {-tr-visible-
items} skinning key. See Customizing the Appearance Using Styles and
Skins.

You can also insert another menu component into an existing menu component to
create a submenu (as shown in Figure 15-4).

Tip:

Menus also allow you to use the iterator and switcher components as
direct children, providing these components wrap child components that
would usually be direct children of the menu.

9. For each commandMenuItem component, expand the Common section in the
Properties window and set the following attributes:

• Type: Specify a type for this menu item. When a menu item type is specified,
ADF Faces adds a visual indicator (such as a radio button) and a toggle
behavior to the menu item. At runtime, when the user selects a menu item with
a specified type (other than the default), ADF Faces toggles the visual
indicator or menu item label. Use one of the following acceptable type values:

– default: Assigns no type to this menu item. The menu item is displayed in
the same manner whether or not it is chosen.

– antonym: Toggles the menu item label. The value set in the
SelectedText attribute is displayed when the menu item is chosen,
instead of the menu item defined by the value of text or
textAndAccessKey attribute (which is what is displayed when the menu
item is not chosen). If you select this type, you must set a value for
SelectedText.

Chapter 15
Using Menus in a Menu Bar

15-14

– check: Depending on the skin, toggles a square or check mark next to the
menu item label. The square is displayed as solid blue when the menu
item is chosen, and greyed out when not.

– radio: Toggles a radio button next to the menu item label. The radio
button is displayed as a solid blue circle when the menu item is chosen,
and greyed out when not.

• Text: Enter text for the menu item's label. If you wish to also provide an
access key (a letter a user can use to access the item using the keyboard),
then leave this attribute blank and enter a value for TextAndAccessKey
instead. Or, you can set the access key separately using the accessKey
attribute.

• Selected: Set to true to have this menu item appear to be chosen. The
selected attribute is supported for check-, radio-, and antonym-type menu
items only.

Note:

You may use an EL expression that evaluates to an action method in
a managed bean to determine the initial selection state of the
commandMenuItem. However, at runtime, the selected state of the
menu item is managed through the component and therefore
requires an action listener to update the selected state property of
the managed bean. For example, your managed bean might define
the action listener as:

public void actLsn(ActionEvent ae) {
 RichCommandMenuItem menuItem = (RichCommandMenuItem)
ae.getComponent();
 val1 = menuItem.isSelected();
}

• SelectedText: Set the alternate label to display for this menu item when the
menu item is chosen. This value is ignored for all types except antonym.

10. Expand the Appearance section and set the following attributes:

• Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

• Accelerator: Enter the keystroke that will activate this menu item's command
when the item is chosen, for example, Control N. ADF Faces converts the
keystroke and displays a text version of the keystroke (for example, Ctrl+N)
next to the menu item label, as shown in Figure 15-4.

Chapter 15
Using Menus in a Menu Bar

15-15

Note:

If you choose to use lazy content delivery, any accelerators set on
the child commandMenuItem components will not work because the
contents of the menu are not known until it is accessed. If your menu
must support accelerator keys, then the contentDelivery attribute
must be set to immediate.

• TextAndAccessKey: Enter the menu item label and access key, using
conventional ampersand notation. For example, &Save sets the menu item
label to Save, and at the same time sets the menu item access key to the
letter S. For information about access keys and the ampersand notation, see
Specifying Component-Level Accessibility Properties.

11. Expand the Behavior section and set the following attributes:

• Action: Use an EL expression that evaluates to an action method in an object
(such as a managed bean) that will be invoked when this menu item is
chosen. The expression must evaluate to a public method that takes no
parameters, and returns a java.lang.Object object.

If you want to cause navigation in response to the action generated by
commandMenuItem component, instead of entering an EL expression, enter a
static action outcome value as the value for the action attribute. You then
must either set the partialSubmit attribute to false, or use a redirect. For
information about configuring navigation in your application, see Defining
Page Flows.

• ActionListener: Specify the expression that refers to an action listener
method that will be notified when this menu item is chosen. This method can
be used instead of a method bound to the action attribute, allowing the
action attribute to handle navigation only. The expression must evaluate to a
public method that takes an ActionEvent parameter, with a return type of
void.

12. To create a menu item that simply navigates (usually to an external site), drag and
drop a Menu Item (Go) from the Components window as a child to the menu.

13. In the Properties window, expand the Common section and set the following
attributes:

• Text: Enter the text for the link.

Tip:

Instead, you can use the textAndAccessKey attribute to provide a
single value that defines the label and the access key to use for the
link. For information about how to define access keys, see How to
Define Access Keys for an ADF Faces Component.

• Destination: Enter the URI of the page to which the link should navigate. For
example, to navigate to the Oracle Corporation Home Page, you would enter
http://www.oracle.com.

Chapter 15
Using Menus in a Menu Bar

15-16

• TargetFrame: Use the dropdown list to specify where the new page should
display. Choose one of the following values:

– _blank: The link opens the document in a new window.

– _parent: The link opens the document in the window of the parent. For
example, if the link appeared in a dialog, the resulting page would render
in the parent window.

– _self: The link opens the document in the same page or region.

– _top: The link opens the document in a full window, replacing the entire
page.

14. If you want a menu bar to stretch so that it equals the width of the containing
parent component, select the menuBar component in the Structure window, then
expand the Appearance section in the Properties window and set StretchId to be
the ID of the component within the menu bar that should be stretched so that the
menu bar is the same size as the parent. This one component will stretch, while
the rest of the components in the menu bar remain a static size.

You can also use the stretchId attribute to justify components to the left and right
by inserting a spacer component, and setting that component ID as the stretchId
for the menu bar, as shown in the following example.

<af:menuBar binding="#{editor.component}" id="menuBar1" stretchId="stretch1">
 <af:menu text="File" id="m1">
. . .
 </af:menu>
. . .
 <af:commandMenuItem text="Disabled CMI"/>
 <af:goMenuItem textAndAccessKey="O&racle destination="http://
www.oracle.com"
 id="gmi1"/>
 <af:goMenuItem text="Disabled GMI" destination="http://www.gizmo.com"
 shortDesc="disabled goMenuItem" id="gmi2"/>
 <af:spacer id="stretch1" clientComponent="true"/>
 <af:commandMenuItem textAndAccessKey="Component G&uide"
 action="guide" id="cmi9"/>
</af:menuBar>

Using Toolbars
ADF Faces provides a toolbar component that can have icons, buttons, inputText,
and other components. You can add components to the toolbar based on the type of
operation that you want the users to perform on the application.

Along with menus, you can create toolbars in your application that contain toolbar
buttons used to initiate some operation in the application. The buttons can display text,
an icon, or a combination of both. Toolbar buttons can also open menus in a popup
window. Along with toolbar buttons, other UI components, such as dropdown lists, can
be displayed in toolbars. Figure 15-18 shows the toolbar from the File Explorer
application.

Chapter 15
Using Toolbars

15-17

Tip:

Toolbars can contain buttons and links instead of toolbar buttons. However,
toolbar buttons provide additional functionality, such as opening popup
menus. Toolbar buttons can also be used outside of a toolbar component.

Figure 15-18 Toolbar in the File Explorer Application

The toolbar component can contain many different types of components, such as
inputText components, LOV components, selection list components, and command
components. ADF Faces includes a button component that has a popup facet,
allowing you to provide popup menus from a toolbar button. You can configure your
toolbar button so that it only opens the popup dialog and does not fire an action event.
As with menus, you can group related toolbar buttons on the toolbar using the group
component.

You can use more than one toolbar by enclosing them in a toolbox. Enclosing toolbars
in a toolbox stacks them so that the first toolbar on the page is displayed at the top,
and the last toolbar is displayed on the bottom. For example, in the File Explorer
application, the currently selected folder name is displayed in the Current Location
toolbar, as shown in Figure 15-18. When you use more than one toolbar, you can set
the flex attribute on the toolbars to determine which toolbar should take up the most
space. In this case, the Current Location toolbar is set to be the longest.

If you wish toolbars to be displayed next to each other (rather than stacked), you can
enclose them in a group component.

Tip:

You can also use the toolbox component to group menu bars with toolbars,
or to group multiple menu bars. As with grouping toolbars, use the group
component to group menu bars and toolbars on the same row.

Within a toolbar, you can set one component to stretch so that the toolbar will always
be the same size as its parent container. For example, in the File Explorer application,
the lower toolbar that displays the current location contains the component that shows
the selected folder. This component is set to stretch so that when the window is

Chapter 15
Using Toolbars

15-18

resized, that component and the toolbar will always be the same width as the parent.
However, because no component in the top toolbar is set to stretch, it does not change
size when the window is resized. When a window is resized such that all the
components within the toolbar can no longer be displayed, the toolbar displays an
overflow icon, identified by an arrow cursor in the upper right-hand corner, as shown in
Figure 15-19.

Figure 15-19 Overflow Icon in a Toolbar

Clicking that overflow icon displays the remaining components in a popup window, as
shown in Figure 15-20.

Figure 15-20 Toolbar Component in an Overflow Popup Window

When you expect overflow to occur in your toolbar, it is best to wrap it in a toolbox that
has special layout logic to help in the overflow.

How to Create and Use Toolbars
If you are going to use more than one toolbar component on a page, or if you plan to
use menu bars with toolbars, you first create the toolbox component to hold them.
You then create the toolbars, and last, you create the toolbar buttons.

Tip:

If you encounter layout issues with single toolbars or menu bars, consider
wrapping them in a toolbox component, because this component can handle
overflow and layout issues.

Chapter 15
Using Toolbars

15-19

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Toolbars.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Menu and Toolbar Components.

To create and use toolbars:

1. If you plan on using more than one toolbar or a combination of toolbars and menu
bars, create a toolbox component by dragging and dropping a Toolbox
component from the Menus and Toolbars panel of the Components window.

Tip:

The panelHeader, showDetailHeader, and showDetailItem components
support a toolbar facet for adding toolboxes and toolbars to section
headers and accordion panel headers.

2. Drag and drop a Toolbar onto the JSF page. If you are using a toolbox
component, the Toolbar should be dropped as a direct child of the toolbox
component.

Tip:

Toolboxes also allow you to use the iterator, switcher, and group
components as direct children, providing these components wrap child
components that would usually be direct children of the toolbox.

3. If grouping more than one toolbar within a toolbox, for each toolbar, select the
toolbar, expand the Appearance section and set the Flex attributes to determine
the relative sizes of each of the toolbars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of toolbars shown in the
following example, toolbar2 will be the longest, toolbar4 will be the next longest,
and because their flex attributes are not set, the remaining toolbars will be the
same size and shorter than toolbar4.

<af:toolbox>
 <af:toolbar id="toolbar1" flex="0">
 <af:button text="ButtonA"/>
 </af:toolbar>
 <af:toolbar id="toolbar2" flex="2">
 <af:button text="ButtonB"/>
 </af:toolbar>
 <af:toolbar id="toolbar3" flex="0">
 <af:button text="ButtonC"/>
 </af:toolbar>
 <af:toolbar id="toolbar4" flex="1">
 <af:button text="ButtonD"/>
 </af:toolbar>
</af:toolbox>

Chapter 15
Using Toolbars

15-20

Performance Tip:

At runtime, when available browser space is less than the space needed
to display the contents of the toolbox, ADF Faces automatically displays
overflow icons that enable users to select and navigate to those items
that are out of view. The number of child components within a toolbox
component, and the complexity of the children, will affect the
performance of the overflow. You should set the size of the toolbox
component to avoid overflow when possible. See What Happens at
Runtime: How the Size of Menu Bars and Toolbars Is Determined.

Tip:

You can use the group component to group toolbars (or menu bars and
toolbars) that you want to appear on the same row. If you do not use the
group component, the toolbars will appear on subsequent rows.

For information about how the flex attribute works, see What Happens at
Runtime: How the Size of Menu Bars and Toolbars Is Determined.

4. Insert components into the toolbar as needed. To create a button on the toolbar,
drag a Button from the General Controls section of the Components window and
drop it as a direct child of the toolbar component.

Tip:

You can use the group component to wrap related buttons on the bar.
Doing so inserts a separator between the groups, as shown in
Figure 15-17.

Toolbars also allow you to use the iterator and switcher components
as direct children, as long as these components wrap child components
that would usually be direct children of the toolbar.

Tip:

You can place other components, such as buttons and links, input
components, and select components in a toolbar. However, they may not
have the capability to stretch. For details about stretching the toolbar,
see Step 9.

5. For each button component, expand the Common section of the Properties
window and set the following attributes:

• Text: Enter the label for this toolbar button.

Chapter 15
Using Toolbars

15-21

• Type: Specify a type for this toolbar button. When a toolbar button type is
specified, an icon can be displayed when the button is clicked. Use one of the
following acceptable type values:

– default: Assigns no type to this toolbar button.

– check: Toggles to the depressedIcon value if selected or to the default
icon value if not selected.

– radio: When used with other toolbar buttons in a group, makes the button
currently clicked selected, and toggles the previously clicked button in the
group to unselected.

Note:

When setting the type to radio, you must wrap the toolbar
button in a group tag that includes other toolbar buttons whose
types are set to radio as well.

• Selected: Set to true to have this toolbar button appear as selected. The
selected attribute is supported for checkmark- and radio-type toolbar buttons
only.

• Icon: Set to the URI of the image file if you want to render an icon inside the
component. If you render an icon, you can also set values for hoverIcon,
disabledIcon, depressedIcon, and iconPosition in the Appearance section.

Tip:

You can use either the text attribute (or textAndAccessKey attribute)
or the icon attribute, or both.

• IconPosition: If you specified an icon, you can determine the position of the
icon relative to the text by selecting a value from the dropdown list:

– <default> (leading): Renders the icon before the text.

– trailing: Renders the icon after the text.

– top: Renders the icon above the text.

– bottom: Renders the icon below the text.

• Action: Use an EL expression that evaluates to an action method in an object
(such as a managed bean) that will be invoked when a user presses this
button. The expression must evaluate to a public method that takes no
parameters, and returns a java.lang.Object object.

If you want to cause navigation in response to the action generated by the
button, instead of entering an EL expression, enter a static action outcome
value as the value for the action attribute. You then must set either
partialSubmit to false, or use a redirect. For information about configuring
navigation, see Defining Page Flows.

• ActionListener: Specify the expression that refers to an action listener
method that will be notified when a user presses this button. This method can
be used instead of a method bound to the action attribute, allowing the

Chapter 15
Using Toolbars

15-22

action attribute to handle navigation only. The expression must evaluate to a
public method that takes an ActionEvent parameter, with a return type of
void.

6. Expand the Appearance section and set the following properties:

• HoverIcon: Use the dropdown list to select the icon to display when the
mouse cursor is directly on top of this toolbar button. If the icon is not in this
menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

• DepressedIcon: Use the dropdown list to select the icon to display when the
toolbar button is activated. If the icon is not in this menu, use the dropdown
menu to the right of the list to choose Edit, and browse to select the icon.

7. Expand the Behavior section and set ActionDelivery to none if you do not want to
fire an action event when the button is clicked. This is useful if you want the button
to simply open a popup window. If set to none, you must have a popup component
in the popup facet of the toolbar button (see Step 8), and you cannot have any
value set for the action or actionListener attributes. Set to clientServer
attribute if you want the button to fire an action event as a standard command
component.

8. To have a toolbar button invoke a popup menu, insert a menu component into the
popup facet of the button component. For information, see How to Create and Use
Menus in a Menu Bar.

9. If you want a toolbar to stretch so that it equals the width of the containing parent
component, set stretchId to be the ID of the component within the toolbar that
should be stretched. This one component will stretch, while the rest of the
components in the toolbar remain a static size.

For example, in the File Explorer application, the inputText component that
displays the selected folder's name is the one that should stretch, while the
outputText component that displays the words "Current Folder" remains a static
size, as shown in the following example.

<af:toolbar id="headerToolbar2" flex="2" stretchId="pathDisplay">
 <af:outputText id="currLocation" noWrap="true"
 value="#{explorerBundle['menuitem.location']}"/>
 <af:inputText id="pathDisplay" simple="true" inlineStyle="width:100%"
 contentStyle="width:100%"
 binding="#{explorer.headerManager.pathDisplay}"
 value="#{explorer.headerManager.displayedDirectory}"
 ="true"
 validator="#{explorer.headerManager.validatePathDisplay}"/>
</af:toolbar>

You can also use the stretchId attribute to justify components to the left and right
by inserting a spacer component, and setting that component ID as the stretchId
for the toolbar, as shown in the following example.

<af:toolbar flex="1" stretchId="stretch1">
 <af:button text="Forward"
 icon="/images/fwdarrow_gray.gif"
 disabled="true"></af:button>
 <af:button icon="/images/uplevel.gif" />

<!-- Insert a stretched spacer to push subsequent buttons to the right -->

 <af:spacer id="stretch1" clientComponent="true"/>

Chapter 15
Using Toolbars

15-23

 <af:button text="Reports" />
 <af:button id="toggleRefresh"
 text="Refresh:OFF" />
</af:toolbar>

What Happens at Runtime: How the Size of Menu Bars and Toolbars
Is Determined

When a page with a menu bar or toolbar is first displayed or resized, the space
needed for each bar is based on the value of the bar's flex attribute. The percentage
of size allocated to each bar is determined by dividing its flex attribute value by the
sum of all the flex attribute values. For example, say you have three toolbars in a
toolbox, and those toolbars are grouped together to display on the same line. The first
toolbar is given a flex attribute value of 1, the second toolbar also has a flex attribute
value of 1, and the third has a flex attribute value of 2, giving a total of 4 for all flex
attribute values. In this example, the toolbars would have the following allocation
percentages:

• Toolbar 1: 1/4 = 25%

• Toolbar 2: 1/4 = 25%

• Toolbar 3: 2/4 = 50%

Once the allocation for the bars is determined, and the size set accordingly, each
element within the toolbars are placed left to right. Any components that do not fit are
placed into the overflow list for the bar, keeping the same order as they would have if
displayed, but from top to bottom instead of left to right.

Note:

If the application is configured to read right to left, the toolbars will be placed
right to left. See Language Reading Direction.

What You May Need to Know About Toolbars
Toolbars are supported and rendered by parent components such as panelHeader,
showDetailHeader, and showDetailItem, which have a toolbar facet for adding
toolbars and toolbar buttons to section headers and accordion panel headers.

Note the following points about toolbars at runtime:

• A toolbar and its buttons do not display on a header if that header is in a collapsed
state. The toolbar displays only when the header is in an expanded state.

• When the available space on a header is less than the space needed by a toolbar
and all its buttons, ADF Faces automatically renders overflow icons that allow
users to select hidden buttons from an overflow list.

• Toolbars do not render on printable pages.

Chapter 15
Using Toolbars

15-24

Accessing Keyboard in Toolbar

The arrow keys are used to move focus between toolbar items. The toolbar is a single
tabstop with the left and right arrow keys being used to access the items on the
toolbar. For items in overflow, the up and down arrow keys also work to move focus.

You can use the arrow key when you reach the toolbar’s last (or first) component. The
arrow key will move its focus to the next (or previous) component outside the toolbar
and will not circle around the components.

Chapter 15
Using Toolbars

15-25

16
Using Popup Dialogs, Menus, and
Windows

This chapter describes how to create and use popups in secondary windows including
dialogs, menus, and windows on JSF pages. Available options include the ability to
declaratively or programmatically invoke a popup, display contextual information, reset
input fields and control the automatic cancellation of inline popups.
This chapter includes the following sections:

• About Popup Dialogs, Menus, and Windows

• Declaratively Creating Popups

• Declaratively Invoking a Popup

• Programmatically Invoking a Popup

• Displaying Contextual Information in Popups

• Controlling the Automatic Cancellation of Inline Popups

• Resetting Input Fields in a Popup

About Popup Dialogs, Menus, and Windows
The ADF Faces popup component provides a popup window as a secondary window.
Using the popup component along with the other components, you can allow users to
submit input values or provide additional information to them.

You can use the popup component with a number of other ADF Faces components to
create a variety of dialogs, menus, and windows that provide information or request
input from end users. Using these components, you can configure functionality to allow
your end users to show and hide information in secondary windows, input additional
data, or invoke functionality. The capabilities offered by these components allow you to
render content or functionality that is supplemental to the content rendered on the
primary interface and, as a result, develop uncluttered and user friendly interfaces.

The popup component is an invisible layout control, used in conjunction with other
components to display inline (that is, belonging to the same page) dialogs, windows,
and menus. The popup component is invoked from within the primary interface and the
application manages the content that renders in the popup component like content in
the primary interface without interference from popup blockers. It is recommended that
the content type you render in a popup component be HTML. Other types of content,
such as Flash or PDF files, may not render appropriately in a popup component.

Figure 16-1 shows examples where the popup component works with other ADF Faces
components to render secondary windows.

16-1

Figure 16-1 ADF Faces Components for Dialogs, Menus, and Windows

To provide support for building pages for a process displayed separate from the parent
page, ADF Faces provides a dialog framework. This framework supports multiple
dialog pages with a control flow of their own. For example, say a user is checking out
of a website after selecting a purchase and decides to sign up for a new credit card
before completing the checkout. The credit card transaction could be launched using
the dialog framework in an external browser window. The completion of the credit card
transaction does not close the checkout transaction on the original page.

This dialog framework can also be used inline as part of the parent page. This can be
useful when you want the pages to have a control flow of their own, but you do not
want the external window blocked by popup blockers.

If your application uses the full Fusion technology stack, note that this dialog
framework is integrated with ADF Controller for use with ADF task flows. See Running
a Bounded Task Flow in a Modal Dialog in Developing Fusion Web Applications with
Oracle Application Development Framework.

Using a context parameter named LAST_WINDOW_SESSION_TIMEOUT in your application's
web.xml file, you can specify the maximum inactive period of time before session
timeout when an application has only one open window. The maximum inactive period
of time that you specify for the context parameter should be less than the value you
specify for session timeout. If you enable this feature and there is only one window
open in a session, the session timeout is set to the value that you specify for this
context parameter. The following example shows how to set the value of the
LAST_WINDOW_SESSION_TIMEOUT context parameter in a web.xml file to 1800 seconds.

Chapter 16
About Popup Dialogs, Menus, and Windows

16-2

For more information about configuring your application's web.xml file, see
Configuration in web.xml.

<!-- Sets the session timeout to 1800 seconds when there is only one window open
in the session and 1800 seconds is smaller then the original session timeout. This
gives your application the option to end the session when an end user closes the
last window. Specify a value in seconds. A negative value disables this feature.
The default value is -1. -->
 <context-param>
 <param-name>LAST_WINDOW_SESSION_TIMEOUT</param-name>
 <param-value>1800</param-value>
 </context-param>

You can also configure your application by setting the context parameter using Java
API. See What You May Need to Know About ADF Faces Window Manager
Configuration.

Popup Dialogs, Menus, Windows Use Cases and Examples
You can place a dialog component as a child to a popup component and render a
dialog in a popup at runtime. The dialog component must be the only immediate child
component of the popup component. At runtime, end users can view or enter
information (for example, search criteria) and use the dialog component's default
buttons to invoke a dialogEvent when clicked. Figure 16-2 shows an example where
an end user can dismiss the dialog by clicking the Close button.

Figure 16-2 af:dialog Component

You can also use components within a popup to display contextual information related
to another component. When so configured, the related component displays a small
square. When moused over, the icon grows and also displays a note icon, as shown in
Figure 16-3.

Figure 16-3 With Mouseover, Larger Icon with Note Is Displayed

Chapter 16
About Popup Dialogs, Menus, and Windows

16-3

When the user clicks the note icon, the associated popup displays its enclosed
content.

Additional Functionality for Popup Dialogs, Menus, and Windows
You may find it helpful to understand other ADF Faces features before you use a
popup component to create dialogs, menus, and windows. Additionally, once you have
added a popup component (or related components) to your page, you may find that
you need to add functionality such as accessibility and localization. Following are links
to other functionality that these components can use.

• Using parameters in text: You can use the ADF Faces EL format tags if you want
the text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Events: The dialog component renders ADF Faces button components. You can
also use a button component in conjunction with the showPopupBehavior tag to
launch a popup. The button component used in conjunction with the
showPopupBehavior tag delivers ActionEvent events when activated. For
information about how to handle events on the server as well as on the client, see
Handling Events.

• Messages: Popup dialogs and secondary windows are frequently used to provide
different levels of help information for users. For information about how to display
messages to users, see Displaying Tips, Messages, and Help.

• Localization: Instead of directly entering text for labels in the popup dialogs,
menus, and windows that you create, you can use property files. These files allow
you to manage translation of the text strings. See Internationalizing and Localizing
Pages.

• Skins: You can change the look and feel of the components that you use to create
popup dialogs, menus, and windows by changing the skin. See Customizing the
Appearance Using Styles and Skins.

• Accessibility: You can make your popup dialogs, menus, and windows
accessible. See Developing Accessible ADF Faces Pages.

• Dialog framework: If your application uses the full Fusion technology stack, note
that the dialog framework is integrated with ADF Controller for use with ADF task
flows. See Using Dialogs in Your Application in Developing Fusion Web
Applications with Oracle Application Development Framework.

• Touch Devices: ADF Faces components may behave and display differently on
touch devices. See Creating Web Applications for Touch Devices Using ADF
Faces.

• Drag and Drop: You can configure your components so that the user can drag
and drop them to another area on the page. See Adding Drag and Drop
Functionality.

What You May Need to Know About ADF Faces Window Manager
Configuration

ADF Faces window lifecycle states are managed by the window manager. This is in
agreement with page flow control, particularly for the management of bounded
taskflows. To configure the ADF Faces window manager, you use <context-param>

Chapter 16
About Popup Dialogs, Menus, and Windows

16-4

elements in the web.xml file. However, for applications that insulate page developers
from the web.xml file, you can configure the ADF Faces window manager by using the
Java API, which is similar to J2EE web application session management.

You can use the oracle.adf.view.rich.context.WindowManagerContext to define
the programmatic interface for setting the window manager configuration. The
following list indicates the examples of Java API calls to configure the context for the
ADF Faces window manager:

• To specify an external context:

extContext = FacesContext.getCurrentInstance().getExternalContext();

• To specify a request context:

rc = RequestContext.getCurrentInstance();

• To specify a window manager context:

wmContext = new WindowManagerContext(rc.getWindowManager());
wmContext.setMaxWindowCacheSize(extContext, 100);

The following table lists the context parameters that you use in the web.xml and their
Java API equivalent:

web.xml context-param Java API Description

LAST_WINDOW_SESSION_TIM
EOUT

getLastWindowSessionTim
eoutInterval

setLastWindowSessionTim
eoutInterval

Specifies the session timeout
in seconds applied when the
last window moves to an
unloaded state.

Unloaded windows represent
closed browser windows or
browser windows that have
navigated away from the
application.

The value will be applied to
the
setMaxInactiveInterval
of the active session. The
default value is -1, indicating
the feature is disabled.

UNLOADED_WINDOW_CLOSE_T
IMEOUT

getUnloadedWindowCloseT
imeoutInterval

setUnloadedWindowCloseT
imeoutInterval

Specifies the number of
seconds before an unloaded
window will implicitly transition
to a closed state.

Moving the window to the
closed state releases
associated resources cached
in session state.

The default is 300 seconds (5
minutes). Setting the value
equal to the web application
session timeout disables the
feature.

Chapter 16
About Popup Dialogs, Menus, and Windows

16-5

web.xml context-param Java API Description

MAX_WINDOW_CACHE_SIZE getMaxWindowCacheSize

setMaxWindowCacheSize

Specifies the maximum
number of windows that can
be open in a session cache.

Once the threshold has been
reached, the most infrequently
used window will implicitly
move to a closed state for the
most recent window open
request. The default is 1000.

Note:

When a window transitions to a closed state, all sub-session resources
associated with that window are released. If the browser window reenters
into a bounded taskflow, where the window was previously closed, ADF
Controller treats the request similar to a session timeout and redirects to a
safe reentry point, such as the home page.

Declaratively Creating Popups
ADF Faces provides a showPopupBehavior tag that allows you to declaratively create
popup along with action events on buttons in the components. You can use different
components in a popup component.

The dialog, panelWindow, menu, and noteWindow components can all be used inside
the popup component to display inline popups, as shown in Table 16-1. When no child
component exists for the popup component, a very simple inline popup appears.

Table 16-1 Components Used with the popup Component

Component Displays at Runtime

dialog Displays its children inside a dialog and delivers events when the
OK, Yes, No, and Cancel actions are activated. See How to
Create a Dialog.

Chapter 16
Declaratively Creating Popups

16-6

Table 16-1 (Cont.) Components Used with the popup Component

Component Displays at Runtime

panelWindow Displays its children in a window that is similar to a dialog, but
does not support events. See How to Create a Panel Window.

menu Displays a context menu for an associated component. See How
to Create a Context Menu.

noteWindow Displays read-only information associated with a particular UI
component. Note windows are used to display help and
messages and are commonly shown on mouseover or on focus
gestures. See How to Create a Note Window.

popup component without
one of the following
components as an
immediate child component:
dialog, panelWindow,
menu, or noteWindow

Displays content inline.

Chapter 16
Declaratively Creating Popups

16-7

Both the dialog and panelWindow components support definition help, content
displayed when a user moves the cursor over a help icon (a blue circle with a question
mark). The dialog and panelWindow components do not support instruction help. See
Displaying Tips, Messages, and Help.

Typically, you use a button component in conjunction with the showPopupBehavior tag
to launch a popup. You associate the showPopupBehavior tag with the component it
should launch. This tag also controls the positioning of the popup (when needed).

In addition to being used with action events on button components, the
showPopupBehavior tag can be used with other events, such as the showDetail event
and the selection event. See Declaratively Invoking a Popup.

As an alternative to using the showPopupBehavior tag with an action component, you
can launch, cancel, or hide a popup by writing a backing bean method. The backing
bean method you write takes the actionEvent returned by the action component as an
argument. For more information about this alternative, see Programmatically Invoking
a Popup.

By default, the content of the popup is not sent from the server until the popup is
displayed. This represents a trade-off between the speed of showing the popup when
it is opened and the speed of rendering the parent page. Once the popup is loaded, by
default the content will be cached on the client for rapid display.

You can modify this content delivery strategy by setting the contentDelivery attribute
on the popup component to one of the following options:

• lazy - The default strategy previously described. The content is not loaded until
you show the popup once, after which it is cached.

• immediate - The content is loaded onto the page immediately, allowing the content
to be displayed as rapidly as possible. Use this strategy for popups that are
consistently used by all users every time they use the page.

• lazyUncached - The content is not loaded until the popup displays, and then the
content reloads every time you show the popup. Use this strategy if the popup
shows data that can become stale or outdated.

If you choose to set the popup component's contentDelivery attribute to lazy, you
can further optimize the performance of the popup component and the page that hosts
it by setting another popup component attribute (childCreation) to deferred. This
defers the creation of the popup component's child components until the application
delivers the content. The default value for the childCreation attribute is immediate.

How to Create a Dialog
Create a dialog when you need the dialog to raise events when dismissed. Once you
add the dialog component as a child to the popup component, you can add other
components to display and collect data.

By default, the dialog component can have the following combination of buttons:

• Cancel

• OK

• OK and Cancel

• Yes and No

Chapter 16
Declaratively Creating Popups

16-8

• Yes, No, and Cancel

• None

These buttons launch a dialogEvent when clicked. You can add other buttons to a
dialog using the buttonBar facet. Any buttons that you add do not invoke the
dialogEvent. Instead, they invoke the standard actionEvent. To make sure that the
actionEvent invokes only on components within the dialog, set the partialSubmit
attribute of any button that you add to true. However, you can add buttons and set
their partialSubmit attribute to false if you set the af:popup component's
autoCancel property's value to disabled. Choosing this latter option (partialSubmit
set to false) results in increased wait times for end users because your application
reloads the page and reinitializes components on the page before it restores the popup
component's visibility (and by extension, the dialog component). Note that you must
set the button's partialSubmit attribute to true if the af:popup component's
autoCancel property's value is set to enabled (the default value). For information
about the use of the af:popup component's autoCancel property, see Controlling the
Automatic Cancellation of Inline Popups.

Before you begin:

It may be helpful to understand how the dialog component's attributes and other
components affect the functionality of inline dialogs. See Declaratively Creating
Popups.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To create an inline dialog:

1. In the Components window, from the Layout panel, in the Secondary Windows
group, drag a Popup and drop it onto the page.

Tip:

It does not matter where the popup component appears on the page, as
the position is driven by the component used to invoke the popup.
However, the popup component must be within a form component.

2. In the Properties window, expand the Common section and set the following
attributes:

• ContentDelivery: Select how the content is delivered to the component in the
popup.

Tip:

Values of input components in a dialog are not reset when a user
clicks the dialog's Cancel button. If the user opens the dialog a
second time, those values will still display. If you want the values to
match the current values on the server, then set the
contentDelivery attribute to lazyUncached.

Chapter 16
Declaratively Creating Popups

16-9

• Animate: Configure animation for the popup dialog. See What You May Need
to Know About Animation and Popups.

• LauncherVar: Enter a variable to be used to reference the launch component.
This variable is reachable only during event delivery on the popup or its child
components, and only if the EventContext is set to launcher.

• EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the dialog within the popup will display information for the selected
row in a table. Setting this attribute to launcher makes the row clicked current
before the event listener is called, and returns data only for that row. See What
Happens at Runtime: Popup Component Events.

3. Optionally, in the Properties window, set the following attributes:

• AutoCancel: Select disabled to prevent the automatic cancellation of an
inline popup. See Controlling the Automatic Cancellation of Inline Popups.

• ChildCreation: Select deferred to defer the creation of the popup
component's child components until the application delivers the content. The
default value for the childCreation attribute is immediate. See Declaratively
Creating Popups.

• ResetEditableValues: Select whenCanceled to reset editable values that an
end user entered to null if the end user cancels the dialog.

Alternatively, you can use the resetListener component. For information
about using the resetListener component, see Resetting Input Fields in a
Popup.

4. In the Components window, drag and drop a Dialog as a direct child to the popup
component.

5. In the Properties window, expand the Common section and set the following
attributes:

• Type: Select the built-in partial-submit buttons you want to display in your
dialog.

For example, if you set the type attribute to yesNoCancel, the dialog displays
Yes, No, and Cancel buttons. When any of these buttons are pressed, the
dialog dismisses itself, and the associated outcome (either ok, yes, no, or
cancel) is delivered with an event. The ok, yes, and no outcomes are
delivered with the dialogEvent. Cancel outcomes are sent with the
PopupCanceled event. You can use the appropriate listener property to bind to
a method to handle the event, using the outcome to determine the logic.

Tip:

A dialog will not dismiss if there are any ADF Faces messages with a
severity of error or greater.

• Title: Enter text to be displayed as the title on the dialog window.

• CloseIconVisible: Select whether or not you want the Close icon to display in
the dialog.

• Modal: Select whether or not you want the dialog to be modal. Modal dialogs
do not allow the user to return to the main page until the dialog has been
dismissed.

Chapter 16
Declaratively Creating Popups

16-10

• Resize: Select whether or not you want users to be able to change the size of
the dialog. The default is off.

• StretchChildren: Select whether or not you want child components to stretch
to fill the dialog. When set to first, the dialog stretches a single child
component. However, the child component must allow stretching. See
Geometry Management and Component Stretching.

Note:

If you set Resize to on or set StretchChildren to first, you must
also set ContentWidth and ContentHeight (see Step 8). Otherwise,
the size will default to 250x250 pixels.

6. Expand the Appearance section and set the text attributes.

Instead of specifying separate button text and an access key, you can combine the
two, so that the access key is part of the button text. Simply precede the letter to
be used as an access key with an ampersand (&).

For example, if you want the text for the affirmative button to be OK, and you want
the O in OK to be the access key, enter &OK.

7. Expand the Behavior section and if needed, enter a value for the DialogListener
attribute. The value should be an EL expression method reference to a dialog
listener method that handles the event.

For example, suppose you create a dialog to confirm the deletion of an item. You
might then create a method on a managed bean similar to the deleteItem method
shown in the folloiwng example. This method accesses the outcome from the
event. If the outcome is anything other than yes, the dialog is dismissed. If the
outcome is yes (meaning the user wants to delete the item), the method then gets
the selected item and deletes it.

 public void deleteItem(DialogEvent dialogEvent)
 {
 if (dialogEvent.getOutcome() != DialogEvent.Outcome.yes)
 {
 return;
 }

 // Ask for selected item from FileExplorerBean
 FileItem selectedFileItem = _feBean.getLastSelectedFileItem();
 if (selectedFileItem == null)
 {
 return;
 }
 else
 {
 // Check if we are deleting a folder
 if (selectedFileItem.isDirectory())
 {
 _feBean.setSelectedDirectory(null);
 }
 }

 this.deleteSelectedFileItem(selectedFileItem);
 }

Chapter 16
Declaratively Creating Popups

16-11

The following example shows how to bind the dialogListener attribute to the
deleteItem method.

<af:dialog title="#{explorerBundle['deletepopup.popuptitle']}"
 type="yesNo"
 dialogListener="#{explorer.headerManager.deleteItem}"
 id="d1">

The dialogEvent is propagated to the server only when the outcome is ok, yes, or
no. You can block this if needed. See How to Prevent Events from Propagating to
the Server.)

If the user instead clicks the Cancel button (or the Close icon), the outcome is
cancel, the popupCancel client event is raised on the popup component. Any
values entered into input components rendered in the popup component do not get
sent to the server. Any editable components that have changed their values since
the popup component rendered do not send the changed values to the server. The
popupCancel event is delivered to the server.

8. If you want to set a fixed size for the dialog, or if you have set resize to on or set
stretchChildren to first, expand the Appearance section and set the following
attributes:

• ContentHeight: Enter the desired height in pixels.

• ContentWidth: Enter the desired width in pixels.

Tip:

While the user can change the values of these attributes at runtime (if
the resize attribute is set to on), the values will not be retained once the
user leaves the page unless you configure your application to use
change persistence. For information about enabling and using change
persistence, see Allowing User Customization on JSF Pages.

Note:

If you use an action component without the showPopupBehavior tag to
launch the dialog, and if that action component has values for the
windowHeight and windowWidth attributes, the values on the action
component override the contentHeight and contentWidth values. The
dialog framework allows you to use an action component to launch a
dialog without the showPopupBehavior tag. See Running a Bounded
Task Flow in a Modal Dialog in Developing Fusion Web Applications with
Oracle Application Development Framework. For information about the
showPopupBehavior tag, see Declaratively Invoking a Popup.

9. If needed, add button components to the buttonBar facet. The button
components that you add invoke a standard actionEvent rather than a
dialogEvent. To make sure that an actionEvent invokes only on components
within the dialog, set the button component's partialSubmit attribute to true.
You can set the button component's partialSubmit attribute to false if the
af:popup component's autoCancel property is set to disabled. The values of an

Chapter 16
Declaratively Creating Popups

16-12

af:popup component's autoCancel property and a button component's
partialSubmit property determine how the button component dismisses and
reloads a dialog. See Controlling the Automatic Cancellation of Inline Popups.

Tip:

If the facet is not visible in the visual editor, right-click the dialog
component in the Structure window and choose Facets - Dialog >
ButtonBar. Facets in use on the page are indicated by a checkmark in
front of the facet name.

By default, added button components do not dismiss the dialog. You need to bind
the actionListener on the button component to a handler that manages closing
the dialog, as well as any needed processing. For examples on how to do this, see
the tag documentation.

10. Insert components to display or collect data for the dialog. Use a layout
component like panelGroupLayout to contain the components.

Tip:

Normally, clicking a dialog's Cancel button or Close icon prevents any
data entered into an inputText component from being submitted.
However, setting the autoSubmit attribute to true on an inputText
component in a dialog overrides the dialog's cancel behavior, as this
setting causes a submit.

11. Add logic on the parent page to invoke the popup and dialog. See Declaratively
Invoking a Popup.

How to Create a Panel Window
The panelWindow component is similar to the dialog component, but it does not allow
you to configure the buttons or to add buttons to a facet. If you need to invoke logic to
handle data in the panelWindow, you need to create a listener for the popup
component's cancel event.

The popup component that contains the panelWindow component must be contained
within a form component.

Tip:

If you are using the panelWindow as an inline popup in an application that
uses the Fusion technology stack, and you want to emulate the look of a
dialog, place the panelWindow component in the center facet of a
panelStretchLayout component, and place button components in the
bottom facet.

Before you begin:

Chapter 16
Declaratively Creating Popups

16-13

It may be helpful to understand how the panelWindow component's attributes affect the
functionality of inline windows. See Declaratively Creating Popups.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To create an inline window:

1. In the Components window, from the Layout panel, in the Secondary Windows
group, drag a Popup and drop it onto the page.

Tip:

It does not matter where the popup component appears on the page, as
the position is driven by the component used to invoke the popup.
However, the popup component must be within a form component.

2. In the Properties window, expand the Common section and set the following
attributes:

• ContentDelivery: Select how the content is to be delivered to the component
in the popup.

Tip:

Values of input components are not reset when a user closes the
panelWindow component. If the user opens the window a second
time, those values will still display. If you want the values to match
the current values on the server, then set the contentDelivery
attribute to lazyUncached.

• Animate: Configure animation for the popup window. See What You May
Need to Know About Animation and Popups.

• LauncherVar: Enter a name (for example, source) for a variable. Similar to
the var attribute on a table, this variable is used to store reference in the
Request scope to the component containing the showPopupBehavior tag. The
variable is reachable only during event delivery on the popup or its child
components, and only if EventContext is set to launcher.

• EventContext: Select launcher if the popup is shared by multiple objects, for
example if the window within the popup will display information for the selected
row in a table. Setting this attribute to launcher makes the row clicked current
before the event listener is called, and returns data only for that row. See What
Happens at Runtime: Popup Component Events.

• PopupCancelListener: Set to an EL expression that evaluates to a handler
with the logic that you want to invoke when the window is dismissed.

• Optionally, select a value from the AutoCancel dropdown list to determine the
automatic cancel behavior. See Controlling the Automatic Cancellation of
Inline Popups.

3. In the Components window, from the Layout panel, in the Secondary Windows
group, drag and drop a Panel Window as a direct child to the popup component.

Chapter 16
Declaratively Creating Popups

16-14

4. In the Properties window, expand the Common section and set the following
attributes:

• Modal: Select whether or not you want the window to be modal. Modal
windows do not allow the user to return to the main page until the window has
been dismissed.

• CloseIconVisible: Select whether or not you want the Close icon to display in
the window.

• Title: The text displayed as the title in the window.

• Resize: Select whether or not you want users to be able to change the size of
the dialog. The default is off.

• StretchChildren: Select whether or not you want child components to stretch
to fill the window. When set to first, the window stretches a single child
component. However, the child component must allow stretching. See
Geometry Management and Component Stretching.

Note:

If you set Resize to on or set StretchChildren to first, you must
also set ContentWidth and ContentHeight (see Step 6). Otherwise,
the size will default to 250x250 pixels.

5. If you want to set a fixed size for the window, or if you have set Resize to on or set
StretchChildren to first, expand the Appearance section and set the following
attributes:

• ContentHeight: Enter the desired height in pixels.

• ContentWidth: Enter the desired width in pixels.

Tip:

While the user can change the values of these attributes at runtime (if
the resize attribute is set to on), the values will not be retained once the
user leaves the page unless you configure your application to use
change persistence. For information about enabling and using change
persistence, see Allowing User Customization on JSF Pages.

Note:

If an action component without the showPopupBehavior tag is used to
launch the dialog, and if that action component has values for the
windowHeight and windowWidth attributes, the values on the action
component will override the contentHeight and contentWidth values.
For information about the showPopupBehavior tag, see Declaratively
Invoking a Popup.

6. Insert components to display or collect data for the window. Use a layout
component like panelGroupLayout to contain the components.

Chapter 16
Declaratively Creating Popups

16-15

7. Add logic on the parent page to invoke the popup and panel window. See
Declaratively Invoking a Popup.

How to Create a Context Menu
You create a context menu by using menu components within the popup component.
You can then invoke the context menu popup from another component, based on a
given trigger. If instead, you want toolbar buttons in a toolbar to launch popup menus,
then see Using Toolbars.

Before you begin:

It may be helpful to understand how the popup component's attributes and other
components affect the functionality of context menus. See Declaratively Creating
Popups.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To create an inline context menu:

1. In the Components window, from the Layout panel, in the Secondary Windows
group, drag a Popup and drop it onto the page.

Tip:

It does not matter where the popup component appears on the page, as
the position is driven by the component used to invoke the popup.
However, the popup component must be within a form component.

2. In the Properties window, expand the Common section and set the following
attributes.

• ContentDelivery: Determines how the content is delivered to the component
in the popup.

• Animate: Configure animation for the context menu. See What You May Need
to Know About Animation and Popups.

• LauncherVar: Enter a variable name (for example, source) to be used to
reference the launch component. This variable is reachable only during event
delivery on the popup or its child components, and only if the EventContext is
set to launcher.

• EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the menu within the popup will display information for the selected
row in a table. Setting this attribute to launcher makes the row clicked current
before the event listener is called, and returns only data for that row. See What
Happens at Runtime: Popup Component Events.

• Optionally, select a value from the AutoCancel dropdown list to determine the
automatic cancel behavior. See Controlling the Automatic Cancellation of
Inline Popups.

3. In the Components window, drag and drop a Menu as a direct child to the popup
component, and build your menu using commandMenuItem components, as
described in How to Create and Use Menus in a Menu Bar.

Chapter 16
Declaratively Creating Popups

16-16

Tip:

Because this is a context menu, you do not need to create a menu bar or
multiple menus, as documented in Steps 1 through 5 in How to Create
and Use Menus in a Menu Bar.

4. Add logic on the parent page to invoke the popup and context menu. See
Declaratively Invoking a Popup.

How to Create a Note Window
Use the noteWindow component to display read-only text. The popup component that
contains the noteWindow component must be contained within a form component.

Before you begin:

It may be helpful to understand how the noteWindow component's attributes and other
components affect functionality. See Declaratively Creating Popups.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To create an inline window:

1. In the Components window, from the Layout panel, in the Secondary Windows
group, drag a Popup and drop it onto the page.

Tip:

It does not matter where the popup component appears on the page, as
the position is driven by the component used to invoke the popup.
However, the popup component must be within a form component.

2. In the Properties window, expand the Common section and set the following
attributes.

• ContentDelivery: Determines how the content is delivered to the component
in the popup.

• Animate: Configure animation for the note window. See What You May Need
to Know About Animation and Popups.

• LauncherVar: Enter a variable to be used to reference the launch component.
This variable is reachable only during event delivery on the popup or its child
components, and only if the EventContext is set to launcher.

• EventContext: Select launcher if the popup is shared by multiple objects, for
example if the window within the popup will display information for the selected
row in a table. Setting this attribute to launcher makes the row clicked current
before the event listener is called, and returns only data for that row. See What
Happens at Runtime: Popup Component Events.

• PopupCancelListener: Set to an EL expression that evaluates to a handler
with the logic that you want to invoke when the window is dismissed.

Chapter 16
Declaratively Creating Popups

16-17

• Optionally, select a value from the AutoCancel dropdown list to determine the
automatic cancel behavior. See Controlling the Automatic Cancellation of
Inline Popups.

3. In the Components window, from the Layout panel, in the Secondary Windows
group, drag and drop a Note Window as a direct child to the popup component.

4. To enter the text to display in the window:

a. Click the Source tab to view the page source code.

b. Remove the closing slash (/) from the af:noteWindow tag.

c. Below the af:noteWindow tag, enter the text to display, using simple HTML
tags, and ending with a closed af:noteWindow tag.

The following example shows text for a note window.

<af:popup id="popupHead" contentDelivery="lazyUncached">
 <af:noteWindow inlineStyle="width:200px" id="nw3">
 <p>In anatomy, the head of an animal is the rostral part (from
 anatomical position) that usually comprises the brain, eyes,
 ears, nose, and mouth (all of which aid in various sensory
 functions, such as sight, hearing, smell, and taste). Some very
 simple animals may not have a head, but many bilaterally
 symmetric forms do.</p>
 </af:noteWindow>
</af:popup>

Figure 16-4 shows how the note would display.

Figure 16-4 Text Displayed in a Note Window

5. Optionally, in the Properties window, expand the Behavior section and specify a
number of seconds in the AutoDismissalTimeout field. The value you specify
determines the time in seconds that the note window displays before the
application automatically dismisses it. Any value you specify overrides the default
automatic dismissal behavior. This override is revoked if the end user moves the
mouse over the content of the note window because this gesture reverts the
automatic dismissal behavior back to the default automatic dismissal behavior for
the note window. The default automatic dismissal behavior is to dismiss the note
window when focus changes from the launching source or from the content of the
popup.

Note:

The feature enabled by this property is not accessible friendly because a
mouse over triggers the timeout cancellation period and there is no
keyboard equivalent.

Chapter 16
Declaratively Creating Popups

16-18

6. Add logic on the parent page to invoke the popup and note window. See
Declaratively Invoking a Popup.

What Happens at Runtime: Popup Component Events
When content is delivered to the popup, and the contentDelivery attribute is set to
either lazy or lazyUncached, the popupFetch server-side event is invoked. This event
has two properties, eventContext and launcherVar. The eventContext property
determines the context from which the event is delivered, either from the context of the
popup (self) or from the component that launched the popup (launcher). Setting the
context to launcher can be very useful if the popup is shared by multiple components,
because the framework will behave as though the component that launched the popup
had launched the event, and not the popup. The launcherVar property is used to keep
track of the current launcher, similar to the way in which variables are used to stamp
out rows in a table.

For example, say you have a column in a table that displays a person's first name
using a link component. When the link component is hovered over, a popup
noteWindow is invoked that shows the person's full name. Because this noteWindow will
be used by all rows in the table, but it needs to display the full name only for the row
containing the link component that was clicked, you need to use the eventContext
property to make sure that the context is that row, as shown in the following example.

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <af:link text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>
 </af:link>
 </af:column>
</af:table>

Using the variable source, you can take values from the source and apply them, or you
can set values. For example, you could get the full name value of the people object
used in the table, and set it as the value of the testBean's fullName property used by
the window, using a setPropertyListener and clientAttribute tag, as shown in the
following example.

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
 <af:setPropertyListener from="#{source.attributes.fullName}"
 to="#{testBean.fullName}" type="popupFetch"/>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <f:facet name="header">
 <af:outputText value="First Name"/>
 </f:facet>
 <af:link text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>

Chapter 16
Declaratively Creating Popups

16-19

 <af:clientAttribute name="fullName" value="#{person.fullName}"/>
 </af:link>
 </af:column>
</af:table>

In this example, the launcherVar property source gets the full name for the current
row using the popupFetch event. For information about using the
setPropertyListener tag, see How to Use the pageFlowScope Scope Without Writing
Java Code. For information about using client attributes, see Using Bonus Attributes
for Client-Side Components. For information about the showPopupBehavior tag, see
Declaratively Invoking a Popup.

Popups also invoke the following client-side events:

• popupOpening: Fired when the popup is invoked. If this event is canceled in a
client-side listener, the popup will not be shown.

• popupOpened: Fired after the popup becomes visible. One example for using this
event would be to create custom rules for overriding default focus within the
popup.

• popupCanceled: Fired when a popup is unexpectedly dismissed by auto-dismissal
or by explicitly invoking the popup client component's cancel method. This client-
side event also has a server-side counterpart.

• popupClosed: Fired when the popup is hidden or when the popup is unexpectedly
dismissed. This client-side event also has a server-side counterpart.

When a popup is closed by an affirmative condition, for example, when the Yes button
is clicked, it is hidden. When a popup is closed by auto-dismissal, for example when
either the Close icon or the Cancel button is clicked, it is canceled. Both types of
dismissals result in raising a popupClosed client-side event. Canceling a popup also
raises a client-side popupCanceled event that has an associated server-side
counterpart. The event will not be propagated to the server unless there are registered
listeners for the event. If it is propagated, it prevents processing of any child
components to the popup, meaning any submitted values and validation are ignored.
You can create a listener for the popupCanceled event that contains logic to handle
any processing needed when the popup is canceled.

If you want to invoke some logic based on a client-side event, you can create a custom
client listener method. See Listening for Client Events. If you want to invoke server-
side logic based on a client event, you can add a serverListener tag that will invoke
that logic. See Sending Custom Events from the Client to the Server.

What You May Need to Know About Dialog Events
The dialog component raises a dialogEvent when the end user clicks the OK, Yes,
No or Cancel buttons. A dialog component automatically hides itself when the end
user clicks the OK, Yes or No buttons provided that no message with a severity of
error or greater exists on the page. An end user selecting the Cancel button or close
icon cancels the parent popup component and raises a popup canceled event.

You can configure a dialogListener attribute to intercept the dialogEvent returned
by the OK, Yes, No, and Cancel buttons. Only the dialogEvent returned by the OK,
Yes and No buttons get propagated to the server. The dialogEvent returned by the
Cancel button, the ESC key, and close icon queue a client dialog event and do not get
propagated to the server.

Chapter 16
Declaratively Creating Popups

16-20

If you configure an actionListener for the action component that invokes a dialog
component to carry out an action (for example, update an inputText component) after
the dialog component returns, you also need to call resetValue() on the inputText
component if the action component's immediate value is set to true.

For information about the events raised by the dialog and popup components, see the
Tag Reference for Oracle ADF Faces.

What You May Need to Know About Animation and Popups
The dialog, panelWindow, menu, and noteWindow components that render inside the
popup component to display popups can use animation when rendering. You enable
animation for these components in an application by setting the <animation-enabled>
element to true in the application's trinidad-config.xml file, as described in
Animation Enabled.

You can further customize or disable the animation of these components by writing
values for the -tr-animate and -tr-open-animation-duration ADF skin properties in
the application's ADF skin. The following example demonstrates how you can permit
animation for menu components in an application while you disable animation for
dialog components.

/** Animate menu components and specify 10 seconds as the duration to open a menu or
a popup menu */
af|menu {
 -tr-open-animation-duration: 10000;
 -tr-animate: true;
}

/** Disable animation for dialog components */
af|dialog {
 -tr-animate: false;
}

The animation behavior of specific instances of a popup component can be configured
by setting the appropriate value for the popup component's animate property, as
described in the following list:

• default: The <animation-enabled> element in the application's trinidad-
config.xml file and ADF skin properties in the application's ADF skin determine
the animation behavior of the popup component.

• false: Turns off animation for the popup regardless of the animation settings that
you have configured for the application in the trinidad-config.xml file or the
application's ADF skin. For example, assume that you set this value for a popup
component that displays a menu component. Animation is disabled for this specific
popup menu despite an application enabling animation and containing the ADF
skin properties for menu components, as shown in the previous code example..

• true: Overrides an -tr-animate: false entry in an application's ADF skin. For
example, if you set the animate property to true for a popup component that
renders a dialog component, the popup dialog uses animation when rendering
despite the ADF skin properties configured for dialog components, as shown in
the previous code example..

For information about the ADF skin properties for animation, see Tag Reference for
Oracle ADF Faces Skin Selectors.

Chapter 16
Declaratively Creating Popups

16-21

Controlling Display Behavior of Popups
You can allow either the users to dismiss a popup or control the behavior of a popup
by modifying the properties of the ADF Faces popup component. Use the
AutoDismissalTimeout, Pinning, Stealing Focus, and Positioning properties to
control the popup behavior.

You can control how the popups should display, how much time a popup component
should be visible before it is automatically dismissed, where the focus should be either
in the main window or popup window, and where the popup component should be
aligned in a screen. You can modify these behavior by modifying the properties of the
components:

• AutoDismissalTimeout This the number of seconds that a popup component
displays before the application automatically dismisses it. The default automatic
dismissal behavior is to dismiss the component when focus changes from the
launching source or from the content of the popup.

For information about specifying the time for a popup component, see How to
Dismiss a Popup Component Automatically.

Note:

The AutoDismissalTimeout attribute in noteWindow takes precedence if
you specify this attribute for popup component as well as noteWindow.

• Pinning A new pin icon is available in the header of dialog if you have specified
any valid value for the AutoDismissalTimeout property. When you click the pin
icon, the auto dismissal behavior will be revoked and will not be re-enabled until
you change the value in the Behaviour section again.

Note:

This feature is available only for dialog and panelwindow components.

• Stealing Focus A new property InitialFocus is available for which you can set the
value either as Auto or None. If you specify none, the focus remains in the main
page when a dialog is opened. If you specify auto, the focus changes to the dialog
from main. The default value is auto.

Note:

– This feature is available only for dialog and
panelwindow components.

– This property is valid only for non-modal dialogs.

– You can use the Ctrl + Alt + W key combination to toggle focus
between windows.

Chapter 16
Controlling Display Behavior of Popups

16-22

• Positioning By default, the popup components display in the middle of the screen.
If you specify a value for the AlignId property, the component is placed relative to
the component.

How to Dismiss a Popup Component Automatically
The application, by default, automatically dismisses a popup component when focus
changes from the launching source or from the content of the popup. However, you
can also specify the time in seconds that a popup component should display before the
application automatically dismisses it.

Before you begin:

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To specify time for a popup component:

1. In the Structure window, right-click the af:popup component for which you want to
specify time and choose Go to Properties.

2. In the Properties window, expand the Behavior section and specify the number of
seconds in the AutoDismissalTimeout property.

Any value that you specify overrides the default automatic dismissal behavior. This
override is revoked if the end user moves the mouse over the content of the popup
component, because this gesture reverts the automatic dismissal behavior back to the
default automatic dismissal behavior for the component.

What Happens When a Popup Component is Automatically Dismissed
When an inline popup is dismissed automatically after the specified time in the
AutoDismissalTimeout attribute, the system raises an AdfPopupClosedEvent
client-only event. This event is not synchronized back to the server. To send any
custom data back to the server, create a new listener tag as given in the example
below that leverages the existing af:serverListener tag and bind it to the
af:clientListener tag without any JavaScript code needed:

<af:popup id="test" contentDelivery="lazyUncached">
 <af:dialog title="test">
 <af:inputText id="testInput" label="test"
binding="#{mybean.testInput}"/>
 </af:dialog>
 <af:clientServerListener method="#{mybean.clientDelegateListener}"
immediate="true" triggerType="click"/>
</af:popup>

Declaratively Invoking a Popup
You can use the default behavior of a popup to open a popup component or use the
ADF Faces showPopupBehavior tag to control its behavior.

With ADF Faces components, JavaScript is not needed to show or hide popups. The
showPopupBehavior tag provides a declarative solution, so that you do not have to

Chapter 16
Declaratively Invoking a Popup

16-23

write JavaScript to open a popup component or register a script with the popup
component. For information about client behavior tags, see Using ADF Faces Client
Behavior Tags.

The showPopupBehavior tag listens for a specified event, for example the actionEvent
on an action component, or the disclosureEvent on a showDetail component.
However, the showPopupBehavior tag also cancels delivery of that event to the server.
Therefore, if you need to invoke some server-side logic based on the event that the
showPopupBehavior tag is listening for, then you need to use either JavaScript to
launch the popup, or programmatically launch the popup component, as described in
Programmatically Invoking a Popup.

How to Declaratively Invoke a Popup Using the
af:showPopupBehavior Tag

You use the showPopupBehavior tag in conjunction with the component that invokes
the popup, for example a button component that invokes a dialog, or an inputText
component that, when right-clicked, will invoke a context menu.

Before you begin:

It may be helpful to have an understanding of the configuration options available to
you if you want to invoke a popup component declaratively. See Declaratively Invoking
a Popup.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

You will need to complete this task:

Create the type of popup that you want to invoke declaratively, as described in
Declaratively Creating Popups, and create the component that invokes the popup.

To use the showPopupBehavior tag:

1. In the Components window, from the Operations panel, in the Behavior group,
drag a Show Popup Behavior and drop it as a child to the component that
invokes the popup.

2. In the Properties window, choose Edit from the context menu that appears when
you click the icon that appears when you hover over the PopupId property field.
Use the Edit Property: PopupId dialog to select the popup component to invoke
and click OK.

3. In the Properties window, from the TriggerType dropdown menu, choose the
trigger to invoke the popup. The default is action which can be used for action
components. Use contextMenu to trigger a popup when the right-mouse is clicked.
Use mouseHover to trigger a popup when the cursor is over the component. The
popup closes when the cursor moves off the component. For a detailed list of
component and mouse/keyboard events that can trigger the popup, see the
documentation for the showPopupBehavior tag in the Tag Reference for Oracle
ADF Faces.

Chapter 16
Declaratively Invoking a Popup

16-24

Note:

The event selected for the showPopupBehavior tag's triggerType
attribute will not be delivered to the server. If you need to invoke server-
side logic based on this event, then you must invoke the popup using
either JavaScript or a custom event as documented in Sending Custom
Events from the Client to the Server or invoke the popup
programmatically as documented in Programmatically Invoking a Popup.

4. Choose Edit from the context menu that appears when you click the icon that
appears when you hover over the AlignId property field. Use the Edit Property:
AlignId dialog to select the component with which you want the popup to align.

5. In the Align dropdown menu, choose how the popup should be positioned relative
to the component selected in the previous step.

Note:

The dialog and panelWindow components do not require alignId or
align attributes, as the corresponding popup can be moved by the user.
If you set AlignId, the value will be overridden by any manual drag and
drop repositioning of the dialog or window. If no value is entered for
AlignId or Align, then the dialog or window is opened in the center of
the browser.

Additionally, if the triggerType attribute is set to contextMenu, the
alignment is always based on mouse position.

What Happens When You Use af:showPopupBehavior Tag to Invoke
a Popup

At design time, JDeveloper generates the corresponding values in the source files that
you selected in the Properties window. The following example shows sample code that
displays some text in the af:popup component with the id attribute "popup2" when the
button "Show Popup" is clicked.

<af:button text="Click me" clientComponent="true" id="popupButton2">
 <showPopupBehavior popupId="popup2" alignId="popupButton2" align="afterStart"/>
</af:button>
...
<af:popup id="popup2">
 <af:panelGroupLayout layout="vertical">
 <af:outputText value="Some"/>
 <af:outputText value="popup"/>
 <af:outputText value="content"/>
 </af:panelGroupLayout>
</af:popup>

The code in the example tells ADF Faces to align the popup contents with the button
identified by the id attribute, and to use the alignment position of afterStart, which
aligns the popup underneath the button, as shown in Figure 16-5.

Chapter 16
Declaratively Invoking a Popup

16-25

Figure 16-5 Button and Popup Contents

The tail attribute when used with af:showPopupBehavior tag displays the popup
window with a triangle. It has valid values none or simple or any custom value. The
default value of the tail attribute is none except for the notewindow popup type that
has the default value simple. The following example shows sample code that displays
some text in the af:button component with the id attribute launchElement and tail
attribute is set to simple when the button Show Popup is clicked.

<af:button id="launchElement" text="Show Popup" clientComponent="true">
 <af:showPopupBehavior popupId="popup" align="afterCenter"
alignId="launchElement" triggerType="action" tail="simple"/>
</af:button>

The code in the example tells ADF Faces to align the popup contents with the button
identified by the id attribute, and to use the alignment position of afterCenter which
aligns the popup after the button, as shown in Figure 16-6

Figure 16-6 Popup with Tail Attribute

Programmatically Invoking a Popup
You can programmatically invoke a popup in ADF Faces components to deliver the
results of an actionEvent to the server or you can show, hide, or cancel a popup as a
result of the server-side response.

You can programmatically show, hide, or cancel a popup in response to an
actionEvent generated by an action component. Implement this functionality if you
want to deliver the actionEvent to the server immediately so you can invoke server-
side logic and show, hide, or cancel the popup in response to the outcome of invoking
the server-side logic.

Programmatically invoking a popup as described here differs to the method of invoking
a popup described in Declaratively Invoking a Popup where the showPopupBehavior
tag does not deliver the actionEvent to the server immediately.

Chapter 16
Programmatically Invoking a Popup

16-26

You create the type of popup that you want by placing one of the components (dialog,
panelWindow, menu, or noteWindow) inside the popup component as described in
Declaratively Creating Popups. Make sure that the popup component is in the right
context when you invoke it. One of the easier ways to do this is to bind it to the
backing bean for the page, as in the following example.

<af:popup
 id="p1"
 binding="#{mybean.popup}"
 ...
/>

Once you have done this, you configure an action component's actionListener
attribute to reference the popup component by calling an accessor for the popup
binding.

Write code for the backing bean method that invokes, cancels, or hides the popup.
The following example shows a showPopup backing bean method that uses the
HINT_LAUNCH_ID hint to identify the action component that passes the actionEvent to
it and p1 to reference the popup on which to invoke the show method.

public void showPopup(ActionEvent event) {
{
 FacesContext context = FacesContext.getCurrentInstance();
 UIComponent source = (UIComponent)event.getSource();
 String alignId = source.getClientId(context);
 RichPopup.PopupHints hints = new RichPopup.PopupHints();
 hints.add(RichPopup.PopupHints.HintTypes.HINT_ALIGN_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_LAUNCH_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_ALIGN,
 RichPopup.PopupHints.AlignTypes.ALIGN_AFTER_END);
 p1.show(hints);
}

Example 16-1 shows a backing bean method that cancels a popup in response to an
actionEvent while Example 16-2 shows a backing bean method that hides a popup in
response to an actionEvent. The p1 object in the following examples refers to an
instance of the RichPopup class from the following package:

oracle.adf.view.rich.component.rich.RichPopup

For information about RichPopup, see Java API Reference for Oracle ADF Faces.

Example 16-1 Backing Bean Method Canceling a Popup

public void cancelPopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.cancel();
 }

Example 16-2 Backing Bean Method Hiding a Popup

public void hidePopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.hide();
 }

Chapter 16
Programmatically Invoking a Popup

16-27

How to Programmatically Invoke a Popup
You configure the action component's actionListener attribute to reference the
backing bean method that shows, cancels or hides the popup.

Before you begin:

It may be helpful to have an understanding of the configuration options available to
you if you want to invoke a popup component programmatically. See Programmatically
Invoking a Popup.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

You will need to complete this task:

Create the type of popup that you want the server-side method to invoke, as
described in Declaratively Creating Popups.

To programmatically invoke a popup:

1. In the Components window, from the General Controls panel, drag and drop an
action component onto the JSF page. For example, a Button.

2. In the Properties window, expand the Behavior section and set the following
attributes:

• PartialSubmit: Select true if you do not want the Fusion web application to
render the entire page after an end user clicks the action component. The
default value (false) causes the application to render the whole page after an
end user invokes the action component. For information about page rendering,
see Rerendering Partial Page Content.

• ActionListener: Set to an EL expression that evaluates to a backing bean
method with the logic that you want to execute when the end user invokes the
action component at runtime.

3. Write the logic for the backing bean that is invoked when the action component in
Step 2 passes an actionEvent.

What Happens When You Programmatically Invoke a Popup
At runtime, end users can invoke the action components you configure to invoke the
server-side methods to show, cancel, or hide a popup. For example, Figure 16-7
shows a panelWindow component that renders inside a popup component. The
panelWindow component exposes two buttons (Cancel and Hide) that invoke the
cancel and hide methods respectively. End users invoke a link component rendered
in the SupplierName column of the table component in the underlying page to show
the popup.

Chapter 16
Programmatically Invoking a Popup

16-28

Figure 16-7 Popup Component Invoked by a Server-Side Method

Displaying Contextual Information in Popups
The ADF Faces contextInfo component allows you to display additional information to
the users in a popup window. Using this component, you can display a message, a
warning, a hint, and other additional information to the users when they right-click the
component.

There may be cases when you think the user may need more information to complete
a task on a page, but you don't want to clutter the page with information that may not
be needed each time the page is accessed, or with multiple buttons that might launch
dialogs to display information. While you could put the information in a popup that a
user launches when they right-click a component, the user would have no way of
knowing the information was available in a popup.

The contextInfo component allows you to display additional information in a popup
and also notifies users that additional information is available. When you place the
contextInfo component into the context facet of a component that supports
contextual information, a small orange square is shown in the upper left-hand corner of
the component, as shown in Figure 16-8.

Figure 16-8 contextInfo Displays a Square

When the user places the cursor over the square, a larger triangle with a note icon and
tooltip is displayed, indicating that additional information is available, as shown in
Figure 16-9.

Figure 16-9 contextInfo Component Indicates Additional Information Is
Available

Chapter 16
Displaying Contextual Information in Popups

16-29

Because a showPopupBehavior tag is a child to the contextInfo component, the
referenced popup displays when the user clicks the information icon, as shown in
Figure 16-10.

Figure 16-10 Dialog launched From contextInfo Component

How to Create Contextual Information
You use the showPopupBehavior component as a child to the contextInfo component,
which allows the popup component to align with the component that contains the
contextInfo component.

Before you begin:

1. Create the component that will be the parent to the contextInfo component. The
following components support the contextInfo component:

• column

• link

• inputComboboxListOfValues

• inputListOfValues

• inputText

• outputFormatted

• outputText

• selectOneChoice

2. Create the popup to display, as documented in Declaratively Creating Popups.

3. You may also find it helpful to understand functionality that can be added using
other ADF Faces features. See Additional Functionality for Popup Dialogs, Menus,
and Windows.

To use a contextInfo component:

1. In the Components window, from the General Controls panel, drag a Context Info
and drop it into the Context facet of the component that is to display the additional
information icons.

Chapter 16
Displaying Contextual Information in Popups

16-30

Tip:

If the facet is not visible in the visual editor, right-click the component in
the Structure window and choose Facets - component name >
Context. Facets in use on the page are indicated by a checkmark in
front of the facet name.

2. If you need server-side logic to execute when the contextInfo component
displays, in the Properties window, expand the Behavior section and bind the
ContextInfoListener to a handler that can handle the event

Note:

If you use the showPopupBehavior tag to launch the popup, then delivery
of the contextInfoEvent to the server is cancelled. If you need to invoke
server-side logic based on this event, then you must launch the popup
by using either JavaScript or a custom event as documented in Sending
Custom Events from the Client to the Server.

3. In the Components window, from the Operations panel, in the Behavior group,
drag a Show Popup Behavior and drop it as a child to the contextInfo
component.

4. With the showPopupBehavior tag selected in the editor, in the Properties window,
set the attributes as described in How to Declaratively Invoke a Popup Using the
af:showPopupBehavior Tag. For the TriggerType, make sure to enter
contextInfo.

Controlling the Automatic Cancellation of Inline Popups
The inline popup is automatically cancelled by the ADF web application; however, you
can control this default behavior by disabling the automatic cancellation of an inline
popup component.

You can use the popup component with a number of other components to create inline
popups. That is, inline windows, dialogs, and context menus. These other components
include the:

• Dialog component to create an inline dialog

See How to Create a Dialog.

• panelWindow component to create an inline window

See How to Create a Panel Window.

• Menu components to create context menus

See How to Create a Context Menu.

• noteWindow component to create a note window

See How to Create a Note Window.

Chapter 16
Controlling the Automatic Cancellation of Inline Popups

16-31

By default, a Fusion web application automatically cancels an inline popup if the
metadata that defines the inline popup is replaced. Scenarios where this happens
include the following:

• Invocation of an action component that has its partialSubmit property set to
false. The Fusion web application renders the entire page after it invokes such an
action component. In contrast, an action component that has its partialSubmit
property set to true causes the Fusion web application to render partial content.
For information about page rendering, see Rerendering Partial Page Content.

• A component that renders a toggle icon for end users to display or hide content
hosts the popup component. Examples include the showDetailItem and
panelTabbed components. For information about the use of components that
render toggle icons, see Displaying and Hiding Contents Dynamically.

• Failover occurs when the Fusion web application displays an inline popup. During
failover, the Fusion web application replaces the entire page.

You can change the default behavior described in the previous list by disabling the
automatic cancellation of an inline popup component. This means that the Fusion web
application does not automatically cancel the inline popup if any of the above events
occur. Instead, the Fusion web applications restores the inline popup.

How to Disable the Automatic Cancellation of an Inline Popup
You disable the automatic cancellation of an inline popup by setting the popup
component's autoCancel property to disabled.

Before you begin:

It may be helpful to understand how other components can affect functionality. See
Controlling the Automatic Cancellation of Inline Popups.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To control the automatic cancellation of inline popups:

1. In the Structure window, right-click the af:popup component for which you want to
configure the automatic cancellation behavior and choose Go to Properties.

2. In the Properties window, expand the Common section and select disabled from
the AutoCancel dropdown list.

What Happens When You Disable the Automatic Cancellation of an
Inline Popup

JDeveloper sets the af:popup component autoCancel property's value to disabled, as
shown in the following example. At runtime, the Fusion web application restores an
inline popup after it rerenders a page if the inline popup displayed before invocation of
the command to rerender the page.

<af:popup id="p1" autoCancel="disabled">
 ...
</af:popup>

Chapter 16
Controlling the Automatic Cancellation of Inline Popups

16-32

Resetting Input Fields in a Popup
The ADF Faces resetListener component is a declarative way to reset input
component values triggered from any server-side event. Using this component, you
can allow end users to reset input values in an input field.

You can use the resetListener component with a popup component to allow end
users to reset input values in an input field. Example use cases where you may want
to implement this functionality for input components that render in a popup component
include:

• Permitting end users to reset an incorrect value that they previously entered

• Removing values where the popup component invokes a popupCanceledEvent
before the application submits the values to the server that an end user entered.

End user gestures that invoke a popupCancelEvent include clicking a button (for
example, a button labelled Close), the cancel icon in the title bar of a popup dialog
or pressing the Esc key.

Depending on how you configure the popup component, data may be cached on
the client. For example, if you set the popup component's contentDelivery
attribute to immediate, the application always caches data on the client.

For information about how the setting that you choose for the contentDelivery
attribute determines the content delivery strategy for your popup component, see
Declaratively Creating Popups and What Happens at Runtime: Popup Component
Events.

Declaratively Invoking a Popup shows the metadata for a popup component where the
contentDelivery attribute is set to immediate and the user's popup renders a dialog
component with preconfigured controls that raise dialogEvents, as described in How
to Create a Dialog. In this scenario, data that the end user entered is cached on the
client. The application does not submit data that you want to reset to the server. Also,
the preconfigured controls rendered by the dialog component may prevent the popup
from closing if they encounter validation errors.

For information about using the resetListener component independently of a popup
component, see How to Use an Action Component to Reset Input Fields.

Note:

Setting the resetListener component's type attribute to popupCanceled
provides the same functionality as setting the popup component's
resetEditableValues attribute to whenCanceled. For information about
setting the resetEditableValues attribute of the popup component, see How
to Create a Dialog.

Example 16-3 The resetListener Tag on the Popup Component

<af:popup id="popup" contentDelivery="immediate">
 <af:resetListener type="popupCanceled"/>
</af:popup>

Chapter 16
Resetting Input Fields in a Popup

16-33

How to Reset the Input Fields in a Popup
You enable end users to reset the data in a popup's input fields to null by setting the
resetListener component's type attribute to popupCanceled.

Before you begin:

It may be helpful to understand the use cases for which you can configure this
functionality in a popup component. See Resetting Input Fields in a Popup.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Popup Dialogs, Menus, and
Windows.

To reset the input fields in a popup:

1. Create the type of popup dialog that you require, as described in Declaratively
Creating Popups.

2. In the Components window, from the Operations panel, in the Listeners group,
drag and drop a Reset Listener as a direct child to the popup component.

3. In the Insert Reset Listener dialog that JDeveloper displays, enter popupCanceled
as the type of event that the resetListener component responds to.

Click Help in the Insert Reset Listener dialog to view a complete list of supported
values.

What Happens When You Configure a Popup to Reset Its Input Fields
JDeveloper writes entries similar to those shown in Example 16-4 when you configure
a popup component and a resetListener component to allow end users to reset the
input field(s) in the popup component to null.

At runtime, an end user gesture that raises a popupCanceled event results in the
resetListener component resetting values in the input fields of the popup component
to null, as illustrated in Figure 16-11.

Figure 16-11 Popup Component Resetting Input Fields

Example 16-4 Popup Component Configured to Reset Input Fields Using Reset Listener

<af:popup id="popupDialog" contentDelivery="lazyUncached"
 popupCanceledListener="#{demoInput.resetPopupClosed}">
 <af:dialog title="Enter an Incorrect Value">
 <af:inputText id="it2" label="Always-incorrect Value" value="#{demoInput.value}">
 <f:validator binding="#{demoInput.obstinateValidator2}"/>
 </af:inputText>

Chapter 16
Resetting Input Fields in a Popup

16-34

 </af:dialog>
 <af:resetListener type="popupCanceled"/>
</af:popup>

Chapter 16
Resetting Input Fields in a Popup

16-35

17
Using a Calendar Component

This chapter describes how to use the ADF Faces calendar component to create a
calendar application.
This chapter includes the following sections:

• About Creating a Calendar Component

• Creating the Calendar

• Configuring the Calendar Component

• Adding Functionality Using Popup Components

• Customizing the Toolbar

• Styling the Calendar

About Creating a Calendar Component
ADF Faces provides a calendar component that displays user activities. You can add
functionality to this component so that the user can edit, create, and delete activities
from the calendar.

ADF Faces includes a calendar component that by default displays activities in daily,
weekly, monthly, or list views for a given provider or providers (a provider is the owner
of an activity). Figure 17-1 shows an ADF Faces calendar in weekly view mode with
some sample activities.

Note:

Printing is possible in the printable page mode for all types of views and the
scrollbars will be dropped in the printed file.

17-1

Figure 17-1 ADF Faces Calendar Showing Weekly View

You can configure the calendar so that it displays only a subset of views. For example,
you may not want your calendar to use the month and list views. You can configure it
so that only the day and week views are available, as shown in Figure 17-2. Because
only day and week views are available, those are the only buttons displayed in the
toolbar.

Figure 17-2 Calendar Configured to Use Only Week and Day Views

By default, the calendar displays dates and times based on the locale set in the
trinidad-config.xml file using the formatting-locale parameter. See Configuration
in trinidad-config.xml. If a locale is not specified in that file, then it is based on the
locale sent by the browser. For example, in the United States, by default, the start day
of the week is Sunday, and 2 p.m. is shown as 2:00 PM. In France, the default start
day is Monday, and 2 p.m. is shown as 14:00. The time zone for the calendar is also
based on the time-zone parameter setting in trinidad-config.xml. You can override

Chapter 17
About Creating a Calendar Component

17-2

the default when you configure the calendar. See Configuring the Calendar
Component.

The calendar includes a toolbar with built-in functionality that enables a user to change
the view (between daily, weekly, monthly, or list), go to the previous or next day, week,
or month, and return to today. The toolbar is fully customizable. You can choose which
buttons and text to display, and you can also add buttons or other components. See
Customizing the Toolbar.

Tip:

When these toolbar buttons are used, attribute values on the calendar are
changed. You can configure these values to be persisted so that they remain
for the user during the duration of the session. See Allowing User
Customization on JSF Pages.

You can also configure your application so that the values will be persisted
and used each time the user logs into the system. For this persistence to
take place, your application must use the Fusion technology stack. See
Allowing User Customizations at Runtime in Developing Fusion Web
Applications with Oracle Application Development Framework.

The calendar component displays activities based on the activities and the provider
returned by the CalendarModel class. By default, the calendar component is read-only.
That is, it can display only those activities that are returned. You can add functionality
within supported facets of the calendar so that users can edit, create, and delete
activities. When certain events are invoked, popup components placed in these
corresponding facets are opened, which enable the user to act on activities or the
calendar.

For example, when a user clicks on an activity in the calendar, the
CalendarActivityEvent is invoked and the popup component in the ActivityDetail
facet is opened. You might use a dialog component that contains a form where users
can view and edit the activity, as shown in Figure 17-3.

Figure 17-3 Dialog Implemented to Edit an Activity

Chapter 17
About Creating a Calendar Component

17-3

For information about implementing additional functionality using events, facets, and
popup components, see Adding Functionality Using Popup Components.

The calendar component supports the ADF Faces drag and drop architectural feature.
Users can drag activities to different areas of the calendar, executing either a copy or
a move operation, and can also drag handles on the activity to change the duration of
the activity. For information about adding drag and drop functionality, see Adding Drag
and Drop Functionality to a Calendar.

By default, the calendar displays activities using a blue color ramp. A color ramp is a
set of colors in a color family and is used to represent the different states of activities.
In the default calendar, for a short-duration activity shown in the daily view, the time of
an activity is shown with a dark blue background, while the title of the activity is shown
with a light blue background, as shown in Figure 17-1. You can customize how the
activities are displayed by changing the color ramp.

Each activity is associated with a provider, that is, an owner. If you implement your
calendar so that it can display activities from more than one provider, you can also
style those activities so that each provider's activity shows in a different color, as
shown in Figure 17-4.

Figure 17-4 Month View with Activities from Different Providers

Calendar Use Cases and Examples
The calendar component provides the features you need to implement calendar-
related functions such as creating activities in daily, weekly, monthly or list view. It
features a customizable toolbar that can be used for switching views. It has
configurable start of the week and start of the day functions. Like other ADF Faces
components, it supports skinning in order to customize its style and appearance.

Chapter 17
About Creating a Calendar Component

17-4

You can create popups by inserting them into the calendar facets to add more
functionality. You can also implement the calendar so the user can drag and drop
activities from one area to another within the calendar.

The calendar uses the CalendarModel class to display the activities for a given time
period. You must create your own implementation of the model class for your
calendar. If your application uses the Fusion technology stack, you can create ADF
Business Components over your data source that represents the activities, and the
model will be created for you. You can then declaratively create the calendar, and it
will automatically be bound to that model. See Using the ADF Faces Calendar
Component in Developing Fusion Web Applications with Oracle Application
Development Framework.

If your application does not use the Fusion technology stack, then you create your own
implementation of the CalendarModel class and the associated CalendarActivity and
CalendarProvider classes. The classes are abstract classes with abstract methods.
You must provide the functionality behind the methods, suitable for your
implementation of the calendar. See Creating the Calendar.

Additional Functionality for the Calendar
You may find it helpful to understand other ADF Faces features before you implement
your calendar component. Additionally, once you have added a calendar component to
your page, you may find that you need to add functionality such as validation and
accessibility. Following are links to other functionality that calendar components can
use.

• Client components: Components can be client components. To work with the
components on the client, see Using ADF Faces Client-Side Architecture .

• JavaScript APIs: All components have JavaScript client APIs that you can use to
set or get property values. See the JavaScript API Reference for Oracle ADF
Faces.

• Events: Components fire both server-side and client-side events that you can
have your application react to by executing some logic. See Handling Events.

• You can display tips and messages, as well as associate online help with a
calendar component. See Displaying Tips, Messages, and Help.

• You may want other components on a page to update based on selections you
make from a calendar component. See Using the Optimized Lifecycle.

• You can change the appearance using skins. See Customizing the Appearance
Using Styles and Skins.

• You can make your components accessible. See Developing Accessible ADF
Faces Pages.

• Instead of entering values for attributes that take strings as values, you can use
property files. These files enable you to manage translation of these strings. See
Internationalizing and Localizing Pages.

• You can create popups for additional functionality. For information about using
these events to provide additional functionality, see Adding Functionality Using
Popup Components.

• If your application uses ADF Model, then you can create automatically bound
forms using data controls (whether based on ADF Business Components or other

Chapter 17
About Creating a Calendar Component

17-5

business services). See Creating a Basic Databound Page in Developing Fusion
Web Applications with Oracle Application Development Framework.

Creating the Calendar
The ADF Faces calendar component allows a user to view their activities by day,
week, month, or by list view. To use a calendar component, you must define the logic
required by the calendar in Java classes.

Before you can add a calendar component to a page, you must implement the logic
required by the calendar in Java classes that extend ADF Faces calendar abstract
classes. After you create the classes, you can add the calendar to a page.

Note:

If your application uses the Fusion technology stack, implement the calendar
classes using ADF Business Components. This will enable you to
declaratively create and bind your calendar component. See Using the ADF
Faces Calendar Component in Developing Fusion Web Applications with
Oracle Application Development Framework.

Before you implement your logic, it helps to have an understanding of the
CalendarModel and CalendarActivity classes, as described in the following section.

Calendar Classes
The calendar component must be bound to an implementation of the CalendarModel
class. The CalendarModel class contains the data for the calendar. This class is
responsible for returning a collection of calendar activities, given the following set of
parameters:

• Provider ID: The owner of the activities. For example, you may implement the
CalendarModel class such that the calendar can return just the activities
associated with the owner currently in session, or it can also return other owners'
activities.

• Time range: The expanse of time for which all activities that begin within that time
should be returned. A date range for a calendar is inclusive for the start time and
exclusive for the end time (also known as half-open), meaning that it will return all
activities that intersect that range, including those that start before the start time,
but end after the start time (and before the end time).

A calendar activity represents an object on the calendar, and usually spans a certain
period of time. The CalendarActivity class is an abstract class whose methods you
can implement to return information about the specific activities.

Activities can be recurring, have associated reminders, and be of a specific time type
(for example, TIME (with a start and end time) or ALLDAY). Activities can also have start
and end dates, a location, a title, and a tag.

The CalendarProvider class represents the owner of an activity. A provider can be
either enabled or disabled for a calendar.

Chapter 17
Creating the Calendar

17-6

How to Create a Calendar
Create your own implementations of the CalendarModel and CalendarActivity
classes and implement the abstract methods to provide the logic.

Before you begin:

It may be helpful to have an understanding of the CalendarModel and
CalendarActivity classes. See Calendar Classes.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

To create the calendar model classes:

1. Create a managed bean that will return an instance of the
oracle.adf.view.rich.model.CalendarModel class. This instance must:

• Extend the oracle.adf.view.rich.model.CalendarModel class.

• Implement the abstract methods.

For information about the CalendarModel class, see the Java API Reference
for Oracle ADF Faces.

• Implement any other needed functionality for the calendar. For example, you
might add logic that sets the time zone, as in the
oracle.adfdemo.view.calendar.rich.model.DemoCalendarBean managed
bean in the ADF Faces Components Demo application (for information about
downloading and installing the demo application, see ADF Faces Components
Demo Application).

For information about creating managed beans, see Creating and Using Managed
Beans.

2. Create a managed bean that will return an instance of the
oracle.adf.view.rich.model.CalendarActivity class. This instance must:

• Extend the oracle.adf.view.rich.model.CalendarActivity class.

• Implement the abstract methods.

For information about the CalendarActivity class, see the Java API
Reference for Oracle ADF Faces.

• Implement any other required functionality for the calendar activities. For an
example, see the
oracle.adfdemo.view.calendar.rich.model.DemoCalendarActivity
managed bean in the ADF Faces Components Demo application.

Tip:

If you want to style individual instances of an activity (for example, if
you want each provider's activities to be displayed in a different
color), then use the getTags method to return a tag that represents
what group the activity belongs to (for example, using the provider
ID). See How to Style Activities.

Chapter 17
Creating the Calendar

17-7

3. Create a managed bean that will return an instance of the
oracle.adf.view.rich.model.CalendarProvider class. This instance must:

• Extend the oracle.adf.view.rich.model.CalendarProvider class.

• Implement the abstract methods.

For information about the CalendarProvider class, see the Java API
Reference for Oracle ADF Faces.

• Implement any other required functionality for the calendar providers.

To create the calendar component:

1. In the Components window, from the Data Views panel, drag a Calendar and drop
it onto the JSF page.

Tip:

The calendar component can be stretched by any parent component
that can stretch its children. If the calendar is a child component to a
component that cannot be stretched, it will use a default width and
height, which cannot be stretched by the user at runtime. However, you
can override the default width and height using inline style attributes. For
information about the default height and width, see Configuring the
Calendar Component. For information about stretching components, see
Geometry Management and Component Stretching.

2. Expand the Calendar Data panel of the Properties window, and enter an EL
expression for Value that resolves to the managed bean that extends the
CalendarModel class.

Configuring the Calendar Component
The ADF Faces calendar component can be configured using the Properties window.
You can configure the component using the available views.

Configure the many display attributes for the calendar, for example, the time displayed
at the beginning of a day.

How to Configure the Calendar Component
You configure the calendar using the Properties window.

Before you begin:

It may be helpful to have an understanding of the calendar component. See
Configuring the Calendar Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

To configure a calendar:

1. In the Properties window, view the attributes for the calendar. Use the Help button
to display the complete tag documentation for the calendar component.

Chapter 17
Configuring the Calendar Component

17-8

2. With the calendar component selected, expand the Common section of the
Properties window, and set the following:

• AvailableViews: Select the available views. The value can be one of or a
combination of the following:

– all

– day

– week

– month

– list

If you want to enter more than one value, enter the values with a space
between. For example, if you want the calendar to use day and week views,
you would enter the following:

day week

Note:

If all is entered, then all views are available, regardless if one is left
out of the list.

The corresponding buttons will automatically be displayed in the toolbar, in the
order they appear listed for the availableViews attribute.

Note:

In order to handle an overflow of tasks for a given day in the month
view, if you enter month and do not also enter all, then you must
also enter day.

• View: Select the view that should be the default when the calendar is
displayed. Users change this value when they click the corresponding button
in the calendar's toolbar. Valid values are:

– day

– list

– month

– week

• StartDayOfWeek: Enter the day of the week that should be shown as the
starting day, at the very left in the monthly or weekly view. When not set, the
default is based on the user's locale. Valid values are:

– sun

– mon

– tue

– wed

Chapter 17
Configuring the Calendar Component

17-9

– thu

– fri

– sat

• StartHour: Enter a number that represents the hour (in 24-hour format, with 0
being midnight) that should be displayed at the top of the day and week view.
While the calendar renders all 24 hours of the day, the calendar will scroll to
the startHour, displaying this hour at the top of the view. The user can scroll
above that time to view activities that start before the startHour value.

• ListType: Select how you want the list view to display activities. Valid values
are:

– day: Shows activities only for the active day.

– dayCount: Shows a number of days including the active day and after,
based on the value of the listCount attribute.

– month: Shows all the activities for the month to which the active day
belongs.

– week: Shows all the activities for the week to which the active day belongs.

• ListCount: Enter the number of days' activities to display (used only when the
listType attribute is set to dayCount).

Figure 17-5 shows a calendar in list view with the listType set to dayCount
and the listCount value set to 14.

Figure 17-5 List View Using dayCount Type

3. Expand the Calendar Data section of the Properties window, and set the following:

• ActiveDay: Set the day used to determine the date range that is displayed in
the calendar. By default, the active day is today's date for the user. Do not
change this if you want today's date to be the default active day when the
calendar is first opened.

Note that when the user selects another day, this becomes the value for the
activeDay attribute. For example, when the user first accesses the calendar,
the current date is the active day. The user can select another day to be the
active day by clicking on the day link in the month view. The active day also
changes when the user selects a different month or year.

Chapter 17
Configuring the Calendar Component

17-10

• TimeZone: Set the time zone for the calendar. If not set, the value is taken
from AdfFacesContext. The valid value is a java.util.TimeZone object. By
default, time is displayed based on the formatting-locale parameter in the
trinidad-config.xml file. See Configuration in trinidad-config.xml.

4. Expand the Appearance section of the Properties window and set the following:

• AllDayActivityOrder: Control the display of all-day activities by specifying a
list of strings that correspond to tags on the activities. Activities will be grouped
by tags and display in the order specified by allDayActivityOrder. Activities
without any tags, or whose tags are not listed in allDayActivityOrder, will
display together in a default group. Within each group, the calendar displays
rows with the most activities first. For example, if allDayActivityOrder =
holiday absence, then all-day activities will be displayed in this order:

– Activities with the holiday tag

– Activities with the absence tag

– Activities with no tags

Figure 17-6 shows a calendar with allDayActivityOrder set to holiday
absence. Activities tagged holiday appear at the top, followed by activities
tagged absence. The remaining activities are then displayed; rows with the
most activities appear first.

Figure 17-6 Calendar Display Using allDayActivityOrder

• HourZoom: Set the zoom factor for time cells to be displayed in the calendar.
The zoom factor applies to the height of the hour in day or week view. Valid
values are auto or a non-zero positive number (including fractions). By default,
the value is 1.

A value greater than 1 will scale up the calendar by the specified factor. For
example, a value of 2 will scale up the calendar by 200%. A value of 0.5 will
scale down the calendar by 50%. When set to auto the calendar will scale by
an optimal factor for best viewing, ensuring that tightly scheduled non-
overlapping activities will not display overlapping each other for lack of vertical
space.

Chapter 17
Configuring the Calendar Component

17-11

• TimeSlotsPerHour: Set the number of time slots to display per hour in day or
week view. Time slots are minor divisions per hour, indicated by a dotted line
splitting the hour into shorter intervals. For example, the value 4 will render
four time slots per hour, measuring 15 minutes each. Valid values are auto or
a non-zero positive whole number. By default, the value is auto.

When set to auto the calendar will use the skin property -tr-time-slots-per-
hour. For example, af|calendar {-tr-time-slots-per-hour: 4} will render
a minor division (dotted line) at 15-minute intervals.

5. If you want the user to be able to drag and resize the calendar regions, expand the
Other section of the Properties window and set the splitterCollapsed and
splitterPosition attributes. The splitter separates the all-day and timed activities
areas in the day and week views of the calendar (it has no effect in month and list
views). By default splitterCollapsed is false, which means that both the all-day
and timed activities areas are displayed. When the splitter is collapsed
(splitterCollapsed = true), the all-day activities area is hidden and the timed
activities area stretches to fill all available vertical space. The splitterPosition
attribute specifies the initial height in pixels of the all-day activities area; the timed
activities area gets the remaining space. Valid values are auto or a non-zero
positive whole number. By default, the value is auto. For information, see the tag
documentation for the calendar component.

6. If you want the user to be able to drag a handle on an existing activity to expand or
collapse the time period of the activity, then implement a handler for
CalendarActivityDurationChangeListener. This handler should include
functionality that changes the end time of the activity. If you want the user to be
able to move the activity (and, therefore, change the start time as well as the end
time), then implement drag and drop functionality. See Adding Drag and Drop
Functionality to a Calendar.

You can now add the following functionality:

• Create, edit, and delete activities using popup components. See Adding
Functionality Using Popup Components.

• Move activities around on the calendar. See Adding Drag and Drop Functionality
to a Calendar.

• Change or add to the toolbar buttons in the toolbar. See Customizing the Toolbar.

• Change the appearance of the calendar and events. See Styling the Calendar.

What Happens at Runtime: Calendar Events and PPR
The calendar has two events that are used in conjunction with facets to provide a way
to easily implement additional functionality needed in a calendar, such as editing or
adding activities. These two events are CalendarActivityEvent (invoked when an
action occurs on an activity) and CalendarEvent (invoked when an action occurs on
the calendar itself). For information about using these events to provide additional
functionality, see Adding Functionality Using Popup Components.

The calendar also supports events that are fired when certain changes occur. The
CalendarActivityDurationChangeEvent is fired when the user changes the duration
of an activity by making changes to the start or end time. The
CalendarDisplayChangeEvent is fired when the value of a display attribute changes.
For example, if a user changes the view attribute from day to month, the calendar is

Chapter 17
Configuring the Calendar Component

17-12

rerendered automatically because the calendar component becomes a partial page
rendering (PPR) target, triggering an immediate refresh.

Adding Functionality Using Popup Components
You can add ADF Faces popup components to a calendar component. To add
functionality, you must create the popups and associated components in the
associated facets.

When a user acts upon an activity, a CalendarActivityEvent is fired. This event
causes the popup component contained in a facet to be displayed, based on the user's
action. For example, if the user right-clicks an activity, the CalendarActivityEvent
causes the popup component in the activityContextMenu to be displayed. The event
is also delivered to the server, where a configured listener can act upon the event. You
create the popup components for the facets (or if you do not want to use a popup
component, implement the server-side listener). It is in these popup components and
facets where you can implement functionality that will enable users to create, delete,
and edit activities, as well as to configure their instances of the calendar.

Table 17-1 shows the different user actions that invoke events, the event that is
invoked, and the associated facet that will display its contents when the event is
invoked. The table also shows the component you must use within the popup
component. You create the popup and the associated component within the facet,
along with any functionality implemented in the handler for the associated listener. If
you do not insert a popup component into any of the facets in the table, then the
associated event will be delivered to the server, where you can act on it accordingly by
implementing handlers for the events.

Table 17-1 Calendar Faces Events and Associated Facets

User Action Event Associated Facet Component
to Use in
Popup

Right-click an
activity.

CalendarActivityEve
nt

activityContextMenu: The
enclosed popup component can be
used to display a context menu,
where a user can choose some
action to execute against the
activity (for example, edit or
delete).

menu

Select an activity
and press the
Delete key.

CalendarActivityEve
nt

activityDelete: The enclosed
popup component can be used to
display a dialog that allows the
user to delete the selected activity.

dialog

Click an activity
or select an
activity and
press the Enter
key.

CalendarActivityEve
nt

activityDetail: The enclosed
popup component can be used to
display the activity's details.

dialog

Hover over an
activity.

CalendarActivityEve
nt

activityHover: The enclosed
popup component can be used to
display high-level information
about the activity.

noteWindow

Chapter 17
Adding Functionality Using Popup Components

17-13

Table 17-1 (Cont.) Calendar Faces Events and Associated Facets

User Action Event Associated Facet Component
to Use in
Popup

Right-click the
calendar (not an
activity or the
toolbar).

CalendarEvent contextMenu: The enclosed
popup component can be used to
display a context menu for the
calendar.

menu

Click or double-
click any free
space in the
calendar (not an
activity).

CalendarEvent create: The enclosed popup
component can be used to display
a dialog that allows a user to
create an activity.

dialog

How to Add Functionality Using Popup Components
To add functionality, create the popups and associated components in the associated
facets.

Before you begin:

It may be helpful to have an understanding of popup components. See Adding
Functionality Using Popup Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

To add functionality using popup components:

1. In the Structure window, expand the af:calendar component node so that the
calendar facets are displayed, as shown in Figure 17-7.

Figure 17-7 Calendar Facets in the Structure Window

2. Based on Table 17-1, create popup components in the facets that correspond to
the user actions for which you want to provide functionality. For example, if you
want users to be able to delete an activity by clicking it and pressing the Delete
key, you add a popup dialog to the activityDelete facet.

To add a popup component, right-click the facet in the Structure window and
choose Insert inside facetName > Popup.

Chapter 17
Adding Functionality Using Popup Components

17-14

For information about creating popup components, see Using Popup Dialogs,
Menus, and Windows.

The following example shows the JSF code for a dialog popup component used in
the activityDelete facet.

<f:facet name="activityDelete">
 <af:popup id="delete" contentDelivery="lazyUncached">
 <!-- don't render if the activity is null -->
 <af:dialog dialogListener="#{calendarBean.deleteListener}"
 affirmativeTextAndAccessKey="Yes" cancelTextAndAccessKey="No"
 rendered="#{calendarBean.currActivity != null}">
 <af:spacer height="20"/>
 <af:outputText value="Are you sure you want to delete this activity?"/>
 <af:panelFormLayout>
 <af:inputText label="Title" value="#{calendarBean.currActivity.title}"
 readOnly="true"/>
 <af:inputDate label="From" value="#{calendarBean.currActivity.from}"
 readOnly="true">
 <af:convertDateTime type="date" dateStyle="short"
 timeZone="#{calendarBean.timeZone}"

pattern="#{calendarBean.currActivity.dateTimeFormat}"/>
 </af:inputDate>
 <af:inputDate label="To" value="#{calendarBean.currActivity.to}"
 readOnly="true">
 <af:convertDateTime type="date" dateStyle="short"
 timeZone="#{calendarBean.timeZone}"

pattern="#{calendarBean.currActivity.dateTimeFormat}"/>
 </af:inputDate>
 <af:inputText label="Location" readOnly="true"
 rendered="#{calendarBean.currActivity.location != null}"
 value="#{calendarBean.currActivity.location}"/>
 </af:panelFormLayout>
 </af:dialog>
 </af:popup>
</f:facet>

Figure 17-8 shows how the dialog is displayed when a user clicks an activity and
presses the Delete key.

Figure 17-8 Delete Activity Dialog

3. Implement any needed logic for the calendarActivityListener. For example, if
you are implementing a dialog for the activityDeleteFacet, then implement logic
in the calendarActivityListener that can save-off the current activity so that
when you implement the logic in the dialog listener (in the next step), you will know
which activity to delete. The following example shows the
calendarActivityListener for the calendar.jspx page in the ADF Faces
Components Demo application.

Chapter 17
Adding Functionality Using Popup Components

17-15

public void activityListener(CalendarActivityEvent ae)
 {
 CalendarActivity activity = ae.getCalendarActivity();
 if (activity == null)
 {
 // no activity with that id is found in the model
 setCurrActivity(null);
 return;
 }

 setCurrActivity(new DemoCalendarActivityBean((DemoCalendarActivity)activity,
 getTimeZone()))

4. Implement the logic for the popup component in the handler for the popup event.
For example, for the delete dialog, implement a handler for the dialogListener
that actually deletes the activity when the dialog is dismissed. For information
about creating dialogs and other popup components, see Using Popup Dialogs,
Menus, and Windows.

Customizing the Toolbar
You can customize the ADF Faces calendar component toolbar to change the display
date, to display additional toolbar buttons, or to add a text describing the current view.
To customize the toolbar, you must place the toolbar and toolbar buttons in the custom
facets that you create.

By default, the toolbar in the calendar enables the user to change the view between
day, week, month, and list, go to the next or previous item in the view, or go to the
present day. The toolbar also displays a text description of the current view. For
example in the day view, it displays the active date, as shown in Figure 17-9.

Figure 17-9 Toolbar in Day View of a Calendar

Figure 17-10 shows a toolbar that has been customized. It has added toolbar buttons,
including buttons that are right-aligned on the top toolbar, and buttons in a second
toolbar.

Chapter 17
Customizing the Toolbar

17-16

Figure 17-10 Customized Toolbar for a Calendar

How to Customize the Toolbar
Place the toolbar and toolbar buttons you want to add in custom facets that you create.
Then, reference the facet (or facets) from an attribute on the calendar, along with
keywords that determine how or where the contained items should be displayed.

Before you begin:

It may be helpful to have an understanding of calendar toolbar customization. See
Customizing the Toolbar.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

To customize the toolbar:

1. In the JSF page of the Components window, from the Layout (Core Structure)
panel, drag and drop a Facet for each section of the toolbar you want to add. For
example, to add the custom buttons shown in Figure 17-10, you would add four
facet tags. Ensure that each facet has a unique name for the page.

Tip:

To ensure that there will be no conflicts with future releases of ADF
Faces, start all your facet names with customToolbar. For example, the
section of the toolbar that contains the alignment buttons shown in
Figure 17-10 are in the customToolbarAlign facet.

2. In the ADF Faces page of the Components window, from the Menus and Toolbars
panel, drag and drop a Toolbar to each facet and add toolbar buttons and
configure the buttons and toolbar as needed. For information about toolbars and
toolbar buttons, see Using Toolbars.

3. Select the calendar, and in the Properties window, from the dropdown menu next
to the ToolboxLayout attribute, choose Edit.

4. In the Edit Property: ToolboxLayout dialog set the value for this attribute. It should
be a list of the custom facet names, in the order in which you want the contents in

Chapter 17
Customizing the Toolbar

17-17

the custom facets to appear. In addition to those facets, you can also include all,
or portions of the default toolbar, using the following keywords:

• all: Displays all the toolbar buttons and text in the default toolbar

• dates: Displays only the previous, next, and today buttons

• range: Displays only the string showing the current date range

• views: Displays only the buttons that allows the user to change the view

Note:

If you use the all keyword, then the dates, range, and views keywords
are ignored.

For example, if you created two facets named customToolbar1 and
customToolbar2, and you wanted the complete default toolbar to appear in
between your custom toolbars, the value of the toolboxLayout attribute would be
the following list items:

• customToolbar1

• all

• customToolbar2

You can also determine the layout of the toolbars using the following keywords:

• newline: Places the toolbar in the next named facet (or the next keyword from
the list in the toolboxLayout attribute) on a new line. For example, if you
wanted the toolbar in the customToolbar2 facet to appear on a new line, the
list would be:

– customToolbar1

– all

– newline

– customToolbar2

If instead, you did not want to use all of the default toolbar, but only the views
and dates sections, and you wanted those to each appear on a new line, the
list would be:

– customToolbar1

– customToolbar2

– newline

– views

– newline

– dates

• stretch: Adds a spacer component that stretches to fill up all available space
so that the next named facet (or next keyword from the default toolbar) is
displayed as right-aligned in the toolbar. The following example shows the
value of the toolboxLayout attribute for the toolbar displayed in Figure 17-10,

Chapter 17
Customizing the Toolbar

17-18

along with the toolbar placed in the customToolbarAlign facet. Note that the
toolbar buttons displayed in the customToolbarBold facet are right-aligned in
the toolbar because the keyword stretch is named before the facet.

<af:calendar binding="#{editor.component}" id="calendar1"
 value="#{calendarBean.calendarModel}"
 timeZone="#{calendarBean.timeZone}"
 toolboxLayout="customToolbarAlign all customToolbarTZ stretch
 customToolbarBold newline customToolbarCreate"
. . .
 <f:facet name="customToolbarAlign">
 <af:toolbar>
 <af:button id="alignLeft" shortDesc="align left"
 icon="/images/alignleft16.png" type="radio"
 selected="true"/>
 <af:button id="alignCenter" shortDesc="align center"
 icon="/images/aligncenter16.png" type="radio"
 selected="false"/>
 <af:button id="alignRight" shortDesc="align right"
 icon="/images/alignright16.png" type="radio"
 selected="false"/>
 </af:toolbar>
 </f:facet>
. . .
</af:calendar>

Styling the Calendar
The ADF Faces calendar component allows you to apply available styles and select
skins to change its appearance. You can also add activityStyles and
dateCustomizer attributes to enable users to ease the styling instances of a calendar.

Like other ADF Faces components, the calendar component can be styled as
described in Customizing the Appearance Using Styles and Skins. However, along
with standard styling procedures, the calendar component has specific attributes that
make styling instances of a calendar easier. These attributes are:

• activityStyles: Allows you to individually style each activity instance. For
example, you may want to show activities belonging to different providers in
different colors.

• dateCustomizer: Allows you to display strings other than the calendar date for the
day in the month view. For example, you may want to display countdown or
countup type numbers, as shown in Figure 17-11. This attribute also allows you to
add strings to the blank portion of the header for a day, for example to show the
total number of hours worked per day. You can also use this attribute to color code
certain days, such as holidays. See How to Customize Dates.

Chapter 17
Styling the Calendar

17-19

Figure 17-11 Customized Display of Dates in a Calendar

How to Style Activities
The activityStyles attribute uses InstanceStyles objects to style specific instances
of an activity. The InstanceStyles class is a way to provide per-instance inline styles
based on skinning keys.

The most common usage of the activityStyles attribute is to display activities
belonging to a specific provider using a specific color. For example, the calendar
shown in Figure 17-12 shows activities belonging to three different providers. The user
can change that color used to represent a provider's activities in the left panel. The
activityStyles attribute is used to determine the color displayed for each activity,
based on the provider with which it is associated.

Chapter 17
Styling the Calendar

17-20

Figure 17-12 Activities Styled to Display Color for Different Providers

Note that instead of using a single color, a range of a color is used in the calendar.
This is called a color ramp. A color ramp is a set of colors in a color family and is used
to represent the different states of activities. For example, Ted's activities use the blue
color ramp. Activities whose time span is within one day are displayed in medium blue
text. Activities that span across multiple days are shown in a medium blue box with
white text. Darker blue is the background for the start time, while lighter blue is the
background for the title. These three different blues are all part of the Blue color ramp.

The CalendarActivityRamp class is a subclass (of InstanceStyles) that supports
some built-in color ramps and can take a representative color (for example, the blue
chosen for Ted's activities) and return the correct color ramp to be used to display
each activity in the calendar.

The activityStyles attribute must be bound to a map object. The map key is the set
returned from the getTags method on an activity. The map value is an InstanceStyles
object, most likely an instance of CalendarActivityRamp. This InstanceStyles object
will take in skinning keys, and for each activity, styles will be returned.

Before you begin:

It may be helpful to have an understanding of calendar styles. See Styling the
Calendar.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

Chapter 17
Styling the Calendar

17-21

To style activities:

1. In your CalendarActivity class, have the getTags method return a string set that
will be used by the activityStyles attribute to map the returned string to a
specific style. For example, to use the different color ramps for the different
providers shown in Figure 17-12, you must return a string for each provider. In this
case, an activity belonging to the current user might return Me, an activity
belonging to Mary might return MJ, and an activity belonging to Ted might return
TC. For information about implementing the CalendarActivity class, see How to
Create a Calendar.

2. Create a map whose key is the set returned from the getTags method, and whose
value is an InstanceStyles object (for example, a CalendarActivityRamp
instance).

For example, to use the different color ramps shown in Figure 17-12, you would
create a map using the values shown in Table 17-2.

Table 17-2 Map for activityStyles Attribute

Key (String
Set)

Value (InstanceStyles Object)

{"Me"} CalendarActivityRamp.getActivityRamp
(CalendarActivityRamp.RampKey.RED)

{"LE"} CalendarActivityRamp.getActivityRamp
(CalendarActivityRamp.RampKey.ORANGE)

{"TF"} CalendarActivityRamp.getActivityRamp
(CalendarActivityRamp.RampKey.BLUE)

3. In the Structure window, select the calendar component, and in the Properties
window, bind the activityStyles attribute to the map.

What Happens at Runtime: Activity Styling
During calendar rendering for each activity, the renderer calls the
CalendarActivity.getTags method to get a string set. The string set is then passed to
the map bound to the activityStyles attribute, and an InstanceStyles object is
returned (which may be a CalendarActivityRamp).

Using the example:

• If the string set {"Me"} is passed in, the red CalendarActivityRamp is returned.

• If the string set {"LE"} is passed in, the orange CalendarActivityRamp is
returned.

• If the string set {"TF"} is passed in, the blue CalendarActivityRamp is returned.

How to Customize Dates
If you want to display something other than the date number string in the day header
of the monthly view, you can bind the dateCustomizer attribute to an implementation
of a DateCustomizer class that determines what should be displayed for the date. You
can use the dateCustomizer attribute to add strings to the blank portion of the header
for a day, for example to show the total number of hours worked per day.

Chapter 17
Styling the Calendar

17-22

To color code dates, implement a new method named getInlineStyle in the
DateCustomizer class. The getInlineStyle method returns inline CSS styles, which
can be applied to the style attribute for the section of the calendar specified by a key.
You can use getInlineStyle to set the background color on a date in the month grid.
For accessibility, the information provided by the color coding must also be available to
a screen reader. You can expose this information using the dateHeaderStamp facet to
specify components that will be displayed in the header section of a date cell. For
example, if the date is color coded because it is a holiday, you can specify an
af:image with the shortDesc set to the holiday name, as well as programmatically
specify which date it should display for, and the image will be displayed in the header
for that date. For information about the DateCustomizer class, refer to the ADF Faces
Javadoc. For information about the dateHeaderStamp facet, see the tag documentation
for the calendar component.

Before you begin:

It may be helpful to have an understanding of calendar styling. See Styling the
Calendar.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for the Calendar.

To customize the date string:

1. Create a subclass of the oracle.adf.view.rich.util.DateCustomizer class.
This subclass should determine what to display using the following skinning keys:

Keys passed to the DateCustomizer.format method:

• af|calendar::day-header-row: In day view, customize the day of the week in
the header. For example, replace "Thursday" with "Thu".

• af|calendar::day-header-row-misc: In day view, customize the text beneath
the day of the week in the header. For example, display "New Year's Day" on
Jan 1.

• af|calendar::list-day-of-month-link: In list view, customize the text for
the day of the month link. For example, replace "Jan 1" with "New Year's Day".

• af|calendar::list-day-of-week-column: In list view, customize the day of
the week in the left list column. For example, replace "Thursday" with "Thu".

• af|calendar::list-day-of-week-column-misc: In list view, customize the
text that appears beneath the day of the week in the left list column. For
example, display "New Year's Day" on Jan 1.

• af|calendar::month-grid-cell-header-day-link: In month view, customize
the date link labels in the cell header. For example, replace "5" with "-34".

• af|calendar::month-grid-cell-header-misc: In month view, add
miscellaneous text to the empty area of the cell header. For example, on Jan
1, add the text "New Year's Day".

• af|calendar::week-header-day-link: In week view, customize the date link
for each date in the header. For example, replace "Sun 1/1" with "New Year's
Day".

• af|calendar::week-header-cell-misc: In week view, customize the text that
appears beneath the date in the header. For example, display "New Year's
Day" on Jan 1.

Chapter 17
Styling the Calendar

17-23

• af|calendar::toolbar-display-range:day: In day view, or in list view when
listType = day, customize the date string on the toolbar.

• af|calendar::toolbar-display-range:month: In month view, or in list view
when listType = month, customize the date string on the toolbar.

Keys passed to the DateCustomizer.formatRange method:

• af|calendar::toolbar-display-range:week: In week view, or in list view
when listType = week, customize the date string on the toolbar.

• af|calendar::toolbar-display-range:list: In list view, or in list view when
listType = list, customize the date string on the toolbar.

Keys passed to the DateCustomizer.getInlineStyle method:

• af|calendar::list-row: In list view, apply a CSS style to the current activity
row.

• af|calendar::month-grid-cell: In month view, apply a CSS style for the
specified date.

2. In a managed bean, create an instance of the DateCustomizer class. For example:

private DateCustomizer _dateCustomizer = new DemoDateCustomizer();

3. In the calendar component, bind the dateCustomizer attribute to the
DateCustomizer instance created in the managed bean.

The following example shows how you can use the DemoDateCustomizer class to
display the week number in the first day of the week, and a countdown number to a
specific date instead of the day of the month, as shown in Figure 17-11.

/* Date Customizer Displaying Countdown Numbers */
public class MyDateCustomizer extends DateCustomizer
{
 public String format(Date date, String key, Locale locale, TimeZone tz)
 {

 if ("af|calendar::month-grid-cell-header-misc".equals(key))
 {
 // return appropriate string
 }
 else if ("af|calendar::month-grid-cell-header-day-link".equals(key))
 {
 // return appropriate string
 }
 return null;

 }
}

The following code example shows how you can use the DemoDateCustomizer class to
display color coded holidays.

/* Date Customizer Displaying Color Coded Holidays */
public class MyDateCustomizer extends DateCustomizer
{
public String getInlineStyle(Date date, String key, Locale locale, TimeZone tz)
 {
 if ("af|calendar::day-all-day-activity-area".equals (key) ||
 "af|calendar::day-timed-activity-area".equals (key) ||
 "af|calendar::week-all-day-activity-area".equals (key) ||

Chapter 17
Styling the Calendar

17-24

 "af|calendar::week-timed-activity-area".equals (key) ||
 "af|calendar::month-grid-cell".equals(key) ||
 "af|calendar::list-row".equals(key))
 {
 Calendar curCal = Calendar.getInstance (tz, locale);
 curCal.setTime (date);

 if (_getUSHoliday (curCal) != null)
 return "background-color: #fafaeb;";
 }
 return null;
 }
}

The following code example shows how you can use the DemoDateCustomizer class to
display color coded holidays using the dateHeaderStamp facet as it is used on the
dateCustomizerCalendar.jspx page of the File Explorer application.

/* Date Customizer Displaying Color Coded Holidays with dateHeaderStamp */
<af:calendar id="cal" ..>
 <f:facet name="dateHeaderStamp">
 <af:image rendered="#{calendarBean.dateCustomizer.USHoliday}"
 source="/images/holidayStar_16X16.png"
 shortDesc="#{calendarBean.dateCustomizer.dateHeaderDesc}"
 ../>
 </f:facet>
</af:calendar>

Chapter 17
Styling the Calendar

17-25

18
Using Output Components

This chapter describes how to use the ADF Faces outputText, outputFormatted,
image, icon, and statusIndicator components to display output text, images, and
icons, and how to use the media component to enable users to play video and audio
clips.
This chapter includes the following sections:

• About Output Text, Image, Icon, and Media Components

• Displaying Output Text and Formatted Output Text

• Displaying Icons

• Displaying Images

• Using Images as Links

• Displaying Application Status Using Icons

• Playing Video and Audio Clips

About Output Text, Image, Icon, and Media Components
ADF Faces has components that you can use to format the output text, images, icons,
and use the media components to enable users to play video and audio clips.

ADF Faces provides components for displaying text, icons, and images, and for
playing audio and video clips on JSF pages.

18-1

Figure 18-1 ADF Faces Output Components

Output Components Use Case and Examples
The outputText component can be used as a child to many other components to
display read-only text. When you need the text to be formatted, you can use the
outputFormatted component. For example, you may want to use bold formatted text
within instruction text, as shown in Figure 18-2.

Figure 18-2 Use the outputFormatted Component in Instruction Text

Many ADF Faces components can have icons associated with them. For example, in a
menu, each of the menu items can have an associated icon. You identify the image to
use for each one as the value of an icon attribute for the menu item component itself.
Information and instructions for adding icons to components that support them are
covered in those components' chapters. In addition to providing icons within
components, ADF Faces also provides icons used when displaying messages. You
can use these icons outside of messages as well.

To display an image on a page, you use the image component. Images can also be
used as links (including image maps) or to depict the status of the server.

The media component is used to display audio-visual content, such as advertisements
or directions to complete a task. The media component can be configured to display all

Chapter 18
About Output Text, Image, Icon, and Media Components

18-2

controls, typical controls, minimal controls, no visible controls (for example, controls
are available only from a context menu), or no controls at all. Typically, you would not
display controls when the clip is very short and control is not needed.

When the media component is the primary component on the page, then typically all
controls are displayed, as shown in Figure 18-3.

Figure 18-3 All Controls are Displayed at the Bottom of the Player

Additional Functionality for Output Components
You may find it helpful to understand other ADF Faces features before you implement
your output components. Additionally, once you have added these components to your
page, you may find that you need to add functionality such as drag and drop and
accessibility. Following are links to other functionality that output components can use.

• Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Conversion: In some cases, a value may need to be converted to a string in order
to display. For information about conversion, see Validating and Converting Input.

• Drag and drop: You can configure a page so that a user can drag and drop output
components or values of output components, to another area on a page. See
Adding Drag and Drop Functionality.

• Localization: Instead of entering values for attributes that take strings as values,
you can use property files. These files allow you to manage translation of these
strings. See Internationalizing and Localizing Pages.

• Skins: You can change the look and feel of output components by changing the
skin. See Customizing the Appearance Using Styles and Skins.

Displaying Output Text and Formatted Output Text
ADF Faces provides outputText and outputFormatted components that you can use to
display unformatted and a limited range of formatted text to the users.

There are two ADF Faces components specifically for displaying output text on pages:
outputText, which displays unformatted text, and outputFormatted, which displays
text and can include a limited range of formatting options.

Chapter 18
Displaying Output Text and Formatted Output Text

18-3

To display simple text specified either explicitly or from a resource bundle or bean, use
the outputText component. You define the text to be displayed as the value of the
value attribute. For example:

<af:outputText value="The submitted value was: "/>

The following example shows two outputText components: the first specifies the text
to be displayed explicitly, and the second takes the text from a managed bean and
converts the value to a text value ready to be displayed (for information about
conversion, see Adding Conversion).

<af:panelGroupLayout>
 <af:outputText value="The submitted value was: "/>
 <af:outputText value="#{demoInput.date}">
 <af:convertDateTime dateStyle="long"/>
 </af:outputText>
</af:panelGroupLayout>

You can use the escape attribute to specify whether or not special HTML and XML
characters are escaped for the current markup language. By default, characters are
escaped.

The following example illustrates two outputText components, the first of which uses
the default value of true for the escape attribute, and the second of which has the
attribute set to false.

<af:outputText value="<h3>output & heading</h3>"/>
<af:outputText value="<h3>output & heading</h3>"
 escape="false"/>

Note:

Avoid setting the escape attribute to false unless absolutely necessary.
When escape is set to false, your website may be exposed to cross-site
scripting attacks if the value of the outputText component is in any way
derived from values supplied by a user. A better option is to use the
outputFormatted component, which allows a limited number of HTML tags.
In addition, nearly all attributes are ignored when the escape attribute is set
to false (for example, styleClass is not output).

Figure 18-4 shows the different effects of the two different settings of the escape
attribute when viewed in a browser.

Figure 18-4 Using the escape Attribute for Output Text

As with the outputText component, the outputFormatted component also displays
the text specified for the value attribute, but the value can contain HTML tags. Use the
formatting features of the outputFormatted component specifically when you want to

Chapter 18
Displaying Output Text and Formatted Output Text

18-4

format only parts of the value in a certain way. If you want to use the same styling for
the whole component value, instead of using HTML within the value, apply a style to
the whole component. If you want all instances of a component to be formatted a
certain way, then you should create a custom skin. For information about using inline
styles and creating skins, see Customizing the Appearance Using Styles and Skins.

The following example shows an outputFormatted component displaying only a few
words of its value in bold (note that you need to use entities such as < on JSPX
pages).

<af:outputFormatted value="This is in bold. This is not bold"/>

<af:outputFormatted value="This is in bold. This is not bold"/>

Figure 18-5 shows how the component displays the text.

Figure 18-5 Text Formatted Using the outputFormatted Component

How to Display Output Text
Before displaying any output text, decide whether or not any parts of the value must be
formatted in a special way. If they do, then use an outputFormatted component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Output Text and Formatted Output Text.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Output Components.

To display output text:

1. In the Components window, from the Text and Selection panel, drag and drop an
Output Text onto the page. To create an outputFormatted component, drag and
drop an Output Text (Formatted) from the Components window.

Tip:

If parts of the value require special formatting, use an outputFormatted
component.

Chapter 18
Displaying Output Text and Formatted Output Text

18-5

Tip:

If you plan to support changing the text of the component through active
data (for example, data being pushed from the data source will
determine the text that is displayed), then you should use the
activeOutputText component instead of the outputText component.
Create an activeOutputText component by dragging an Output Text
(Active) from the Components window.

2. Expand the Common section of the Properties window and set the value attribute
to the value to be displayed. If you are using the outputFormatted component,
use HTML formatting codes to format the text as needed, as described in
Table 18-1 and Table 18-2.

The outputFormatted component also supports the styleUsage attribute whose
values are the following predefined styles for the text:

• inContextBranding

• instruction

• pageStamp

Figure 18-6 shows how the styleUsage values apply styles to the component.

Figure 18-6 styleUsage Attribute Values

Note:

If the styleUsage and styleClass attributes are both set, the
styleClass attribute takes precedence.

What You May Need to Know About Allowed Format and Character
Codes in the outputFormatted Component

Only certain formatting and character codes can be used. Table 18-1 lists the
formatting codes allowed for formatting values in the outputFormatted component.

Table 18-1 Formatting Codes for Use in af:outputFormatted Values

Formatting Code Effect

 Line break

<hr> Horizontal rule

Chapter 18
Displaying Output Text and Formatted Output Text

18-6

Table 18-1 (Cont.) Formatting Codes for Use in af:outputFormatted Values

Formatting Code Effect

...</
ol>...</
ul>...

Lists: ordered list, unordered list, and list item

<h1>...</h1> to
<h6>...</h6>

Headings: Ranked from <h1>, the most important heading, down
to <h6>, the least important heading

<p>...</p> Paragraph

... Bold

<i>...</i> Italic

<tt>...</tt> Teletype or monospaced

<big>...</big> Larger font

<small>...</small> Smaller font

<pre>...</pre> Preformatted: layout defined by whitespace and line break
characters preserved

... Span the enclosed text

<a>... Anchor

Table 18-2 lists the character codes for displaying special characters in the values.

Table 18-2 Character Codes for Use in af:outputFormatted Values

Character Code Character

< Less than

> Greater than

& Ampersand

® Registered

© Copyright

 Nonbreaking space

" Double quotation marks

The attributes class, style, and size can also be used in the value attribute of the
outputFormatted component, as can href constructions. All other HTML tags are
ignored.

Note:

For security reasons, JavaScript is not supported in output values.

Chapter 18
Displaying Output Text and Formatted Output Text

18-7

Note:

Because other components (like panelHeader) can also display <h1>-<h6>
tags, check the rendered HTML to ensure that any hardcoded header tags in
your outputFormatted component display in relative order to those added by
other components.

Displaying Icons
ADF Faces provides ready to use icons with message components. You can also use
these icons outside of a message component.

ADF Faces provides a set of icons used with message components, shown in
Figure 18-7.

Figure 18-7 ADF Faces Icons

If you want to display icons outside of a message component, you use the icon
component and provide the name of the icon type you want to display.

Note:

The images used for the icons are determined by the skin the application
uses. If you want to change the image, create a custom skin. See
Customizing the Appearance Using Styles and Skins.

How to Display Icons
When you use messages in an ADF Faces application, the icons are automatically
added for you. You do not have to add them to the message component. However, you
can also use the icons outside of a message component. To display one of the
standard icons defined in the skin for your application, you use the icon component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Icons.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Output Components.

Chapter 18
Displaying Icons

18-8

To display a standard icon:

1. In the Components window, from the General Controls panel, drag and drop an
Icon onto the page.

2. Expand the Common section and set Name to the name of one of the icon
functions shown in Figure 18-7. For example, if you want to display a red circle
with a white X, you would set Name to error.

3. Expand the Appearance section and set ShortDesc to the text you want to be
displayed as the alternate text for the icon.

Displaying Images
The ADF Faces image component allows you to display an image stored locally. You
must provide the location using the source attribute.

To display an image on a page, you use the image component and set the source
attribute to the URI where the file is located. The image component also supports
accessibility description text by providing a way to link to a long description of the
image.

The image component can also be used as a link and can include an image map, but it
must be placed inside a link component. See Using Images as Links.

How to Display Images
You use the image component to display images.

Before you begin:

You may find it helpful to understand functionality that can be added using other ADF
Faces features. See Additional Functionality for Output Components.

To display an image:

1. In the Components window, from the General Controls panel, drag and drop an
Image onto the page.

Tip:

If you plan to support changing the source attribute of the image through
active data (for example, data being pushed from the data source will
determine the image that is displayed), then you should use the
activeImage component instead of the image component. Create an
activeImage component by dragging an Image (Active) from the
Components window.

2. In the Insert Image dialog, set the following:

• Source: Enter the URI to the image file.

• ShortDesc: Set to the text to be used as the alternate text for the image.

3. If you want to include a longer description for the image, in the Properties window,
set LongDescURL attribute to the URI where the information is located.

Chapter 18
Displaying Images

18-9

Using Images as Links
Using the ADF Faces link component you can render an image as a link to one or
more destinations. Users can then click on the image to go to the destination link.

ADF Faces provides the link component, which can render an image as a link, along
with optional text. You can set different icons for when the user hovers the mouse over
the icon, and for when the icon is depressed or disabled. For information about the
link component, see Using Buttons and Links for Navigation.

You can use an image as a link component to one or more destinations. If you want
to use an image as a simple link to a single destination, use a link component to
enclose your image, and set the destination attribute of the link component to the
URI of the destination for the link.

If your image is being used as a graphical navigation menu, with different areas of the
graphic navigating to different URIs, enclose the image component in a link
component and create a server-side image map for the image.

How to Use Images as Links
You use the link component to render an image as a link.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Using Images as Links.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Output Components.

To use an image as one or more Link components:

1. In the Components window, from the General Controls panel, drag and drop a
Link onto the page.

2. Drag and drop an Image as a child to the Link component.

3. In the Insert Image dialog, set the following:

• Source: Enter the URI to the image file.

• ShortDesc: Set to the text to be used as the alternate text for the image.

4. If different areas of the image are to link to different destinations:

• Create an image map for the image and save it to the server.

• In the Properties window, set the ImageMapType attribute to server.

• Select the Link component and in the Properties window, set Destination to
the URI of the image map on the server.

5. If the whole image is to link to a single destination, select the Link component and
enter the URI of the destination as the value of Destination.

Chapter 18
Using Images as Links

18-10

Displaying Application Status Using Icons
The ADF Faces statusIndicator component allows you to display the server status
through animated icons to users.

ADF Faces provides the statusIndicator component, which you can use to indicate
server activity. What displays depends both on the skin your application uses and on
how your server is configured. By default, the following are displayed:

• When your application is configured to use the standard data transfer service,
during data transfer an animated spinning icon is displayed:

When the server is not busy, a static icon is displayed:

• When your application is configured to use the Active Data Service (ADS), what
the status indicator displays depends on how ADS is configured.

Note:

ADS allows you to bind your application to an active data source. You
must use the Fusion technology stack in order to use ADS. See Using
the Active Data Service in Developing Fusion Web Applications with
Oracle Application Development Framework.

ADS can be configured to either have data pushed to the model, or it can be
configured to have the application poll for the data at specified intervals.
Table 18-3 shows the icons that are used to display server states for push and poll
modes (note that the icons are actually animated).

Table 18-3 Icons Used in Status Indicator for ADS

Icon Push Mode Pull Mode

At the first attempt at connecting to
the server.

At the first attempt at connecting to
server.

Chapter 18
Displaying Application Status Using Icons

18-11

Table 18-3 (Cont.) Icons Used in Status Indicator for ADS

Icon Push Mode Pull Mode

When the first connection is
successfully established.

When the first connection is
successfully established and when
a connection is reestablished.

When subsequent attempts are
made to reconnect to the server.

Before every poll request.

When a connection cannot be
established or reestablished.

When the configured number of
poll attempts are unsuccessful.

After you drop a statusIndicator component onto the page, you can use skins to
change the actual image files used in the component. For information about using
skins, see Customizing the Appearance Using Styles and Skins.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Application Status Using Icons.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Output Components.

To use the status indicator icon:

1. In the Components window, from the General Controls panel, drag and drop a
Status Indicator onto the page.

2. Use the Properties window to set any needed attributes.

Tip:

For help in setting attributes, use the field's dropdown menu to view a
description of the attribute.

Playing Video and Audio Clips
The ADF Faces media component supports audio and video clips to be added on the
application pages. You can also specify the preferred type of media player that users
can opt to play the clip.

The ADF Faces media component allows you to include video and audio clips on your
application pages.

Chapter 18
Playing Video and Audio Clips

18-12

The media control handles two complex aspects of cross-platform media display:
determining the best player to display the media, and sizing the media player.

You can specify which media player is preferred for each clip, along with the size of
the player to be displayed for the user. By default, ADF Faces uses the MIME type of
the media resource to determine the best media player and the default inner player
size to use, although you can specify the type of content yourself, using the
contentType attribute.

You can specify which controls are to be available to the user, and other player
features such as whether or not the clip should play automatically, and whether or not
it should play continuously or a specified number of times.

How to Allow Playing of Audio and Video Clips
Once you add a media component to your page, you can configure which media player
to use by default, the size of the player and screen, the controls, and whether or not
the clip should replay.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Playing Video and Audio Clips.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Output Components.

To include an audio or video clip in your application page:

1. In the Components window, from the General Controls panel, drag and drop a
Media onto the page.

2. In the Insert Media dialog, set the following attributes:

• Source: Enter the URI to the media to be played.

• StandbyText: Enter a message that will be displayed while the content is
loading.

3. Expand the Common section of the Properties window and set the following:

• Player: Select the media player that should be used by default to play the clip.
You can choose from Real Player, Windows Media Player, or Apple Quick
Time Player.

Alternatively, you can create a link in the page that starts the playing of the
media resource based on the user agent's built-in content type mapping. The
media control attempts to pick the appropriate media player using the following
steps:

– If the primary MIME type of the content is image, the built-in user-agent
support is used.

– If a media player has been specified by the player attribute, and that
player is available on the user agent and can display the media resource,
that player is used.

– If one player is especially good at playing the media resource and that
player is available on the user agent, that player is used.

– If one player is especially dominant on the user agent and that player can
play the media resource, that player is used.

Chapter 18
Playing Video and Audio Clips

18-13

– The player connected to the link provided on the page is used.

• Autostart: Set to True if you want the clip to begin playing as soon as it loads.

• ContentType: Enter the MIME type of the media to play. This will be used to
determine which player to use, the configuration of the controls, and the size
of the display.

4. Expand the Appearance section of the Properties window and set the following:

• Controls: Select the amount and types of controls you want the player to
display.

Because the set of controls available varies between players, you define what
set of controls to display in a general way, rather than listing actual controls.
For example, you can have the player display all controls available, the most
commonly used controls, or no controls.

The following example uses the all setting for a media component.

<af:media source="/images/myvideo.wmv" controls="all"/>

Figure 18-8 shows how the player is displayed to the user.

Figure 18-8 Media Player with All Controls

The following values are valid:

– All: Show all available controls for playing media on the media player.

Using this setting can cause a large amount of additional space to be
required, depending on the media player used.

– Minimal: Show a minimal set of controls for playing media on the media
player.

This value gives users control over the most important media playing
controls, while occupying the least amount of additional space on the user
agent.

– None: Do not show any controls for the media player and do not allow
control access through other means, such as context menus.

You would typically use this setting only for kiosk-type applications, where
no user control over the playing of the media is allowed. This setting is
typically used in conjunction with settings that automatically start the
playback, and to play back continuously.

Chapter 18
Playing Video and Audio Clips

18-14

– NoneVisible: Do not show any controls for the media player, but allow
control access through alternate means, such as context menus.

You would typically use this value only in applications where user control
over the playing of the media is allowed, but not encouraged. As with the
none setting, this setting is typically used in conjunction with settings that
automatically start the playback, and to play back continuously.

– Typical: Show the typical set of controls for playing media on the media
player.

This value, the default, gives users control over the most common media
playing controls, without occupying an inordinate amount of extra space
on the user agent.

• Width and Height: Define the size in pixels of the complete display, including
the whole player area, which includes the media content area.

Tip:

Using the width and height attributes can lead to unexpected
results because it is difficult to define a suitable width and height to
use across different players and different player control
configurations. Instead of defining the size of the complete display,
you can instead define just the size of the media content area using
the innerWidth and innerHeight attributes.

• InnerWidth and InnerHeight: Define the size in pixels of only the media
content area. This is the preferred scheme, because you control the amount of
space allocated to the player area for your clip.

Tip:

If you do not specify a size for the media control, a default inner size,
determined by the content type of the media resource, is used. While
this works well for audio content, it can cause video content to be
clipped or to occupy too much space.

If you specify dimensions from both schemes, such as a height and
an innerHeight, the overall size defined by the height attribute is
used. Similarly, if you specify both a width and an innerWidth, the
width attribute is used.

5. Expand the Behavior section and set Autostart. By default, playback of a clip will
not start until the user starts it using the displayed controls. You can specify that
playback is to start as soon as the clip is loaded by setting the autostart attribute
to true.

Set PlayCount to the number of times you want the media to play. Once started,
by default, the clip with play through once only. If the users have controls
available, they can replay the clip. However, you can specify that the clip is to play
back a fixed number of times, or loop continuously, by setting a value for the
playCount attribute. Setting the playCount attribute to 0 replays the clip
continuously. Setting the attribute to some other number plays the clip the
specified number of times.

Chapter 18
Playing Video and Audio Clips

18-15

The following example shows an af:media component in the source of a page. The
component will play a video clip starting as soon as it is loaded and will continue to
play the clip until stopped by the user. The player will display all the available controls.

<af:media source="/components/images/seattle.wmv" playCount="0"
 autostart="true" controls="all"
 innerHeight="112" innerWidth="260"
 shortDesc="My Video Clip"
 standbyText="My video clip is loading"/>

Chapter 18
Playing Video and Audio Clips

18-16

19
Displaying Tips, Messages, and Help

This chapter describes how to use the shortDesc attribute to display tips, and how to
display messages for ADF Faces components. This chapter also describes how to
provide different levels of help information for users.
This chapter includes the following sections:

• About Displaying Tips and Messages

• Displaying Tips for Components

• Displaying Hints and Error Messages for Validation and Conversion

• Grouping Components with a Single Label and Message

• Displaying Help for Components

• Combining Different Message Types

About Displaying Tips and Messages
ADF Faces has many components that you can use to display informational text in an
application. For example, using shortDesc attribute you can display tip information
when an user hovers the cursor, using inputText component you can display popup
messages to users, and so on.

ADF Faces provides many different ways for displaying informational text in an
application. You can create simple tip text, validation and conversion tip text, validation
and conversion failure messages, as well as elaborate help systems.

19-1

Figure 19-1 ADF Messaging Components

Many ADF Faces components support the shortDesc attribute, which for most
components, displays tip information when a user hovers the cursor over the
component. Figure 19-2 shows a tip configured for a toolbar button.

Figure 19-2 Tip Displays Information on Mouse Hover

Along with tips, some ADF Faces components (such as the inputText component, or
the selection components) can display popup hint messages and failure messages
used for validation and conversion. You can create two types of messages:
component level messages that apply to a specific component, and global-level
messages that apply to a page or group of components. Figure 19-3 shows a hint
message configured for an Input Date field.

Chapter 19
About Displaying Tips and Messages

19-2

Figure 19-3 Hint Message Displays Format of Input Date

Along with configuring messages for individual component instances, you can create a
separate help system that provides information that can be reused throughout the
application.You create help information using different types of providers, and then
reference the help text from the UI components. The following are the three types of
help supported by ADF Faces:

• Definition: Provides a help icon (question mark in a blue circle) with the help text
appearing when the user mouses over the icon, as shown in Figure 19-4.

Figure 19-4 Definition Messages Display When Mousing Over the Icon

• Instruction: Depending on the component, this type of help either provides
instruction text within the component (as with panelHeader components), or
displays text in the note window that is opened when the user clicks in the
component, as shown in Figure 19-5. The text can be of any length.

Chapter 19
About Displaying Tips and Messages

19-3

Figure 19-5 Instruction Messages Display in a Note Window

• External URL: You can have a help topic that resides in an external application,
which will open in a separate browser window. For example, instead of displaying
instruction help, Figure 19-6 shows the Select Skin selectOneChoice component
configured to open a help topic about skins. When a user clicks the
selectOneChoice component, the help topic opens.

Figure 19-6 External URL Help Opens in a New Window

For information about creating help systems, see Displaying Help for Components.

Messaging Components Use Cases and Examples
Messages can typically be divided into to types: error messages that display when an
error occurs in the application, for example when a user enters incompatible
information, and informational messages that provide for example, hints for using a
component or for completing a task on a page.

Informational messages can range from simple tooltips to comprehensive help
systems. Tooltips should be used when the component for which you want to display
hints or information does not support help text. However, tooltip text must be very
brief. If you have to display more detailed information, or if the text can be reused
among many component instances, consider using help text instead.

Chapter 19
About Displaying Tips and Messages

19-4

You create tooltips by configuring the shortDesc attribute on a component. The value
of that attribute then displays in a note window when the user hovers over the
component or clicks the component (such as inputText component), as shown in
Figure 19-7.

Figure 19-7 Tooltip for a Component

For information about tooltips, see Displaying Tips for Components.

Error messages use the JSF messaging API. There are two types of error messages:
component messages where the message applies to the specific component only, and
global messages, where the message applies to more than one component or the
whole page.

By default, the noteWindow component is used for component error messages. When
you configure conversion or validation on any input component, validation and
conversion hints and errors are automatically displayed in the noteWindow component.
You do not need to add the component to the page.

For example, when users click Help > Give Feedback in the File Explorer application,
a dialog displays where they can enter a time and date for a customer service
representative to call. Because the inputDate component contains a converter, when
the user clicks in the field, a note window displays a hint that shows the expected
pattern, as shown in Figure 19-8. If the inputDate component was also configured
with a minimum or maximum value, the hint would display that information as well.
These hints are provided by the converters and validators automatically.

Figure 19-8 Attached Converters and Validators Include Messages

If a user enters a date incorrectly in the field shown in Figure 19-8, an error message
is displayed, as shown in Figure 19-9. Note that the error message appears in the note
window along with the hint.

Chapter 19
About Displaying Tips and Messages

19-5

Figure 19-9 Validation and Conversion Errors Display in Note Window

If you want to display an error message for a non-ADF Faces component, or if you
want the message to be displayed inline instead of the note window, use the ADF
Faces message component. When you use this component, messages are displayed
next to the component, as shown in Figure 19-10.

Figure 19-10 Use the message Component to Display Messages Inline

Global messages are by default displayed in a dialog, as shown in Figure 19-11. You
do not need to add the popup component to the page.

Figure 19-11 Global Messages Display in a Popup Dialog

If instead you want the error messages to display directly on the page, use the
messages component. When you use this component, the messages are displayed in a
list at the top of the page, as shown in Figure 19-12.

Chapter 19
About Displaying Tips and Messages

19-6

Figure 19-12 Use the messages Component to Display Global Messages on the
Page

For information about error messages, see Displaying Hints and Error Messages for
Validation and Conversion.

When you want to display more information that can fit in a tooltip, use definition help.
When you configure definition help for most components, a help icon is displayed next
to the component. The help text is displayed when the mouse hovers over the
component, as shown in Figure 19-13.

Figure 19-13 Definition Help for a Column Component

For information about definition help, see Displaying Help for Components.

When you want to display field-level help, configure an input component to use
instruction text. When the user clicks in the component, the help text is displayed in a
note window, as shown in Figure 19-14.

Figure 19-14 Instruction Text for a Component

When you want to display instructions for a task, configure instruction help for a
container component. The text will appear in the header of the component, as shown
in Figure 19-15.

Chapter 19
About Displaying Tips and Messages

19-7

Figure 19-15 Instruction Text for the panelHeader Component

Best Practice:

Instruction text for input components should be used only when the typical
user may fail to perform a task without assistance. Excessive use of
instruction text clutters the page with directions or distracts users with note
windows that may also obscure related page elements.

When you need to provide comprehensive help, you can use the help icon to link to an
external help system available through a URL.

For information about instruction and external help, see Displaying Help for
Components.

Additional Functionality for Message Components
You may find it helpful to understand other ADF Faces features before you implement
your message components and help functionality. Additionally, once you have added
these components to your page, you may find that you need to add functionality such
as skinning to change icons and accessibility and using resource bundles to store
message text. Following are links to other functionality that message components can
use.

• Using parameters in text: You can use the ADF Faces EL format tags if you
want text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Client events: If you want your help topic to launch using JavaScript, you use a
listener for a client event. For information about client-side events, see Using
JavaScript for ADF Faces Client Events.

• Skinning: The icons displayed for messages and help are determined by the skin
used by the application. You can change the icons by creating a new skin. See
Customizing the Appearance Using Styles and Skins.

• Localization: Instead of directly entering text for messages, you can use property
files. These files allow you to manage translation of these strings. See
Internationalizing and Localizing Pages.

Chapter 19
About Displaying Tips and Messages

19-8

Displaying Tips for Components
ADF Faces components has the shortDesc attribute that you can use to display short
text as a tip, a note, a popup message, and so on. Users can see this text when they
hover the cursor over an inputText component.

ADF Faces components use the shortDesc attribute to display a tip when the user
hovers the mouse over the component. Input components display the tips in their note
window. Other component types display the tip in a standard tip box. This text should
be kept short. If you have to display more detailed information, or if the text can be
reused among many component instances, consider using help text, as described in
Displaying Help for Components.

Figure 19-16 shows the effect when the cursor hovers over an inputText component.

Figure 19-16 Tip for an inputText Component

Figure 19-17 shows a tip as displayed for a showDetailItem component.

Figure 19-17 Tip for a showDetailItem Component

How to Display Tips for Components
You use the shortDesc attribute on a component to display a tip.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Tips for Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Message Components.

To define a tip for a component:

1. In the Structure window, select the component for which you want to display the
tip.

2. In the Properties window, expand the Appearance section and enter a value for
the shortDesc attribute.

Chapter 19
Displaying Tips for Components

19-9

Tip:

The value should be less than 80 characters, as some browsers will
truncate the tip if it exceeds that length.

If the text to be used is stored in a resource bundle, use the dropdown list to select
Select Text Resource. Use the Select Text Resource dialog to either search for
appropriate text in an existing bundle, or to create a new entry in an existing
bundle. For information about using resource bundles, see Internationalizing and
Localizing Pages.

Displaying Hints and Error Messages for Validation and
Conversion

In ADF Faces, when you allow users to validate a value or a value is to be converted,
default error messages and tips for using the appropriate values are displayed.
However, you can override the default hint and error messages for the validators and
converters.

Validators and converters have a default hint that is displayed to users when they click
in the associated field. The default hint automatically displays in a note window. For
converters, the hint usually tells the user the correct format to use. For validators, the
hint is used to convey what values are valid.

For example, in the File Explorer application, when a user clicks in the input date field
on the Speak with Customer Service page, a tip is displayed showing the correct
format to use, as shown in Figure 19-18.

Note:

All the hints across the input fields can be turned off by setting the context
parameter oracle.adf.view.rich.component.DEFAULT_HINT_DISPLAY to
none. By default, this parameter is set to auto allowing the framework to
decide the presentation mode for component hint. The default behavior is to
show the hint as a note window tip on the component when it receives the
focus.

Figure 19-18 Validators and Converters Have Built-in Messages

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-10

When the value of an ADF Faces component fails validation, or cannot be converted
by a converter, the component displays the resulting FacesMessage instance.

For example, entering a date that does not match the dateStyle attribute of the
converter results in an error message, as shown in Figure 19-19.

Figure 19-19 Validation Error at Runtime

You can override the default validator and converter hint and error messages for either
a component instance, or globally for all instances. To define a custom message for a
component instance you set attributes to the detail messages to be displayed. The
actual attributes vary according to the validator or converter. Figure 19-20 shows the
attributes that you can populate to override the messages for the convertDateTime
converter, as displayed in the Properties window.

Figure 19-20 Message Attributes on a Converter

To define an error message that will be used by all instances of the component, you
need to create an entry in a resource bundle that will override the default message.

If you do not want messages to be displayed in the note window, you can use the
message component, and messages will be displayed inline with the component.
Figure 19-21 shows how messages are displayed using the message component.

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-11

Figure 19-21 Use the message Component to Display Messages Inline

JSF pages in an ADF Faces application use the document tag, which among other
things, handles displaying all global messages (those not associated with a
component) in a popup window. However, if you want to display global messages on
the page instead, use the messages component.

Note:

To format the message using HTML tags, you must enclose the message
within <html></html> tags. For example:

<html>error message details</html>

The following HTML tags are allowed in error messages:

•

•

• <a>

• <i>

•

•

• <hr>

•

•

•

• <p>

• <tt>

• <big>

• <small>

• <pre>

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-12

How to Define Custom Validator and Converter Messages for a
Component Instance

To override the default validator and converter messages for a single component
instance, set values for the different message attributes.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Hints and Error Messages for Validation and Conversion.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Message Components.

To define a validator or converter message:

1. In the Structure window, select the converter or validator for which you want to
create the error message.

2. In the Properties window, expand the Messages section and enter a value for the
attribute for which you want to provide a message.

The values can include dynamic content by using parameter placeholders such as
{0}, {1}, {2}, and so on. For example, the messageDetailConvertDate attribute on
the convertDateTime converter uses the following parameters:

• {0} the label that identifies the component

• {1} the value entered by the user

• {2} an example of the format expected by the component.

Tips:

• If your application uses bidirectional or right-to-left display, do not
start the message with the expected format parameter {2}, as it may
not display correctly in Internet Explorer.

• You should try not to display the format parameter {1} in the
message. Displaying the user input might be considered as a
security violation.

Using these parameters, you can create the following message:

The date you have entered in the \"{0}\" field is not using the correct date
format. Please enter the date as follows: {2}.

The error message would then be displayed as shown in Figure 19-22. Note that
you might need to change the value Type attribute of the converter to match the
parameters.

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-13

Figure 19-22 Detail Message at Runtime

Tip:

Use the dropdown menu to view the property help, which includes the
parameters accepted by the message.

If the text to be used is stored in a resource bundle, use the dropdown list to select
Select Text Resource. Use the Select Text Resource dialog to either search for
appropriate text in an existing bundle, or to create a new entry in an existing
bundle. For information about using resource bundles, see Internationalizing and
Localizing Pages.

Note:

The message text is for the detail message of the FacesMessage object.
If you want to override the summary (the text shown at the top of the
message), you can only do this globally. See How to Define Custom
Validator and Converter Messages for All Instances of a Component.

How to Define Custom Validator and Converter Messages for All
Instances of a Component

Instead of changing the message string per component instance with the
messageDetail[XYZ] attributes, you can override the string globally so that the custom
string will be displayed for all instances. The global messages are handled by key/
value pairs in a message bundle. You can override summary, detail, and hint
messages.

To globally override a default validator or converter message:

1. Refer to Message Keys for Converter and Validator Messages to determine the
message key for the message you want to override. For example, to override the
detail message displayed when the input value exceeds the maximum value
length, you would use the key
org.apache.myfaces.trinidad.validator.LengthValidator. MAXIMUM_detail,
as shown in af:validateLength.

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-14

2. Create or open a message bundle. For procedures how to create message
bundles, see How to Create a Resource Bundle as a Property File or an XLIFF
File.

3. Add the key override to the message bundle. For example, to override the
message for the input value length, you might add:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail: Your value
exceeds the limit.

4. If the message bundle is a new resource bundle, you need to register the bundle
with the application using the faces-config.xml file, following the procedures in
How to Register a Resource Bundle in Your Application. However, use the
<message-bundle> tag, rather than the <resource-bundle> tag.

How to Display Component Messages Inline
Instead of having a component display its messages in the note window, use the
message component to display the messages inline on the page. In order for the
message component to display the correct messages, associate it with a specific
component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Hints and Error Messages for Validation and Conversion.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Message Components.

To display component messages inline:

1. In the Structure window, select the component that will display its messages using
the message component. If not already set, enter an ID for the component.

2. In the Components window, from the Text and Selection panel, drag a Message
and drop it where you want the message to be displayed on the page.

3. Use the dropdown menu for the for attribute to select Edit.

4. In the Edit Property dialog, locate the component for which the message
component will display messages. Only components that have their ID set are
valid selections.

Note:

The message icon and message content that will be displayed are based
on what was given when the FacesMessage object was created. Setting
the messageType or message attributes on the message component
causes the messageType or message attribute values to be displayed at
runtime, regardless of whether or not an error has occurred. Only
populate these attributes if you want the content to always be displayed
when the page is rendered.

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-15

How to Display Global Messages Inline
Instead of displaying global messages in a popup window for the page, display them
inline using the messages component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Hints and Error Messages for Validation and Conversion.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Message Components.

To display global messages inline:

1. In the Components window, from the Text and Selection panel, drag a Messages
and drop it onto the page where you want the messages to be displayed.

2. In the Properties window, set the following attributes:

• globalOnly: By default, ADF Faces displays global messages (messages that
are not associated with components) followed by individual component
messages. If you want to display only global messages in the box, set this
attribute to true. Component messages will continue to be displayed with the
associated component.

• inline: Set to true to show messages at the top of the page. Otherwise,
messages will be displayed in a dialog.

What Happens at Runtime: How Messages Are Displayed
ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework
for messaging by allowing FacesMessage instances to be added to the FacesContext
object using the addMessage(java.lang.String clientId, FacesMessage message)
method. Component-level messages are associated with a specific component based
on any client ID that was passed to the addMessage method, and global-level
messages, which are not associated with a component because no client ID was
passed to the addMessage method.

When conversion or validation fails on an EditableValueHolder ADF Faces
component, FacesMessages objects are automatically added to the message queue on
the FacesContext instance, passing in that component's ID. These messages are then
displayed in the note window for the component. ADF Faces components are able to
display their own messages. You do not need to add any tags.

Similarly, the document tag handles and displays all global FacesMessages objects
(those that do not contain an associated component ID), as well as component
FacesMessages. Like component messages, you do not need to add any tags for
messages to be displayed.Whenever a global message is created (or more than one
component message), all messages in the queue will be displayed in a popup window,
as shown in Figure 19-23.

Chapter 19
Displaying Hints and Error Messages for Validation and Conversion

19-16

Figure 19-23 Global and Component Messages Displayed by the Document

Tip:

While ADF Faces provides messages for validation and conversion, you can
add your own FacesMessages objects to the queue using the standard JSF
messaging API. When you do so, ADF Faces will display icons with the
message based on the message level, as follows:

Grouping Components with a Single Label and Message
The ADF Faces panelLabelAndMessage component allows you to group components
and use a single label. You can group any components using this attribute and use a
single label to the group.

By default, ADF Faces input and select components have built-in support for label and
message display. If you want to group components and use a single label, wrap the
components using the panelLabelAndMessage component.

For example, the File Explorer application collects telephone numbers using four
separate inputText components; one for the area code, one for the exchange, one for
the last four digits, and one for the extension. Because a single label is needed, the
four inputText components are wrapped in a panelLabelAndMessage component, and

Chapter 19
Grouping Components with a Single Label and Message

19-17

the label value is set on that component. However, the input component for the
extension requires an additional label, so an outputText component is used. The
following example shows the JSF code for the panelLabelAndMessage component.

<af:panelLabelAndMessage labelAndAccessKey="#{explorerBundle['help.telephone']}"
 helpTopicId="HELP_TELEPHONE_NUMBER"
 labelStyle="vertical-align: top;
 padding-top: 0.2em;">
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="4"
 columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:outputText value="#{explorerBundle['help.extension']}"/>
 <af:inputText simple="true" columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
</af:panelLabelAndMessage>

Figure 19-24 shows how the panelLabelAndMessage and nested components are
displayed in a browser.

Figure 19-24 Examples Using the panelLabelAndMessage Component

The panelLabelAndMessage component also includes an End facet that can be used to
display additional components at the end of the group. Figure 19-25 shows how the
telephone number fields would be displayed if the End facet was populated with an
outputText component.

Figure 19-25 End Facet in a panelLabelAndMessage Component

Use a panelGroupLayout component within a panelLabelAndMessage component to
group the components for the required layout. For information about using the
panelGrouplayout component, see Grouping Related Items.

You set the simple attribute to true on each of the input components so that their
individual labels are not displayed. However, you may want to set a value for the label
attribute on each of the components for messaging purposes and for accessibility.

Chapter 19
Grouping Components with a Single Label and Message

19-18

Tip:

If you have to use multiple panelLabelAndMessage components one after
another, wrap them inside an af:panelFormLayout component, so that the
labels line up properly. For information about using the panelFormLayout
component, see Arranging Content in Forms.

Group and wrap components using the panelLabelAndMessage component. The
panelLabelAndMessage component can be used to wrap any components, not just
those that typically display messages and labels.

How to Group Components with a Single Label and Message
You use the panelLabelAndMessage component to group components and display a
single label for that group.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Grouping Components with a Single Label and Message.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Message Components.

To arrange form input components with one label and message:

1. Add input or select components as needed to the page.

For each input and select component:

• Set the simple attribute to true.

• For accessibility reasons, set the label attribute to a label for the component.

2. In the Structure window, select the input or select components created in Step 1.
Right-click the selection and choose Surround With > Panel Label And
Message.

3. With the panelLabelAndMessage component selected, in the Properties window,
set the following:

• label: Enter the label text to be displayed for the group of components.

• for: Use the dropdown menu to choose Edit. In the Edit Property dialog, select
the ID of the child input component. If there is more than one input component,
select the first component.

Set the for attribute to the first inputComponent to meet accessibility
requirements.

If one or more of the nested input components is a required component and you
want a marker to be displayed indicating this, set the showRequired attribute to
true.

4. To place content in the End facet, drag and drop the desired component into the
facet.

Because facets on a JSP or JSPX accept one child component only, if you want to
add more than one child component, you must wrap the child components inside a

Chapter 19
Grouping Components with a Single Label and Message

19-19

container, such as a panelGroupLayout or group component. Facets on a Facelets
page can accept more than one component.

Tip:

If the facet is not visible in the visual editor:

a. Right-click the panelLabelAndMessage component in the Structure
window.

b. From the context menu, choose Facets - Panel Label And
Message >facet name. Facets in use on the page are indicated by
a checkmark in front of the facet name.

Displaying Help for Components
ADF Faces allows you to display help messages in three formats: instruction help,
definition help, and external URL help. The help text is displayed from an external
source.

ADF Faces provides a framework that allows you to create and display three different
types of help whose content comes from an external source, rather than as text
configured on the component. Because it is not configured directly on the component,
the content can be used by more than one component, saving time in creating pages
and also allowing you to change the content in one place rather than everywhere the
content appears.

You can display help messages in three formats; instruction help, definition help, and
external URL help.

Instruction Help

Instruction help displays help text in a note window when the focus is on the
component. Figure 19-26 shows the help message in a note window.

Figure 19-26 Instruction Text for a Component

Usually, you use the instruction help to show instructions about how to use the
component. You can also use HTML tags to format the help message, but not all
HTML tags are supported (see tag documentation of af:outputFormatted component
for supported HTML tags). Figure 19-27 shows the HTML formatted help message in a
note window.

Chapter 19
Displaying Help for Components

19-20

Figure 19-27 HTML Formatted Instruction Help

Some components display instruction help as a description within the component.
Where instruction help is displayed depends on the component with which it is
associated. For example, the panelHeader and Search panel components display
instruction help within the header, as shown in Figure 19-28.

Figure 19-28 Instruction Text for panelHeader

Table 19-1 shows the components that support Instruction help.

Table 19-1 Components That Support Instruction Help

Supported
Components

Help Placement Example

Input components,
Choose Color,
Choose Date, Quick
Query

Note window, on focus
only

Select components Note window, on hover
and focus

Chapter 19
Displaying Help for Components

19-21

Table 19-1 (Cont.) Components That Support Instruction Help

Supported
Components

Help Placement Example

Panel Header, Panel
Box, Query

Text below header text

Definition Help

Definition help is like a standard tip where the content appears in a message box.
However, instead of appearing when the user hovers the cursor over the component,
definition help provides a help icon (a blue circle with a question mark). Or you can
use a skinning attribute instead display a dotted line under the text (see What You May
Need to Know About Skinning and Definition Help). When the user hovers the cursor
over the icon, the content is displayed as shown in Figure 19-29.

Figure 19-29 Definition Text for a Component

Note that the tip message does not support HTML formatting and the tip message
must be less than 80 characters because some older versions of browsers do not
support long messages. Table 19-2 shows the components that support definition
help.

Table 19-2 Components That Support Definition Help

Supported
Components

Help Icon Placement Example

All input components,
Select components,
Choose Color,
Choose Date, Query
components

Before the label, or if
no label exists, at the
start of the field

Chapter 19
Displaying Help for Components

19-22

Table 19-2 (Cont.) Components That Support Definition Help

Supported
Components

Help Icon Placement Example

Panel Header,
PanelBox, Show
Detail Header

End of header text

Panel Window, Dialog Next to close icon in
header

Columns in table and
tree

Below header text

External URL Help

External URL help allows you to link to an existing web page for your help content.
When the help icon is clicked, the web page opens in a separate browser window, as
shown in Figure 19-30. You can also use JavaScript to open the help window based
on any client-based event.

Figure 19-30 External URL Help

For information about using JavaScript to open the external help, rather than the help
icon, see How to Use JavaScript to Launch an External Help Window.

Chapter 19
Displaying Help for Components

19-23

Help Providers

Help providers store the text of the help (or a URL, in the case of external help) for an
application, and are registered in the META-INF/adf-settings.xml file. ADF Faces
supports the following help providers for instruction and definition help:

• The ResourceBundleHelpProvider help provider enables you to create resource
bundles that hold the help content.

• The ELHelpProvider help provider enables you to create XLIFF files that get
converted into maps.

• A managed bean that contains a map of help text strings.

External URL help uses a class that implements the getExternalURL method.

For information about creating help providers, see How to Create Help Providers.

You can also use a combination of the different help providers, or create your own
help provider class.

Creating Help

To create help messages, you do the following:

1. For instruction and definition help, determine which help provider type you want to
use (either a resource bundle, an XLIFF file, or a managed bean), and then
implement the required artifacts. These help providers will contain the actual help
text. See How to Create Help Providers.

2. For external help, you need to create the an external help provider that will contain
the URLs to the external content. See How to Create an External URL Help
Provider.

3. Register the help providers, specifying the unique prefix that will be used to access
the provider's help. See How to Register the Help Provider.

4. Have the UI components access the help contained in the providers by using the
component's helpTopicId attribute. A helpTopicId attribute contains the
following:

• The prefix that is used by the provider of the help

• The topic name

See How to Access Help Content from a UI Component.

5. For external URL help, you can optionally have the help window launch in
response to an event, instead of having the user click the help icon. See How to
Use JavaScript to Launch an External Help Window.

How to Create Help Providers
Procedures for creating help providers differ, depending on the type of help provider
you want to create. For instruction and definition help, you can use resource bundles,
an XLIFF file, or a managed bean. For external URL help, you create a Java class.
You can also create a custom help provider.

Chapter 19
Displaying Help for Components

19-24

How to Create a Resource Bundle-Based Provider
The ResourceBundleHelpProvider class provides a basic HelpProvider instance. You
can store help text within standard resource bundle property files and use the
ResourceBundleHelpProvider class to deliver the content.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To create resource bundle-based help:

1. Create a properties file that contains the topic ID and help text for each help topic.
The topic ID must contain the following:

• The prefix that will be used by this provider, for example, BUNDLE.

• The topic name, for example, PHONE_NUMBER.

• The help type, for example, DEFINITION.

For example, a topic ID might be BUNDLE_PHONE_NUMBER_DEFINITION.

If you are using multiple help providers, ensure that you use unique prefix for each
help provider.

Note:

All prefixes under which help providers are registered must be unique. It
is also not permissible for one prefix to begin with the same characters
as another prefix. For example, if help providers have already been
registered for the two prefixes AAB and AC, then the following prefixes are
all invalid and will cause an exception to be thrown at registration time:
AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of help,
then both types of help will be displayed by the UI component.

The following example shows an example resource bundle properties file with two
topic IDs.

BUNDLE_CUST_SERVICE_EMAIL_DEFINITION=For security reasons, we strongly
discourage the submission of credit card numbers.
BUNDLE_PHONE_NUMBER_DEFINITION=We only support calling phone numbers in the
United States at this time.

2. Register the resource bundle as a help provider in the adf-settings.xml file and
then configure the ADF Faces components to use the help. See How to Register
the Help Provider and How to Access Help Content from a UI Component.

Chapter 19
Displaying Help for Components

19-25

How to Create an XLIFF Provider
You can store the help text in XLIFF XML files and use the ELHelpProvider class to
deliver the content. This class translates the XLIFF file to a map of strings that will be
used as the text in the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To create XLIFF help:

1. Create an XLIFF file that defines your help text, using the following elements
within the <body> tag:

• <trans-unit>: Enter the topic ID. This must contain the prefix, the topic name,
and the help type, for example, HELP_PHONE_NUMBER_DEFINITION. In this
example, HELP will become the prefix used to access the XLIFF file.
PHONE_NUMBER is the topic name, and DEFINITION is the type of help. If you are
using multiple help providers, ensure that you use unique prefix for each help
provider.

Note:

All prefixes under which help providers are registered must be
unique. It is also not permissible for one prefix to begin with the
same characters as another prefix. For example, if help providers
have already been registered for the two prefixes AAB and AC, then
the following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of
help, then both types of help will be displayed by the UI component.

• <source>: Create as a direct child of the <trans-unit> element and enter the
help text.

• <target>: Create as a direct child of the <trans-unit> element and leave it
blank. This element is used to hold translated help text.

• <note>: Create as a direct child of the <trans-unit> element and enter a
description of the help text.

The following example shows an example of an XLIFF file that contains two topics.

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="this" datatype="xml">
 <body>
 <trans-unit id="HELP_PHONE_NUMBER_DEFINITION">
 <source>Phone Number Definition</source>
 <target/>
 <note>
 We only support calling phone numbers in the United States at this

Chapter 19
Displaying Help for Components

19-26

time.
 </note>
 </trans-unit>
 <trans-unit id="HELP_CUST_SERVICE_EMAIL_INSTRUCTIONS">
 <source>Customer Service Email Instructions</source>
 <target/>
 <note>
 For security reasons, we strongly discourage the submission of credit
 card numbers.
 </note>
 </trans-unit>
 </body>
 </file>
</xliff>

2. Register the XLIFF file as a help provider in the adf-settings.xml file and then
configure the ADF Faces components to use the help. See How to Register the
Help Provider and How to Access Help Content from a UI Component.

How to Create a Managed Bean Provider
To implement a managed bean provider, create a managed bean that contains a map
of strings that will be used as the text in the help. Managed bean help providers use
the ELHelpProvider class to deliver the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To create managed bean help:

1. Create a managed bean that returns a map of strings, each of which is the ID and
content for a help topic, as shown in the following example.

public class ELHelpProviderMapDemo
{
 public ELHelpProviderMapDemo()
 {
 }

 /* To use the ELHelpProvider, the EL expression must point to a Map, otherwise
 * you will get a coerceToType error. */

 public Map<String, String> getHelpMap()
 {
 return _HELP_MAP;
 }

 static private final Map<String, String> _HELP_MAP =
 new HashMap<String,
String>();
 static
 {
 _HELP_MAP.put("HELP_CUST_SERVICE_EMAIL_DEFINITION", "For security reasons,
 we strongly discourage the submission of credit card
numbers");
 _HELP_MAP.put("HELP_PHONE_NUMBER_DEFINITION", "We only support calling
phone
 numbers in the United States at this time");
 }

Chapter 19
Displaying Help for Components

19-27

}

The first string must contain the prefix, the topic name, and the help type, for
example, HELP_CUST_SERVICE_EMAIL_DEFINITION. In this example, HELP will
become the prefix used to access the bean. CUST_SERVICE_EMAIL is the topic
name, and DEFINITION is the type of help. The second string is the help text. If you
are using multiple help providers, ensure that you use unique prefix for each help
provider.

Note:

All prefixes under which help providers are registered must be unique. It
is also not permissible for one prefix to begin with the same characters
as another prefix. For example, if help providers have already been
registered for the two prefixes AAB and AC, then the following prefixes are
all invalid and will cause an exception to be thrown at registration time:
AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of help,
then both types of help will be displayed by the UI component.

Note:

If you wish to use external URL help, create a subclass of the
ELHelpProvider class. See How to Create an External URL Help
Provider.

2. Register the managed bean as a help provider in the adf-settings.xml file and
then configure the ADF Faces components to use the help. See How to Register
the Help Provider and How to Access Help Content from a UI Component.

How to Create an External URL Help Provider
To use an external URL as help, you must implement the getExternalURL method.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To use External URL help:

1. Create a class that implements the getExternalURL method.

If you are using a resource bundle based help, ensure that the class that
implements the getExternalURL method extends the
ResourceBundleHelpProvider class.

If you are using XLIFF based or managed bean based help, ensure that the class
that implements the getExternalURL method extends the ELHelpProvider class.

Chapter 19
Displaying Help for Components

19-28

The following example shows the DemoHelpProvider class that extends the
ResourceBundleHelpProvider class.

import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import oracle.adf.view.rich.help.ResourceBundleHelpProvider;

public class DemoHelpProvider extends ResourceBundleHelpProvider
{
 public DemoHelpProvider()
 {
 }

 @Override
 protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;

 if (topicId.contains("HELP_CONTACT_URL"))
 {
 return "http://www.oracle.com/us/corporate/contact/index.html";
 }
 else
 return null;

 if (topicId.contains("HELP_OTN_URL"))
 {
 return "http://www.oracle.com/technetwork/index.html";
 }
 else
 return null;
 }
}

The following example shows the DemoELHelpProvider class that extends the
ELHelpProvider class.

import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import oracle.adf.view.rich.help.ResourceBundleHelpProvider;

public class DemoELHelpProvider extends ELHelpProvider
{
 public DemoELHelpProvider()
 {
 }

 @Override
 protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;

 if (topicId.contains("HELP_CONTACT_URL"))
 {

Chapter 19
Displaying Help for Components

19-29

 return "http://www.oracle.com/us/corporate/contact/index.html";
 }
 else
 return null;

 if (topicId.contains("HELP_OTN_URL"))
 {
 return "http://www.oracle.com/technetwork/index.html";
 }
 else
 return null;
 }
}

The preceding examples use the HELP_CONTACT_URL topic ID to open the Oracle
Contact home page. To return different URLs, you would have to create separate
if statements. They also use HELP_OTN_URL topic ID to open the Oracle
Technology Network home page.

2. Register the class as a help provider in the adf-settings.xml file and then
configure the ADF Faces components to use the help. See How to Register the
Help Provider and How to Access Help Content from a UI Component.

How to Create a Custom Java Class Help Provider
Instead of using one of the ADF Faces help providers, create your own. Create the
actual text in some file that your help provider will be able to access and display. To
create a Java class help provider, extend the HelpProvider class. For information
about this class, refer to the Java API Reference for Oracle ADF Faces.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To create a Java class help provider:

1. Create a Java class that extends oracle.adf.view.rich.help.HelpProvider.

2. Create a public constructor with no parameters. You also must implement the logic
to access and return help topics.

This class will be able to access properties and values that are set in the adf-
settings.xml file when you register this provider. For example, all the ADF Faces
providers use a property to define the actual source of the help strings.

3. To access a property in the adf-settings.xml file, create a method that sets a
String property.

For example:

public void setMyCustomProperty(String arg)

4. To register the provider, from the META-INF node, open the adf-settings.xml file
and add the following elements:

• <help-provider>: Use the prefix attribute to define the prefix that UI
components will use to access this help provider. This must be unique in the
application.

Chapter 19
Displaying Help for Components

19-30

Note:

If the prefix attribute is missing, or is empty, then the help provider
will be registered as a special default help provider. It will be used to
produce help for help topic IDs that cannot be matched with any
other help provider. Only one default help provider is permitted. All
prefixes under which help providers are registered must be unique. It
is also not permissible for one prefix to begin with the same
characters as another prefix. For example, if help providers have
already been registered for the two prefixes AAB and AC, then the
following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

• <help-provider-class>: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1.

• <property>: Create as a child element to the <help-provider> element and
use it to define the property that will be used as the argument for the method
created in Step 3.

• <property-name>: Create as a child element to the <property> element and
enter the property name.

• <value>: Create as a child element to the <property> element and enter the
value for the property.

How to Register the Help Provider
You register resource, XLIFF, and managed bean help providers, and an external URL
help provider in the adf-settings.xml file.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To Register a Help Provider:

1. In the Applications window, from the META-INF node, open the adf-settings.xml
file.

2. Click the Source tab, and add the following elements:

• <help-provider>: Use the prefix attribute to define the prefix that UI
components will use to access this help provider. This must be unique in the
application.

Note:

If the prefix attribute is missing, or is empty, then the help provider
will be registered as a special default help provider. It will be used to
produce help for help topic IDs that cannot be matched with any
other help provider. Only one default help provider is permitted.

Chapter 19
Displaying Help for Components

19-31

• <help-provider-class>: Create as a child element to the <help-provider>
element.

– If you are using a resource bundle, enter the value as
oracle.adf.view.rich.help.ResourceBundleHelpProvider.

– If you are using an XLIFF file, enter the value as
oracle.adf.view.rich.help.ELHelpProvider.

– If you are using a managed bean or external URL provider, enter the fully
qualified class path.

Note:

For external URL help, the provider class should reflect the class
that your provider extended.

• <property>: Create as a child element to the <help-provider> element. The
property defines the actual help source.

• <property-name>: Create as a child element to the <property> element, and
enter a name for the source.

• <value>: Create as a child element to the <property> element. and enter the
fully qualified class name of the helper. For example, the qualified class name
of the resource bundle used in the ADF Faces Components Demo application
is oracle.adfdemo.view.resource.DemoResources.

– If you are using a resource bundle, enter the fully qualified class name of
the resource bundle. For example, the qualified class name of the
resource bundle used in the ADF Faces Components Demo application is
oracle.adfdemo.view.resource.DemoResources.

– If you are using an XLIFF file, enter an EL expression that resolves to the
XLIFF file, wrapped in the adfBundle EL function, for example,
#{adfBundle['project1xliff.view.Project1XliffBundle']}.

– If you are using a managed bean, enter an EL expression that resolves to
the help map on the managed bean.

– If your are using external URL help, enter the fully qualified class name of
the provider class you created.

The following example shows a resource bundle registered in the adf-settings.xml
file.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="HELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ResourceBundleHelpProvider
 </help-provider-class>
 <property>
 <property-name>baseName</property-name>
 <value>oracle.adfdemo.view.resource.fileExplorer.helpStrings</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

Chapter 19
Displaying Help for Components

19-32

The following example shows an XLIFF file registered in the adf-settings.xml file.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="HELP">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{adfBundle['project1xliff.view.Project1XliffBundle']}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

The following example shows a bean registered in the adf-settings.xml file.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="HELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{helpTranslationMap.helpMap}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

The following example shows the external help provider registered in the adf-
settings.xml file.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="HELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ResourceBundleHelpProvider
 </help-provider-class>
 <property>
 <property-name>baseName</property-name>
 <value>oracle.adfdemo.view.resource.DemoHelp</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

The following example shows an example of a custom help provider class registered in
the adf-settings.xml file.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>

Chapter 19
Displaying Help for Components

19-33

 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

How to Access Help Content from a UI Component
Use the HelpTopicId attribute on components to access and display the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To access help from a component:

1. In the Structure window, select the component to which you want to add help. For
a list of components that support help, see Table 19-1 and Table 19-2.

2. In the Properties window, expand the Appearance section, and enter a value for
the helpTopicId attribute.

For definition and instruction help, this value should include the prefix to access
the correct help provider and the topic name. It should not include the help type,
as all help types registered with that name will be returned and displayed.

For example:

<af:inputText label="Customer Service E-Mail"
helpTopicId="HELP_CUST_SERVICE_EMAIL"/>

This example will return both the definition and instruction help defined in the
XLIFF file in the example in How to Create an XLIFF Provider..

3. If you want to provide help for a component that does not support help, you can
instead add an outputText component to display the help text, and then bind that
component to the help provider, for example:

<af:outputFormatted
 value="#{adfFacesContext.helpProvider['HELP_CUST_SERVICE_
EMAIL'].instructions}"/>

This accesses the instruction help text.

How to Use JavaScript to Launch an External Help Window
If you are using an external URL help, by default, the user clicks a help icon to launch
the help window. Instead, you can use JavaScript and a client event listener for a
specific component's event to launch the help window.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect
functionality. See Displaying Help for Components.

To use JavaScript to launch an external help window:

1. Create a JavaScript function that uses the launchHelp API to launch a specific
URL or page.

Chapter 19
Displaying Help for Components

19-34

The following example shows the launchHelp function used to launch the
helpClient.jspx.

<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

2. In the ADF Faces page, drag and drop the component whose client event will
cause the launchHelp function to be called. You must set the clientId on this
component to true.

3. In the Components window, from the Operations panel, drag and drop a Client
Listener as a child to the component created in Step 2. Configure the
clientListener to invoke the function created in Step 1. For information about
using the clientListener tag, see Listening for Client Events.

The following example shows the code used to assign the click event of button
component to launch the helpClient.jspx page.

<af:toolbar id="tb1">
 <af:button text="Launch help window" id="ctb1"
 icon="/images/happy_computer.gif">
 <af:clientListener method="launchHelp" type="click"/>
 </af:button>
</af:toolbar>
<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

What You May Need to Know About Skinning and Definition Help
By default, when definition help is associated with a component, a question mark icon
is displayed. The user clicks that icon to display the help. You can configure a custom
skin to instead display a dotted line under the label of the component. This line
denotes that the text is clickable. When the user clicks the text, the help is displayed.

Note:

If the component does not have label text, then only the icon can be
displayed.

Figure 19-31 shows an inputText component with the default question mark icon.

Figure 19-31 Definition Help Icon

Chapter 19
Displaying Help for Components

19-35

Figure 19-32 shows the same inputText component, but configured to display a link
instead of the question mark.

Figure 19-32 Definition Help Text Link

You use the -tr-help-def-location skin selector key to configure the display. Set it
to icon to display the icon. Set it to label to display the underline. The following
example shows the help configured to display the underline.

af|help {
 -tr-help-def-location: label;
}

Note:

External URL help also displays a link under the label text. If a component
has both definition help and external help associated with it, then the icon will
be displayed for the definition help.

Combining Different Message Types
ADF Faces allows you to combine display messages for validation and conversion.
You can use this to display various messages to users in a single window at one time;
however, the messages are displayed in the default order of priority, such as error
messages, hints, Instruction help and so on.

When you add help messages to input components that may already display
messages for validation and conversion, ADF Faces displays the messages in the
following order within the note window:

1. Validation and conversion error messages.

2. Validation and conversion hints.

3. For input and select components only, Instruction help. For panelHeader
components, Instruction help is always displayed below the header.

4. Value for shortDesc attribute.

Figure 19-33 shows an inputDate component that contains a converter, instruction
help, and a tip message.

Chapter 19
Combining Different Message Types

19-36

Figure 19-33 Different Message Types Can Be Displayed at One Time

Chapter 19
Combining Different Message Types

19-37

20
Working with Navigation Components

This chapter describes how to use ADF Faces navigation components to provide
navigation in web user interfaces. This includes descriptions of how to use buttons and
links to navigate and invoke functionality in addition to how to create page hierarchies.
The chapter also describes how to use train components to navigate a multistep
process.
This chapter includes the following sections:

• About Navigation Components

• Common Functionality in Navigation Components

• Using Buttons and Links for Navigation

• Configuring a Browser's Context Menu for Links

• Using Buttons or Links to Invoke Functionality

• Using Navigation Items for a Page Hierarchy

• Using a Menu Model to Create a Page Hierarchy

• Creating a Simple Navigational Hierarchy

• Using Train Components to Create Navigation Items for a Multistep Process

About Navigation Components
Using ADF Faces navigation components you can allow users to navigate another
page or window and perform actions on data. Some of the navigation components are
af:breadCrumb, af:navigationPane, af:train, and af:menubar.

Navigation components allow users to drill down for more information, to navigate to
related pages or windows, and to perform specific actions on data and navigate at the
same time. The common forms of navigation components are buttons and links, most
of which can be used on their own and a few that can only be used in conjunction with
other components.

Some components render navigable items such as tabs and breadcrumbs for
navigating hierarchical pages and keeping track of the user's current location in the
page hierarchy. Two components render links and buttons that you use specifically to
guide users through a multistep task. You can also use the button or link
components to fire partial page requests, and to implement popup dialogs and
secondary windows (in conjunction with other ADF Faces tags and components).
Navigation components can provide navigation with or without server-side actions.

Figure 20-1 shows the different ADF Faces components that are used to provide
navigation.

20-1

Figure 20-1 ADF Faces Navigation Components

Navigation Components Use Cases and Examples
Typical uses of navigation components are to create buttons and links to allow users
to navigate to another page or window, to perform actions on data, or to perform
actions and navigate at the same time. For example, as shown in Figure 20-2, the
main page of the File Explorer application contains a button component that you click
to refresh the page after making a skin selection and a link component that opens a
popup window when clicked.

Chapter 20
About Navigation Components

20-2

Figure 20-2 File Explorer Application Main Page

At the top right corner of the File Explorer application, there are four global application
links. While you can use link components to provide the destinations for navigation,
the File Explorer application uses the navigationPane and child
commandNavigationItem components to provide links that either navigate directly to
another location or deliver an action that results in navigation.

The navigationPane component also lets you organize application content in a
meaningful structure and provides a navigation method for users to move through
different content areas in the application to perform various functions. For example, a
simple HR application might have pages that let employees check on company
benefits, and pages for administration to view and create employee data, as shown in
Figure 20-3. The navigationPane component provides the structure with tabs, bars, or
lists for example, and the child commandNavigationItem components provide the
navigation links.

Chapter 20
About Navigation Components

20-3

Figure 20-3 Page Showing Navigation Tab, Bar and List Links

The navigationPane component can also be used with a menu model, where the
component is bound to the menu model managed bean. For complex page
hierarchies, using a menu model is more efficient as the framework generates the
correct number of navigation items in the structure on each page and also keeps track
of which items are to be displayed as "selected".

The menuBar component can also be bound to a menu model to implement menus and
submenus for navigating different levels in a page hierarchy. Most shopping websites
use a system of menus to categorize shopping areas and provide a one-click action to
a specific subcategory or item in the hierarchy. As shown in Figure 20-4, the menu bar
shows the first level of menu items at a glance. As the mouse cursor hovers over a
menu, a submenu of more items display for the user to browse and choose. Typically
you would not implement more than three levels of menu items.

Figure 20-4 Page With Three Menus on a Bar with a Submenu Expanded

Whether you use navigationPane or menuBar (bound to a menu model) to create your
page hierarchy, you can use the breadCrumbs component and a series of child

Chapter 20
About Navigation Components

20-4

commandNavigationItem components to provide users with a visual indication to their
current location in the page hierarchy. As shown in Figure 20-5, the breadCrumbs
component displays a line of text links starting from the root page down to the current
page, which is always the last link. If you create your page hierarchy using a menu
model, you can also bind the breadCrumbs component to the same menu model
managed bean and let the framework dynamically generate the links for you.

Figure 20-5 Page Showing Horizontal Breadcrumb Links

The train component allows users to quickly see where they are in a multistep
process and also navigate through that process. The trainButtonBar component
provides additional navigation for a train process in the form of back and next buttons
as arrows, and also gives information about the current and total number of pages as
shown in Working with Navigation Components.

Chapter 20
About Navigation Components

20-5

Figure 20-6 ADF Faces Train and TrainButtonBar Demonstration Pages

Additional Functionality for Navigation Components
You may find it helpful to understand other ADF Faces features before you implement
your navigation components. Additionally, once you have added these components to
your page, you may find that you need to add functionality such as accessibility and
localization. Following are links to other functionality that navigation components can
use.

• Using parameters in text: You can use the ADF Faces EL format tags if you want
the text displayed in a component to contain parameters that will resolve at
runtime. See How to Use the EL Format Tags.

• Events: Components fire both server-side and client-side events that you can
have your application react to by executing some logic. See Handling Events.

• Partial page rendering: ADF Faces navigation components can be used to
trigger partial rerendering of components on a page. See Rerendering Partial
Page Content.

• Accessibility: You can make your navigation components accessible. See
Developing Accessible ADF Faces Pages.

• Localization: Instead of directly entering text for labels, you can use property files.
These files allow you to manage translation of the text strings. See
Internationalizing and Localizing Pages.

• Skins: You can change the look and feel of navigation components by changing
the skin. See Customizing the Appearance Using Styles and Skins.

Chapter 20
About Navigation Components

20-6

• Touch Devices: ADF Faces components may behave and display differently on
touch devices. See Creating Web Applications for Touch Devices Using ADF
Faces.

• Drag and Drop: You can configure your components so that the user can drag
and drop them to another area on the page. See Adding Drag and Drop
Functionality.

Common Functionality in Navigation Components
ADF Faces allows you to define rules for navigation by adding JSF navigation rules
and cases in the configuration resource file (faces-config.xml) of the application. You
must generate an ActionEvent event when users activate the component and using
the NavigationHandler and ActionListener mechanisms you must select the navigation
rules.

Like any JSF application, an application that uses ADF Faces components contains a
set of rules for choosing the next page to display when a button or link (used on its
own or within another navigation component) is clicked. You define the rules by adding
JSF navigation rules and cases in the application's configuration resource file (faces-
config.xml).

JSF uses an outcome string to select the navigation rule to use to perform a page
navigation. ADF Faces navigation components that implement
javax.faces.component.ActionSource interface generate an ActionEvent event
when users activate the component. The JSF NavigationHandler and default
ActionListener mechanisms use the outcome string on the activated component to
find a match in the set of navigation rules. When JSF locates a match, the
corresponding page is selected, and the Render Response phase renders the
selected page. For information about the JSF lifecycle, see Using the JSF Lifecycle
with ADF Faces . Also note that navigation in an ADF Faces application may use
partial page rendering. See Rerendering Partial Page Content.

Using Buttons and Links for Navigation
ADF Faces provides various components for navigation, where buttons and links are
the most common. Using these components you can allow users to navigate another
location, submit requests, or to fire ActionEvent events. These components can also
render images with optional text.

ADF Faces provides button and link components that can be used for navigation.
Depending on your use case, you can configure these components to navigate directly
to another location, to submit requests, and fire ActionEvent events.

Apart from the button and link components, ADF Faces also provides specialized
components (goMenuItem and commandMenuItem) for use inside menus. See Using
Menus, Toolbars, and Toolboxes.

The button and link components can render images, along with optional text, as
shown in Figure 20-7 and Figure 20-8. You can determine the position of the image
relative to the optional text by setting a value for the iconPosition attribute. In
addition, you can set different icons for when the user hovers over an icon, or the icon
is depressed or disabled. You specify the image to use by setting a value for the icon
attribute. The button and link components expand to the number of pixels required to
accommodate the image that you specify to render within the component. If you do not

Chapter 20
Common Functionality in Navigation Components

20-7

specify an image, the component renders using the minimum dimensions specified for
the component in the web application's skin.

Figure 20-7 shows a number of the options that you can configure for the button
component.

Figure 20-7 ADF Faces button Component

Figure 20-8 shows a number of the options that you can configure for the link
component.

Figure 20-8 ADF Faces link Component

Using the ADF Faces toolbar component, you can provide additional functionality,
such as a popup facet that opens popup menus from a button component. See Using
Toolbars.

The behavior of button and link components differ when you output your page in
simplified mode for printing or email. The link component appears in print and email
modes although it cannot be invoked while the button component does not render
when you output a page in simplified mode for printing or email. For information about
email and print output modes, see Using Different Output Modes .

You can configure your application to allow end users to invoke a browser's context
menu when they right-click an action component that renders a link. End users who
right-click the link rendered by an action component may use a browser's context

Chapter 20
Using Buttons and Links for Navigation

20-8

menu to invoke an action that you do not want them to invoke (for example, open the
link in a new window). See Configuring a Browser's Context Menu for Links.

You can show a warning message to end users if the page that they attempt to
navigate away from contains uncommitted data. Add the
checkUncommittedDataBehavior component as a child to action components that have
their immediate attribute set to true. If the user chooses not to navigate, the client
event will be cancelled. You can add the checkUncommittedDataBehavior component
as a child to the af:button and af:link components. For the warning message to
appear to end users, the page must contain uncommitted data and you must have also
set the document tag's uncommittedDataWarning attribute to on, as described in How to
Configure the document Tag.

Note:

A warning message may also appear for uncommitted data if you set the
document tag's uncommittedDataWarning tag to on and your page renders an
ADF Controller bounded task flow that is configured as critical. See How
to Enable Implicit Save Points in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Use Buttons and Links for Navigation and Deliver ActionEvents
Typically, you use action components like button and link to perform page navigation
and to execute any server-side processing.

Before you begin:

It may help to understand how action component's attributes affect functionality. See
Using Buttons and Links for Navigation.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create and use action components:

1. In the Components window, from the General Controls panel, drag and drop the
action component that you want to use onto the JSF page. More specifically, drag
and drop a:

• Button to create a button component.

• Link to create a link component.

2. In the Properties window, expand the Common section and set the following:

• Text: Specify the text to display.

Chapter 20
Using Buttons and Links for Navigation

20-9

Tip:

Alternatively, you can use the textAndAccessKey attribute to provide
a single value that defines the label along with the access key to use
for the button or link. For information about how to define access
keys, see How to Define Access Keys for an ADF Faces
Component.

• Icon: Set to the URI of the image file if you want to render an icon inside the
component. If you render an icon, you can also set values for hoverIcon,
disabledIcon, depressedIcon, and iconPosition in the Appearance section.

Tip:

You can use either the text attribute (or textAndAccessKey attribute)
or the icon attribute, or both.

• IconPosition: If you specified an icon, you can determine the position of the
icon relative to the text by selecting a value from the dropdown list:

– <default> (leading): Renders the icon before the text.

– trailing: Renders the icon after the text.

– top: Renders the icon above the text.

– bottom: Renders the icon below the text.

• Selected: Set to true so that the component appears as selected when the
page renders.

• Action: Set to an outcome string or to a method expression that refers to a
backing bean action method that returns a logical outcome String. For
information about configuring the navigation between pages, see Defining
Page Flows.

The default JSF ActionListener mechanism uses the outcome string to
select the appropriate JSF navigation rule, and tells the JSF
NavigationHandler what page to use for the Render Response phase. For
information about using managed bean methods to open dialogs, see Using
Popup Dialogs, Menus, and Windows. For information about outcome strings
and navigation in JSF applications, see the Java EE tutorial at http://
docs.oracle.com/javaee/index.html.

Chapter 20
Using Buttons and Links for Navigation

20-10

http://docs.oracle.com/javaee/index.html
http://docs.oracle.com/javaee/index.html

Tip:

The actionListener attribute can also be used for navigation when
bound to a handler that returns an outcome. Usually, you should use
this attribute only to handle user interface logic and not navigation.

For example, in the File Explorer application, the Search button in
Search panel does not navigate anywhere. Instead, it performs a
search. It has the following value for its actionListener attribute:

actionListener="#{explorer.navigatorManager.searchNavigator.
 searchForFileItem}"

This expression evaluates to a method that actually performs the
search.

3. Expand the Behavior section and set the following:

• Disabled: Select true from the dropdown list if you want to show the
component as a noninteractive button or link.

• PartialSubmit: Select true from the dropdown list to fire a partial page
request each time the component is activated. See Using Partial Triggers.

• Immediate: Select true from the dropdown list if you want to skip the Process
Validations and Update Model phases. The component's action listeners (if
any), and the default JSF ActionListener handler are executed at the end of
the Apply Request Values phase of the JSF lifecycle. See Using the
Immediate Attribute.

4. Optionally, if you set the immediate attribute to true as described in Step 3, you
can add the af:checkUncommittedDataBehavior component as a child to the
action component to display a warning message to the user if the page contains
uncommitted data. Drag Check Uncommitted Data Behavior from the Behavior
group in the Operations panel of the Components window and drop it as a child of
the action component you added in Step 1.

Note:

You must have also set the document tag's uncommittedDataWarning
attribute to on, as described in How to Configure the document Tag.

Buttons and links can also be used to open secondary windows through these
attributes: useWindow, windowHeight, windowWidth, launchListener, and
returnListener. For information about opening secondary windows, see Using the
ADF Faces Dialog Framework Instead of Bounded Task Flows in Developing Fusion
Web Applications with Oracle Application Development Framework.

To use buttons and links to invoke popups without writing any JavaScript code, see
Declaratively Invoking a Popup.

Chapter 20
Using Buttons and Links for Navigation

20-11

How to Use Buttons and Links for Navigation Without Delivering
ActionEvents

You can use the button and link components to perform direct page navigation,
without delivering an ActionEvent event.

Before you begin:

It may help to understand how the button and link components' attributes affect
functionality. See Using Buttons and Links for Navigation.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create buttons and links that navigate without delivering an ActionEvent:

1. In the Components window, from the General Controls panel, drag and drop the
component that you want to use onto the JSF page. More specifically, drag and
drop a:

• Button to create a button component.

• Link to create a link component.

2. In the Properties window, expand the Common section and set the following:

• Text: Specify the text to display.

Tip:

Instead, you can use the textAndAccessKey attribute to provide a
single value that defines the label and the access key to use for the
button or link. For information about how to define access keys, see
How to Define Access Keys for an ADF Faces Component.

• Icon: Set to the URI of the image file if you want to render an icon inside the
component. If you render an icon, you can also set values for hoverIcon,
disabledIcon, depressedIcon, and iconPosition in the Appearance section.

Tip:

You can use either the text attribute (or textAndAccessKey attribute)
or the icon attribute, or both.

• IconPosition: If you specified an icon, you can determine the position of the
icon relative to the text by selecting a value from the dropdown list:

– <default> (leading): Renders the icon before the text.

– trailing: Renders the icon after the text.

– top: Renders the icon above the text.

– bottom: Renders the icon below the text.

Chapter 20
Using Buttons and Links for Navigation

20-12

• Selected: Set to true so that the component appears as selected when the
page renders.

• Destination: Set to the URI of the page to navigate to.

For example, set to the following to navigate to Oracle's web site:

destination="http://www.oracle.com"

• TargetFrame: Specify where the new page should display by selecting a
value from the dropdown list:

– _blank: The link opens the document in a new window.

– _parent: The link opens the document in the window of the parent. For
example, if the link appeared in a dialog, the resulting page would render
in the parent window.

– _self: The link opens the document in the same page or region.

– _top: The link opens the document in a full window, replacing the entire
page.

3. Expand the Behavior section and select true from the Disabled dropdown list if
you want to show the component as a noninteractive button or link.

What You May Need to Know About Using Partial Page Navigation
As described in Using Partial Page Navigation, you can configure an ADF Faces
application to have navigation triggered through a partial page rendering request.
When partial page navigation is turned on, partial page navigation for GET requests is
automatically supported on the following components:

• af:button

• af:link

• af:goMenuItem (used within af:menu and af:menuBar)

• af:commandNavigationItem (used within af:navigationPane)

The only requirement is that the destination attribute on a supported component
contain a relative URL of the application context root and begin with "/", such as "/
faces/myPage.jsf", where faces is the URL mapping to the application's servlet
defined in web.xml and myPage.jsf is the page to navigate. Because partial page
navigation makes use of the hash ('#') portion of the URL, you cannot use the hash
portion for navigation to anchors within a page.

If the targetFrame attribute on a supported component is set to open the link in a new
window, the framework automatically reverts to full page navigation.

Configuring a Browser's Context Menu for Links
The ADF Faces action components enable you to allow users to invoke actions by
rendering the links at runtime. You can enable the context menu for af:link,
af:commandMenuItem, af:commandNavigationItem, and others to invoke different
actions by the users.

The action components that render links at runtime allow your end users to invoke
actions. In addition you can configure your application so that the ADF Faces
framework allows the end user's browser to render a context menu for these action

Chapter 20
Configuring a Browser's Context Menu for Links

20-13

components. By default, the ADF Faces framework disables this context menu. The
ADF Faces framework disables this context menu when no value is set for the
destination attribute because the context menu may present menu options that invoke
a different action (for example, open a link in a new window) to that specified by the
action component. The components for which you can configure this behavior include
the following:

• af:link

• af:commandMenuItem (used within an af:menuBar component)

• af:commandNavigationItem if no value is specified for the destination attribute,
the ADF Faces framework enables the browser context menu in the following
scenarios:

– For the two anchors that af:commandNavigationItem renders when inside an
af:train component

– When an af:commandNavigationItem renders inside an af:breadCrumbs
component

– When an af:commandNavigationItem renders inside an af:navigationPane
component (any hint--tabs, bar, buttons, choice, list)

• af:panelTabbed: the tabs and overflow indicators

• af:panelAccordion: the disclosure link and overflow indicators

You cannot configure this behavior for components that specify a destination and do
not invoke an action. For example, an af:commandNavigationItem component where
you specify a value for the destination attribute and no value for the action attribute.

How to Configure a Browser's Context Menu for Command Links
Set the value of the
oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION context
parameter in your application's web.xml file to no.

Before you begin:

It may help to understand what action components you can configure this functionality
for. See Configuring a Browser's Context Menu for Links.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To configure a browser's context menu for a command link:

1. In the Applications window, expand the WEB-INF node and double-click web.xml.

2. In the overview editor, click the Application navigation tab and then click the Add
icon next to the Context Initialization Parameters table to add an entry for the
oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION parameter
and set it to no.

3. Save and close the web.xml file.

Chapter 20
Configuring a Browser's Context Menu for Links

20-14

What Happens When You Configure a Browser's Context Menu for
Command Links

If you followed the procedure outlined in How to Configure a Browser's Context Menu
for Command Links, JDeveloper writes a value to the web.xml file, as shown in
Example 20-1.

For information about ADF Faces configuration options in your application's web.xml
file, see Configuration in web.xml.

At runtime, end users can invoke a browser's context menu by right-clicking on the
links rendered by certain components, as described in Configuring a Browser's
Context Menu for Links.

Example 20-1 Context Parameter to Configure a Browser's Context Menu

<context-param>
 <param-name>oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION</param-name>
 <param-value>no</param-value>
 </context-param>

Using Buttons or Links to Invoke Functionality
ADF Faces provides listener tags, along with action components, to execute when an
action event is fired by an user. Some of the tags are exportCollectionActionListener,
fileDownloadActionListener, and so on. You can also reset the input components by
using a reset button.

In addition to using action components for navigation, ADF Faces also includes
listener tags that you can use with action components to have specific functionality
execute when the action event fires. Listener tags included with ADF Faces include:

• exportCollectionActionListener: Use to export data from the table, tree and
treeTable components to an Excel spreadsheet. See Exporting Data from Table,
Tree, or Tree Table.

• fileDownloadActionListener: Use to initiate a file download from the server to
the local hard drive. See How to Use an Action Component to Download Files.

• resetListener: Use to reset submitted values. However, no data model states will
be altered. See How to Use an Action Component to Reset Input Fields. If the
input components render in a popup, see Resetting Input Fields in a Popup.

If you want to reset the input components to their previous state, which was
partially or fully submitted successfully to the server, then you can use a reset
button. See How to Add a Button to Reset the Form.

How to Use an Action Component to Download Files
You can create a way for users to download files by creating an action component
such as a button and associating it with a fileDownloadActionListener tag. When
the user selects or clicks the component, a popup dialog displays that allows the user
to select different download options, as shown in Figure 20-9.

Chapter 20
Using Buttons or Links to Invoke Functionality

20-15

Figure 20-9 File Download Dialog

Use the fileDownloadActionListener tag to allow an action component (for example,
a button, link, or menu item) to send the contents of a file to an end user. You can also
specify the content type or file name when you use this tag. Any value that you set for
the action component's partialSubmit attribute is ignored at render time if you use
the fileDownloadActionListener tag. The fileDownloadActionListener tag
determines what type of submit the action component invokes based on the context. If
you use the fileDownloadActionListener tag within a JSF portlet in your application,
the action component invokes a partial submit (partialSubmit="true"). If you use the
fileDownloadActionListener tag within an application that uses the ADF Faces
servlet, the action component invokes a full submit (partialSubmit="false").

Tip:

For information about uploading a file to the server, see Using File Upload.

After the content has been sent to the browser, how that content is displayed or saved
depends on the option that the end user selects in the dialog. If the end user selects
the Open with option, the application associated with that file type will be invoked to
display the content. For example, a text file may result in the Notepad application
being started. If the end user selects the Save to Disk option, depending on the
browser, a popup dialog may appear to select a file name and a location in which to
store the content.

The following example shows the tags of a button with the
fileDownloadActionListener tag to download the file named hello.txt to the user.

<af:button value="Say Hello">
 <af:fileDownloadActionListener filename="hello.txt"
 contentType="text/plain; charset=utf-8"

Chapter 20
Using Buttons or Links to Invoke Functionality

20-16

 method="#{bean.sayHello}"/>
</af:button>

The following example shows a managed bean method that processes the file
download.

public void sayHello(FacesContext context, OutputStream out) throws IOException{
 OutputStreamWriter w = new OutputStreamWriter(out, "UTF-8");
 w.write("Hi there!");
 . . .
}

If you use the fileDownloadActionListener tag from within a JSF portlet in your
application, you can optionally add the parameters described in Table 20-1 to the
web.xml file of your application to configure the size and temporary location options for
the file during download.

Table 20-1 Parameters to Add to web.xml File to Use fileDownloadActionListener in a Portlet

Parameter name Data type Description

oracle.adf.view.rich.portal.FILE_DOWNLOAD_MAX_MEM Integer Specify the maximum size in
kilobytes of the file that the
fileDownloadActionListene
r tag can store during a session.
If the file exceeds the maximum
size you specify, the application
attempts to save the file to the
hard drive in the location you
specify for
FILE_DOWNLOAD_TEMP_DIR.

If you do not specify a value for
this parameter in the web.xml
file, it defaults to 100 kilobytes.

oracle.adf.view.rich.portal.FILE_DOWNLOAD_MAX_DISK_S
PACE

Integer Specify the maximum size in
kilobytes of the file that the
fileDownloadActionListene
r tag can download. If a file's
size exceeds this value, an
exception occurs and a log
message is logged to the
server's log file.

If you do not specify a value for
this parameter in the web.xml
file, it defaults to 2000.

oracle.adf.view.rich.portal.FILE_DOWNLOAD_TEMP_DIR String Specify the temporary location
where you store files during
download. If you do not specify a
value, it defaults to the directory
specified by java.io.tempDir.

For information about configuring your web.xml file, see Configuration in web.xml.

Before you begin:

It may help to understand how a component's attributes affect functionality. See Using
Buttons or Links to Invoke Functionality.

Chapter 20
Using Buttons or Links to Invoke Functionality

20-17

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

You will need to complete this task:

Create an action component, as described in Using Buttons and Links for
Navigation.

To create a file download mechanism:

1. In the Components window, from the Operations panel, in the Listeners group,
drag and drop the File Download Action Listener tag as a child to the action
component.

2. In the Properties window set the following attributes:

• ContentType: Specify the MIME type of the file, for example text/plain,
text/csv, application/pdf, and so on.

• Filename: Specify the proposed file name for the object. When the file name
is specified, a Save File dialog will typically be displayed, though this is
ultimately up to the browser. If the name is not specified, the content will
typically be displayed inline in the browser, if possible.

• Method: Specify the method that will download the file contents. The method
takes two arguments, a FacesContext object and an OutputStream object. The
OutputStream object will be automatically closed, so the sole responsibility of
this method is to write all bytes to the OutputStream object.

For example, entries in the JSF page for a button component that uses the
fileDownloadActionListener tag would be similar to the following:

<af:button text="Load File">
 <af:fileDownloadActionListener contentType="text/plain"
 filename="MyFile.txt"
 method="#(mybean.LoadMyFile"/>
</af:button>

How to Use an Action Component to Reset Input Fields
You can use the resetListener tag in conjunction with an action component to reset
input values. When the end user invokes the action component, it resets all input
values to null or empty. If you want to reset the input components to their previous
state, which was partially or fully submitted successfully to the server, then you should
use a reset button. See How to Add a Button to Reset the Form.

If you use the resetListener tag to reset input components that render in a popup,
you also need to set a value for the popup component's resetEditableValues
property. For information about this use case, see Resetting Input Fields in a Popup.

Before you begin:

It may help to understand how an action component's attributes affect functionality.
See Using Buttons or Links to Invoke Functionality.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

You will need to complete this task:

Chapter 20
Using Buttons or Links to Invoke Functionality

20-18

Create an action component, as described in Using Buttons and Links for
Navigation.

To use the reset listener tag:

1. In the Components window, from the Operations panel, in the Listeners group,
drag a Reset Listener and drop it inside the action component that you created.

2. In the Insert Reset Listener dialog, specify the type of event that the
resetListener tag activates in response to. For example, enter action so that the
resetListener tag responds to an actionEvent returned by the action
component's actionListener attribute.

Click Help in the Insert Reset Listener dialog to view a complete list of supported
values.

Using Navigation Items for a Page Hierarchy
ADF Faces allows you to create page hierarchy by clicking a button or link. Users gain
access to specific information by navigating through the links. You can provide either
parent-child hierarchy or cross-link hierarchy for navigation.

Note:

If your application uses the Fusion technology stack with ADF Controller,
then you should use ADF task flows and an XMLMenuModel implementation to
create the navigation system for your application page hierarchy. See
Creating a Page Hierarchy Using Task Flows in Developing Fusion Web
Applications with Oracle Application Development Framework.

An application may consist of pages that are related and organized in a tree-like
hierarchy, where users gain access to specific information on a page by drilling down a
path of links. For example, Figure 20-10 shows a simple page hierarchy with three
levels of nodes under the top-level node, Home. The top-level node represents the
root parent page; the first-level nodes, Benefits and Employee Data, represent parent
pages that contain general information for second-level child nodes (such as
Insurance and View Employee) that contain more specific information; the Insurance
node is also a parent node, which contains general information for third-level child
nodes, Health and Dental. Each node in a page hierarchy (except the root Home
node) can be a parent and a child node at the same time, and each node in a page
hierarchy corresponds to a page.

Chapter 20
Using Navigation Items for a Page Hierarchy

20-19

Figure 20-10 Benefits and Employee Page Hierarchy

Navigation in a page hierarchy follows the parent-child links. For example, to view
Health information, the user would start drilling from the Benefits page, then move to
the Insurance page where two choices are presented, one of which is Health. The path
of selected links starting from Home and ending at Health is known as the focus path
in the tree.

In addition to direct parent-child navigation, some cross-level or cross-parent
navigation is also possible. For example, from the Dental page, users can jump to the
Paid Time Off page on the second level, and to the Benefits page or the Employee
Data page on the first level.

As shown in Figure 20-10, the Help node, which is not linked to any other node in the
hierarchy but is on the same level as the top-level Home node, is a global node.
Global nodes represent global pages (such as a Help page) that can be accessed
from any page in the hierarchy.

Typical widgets used in a web user interface for navigating a page hierarchy are tabs,
bars, lists, and global links, all of which can be created by using the navigationPane
component. Figure 20-11 shows an example of how the hierarchy as illustrated in
Figure 20-10 could be rendered using the navigationPane and other components.

Chapter 20
Using Navigation Items for a Page Hierarchy

20-20

Figure 20-11 Rendered Benefits and Employee Data Pages

In general, tabs are used as first-level nodes, as shown in Figure 20-11, where there
are tabs for the Benefits and Employee Data pages. Second-level nodes, such as
Insurance and Paid Time Off are usually rendered as bars, and third-level nodes, such
as Health and Dental are usually rendered as lists. However, you may also use tabs
for both first- and second-level nodes. Global links (which represent global nodes) are
rendered as text links. In Figure 20-11, the Home and Help global links are rendered
as text links.

One navigationPane component corresponds to one level of nodes, whether they are
first-, second-, or third-level nodes, or global nodes. Regardless of the type of items
the navigationPane component is configured to render for a level, you always use the
commandNavigationItem component to represent the items within the level.

The navigationPane component simply renders tabs, bars, lists, and global links for
navigation. To achieve the positioning and visual styling of the page background, as
shown in Figure 20-16 and Figure 20-17, you use the decorativeBox component as
the parent to the first level navigationPane component. The decorativeBox
component uses themes and skinning keys to control the borders and colors of its
different facets. For example, if you use the default theme, the decorativeBox
component body is white and the border is blue, and the top-left corner is rounded. If
you use the medium theme, the body is a medium blue. The application must use the
Skyros skin or a skin that extends from the Skyros skin. The Alta skin does not use
themes. For information about using themes and skins, see Customizing the
Appearance Using Styles and Skins.

Chapter 20
Using Navigation Items for a Page Hierarchy

20-21

Tip:

Because creating a page hierarchy requires that each page in the hierarchy
use the same layout and look and feel, consider using a template to
determine where the navigation components should be placed and how they
should be styled. For more information, see Using Page Templates.

On each page in simple hierarchies, you first use a series of navigationPane
components to represent each level of the hierarchy. Then you add
commandNavigationItem components as direct children of the navigationPane
components for each of the links at each level. For example, to create the Health
insurance page as shown in Figure 20-11, you would first use a navigationPane
component for each level displayed on the page, in this case it would be four: one for
the global links, one for the first-level nodes, one for the second-level nodes, and one
for the third-level nodes. You would then need to add commandNavigationItem
components as children to each of the navigationPane components to represent the
individual links (for example, you would add two commandNavigationItem child
components to the third-level navigationPane component to represent the two third-
level list items). If instead you were creating the Benefits page, as shown in
Figure 20-12, you would add only three navigationPane components (one each for
the global, first, and second levels), and then add just the commandNavigationItem
components for the links seen from this page.

Figure 20-12 First-Level Page

As you can see, with large page hierarchies, this process can be very time consuming
and error prone. Instead of creating each of the separate commandNavigationItem
components on each page, for larger hierarchies you can use an XMLMenuModel
implementation and managed beans to dynamically generate the navigation items on
the pages. The XMLMenuModel class, in conjunction with a metadata file, contains all
the information for generating the appropriate number of hierarchical levels on each
page, and the navigation items that belong to each level.

Then instead of using multiple commandNavigationItem components within each
navigationPane component and marking the current items as selected on each page,

Chapter 20
Using Navigation Items for a Page Hierarchy

20-22

you declaratively bind each navigationPane component to the same XMLMenuModel
implementation, and use one commandNavigationItem component in the nodeStamp
facet to provide the navigation items. The commandNavigationItem component acts as
a stamp for navigationPane component, stamping out navigation items for nodes (at
every level) held in the XMLMenuModel object.

The menuBar component can also be used with the XMLMenuModel implementation to
stamp out menu items for navigating a page hierarchy.

Note:

If you want to create menus that can be used to cause some sort of change
in an application (for example, a File menu that contains the commands
Open and Delete), then see Using Menus, Toolbars, and Toolboxes.

On any page, to show the user's current position in relation to the entire page
hierarchy, you use the breadCrumbs component with a series of
commandNavigationItem components or one commandNavigationItem component as a
nodeStamp, to provide a path of links from the current page back to the root page (that
is, the current nodes in the focus path).

For information about creating a navigational hierarchy using the XMLMenuModel, see
Using a Menu Model to Create a Page Hierarchy. For information about manually
creating a navigational hierarchy, see Creating a Simple Navigational Hierarchy.

How to Create Navigation Cases for a Page Hierarchy
Whether you use a menu model to create the navigation items for a page hierarchy or
manually create the navigation items yourself, the JSF navigation model, through the
default ActionListener mechanism, is used to choose the page to navigate to when
users select a navigation item.

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. See Using Navigation Items for a Page Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create navigation cases for a page hierarchy:

1. In the Applications window, expand the WEB-INF node and double-click faces-
config.xml.

2. Create one global JSF navigation rule that has the navigation cases for all the
nodes in the page hierarchy.

For example, the page hierarchy shown in Figure 20-10 has 10 nodes, including
the global Help node. Thus, you would create 10 navigation cases within one
global navigation rule in the faces-config.xml file, as shown in Example 20-2.

For each navigation case, specify a unique outcome string, and the path to the
JSF page that should be displayed when the navigation system returns an
outcome value that matches the specified string.

Chapter 20
Using Navigation Items for a Page Hierarchy

20-23

For information about creating navigation cases in JDeveloper, see Defining Page
Flows.

Example 20-2 Global Navigation Rule for a Page Hierarchy in faces-config.xml

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>
 <to-view-id>/health.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jsf</to-view-id>
 </navigation-case>
</navigation-rule>

Using a Menu Model to Create a Page Hierarchy
ADF Faces provides a ready-to-use menu model when you want to create complex
page hierarchies. It is a special kind of tree model with a collection of rows indexed by
row keys.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-24

Note:

If your application uses the Fusion technology stack or ADF Controller, then
you should use ADF task flows and an XMLMenuModel implementation to
create the navigation system for your application page hierarchy. For details,
see the "Creating a Page Hierarchy Using Task Flows" section in Developing
Fusion Web Applications with Oracle Application Development Framework.

Using Navigation Items for a Page Hierarchy describes how you can create navigation
items for a very simple page hierarchy using navigationPane components with
multiple commandNavigationItem children components. Using the same method for
more complex page hierarchies would be time consuming and error prone. It is
inefficient and tedious to manually insert and configure individual
commandNavigationItem components within navigationPane and breadCrumbs
components on several JSF pages to create all the available items for enabling
navigation. It is also difficult to maintain the proper selected status of each item, and to
deduce and keep track of the breadcrumb links from the current page back to the root
page.

For more complex page hierarchies (and even for simple page hierarchies), a more
efficient method of creating a navigation system is to use a menu model. A menu
model is a special kind of tree model. A tree model is a collection of rows indexed by
row keys. In a tree, the current row can contain child rows (for information about a tree
model, see Displaying Data in Trees). A menu model is a tree model that knows how
to retrieve the rowKey of the node that has the current focus (the focus node). The
menu model has no special knowledge of page navigation and places no requirements
on the nodes that go into the tree.

The XMLMenuModel class creates a menu model from a navigation tree model. But
XMLMenuModel class has additional methods that enable you to define the hierarchical
tree of navigation in XML metadata. Instead of needing to create Java classes and
configuring many managed beans to define and create the menu model (as you would
if you used one of the other ADF Faces menu model classes), you create one or more
XMLMenuModel metadata files that contain all the node information needed for the
XMLMenuModel class to create the menu model.

Tip:

Do not confuse the navigationPane component with the panelTabbed
component. You use the panelTabbed component to display multiple tabbed
content areas that can be hidden and displayed (see Displaying or Hiding
Contents in Panels). However, the panelTabbed component cannot bind to
any navigational model and the whole content must be available from within
the page, so it has limited applicability.

To create a page hierarchy using a menu model, you do the following:

• Create the JSF navigation rule and navigation cases for the page hierarchy. See
How to Create Navigation Cases for a Page Hierarchy.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-25

• Create the XMLMenuModel metadata. See How to Create the Menu Model
Metadata.

• Configure the managed bean for the XMLMenuModel class. The application uses the
managed bean to build the hierarchy. This configuration is automatically done for
you when you use the Create ADF Menu Model dialog in JDeveloper to create the
XMLMenuModel metadata file. See What Happens When You Use the Create ADF
Menu Model Wizard.

• Create a JSF page for each of the hierarchical nodes (including any global nodes).

Tip:

Typically, you would use a page template that contains a facet for each
level of items (including global items and breadcrumbs) to create each
JSF page. For example, the navigationPane component representing
global items might be wrapped in a facet named navigationGlobal, and
the navigationPane component representing first level tabs might be
wrapped in a navigation1 facet. For information about creating page
templates, see Creating and Reusing Fragments, Page Templates, and
Components.

• On each page, bind the navigationPane and breadCrumbs components to the
XMLMenuModel class. See How to Bind the navigationPane Component to the Menu
Model and How to Use the breadCrumbs Component with a Menu Model. To bind
the menuBar component, see How to Use the menuBar Component with a Menu
Model.

How to Create the Menu Model Metadata
The XMLMenuModel metadata file is a representation of a navigation menu for a page
hierarchy in XML format. You can use one or more XMLMenuModel metadata files to
represent an entire page hierarchy. In an XMLMenuModel metadata file, the page
hierarchy is described within the menu element, which is the root element of the file.
Every XMLMenuModel metadata file is required to have a menu element and only one
menu element is allowed in each file.

The other elements in the XMLMenuModel metadata file or hierarchy can be made up of
item nodes, group nodes, and shared nodes. Item nodes represent navigable nodes
(or pages) in the hierarchy. For example, say you wanted to build the hierarchy
depicted in Figure 20-13.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-26

Figure 20-13 Sample Page Hierarchy

If you wanted each node in the hierarchy to have its own page to which a user can
navigate, then in the metadata file you would create an item node for each page. You
nest children nodes inside a parent node to create the hierarchy. However, say you did
not need a page for the Employee Data node, but instead wanted the user to navigate
directly to the View Employee page. You would then use a group node to represent
the Employee Data page and use the group node's idref attribute to reference the
page that opens (the View Employee page) when an end user clicks the Employee
Data tab. The group node allows you to retain the hierarchy without needing to create
pages for nodes that are simply aggregates for their children nodes.

The following example shows an XMLMenuModel metadata file that uses mostly item
nodes and one group node to define the entire page hierarchy illustrated in
Figure 20-13.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in01" focusViewId="/home.jsf" label="Home" action="goHome">
 <itemNode id="in1" focusViewId="/benefits.jsf" action="goBene"
 label="Benefits">
 <itemNode id="in11" focusViewId="/insurance.jsf" action="goIns"
 label="Insurance">
 <itemNode id="in111" focusViewId="/health.jsf" action="goHealth"
 label="Health"/>
 <itemNode id="in112" focusViewId="/dental.jsf" action="goDental"
 label="Dental"/>
 </itemNode>
 <itemNode id="in12" focusViewId="/pto.jsf" action="goPto"
 label="Paid Time Off">
 <itemNode id="in121" focusViewId="/vacation.jsf"
 action="goVacation" label="Vacation"/>
 <itemNode id="in122" focusViewId="/sick.jsf" action="goSick"
 label="Sick Pay"/>
 </itemNode>
 </itemNode>
 <groupNode id="gn2" idref="newEmp" label="Employee Data">
 <itemNode id="in21" focusViewId="/createemp.jsf" action="goCreate"
 label="Create New Employee"/>
 <itemNode id="in22" focusViewId="/viewdata.jsf" action="goView"
 label="View Data"/>
 </groupNode>
 </itemNode>
 <itemNode id="in02" focusViewId="/globalhelp.jsf" action="goHelp"

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-27

 label="Help"/>
 <itemNode id="in03" focusViewId="/preferences.jsf" action="goPref"
 label="Preferences"/>
</menu>

Within the root menu element, global nodes are any nodes that are direct children of
the menu element. For example, the code in the previous example shows three global
nodes, namely, Home, Help, and Preferences.

You can also nest menu models using shared nodes. Use this approach where you
have sub trees in the hierarchy (for example, the Benefits tree) as it makes the page
hierarchy easier to maintain. For example, you might create the entire Benefits tree as
its own menu model metadata file (as shown in the following example) so that the
menu model could be reused across an application.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in1" focusViewId="/benefits.jsf" action="goBene"
 label="Benefits">
 <itemNode id="in11" focusViewId="/insurance.jsf" action="goIns"
 label="Insurance">
 <itemNode id="in111" focusViewId="/health.jsf" action="goHealth"
 label="Health"/>
 <itemNode id="in112" focusViewId="/dental.jsf" action="goDental"
 label="Dental"/>
 </itemNode>
 <itemNode id="in12" focusViewId="/pto.jsf" action="goPto"
 label="Paid Time Off">
 <itemNode id="in121" focusViewId="/vacation.jsf"
 action="goVacation" label="Vacation"/>
 <itemNode id="in122" focusViewId="/sick.jsf" action="goSick"
 label="Sick Pay"/>
 </itemNode>
 </itemNode>
</menu>

Once you have created the nodes as a separate menu model, then within the different
hierarchies that need to use those nodes, you use a shared node to reference the
Benefits menu model.

The following example shows an XMLMenuModel metadata file that uses item nodes, a
shared node and a group node to define the same page hierarchy depicted in
Figure 20-13.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="in01" focusViewId="/home.jsf" label="Home" action="goHome">
 <sharedNode ref="#{benefits_menu}/>
 <groupNode id="gn2" idref="newEmp" label="Employee Data">
 <itemNode id="in21" focusViewId="/createemp.jsf" action="goCreate"
 label="Create New Employee"/>
 <itemNode id="in22" focusViewId="/viewdata.jsf" action="goView"
 label="View Data"/>
 </groupNode>
 </itemNode>
 <itemNode id="in02" focusViewId="/globalhelp.jsf" action="goHelp"
 label="Help"/>
 <itemNode id="in03" focusViewId="/preferences.jsf" action="goPref"
 label="Preferences"/>
</menu>

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-28

The sharedNode element references the managed bean that is configured for the
Benefits XMLMenuModel metadata file. Whenever you use the Create ADF Menu Model
wizard to create a metadata file, JDeveloper automatically adds the managed bean
configuration for you.

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. SeeUsing a Menu Model to Create a Page Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create the XMLMenuModel metadata:

Note:

If your application uses ADF Controller, then this menu option will not be
available to you. You need to instead use a bounded task flow to create the
hierarchy. See Creating a Page Hierarchy Using Task Flowsin Developing
Fusion Web Applications with Oracle Application Development Framework.

For information about the managed bean configuration that JDeveloper automatically
adds for you in faces-config.xml, see What Happens When You Use the Create ADF
Menu Model Wizard.

For information about using resource bundles, see Internationalizing and Localizing
Pages.

1. In the Applications window, locate the project where you want to create the
XMLMenuModel metadata file. Expand the WEB-INF node, right-click faces-
config.xml and choose Create ADF Menu Model.

2. In the Create ADF Menu Model dialog, enter a file name for the XMLMenuModel
metadata file, for example, root_menu.

Tip:

If you are using more than one XMLMenuModel metadata file to define the
page hierarchy, use the name root_menu only for the topmost (root)
metadata file that contains references to the other submenu metadata
files.

3. Enter a directory for the metadata file. By default, JDeveloper saves the
XMLMenuModel metadata file in the WEB-INF node of the application.

When you click OK, JDeveloper displays a blank XMLMenuModel metadata file in
the source editor, as shown in the following example.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"></menu>

4. Select the menu node in the Structure window and enter the appropriate
information in the Properties window.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-29

Table 20-2 shows the attributes you can specify for the menu element.

Table 20-2 Menu Element Attributes

Attribute Description

resourceBundle Optional. This is the resource bundle to use for the labels (visible
text) of the navigation items at runtime. For example,
org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBun
dle.

var If using a resource bundle, specify an ID to use to reference the
bundle in EL expressions for navigation item labels. For example,
#{bundle.somelabel}. See the following example for a sample
XMLMenuModel metadata file that uses a resource bundle.

xmlns Required. Set to http://myfaces.apache.org/trinidad/menu

The following example shows sample XMLMenuModel metadata code that uses EL
expressions to access a resource bundle for the navigation item labels.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 resourceBundle="org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBundle"
 var="bundle">
 <itemNode id="in1" label="#{bundle.somelabel1}" ../>
 <itemNode id="in2" label="#{bundle.somelabel2}" ../>
</menu>

Note:

When you use a sharedNode element to create a submenu and you use
resource bundles for the navigation item labels, it is possible that the
shared menu model will use the same value for the var attribute on the
root menu element. The XMLMenuModel class handles this possibility
during parsing by ensuring that each resource bundle is assigned a
unique hash key.

5. In the Structure window, right-click menu and choose Insert inside menu, and
then choose the desired element (itemNode, groupNode, or sharedNode) from the
subsequent context menu, as shown in Figure 20-14, to add to the nodes in your
hierarchy.

Figure 20-14 Context Menu for Inserting Elements into Menu

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-30

The elements can be one of the following:

• itemNode: Specifies a node that performs navigation upon user selection.

• groupNode: Groups child components; the groupNode itself does no
navigation. Child nodes node can be itemNode or another groupNode.

For example, say you did not need a page for the Employee Data node, but
instead, wanted the user to navigate directly to the View Employee page. You
would then use a group node to represent the Employee Data page by
specifying the id attribute of the desired child node as a value for the group
node's idref attribute. The group node allows you to retain the hierarchy
without needing to create pages for nodes that are simply aggregates for their
children nodes.

• sharedNode: References another XMLMenuModel instance. A sharedNode
element is not a true node; it does not perform navigation nor does it render
anything on its own.

You can insert a sharedNode element anywhere within the hierarchy. The code
shown in the following example demonstrates how the sharedNode element
adds a submenu on the same level as the first-level Employee Data node.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 <itemNode id="in0" label="Home" ..>
 <sharedNode ref="#{shared_menu}"/>
 <itemNode id="in1" label="Employee Data" ../>
 </itemNode>
 <itemNode id="in01" label="Help" ../>
</menu>

As you build the XMLMenuModel metadata file, the tree structure you see in the
Structure window exactly mirrors the indentation levels of the menu metadata, as
shown in Figure 20-15.

Figure 20-15 Tree Structure of XMLMenuModel Metadata in Structure
Window

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-31

6. For each element used to create a node, set the properties in the Properties
window, as described in Table 20-3 for itemNode elements, Table 20-4 for
groupNode elements, and Table 20-5 for sharedNode elements.

Table 20-3 itemNode Element Attributes

Attribute Description

action Specify either an outcome string or an EL method binding
expression that returns an outcome string. In either case, the
outcome string must match the from-outcome value to the
navigation case for that node as configured in the faces-
config.xml file.

destination Specify the URI of the page to navigate to when the node is
selected, for example, http://www.oracle.com. If the
destination is a JSF page, the URI must begin with "/faces".

Alternatively, specify an EL method expression that evaluates
to the URI.

If both action and destination are specified,
destination takes precedence over action.

focusViewId Required. The URI of the page that matches the node's
navigational result, that is, the to-view-id value of the
navigation case for that node as specified in the faces-
config.xml file.

For example, if the action outcome of the node navigates to /
page_one.jsf (as configured in the faces-config.xml
file), then focusViewId must also be /page_one.jsf.

The focusViewId does not perform navigation. Page
navigation is the job of the action or destination
attributes. The focusViewId, however, is required for the
XMLMenuModel to determine the correct focus path.

id Required. Specify a unique identifier for the node.

As previous examples show, it is good practice to use "inX"
for the ID of each itemNode, where for example, "inX" could
be in1, in11, in111, in2, in21, in 211, and so on.

label Specify the label text to display for the node. Can be an EL
expression to a string in a resource bundle, for example,
#{bundle.somelabel}, where bundle must match the root
menu element's var attribute value.

any Specify any custom attribute for the itemNode.

A groupNode element does not have the action or destination attribute that
performs navigation directly, but it points to a child node that has the action
outcome or destination URI, either directly by pointing to an itemNode child (which
has the action or destination attribute), or indirectly by pointing to a groupNode
child that will then point to one of its child nodes, and so on until an itemNode
element is reached. Navigation will then be determined from the action outcome or
destination URI of that itemNode element.

Consider the groupNode code shown in the following example. At runtime, when
users click groupNode id="gn1", or groupNode id="gn11", or itemNode id="in1",
the navigation outcome is "goToSubTabOne", as specified by the first itemNode

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-32

reached (that is itemNode id="id1"). Table 20-4 shows the attributes you must
specify when you use a groupNode element.

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns:"http://myfaces.apache.org/trinidad/menu">
 <groupNode id="gn1" idref="gn11" label="GLOBAL_TAB_0">
 <groupNode id="gn11" idref="in1" label="PRIMARY_TAB_0">
 <itemNode id="in1" label="LEVEL2_TAB_0" action="goToSubTabOne"
 focusViewId="/menuDemo/subtab1.jsf"/>
 <itemNode id="in2" label="LEVEL2_TAB_1" action="goToSubTabTwo"
 focusViewId="/menuDemo/subtab2.jsf"/>
 </groupNode>
 <itemNode id="in3" label="PRIMARY_TAB_1" focusViewId="/menuDemo/tab2.jsf"
 destination="/faces/menuDemo/tab2.jsf"/>
 </groupNode>
 <itemNode id="gin1" label="GLOBAL_TAB_1" action="goToGlobalOne"
 focusViewId="/menuDemo/global1.jsf"/>
 <itemNode id="gin2" label="GLOBAL_TAB_2"
 destination="/faces/menuDemo/global2.jsf"
 focusViewId="/menuDemo/global2.jsf"/>
</menu>

Table 20-4 GroupNode Element Attribute

Attribute Description

id A unique identifier for the group node.

As shown in the previous example, it is good practice to use
gnX for the ID of each groupNode, where for example, gnX
could be gn1, gn2, and so on.

idref Specify the ID of a child node, which can be an itemNode, or
another groupNode. When adding a groupNode as a child
node, that child in turn can reference another groupNode and
so on, but eventually an itemNode child must be referenced
as the last child.

The idref attribute can contain more than one child ID,
separated by spaces; the IDs are processed in the order they
are listed.

label Specify the label text to display for the group node. Can be an
EL expression to a string in a resource bundle, for example,
#{bundle.somelabel}.

any Specify any custom attribute for the groupNode.

Table 20-5 sharedNode Element Attribute

Attribute Description

ref Specify the managed bean name of another XMLMenuModel
class, as configured in the faces-config.xml file, for
example, #{shared_menu}.

At runtime, the referenced navigation menu is created,
inserted as a submenu into the main (root) menu, and
rendered.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-33

What Happens When You Use the Create ADF Menu Model Wizard
When you use the Create ADF Menu Model wizard to create an XMLMenuModel
metadata file, JDeveloper automatically configures for you a managed bean for the
menu metadata file in the faces-config.xml file, using the metadata file name you
provide as the managed bean name.

The following example shows part of the faces-config.xml file that contains the
configuration of one XMLMenuModel metadata file. By default, JDeveloper uses the
oracle.adf.view.rich.model.MDSMenuModel class as the managed bean class, and
request as the managed bean scope, which is required and cannot be changed.

<managed-bean>
 <managed-bean-name>root_menu</managed-bean-name>
 <managed-bean-class>oracle.adf.view.
 rich.model.MDSMenuModel</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>
 <value>false</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/root_menu.xml</value>
 </managed-property>
</managed-bean>

In addition, the following managed properties are added by JDeveloper for the
XMLMenuModel managed bean:

• createHiddenNodes: When true, specifies that the hierarchical nodes must be
created even if the component's rendered attribute is false. The
createHiddenNodes value is obtained and made available when the menu
metadata source file is opened and parsed. This allows the entire hierarchy to be
created, even when you do not want the actual component to be rendered.

• source: Specifies the menu metadata source file to use (for example, /WEB-INF/
root_menu.xml).

Note:

The createHiddenNodes property must be placed before the source
property, which JDeveloper does for you when the managed bean is
automatically configured. The XMLMenuModel managed bean must have the
createHiddenNodes value already set to properly parse and create the
menu's XML metadata from the source managed property.

For each XMLMenuModel metadata file that you create in a project using the wizard,
JDeveloper configures a managed bean for it in the faces-config.xml file. For
example, if you use a sharedNode element in an XMLMenuModel to reference another
XMLMenuModel metadata file, you would have created two metadata files. And
JDeveloper would have added two managed bean configurations in the faces-

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-34

config.xml file, one for the main (root) menu model, and a second managed bean for
the shared (referenced) menu model, as shown in the following example.

<!-- managed bean for referenced, shared menu model -->
<managed-bean>
 <managed-bean-name>shared_menu</managed-bean-name>
 <managed-bean-class>
 <managed-bean-class>oracle.adf.view.
 rich.model.MDSMenuModel</managed-bean-class>
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>
 <value>false</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/shared_menu.xml</value>
 </managed-property>
</managed-bean>

This means, if you use shared nodes in your XMLMenuModel metadata files, the faces-
config.xml file will have a root menu model managed bean, plus menu model
managed beans for any menu models referenced through shared nodes.

How to Bind the navigationPane Component to the Menu Model
Each node in the page hierarchy corresponds to one JSF page. On each page, you
use one navigationPane component for each level of navigation items that you have
defined in your XMLMenuModel metadata file, including global items. Levels are defined
by a zero-based index number: Starting with global nodes in the metadata file (that is,
direct children nodes under the menu element), the level attribute value is 0 (zero),
followed by 1 for the next level (typically tabs), 2 for the next level after that (typically
bars), and so on. For example, if you had a page hierarchy like the one shown in
Figure 20-13, you would use three navigationPane components on a page such as
Home (for the three levels of navigation under the Home node), plus one more
navigationPane component for the global nodes.

Tip:

Because the menu model dynamically determines the hierarchy (that is, the
links that appear in each navigationPane component) and also sets the
current nodes in the focus path as selected, you can practically reuse the
same code for each page. You need to change only the page's document
title, and add the specific page contents to display on that page.

Because of this similar code, you can create a single page fragment that has
just the facets containing the navigationPane components, and include that
fragment in each page, where you change the page's document title and add
the page contents.

As described in How to Create a Simple Page Hierarchy, you use the hint attribute to
specify the type of navigation item you want to use for each hierarchical level (for

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-35

example, buttons, tabs, or bar). But instead of manually adding multiple
commandNavigationItem components yourself to provide the navigation items, you
bind each navigationPane component to the root XMLMenuModel managed bean, and
insert only one commandNavigationItem component into the nodeStamp facet of each
navigationPane component, as shown in the following example.

<af:navigationPane var="menuNode" value="#{root_menu}" level="0"
 hint="buttons">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"
 visible="#{menuNode.visible}"
 rendered="#{menuNode.rendered}"/>
 </f:facet>
</af:navigationPane>

The nodeStamp facet and its single commandNavigationItem component, in conjunction
with the XMLMenuModel managed bean, are responsible for:

• Stamping out the correct number of navigation items in a level.

• Displaying the correct label text and other properties as defined in the metadata.
For example, the EL expression #{menuNode.label} retrieves the correct label text
to use for a navigation item, and #{menuNode.doAction} evaluates to the action
outcome defined for the same item.

• Marking the current items in the focus path as selected. You should not specify the
selected attribute at all for the commandNavigationItem components.

Note:

If there is no node information in the XMLMenuModel object for a particular
hierarchical level (for example, level 3 lists), ADF Faces does not display
those items on the page even though the page contains the navigationPane
component code for that level.

If you want the navigation items to be styled, create a decorativeBox component by
dragging and dropping a Decorative Box from the Layout panel of the Components
window to the JSF page. Set the theme to determine how you want the tabs to appear.
Valid values are:

• default

• light

• medium

• dark

Each value describes the look and feel applied to the application when you specify the
theme value for the component. The application must use the Skyros skin or a skin
that extends from the Skyros skin. The Alta skin does not use themes. You can
change how the themes display. See Customizing the Appearance Using Styles and
Skins.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-36

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. See Using a Menu Model to Create a Page Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To bind a navigationPane component to the menu model:

1. In the Components window, from the Layout panel, in the Interactive Containers
and Headers group, drag and drop a Navigation Pane onto the JSF page for each
level of the hierarchy.

For example, to create any of the pages as shown in the hierarchy in Figure 20-13,
you drag and drop four navigationPane components onto the JSF page.

2. For each navigationPane component, in the Properties window, expand the
Common section and select one of the following types of navigation items from
the Hint dropdown list to determine how the navigationPane displays:

• bar: Displays the navigation items separated by a bar, for example the
Insurance and Paid Time Off links in Figure 20-17.

• buttons: Displays the navigation items separated by a bar in a global area, for
example the Home and Help links in Figure 20-17.

• choice: Displays the navigation items in a popup list when the associated
dropdown icon is clicked. You must include a value for the navigationPane
component's icon attribute and you can associate a label to the dropdown list
using the title attribute.

• list: Displays the navigation items in a bulleted list, for example the Health
and Dental links in Figure 20-17.

• tabs: Displays the navigation items as tabs, for example the Benefits and
Employee Data tabs in Figure 20-17.

3. In the Level field, enter a number for the appropriate level of metadata in the
XMLMenuModel metadata file. The level attribute is a zero-based index number:
Starting with global nodes in the metadata file (that is, direct children nodes under
the menu element), the level attribute value is 0 (zero), followed by 1 for the next
level (typically tabs), 2 for the next level after that (typically bars), and so on.

The commandNavigationItem component is able to get its metadata from the
metadata file through the level attribute on the parent navigationPane
component. By default, if you do not specify a level attribute value, 0 (zero) is
used, that means the navigationPane component will take the metadata from the
first level under the menu element for rendering by the commandNavigationItem
component.

4. In the Properties window, expand the Data section and set the following:

• Value: Set to the menu model managed bean that is configured for the root
XMLMenuModel class in the faces-config.xml file.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-37

Note:

The value attribute can reference root menu models and menu
models referenced by shared nodes. If you reference a shared node
in the value attribute, the faces-config.xml file needs to have a
new managed bean entry with a different managed bean name than
the one which is used in a root menu model definition in the menu
model metadata file. This promotes the menu model of a shared
node to a root menu model which can then be referred to in the
value attribute.

• Var: Set to text that you will use in the commandNavigationItem components to
get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for
the current node is copied into the var attribute, which can then be addressed
using an EL expression. You specify the name to use for this property in the
EL expression using the var property.

Tip:

You use the same value for the var attribute for every
navigationPane component on the page or in the application.

5. In the Components window, from the Layout panel, in the Interactive Containers
and Headers group, drag and drop a Navigation Item to the nodeStamp facet of
the navigationPane component.

6. Set the values for the remaining attributes that have corresponding values in the
metadata using EL expressions that refer to the menu model (whose metadata
contains that information). You access these values using the value of the var
attribute you set for the parent navigationPane component in Step 4 along with
the name of the corresponding itemNode element that holds the value in the
metadata. Table 20-6 shows the attributes on the navigation item that has
corresponding values in the metadata.

Table 20-6 Navigation Item Attributes and the Associated Menu Model
Attributes

Navigation Item Attribute Associated Menu Model Element Attribute

text label

action doAction

icon icon

destination destination

visible visible

rendered rendered

For example, if you had set the var attribute on the parent navigationPane
component to menuNode, you would use #{menuNode.doAction} as the EL
expression for the value of the action attribute. This would resolve to the action

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-38

property set in the metadata for each node. Example 20-3 shows the JSF code for
binding to a menu model that has four levels of hierarchical nodes.

Example 20-3 Binding to the XMLMenuModel

<af:form>
 <af:navigationPane hint="buttons" level="0" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="tabs" level="1" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="bar" level="2" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="list" level="3" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
</af:form>

Note:

For information about how to let users close navigation tabs, see What You
May Need to Know About Removing Navigation Tabs.

How to Use the breadCrumbs Component with a Menu Model
Creating a breadcrumb using the menu model is similar to creating the page hierarchy;
you use the breadCrumbs component with a nodeStamp facet that stamps a
commandNavigationItem component with data from the model.

Before you begin:

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-39

It may help to understand how the attributes of navigation components affect
functionality. See Using a Menu Model to Create a Page Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create a breadcrumb using a menu model:

1. In the Components window, from the General Controls panel, in the Location
group, drag and drop a BreadCrumbs onto the JSF page.

2. By default, breadcrumb links display in a horizontal line. To change the layout to
be vertical, in the Properties window, expand the Common section and select
vertical from the Orientation dropdown list.

3. In the Properties window, expand the Data section and the set the following:

• Value: Set to the root XMLMenuModel managed bean as configured in the
faces-config.xml file. This is the same bean to which the navigationPane
component is bound.

Note:

The value attribute should reference only a root menu model and
not any menu models referenced through shared nodes. For
example, if you use a shared node in your main XMLMenuModel
element, JDeveloper would have created managed bean
configurations for the shared node and the root XMLMenuModel bean
that consumes the shared model. The shared model managed bean
is automatically incorporated into the root menu model managed
bean as the menu tree is parsed at startup.

• Var: Set to text that you will use in the commandNavigationItem components to
get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for
the current node is copied into the var attribute, which can then be addressed
using an EL expression. You specify the name to use for this property in the
EL expression using the var property.

Tip:

You can use the same value for the var attribute for the breadCrumbs
component as you did for the navigationPane components on the
page or in the application.

4. In the Components window, from the Layout panel, in the Interactive Containers
and Headers group, drag a Navigation Item and drop it inside the nodeStamp
facet of the breadCrumbs component.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-40

Note:

The nodeStamp facet of the breadCrumbs component determines what
links appear according to the menu model that you specify for the value
attribute of the breadCrumbs component. If you do not specify the menu
model you want to render for the value attribute of the breadCrumbs
component, no links appear at runtime. Do not use a nodeStamp facet for
the breadCrumbs component if you do not use a menu model because no
stamps will be required.

5. Set the values for the remaining attributes that have corresponding values in the
metadata using EL expressions that refer to the menu model (whose metadata
contains that information). You access these values using the value of the var
attribute you set for the parent breadCrumbs component in Step 3 along with the
name of the corresponding itemNode element that holds the value in the metadata.
Table 20-6 shows the attributes on the navigation item that has corresponding
values in the metadata.

For example, if you had set the var attribute on the breadCrumbs component to
menuNode, you would use #{menuNode.doAction} as the EL expression for the
value of the action attribute. This would resolve to the action property set in the
metadata for each node.

<af:breadCrumbs var="menuNode" value="#{root_menu}">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"/>
 </f:facet>
</af:breadCrumbs>

How to Use the menuBar Component with a Menu Model
As described in Using Menus, Toolbars, and Toolboxes, the menuBar and menu
components are usually used to organize and create menus that users click to cause
some change or action in the application. Where applicable, the menuBar component
can be used with an XMLMenuModel implementation and managed beans to create a
page hierarchy. Like the breadCrumbs or navigationPane component, when menuBar is
bound to the root XMLMenuModel managed bean, you use one commandNavigationItem
component in the nodeStamp facet to dynamically provide the menu items for
navigating the page hierarchy.

When the page hierarchy of a website cannot be sufficiently represented by a tabbed
navigation system (through a navigationPane or panelTabbed component), use the
menuBar component to provide a navigation bar of menus and submenus. For
example, a web store application with many shopping categories for users to browse
might benefit from a horizontal arrangement of top-level menus in a bar instead of
rendering all the categories and subcategories within tabs, subtabs or bars, and lists.
With a menuBar bound to a menu model, submenus appear only when the user places
the mouse cursor over a top-level menu or a submenu item. Not only does this
arrangement reduce screen real estate, but the user can also quickly navigate from
the top of the hierarchy to a page at the lowest level with just one click.

Unlike a menuBar component that is not bound to a menu model, a menuBar that is
bound to a menu model is not detachable, and should not be used with a toolbar. Also,

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-41

do not use navigation tabs with a menuBar bound to a menu model on the same page.
If you must use both, always place the menuBar component above the navigation tabs.
You can, however, use a menuBar bound to a menu model with a breadCrumbs
component bound to the same model on those pages where you want to show
breadcrumb links.

If you want the menu bar to be styled, create a decorativeBox component by dragging
and dropping a Decorative Box from the Layout panel of the Components window to
the JSF page. Set the theme to determine how you want the tabs to appear. Valid
values are:

• default

• light

• medium

• dark

Each value describes the look and feel applied to the application when you specify the
theme value for the component. The application must use the Skyros skin or a skin
that extends from the Skyros skin. The Alta skin does not use themes. You can
change how the themes display. See Customizing the Appearance Using Styles and
Skins.

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. See Using a Menu Model to Create a Page Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create a horizontal menu bar using a menu model:

1. In the Components window, from the Menus and Toolbars panel, drag and drop a
Menu Bar onto the JSF page.

2. In the Properties window, expand the Menu Model section and set the following
values:

• Value: Set to the root XMLMenuModel managed bean as configured in the
faces-config.xml file. This is the same bean to which the breadCrumbs
component is bound.

Note:

The value attribute should reference only a root menu model and
not any menu models referenced through shared nodes. For
example, if you use a shared node in your main XMLMenuModel
element, JDeveloper would have created managed bean
configurations for the shared node and the root XMLMenuModel bean
that consumes the shared model. The shared model managed bean
is automatically incorporated into the root menu model managed
bean as the menu tree is parsed at startup.

• Var: Set to the text that you will use in the commandNavigationItem
components to get the needed data from the menu model.

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-42

As the hierarchy is created at runtime, and each node is stamped, the data for
the current node is copied into the var attribute, which can then be addressed
using an EL expression. You specify the name to use for this property in the
EL expression using the var property.

Tip:

You can use the same value for the var attribute for the menuBar
component as you did for the breadCrumbs component on the page
or in the application.

3. In the Components window, from the Layout panel, in the Interactive Containers
and Headers group, drag and drop a Navigation Item to the nodeStamp facet of
the menuBar component.

Note:

The nodeStamp facet of the menuBar component determines what links
appear according to the menu model that you specify for the value
attribute of the menuBar component. If you do not specify the menu
model you want to render for the value attribute of the menuBar
component, no menu items will appear at runtime.

4. Set the values for the remaining attributes that have corresponding values in the
metadata using EL expressions that refer to the menu model (whose metadata
contains that information). You access these values using the value of the var
attribute you set for the parent menuBar component in Step 2 along with the name
of the corresponding itemNode element that holds the value in the metadata.
Table 20-6 shows the attributes on the navigation item that has corresponding
values in the metadata.

For example, if you had set the var attribute on the menuBar component to
menuNode, you would use #{menuNode.doAction} as the EL expression for the
value of the action attribute. This would resolve to the action property set in the
metadata for each node.

<af:menuBar var="menuNode" value="#{root_menu}">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"/>
 </f:facet>
</af:menuBar>

What Happens at Runtime: How the Menu Model Creates a Page
Hierarchy

The value attribute of the menu model bound component (navigationPane,
breadCrumbs, or menuBar) references the managed bean for the XMLMenuModel
element. When that managed bean is requested, the following takes place:

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-43

• The setSource() method of the XMLMenuModel class is called with the location of
the model's metadata, as specified in the managed-property element in the faces-
config.xml file.

• An InputStream object to the metadata is made available to the parser
(SAXParser); the metadata for the navigation items is parsed, and a call to
MenuContentHandler method is made.

• The MenuContentHandler builds the navigation menu tree structure as a List
object in the following manner:

– The startElement() method is called at the start of processing a node in the
metadata.

– The endElement() method is called at the end of processing the node.

– As each node is processed, a List of navigation menu nodes that make up
the page hierarchy of the menu model is created.

• A TreeModel object is created from the list of navigation menu nodes.

• The XMLMenuModel object is created from the TreeModel object.

If a groupNode element has more than one child id in its idref attribute, the following
occurs:

• The IDs are processed in the order they are listed. If no child node is found with
the current ID, the next ID is used, and so on.

• Once a child node is found that matches the current ID in the idref list, then that
node is checked to see if its rendered attribute is set to true, its disabled attribute
is set to false, its readOnly attribute is set to false, and its visible attribute is
set to true. If any of the criteria is not met, the next ID in the idref list is used,
and so on.

• The first child node that matches the criteria is used to obtain the action outcome
or destination URI. If no child nodes are found that match the criteria, an error is
logged. However, no error will be shown in the UI.

• If the first child node that matches the criteria is another groupNode element, the
processing continues into its children. The processing stops when an itemNode
element that has either an action or destination attribute is encountered.

• When the itemNode element has an action attribute, the user selection initiates a
POST action and the navigation is performed through the action outcome. When the
itemNode element has a destination attribute, the user selection initiates a GET
action and navigation is performed directly using the destination value.

The XMLMenuModel class provides the model that correctly highlights and enables the
items on the navigation menus (such as tabs and bars) as you navigate through the
navigation menu system. The model is also instantiated with values for label,
doAction, and other properties that are used to dynamically generate the navigation
items.

The XMLMenuModel class does no rendering; the model bound component uses the
return value from the call to the getFocusRowKey() method to render the navigation
menu items for a level on a page.

The commandNavigationItem component housed within the nodeStamp facet of the
menu model bound component provides the label text and action outcome for each
navigation item. Each time the nodeStamp facet is stamped, the data for the current
navigation item is copied into an EL-reachable property, the name of which is defined

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-44

by the var attribute on the navigationPane component that houses the nodeStamp
facet. The nodeStamp displays the data for each item by getting further properties from
the EL-reachable property. Once the navigation menu has completed rendering, this
property is removed (or reverted back to its previous value). When users select a
navigation item, the default JSF actionListener mechanism uses the action outcome
string or destination URI to handle the page navigation.

The XMLMenuModel class, in conjunction with nodeStamp facet also controls whether or
not a navigation item is rendered as selected. As described earlier, the XMLMenuModel
object is created from a tree model, which contains viewId attribute information for
each node. The XMLMenuModel class has a method getFocusRowKey() that determines
which page has focus, and automatically renders a node as selected if the node is on
the focus path. The getFocusRowKey() method in its most simplistic fashion does the
following:

• Gets the current viewId attribute.

• Compares the viewId attribute value with the IDs in internal maps used to resolve
duplicate viewId values and in the viewIdFocusPathMap object that was built by
traversing the tree when the menu model was created.

• Returns the focus path to the node with the current viewId attribute or returns
null if the current viewId attribute value cannot be found.

The viewId attribute of a node is used to determine the focus rowKey object. Each item
in the model is stamped based on the current rowKey object. As the user navigates
and the current viewId attribute changes, the focus path of the model also changes
and a new set of navigation items is accessed.

What You May Need to Know About Using Custom Attributes
Custom attributes that you have created can be displayed, but only for itemNode and
groupNode elements.

Consider the groupNode code shown in the following example. Here, the cardIcon
custom attribute is used in groupNode that can be bound to an alternate UI Widget.
This model can be used by two UI Widget screens displaying the same model and
using two different properties such as, icon and cardIcon.

Example 20-4 shows an example of cardIcon custom attribute in groupNode.

Example 20-4 Custom Attribute for groupNode in XMLMenuModel

<groupNode
 id="groupNode_risk_management_tools"
 idref="_groupNode_risk_management_tools_"

label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].RISK_MANAGEMENT_TOOLS}">
 <itemNode
id="itemNode_risk_management_tools_setup_and_administration"

label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].SETUP_AND_ADMINISTRATION}
"
 icon="/images/qual_gears_16.png"
 cardIcon="gears.png"
 taskMenuSource="/WEB-INF/oracle/apps/grc/fuseplus/ui/menu/
SetupAndAdministration_taskmenu.xml"
 securedResourceName="/WEB-INF/oracle/apps/grc/ui/setup/view/setup/flow/
SetupMaintenancePGFlow.xml#SetupMaintenancePGFlow"

Chapter 20
Using a Menu Model to Create a Page Hierarchy

20-45

 focusViewId="/FuseOverview"
 webApp="GrcCore"
 applicationStripe="fscm"
 showOnHomeGrid="true"/>
 <itemNode id="itemNode_risk_management_tools_perspectives"

label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].PERSPECTIVES}"
 icon="/images/qual_folio_16.png"
 cardIcon="folio.png"
 taskMenuSource="/WEB-INF/oracle/apps/grc/fuseplus/ui/menu/
PerspectiveManagement_taskmenu.xml"
 securedResourceName="/WEB-INF/oracle/apps/grc/ui/perspective/view/flow/
ManagePerspectivesPGFlow.xml#ManagePerspectivesPGFlow"
 focusViewId="/FuseOverview"
 webApp="GrcCore"
 applicationStripe="fscm"
 showOnHomeGrid="true"/>
 <itemNode id="itemNode_risk_management_tools_surveys"
 label="#{menuBundle['oracle.apps.menu.ResourcesAttrBundle'].SURVEYS}"
 icon="/images/qual_peopleconnect_16.png"
......................

Creating a Simple Navigational Hierarchy
ADF Faces allows you to create a simple hierarchical navigational model by using
commandNavigationItem child components with navigationPane components. If you
want to create a complex hierarchical model, then you must use a menu model.

Note:

If the application hierarchy is complex and consists of deeply nested pages,
it is more efficient to use a menu model to create your navigation system. For
details, see Using a Menu Model to Create a Page Hierarchy.

Using Navigation Items for a Page Hierarchy describes a simple page hierarchy with
three levels of links under a top-level root node, Home. Figure 20-16 and Figure 20-17
show an example of what the user interface could look like when the navigationPane
component and individual commandNavigationItem components are used to create a
view for the page hierarchy shown in Figure 20-10.

Chapter 20
Creating a Simple Navigational Hierarchy

20-46

Figure 20-16 Navigation Items Available from the View Employee Page

When you create the hierarchy manually, first determine the focus path of each page
(that is, where exactly in the hierarchy the page resides) in order to determine the
exact number of navigationPane and commandNavigationItem components needed
for each page, as well as to determine the components that should be configured as
selected when the user visits the page. For example, in Figure 20-16, which shows the
View Employee page, you would need three navigationPane components. In addition
to the first-level tabs, only the second-level child bars of Employee Data are needed,
and only the Employee Data tab and View Employee bar render as selected.

Similarly in Figure 20-17, which shows the Health page, only the child bars of Benefits
are needed, and the Benefits tab and Insurance bar must be configured as selected.
Additionally for this page, you would create the child nodes under Insurance, which
can be presented as a vertical list on the side of the page. The Health item in the
vertical list is configured as selected, and the contents of the Health page are
displayed in the middle, to the right of the vertical list.

Figure 20-17 Navigation Items Available from the Health Page

Chapter 20
Creating a Simple Navigational Hierarchy

20-47

Regardless of the type of navigation items you use (such as tabs, bars or lists), you
use a navigationPane component to represent one level of hierarchical links, and a
series of commandNavigationItem child components within each navigationPane
component to provide the actual navigation items. For example, in Figure 20-17 the
actual links for the first-level tabs (Benefits and Employee Data), the second-level bars
(Insurance and Paid Time Off), and the Health and Dental links in the list are each
provided by a commandNavigationItem component. Underneath the bars, to provide
the breadcrumb links that show the focus path of the current page, you use a
breadCrumbs component with the required number of child commandNavigationItem
components.

How to Create a Simple Page Hierarchy
When your navigational hierarchy contains only a few pages and is not very deep, you
can choose to manually create the hierarchy. Doing so involves creating the navigation
rule and navigation cases, using the navigationPane component to create the
hierarchy, and using the commandNavigationItem component to create the links.

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. See Creating a Simple Navigational Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To manually create a navigation hierarchy:

1. In the Applications window, expand the WEB-INF node and double-click faces-
config.xml.

2. In the source editor, create one global JSF navigation rule that has the navigation
cases for all the nodes (that is, pages) in the page hierarchy.

For example, the page hierarchy shown in Figure 20-10 has 10 nodes, including
the global Help node. Thus, you would create 10 navigation cases within one
global navigation rule in the faces-config.xml file, as shown in the following
example.

For each navigation case, specify a unique outcome string, and the path to the
JSF page that should be displayed when the navigation system returns an
outcome value that matches the specified string.

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jsf</to-view-id>
 </navigation-case>

Chapter 20
Creating a Simple Navigational Hierarchy

20-48

 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>
 <to-view-id>/health.jsf</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jsf</to-view-id>
 </navigation-case>
</navigation-rule>

For information about creating navigation cases in JDeveloper, see Defining Page
Flows.

3. Create the JSF pages for all the hierarchical nodes. If you want the navigation tabs
to be styled, create a decorativeBox component by dragging and dropping a
Decorative Box from the Layout panel of the Components window to each page.
Set the theme to determine how you want the tabs to appear. Valid values are:

• default

• light

• medium

• dark

Each value describes the look and feel applied to the application when you specify
the theme value for the component. The application must use the Skyros skin or a
skin that extends from the Skyros skin. The Alta skin does not use themes. You
can change how the themes display. See Customizing the Appearance Using
Styles and Skins. To consider using a page template to achieve the positioning
and visual styling of your JSF pages, see Using Page Templates.

4. In the Components window, from the Layout panel, in the Interactive Containers
and Headers group, drag and drop a Navigation Pane to each page. Drag and
drop a navigationPane component for each level of the hierarchy on the page.

For example, to create the Health page, as shown in Figure 20-17, drag and drop
four navigationPane components. In the Health page, the components are
dropped into specific areas of a template that already contains layout components
to create the look and feel of the page.

5. For each navigationPane component, in the Properties window, expand the
Common section and select one of the following types of navigation items from
the Hint dropdown list to determine how the navigationPane component displays:

Chapter 20
Creating a Simple Navigational Hierarchy

20-49

• bar: Displays the navigation items separated by a bar, for example the
Insurance and Paid Time Off links in Figure 20-17.

• buttons: Displays the navigation items separated by a bar in a global area, for
example the Home and Help links in Figure 20-17.

• choice: Displays the navigation items in a popup list when the associated
dropdown icon is clicked. You must include a value for the navigationPane
component's icon attribute and you can associate a label to the dropdown list
using title attribute.

• list: Displays the navigation items in a bulleted list, for example the Health
and Dental links in Figure 20-17.

• tabs: Displays the navigation items as tabs, for example the Benefits and
Employee Data tabs in Figure 20-17.

6. For each navigationPane component, add the needed commandNavigationItem
components to represent the different links by dragging and dropping a
Navigation Item from the Interactive Containers and Headers group in the Layout
panel of the Components window. Drop a Navigation Item as a child to the
navigationPane component for each link needed.

For example, to create the Health page as shown in Figure 20-17, you would use
a total of eight commandNavigationItem components, two for each
navigationPane component.

Performance Tip:

At runtime, when available browser space is less than the space needed
to display the contents in a tab or bar of a navigation pane, or the
contents of the breadcrumb, ADF Faces automatically displays overflow
icons that enable users to select and navigate to those items that are out
of view. The number of child components within a navigationPane or
breadCrumbs component, and the complexity of the children, will affect
the performance of the items within the overflow. You should set the size
of the navigationPane or breadCrumbs component to avoid overflow
when possible.

7. For each commandNavigationItem component, set the navigation to the desired
page. In the Properties window, expand the Common section and provide a static
string outcome of an action or use an EL expression to reference an action
method in the Action field. If you use a string, it must match the navigation
metadata set up in the navigation rules for the page created in Step 2. If
referencing a method, that method must return the required string.

8. In the Properties window, expand the Behavior section and select true from the
Selected dropdown list if the commandNavigationItem component should be
displayed as selected when the page is first rendered, and false if it should not.

At runtime, when a navigation item is selected by the user, that component's
selected attribute changes to selected="true" and the appearance changes to
indicate to the user that the item has been selected. For example, in Figure 20-17
the Benefits tab, Insurance bar, and Health list item are shown as selected by a
change in either background color or font style. You do not have to write any code
to show the selected status; the selected attribute on the commandNavigationItem

Chapter 20
Creating a Simple Navigational Hierarchy

20-50

component for that item takes care of turning on the selected status when the
attribute value is true.

Example 20-5 Using actionListener to Change Selected State

<!-- JSF Page Code ----->
<af:navigationPane hint="tabs">
 <af:commandNavigationItem text="Benefits"
 actionListener="#{myBean.navigationItemAction}"
 partialSubmit="true"../>
 .
</af:navigationPane>

<!-- Managed Bean Code ----->
public void navigationItemAction(ActionEvent event)
{
 UIComponent actionItem = event.getComponent();
 UIComponent parent = actionItem.getParent();
 while (! (parent instanceof UIXNavigationHierarchy))
 {
 parent = parent.getParent();
 if (parent == null)
 {
 System.err.println(
 "Unexpected component hierarchy, no UIXNavigationHierarchy found.");
 return;
 }
 }

 List<UIComponent> children = parent.getChildren();
 for (UIComponent child : children)
 {
 FacesBean childFacesBean = ((UIXComponent) child).getFacesBean();
 FacesBean.Type type = childFacesBean.getType();
 PropertyKey selectedKey = type.findKey("selected");
 if (selectedKey != null)
 {
 childFacesBean.setProperty(selectedKey, child==actionItem);
 }
 }
 RequestContext adfContext = RequestContext.getCurrentInstance();
 adfContext.addPartialTarget(parent);
}

The following example shows code used to generate the navigation items that are
available when the current page is Health. Because the Health page is accessed from
the Insurance page from the Benefits page, the commandNavigationItem components
for those three links have selected="true".

<af:navigationPane hint="buttons">
 <af:commandNavigationItem text="Home" action="goHome"/>
 <af:commandNavigationItem text="Help" action="goHelp"/>
</af:navigationPane>
...
<af:navigationPane hint="tabs">
 <af:commandNavigationItem text="Benefits" action="goBene"
 selected="true"/>
 <af:commandNavigationItem text="Employee Data" action="goEmp"/>
</af:navigationPane>
...
<af:navigationPane hint="bar">

Chapter 20
Creating a Simple Navigational Hierarchy

20-51

 <af:commandNavigationItem text="Insurance" action="goIns"
 selected="true"/>
 <af:commandNavigationItem text="Paid Time Off" action="goPto"/>
</af:navigationPane>
...
<af:navigationPane hint="list">
 <af:commandNavigationItem text="Health" action="goHealth"
 selected="true"/>
 <af:commandNavigationItem text="Dental" action="goDental"/>
</af:navigationPane>

To change the selected state programmatically, you have to write a backing bean
method to handle an action event. Then reference the method on the actionListener
attribute of the commandNavigationItem components, as shown in Example 20-5.

How to Use the breadCrumbs Component
In both Figure 20-16 and Figure 20-17, the user's current position in the page
hierarchy is indicated by a path of links from the current page back to the root page.
The path of links, also known as breadcrumbs, is displayed beneath the secondary
bars, above the vertical lists (if any). To manually create such a path of links, you use
the breadCrumbs component with a series of commandNavigationItem components as
children.

Before you begin:

It may help to understand how the attributes of navigation components affect
functionality. See Creating a Simple Navigational Hierarchy.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To manually create a breadcrumb:

1. In the Components window, from the General Controls panel, in the Location
group, drag and drop a BreadCrumbs onto the JSF page.

2. By default, breadcrumb links are displayed in a horizontal line. To change the
layout to be vertical, in the Properties window, expand the Common section and
select vertical from the Orientation dropdown list.

3. For each link in the breadcrumb, create a commandNavigationItem component by
dragging and dropping a Navigation Item from the Interactive Containers and
Headers group in the Layout panel of the Components window as a child to the
breadCrumbs component. The last item should represent the current page.

Tip:

Depending on the renderer or client device type, the last link in the
breadcrumb may not be displayed, but you still must add the
commandNavigationItem component for it. On clients that do display the
last breadcrumb link, the link is always disabled automatically because it
corresponds to the current page.

4. For each commandNavigationItem component (except the last), set the navigation
to the desired page. In the Properties window, expand the Common section and
provide a static string outcome of an action or use an EL expression to reference

Chapter 20
Creating a Simple Navigational Hierarchy

20-52

an action method in the Action field. If you use a string, it must match the
navigation metadata set up in the navigation rule for the page created in Step 2 as
described in How to Create a Simple Page Hierarchy. If referencing a method, that
method must return the required string.

Example 20-6 BreadCrumbs Component With Individual
CommandNavigationItem Children

<af:breadCrumbs>
 <af:commandNavigationItem text="Home" action="goHome"/>
 <af:commandNavigationItem text="Benefits" action="goBene"/>
 <af:commandNavigationItem text="Insurance" action="goIns"/>
 <af:commandNavigationItem text="Health"/>
</af:breadCrumbs>

For example, to create the breadcrumb as shown on the Health page in Figure 20-17,
drag and drop four commandNavigationItem components, as shown in Example 20-6.

What You May Need to Know About Removing Navigation Tabs
You can configure a navigationPane component whose hint attribute value is tabs so
that the individual tabs can be closed. You can set it such that all tabs can be closed,
all but the last tab can be closed, or no tabs can be closed. When navigation tabs are
configured to be removed, a close icon (for example, an X) displays at the end of each
tab as the mouse cursor hovers over the tab.

To enable tabs removal in a navigationPane component when hint="tabs", you need
to do the following:

• Set the itemRemoval attribute on navigationPane hint="tabs" to all or
allExceptLast. When set to allExceptLast, all but one tab can be closed. This
means as a user closes tabs, when there is only one tab left, that single last tab
cannot be closed.

• Implement a handler to do the tab removal. When a user closes a tab, an
ItemEvent of type remove is launched. Your code must handle this event and the
actual removal of the tab, and any other desired functionality (for example, show a
warning dialog on how to handle child components). See Handling Events. For
information about using popup dialogs and windows, see Using Popup Dialogs,
Menus, and Windows.

• Set the itemListener attribute on the commandNavigationItem component to an
EL expression that resolves to the handler method that handles the actual tab
removal, as shown in Example 20-7.

Example 20-7 Using itemListener to Remove a Tab Item

<!---- JSF Page Code ----->
<af:navigationPane hint="tabs" itemRemoval="all">
 <af:commandNavigationItem text="Benefits" partialSubmit="true"
 itemListener="#{closebean.handleCloseTabItem}"/>
 ...
</af:navigationPane>

// Managed Bean Code
import oracle.adf.view.rich.event.ItemEvent;
...
public void handleCloseTabItem(ItemEvent itemEvent)
{
 if (itemEvent.getType().equals(ItemEvent.Type.remove))

Chapter 20
Creating a Simple Navigational Hierarchy

20-53

 {
 Object item = itemEvent.getSource();
 if (item instanceof RichCommandNavigationItem)
 {
 RichCommandNavigationItem tabItem = (RichCommandNavigationItem) item;
 tabItem.setVisible(false);
 // do other desired functionality here ...
 }
 }
}

What You May Need to Know About the Size of Navigation Tabs
By default, the size of the tabs rendered by a navigationPane component that has its
hint attribute value set to tabs is determined by the length of the text used as the
label. You can configure the size of these tabs by configuring the following attributes
for the navigationPane component:

• maxTabSize: Set to a size in pixels. The tabs will never be larger than this size.

• minTabSize: Set to a size in pixels. The tabs will never be smaller than this size.

• truncationStyle: Set to ellipsis if you want an ellipses to display after
truncated text that cannot fit, based on the maxTabSize. If set to none, then if the
text does not fit on the tab, it will simply be truncated.

What You May Need to Know About Skinning and Navigation Tabs
You can use the -tr-layout-type skinning key to configure the type of indicator that
the navigationPane component renders in an application window that is in a
compressed layout. That is, the application window is not wide enough to display all
the navigation tabs.

Figure 20-18 shows an overflow indicator that renders a dropdown list where the user
can choose the navigation tab to navigate to.

Figure 20-18 Overflow Indicator for a navigationPane Component in
Compressed Layout

Example 20-8 shows how you configure the -tr-layout-type skinning key so that the
navigationPane component displays an overflow indicator.

Rather than display overflow indicators, as shown in Figure 20-18, you can configure
the -tr-layout-type skinning key for the navigationPane component so that the
component renders a conveyor belt where users can scroll left or right to tabs that are
not currently visible. Configuring the -tr-layout-type skinning key also renders all
navigation tabs in one dropdown list, as shown in Figure 20-19. This configuration only
takes effect if the navigationPane component's hint attribute is set to tabs. If the

Chapter 20
Creating a Simple Navigational Hierarchy

20-54

navigationPane component's hint attribute is set to another value, set the -tr-
layout-type skinning key to overflow.

Example 20-9 shows how you configure the -tr-layout-type skinning key so that the
navigationPane component renders a conveyor belt.

Figure 20-19 shows the navigationPane component rendering a conveyor belt in a
compressed layout.

Figure 20-19 Conveyor Belt for a navigationPane Component in Compressed
Layout

See Customizing the Appearance Using Styles and Skins.

Example 20-8 Using a Skinning Key to Set the Compressed Layout to Overflow

af|navigationPane {
 -tr-layout-type: overflow;
}

Example 20-9 Using a Skinning Key to Set the Compressed Layout to
Conveyor Belt

af|navigationPane {
 -tr-layout-type: conveyor;
}

Using Train Components to Create Navigation Items for a
Multistep Process

ADF Faces provides a train model which allows you to display a series of pages in a
particular order and indicate the location of the current step in the navigation. The train
model allows users to navigate only in the order that you have set for display.

Note:

If your application uses the Fusion technology stack or ADF Controller, then
you should use ADF task flows to create the navigation system for your
application page hierarchy. See Using Train Components in Bounded Task
Flows" section in Developing Fusion Web Applications with Oracle
Application Development Framework.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-55

If you have a set of pages that users should visit in a particular order, consider using
the train component on each page to display a series of navigation items that guide
users through the multistep process. Figure 20-20 shows an example of what a
rendered train component looks like on a page. Not only does a train component
display the number of steps in a multistep process, it also indicates the location of the
current step in relation to the entire process.

Figure 20-20 Navigation Items Rendered by a train Component

The train component renders each configured step represented as a train stop, and
with all the stops connected by lines. Each train stop has an image (for example, a
square block) with a label underneath the image.

Each train stop corresponds to one step or one page in your multistep process. Users
navigate the train stops by clicking an image or label, which causes a new page to
display. Typically, train stops must be visited in sequence, that is, a user must start at
Step 1, move to Step 2, then Step 3, and so on; a user cannot jump to Step 3 if the
user has not visited Step 2. Train stops can also be configured so that end users do
not have to visit the stops in sequence. When you configure train stops in this way, all
train stops that can be directly visited are enabled.

As shown in Figure 20-20, the train component provides at least four styles for train
stops. The current stop where the user is visiting is indicated by a bold font style in the
train stop's label, and a different image for the stop; visited stops before the current
stop are indicated by a different label font color and image color; the next stop
immediately after the current stop appears enabled; any other stops that have not
been visited are grayed-out.

A train stop can include a subtrain, that is, you configure an action component (for
example, a button component) to start a child multistep process from a parent stop,
and then return to the correct parent stop after completing the subprocess. Suppose
stop number 3 has a subprocess train containing two stops, when the user navigates
into the first stop in the subprocess train, ADF Faces displays an icon representation
of the parent train before and after the subprocess train, as shown in Figure 20-21.

Figure 20-21 Parent Train Icons At Start and End of a Subtrain

You can use the trainButtonBar component in conjunction with the train component
to provide additional navigation items for the train, in the form of forward and backward
arrows, as shown in Figure 20-22. These arrows allow users to navigate only to the
next or previous train stop from the current stop. You can also use the
trainButtonBar component without a train component. For example, you may want

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-56

to display just the forward and backward arrows without displaying the stops when not
all of the stops will be visited based on some conditional logic.

Note:

You need to add the following code to your .css file to view the forward and
backward icons:

af|trainButtonBar
{

-tr-display-mode: icon;
}

Figure 20-22 Navigation Buttons Rendered by a trainButtonBar Component

The NavigationLayout attribute is used to provide order from forward and backward
arrows and rangeText (page information). The default value for NavigationLayout, is
auto that only displays the forward and backward arrows on the page. It is possible to
set other values such as prevButton rangeText nextButton, as shown in
Figure 20-23. If the NavigationLayout attribute is not set in the jspx, the default value
will be assigned.

Figure 20-23 Navigation Buttons Rendered by a trainButtonBar Component
with Page Information

Both train components work by having the value attribute bound to a train model of
type org.apache.myfaces.trinidad.model.MenuModel. The train menu model
contains the information needed to:

• Control a specific train behavior (that is, how the train advances users through the
train stops to complete the multistep process).

• Dynamically generate the train stops, including the train stop labels, and the status
of each stop (that is, whether a stop is currently selected, visited, unvisited, or
disabled).

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-57

Note:

In an application that uses the ADF Model layer and ADF Controller, this
navigation and display is set up and handled in a different manner. See the
"Using Train Components in Bounded Task Flows" section in Developing
Fusion Web Applications with Oracle Application Development Framework.

Briefly, a menu model for the train is implemented by extending the MenuModel abstract
class, which in turn extends the TreeModel class (See Using Tables, Trees, and Other
Collection-Based Components). A MenuModel object represents the menu structure of
a page or application or could represent the hierarchy of pages and stops involved in a
flow.

Because an instance of a MenuModel class is a special kind of a TreeModel object, the
nodes in the TreeModel object can represent the stops of a train. The node instance
that represents a train stop within the train component can be of type TrainStopModel,
or it can be any object as long as it provides the same EL structure as a
TrainStopModel object. However, the TrainStopModel class is a convenient interface
that exposes all the relevant methods to retrieve the outcome, as well as the label of a
stop and its immediate, disabled, and visited attribute states.

The MenuModel class can also indicate where in the tree the current train stop (page) is
focused. The getFocusRowKey() method in the MenuModel class returns the rowKey
object of the focus page for the current viewId. The menu model implementation for
the train must also have a specific train behavior. You can implement this behavior by
extending the MenuModel abstract class or the ProcessMenuModel convenience class.
Both these classes come from the following package:

org.apache.myfaces.trinidad.model

The train behavior controls what other stops along the train users can visit while
visiting the current train stop.

To create a train stop model, you can either extend the TrainStopModel abstract class
and implement the abstract methods, or you can create your own class with the same
method signatures. Your class must return a rowData object. An instance of this class
represents a rowData object in the underlying collection (for the MenuModel
implementation).

Binding a train component to a menu model is similar to binding a navigationPane
component to an XMLMenuModel class using the value attribute (described in How to
Bind the navigationPane Component to the Menu Model). However, as long as your
TrainStopModel implementation represents a rowData object, you do not need to use
the nodeStamp facet and its commandNavigationItem component to provide the train
stops. At runtime ADF Faces dynamically creates the nodeStamp facet and
commandNavigationItem component, and automatically binds the methods in the train
stop model to the appropriate properties on the commandNavigationItem component.
The following example shows the simplified binding for a train.

<af:train value="#{simpleTrainModel}"/>

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-58

Tip:

If you need to collate information for the train stops from various places, then
you will need to manually create the nodeStamp facet and the individual
commandNavigationItem components that represent the train stops. See
How to Bind to the Train Model in JSF Pages.

The MenuModel implementation of your train model must provide specific train
behavior. Train behavior defines how you want to control the pages users can access
based on the page they are currently visiting. ADF Faces supports two train behaviors:
Plus One and Max Visited.

Suppose there are 5 pages or stops in a train, and the user has navigated from page 1
to page 4 sequentially. Currently the user is at page 4. Where the user can go next
depends on which train behavior the train model implements:

• Plus One behavior: the user can go to page 3 or page 5

• Max Visited behavior: the user can visit pages 1 to 3 (previously visited) and page
5 because it is the next page in the sequence. If the user goes to page 2, the next
page that the user can visit is page 1, 3 or 4. The user cannot visit page 5 because
page 4 was the maximum visited train stop in the sequence.

To define and use a train for all pages in a multistep process:

• Create a JSF navigation rule and the navigation cases for the train. Creating a
navigation rule and its navigation cases for a train is similar to How to Create a
Simple Page Hierarchy, where you create one global navigation rule that has the
navigation cases for all the train stops in the train.

Note:

You may want to set the value of the redirect element to true for each
navigation case that you define within the JSF navigation rule if each
train stop is an individual page and you want the client browser's URL to
reference each new page. If you enable partial page rendering, the
displayed URL may be different. For information about the redirect
element, see the JavaServer Faces specification. For information about
partial page rendering, see Rerendering Partial Page Content.

• Create a train model that implements a specific train behavior and provides the
train stop items for stamping. This includes creating a train stop model class and a
menu model class. See How to Create the Train Model.

• Configure managed beans for the train model. See How to Configure Managed
Beans for the Train Model.

• Create a JSF page for each train stop.

• On each page, bind the train component to the train model. See How to Bind to
the Train Model in JSF Pages. Optionally, bind the trainButtonBar component to
the same train model if you want to provide additional navigation buttons for the
train.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-59

How to Create the Train Model
To define a train menu model, you create:

• A train stop model that provides data for rendering a train stop.

• A MenuModel implementation with a specific train behavior (like Max Visited or Plus
One) that controls what stops along the train users can visit while visiting at a
current train stop, which stops should be disabled or whether the train needs to be
navigated sequentially or not, among other things.

ADF Faces makes it easier for you to define a train menu model by providing
additional public classes, such as:

• The abstract class TrainStopModel for implementing a train stop model.

• The classes ProcessMenuModel and ProcessUtils that implement the Max Visited
and Plus One behaviors.

Users can either implement their own custom train behavior by overriding MenuModel
or extend the existing ProcessMenuModel to provide specialized behavior.

For examples of train model classes, see the oracle.adfdemo.view.nav.rich
package of the ADF Faces Components Demonstration application.

Before you begin:

It may help to understand how a train component's attributes affect functionality. See
Using Train Components to Create Navigation Items for a Multistep Process.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To create the train model:

1. Create a train stop model class. A train stop model object holds the row data for
stamping each train stop. The train stop model implementation you create should
set and get the properties for each stop in the train, and define the methods
required to render a train stop. The properties of a train stop correspond to the
properties of the commandNavigationItem component. This will allow you to use
the simplified binding (<af:train value="#{simpleTrainModel}"/>).

Alternatively, you can extend the abstract class TrainStopModel, and implement
the abstract methods in the subclass.

The properties on the commandNavigationItem component that will be
automatically EL bound are:

• action: A static action outcome or a reference to an action method that
returns an action outcome. The outcome is used for page navigation through
the default ActionListener mechanism in JSF.

• disabled: A boolean value that indicates whether or not the train stop should
be noninteractive. Note that the train behavior you elect to use affects the
value of this property. See Step 2.

• immediate: A boolean value that determines whether or not data validations
should be performed. Note that the train behavior you elect to use affects the
value of this property. See Step 2.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-60

• messageType: A value that specifies a message alert icon over the train stop
image. Possible values are none, error, warning, and info, and complete.
For information about messages, see Displaying Tips, Messages, and Help.

• shortDesc: A value that is commonly used by client user agents to display as
tooltip help text for the train stop.

• showRequired: A boolean value that determines whether or not to display an
asterisk next to the train stop to indicate that required values are contained in
that train stop page.

• textAndAccessKey: A single value that sets both the label text to display for
the train stop, as well as the access key to use.

• visited: A boolean value that indicates whether or not the train stop has
already been visited. Note that the train behavior you elect to use affects the
value of this property. See Step 2.

2. Create a class based on the MenuModel class to facilitate the construction of a train
model.

The MenuModel implementation of your train model must have a specific train
behavior. The ProcessMenuModel class in the
org.apache.myfaces.trinidad.model package is a reference implementation of
the MenuModel class that supports the two train behaviors: Plus One and Max
Visited. To implement a train behavior for a train model, you can either extend the
ProcessMenuModel class, or create your own.

In your train model class, you override the getFocusRowKey() method (see the
MenuModel class) and implement a train behavior (see the ProcessMenuModel and
ProcessUtils classes).

The train behaviors provided in the ProcessMenuModel class have an effect on the
visited, immediate, and disabled properties of the commandNavigationItem
component.

The visited attribute is set to true only if that page in the train has been visited.
The ProcessMenuModel class uses the following logic to determine the value of the
visited attribute:

• Max Visited: A max visited stop is the farthest stop the user has visited in the
current session. The visited attribute is set to true for any stop if it is before
a max visited stop, or if it is the max visited stop itself.

• Plus One: A plus one stop does not keep track of the farthest stop that was
visited. The visited attribute is set to true for the current stop, or a stop that
is before the current stop.

When the data on the current page does not have to be validated, the immediate
attribute should be set to true. Suppose page 4 in the Plus One behavior
described earlier has data that must be validated. If the user has advanced to
page 4 and then goes back to page 2, the user has to come back to page 4 again
later to proceed on to page 5. This means the data on page 4 does not have to be
validated when going back to page 1, 2, or 3 from page 4, but the data should be
validated when going ahead to page 5. For information about how the immediate
attribute works, see Using the Immediate Attribute.

The ProcessMenuModel class uses the following logic to determine the value of the
immediate attribute:

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-61

• Plus One: The immediate attribute is set to true for any previous step, and
false otherwise.

• Max Visited: When the current page and the maximum page visited are the
same, the behavior is the same as the Plus One scenario. If the current page
is before the maximum page visited, then the immediate attribute is set to
false.

Note:

In an application that uses the ADF Model layer, the pageDefinition
element in a page definition file supports an attribute
(SkipValidation) that, when set to true, skips data validation for the
page. Set SkipValidation to true if you want users to navigate from
the page without invoking data validation. See pageNamePageDef.xml
in Developing Fusion Web Applications with Oracle Application
Development Framework.

The disabled attribute is set to true only if that page in the train cannot be
reached from the current page. The ProcessMenuModel class uses the following
logic to determine the value of the disabled attribute:

• Plus One: The disabled attribute will be true for any page beyond the next
available page.

• Max Visited: When the current stop and the maximum page visited are the
same, the behavior is the same as the Plus One behavior. If the current page
is before the maximum page visited, then disabled is set to true for any page
beyond the maximum page visited.

By default, ADF Faces uses the Max Visited behavior when a non-null maxPathKey
value is passed into the train model, as determined by the managed bean you will
create to support the behavior (see How to Configure Managed Beans for the Train
Model). If the maxPathKey value is null, then ADF Faces uses the Plus One behavior.

How to Configure Managed Beans for the Train Model
You use managed beans in a train model to gather the individual train stops into an
Arraylist object, which is turned into the tree model that is then injected into a menu
model to bind to the value attribute of the train component. You must instantiate the
beans with the proper values for injection into the models, and you also have to
configure a managed bean for each train stop or page in the train.

Before you begin:

It may help to understand how a train component's attributes affect functionality. See
Using Train Components to Create Navigation Items for a Multistep Process.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To configure managed beans for the train model:

1. Configure a managed bean for each stop in the train, with values for the properties
that require setting at instantiation, to create the train stops to pass into an
ArrayList.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-62

If a train stop has subprocess train children, there should be a managed bean for
each subprocess train stop as well.

Each bean should be an instance of the train stop model class created in How to
Create the Train Model. Example 20-10 shows sample managed bean code for
train stops in the faces-config.xml file.

The managed properties set the values to the train stop model object (the class
created in Step 1 in How to Create the Train Model).

The viewId value is the path and file name to the page that is navigated to when
the user clicks a train stop.

The outcome property value is the action outcome string that matches a JSF
navigation case. The default JSF ActionListener mechanism is used to choose
the page associated with the train stop as the view to navigate to when the train
stop is selected.

The label property value is the train stop label text that displays beneath the train
stop image. The value can be static or an EL expression that evaluates to a string
in a resource bundle.

The model property value is the managed bean name of the train model (see
Example 20-14).

If a train stop has subprocess train children, the managed bean configuration
should also include the property (for example, children) that lists the managed
bean names of the subprocess train stops in value expressions (for example,
#{train4a}), as shown in Example 20-11.

2. Configure a managed bean that is an instance of an ArrayList object to create
the list of train stops to pass into the train tree model.

Example 20-12 shows sample managed bean code for creating the train stop list.

The list-entries element contains the managed bean names for the train stops
(excluding subprocess train stops) in value expressions (for example, #{train1}),
listed in the order that the stops should appear on the train.

3. Configure a managed bean to create the train tree model from the train list.

The train tree model wraps the entire train list, including any subprocess train lists.
The train model managed bean should be instantiated with a childProperty value
that is the same as the property name that represents the list of subprocess train
children (see Example 20-11).

The childProperty property defines the property name to use to get the child list
entries of each train stop that has a subprocess train.

The wrappedData property value is the train list instance to wrap, created by the
managed bean in Step 2.

4. Configure a managed bean to create the train model from the train tree model.

This is the bean to which the train component on each page is bound. The train
model wraps the train tree model. The train model managed bean should be
instantiated with a viewIdProperty value that is the same as the property name
that represents the pages associated with the train stops.

Example 20-14 shows sample managed bean code for a train model.

The viewIdProperty property value is set to the property that is used to specify
the page to navigate to when the user clicks the train stop.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-63

The wrappedData property value is the train tree instance to wrap, created by the
managed bean in Step 3.

The maxPathKey property value is the value to pass into the train model for using
the Max Visited train behavior. ADF Faces uses the Max Visited behavior when a
non-null maxPathKey value is passed into the train model. If the maxPathKey value
is null, then ADF Faces uses the Plus One behavior.

Example 20-10 Managed Beans for All Train Stops

<!-- First train stop -->
<managed-bean>
 <managed-bean-name>train1</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train.jsf</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>First Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>
...
<!-- Second train stop -->
<managed-bean>
 <managed-bean-name>train2</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train2.jsf</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train2</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Second Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>
...
<!-- And so on -->
...

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-64

Example 20-11 Managed Bean for a Train Stop with Subprocess train Children

<managed-bean>
 <managed-bean-name>train4</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train4.jsf</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train4</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Fourth Step</value>
 </managed-property>
 <managed-property>
 <property-name>children</property-name>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train4a}</value>
 <value>#{train4b}</value>
 <value>#{train4c}</value>
 </list-entries>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

Example 20-12 Managed Bean for Train List

<managed-bean>
 <managed-bean-name>trainList</managed-bean-name>
 <managed-bean-class>
 java.util.ArrayList
 </managed-bean-class>
 <managed-bean-scope>
 none
 </managed-bean-scope>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train1}</value>
 <value>#{train2}</value>
 <value>#{train3}</value>
 <value>#{train4}</value>
 <value>#{train5}</value>
 </list-entries>
</managed-bean>

Example 20-13 Managed Bean for Train Tree Model

<managed-bean>
 <managed-bean-name>trainTree</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ChildPropertyTreeModel
 </managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-65

 <property-name>childProperty</property-name>
 <value>children</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainList}</value>
 </managed-property>
</managed-bean>

Example 20-14 Managed Bean for Train Model

<managed-bean>
 <managed-bean-name>trainMenuModel</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ProcessMenuModel
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainTree}</value>
 </managed-property>
 <!-- to enable plusOne behavior instead, comment out the maxPathKey property -->
 <managed-property>
 <property-name>maxPathKey</property-name>
 <value>TRAIN_DEMO_MAX_PATH_KEY</value>
 </managed-property>
</managed-bean>

How to Bind to the Train Model in JSF Pages
Each stop in the train corresponds to one JSF page. On each page, you use one
train component and optionally a trainButtonBar component to provide buttons that
allow the user to navigate through the train.

Before you begin:

It may help to understand how a train component's attributes affect functionality. See
Using Train Components to Create Navigation Items for a Multistep Process.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Navigation Components.

To bind the train component to the train model:

1. In the Components window, from the General Controls panel, in the Location
group, drag and drop a Train onto the JSF page. Optionally drag and drop a Train
Button Bar.

2. Bind the component. If your MenuModel implementation for a train model returns a
rowData object similar to the public abstract class
oracle.adf.view.rich.model.TrainStopModel, you can use the simplified form
of train binding in the train components, as shown in Example 20-15.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-66

Example 20-15 Simple Implementation of a Train Component Bound to a Menu
Model

<af:train value="#{trainMenuModel}"/>
<af:trainButtonBar value="#{trainMenuModel}"/>

Example 20-16 commandNavigationItem component Bound to a Train Stop

<af:train value="#{aTrainMenuModel}" var="stop">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem
 text="#{stop.label}"
 action="#{stop.outcome}"
 ...
 </af:commandNavigationItem>
 </f:facet>
</af:train>

The trainMenuModel EL expression is the managed bean name for the train model
(see Example 20-14).

If you cannot use the simplified binding, you must bind the train value to the train
model bean, manually add the nodeStamp facet to the train, and to that, add a
commandNavigationItem component, as shown in Example 20-16.

Chapter 20
Using Train Components to Create Navigation Items for a Multistep Process

20-67

21
Determining Components at Runtime

This chapter describes how to use the ADF Faces dynamicComponent with forms and
tables, and how to create the AttributesModel to support it. If your application uses
the full Fusion technology stack, then your model is created for you, and you can use
data controls to create the dynamic component. See Creating a Basic Databound
Page and Creating ADF Databound Tables in Developing Fusion Web Applications
with Oracle Application Development Framework.
This chapter incudes the following sections:

• About Determining Components at Runtime

• Creating the Model for a Dynamic Component

• Adding a Dynamic Component as a Form to a Page

• Adding a Dynamic Component as a Table to a Page

• Using Validation and Conversion with Dynamic Components

• Using Dynamic and Static Components Together

About Determining Components at Runtime
The ADF Faces dynamic component is a component that determines the components
to display, and their values, at runtime. You can use this component when you are
unsure of what components are needed at runtime.

There may be cases when you don't know the exact components needed at runtime.
For example, your business objects may contain attributes that are only valid for
certain instances, and you only want to display those attributes when necessary. Using
standard components, you might need to incorporate expensive logic to determine
whether or not to display certain fields.

Another example of needing a dynamic interface might be when multiple pages share
the same data source. If the attributes on the object are likely to change, it would
require a change to all the pages bound to it.

ADF Faces provides a dynamic component (af:dynamicComponent) that determines
what components to display, and their values, at runtime. This component will only
display the needed attributes for each rendered instance. Additionally, when you make
changes to the associated business service, those changes will be reflected by the
dynamic component, without any change needed to the UI code.

You can use the dynamic component in either a form or a table. At runtime, the
needed components will be rendered within the form or table, in place of the dynamic
component. The component that is rendered is based on the attribute's data type. For
example, if the attribute is a String, then an inputText component is used. If it is a
Date, then the inputDate component is used. Following are the components
supported by the dynamic component:

• inputText

21-1

• inputDate

• inputListOfValues

• selectOneChoice

• selectManyChoice

• selectOneListbox

• selectManyListbox

• selectOneRadio

• selectBooleanRadio

• selectBooleanCheckbox

• selectManyCheckbox

For a form, the dynamic component is wrapped in an iterator component. Like the
collection-based components, the iterator is bound to the complete collection, in this
case, a collection of attributes in the AttributesModel object. The iterator stamps
through each instance on this model, copying the data for the current instance into its
var attribute. The dynamic component then accesses that var value for each instance
using its attributeModel attribute, and uses that information to determine the type of
component to use, how to configure it, and its value.

For example, say you want to create a form that displays employee data, as shown in
Figure 21-1.

Figure 21-1 Form Created with a Dynamic Component

You can create an AttributesModel that contains information about each of the
attributes to display, as well as a way to access the values for each instance, and then
create a form using just the dynamic component, as shown in the following example.

<af:panelFormLayout id="pf1">
 <af:iterator value="#{TestDynCompBean.attributesModel.attributes}"
 var="attr" id="dyit1">
 <af:dynamicComponent value="#{TestDynCompBean.value[attr.name]}" id="dyipt3"
 attributeModel="#{attr}"/>
 </af:iterator>
</af:panelFormLayout>

For static table, each column and the component inside that column, is statically
defined in the page at design time. For a dynamic table, both the number of columns
and component inside that column are dynamically defined at runtime, using the
following components:

Chapter 21
About Determining Components at Runtime

21-2

• af:table: Defines a table, including how to get the value, using the var attribute
(see Using Tables, Trees, and Other Collection-Based Components).

• af:iterator: Defines the collection of attributes. A column, and a component in
each column, will be built for each attribute.

• af:column: Defines a column that will be stamped once for each attribute. If there
are 10 attributes in the iterator, then there will be 10 columns, all stamped from
this same column definition.

• af:dynamicComponent: Defines the component for that column. The type, value,
and so on, are obtained from that attribute.

The following example shows a dynamic component used in a table.

<af:table value="#{TestDynCompBean.values}" var="row"
 varStatus="vs" rowSelection="single"
 id="t1" width="100%">
 <af:iterator value="#{TestDynCompBean.attributesModel.attributes}" id="itr1"
 var="col">
 <af:column headerText="#{col.label}" id="c1">
 <af:dynamicComponent value="#{row[col.name]}"
 attributeModel="#{col}" id="dc1"/>
 </af:column>
 </af:iterator>
</af:table>

You can also use the dynamic component to create groupings of attributes. For
example, say you are using a dynamic component to create a form that displays
attributes for an employee. You want the employee information (such as first name,
last name, salary, etc.) to be in one group, and you want the department information
(such as department name, department number, etc.) in another group. You might
create a category named "Employee Info" and another category named "Department
Info." In the AttributesModel, you assign some attributes on the Employee object to be
in the categories. These categories are held in the hierarchicalAttributes property
of the AttributesModel object.

To create the groups on the page, you use a switcher component with two facets. The
first facet will handle all attributes that belong to a category and the second will handle
the "flat" group (that is, attributes that do not belong to a category).

When using groups, instead of being bound to attributes property in the
AttributesModel, the main iterator is bound to hierarchicalAttributes property,
which defines the root level attributes. As the iterator iterates over the collection, those
category values are held in the variable named attr. In the first group, the iterator is
bound to the variable attr, and so iterates through those, holding the value of the
descriptors (the list of child attributes belonging in that category) in the variable
nestedAttr. The child dynamic component then accesses this variable to determine
the type of component and value to display for each record, as shown in the following
example

<af:panelFormLayout id="pf1">
 <af:iterator value="#{TestDynCompBean.attributesModel.hierarchicalAttributes}"
 var="attr" id="dyit1">
 <af:switcher id="sw" facetName="#{attr.descriptorType}"
 defaultFacet="ATTRIBUTE">
 <f:facet name="GROUP">
 <af:group id="gg" title="#{attr.label}">
 <af:outputText value="#{attr.label}" id="ot2"/>
 <af:iterator id="it2" value="#{attr.descriptors}" var="nestedAttr">

Chapter 21
About Determining Components at Runtime

21-3

 <af:dynamicComponent
 value="#{TestDynCompBean.value[nestedAttr.name]}" id="ndync1"
 attributeModel="#{nestedAttr}" />
 </af:iterator>
 </af:group>
 </f:facet>
 <f:facet name="ATTRIBUTE">
 <af:dynamicComponent value="#{TestDynCompBean.value[attr.name]}"
 id="iinerit1" attributeModel="#{attr}"/>
 </f:facet>
 </af:switcher>
 </af:iterator>
</af:panelFormLayout>

The main iterator iterates through the root level attributes in the attributeModel. For
any root attributes that do not belong to a group (i.e. an Attribute-typed root
attribute), a dynamic component is created for it in the ATTRIBUTE facet. For any root
attributes that do have attributes under it (i.e. a Group-type root attribute), the attributes
are added to the GROUP facet. In that facet, another iterator iterates through each
regular attribute in that group, and creates a dynamic component based on each
regular attribute.

Creating the Model for a Dynamic Component
ADF Faces provides the AttributeModel class that has a collection of attributes. Each
of these attributes is described by a BaseAttributeDescriptor object. You can create a
model with or without groups for a dynamic component. For a model without groups,
you must create BaseAttributeDescriptor object, AttributesModel object, and a
managed bean. For a model with groups, you must create a GroupAttributeDescriptor
object.

The AttributesModel class is a collection of attributes, each attribute described by a
BaseAttributeDescriptor object. This object provides the metadata used by the
dynamic component to determine how to display the data, including the component
type, the name, label, and description. You will need to extend the
BaseAttributeDescriptor class and the AttributesModel class to provide the
needed information for your dynamic components.

If you want to use groups with your dynamic component, then you must also create a
GroupAttributeDescriptor object.

How to Create the Model Without Groups
To create the model, you need to create the BaseAttributeDescriptor object, the
AttributesModel object, and a managed bean for the page that the dynamic
component and iterator can use to access the data and metadata for the attributes.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To create the model:

1. Create an attribute definition class that describes each property on an attribute. It
is this metadata that the dynamic component will use to determine the component

Chapter 21
Creating the Model for a Dynamic Component

21-4

to use to display the data, and how to configure it. For example, this definition
class might contain getter methods for the following properties on an attribute:

• name

• label

• dataType

For an example of an attribute definition class, see the TestAttributeDef inner
class on the TestDynamicComponentPageDef class in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

2. Create another class that defines each attribute, using the definition class created
in Step 1. This class should define each attribute, and then return a list of
attributes with that metadata populated.

For example, an Employee object might have the following attributes:

• Ename

• Empno

• Deptname

• Deptno

• Manager

The following example shows how you might create an attribute definition, given
the metadata created in Step 1.

public void addAttributeDef (String name, String label, Class dataType) {
 TestAttributeDef attributeDef = new TestAttributeDef(name, label, dataType);
 _attributes.put(name, attributeDef);
 }

The following example then shows how to return a list of Employee object
attributes with the attribute definitions populated.

public void setupAttributes()
{
 _attributes = new HashMap<String, TestAttributeDef>();
 addAttributeDef("Ename", "Employee Name", null, "Name", 10, 20,
String.class);
 addAttributeDef("Empno", "Employee Number", null,
 "Employee Number", 10, 20, Number.class);
 addAttributeDef("Deptname", "Department Name", null, "Department Name", 10,
20, String.class);
 addAttributeDef("Deptno", "Department Number", null, "Department Number", 10,
20, Number.class);
 addAttributeDef("Manager", "Manager", null, "Manager", 10, 20, Number.class);
}

For an example of a complete attribute definition class, see the
TestDynamicComponentPageDef class in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

3. Create a class for the BaseAttributeDescriptor object. This class must extend
the BaseAttributeDescriptor class, and needs to access the metadata
properties for each attribute. The following example shows how the Name and
DataType might be returned.

Chapter 21
Creating the Model for a Dynamic Component

21-5

public class TestAttributeDescriptor extends BaseAttributeDescriptor {
 public TestAttributeDescriptor(TestAttributeDef attributeDef) {
 _attributeDef = attributeDef;
 }

 public Object getId() {
 return getName();
 }

 public String getName() {
 return _attributeDef.getName();
 }

 public Class getDataType() {
 return _attributeDef.getDataType();
 }

For a complete example, see the TestAttributeDescriptor inner class of the
TestDynamicComponentBean managed bean in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

4. Create a class that extends the AttributesModel class. This class needs to create
the attributes from the BaseAttributeDescriptor object as a list.

public class TestAttributesModel extends AttributesModel {
 public TestAttributesModel() {
 _flatAttributes = new ArrayList<BaseAttributeDescriptor>();
 }

 public List<BaseAttributeDescriptor> getAttributes() {
 return _flatAttributes;
 private void _setupAttributesFromDefinition() {
 Map<String, List<BaseAttributeDescriptor>>();
 List<TestDynamicComponentPageDef.TestAttributeDef> attributeList =
_pageDef.getAttributeDefs();
 . . .
 for (TestDynamicComponentPageDef.TestAttributeDef demoAttrDef :
attributeList) {
 TestAttributeDescriptor attrDesc = new
TestAttributeDescriptor(demoAttrDef);
 _flatAttributes.add(attrDesc);
 }

 }
}

For a complete example, see the TestAttributesModel inner class of the
TestDynamicComponentBean managed bean in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

5. Create the managed bean. The managed bean needs to return the populated
AttributesModel objects for the page, as well as provide any needed logic for the
page. For example, if you want to use the dynamic component in a form, and you
want the user to be able to scroll to previous and next records, you need to
provide that logic. The following example shows the code for returning the
AttributesModel, as well as the logic for accessing next and previous records
using Action events.

Chapter 21
Creating the Model for a Dynamic Component

21-6

public class TestDynamicComponentBean {
 public TestDynamicComponentBean() {
 _attrsModel = new TestAttributesModel();
 }

 public AttributesModel getAttributesModel() {
 return _attrsModel;
 }

 public Map[] getValues() {
 return _DATA;
 }
 public Map getValue() {
 return _DATA[currentRowIndex];
 }

 public void next(ActionEvent actionEvent) {
 if (currentRowIndex < _DATA.length - 1)
 currentRowIndex++;
 }

 public boolean getNextEnabled() {
 return (currentRowIndex < (_DATA.length - 1));
 }

 public void previous(ActionEvent actionEvent) {
 if (currentRowIndex > 0)
 currentRowIndex--;
 }

 public boolean getPreviousEnabled() {
 return currentRowIndex > 0;
 }

For a complete example (including how the managed bean sets up the data for
AttributesModel), see the TestDynamicComponentBean managed bean in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

How to Create the Model Using Groups
If you want to use groups with your dynamic component, then you must also create a
GroupAttributeDescriptor object, which holds the metadata required for the group
information, including the list of attributes that belong to it. You will also need to supply
the logic needed by the iterator and dynamic component to display the groups.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To create the model using groups:

1. Create the attribute definition class, as described in Step 1 of How to Create the
Model Without Groups, but include an attribute definition for category as a String.
The category will be used to define the groups.

2. When you create your attributes, assign values for category for the attributes that
need them. For example, you might assign the value "Employee Personal" to the

Chapter 21
Creating the Model for a Dynamic Component

21-7

Empname and Empno attributes, and the value "Department Info" to the Deptno and
Deptname attributes.

3. Include category in the BaseAttributeDescriptor class by providing a get
method for it. However, the get method should have the signature getGroupName.
The following example shows how the get method might be coded.

public String getGroupName() {
 return _attributeDef.getCategory();
}

4. Create a class for the GroupAttributeDescriptor object that extends
GroupAttributeDescriptor. This object provides a name for the group and a list
of the attributes in the group. The following example shows a
GroupAttributeDescriptor class.

public class TestGroupAttributeDescriptor extends GroupAttributeDescriptor {
 public TestGroupAttributeDescriptor(String groupName,
List<BaseAttributeDescriptor> attributeList) {
 _groupName = groupName;
 _flatAttributes = attributeList;
 }

 @Override
 public String getName() {
 return _groupName;
 }

 public List<? extends Descriptor> getDescriptors() {
 return _flatAttributes;
 }

 public String getDescription() {
 return "This is a group";
 }

 public String getLabel() {
 return _groupName;
 }

 private List<BaseAttributeDescriptor> _flatAttributes;
 private String _groupName;

}

5. In your AttributesModel class, add the hierarchicalAttributes that represent
the groups. To do this, you might add logic that examines the
BaseAttributeDescriptor object, and if it contains a group name, it adds that to
the hierarchicalAttributes object. The following example shows how you might
code that logic.

 for (TestDynamicComponentPageDef.TestAttributeDef demoAttrDef : attributeList) {
 TestAttributeDescriptor attrDesc = new TestAttributeDescriptor(demoAttrDef);
 _flatAttributes.add(attrDesc);
 String groupName = attrDesc.getGroupName();
 if (groupName != null && !groupName.isEmpty()) {
 List<BaseAttributeDescriptor> list = groupMap.get(groupName);
 if (list == null) {
 list = new ArrayList<BaseAttributeDescriptor>();
 groupMap.put(groupName, list);
 }
 list.add(attrDesc);

Chapter 21
Creating the Model for a Dynamic Component

21-8

 } else {
 _hierAttributes.add(attrDesc);
 }
 }

 for (String groupName : groupMap.keySet()) {
 TestGroupAttributeDescriptor groupMetadata =
 new TestGroupAttributeDescriptor(groupName, groupMap.get(groupName));
 _hierAttributes.add(groupMetadata);
 }
}

For a complete example, see the TestAttributesModel inner class of the
TestDynamicComponentBean managed bean in the
oracle.adfdemo.view.feature.rich.dynamicFaces package, found in the
Application Sources directory of the ADF Faces application.

Adding a Dynamic Component as a Form to a Page
ADF Faces panelFormLayout component is an iterator that access the AttributeModel
to get the attributes and their definitions. You must use this iterator when you want to
use a dynamic component in a form without grouping attributes. If you want to group
the attributes on the form while using the dynamic component then you use a switcher
component to seperate the grouped and ungrouped attributes.

When you use the dynamic component in a form, you need to include an iterator. The
iterator is what access the AttributesModel to get the attributes and their definitions.
The dynamic component then gets the information for each instance the iterator
stamps out, and determines what component to use, and how to configure it.

If you want to group your attributes in the form, then you also need to use a switcher
component with two facets. One facet will display the groups with their associated
attributes, while the other facet will display any attributes not associated with a group.

How to Add a Dynamic Component as a Form without Groups to a
Page

To use a dynamic component in a form, you use the panelFormLayout component, an
iterator, and the dynamic component. If you want to provide a way to navigate
between records in the form, then you also need to use buttons.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To add a dynamic component as a form without groups to a page:

1. Create a panelFormLayout component, as described in Arranging Content in
Forms.

2. In the Components window, from the Operations panel, drag and drop an Iterator
as a child to the panelFormLayout component.

3. In the Properties Window, set the following:

Chapter 21
Adding a Dynamic Component as a Form to a Page

21-9

• Value: An EL expression that resolves to the attributes property on the
AttributesModel object, for example:

#{TestDynCompBean.attributesModel.attributes}"

• Var: A String that can be used to access the attributes on the model, for
example: attr

4. From the Components window, drag and drop a Dynamic Component as a child
to the iterator component.

5. In the Properties Window, set the following:

• AttributeModel: An EL expression that resolves to the variable created for the
iterator, for example: #{attr}.

• Value: An EL expression that resolves to each attribute name on the
AttributesModel object, for example:

#{TestDynCompBean.value[attr.name]}"

6. If you want to provide logic to navigate between the records, add the buttons in a
panelGroupLayout component, and use the action event to access the next and
previous records. For information about using buttons, see How to Use Buttons
and Links for Navigation and Deliver ActionEvents.

The following example shows buttons whose actionListener attributes are bound
to logic on a managed bean that navigates between the records in the model.

<af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:button text="Previous" id="cb2"
actionListener="#{TestDynCompBean.previous}"
 disabled="#{!TestDynCompBean.previousEnabled}"/>
 <af:button text="Next" id="cb1" actionListener="#{TestDynCompBean.next}"
 disabled="#{!TestDynCompBean.nextEnabled}"/>
</af:panelGroupLayout>

The following example shows the corresponding managed bean code.

public Map[] getValues() {
 return _DATA;
}

public Map getValue() {
 return _DATA[currentRowIndex];
}

public void next(ActionEvent actionEvent) {
 if (currentRowIndex < _DATA.length - 1)
 currentRowIndex++;
}

public boolean getNextEnabled() {
 return (currentRowIndex < (_DATA.length - 1));
}

How to Add a Dynamic Component as a Form with Groups to a Page
When you want to group attributes on form using a dynamic component, you need to
place the attributes that are part of a group in one part of the form, and the attributes
that don't belong to a group, in another. You use the facets of a switcher component to
separate the two.

Chapter 21
Adding a Dynamic Component as a Form to a Page

21-10

The switcher component is a child of an iterator component. But instead of being
bound to the attributes of the AttributesModel, this iterator is bound to the
hierarchicalAttributes of the model, and stores those objects in its variable.
Another iterator, in the facet of the switcher, is then bound to the descriptors included
in the hierarchicalAttributes object. It is from this iterator that the dynamic
component gets its information.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To add a dynamic component as a form with groups to a page:

1. Create a panelFormLayout component, as described in Arranging Content in
Forms.

2. In the Components window, from the Operations panel, drag and drop an Iterator
as a child to the panelFormLayout component.

3. In the Properties window, set the following:

• Value: An EL expression that resolves to the hierarchicalAttributes
property on the AttributesModel object, for example:

#{TestDynCompBean.attributesModel.hierarchicalAttributes}"

• Var: A String that can be used to access the attributes on the model, for
example: attr

4. Drag and drop a Switcher as a child to the iterator component.

5. In the Properties window, set the following:

• FacetName: Enter an EL expression that resolves to the descriptorType
property on the values returned by the variable on the parent iterator. For
example:

#{attr.descriptorType}

• DefaultFacet: Name the facet that will hold attributes not returned by
#{attr.descriptorType} or that do not match any of the defined facets, for
example, ATTRIBUTE.

6. From the Structure window, right-click the switcher component and choose Insert
Inside Switcher > Facet.

7. In the Insert Facet dialog, name the facet GROUP. This will create the facet that will
contain the attributes that belong to a group.

8. In the Components window, from the Text and Selection panel, drag and drop an
Output Text. This component will display the group name.

9. In the Properties window, bind the Value to the label property of the returned
groups, using the parent iterator variable. For example, #{attr.label}.

10. Drag and drop an Iterator as a child to the outputText component. This iterator
will iterate through the attributes in each group, and is what the dynamic
component will use to display the components and values.

11. In the Properties window, set the following:

• Value: An EL expression that resolves to the Descriptor objects returned by
the first iterator, using its variable, for example, #{attr.descriptors}.

Chapter 21
Adding a Dynamic Component as a Form to a Page

21-11

• Var: A String that can be used to access the attributes in the descriptors, for
example: nestedAttr

12. Drag and drop a Dynamic Component as a child to the second iterator.

13. In the Properties Window, set the following

• AttributeModel: An EL expression that resolves to the variable created for the
second iterator, for example: #{nestedAttr}.

• Value: An EL expression that resolves to each attribute name returned by the
second iterator, for example:

#{TestDynCompBean.value[nestedAttr.name]}

14. In the Structure window, select the outputText and iterator components, right-
click these selections, and choose Surround With. In the Surround With dialog,
select Group and click OK.

In the Properties window, bind Title to the label property of the groups returned by
the first iterator, for example, #{attr.label}.

15. Drag and drop another Facet as a child to the switcher component. Name this
facet ATTRIBUTE.

16. Drag and drop another Dynamic Component as a child to the ATTRIBUTE facet,
and set the following:

• AttributeModel: An EL expression that resolves to the variable created for the
main iterator, for example: #{attr}.

• Value: An EL expression that resolves to each attribute name returned by the
main iterator, for example:

#{TestDynCompBean.value[attr.name]}

Adding a Dynamic Component as a Table to a Page
ADF Faces allows you to use the dynamic component in a table by wrapping the table
columns in an iterator. The iterator gets the attributes and their defination from the
AttributeModel. The table column then uses this information to determine its header
text. You can also group your attributes by using a switcher component with two
facets.

When you use the dynamic component in a table, you need the table's columns to be
wrapped in an iterator. The iterator is what access the AttributesModel to get the
attributes and their definitions. The column uses this information to determine its
header text. The dynamic component then gets the information for each attribute
instance the iterator stamps out, and determines what component to use, and how to
configure it, and at the same time, uses the variable on the table to determine the data
to display.

If you want to group your attributes in the table, then you also need to use a switcher
component with two facets. One facet will display the groups with their associated
attributes, while the other facet will display any attributes not associated with a group.

Chapter 21
Adding a Dynamic Component as a Table to a Page

21-12

How to Add a Dynamic Component as a Table Without Groups to a
Page

To use a dynamic component in a table, you bind the table component to the data.
Instead of a column component, the direct child of the table is an iterator bound to the
attributes property of the AttributesModel. The column is a child of the iterator. The
dynamic component is a child to the column.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To add a dynamic component as a table without groups to a page:

1. In the Components window, from the Data Views panel, drag and drop a Table to
open the Create ADF Faces Table wizard.

For information about configuring tables, see Displaying Data in Tables.

2. Select Bind Data Now, and use the Browse button to choose the model that
holds the table's data.

3. Select Generate columns dynamically at runtime.

Note:

This option only displays once you've chosen a model for the table.

4. In the Attributes Collection field, enter an n EL expression that resolves to the
attributes property on the AttributesModel object you created in How to Create
the Model Without Groups, for example:

#{TestDynCompBean.attributesModel.attributes}"

The following example shows the declarative code created for a dynamic table.

<af:table value="#{TestDynCompBean}" var="row" rowBandingInterval="0" id="t1">
 <af:iterator value="#{TestDynCompBean.attributesModel.attributes}"
 var="column" id="i1">
 <af:column headerText="#{column.label}" id="c1">
 <af:dynamicComponent attributeModel="#{column}" value="#{row[column.name]}"
 id="dc1"/>
 </af:column>
 </af:iterator>
</af:table>

How to Add a Dynamic Component as a Table with Groups to a Page
When you group attributes in a table using a dynamic component, the groups display
as parent columns. Figure 21-2 shows the Employee object with certain attributes
included in the Employee Personal and Department Info groups.

Chapter 21
Adding a Dynamic Component as a Table to a Page

21-13

Figure 21-2 Table with Dynamic Component that Uses Groups

You use a switcher component to separate the attributes that belong to groups from
the ones that do not. But instead of being bound to the attributes of the
AttributesModel, this main iterator is bound to the hierarchicalAttributes of the
model, and stores those objects in its variable. Another iterator, in the facet of the
switcher, is then bound to the descriptors included in the hierarchicalAttributes
object. It is from this iterator that the dynamic component gets its information and the
component can display the groups of attributes.

The hierarchicalAttributes of the AttributeModel defines the root-level attributes
of the AttributeModel. If a root level attribute is a normal attribute, meaning the
attribute type of ATTRIBUTE, then this attribute does not belong to any group, and the
table will render one column for the attribute. If a root level attribute is a grouped
attribute, meaning the attribute type is GROUP, then there will be a list of regular
attributes that belong to this group. The iterator in the facet will iterate through this
group, and each attribute inside that group will be stamped as a column. For example,
Employee Personal is a GROUP-type attribute, and it contains 3 regular attributes:
Employee Number, Name and Salary, as shown in Figure 21-2.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To add a dynamic component as a table with groups to a page:

1. In the Components window, from the Data Views panel, drag and drop a Table to
open the Create ADF Faces Table wizard.

For information about configuring tables, see Displaying Data in Tables.

2. Select Bind Data Now, and use the Browse button to choose the model that
holds the table's data.

3. Select Generate columns dynamically at runtime.

Note:

This option only displays once you've chosen a model for the table.

4. Select Include Column Groups.

5. In the Attributes Collection field, enter an n EL expression that resolves to the
attributes property on the hierarchicalAttributes property on the
AttributesModel object you created in How to Create the Model Without Groups,
for example:

#{TestDynCompBean.attributesModel.heirarchicalAttributes}"

Chapter 21
Adding a Dynamic Component as a Table to a Page

21-14

The following example shows the declarative code created for a dynamic table with
groups.

<af:table value="#{TestDynCompBean}" var="row" rowBandingInterval="0" id="t2">
 <af:iterator value="#{TestDynCompBean.attributesModel.heirarchicalAttributes}"
 var="column" id="i2">
 <af:column headerText="#{column.label}" id="c2">
 <af:switcher defaultFacet="ATTRIBUTE"
 facetName="#{column.descriptorType}" id="s1">
 <f:facet name="GROUP">
 <af:iterator value="#{column.descriptors}" var="nestedCol" id="i3">
 <af:column headerText="#{nestedCol.label}" id="c3">
 <af:dynamicComponent attributeModel="#{nestedCol}"
 value="#{row[nestedCol.name]}" id="dc2"/>
 </af:column>
 </af:iterator>
 </f:facet>
 <f:facet name="ATTRIBUTE">
 <af:dynamicComponent attributeModel="#{column}"
 value="#{row[column.name]}" id="dc3"/>
 </f:facet>
 </af:switcher>
 </af:column>
 </af:iterator>
</af:table>

Using Validation and Conversion with Dynamic Components
ADF Faces allows you to convert and validate the data submitted by users to the
dynamic components. You must add the needed converter or validator tag to the
dynamic components and specify the attribute to validate or convert while building
your application.

You add conversion and validation to dynamic components by adding the needed
converter or validator tag, and specifying the attribute to validate or convert. Instead of
the enabled attribute, dynamic components use the disabled attribute.

Before you begin:

It may be helpful to have an understanding of how dynamic components determine
what they should display. See About Determining Components at Runtime.

To use a validator or converter with a dynamic component:

1. In the Components window, from the Operations panel, drag and drop the needed
converter or validator as a child to the dynamic component.

2. In the Properties window, in the Other section, click the icon that appears when
you hover over the Disabled field and choose Expression Builder.

3. In the Expression Builder enter an expression that resolves to the attribute and
provides the needed pattern. The following example shows two converters and
validators that might be used for the different attributes represented by the
dynamic component. The DateTime converter will be run on the Hiredate attribute,
the Number converter will be run on the Sal attribute, the Length validator will be
run on the Job attribute and the LongRange validator will be run on the Sal
attribute.

<af:dynamicComponent value="#{DynCompBean.value[attr.name]}"
 attributeModel="#{attr}" id="dc1"/>

Chapter 21
Using Validation and Conversion with Dynamic Components

21-15

 <af:convertDateTime disabled="#{attr.name == 'Hiredate' ? false : true}"
 pattern="yyyy/MM/dd"/>
 <af:convertNumber disabled="#{attr.name == 'Sal' ? false : true}"
 pattern="#,###,###" />
 <af:validateLength disabled="#{attr.name == 'Job' ? false : true}"
 maximum="10" hintMaximum="maxmum length is 10"/>
 <af:validateLongRange disabled="#{attr.name == 'Sal' ? false : true}"
 minimum="1000"/>
</af:dynamicComponent>

Using Dynamic and Static Components Together
ADF Faces allows you to place a static component before and after a dynamic form.
You can also create complex forms using dynamic and static components within the
form.

When you create a dynamic form, you essentially create a block of components that
are rendered dynamically. It is possible place static components before and after that
block of components, but you can not place static components within that block.

Even so, you can create complex forms with a number of different dynamic and static
components. And you can have static components interspersed with dynamic
components at a fairly granular level.

For example, say you have a form where you need to display name and address
information, both in English and in Japanese. For the interest of this example, let's say
the Japanese information will be displayed using dynamic components, while the
English will be displayed with static components. Figure 21-3 shows how you might
organize the fields by having the dynamic Japanese content display after the static
content.

Figure 21-3 Dynamic Components Can Be Placed After Static Components

The following example shows how you might create the form using static inputText
components and dynamic components that access the attributes in the Name and
Address groups.

<panelFormLayout ... >
 <af:group title="Name">
 <af:inputText value="#{myBean.firstName} id="it1" label="First Name"/>
 <af:inputText value="#{myBean.middleName} id="it2" label="Middle Name"/>
 <af:inputText value="#{myBean.lastName} id="it3" label="Last Name"/>

Chapter 21
Using Dynamic and Static Components Together

21-16

 <af:iterator
 value="#{DynCompBean.attributesModel.hierarchicalAttributes("Name")}"
 var="attr" id="iter1">
 <af:dynamicComponent id="dc1"
 value="#{DynCompBean.value[attr.name]}"
 attributeModel="#{attr}"/>
 </af:iterator>
 </af:group>
 <af:group title="Address">
 <af:inputText value="#{myBean.streetAddress}" id="it4"
 label="Street Address"/>
 <af:inputText value="#{myBean.City.inputValue}" id="it5" label="City"/>
 <af:inputText value="#{myBean.State.inputValue}" id="it6" label="State"/>
 <af:iterator
 value="#{DynCompBean.attributesModel.hierarchicalAttributes("Address")}"
 var="attr" id="iter1">
 <af:dynamicComponent id="dc1"
 value="#{DynCompBean[attr.name].inputValue}"
 attributeModel="#{attr}"/>
 </af:iterator>
 </af:group>
</panelFormLayout>

Now say that instead of having the Japanese name and address information separate
from the English, you want them interspersed, as shown in Figure 21-4.

Figure 21-4 Dynamic Components Can Be Placed With Static Components

In this case, you would not use groups in the dynamic component, but instead would
access only the needed attribute (and not all attributes), as shown in the following
example.

<af:group title="Name">
 <af:inputText value="#{myBean.firstName} id="it1" label="First Name"/>
 <af:iterator value="#{DynCompBean.attributesModel.attributes("Japanese First
Name")}"
 var="attr" id="iter1">
 <af:dynamicComponent id="dc1" value="#{DynCompBean.value[attr.name]}"
 attributeModel="#{attr}"/>
 </af:iterator>
 <af:inputText value="#{myBean.middleName} id="it2" label="Middle Name"/>
 <af:inputText value="#{myBean.lastName} id="it3" label="Last Name"/>
 <af:iterator value="#{DynCompBean.attributesModel.attributes("Japanese Last
Name")}"

Chapter 21
Using Dynamic and Static Components Together

21-17

 var="attr" id="iter1">
 <af:dynamicComponent id="dc1" value="#{DynCompBean.value[attr.name]}"
 attributeModel="#{attr}"/>
 </af:iterator>
</af:group>
<af:group title="Address">
 <af:inputText value="#{myBean.streetAddress}" id="it4" label="Street Address"/>
 <af:iterator value="#{DynCompBean.attributesModel.attributes("Japanese Street
Address")}"
 var="attr" id="iter1">
 <af:dynamicComponent id="dc1" value="#{DynCompBean.value[attr.name]}"
 attributeModel="#{attr}"/>
 </af:iterator>
. . .
</af:group>

Chapter 21
Using Dynamic and Static Components Together

21-18

Part V
Using ADF Data Visualization Components

Part V documents the different ADF Faces data visualization components, including
charts, gauges, NBoxes, pivot tables, Gantt charts, timelines, geographic and thematic
maps, hierarchy viewers, treemaps, sunburst, and diagram components.

Specifically, it contains the following chapters:

• Introduction to ADF Data Visualization Components

• Using Chart Components

• Using Picto Chart Components

• Using Gauge Components

• Using NBox Components

• Using Pivot Table Components

• Using Gantt Chart Components

• Using Timeline Components

• Using Map Components

• Using Hierarchy Viewer Components

• Using Treemap and Sunburst Components

• Using Diagram Components

• Using Tag Cloud Components

22
Introduction to ADF Data Visualization
Components

This chapter describes the ADF Data Visualization components, an expressive set of
interactive ADF Faces components. The functionality shared across the components
and with other ADF Faces components is also highlighted. The remaining chapters in
this part of the guide provide detailed information about how to create and customize
each component.
This chapter includes the following sections:

• About ADF Data Visualization Components

• Common Functionality in Data Visualization Components

• Providing Data for ADF Data Visualization Components

About ADF Data Visualization Components
The ADF Data Visualization components provide significant graphical and tabular
capabilities for displaying and analyzing data in an efficient manner with reduced
effort.

These components provide the following common features:

• They are full ADF Faces components that support the use of ADF data controls.

• They provide for declarative design time creation using the Data Controls Panel,
the JSF visual editor, Properties window, and Components window.

Data visualization components include: charts, picto charts, gauges, NBoxes, pivot
tables and pivot filter bars, geographic maps, thematic maps, Gantt charts, timelines,
hierarchy viewers, treemaps, sunbursts, diagrams, and tag clouds.

The prefix dvt: occurs at the beginning of each component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

Chart Component Use Cases and Examples
The chart components include ten types of charts with one or more variations for a
total of over twenty different charts that you can use to display data. Chart components
give you the capability of producing a variety of data visualizations that let you
evaluate multiple data points on multiple axes in many ways. For example, a number
of charts assist you in the comparison of results from one group with the results from
another group.

Chart categories include:

• Area (areaChart): Represents data as a filled-in area. Use area charts to show
trends over time, such as sales for the last 12 months. Area charts require at least
two groups of data along an axis. The axis is often labeled with increments of time
such as months.

22-1

• Bar (barChart): Represents data as a series of vertical or horizontal bars. Use bar
charts to examine trends over time or to compare items at the same time, such as
sales for different product divisions in several regions.

• Bubble (bubbleChart): Represents data by the location and size of round data
markers (bubbles). Use bubble charts to show correlations among three types of
values, especially when you have a number of data items and you want to see the
general relationships. For example, use a bubble chart to plot salaries (x-axis),
years of experience (y-axis), and productivity (size of bubble) for your work force.
Such a chart allows you to examine productivity relative to salary and experience.

• Combination (comboChart): Chart that uses different types of data markers (bars,
lines, or areas) to display different kinds of data items. Use combination charts to
compare bars and lines, bars and areas, lines and areas, or all three
combinations.

• Funnel (funnelChart): Displays data as a stack of slices in a conical section. Use
funnel charts to represent steps in a process. Funnel charts require actual values
and target values against a stage or time value. For example, use a funnel chart to
represent progress in different stages of the software development life cycle.

• Line (lineChart): Represents data as a line, as a series of data points, or as data
points that are connected by a line. Line charts require data for at least two points
for each member in a group. For example, a line chart over months requires at
least two months. Typically a line of a specific color is associated with each group
of data such as the Americas, Europe, and Asia. Use line charts to compare items
over the same time.

• Pie (pieChart): Represents a set of data items as proportions of a total. The data
items are displayed as sections of a circle causing the circle to look like a sliced
pie. Use pie charts to show the relationship of parts to a whole such as how much
revenue comes from each product line.

• Scatter (scatterChart): Represents data by the location of data markers. Use
scatter charts to show correlation between two different kinds of data values such
as sales and costs for top products. Use scatter charts in particular to see general
relationships among a number of items.

• Spark (sparkChart): A simple, condensed chart that displays trends or variations
in a single data value, typically stamped in the column of a table or in line with
related text. Spark charts have basic conditional formatting. Since spark charts
contain no labels, the adjacent columns of a table or surrounding text provide
context for spark chart content.

• Stock (stockChart): Represents information related to trade stocks, specifically
the opening, high, low, and closing prices of stocks. Use stock charts to explore
trends in stock prices, fluctuations and volume of trade. Depending on the type of
chart chosen, each stock marker displays two to four values, not counting the
optional volume marker. When the volume of trading is included, the volume
appears as bars in the lower part of the chart.

Figure 22-1 shows examples of area, bar, bubble, combination, funnel, line, pie, and
scatter charts.

Chapter 22
About ADF Data Visualization Components

22-2

Figure 22-1 Example of ADF Data Visualization Charts

Figure 22-2 shows a line sparkchart displaying sales trends in a table column.

Figure 22-2 Sparkchart of Sales Trends

For more information including additional use cases and examples, see Using Chart
Components .

Picto Chart Use Cases and Examples
Picto Charts are a versatile tool that can be used along with other components to
display data in a visually appealing manner. There are several use cases.

Picto charts can be used to enhance statements about absolute numbers and act as a
visual aid. Figure 22-3 shows picto charts reflecting the absolute value mentioned in
the accompanying statements.

Chapter 22
About ADF Data Visualization Components

22-3

Figure 22-3 Picto Charts with Absolute Values

Picto Charts can be used to highlight a portion of a population as a comparison. This
works best when the ratio is small. Figure 22-4 shows a single picto chart configured
to highlight three out of twenty human figures to illustrate the point made in the
accompanying statement.

Figure 22-4 Simple Picto Chart to illustrate a Part of a Population

Another use case of picto charts is to create a comparison between parts of a
population by highlighting the distribution of parts. For example, Figure 22-5 shows
three picto charts together in the default flow layout, each configured to show the
number of medals won by the USA at the 2012 Summer Olympics. The three picto
charts have been configured to correlate the size of the circle with the rank of the
medal.

Chapter 22
About ADF Data Visualization Components

22-4

Figure 22-5 Picto Chart with varying sizes of items

Picto charts may also be used a set of singletons in order to display unique information
for each data point. Figure 22-6 shows a collection of picto charts to represent USA’s
medal count in the 2014 Winter Olympics. Thecount attribute for each picto chart is set
to 1 and the tooltip for each picto chart is configured to show the name of the athlete
who won that medal.

Figure 22-6 A collection of Singleton Picto Charts with Unique Information

Multiple picto charts can be arranged within a table to highlight business data.
Figure 22-7 shows a table with sales figures of Apple products in the years 2011 and
2012. Each square represents 10 million units.

Chapter 22
About ADF Data Visualization Components

22-5

Figure 22-7 Picto Charts arranged within Table

Gauge Component Use Cases and Examples
The gauge (gauge) component is a measuring instrument for indicating a quantity such
as sales, stock levels, temperature, or speed. Gauges typically display a single data
value, often more effectively than a charts. Using thresholds, gauges can show state
information such as acceptable or unacceptable ranges using color.

The following kinds of gauges can be produced by this component:

• Dial: Displays a metric value plotted on a circular axis. The gauge's background
attribute determines whether the gauge's background is displayed as a rectangle,
circle, or semicircle. An indicator points to the dial gauge's metric value on the
axis.

Figure 22-8 shows three dial gauges with backgrounds set to full circle, partial
circle, and rectangle. In all three examples, the gauge's metric value is 63.

Figure 22-8 Dial Gauge Examples

• LED (lighted electronic display): Graphically depicts a measurement, such as a
key performance indicator (KPI). Several styles of shapes are available for LED
gauges, including round or rectangular shapes that use color to indicate status,
and triangles or arrows that point up, left, right, or down in addition to a color
indicator.

Figure 22-9 shows LED gauges configured with a variety of shapes, sizes, and
thresholds.

Chapter 22
About ADF Data Visualization Components

22-6

Figure 22-9 LED Gauge Examples

• Rating: Displays and optionally accepts input for a metric value. This gauge is
typically used to show ratings for products or services, such as the star rating for a
movie.

Figure 22-10 shows five rating gauges configured with star, diamond, circle,
rectangle and triangle shapes.

Figure 22-10 Rating Gauge Examples

• Status meter: Displays the metric value on a horizontal, vertical or circular axis. An
inner rectangle shows the current level of a measurement against the ranges
marked on an outer rectangle. Optionally, status meters can display colors to
indicate where the metric value falls within predefined thresholds.

Figure 22-11 shows examples of status meter gauges configured as horizontal,
circular and vertical status meters. The gauges are configured to use thresholds
that display color to indicate whether the gauge's value falls within an acceptable
range.

Chapter 22
About ADF Data Visualization Components

22-7

Figure 22-11 Status Meter Gauge Examples

For more information including additional use cases and examples, see Using Gauge
Components .

NBox Use Cases and Examples
The nBox component is comprised of two parts: the node that represents the data and
the grid that comprises the cells into which the nodes are placed. If the number of
nodes is greater than the space allocated for the cell, the NBox displays an indicator
that users can click to access the additional nodes.

For example, as illustrated in Figure 26-1 you can use the nBox component to compare
employee potential and performance data, where the row represents employee
potential and the column represents employee performance. The node that represents
the employee is stamped into the appropriate cell.

Figure 22-12 NBox Component Comparing Employee Potential and
Performance

Chapter 22
About ADF Data Visualization Components

22-8

NBox nodes can also be styled with colors, markers, and indicators to represent each
unique value, or group, in the data set using attribute groups. Figure 26-2 shows an
NBox with employee nodes styled by department, role, and experience.

Figure 22-13 NBox Nodes Styled with Attribute Groups

NBox nodes representing attribute groups can also be configured to display by size
and number within each grid cell as illustrated in Figure 26-3, or across all cells are
illustrated in Figure 26-4.

Chapter 22
About ADF Data Visualization Components

22-9

Figure 22-14 NBox Nodes Displayed by Size and Number Within Cells

Figure 22-15 NBox Nodes Displayed by Size and Number Across Cells

Chapter 22
About ADF Data Visualization Components

22-10

Pivot Table Component Use Cases and Examples
The pivot table (pivotTable) produces a grid that supports multiple layers of data
labels on rows or columns. An optional pivot filter bar (pivotFilterBar) can be
associated with the pivot table to filter data not displayed in the row or column edge.
When bound to an appropriate data control such as a row set, the component also
supports the option of generating subtotals and totals for grid data, and drill operations
at runtime.

Pivot tables let you swap data labels from one edge (row or column) or pivot filter bar
(page edge) to another edge to obtain different views of your data. For example, a
pivot table might initially display total sales data for products within regions on the row
edge, broken out by years on the column edge. If you swap region and year at
runtime, then you end up with total sales data for products within years, broken out by
region.

Pivot tables support horizontal and vertical scrolling, header and cell formatting, and
drag-and-drop pivoting. Pivot tables also support ascending and descending group
sorting of rows at runtime. Figure 22-16 shows an example pivot table with a pivot filter
bar.

Figure 22-16 Pivot Table with Pivot Filter Bar

For more information including additional use cases and examples, see Using Pivot
Table Components.

Geographic Map Component Use Cases and Examples
The geographic map (map) provides the functionality of Oracle Spatial within Oracle
ADF. This component represents business data on a map and lets you superimpose
multiple layers of information on a single map. This component supports the
simultaneous display of a color theme, a graph theme (bar or pie graph), and point
themes. You can create any number of each type of theme and you can use the map
toolbar to select the desired themes at runtime.

As an example of a geographic map, consider a base map of the United States with a
color theme that provides varying color intensity to indicate the popularity of a product
within each state, a pie chart theme that shows the stock levels of warehouses, and a
point theme that identifies the exact location of each warehouse. When all three
themes are superimposed on the United States map, you can easily evaluate whether
there is sufficient inventory to support the popularity level of a product in specific

Chapter 22
About ADF Data Visualization Components

22-11

locations. Figure 22-17 shows a geographic map with color theme, pie graph theme,
and point theme.

Figure 22-17 Geographic Map with Color Theme, Pie Graph Theme, and Point
Theme

For more information including additional use cases and examples, see Using Map
Components .

Thematic Map Component Use Cases and Examples
A thematic map (thematicMap) component represents business data as patterns in
stylized areas or associated markers and does not require a connection to a map
viewer service. Thematic maps focus on data without the geographic details in a
geographic map. The thematic map is packaged with prebuilt base maps including a
USA base map, a world base map, as well as base maps for continents and regions of
the world such as EMEA and APAC. The thematic map component does not require a
map service to display a base map.

For example, you could use a USA base map with a states map layer to display the
location of warehouses and customers, with high, medium, and low ratios using colors
as displayed in Figure 22-18. The example illustrates thematic map default features
including a data bound legend.

Chapter 22
About ADF Data Visualization Components

22-12

Figure 22-18 Thematic Map Displaying Warehouse to Customer Ratios

For more information including additional use cases and examples, see Using Map
Components .

Gantt Chart Component Use Cases and Examples
The Gantt chart is a type of horizontal bar graph (with time on the horizontal axis) that
is used in planning and tracking projects to show resources or tasks in a time frame
with a distinct beginning and end.

A Gantt chart consists of two ADF Faces tree tables combined with a splitter. The left-
hand table contains a list of tasks or resources while the right-hand table consists of a
single column in which progress is graphed over time.

There are three types of gantt components:

• Project Gantt (projectGantt): Creates a Gantt chart that shows tasks vertically,
and the duration of the task is represented as a bar on a horizontal timeline.

• Resource utilization Gantt (resourceUtilizationGantt): Creates a Gantt chart
that shows graphically whether resources are over or under allocated. It shows
resources vertically while showing their allocation and, optionally, capacity on the
horizontal time axis.

• Scheduling Gantt (schedulingGantt): Creates a Gantt chart that shows resource
management and is based on manual scheduling boards. It shows resources
vertically with corresponding activities on the horizontal time axis.

Figure 22-19 shows a project Gantt view of staff resources and schedules.

Chapter 22
About ADF Data Visualization Components

22-13

Figure 22-19 Project Gantt Chart

For more information including additional use cases and examples, see Using Gantt
Chart Components .

Timeline Component Use Cases and Examples
A timeline is composed of the display of events as timeline items along a time axis, a
movable overview window that corresponds to the period of viewable time in the
timeline, and an overview time axis that displays the total time increment for the
timeline. A horizontal zoom control is available to change the viewable time range.
Timeline items corresponding to events display related information or actions and are
represented by a line feeler to the time axis and a marker in the overview time axis.

For example, the timeline in Figure 22-20 is configured to display the chronological
order of the hire dates of employees. In this example, timeline items representing each
event display information about the employee using an image and text with labels. The
overview window defines the time range for the display of the timeline items,
adjustable by changing the zoom control or by changing the edges of the window to a
larger or smaller size. When selection is configured, the timeline item, line feeler, and
the event marker in the overview panel are highlighted.

Figure 22-20 Timeline of Employee Hire Dates

Chapter 22
About ADF Data Visualization Components

22-14

A dual timeline can be used for comparison of up to two series of events. Figure 22-21
illustrates a dual timeline comparing employee change events for two employees over
a ten year time period. Each event is represented in the respective employee’s
timeline as a card with a heading and the date and time as body text. Timeline events
are displayed using a quarterly year time axis within the three plus year overview
window. The red colored line in the overview time axis indicates the current date.

Figure 22-21 Dual Timeline Comparing Employee Change Events

For more information including additional use cases and examples, see Using
Timeline Components .

Hierarchy Viewer Component Use Cases and Examples
The hierarchy viewer (hierarchyViewer) component displays hierarchical data as a
set of linked nodes in a diagram. The nodes and links correspond to the elements and
relationships to the data. The component supports pan and zoom operations,
expanding and collapsing of the nodes, rendering of simple ADF Faces components
within the nodes, and search of the hierarchy viewer data. A common use of the
hierarchy viewer is to display an organization chart with information about members in
their respective nodes, as shown in Figure 22-22.

Chapter 22
About ADF Data Visualization Components

22-15

Figure 22-22 Hierarchy Viewer as Organizational Chart

For more information including additional use cases and examples, see Using
Hierarchy Viewer Components.

Treemap and Sunburst Components Use Cases and Examples
The treemap and sunburst components display quantitative hierarchical data across
two dimensions, represented visually by size and color. Treemaps and sunbursts use
a shape called a node to reference the data in the hierarchy. For example, you can use
a treemap or sunburst to display quarterly regional sales and to identify sales trends,
using the size of the node to indicate each region's sales volume and the node's color
to indicate whether that region's sales increased or decreased over the quarter.

Treemaps display nodes as a set of nested rectangles. Each branch of the tree is
given a rectangle, which is then tiled with smaller rectangles representing sub-
branches.

Figure 22-23 shows a treemap displaying United States census data grouped by
regions, with the color attribute used to indicate median income levels. States with
larger populations display in larger-sized nodes than states with smaller populations.

Chapter 22
About ADF Data Visualization Components

22-16

Figure 22-23 Treemap Displaying United States Census Data by Region

Sunbursts display the nodes in a radial rather than a rectangular layout, with the top of
the hierarchy at the center and deeper levels farther away from the center.
Figure 22-24 shows the same census data displayed in a sunburst.

Figure 22-24 Sunburst Displaying United States Census Data by Region

Treemaps and sunbursts can display thousands of data points in a relatively small
spatial area. These components are a good choice for identifying trends for large

Chapter 22
About ADF Data Visualization Components

22-17

hierarchical data sets, where the proportional size of the nodes represents their
importance compared to the whole. Color can also be used to represent an additional
dimension of information

Use treemaps if you are primarily interested in displaying two metrics of data using
size and color at a single layer of the hierarchy. Use sunbursts instead if you want to
display the metrics for all levels in the hierarchy. Drilling can be enabled to allow the
end user to traverse the hierarchy and focus in on key parts of the data.

For additional information about treemaps and how to use them in your application,
see Using Treemap and Sunburst Components .

Diagram Use Cases and Examples
Diagrams use shapes for the node, and lines for links to represent the relationships
between the nodes. Figure 33-1 shows a simple diagram configured in a circular
layout pattern with circles and lines representing the relationships between them. The
example includes the default control panel for diagram zooming.

Figure 22-25 Simple Diagram with Nodes and Links with Control Panel

Diagrams can also be configured to visually display hierarchical data with a master-
detail relationship. Figure 33-2 shows an employee tree diagram at runtime that
includes a control panel, a number of nodes, and links that connect the nodes. Also
illustrated is a node panel card that uses af:showDetailItem elements to display
multiple sets of data at different zoom levels.

Chapter 22
About ADF Data Visualization Components

22-18

Figure 22-26 Employee Tree Diagram with Control Panel

The diagram component can also be configured to display an arc diagram, a graphical
display to visualize graphs in a one-dimensional layout. Nodes are displayed along a
single axis, while representing the edges or connections between nodes with arcs.
Figure 33-3 shows an arc diagram that use characters from Victor Hugo's "Les
Miserables" novel to display co-appearances between any pair of characters that
appear in the same chapter of the book.

Figure 22-27 Arc Diagram Displaying Character Co-Appearances

Diagrams can be configured to display a database schema. Figure 33-4 shows a
database schema layout diagram with an overview window, a simplified view of the
diagram that provides the user with context and navigation options.

Chapter 22
About ADF Data Visualization Components

22-19

Figure 22-28 Database Schema Layout Diagram with Overview

Diagrams can also be configured in a sunburst layout to display quantitative
hierarchical data across two dimensions, represented visually by size and color.
Figure 33-5 shows a diagram displaying US state to state migration data using
attribute groups to display net results.

Figure 22-29 Diagram Displaying State to State Net Migration Data

Chapter 22
About ADF Data Visualization Components

22-20

Tag Cloud Component Use Cases and Examples
Tag Clouds are made up of an array of tags. There are a number of use cases.

Tag clouds are most useful to quickly gauge the relative percentage power of an item
in a population. For example, Figure 22-30 shows the results of a survey wherein
respondents disclosed which social media networks they use.

Figure 22-30 Simple Tag Cloud with Cloud Layout

Tag Clouds may also be displayed in a rectangular layout. This is most useful for
formal data, website tag searches, or if the cloud needs to be contained within a fixed
container. Figure 22-31 shows the latest census data for population of the states in the
US. The tags are configured to show the population in the tooltip for the tag.

Figure 22-31 Tag Cloud with Rectangular Layout

Tags may be divided into groups, and these groups may be represented in a legend.
This is useful for quickly dividing tags by criteria. For example, Figure 22-32 shows US

Chapter 22
About ADF Data Visualization Components

22-21

states bifurcated into groups of low or high population. The condition provided
classifies states with less than 5 million people as low population and with more than 5
million people as high population. Tag clouds accept both match and exception rules
to allow for complex grouping.

Figure 22-32 Tag Cloud with Colored Groups and Legend

Additional Functionality for Data Visualization Components
You may find it helpful to understand other ADF Faces features before you data bind
your data visualization components. Additionally, once you have added a data
visualization component to your page, you may find that you need to add functionality
such as validation and accessibility. Following are links to other functionality that data
visualization components use:

• Partial page rendering: You may want a data visualization component to refresh to
show new data based on an action taken on another component on the page. For
more information, see Rerendering Partial Page Content.

• Personalization: Users can change the way the data visualization components
display at runtime, those values will not be retained once the user leaves the page
unless you configure your application to allow user customization. For more
information, see Allowing User Customization on JSF Pages.

• Accessibility: Data visualization components are accessible, as long as you follow
the accessibility guidelines for the component. See Developing Accessible ADF
Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of data visualization
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see Customizing the Appearance Using
Styles and Skins.

• Placeholder data controls: If you know the data visualization components on your
page will eventually use ADF data binding, but you need to develop the pages
before the data controls are ready, then you should consider using placeholder

Chapter 22
About ADF Data Visualization Components

22-22

data controls, rather than manually binding the components. Using placeholder
data controls will provide the same declarative development experience as using
developed data controls. For more information, see the "Designing a Page Using
Placeholder Data Controls" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

Common Functionality in Data Visualization Components
ADF Data Visualization components share much of the same functionality, such as
how data is delivered, automatic partial page rendering (PPR), the image format used
to display the component, and how data can be displayed and edited.

It is important that you understand this shared functionality and how it is configured
before you use these components.

Content Delivery
Data visualization components including chart, gauge, Gantt chart, hierarchy viewer,
pivot table, sunburst, thematic map, timeline, and treemap can be configured for how
data is delivered from the data source. The data can be delivered to the components
either immediately upon rendering, as soon as the data is available, or lazily fetched
after the shell of the component has been rendered. By default all data visualization
components, with the exception of the geographic map, support the delivery of content
from the data source when it is available. The contentDelivery attribute of these
components is set to whenAvailable by default.

Data visualization components based on a tree or tree table model including Gantt
charts, hierarchy viewers, pivot tables, sunbursts, timelines, and treemaps are
virtualized, meaning not all the rows, columns, or levels that are there for the
component on the server are delivered to and displayed on the client. You configure
these components to fetch a certain number of rows, columns, or levels at a time from
your data source. Use these attributes to configure fetch size:

• Gantt charts:

– fetchSize: Specifies the number of rows in the data fetch block. The default
value is 25.

– horizontalFetchSize: Specifies the size of the horizontal data window in
number of pixels in which the data are fetched. Only task bars within this data
window would be rendered. In contrast with fetchSize, which provides vertical
virtualization, horizontalFetchSize provides horizontal virtualization.

• Hierarchy Viewer:

– levelFetchSize: Specifies the number of child nodes that will be fetched and
displayed at a single time for each expanded parent node. Additional child
nodes may be fetched and displayed by using the lateral navigation controls
shown in the hierarchy viewer. The default value is 25.

• Pivot table:

– rowFetchSize: Specifies the number of rows in a data fetch block. The default
value is 25.

– columnFetchSize: Specifies the number of columns in a data fetch block. The
default value is 10.

Chapter 22
Common Functionality in Data Visualization Components

22-23

• Sunburst:

– displayLevelsChildren: Specifies the number of child levels to display during
initial render. This property is 0-based. A value of 0 means that no child levels
below the root will be shown; the root itself will be shown. The default value is
2, which means that the root and the first two levels of children will be shown.

• Timeline:

– fetchStartTime: Specifies the start of the time range where data is currently
being fetched

– fetchEndTime: Specifies the end of the time range where data is currently
being fetched.

• Treemap:

– displayLevelsChildren: Specifies the number of child levels to display during
initial render. This property is 0-based. A value of 0 means that no child levels
below the root will be shown; the root itself will be shown. The default value is
2, which means that the root and the first two levels of children will be shown.

For lazy delivery, when a page contains one or more of these components, the page
initially goes through the standard life cycle. However, instead of fetching the data
during that initial request, a special separate partial page rendering (PPR) request is
run, and the value of the fetch size for the component is then returned. Because the
page has just been rendered, only the Render Response phase executes for the
components, allowing the corresponding data to be fetched and displayed. When a
user's actions cause a subsequent data fetch (for example scrolling in a pivot table
grid for another set of rows), another PPR request is executed.

When content delivery is configured to be delivered when it is available, the framework
checks for data availability during the initial request, and if it is available, it sends the
data to the component. If it is not available, the data is loaded during the separate
PPR request, as it is with lazy delivery.

Chapter 22
Common Functionality in Data Visualization Components

22-24

Performance Tip:

Lazy delivery should be used when a data fetch is expected to be an
expensive (slow) operation, for example, slow, high-latency database
connection, or fetching data from slow data sources like web services. Lazy
delivery should also be used when the page contains a number of
components other than a data visualization component. Doing so allows the
initial page layout and other components to be rendered first before the data
is available.

Immediate delivery should be used if the data visualization component is the
only context on the page, or if the component is not expected to return a
large set of data. In this case, response time will be faster than using lazy
delivery (or in some cases, simply perceived as faster), as the second
request will not go to the server, providing a faster user response time and
better server CPU utilizations. Note that for components based on a tree or
tree table model, only the value configured to be the fetch block will be
initially returned. As with lazy delivery, when a user's actions cause a
subsequent data fetch, the next set of rows are delivered.

The whenAvailable delivery provides the additional flexibility of using
immediate when data is available during initial rendering or falling back on
lazy when data is not initially available.

For more information about setting the fetch size for components based on the tree or
tree table model, see Content Delivery.

Automatic Partial Page Rendering (PPR)
ADF Faces supports Partial Page Rendering (PPR), which allows certain components
on a page to be rerendered without the need to rerender the entire page. In addition to
built-in PPR functionality, you can configure components to use cross-component
rendering, which allows you to set up dependencies so that one component acts as a
trigger and another as the listener. For more information, see About Partial Page
Rendering.

By default, ADF Data Visualization components support automatic PPR, where any
component whose values change as a result of backend business logic is
automatically rerendered. If your application uses the Fusion technology stack, you
can enable the automatic partial page rendering feature on any page. For more
information, see the "What You May Need to Know About Partial Page Rendering and
Iterator Bindings" section in Developing Fusion Web Applications with Oracle
Application Development Framework.

Active Data Support
The Fusion technology stack includes the Active Data Service (ADS), which is a
server-side push framework that allows you to provide real-time data updates for ADF
Faces components and ADF Data Visualization components. You bind ADF Faces
components to a data source and ADS pushes the data updates to the browser client
without requiring the browser client to explicitly request it.

Chapter 22
Common Functionality in Data Visualization Components

22-25

Table 22-1 lists the DVT components that support active data and where you can find
additional detail.

Table 22-1 DVT Components Supporting Active Data

DVT Component Link to Component Detail

geographic map What You May Need to Know About Active Data Support for
Map Point Themes

pivot table and pivot filter
bar

Active Data Support (ADS)

Supports ADS only when the outputText component or
sparkChart is configured to display the active data; other
components are not supported inside collection-based
component.

sunburst Active Data Support (ADS)

treemap Active Data Support (ADS)

chart (all types) Active Data Support (ADS)

gauge (all types) Active Data Support (ADS)

For additional information about using the Active Data Service, see Using the Active
Data Service with an Asynchronous Backend.

Text Resources from Application Resource Bundles
JDeveloper supports easy localization of ADF Faces and data visualization
components using the abstract class java.util.ResourceBundle to provide locale-
specific resources.

Data visualization components may include text that is part of the component, for
example the af:table component uses the resource string af_table.LABEL_FETCHING
for the message text that displays in the browser while the af:table component
fetches data during the initial load of data or while the user scrolls the table.
JDeveloper provides automatic translation of these text resources into 28 languages.
These text resources are referenced in a resource bundle. If you set the browser to
use the language in Italy, any text contained within the components will automatically
be displayed in Italian.

For any text you add to a component, for example if you define the title of a pieChart
component by setting its title attribute, you must provide a resource bundle that
holds the actual text, create a version of the resource bundle for each locale, and add
a <locale-config> element to define default and support locales in the application's
faces-config.xml file. You must also add a <resource-bundle> element to your
application's faces-config.xml file in order to make the resource bundles available to
all the pages in your application. Once you have configured and registered a resource
bundle, the Expression Language (EL) editor will display the key from the bundle,
making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF components,
JDeveloper supports automatic resource bundle synchronization for any translatable
string in the visual editor. When you edit components directly in the visual editor or in
the Properties window, text resources are automatically created in the base resource
bundle. For more information, see Using Automatic Resource Bundle Integration in
JDeveloper.

Chapter 22
Common Functionality in Data Visualization Components

22-26

Note:

Any text retrieved from the database is not translated.

For data visualization components with title and label child components, you can also
create and add text resources to a resource bundle by using the attribute dropdown list
to open a Select Text Resource dialog to select or add a translatable string from an
application resource bundle. Alternatively, you can select Expression Builder to open
the Expression Language (EL) editor to create an expression to be executed at
runtime for the title or label.

Providing Data for ADF Data Visualization Components
In JDeveloper you can add any ADF Data Visualization component to your JSF page
using UI-first development, and then later manually bind the data you wish to display
using ADF data controls or managed beans. In this case you drag the component from
the Components window to the page and manually bind the data in the Properties
window.

For example, when you are designing your page using simple UI-first development,
you use the Components window to add a bar chart to a JSF page. When you drag
and drop a chart component onto the page, a Create Chart dialog displays available
categories of chart types, with descriptions, to provide visual assistance when creating
charts. You can also specify a quick start layout of the chart's legend. Figure 22-33
shows the Create Bar Chart dialog for bar charts with the default bar chart type and
quick start layout selected.

Chapter 22
Providing Data for ADF Data Visualization Components

22-27

Figure 22-33 Create Bar Chart Dialog

For information about creating Data Visualization components using UI-first
development, understanding component data requirements, configuring DVT parent
and child components, customizing the appearance of components, and adding
special effects and interactivity to components, see the following chapters in this part
of the guide:

• Using Chart Components

• Using Picto Chart Components

• Using Gauge Components

• Using NBox Components

• Using Pivot Table Components

• Using Gantt Chart Components

• Using Timeline Components

• Using Map Components

• Using Hierarchy Viewer Components

• Using Treemap and Sunburst Components

• Using Diagram Components

• Using Tag Cloud Components

Alternatively, you can use data-first development and create the component using an
ADF data control that will handle the data binding for you. In this case you drag a data

Chapter 22
Providing Data for ADF Data Visualization Components

22-28

collection from the Data Controls panel and complete the data binding dialogs to
configure the display of data.

For example, you can create and data bind a DVT chart by dragging a data control
from the Data Controls Panel. A Component Gallery displays available chart
categories, types, and descriptions to provide visual assistance when designing charts
and defining a quick layout. Figure 22-34 shows the Component Gallery that displays
when creating a chart from a data control.

Figure 22-34 Component Gallery for Charts

After selecting the category and type of chart you wish to create, a data binding dialog
is displayed to bind the data collection attributes to the chart component. Figure 22-35
shows the Create Bar Chart dialog used to create and data bind a bar chart.

Chapter 22
Providing Data for ADF Data Visualization Components

22-29

Figure 22-35 Data Binding in the Create Bar Chart Dialog

All data visualization components can be bound to data collections in an ADF data
control. For information and examples of data binding these components to data
controls, see the following:

• Creating Databound Charts section in Developing Fusion Web Applications with
Oracle Application Development Framework.

• Creating Databound Picto Charts section in Developing Fusion Web Applications
with Oracle Application Development Framework.

• Creating Databound Gauges section in Developing Fusion Web Applications with
Oracle Application Development Framework.

• Creating Databound NBox Components section in Developing Fusion Web
Applications with Oracle Application Development Framework.

• Creating Databound Pivot Tables section in Developing Fusion Web Applications
with Oracle Application Development Framework.

Note:

In JDeveloper, a Create Pivot Table wizard provides declarative support
for data-binding and configuring the pivot table.

• Creating Databound Geographic Maps section in Developing Fusion Web
Applications with Oracle Application Development Framework.

Chapter 22
Providing Data for ADF Data Visualization Components

22-30

• Creating Databound Thematic Maps section in Developing Fusion Web
Applications with Oracle Application Development Framework

• Creating Databound Gantt Charts section in Developing Fusion Web Applications
with Oracle Application Development Framework.

• Creating Databound Timelines section in Developing Fusion Web Applications
with Oracle Application Development Framework.

• Creating Databound Hierarchy Viewer section in Developing Fusion Web
Applications with Oracle Application Development Framework.

• Creating Databound Treemaps and Sunbursts section in Developing Fusion Web
Applications with Oracle Application Development Framework.

• Creating Databound Diagram Components section in Developing Fusion Web
Applications with Oracle Application Development Framework.

• Creating Databound Tag Clouds section in Developing Fusion Web Applications
with Oracle Application Development Framework.

Chapter 22
Providing Data for ADF Data Visualization Components

22-31

23
Using Chart Components

This chapter describes how to use the ADF Data Visualization chart components to
display data in charts using simple UI-first development. The chart components
include area, bar, bubble, combination, funnel, line, pie, scatter, spark, and stock
charts. The chapter defines the data requirements, tag structure, and options for
customizing the look and behavior of these components.
If your application uses the Fusion technology stack, you can use data controls to
create charts. For more information, see "Creating Databound Charts" in Developing
Fusion Web Applications with Oracle Application Development Framework.

This chapter includes the following sections:

• About the Chart Component

• Using the Chart Component

• Adding Data to Charts

• Customizing Chart Display Elements

• Adding Interactive Features to Charts

About the Chart Component
The ADF DVT chart components are a set of visualizations for evaluating data points
on multiple axes. They present a variety of forms that are useful in many ways, such
as comparing results from two or more groups, showing stock information and
presenting a pie chart comparison.

Charts display series and groups of data. Series and groups are analogous to the rows
and columns of a grid of data. Typically, the rows in the grid appear as a series in a
chart, and the columns in the grid appear as groups.

For most charts, a series appears as a set of markers that are the same color.
Typically, the chart legend shows the identification and associated color of each
series. For example, in a bar chart, the yellow bars might represent the sales of shoes
and the green bars might represent the sales of boots.

Groups appear differently in different chart types. For example, in a stacked bar chart,
each stack is a group. A group might represent time periods, such as years. A group
might also represent geographical locations such as regions.

Depending on the data requirements for a chart type, a single data item might require
one or more data values. For example, a scatter chart requires two values for each
data marker. The first value determines where the marker appears along the x-axis
while the second value determines where the marker appears along the y-axis.

Chart Component Use Cases and Examples
The chart components include ten types of charts with one or more variations that you
can use to display data. JDeveloper provides a Components window that displays

23-1

available chart categories. Figure 23-1 shows the Components window for area, bar,
bubble, combination, funnel, line, pie, scatter, spark and stock charts.

Figure 23-1 Components Window for Charts

When you select a chart category in the Components window, JDeveloper displays a
dialog with descriptions about the available chart types to provide visual assistance
when you are creating charts. Figure 23-2 shows the different area chart types and
layouts available when you select the Area chart in the Components window.

Chapter 23
About the Chart Component

23-2

Figure 23-2 Area Chart Types in Create Area Chart Dialog

Chart categories include:

• Area: Represents data as a filled-in area. Use area charts to show trends over
time, such as sales for the last 12 months. Area charts require at least two groups
of data along an axis. The axis is often labeled with increments of time such as
months.

Area charts represent these kinds of data values:

– Absolute: Each area marker connects a series of two or more data values.

– Stacked: Area markers are stacked. The values of each set of data are added
to the values for previous sets. The size of the stack represents a cumulative
total.

Tip:

Stacked charts are generally preferred over absolute charts. Areas in
absolute charts can be visually obscured by other areas, depending
on the area's data value.

– Split Dual-Y: Dual axis charts are split into two parts. Area markers unique to a
particular axis are plotted only on the relevant part. Applies to both absolute
and stacked charts.

Chapter 23
About the Chart Component

23-3

– Range: Area markers and area coverage are determined by high and low
values.

All variations of area charts can be configured with a single y-axis or dual y-axis.

Figure 23-3 shows example area charts with Cartesian and polar coordinate
systems, as well as a horizontal area chart. It also shows sample split Dual-Y area
and range area charts.

Figure 23-3 Area Chart Example

• Bar: Represents data as a series of vertical bars. Use bar charts to examine
trends over time or to compare items at the same time, such as sales for different
product divisions in several regions.

Bar charts represent these kinds of data values:

– Clustered: Each cluster of bars represents a group of data. For example, if
data is grouped by employee, one cluster might consist of a Salary bar and a
Commission bar for a given employee. This kind of chart includes the following
variations: vertical clustered bar charts and horizontal clustered bar charts.

– Stacked: Bars for each set of data are appended to previous sets of data. The
size of the stack represents a cumulative data total.

– Split Dual-Y: Dual-axis charts are split into two parts. Bars unique to a
particular axis are plotted only on the relevant part. Applies to both absolute
and stacked charts.

– Range: Bars do not originate from the X-axis. The beginning and end of a bar
are determined by high and low values. Useful to create waterfall charts for
financial tracking.

All variations of bar charts can be configured with a single y-axis or dual y-axis.
Bar charts may also be displayed horizontally using an orientation attribute.

Figure 23-4 shows variations of the bar chart type as displayed in the Create Bar
Chart dialog with the Dual-Y Stacked Bar chart selected.

Chapter 23
About the Chart Component

23-4

Figure 23-4 Bar Chart Types

Figure 23-5 shows example bar charts with Cartesian and polar coordinate
systems, as well as a horizontal bar chart. It also shows sample split Dual-Y bar
and range bar charts.

Figure 23-5 Bar Chart Example

• Bubble: Represents data by the location and size of round data markers (bubbles).
Use bubble charts to show correlations among three types of values, especially
when you have a number of data items and you want to see the general
relationships. For example, use a bubble chart to plot salaries (x-axis), years of
experience (y-axis), and productivity (size of bubble) for your work force. Such a
chart allows you to examine productivity relative to salary and experience.

Figure 23-6 shows example bubble chart with Cartesian and polar coordinate
systems.

Chapter 23
About the Chart Component

23-5

Figure 23-6 Bubble Chart Example

• Combination: Chart that uses different types of data markers (bars, lines, or areas)
to display different kinds of data items. Use combination charts to compare bars
and lines, bars and areas, lines and areas, or all three combinations. Combination
charts may also be stacked to represent cumulative totals.

Figure 23-7 shows variations of the combination chart type as displayed in the
Create Combination Chart dialog with the default combination chart selected.
Combination charts can be configured with a single y-axis or dual y-axis, and can
be stacked. Dual y-axis combination charts can be configured with a split axis.

Figure 23-7 Combination Chart Types

Figure 23-8 shows example combination charts with Cartesian and polar
coordinate systems.

Figure 23-8 Combination Chart Example

• Funnel: Visually represents data related to steps in a process. The steps appear
as slices across a vertical or horizontal cone-shaped section. Typically, a funnel
chart requires actual values against a stage value, which might be time. An
optional target value may be specified for comparison. If target values are

Chapter 23
About the Chart Component

23-6

specified, a given step or slice fills as its actual value approaches its quota. For
example, use the funnel chart to watch a process where the different sections of
the funnel represent different stages in the sales cycle.

Figure 23-9 shows example vertical and horizontal funnel charts.

Figure 23-9 Funnel Chart Example

• Line: Represents data as a line, as a series of data points, or as data points that
are connected by a line. Line charts require data for at least two points for each
member in a group. For example, a line chart over months requires at least two
months. Typically a line of a specific color is associated with each group of data
such as the Americas, Europe, and Asia. Use line charts to compare items over
the same time. Line charts can be configured with a single y-axis or dual y-axis.
The dual y-axis may be configured as a Split Dual-Y line chart.

Figure 23-10 shows example line charts with Cartesian and polar coordinate
systems, as well as a horizontal line chart and a sample split dual-y line chart.

Figure 23-10 Line Chart Example

• Pie: Represents a set of data items as proportions of a total. The data items are
displayed as sections of a circle causing the circle to look like a sliced pie. Use pie
charts to show the relationship of parts to a whole such as how much revenue
comes from each product line. A pie chart may also be customized as a donut
chart, which has an empty area in the center of the chart.

Figure 23-11 shows an example pie chart, as well as a ring/donut chart, with a
chart label.

Figure 23-11 Pie Chart Example

Chapter 23
About the Chart Component

23-7

• Scatter: Represents data by the location of data markers. Use scatter charts to
show correlation between two different kinds of data values such as sales and
costs for top products. Use scatter charts in particular to see general relationships
among a number of items.

Figure 23-12 shows example scatter charts with Cartesian and polar coordinate
systems.

Figure 23-12 Scatter Chart Example

• Spark: A simple, condensed chart that displays trends or variations in a single data
value, typically stamped in the column of a table or in line with related text. Spark
charts have basic conditional formatting. Since spark charts contain no labels, the
adjacent columns of a table or surrounding text provide context for spark chart
content

Figure 23-13 shows variations of the spark chart type as displayed in the Create
Spark Chart dialog with the default chart selected.

Figure 23-13 Spark Chart Types

Figure 23-14 shows examples of line, bar, area, and floating bar spark charts.

Figure 23-14 Spark Chart Example

• Stock: Represents information related to trade stocks, specifically the opening,
high, low, and closing prices of stocks. Use stock charts to explore trends in stock
prices, fluctuations and volume of trade. Depending on the type of chart chosen,
each stock marker displays two to four values, not counting the optional volume
marker. When the volume of trading is included, the volume appears as bars in the
lower part of the chart.

Figure 23-15 shows variations of the stock chart type as displayed in the Create
Stock Chart dialog with the Open Close Candle chart selected.

Chapter 23
About the Chart Component

23-8

Figure 23-15 Stock Chart Types

Figure 23-16 shows an example stock chart, with four data items.

Figure 23-16 Stock Chart Example

End User and Presentation Features of Charts
Chart end user and configurable presentation features include a rich variety of options.

Chart Data Labels
Use data labels to display information about the data points. You can customize the
text, position, and style.

Figure 23-17 shows a bubble chart and a scatter chart, each configured to show data
labels. In the bubble chart, the group's value is displayed in the center of the bubble. In
the scatter chart, the label position varies by series. In the first series, the label is
positioned below the series marker, and the second series is set to auto which
displays the label after the marker. The third series label is configured to display the
label before the series marker, and the fourth series label displays the label above the
marker.

Chapter 23
About the Chart Component

23-9

Figure 23-17 Chart Data Labels

Chart Element Labels
You can add descriptive labels to most chart components and subcomponents,
including titles, subtitles, axis labels, footnotes, and legends.

Figure 23-18 shows a bar chart configured to show a title and subtitle. The chart is
also configured to show titles for the x-axis, y-axis, legend, and footnote.

Figure 23-18 Bar Chart Configured with Labels for Chart, X-Axis, Y-Axis, and
Legend

Chart Sizing
Charts use client-side layout management for controlling the size of the chart. A chart
can automatically adjust to the size of the chart's container, and the user can resize
the chart by resizing its container. You can also specify the size of a chart using its
inlineStyle or styleClass attributes.

Figure 23-19 shows a portion of a page configured with the af:panelSplitter and
dvt:barChart components. The user can drag the splitter to change the bar chart's
size.

Chapter 23
About the Chart Component

23-10

Figure 23-19 Bar Chart Resized by Dragging a Panel Splitter

When charts are displayed in a horizontally or vertically restricted area, as in a web
page sidebar, the chart is displayed in a fully featured, although simplified display.

Chart Legends
Chart legends identify the chart's series and associated colors. Figure 23-20 shows a
bar chart configured with a legend. In this example, the number of series is greater
than the legend area, and the user can scroll through the legend items to see all series
on the chart.

Figure 23-20 Bar Chart With Scrollable Legend

Chart Styling
Charts support styling of colors, sizes, and text to customize series, markers, lines,
and data items. Figure 23-21 shows an area chart configured with custom colors for
the series items and borders and a scatter chart configured with custom markers.

Chapter 23
About the Chart Component

23-11

Figure 23-21 Charts Showing Styling for Colors and Markers

Chart Series Hiding
You can configure charts to allow the user to click on a legend series item to hide a
series item from view. The resulting chart can be rescaled or rendered without
rescaling.

Figure 23-22 shows a bar chart configured for series show and hide. When the user
clicks a series item in the chart legend, the series no longer renders, and the legend
changes to show which series item is hidden from view. The user can click the series
item again to restore the series view.

Figure 23-22 Bar Chart Configured for Series Show and Hide

Chart Reference Objects
You can add reference lines or areas to a specified location or area on a chart's axis.

Figure 23-23 shows an example of a bar chart configured to show a reference line and
reference area along its y-axis. In this example, the chart is configured to display a
dark blue reference line at 25 on the y-axis. The reference area is configured to
display in blue all values between a minimum of 95 and a maximum of 140.

Chapter 23
About the Chart Component

23-12

Figure 23-23 Bar Chart Configured With Reference Line and Reference Area

Chart Series Effects
By default, charts apply gradients to chart series. You can remove the gradients to
achieve a flatter design or display the series with patterns. Figure 23-24 shows three
area charts configured for series effects.

Figure 23-24 Area Charts Configured for Series Effects

Chart Series Customization
You can customize the appearance of individual series in a chart. Depending upon the
chart type, you can customize colors, markers, lines, and fill effects. For combination
charts, the series is a chart, and you can also specify which chart to display.

Chapter 23
About the Chart Component

23-13

Figure 23-25 shows a bubble, scatter, line, and combination chart configured with
customized series. The charts illustrate how you might customize series colors, lines,
and markers. The combination chart also shows how you might configure the series
type to display an area, bar, and line chart.

Figure 23-25 Chart Series Customization

Chart Data Cursor
You can add a data cursor to a chart that the user can move to display detail about a
data point.

Figure 23-26 shows a line chart configured with a data cursor. In this example, the
user chose to display the detail for the chart's third series in the fourth group.

Chapter 23
About the Chart Component

23-14

Figure 23-26 Line Chart Configured With Data Cursor

Chart Time Axis
Charts support the use of a time axis when the chart's data is based on dates. For
example, you can use a time axis to display daily sales. The time data can cover
regular or irregular time intervals. Time axes also support mixed frequency time data,
where the time stamps vary by series.

Figure 23-27 shows four charts configured with a time axis. The horizontal bar chart's
time axis contains regular monthly data and is configured to show the year and month
with nested labels. The irregular intervals bar chart shows the time axis configured for
irregular yearly intervals. The skipGaps bar chart shows the time axis configured to
remove the empty space for irregular yearly intervals. The combination chart shows a
mixed frequency time axis with time data that varies by series.

Chapter 23
About the Chart Component

23-15

Figure 23-27 Charts Configured With a Time Axis

Chart Categorical Axis
You can configure a chart with a categorical axis, where groups are arranged in a
drillable hierarchical structure. These groups can be enhanced with custom styles
such as labels and tooltips. Figure 23-28 shows a bar chart and an area chart with
categorical axes. The area chart’s axis has stylized data group labels and an uneven
hierarchical distribution.

Chapter 23
About the Chart Component

23-16

Figure 23-28 Hierarchical Data Groups and Labels

Chart Group Labels support custom CSS styling and tooltip support. Figure 23-29
shows a bar chart where the group labels have different font and background colors,
as well as a custom tooltip separate from the series tooltip that appears when hovering
over a bar.

Chapter 23
About the Chart Component

23-17

Figure 23-29 Custom Label Style and Tooltip

Chart Popups and Context Menus
You can configure charts to display popups or context menus using the
af:showPopupBehavior tag.

Figure 23-30 shows a bar chart configured to show a popup when the user clicks the
chart. The popup displays an output message in a note window.

Figure 23-30 Bar Chart Showing a Popup

Chart Selection Support
Charts can be enabled for single or multiple selection of data markers such as bubbles
in a bubble chart or shapes in a scatter chart. Enabling selection is required for popups

Chapter 23
About the Chart Component

23-18

and context menus and for responding programmatically to user clicks on the data
markers.

Figure 23-31 shows a pie chart enabled for multiple selection. Each data marker is
highlighted as the user moves over it to provide a visual clue that the marker is
selectable. The user can press Ctrl while selecting to add or delete slices from the
selection.

Figure 23-31 Pie Chart Enabled for Selection

Pie charts in particular have multiple selection effects to better emphasize the selected
slice.

Figure 23-32 shows pie charts with the selection effects highlight, explode, and
highlight with explode.

Figure 23-32 Pie Chart Selection Effects

Chart Zoom and Scroll
Charts provide the ability to scroll through the data via a view port or simple scrollbar.
This feature can be useful for charts containing large amounts of data.

Figure 23-33 shows a line chart configured for scrolling with a view port. As the user
moves the view port on the master line chart, the detail chart changes to reflect the
selected range.

Chapter 23
About the Chart Component

23-19

Figure 23-33 Line Chart Configured With Viewport for Scrolling

The user can also choose to zoom in on a specific period by clicking the Marquee
Zoom icon that appears when the user hovers over the chart. Figure 23-34 shows a
bubble chart configured for marquee zoom. The user can drag the mouse over an
area, and the chart zooms into the selected area.

Figure 23-34 Bubble Chart Configured for Marquee Zoom

Legend and Marker Dimming
Charts provide the ability to highlight a series when the user hovers over a legend item
or marker. Figure 23-35 shows a bar chart configured with three series. As the user
hovers over each series, the remaining series dim from view.

Chapter 23
About the Chart Component

23-20

Figure 23-35 Chart Configured for Legend and Marker Dimming

Pie Chart Other Slice Support
Pie charts provide the ability to aggregate data if your data model includes a large
number of smaller contributors in relation to the larger contributors.

Figure 23-36 shows a pie chart configured to aggregate all values less than two
percent of the total. In this example, the tooltip shows the total value of the aggregated
slices.

Figure 23-36 Pie Chart Showing Other Slice Support

Chapter 23
About the Chart Component

23-21

Exploding Slices in Pie Charts
When one slice is separated from the other slices in a pie, this display is referred to as
an exploding pie slice. You can explode a slice to make it stand out from the other
slices.

Figure 23-37 shows an example of an exploded pie slice.

Figure 23-37 Pie Chart Configured With Exploding Pie Slice

Active Data Support (ADS)
Charts support ADS by sending a Partial Page Refresh (PPR) request when an active
data event is received. The PPR response updates the components, animating the
changes as needed. Supported ADS events include:

• Update

• Remove

• Insert

• Refresh

The following limitations apply:

• EL Operators are not supported within the EL Expressions for active attributes.

• To insert a chart data item, you must include the series or group in the active data
entry.

• You can't change the series or group of an existing item.

• The dvt:chartSeriesStyle tag is not supported on an inserted data item.

• Attribute groups are not supported.

For additional information about using the Active Data Service, see Using the Active
Data Service with an Asynchronous Backend.

Chapter 23
About the Chart Component

23-22

Chart Animation
Charts support animation upon initial display or data change.

Chart Image Formats
Chart components rely on HTML5 technologies available in modern browsers for
animations and interactivity.

Additional Functionality for Chart Components
You may find it helpful to understand other ADF Faces features before you implement
your chart. Additionally, once you have added a chart to your page, you may find that
you need to add functionality such as validation and accessibility. Following are links
to other functionality that chart components can use:

• Client-side framework: DVT components are rendered on the client when the
browser supports it. You can respond to events on the client using the
af:clientListener tag. For more information, see Listening for Client Events.

• Partial page rendering: You may want a chart to refresh to show new data based
on an action taken on another component on the page. For more information, see
Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the chart displays at
runtime, those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: You can make your chart components accessible. For more
information, see Developing Accessible ADF Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of chart components using
an ADF skin that you apply to the application or by applying CSS style properties
directly using a style-related property (styleClass or inlineStyle). For more
information, see Customizing the Appearance Using Styles and Skins.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound charts based on how your ADF Business
Components are configured. For more information, see "Creating Databound
Charts" in Developing Fusion Web Applications with Oracle Application
Development Framework.

Chapter 23
About the Chart Component

23-23

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), and how data can
be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Using the Chart Component
To use the ADF DVT Chart component, add the selected chart type to a page using
the Component Palette window. Then define the data for the chart and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window. You can easily configure a custom chart with many pre-built attributes..

Chart Component Data Requirements
The chart component use a standard CollectionModel for its data structure. This
class extends the JSF DataModel class and adds on support for row keys and sorting.
In the DataModel class, rows are identified entirely by index. This can cause problems
when the underlying data changes from one request to the next, for example a user
request to delete one row may delete a different row when another user adds a row.
To work around this, the CollectionModel class is based on row keys instead of
indexes. For more information about collection-based components, see Using Tables,
Trees, and Other Collection-Based Components.

Data requirements for charts differ with chart type. Data requirements can be any of
the following kinds:

• Geometric: Some chart types need a certain number of data points in order to
display data. For example, a line chart requires at least two groups of data
because a line requires at least two points.

• Complex: Some chart types require more than one data point for each marker
(which is the component that actually represents the data in a chart). A scatter
chart, for example, needs two values for each group so that it can position the
marker along the x-axis and along the y-axis. If the data that you provide to a chart
does not have enough data points for each group, the chart component does its
best to display a chart.

• Logical: Some chart types cannot accept certain kinds of data. The following
examples apply:

– Negative data: Do not pass negative data to a pie chart or a funnel chart.

– Null or zero data: A bar or marker will not be visible if its value is zero, but an
invisible region will be drawn to provide tooltip information.

Chapter 23
Using the Chart Component

23-24

– Insufficient sets (or series) of data: Dual-Y charts require a set of data for each
y-axis. Usually, each set represents different information. For example, the y-
axis might represent sales for specific countries and time periods, while the
y2-axis might represent total sales for all countries. If you pass only one set of
y-axis data, then the chart cannot display data on two different y-axes. It
displays the data on a single y-axis.

Area, Bar, and Line Chart Data Requirements
Data requirements for area, bar, and line charts include:

• At least two groups of data are required for area and line charts. A group is
represented by a position along the horizontal axis of area, bar, and line charts or
vertical axis if the charts have horizontal orientations. In a chart that shows data
for a three-month period, the groups might be labeled January, February, and
March.

• One or more series of data is required. In a chart that shows data for a three-
month period, the series might be sales and quota.

• Dual-Y charts require two sets of data.

Bar charts support an optional third value to specify bar widths.

Bubble Chart Data Requirements
Bubble charts require at least three data values for a data marker. Each data marker in
a bubble chart represents three group values:

• The x value that determines the marker's location along the x-axis.

• The y value that determines the marker's location along the y-axis.

• The z value that determines the size of the marker.

For more than one group of data, bubble charts require that data be in multiples of
three. For example, in a specific bubble chart, you might need three values for Paris,
three for Tokyo, and so on. An example of these three values might be: x value is
average life expectancy, y value is average income, and z value is population.

Note:

When you look at a bubble chart, you can identify groups of data by
examining tooltips on the markers. However, identifying groups is not as
important as looking at the overall pattern of the data markers.

Combination Chart Data Requirements
Combination charts require one set of data for each chart included in the combination
chart. Each chart in the combination chart must meet the data requirements for the
area, bar, or line chart components on which it is based. For a list of the data
requirements for area, bar, or line chart components, see Area, Bar, and Line Chart
Data Requirements.

Chapter 23
Using the Chart Component

23-25

Funnel Chart Data Requirements
Data requirements for a funnel chart are:

• One set of values is required to represent the actual data items or slices in a
funnel chart. In a chart that shows where customers get stuck in a process, the
actual value would be the actual number of customers experiencing difficulty within
a given time period.

• One stage value is required to represent the different slices. In a chart that shows
where customers get stuck in a process, the stage value is the different steps in
the process.

• One optional set of values may be provided to represent the target data items for
each slice. In a chart that shows where customers get stuck in a process, the
target value would be the maximum number of customers tolerable before the
process needs to be updated.

Pie Chart Data Requirements
One collection of data with one or more sets of data items is required for a pie chart.
The data structure is as follows:

• A series or set of data is represented by the pie slice. You see legend text for each
set of this data. For example, if there is a separate set of data for each country,
then the name of each country appears in the legend text.

• Data values cannot be negative.

Scatter Chart Data Requirements
Scatter charts require at least two data values for each marker. Each data marker
represents the following:

• The x value that determines the marker's location along the x-axis.

• The y value that determines the marker's location along the y-axis.

For more than one group of data, the data must be in multiples of two.

Spark Chart Data Requirements
Line, bar, and area spark charts require a single series of data values.

Floating bar spark charts require two series of data values, one for the float offset, and
one for the bar value.

Stock Chart Data Requirements
Stock charts require values to represent four attributes for each data marker. Data
requirements for a stock chart are:

• Two set of values are required to represent the opening and closing values of
stocks.

• For high-low stock charts, two additional sets of values are required to represent
the high and low values of stocks for a given time period.

Chapter 23
Using the Chart Component

23-26

• If the type of chart includes volume, one set of data is required to represent the
volume of trade for each stock for a given time period.

Configuring Charts
Because of the many chart types and the significant flexibility of the chart components,
charts have a large number of DVT tags. The prefix dvt: occurs at the beginning of
each chart tag name indicating that the tag belongs to the ADF Data Visualization
Tools (DVT) tag library. The following list identifies groups of tags related to the chart
component:

• Chart component tags: The nine chart component tags provide a convenient and
quick way to create a chart type. They are represented in the Components window
as categories of charts with one or more type variations.

Table 23-1 provides a description of the chart component tags and their variations.

Table 23-1 Chart Component Tags

Chart Tag Description Variations

areaChart Represents data as a filled
in area.

dual y-axis

stacked

range

barChart Represents data as a
series of vertical bars.

dual y-axis

stacked

range

bubbleChart Represents data by the
location and size of the
round (bubble) data
marker.

comboChart Represents data as a
combination of area, bar,
or line markers.

dual y-axis

stacked

funnelChart Represents data as a
stepped cone.

lineChart Represents data as a
series of lines.

dual y-axis

stacked

pieChart Displays values that are
parts of a whole, where
each value is shown as a
sector of a circle.

donut

scatterChart Represents data by the
location of data markers on
a two-dimensional plane.

sparkChart Simple, condensed chart
that displays trends or
variations in a single data
value, typically stamped in
the column of a table or in
line with related text.

area

bar

floating bar

line

Chapter 23
Using the Chart Component

23-27

Table 23-1 (Cont.) Chart Component Tags

Chart Tag Description Variations

stockChart Displays stock information
and volume of trade for a
given time period.

Open-Close

Open-Close with Volume

Open-High-Low-Close

Open-High-Low-Close with
Volume

• Chart child component tags: These child tags are supported by most chart
components to provide a variety of customization options.

Table 23-2 provides a list and description of these child tags.

Table 23-2 Common Chart Child Tags

Child Tag Description

chartDataItem Defines properties for the data item of an area, bar, bubble,
combination, line, or scatter chart.

chartGroup Defines properties for the group of an area, bar, bubble,
combination, line, or scatter chart.

chartLegend Defines properties for the chart legend.

chartSeriesStyle Defines properties for the series of an area, bar, bubble,
combination, line, or scatter chart.

chartValueFormat Defines formatting properties for the values of a chart.

chartXAxis Defines properties for the x-axis of a chart.

chartYAxis Defines properties for the y-axis of a chart.

chartY2Axis Defines properties for the y2-axis of a chart.

chartAxisLine

chartTickLabel

majorTick

minorTick

referenceArea

referenceLine

Child tags of the chartXAxis, chartYAxis, and
chartY2Axis components. Provides additional
customization for the chart axes.

pieDataItem Defines properties for the data item of a pie chart.

funnelDataItem Defines properties for the data item of a funnel chart.

stockDataItem Defines properties for the data item of a funnel chart.

• Chart attributes: Properties of chart components. Attributes may be applicable to
all charts or specific to a chart type.

Table 23-3 provides a list and description of commonly used attributes.

Table 23-3 Common Chart Attributes

Child Tag Description

animationIndicators Specifies the type of data change animation indicator.

Chapter 23
Using the Chart Component

23-28

Table 23-3 (Cont.) Common Chart Attributes

Child Tag Description

barGapRatio Specifies the amount of space between bars in a bar chart
and the thickness of the bars, expressed as a ratio or
percentage.

centerLabel

centerLabelStyle

Specifies an inner string and its font for a ring chart (pie
chart).

coordinateSystem Specifies if the chart uses Cartesian or Polar coordinates.

dataCursor Specifies whether or not the data cursor is enabled.

dataLabelPosition Specifies the position of the data labels. Options depend on
the chart type.

dataSelection Specifies the selection mode for the chart.

drilling Specifies whether this group can be drilled. Valid values are
'off' (default) and 'on'. When set to 'on', the existing drillEvent
will be fired when the user clicks/taps on a the group label.

footnote

footnoteHAlign

Defines the footnote and its horizontal alignment.

hideAndShowBehavior Specifies the hide and show behavior when clicking on
legend items.

high Specifies the upper limit of range data for range area and
range bar charts.

hoverBehavior Specifies whether or not to dim other markers when the user
hovers over a marker.

initialZoom Specifies whether or not to initially zoom into the first or last
portion of a chart.

innerRadius Specifies a ratio or percentage of an inner circle in a pie chart
to be hidden, turning it into a ring chart.

labelPosition Specifies the position of data labels. Options depend on the
chart type.

low Specifies the lower limit of range data for range area and
range bar charts.

maximumBarWidth Specifies the maximum width of bars in a bar chart,
expressed in pixels.

orientation Specifies whether the chart is displayed vertically or
horizontally.

otherColor

otherThreshold

Defines the color and percentage for the Other slice in a pie
chart.

polarGridShape Specifies if the shape of the polar grid is circle or polygon.

selectionEffect Specifies the selection effect when a pie slice is selected in a
pie chart.

seriesEffect Defines the fill properties for data items.

sliceGaps Specifies the amount of gap in between pie slices in a pie
chart and in between funnel segments in a funnel chart.
Accepted values lie between 0 and 1.

sliceLabelPosition Specifies the position of the pie chart's data labels.

Chapter 23
Using the Chart Component

23-29

Table 23-3 (Cont.) Common Chart Attributes

Child Tag Description

sorting Specifies if pie chart and bar chart data items should be
sorted. On bar charts, accepted values are ascending,
descending and off.

splitDualY Specifies whether to split information that is provided using
the y2-axis. When this attribute is set to 'on' the chart will
render the two data sets separately in stacked plot areas that
share the same x-axis.

splitterPosition Specifies a value that will correspond to how much of the
available plot area the y-axis will occupy. This attribute
applies only when the splitDualY attribute is set to 'on'.
Valid values range from 0 to 1. The default value is .5.

stack Specifies whether or not the data should be stacked.

subtitle Specifies the subtitle for the chart.

timeAxisType Defines a time axis type for the chart.

symbolWidth

symbolHeight

Specifies the common size attributes for all symbols in a chart
legend.

title

titleHAlign

Defines the title and its horizontal alignment.

var EL variable that iterates through each element in the
collection.

zoomAndScroll Specifies the chart's zoom and scroll behavior.

• Chart facets: All charts with the exception of spark charts, stock charts, funnel
charts, and pie charts support facets, which are named sections within a
component.

Table 23-4 provides a list and description of supported chart facets.

Table 23-4 Chart Facets

Child Tag Description

dataStamp Wraps the data item component or components to stamp for
each row of the model. To stamp multiple data items, wrap
them in the af:group tag.

groupStamp Specifies the group component to stamp for each column of
the model. The properties of the stamp will be processed
once for each unique group. To declaratively define multiple
groups, wrap them in the af:group tag.

overview Specifies the rendering of the optional overview window.

seriesStamp Specifies the series style component to stamp for each row of
the model. The properties of the stamp will be processed
once for each unique series. To declaratively define multiple
series, wrap them in the af:group tag.

• Spark chart tags: Properties of the spark chart component. Spark charts contain a
minimal set of formatting attributes.

Chapter 23
Using the Chart Component

23-30

Table 23-5 provides a list and description of commonly used spark chart tags.

Table 23-5 Common Spark Chart Attributes

Child Tag Description

axisScaledFromBaselin
e

Specifies whether or not the axis is scaled to include the
baseline value of zero.

borderColor Specifies the border color of the data item.

color Specifies the color of the bars, line, or area in the spark chart.

lineWidth

lineStyle

lineType

Specifies line width in pixels, whether the line is solid, dashed
or dotted, and the type of line connector, such as straight,
curved, stepped or segmented.

firstMarkerColor

highMarkerColor

lastMarkerColor

lowMarkerColor

markers

Specifies the colors for the first, last, high, and low markers
and whether or not the markers are displayed.

markerShape

markerSize

Specifies the shape of the marker, such as square, circle,
diamond, plus, triangleUp, and triangleDown. Also
specifies the size of the marker in pixels.

sparkItem Specifies the data value for the spark chart

subType Specifies whether the spark chart is displayed as an area,
bar, floating bar, or line.

dataSelection Specifies the selection mode for the chart.

threshold

thresholdSet

Defines thresholds for the spark chart.

tooltip Specifies text to display when the user hovers over the spark
chart.

timeAxisType Defines a time axis type for the chart.

For complete descriptions of all the tags, their attributes, and a list of valid values,
consult the DVT tag documentation. To access this documentation for a specific chart
tag in JDeveloper, select the tag in the Structure window and press F1 or click
Component Help in the Properties window.

DVT charts also share many of the same attributes as other ADF Faces and DVT
components. For additional information, see Additional Functionality for Chart
Components.

How to Add a Chart to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a chart to a JSF page. When you drag and drop a chart
component onto the page, a Create Chart dialog displays available categories of chart
types, with descriptions, to provide visual assistance when creating charts. You can
also specify a quick start layout of the chart's legend.

Chapter 23
Using the Chart Component

23-31

Figure 23-38 shows the Create Bar Chart dialog for bar charts with the default bar
chart type and quick start layout selected.

Figure 23-38 Create Bar Chart Dialog

Once you complete the dialog, and the chart is added to your page, you can use the
Properties window to specify data values and configure additional display attributes for
the chart.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 23-39 shows the
dropdown menu for a bar chart component value attribute.

Chapter 23
Using the Chart Component

23-32

Figure 23-39 Bar Chart Value Attribute

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a chart and the binding will be done for you. For more
information, see "Creating Databound Charts" in Developing Fusion Web
Applications with Oracle Application Development Framework

Before you begin:

It may be helpful to have an understanding of how chart attributes and chart child tags
can affect functionality. For more information, see Configuring Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a chart to a page:

1. In the ADF Data Visualizations page of the Components window, from the Charts
panel, drag and drop the desired chart category onto the page to open the Create
Chart dialog.

2. Use the dialog to select the chart type and the quick start layout for display of chart
title, legend, and labels. For help with the dialog, press F1 or click Help.

3. Click OK to add the chart to the page.

4. In the Properties window, view the attributes for the chart. Use the Component
Help button to display the complete tag documentation for the chart.

Chapter 23
Using the Chart Component

23-33

What Happens When You Add a Chart to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a chart from
the Components window onto a JSF page.

The example below shows the code inserted in the JSF page for a bar chart with the
quick start layout selected in Figure 23-38.

<dvt:barChart id="chart1">
 <dvt:chartLegend id="leg1" rendered="true"/>
</dvt:barChart>

After inserting a chart component into the page, you can use the visual editor or
Properties window to add data or customize chart features. For information about
setting component attributes, see How to Set Component Attributes.

Adding Data to Charts
You can configure ADF DVT chart components to render data by specifying the
required data model or method in the chart’s value attribute and then configuring an
appropriate data item child component to interpret the data values.

The process to add data to charts depends upon the chart's type. In most cases, you
specify the data model in the chart's value attribute and configure the chart's data
items in the chartDataItem child component. For pie, funnel, and stock charts, you
specify the value in the pieDataItem, funnelDataItem, or stockDataItem child
component respectively. For spark charts, you specify the spark chart's value in the
sparkItem child component.

You can specify the chart's value and chart data items in a managed bean that returns
the chart's data or by binding a data control to the chart.

How to Add Data to Area, Bar, Combination, and Line Charts
To add data to area, bar, combination, and line charts, specify the data model in the
chart's value attribute and configure a chartDataItem for each unique group. For
details about data requirements, see Chart Component Data Requirements.

The code below shows an example of a managed bean that defines the data for a line
chart that shows weekly portfolio values for four investors. In this example, the
ChartDataSource class defines the chart's CollectionModel in the
getWeeklyStockData() method which calls the getPortfolioData() method to define
the chart's data items.

package view;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.HashMap;
import java.util.Random;

import java.util.List;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.ModelUtils;

Chapter 23
Adding Data to Charts

23-34

public class ChartDataSource {
/**
* Object representing the data for a single row of the model.
*/
 public static class ChartDataItem extends HashMap<String, Object> {
 @SuppressWarnings("compatibility")
 private static final long serialVersionUID = 1L;

 public ChartDataItem(String series, Object group, Number value) {
 put("series", series);
 put("group", group);
 put("value", value);
 }

 public ChartDataItem(String series, Object group, Object x, Number y) {
 put("series", series);
 put("group", group);
 put("x", x);
 put("y", y);
 }

 public ChartDataItem(String series, Object group, Number x, Number y, Number z) {
 put("series", series);
 put("group", group);
 put("x", x);
 put("y", y);
 put("z", z);
 }
}
 public CollectionModel getWeeklyStockData() {
 return getPortfolioData(4, 157, 2013, 6, 1, Calendar.DATE, 7);
 }

 private Random random = new Random(23);

 private double getNextValue(double curValue, double std) {
 if (curValue == 0)
 return 0;
 else
 return Math.max(curValue + random.nextGaussian() * std, 0);
 }

 public CollectionModel getPortfolioData(int numSeries, int numGroups,
 int startYear, int startMonth,
 int startDate, int dateField,
 int addCount)
 {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 GregorianCalendar cal;
 double curValue;
 for(int series=0; series<numSeries; series++) {
 cal = new GregorianCalendar(startYear, startMonth, startDate);
 curValue = 100;
 for(int group=0; group<numGroups; group++) {
 dataItems.add(new ChartDataItem("Investor " + (series+1),
cal.getTime(),
 curValue));
 cal.add(dateField, addCount);
 curValue = getNextValue(curValue, 10);

Chapter 23
Adding Data to Charts

23-35

 }
 }
 return ModelUtils.toCollectionModel(dataItems);
 }
}

The example below shows the code on the JSF page that defines the line chart and
references the ChartDataSource class. In this example, the managed bean is named
chartDataSource.

<dvt:lineChart id="chart1" value="#{chartDataSource.weeklyStockData}"
 timeAxisType="enabled" var="row">
 <dvt:chartLegend id="leg1" rendered="true" position="top"/>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="cdi1" series="#{row.series}" group="#{row.group}"
 value="#{row.value}"/>
 </f:facet>
</dvt:lineChart>

Figure 23-40 shows the line chart that is displayed if you configure the line chart using
the ChartDataSource class.

Figure 23-40 Line Chart Showing Portfolio Data for Four Investors

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add an area, bar, combination, or line chart to your page. For help with adding a chart
to a page, see How to Add a Chart to a Page.

To add data to an area, bar, combination, or line chart:

1. Optionally, create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

Chapter 23
Adding Data to Charts

23-36

2. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

3. In the Properties window, expand the Data section, and enter a value for the Var
field.

The var property is the name of an EL variable that references each element in
the data collection. In the second code example above, the var attribute is defined
as row. The relevant code is shown below.

<dvt:lineChart id="chart1" value="#{chartDataSource.weeklyStockData}"
 timeAxisType="enabled" var="row">

4. In the Properties window, do one of the following:

• To reference a managed bean that returns the chart's data model, expand the
Common section and specify the EL expression that references the data
model in the Value field.

You can enter a static numeric value or specify an EL expression that
references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named
chartDataSource that includes the class referenced in the first code sample
above, enter the following in the Value field:
#{chartDataSource.weeklyStockData}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the chart to a data control, click Bind to ADF Control to select a data
collection.

For more information about using data controls to supply data to your chart,
see "Creating Databound Charts" in Developing Fusion Web Applications with
Oracle Application Development Framework.

5. If you specified a managed bean for the chart's data model, do the following to add
a chartDataItem to the chart:

a. In the Structure window, right-click dvt:typeChart and choose Insert Inside
Chart > Facet dataStamp.

b. To add multiple chart data items, right-click f:facet - dataStamp and choose
Insert Inside Facet data Stamp > Group.

c. Right-click f:facet - dataStamp or af:group and choose Insert Inside (Facet
data Stamp or Group) > Chart Data Item.

d. To add additional data items, right-click af:group and choose Insert Inside
Group > Chart Data Item for each additional data item.

e. Right-click dvt:chartDataItem and choose Go to Properties.

f. In the Properties window, in the Common section, enter a value for the Value
field. If creating a range area or range bar chart, enter values for the High and
Low fields instead.

For example, to reference the value defined in the chartDataSource managed
bean, enter the following in the Value field: #{row.value}.

In this example, row is the variable that you defined in the previous step, and
value is defined in the chartDataSource bean's getPortfolioData() method
shown in the first code sample above.

g. Expand the Data section, and enter a value in the Group field.

Chapter 23
Adding Data to Charts

23-37

To use the same chartDataSource managed bean, enter the following in the
Group field: #{row.group}.

h. Enter a value in the Series field.

To use the same chartDataSource managed bean, enter the following in the
Series field: #{row.series}.

i. To customize the tooltip that is displayed when the user moves the focus to a
data point, enter a value in the shortDesc field.

j. Configure any additional properties as needed to customize the data item.

For example, you can add a label or configure a series marker. For additional
information, see Customizing Chart Display Elements.

If your chart includes time data on the x-axis, you can enable a time axis. For
additional information, see How to Configure a Time Axis.

If your bar chart has discrete data points of varying weight or importance, you
can enter a value in the Z field in the Data section. This value will be used to
change the width of the bars.

If your area or bar chart has range data, you can enter values in the High and
Low fields instead of Value. These values will be used to represent the upper
and lower limits of each data point.

k. To configure additional chart data items, repeat Step f through Step i for each
additional data item.

How to Add Data to Pie Charts
To add data to a pie chart, specify the data model in the pie chart's value attribute
and configure a pieDataItem for each unique series. For information about pie chart
data requirements, see Pie Chart Data Requirements.

The process to add data to pie charts is similar to the process for adding data to area,
bar, bubble, combination, line, and scatter charts. The primary difference is that you
add a pieDataItem instead of a chartDataItem to the chart.

The code below shows a simple example for configuring a pie chart from a managed
bean. In this example, the getDefaultPieData() method is added to the
chartDataSource bean referenced in the first code sample in How to Add Data to
Area, Bar, Combination, and Line Charts.

public CollectionModel getDefaultPieData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 dataItems.add(new ChartDataItem("Series 1", "Group A", 42));
 dataItems.add(new ChartDataItem("Series 2", "Group A", 55));
 dataItems.add(new ChartDataItem("Series 3", "Group A", 36));
 dataItems.add(new ChartDataItem("Series 4", "Group A", 22));
 dataItems.add(new ChartDataItem("Series 5", "Group A", 22));
 return ModelUtils.toCollectionModel(dataItems);
}

The example below shows the code on the JSF page that defines a pie chart and
references the ChartDataSource class. In this example, the managed bean is named
chartDataSource.

<dvt:pieChart id="chart1" value="#{chartDataSource.defaultPieData}" var="row">
 <dvt:chartLegend id="leg1" rendered="true"/>

Chapter 23
Adding Data to Charts

23-38

 <dvt:pieDataItem label="#{row.series}" value="#{row.value}" id="pdi1"/>
 </dvt:pieChart>

Figure 23-41 shows the pie chart at run time. In this example, the pie chart is rendered
with a legend, and the data labels show the percentage of each slice as a portion of
the total.

Figure 23-41 Pie Chart Configured From Managed Bean

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a pie chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To add data to a pie chart:

1. Optionally, create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. In the Structure window, right-click dvt:pieChart and choose Go To Properties.

3. In the Properties window, do one of the following:

• To reference a managed bean that returns the chart's data model, expand the
Common section and specify the EL expression that references the data
model in the Value field.

You can enter a static numeric value or specify an EL expression that
references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named
chartDataSource that includes the method to supply data to a pie chart, as
shown in the first code sample in How to Add Data to Area, Bar, Combination,

Chapter 23
Adding Data to Charts

23-39

and Line Charts, enter the following in the Value field:
#{chartDataSource.defaultPieData}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the chart to a data control, click Bind to ADF Control to select a data
collection.

For more information about using data controls to supply data to your chart,
see "Creating Databound Charts" in Developing Fusion Web Applications with
Oracle Application Development Framework.

4. If you specified a managed bean for the chart's data model, do the following to add
a pieDataItem to the pie chart:

a. Right-click dvt:pieChart and choose Insert Inside Pie > Pie Data Item.

b. In the Insert Pie Data Item dialog, enter a label and value for the data item.

For example, to use the chartDataSource managed bean, enter the following
for the label and value, respectively:

#{row.series}
#{row.value}

c. In the Structure window, right-click dvt:pieChart and choose Go to
Properties.

d. In the Properties window, expand the Data section, and enter a value for the
Var field.

The var property is the name of an EL variable that references each element
in the data collection. In the second code sample in How to Add Data to Area,
Bar, Combination, and Line Charts, the var attribute is defined as row. The
relevant code is shown below.

<dvt:lineChart id="chart1" value="#{chartDataSource.weeklyStockData}"
 timeAxisType="enabled" var="row">

e. To customize the tooltip that is displayed when the user moves the focus to a
data point, enter a value in the shortDesc field.

f. To convert the pie chart into a ring chart, enter a value in the following fields:

• InnerRadius: Enter a value between 0 and 1 to determine the size of the
ring hole.

• CenterLabel: Enter a string to add a chart label in the center of the ring.

• CenterLabelStyle: Enter values to style and format the center label.

• SliceGaps: Enter a value between 0 and 1 to determine the size of gaps
between individual pie slices.

g. Configure any additional properties as needed to customize the data item.

For example, you can customize the label or explode the pie slice. For
additional information, see Customizing Chart Display Elements.

h. To add additional pie data items, repeat Step a through Step e for each
additional data item.

Chapter 23
Adding Data to Charts

23-40

How to Add Data to Bubble or Scatter Charts
To add data to a bubble or scatter chart, specify the data model in the chart's value
attribute and configure a chartDataItem for each unique group. For details about data
requirements, see Chart Component Data Requirements.

The process to add data to bubble or scatter charts is similar to the process for adding
data to area, bar, bubble, combination, line, and scatter charts. The primary difference
is that you must also specify values for the x-axis and y-axis. For bubble charts, you
must also specify values for the z-axis, which represents the size of the bubbles.

The example below shows a simple example for configuring a bubble chart from a
managed bean. In this example, the getDefaultBubbleData() method is added to the
chartDataSource bean referenced in the first code sample in How to Add Data to
Area, Bar, Combination, and Line Charts.

public CollectionModel getDefaultBubbleData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 // Each data item below defines a series, group, x, y, and z value
 dataItems.add(new ChartDataItem("Series 1", "Group A", 15, 25, 5));
 dataItems.add(new ChartDataItem("Series 1", "Group B", 25, 30, 12));
 dataItems.add(new ChartDataItem("Series 1", "Group C", 25, 45, 12));

 dataItems.add(new ChartDataItem("Series 2", "Group A", 15, 15, 8));
 dataItems.add(new ChartDataItem("Series 2", "Group B", 20, 35, 14));
 dataItems.add(new ChartDataItem("Series 2", "Group C", 40, 55, 35));

 dataItems.add(new ChartDataItem("Series 3", "Group A", 10, 10, 8));
 dataItems.add(new ChartDataItem("Series 3", "Group B", 18, 55, 10));
 dataItems.add(new ChartDataItem("Series 3", "Group C", 40, 50, 18));

 dataItems.add(new ChartDataItem("Series 4", "Group A", 8, 20, 6));
 dataItems.add(new ChartDataItem("Series 4", "Group B", 11, 30, 8));
 dataItems.add(new ChartDataItem("Series 4", "Group C", 30, 40, 15));
 return ModelUtils.toCollectionModel(dataItems);
}

For scatter charts, only the x-axis and y-axis positions are required. The example
below shows a simple example for configuring a scatter chart from a managed bean.
In this example, the getDefaultScatterData() method is added to the
chartDataSource bean referenced in the first code sample shown in How to Add Data
to Area, Bar, Combination, and Line Charts

public CollectionModel getDefaultScatterData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 dataItems.add(new ChartDataItem("Series 1", "Group A", 15, 15));
 dataItems.add(new ChartDataItem("Series 1", "Group B", 25, 43));
 dataItems.add(new ChartDataItem("Series 1", "Group C", 25, 25));

 dataItems.add(new ChartDataItem("Series 2", "Group A", 25, 15));
 dataItems.add(new ChartDataItem("Series 2", "Group B", 55, 45));
 dataItems.add(new ChartDataItem("Series 2", "Group C", 57, 47));

 dataItems.add(new ChartDataItem("Series 3", "Group A", 17, 36));
 dataItems.add(new ChartDataItem("Series 3", "Group B", 32, 52));
 dataItems.add(new ChartDataItem("Series 3", "Group C", 26, 28));

 dataItems.add(new ChartDataItem("Series 4", "Group A", 38, 22));

Chapter 23
Adding Data to Charts

23-41

 dataItems.add(new ChartDataItem("Series 4", "Group B", 43, 43));
 dataItems.add(new ChartDataItem("Series 4", "Group C", 58, 36));
 return ModelUtils.toCollectionModel(dataItems);
}

Figure 23-42 shows the bubble chart and scatter chart displayed at runtime. The
tooltips show the data from the first ChartDataItem defined in the code samples to
supply data to bubble and scatter charts, as shown in How to Add Data to Bubble or
Scatter Charts.

Figure 23-42 Bubble and Scatter Charts Configured From Managed Bean

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a bubble or scatter chart to your page. For help with adding a chart to a page, see
How to Add a Chart to a Page.

To add data to a bubble chart:

1. Optionally, create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

3. In the Properties window, expand the Data section, and enter a value for the Var
field.

The var property is the name of an EL variable that references each element in
the data collection. For the bubble and scatter charts shown in Figure 23-42, the
var attribute is defined as row.

4. In the Properties window, do one of the following:

• To reference a managed bean that returns the chart's data model, expand the
Common section and specify the EL expression that references the data
model in the Value field.

Chapter 23
Adding Data to Charts

23-42

You can enter a static numeric value or specify an EL expression that
references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named
chartDataSource that includes the method referenced in the first code sample
in How to Add Data to Bubble or Scatter Charts, enter the following in the
Value field: #{chartDataSource.defaultBubbleData}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the chart to a data control, click Bind to ADF Control to select a data
collection.

For more information about using data controls to supply data to your chart,
see "Creating Databound Charts" in Developing Fusion Web Applications with
Oracle Application Development Framework.

5. If you specified a managed bean for the chart's data model, do the following to add
a chartDataItem to the chart:

a. In the Structure window, right-click dvt:typeChart and choose Insert Inside
Chart > Facet dataStamp.

b. To add multiple chart data items, right-click f:facet - dataStamp and choose
Insert Inside Facet data Stamp > Group.

c. Right-click f:facet - dataStamp or af:group and choose Insert Inside (Facet
data Stamp or Group) > Chart Data Item.

d. To add additional data items, right-click af:group and choose Insert Inside
Group > Chart Data Item for each additional data item.

e. Right-click dvt:chartDataItem and choose Go to Properties.

f. Expand the Data section, and enter a value in the X field.

To use the managed beans shown in the code samples to supply data to
bubble and scatter charts, as shown in How to Add Data to Bubble or Scatter
Charts, enter the following in the X field: #{row.x}.

g. Enter a value in the Y field.

For example, enter the following in the Y field: #{row.y}.

h. For bubble charts, enter a value in the Z field.

For example, enter the following in the Z field: #{row.z}.

i. Enter a value in the Group field.

For example, enter the following in the Group field: #{row.group}.

j. Enter a value in the Series field.

For example, enter the following in the Series field: #{row.series}.

k. To customize the tooltip that is displayed when the user moves the focus to a
data point, enter a value in the shortDesc field.

l. Configure any additional properties as needed to customize the data item.

For example, you can add a label or configure a series marker. For additional
information, see Customizing Chart Display Elements.

m. To configure additional chart data items, repeat Step 5 through Step 12 for
each additional data item.

Chapter 23
Adding Data to Charts

23-43

How to Add Data to Funnel Charts
To add data to a funnel chart, specify the data model in the chart's value attribute and
configure a funnelDataItem for each unique group. For details about data
requirements, see Chart Component Data Requirements.

The process to add data to funnel charts is similar to the process for adding data to
area, bar, horizontal bar, bubble, combination, line, and scatter charts. The primary
difference is that you add a funnelDataItem instead of a chartDataItem to the chart.

The example below shows a simple example for configuring a funnel chart from a
managed bean. In this example, the getDefaultFunnelData() method and the
overloaded ChartDataItem constructor are added to the chartDataSource bean
referenced in the first code sample in How to Add Data to Area, Bar, Combination, and
Line Charts.

public ChartDataItem(String series, Number value, Number targetValue) {
 put("series", series);
 put("value", value);
 put("targetValue", targetValue);
 }

public CollectionModel getDefaultFunnelData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 dataItems.add(new ChartDataItem("Series 1", 46, 60));
 dataItems.add(new ChartDataItem("Series 2", 34, 50));
 dataItems.add(new ChartDataItem("Series 3", 30, 30));
 dataItems.add(new ChartDataItem("Series 4", 11, 25));
 return ModelUtils.toCollectionModel(dataItems);
}

The example below shows the code on the JSF page that defines a funnel chart and
references the ChartDataSource class. In this example, the managed bean is named
chartDataSource.

<dvt:funnelChart id="chart1" value="#{chartDataSource.defaultFunnelData}"
var="row">
 <dvt:funnelDataItem label="#{row.series}" value="#{row.value1}"
targetValue="#{row.targetValue1}" id="pdi1"/>
</dvt:funnelChart>

Figure 23-43 shows the funnel chart at run time. The target values specified are
optional, and allow the generation of an incomplete funnel as seen below.

Chapter 23
Adding Data to Charts

23-44

Figure 23-43 Funnel Chart Configured From Managed Bean

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

Add a funnel chart to your page. For help with adding a chart to a page, see How to
Add a Chart to a Page.

To add data to a funnel chart:

1. Optionally, create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. In the Structure window, right-click dvt:funnelChart and choose Go To
Properties.

3. In the Property Inspector, do one of the following:

• To reference a managed bean that returns the chart's data model, expand the
Common section and specify the EL expression that references the data
model in the Value field.

You can enter a static numeric value or specify an EL expression that
references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named
chartDataSource that includes the method shown in the first code sample
above, enter the following in the Value field:
#{chartDataSource.defaultFunnelData}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the chart to a data control, click Bind to ADF Control to select a data
collection.

Chapter 23
Adding Data to Charts

23-45

For more information about using data controls to supply data to your chart,
see "Creating Databound Charts" in Developing Fusion Web Applications with
Oracle Application Development Framework.

4. If you specified a managed bean for the chart's data model, do the following to add
a funnelDataItem to the funnel chart:

a. Right-click dvt:funnelChart and choose Insert inside dvt:funnelChart >
Funnel Data Item.

b. In the Insert Funnel Data Item dialog, enter a label and value for the data item.

For example, to use the chartDataSource managed bean, enter the following
for the label and value, respectively:

#{row.series}
#{row.value}

c. In the Structure window, right-click dvt:funnelChart and choose Go to
Properties.

d. In the Property Inspector, expand the Data section, and enter a value for the
Var field.

The var property is the name of an EL variable that references each element
in the data collection. In the second code sample in How to Add Data to Area,
Bar, Combination, and Line Charts, the var attribute is defined as row.

e. To customize the tooltip that is displayed when the user moves the focus to a
data point, enter a value in the shortDesc field.

f. Configure any additional properties as needed to customize the data item.

For example, you can customize the label. For additional information, see
Customizing Chart Display Elements.

g. To add additional funnel data items, repeat Step 1 through Step 6 for each
additional data item.

How to Add Data to Stock Charts

To add data to a stock chart, specify the data model in the chart's value attribute and
configure a stockDataItem for each unique group. For details about data
requirements, see Chart Component Data Requirements.

The process to add data to funnel charts is similar to the process for adding data to
area, bar, horizontal bar, bubble, combination, line, and scatter charts. The primary
difference is that you add a stockDataItem instead of a chartDataItem to the chart.

The example below shows a simple example for configuring a stock chart from a
managed bean. In this example, the getDefaultStockData() method and the
overloaded chartDataItem constructor are added to the chartDataSource bean
referenced in the first code sample in How to Add Data to Area, Bar, Combination, and
Line Charts.

public ChartDataItem(Object group, Number open, Number close, Number high,
Number low, Number volume) {
 put("series", "STOCK");
 put("group", group);

Chapter 23
Adding Data to Charts

23-46

 put("open", open);
 put("close", close);
 put("high", high);
 put("low", low);
 put("volume", volume);
 }

public CollectionModel getDefaultStockData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();

 dataItems.add(new ChartDataItem("Apr 2011",
20.00,22.00,23.00,19.00,2000000));
 dataItems.add(new ChartDataItem("Jun 2011",
22.00,24.00,24.00,19.00,4000000));
 dataItems.add(new ChartDataItem("Jul 2011",
24.00,22.00,24.00,19.00,1000000));
 dataItems.add(new ChartDataItem("Aug 2011",
22.00,26.00,28.00,19.00,3000000));
 dataItems.add(new ChartDataItem("Sep 2011",
18.00,22.00,24.00,16.00,8000000));
 dataItems.add(new ChartDataItem("Oct 2011",
20.00,22.00,22.00,19.00,9000000));
 dataItems.add(new ChartDataItem("Dec 2011",
23.00,28.00,29.00,23.00,5000000));

 return ModelUtils.toCollectionModel(dataItems);
}

The example below shows the code on the JSF page that defines a stock chart and
references the ChartDataSource class. In this example, the managed bean is named
chartDataSource.

<dvt:stockChart value="#{chartDataSource.defaultStockData}" var="row">
 <dvt:stockDataItem series="#{row.series}" group="#{row.group}" volume
="#{row.volume}" high="#{row.high}"
 low = "#{row.low}" close="#{row.close}"
open="#{row.open}"/>
</dvt:stockChart>

The figure shows the stock chart at run time. In this example, the stock chart has a
volume section, and the values are reflected in the y-axis.

Chapter 23
Adding Data to Charts

23-47

Figure 23-44 Stock Chart Configured From Managed Bean

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

Add a stock chart to your page. For help with adding a chart to a page, see How to
Add a Chart to a Page.

To add data to a stock chart:

1. Optionally, create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. In the Structure window, right-click dvt:stockChart and choose Go To
Properties.

3. In the Properties window, do one of the following:

• To reference a managed bean that returns the chart's data model, expand the
Common section and specify the EL expression that references the data
model in the Value field. You can enter a static numeric value or specify an EL
expression that references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named
chartDataSource that includes the stock data method, as referenced in the
first code sample in How to Add Data to Area, Bar, Combination, and Line
Charts, enter the following in the Value field:
#{chartDataSource.defaultStockData}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the chart to a data control, click Bind to ADF Control to select a data
collection.

For more information about using data controls to supply data to your chart,
see "Creating Databound Charts" in Developing Fusion Web Applications with
Oracle Application Development Framework.

Chapter 23
Adding Data to Charts

23-48

4. If you specified a managed bean for the chart's data model, do the following to add
a stockDataItem to the stock chart:

a. Right-click dvt:stockChart and choose Insert Inside Stock > Stock Data
Item.

b. In the Structure window, right-click dvt:stockChart and choose Go to
Properties.

c. In the Properties window, expand the Data section, and enter a value for the
Var field.

The var property is the name of an EL variable that references each element
in the data collection. In the second code sample in How to Add Data to Area,
Bar, Combination, and Line Charts, the var attribute is defined as row. The
relevant code is shown below.

<dvt:lineChart id="chart1"
value="#{chartDataSource.weeklyStockData}"
 timeAxisType="enabled" var="row">

d. To customize the tooltip that is displayed when the user moves the focus to a
data point, enter a value in the shortDesc field.

e. In the Structure window, right-click dvt:stockDataItem and choose Go to
Properties.

f. In the Properties window, expand the Data section. Depending on the type of
stock chart, enter values or use the Expression Builder from the attribute’s
drop down menu for the various fields.

For example, to use the chartDataSource managed bean, specify these
values for the following attributes:

• Close: #{row.close}

• Group: #{row.group}

• High: #{row.high}

• Low: #{row.low}

• Open: #{row.open}

• Series: #{row.series}

• Volume: #{row.volume}

g. Configure any additional properties as needed to customize the data item.

h. To add additional stock data items, repeat the above steps for each additional
data item.

How to Add Data to Spark Charts
Spark charts are simple, charts that display trends or variations, often in the column of
a table, or inline with text. Line, bar, and area spark charts require a single series of
data values. Figure 23-45 shows an example of a line spark chart in a table column.

Chapter 23
Adding Data to Charts

23-49

Figure 23-45 Line Spark Chart in Table of Stock Prices

Floating bar spark charts require two series of data values, one for the float offset, and
one for the bar value. Figure 23-46 shows an example of a floating bar spark chart.

Figure 23-46 Floating Bar Spark Chart

In a simple UI-first development scenario you can insert a spark chart using the
Components window and bind it to data afterwards.

You can provide data to spark charts in any of the following ways:

• Specify data statically in child dvt:sparkItem tags. The example below shows an
example of providing static data to a spark chart.

<dvt:sparkChart>
 <dvt:sparkItem value="20"/>
 <dvt:sparkItem value="15"/>
 <dvt:sparkItem value="30"/>
</dvt:sparkChart>

• Specify data using EL Expression in child dvt:sparkItem tags.

The example below shows an example of providing data to spark charts using EL
Expressions to produce the table shown in Figure 23-45.

<af:table summary="Table" value="#{sparkChart.tableData}" var="row"
 columnStretching="last"
 rowBandingInterval="1" id="t1" width="230"
 disableColumnReordering="true"
 contentDelivery="immediate" autoHeightRows="8">
 <af:column sortable="false" headerText="Stock Symbol" align="start" id="c1"
 rowHeader="true">
 <af:outputText value="#{row[0]}" id="ot4"/>
 </af:column>
 <af:column sortable="false" headerText="Prices for 2014" id="c2">
 <dvt:sparkChart id="sparkchart1" subType="line" axisScaledFromBaseline="off"
 shortDesc="Sparkchart in Table">
 <dvt:sparkItem value="#{row[1]}" id="si6"/>
 <dvt:sparkItem value="#{row[2]}" id="si5"/>
 <dvt:sparkItem value="#{row[3]}" id="si4"/>
 <dvt:sparkItem value="#{row[4]}" id="si3"/>
 <dvt:sparkItem value="#{row[5]}" id="si2"/>
 <dvt:sparkItem value="#{row[6]}" id="si1"/>
 </dvt:sparkChart>

Chapter 23
Adding Data to Charts

23-50

 </af:column>
</af:table>

In this example, the spark chart's data is defined in a managed bean named
sparkChart. The example below shows the managed bean. The class is defined
as SparkchartSample, and the getTableData() method defines the columns for
the table.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class SparkchartSample {
 public List <List <Object>> getTableData() {
 List <List <Object>> list = new ArrayList <List <Object>>();

 // Create a random number generator with a constant seed
 Random rand = new Random(5);

 String stocks[] = {"ORCL", "AAPL", "MSFT", "YHOO", "CSCO", "PALM", "GOOG",
 "SAP", "HPQ", "IBM", "INTC", "RIMM"};
 Arrays.sort(stocks); // sort to look nice
 for(int i=0; i<stocks.length; i++)
 {
 List <Object> row = new ArrayList <Object>();
 row.add(stocks[i]);
 for(int j=0; j<6; j++) {
 // Let the value vary between 40 and 70 (for simplicity)
 row.add((rand.nextDouble()*30) + 40);
 }
 list.add(row);
 }
 return list;
 }
}

• Use af:iterator to stamp spark items.

The example below shows an example of using af:iterator to provide data to a
bar spark chart.

<dvt:sparkChart subType="bar" id="sc5">
 <af:iterator value="#{sparkChart.collection}" var="row" id="i3">
 <dvt:sparkItem value="#{row.close}" id="si9"/>
 </af:iterator>
</dvt:sparkChart>

In this example, the iteration is defined in the sparkChart managed bean. The
example below shows the collection() method that creates the spark items.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public List <Map <String,Object>> getCollection() {
 List <Map <String,Object>> list = new ArrayList <Map <String,Object>>();

 // Generate some sort of stock data
 double open[] = {5, 6, 4.5, 6.3, 4.1, 7.6, 8.4, 11.5, 10.5, 11.3};
 double close[] = {6.8, 4.2, 6.7, 4.5, 7.1, 8.6, 10.4, 10.0, 12.5, 14.5};

Chapter 23
Adding Data to Charts

23-51

 for(int i=0; i<open.length; i++)
 {
 Map <String,Object> row = new HashMap <String,Object>();
 row.put("open", open[i]);
 row.put("close", close[i]);
 list.add(row);
 }
 return list;
}

Figure 23-47 shows the runtime view of the spark chart that displays if you create
the spark chart defined in the af:iterator examples above.

Figure 23-47 Sparkchart Data Items Stamped by af:iterator

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

If you plan on displaying your spark chart in a table, create the ADF table. If you need
help creating the table, see How to Display a Table on a Page.

Add a spark chart to your page. For help with adding a chart to a page, see How to
Add a Chart to a Page.

To add data to a spark chart:

1. Create the managed bean that will return the chart's data model.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. To use an af:iterator to stamp the spark chart data items, do the following:

a. Right-click dvt:sparkChart and choose Insert Inside Spark Chart > Iterator.

b. In the Structure window, right-click af:iterator and choose Go to Properties.

c. In the Properties window, expand the Common section, and enter a value for
the Value field.

Reference the EL expression that returns the value for the spark chart data
item. To reference the method used in the collection() method example
above, specify the following for the value: #{sparkChart.collection}.

d. Enter a value for the Var field.

The var property is the name of an EL variable that references each element
in the data collection. In the collection() method example above, the var
attribute is defined as row.

e. Configure any additional properties as needed to customize the iterator.

Chapter 23
Adding Data to Charts

23-52

For example, you can specify a maximum number of rows. For more
information about working with af:iterator, click Component Help.

3. To add the spark chart data items, do the following:

a. Right-click dvt:sparkChart or af:iterator and choose Insert Inside (Spark
Chart or Iterator > ADF Data Visualizations) > Spark Item.

b. In the Structure window, right-click dvt:sparkItem and choose Go to
Properties.

c. In the Properties window, expand the Common section, and enter a value for
the Value field.

You can enter a static numeric value or reference an EL expression that
returns the value for the spark chart data item. To reference the method used
in the collection() method example above, specify the following for the
Value: #{row.close}.

d. Configure any additional properties as needed to customize the data item.

For example, you must specify a FloatValue for floating bar spark charts. For
additional information about the available attributes, click Component Help.

e. To add additional spark chart data items, repeat Step a through Step d for
each additional data item.

Note:

You can also bind the spark chart to a data control if your application uses
the Fusion technology stack. To do so, click Bind to ADF Control in the
Properties window to select a data collection. For more information about
using data controls to supply data to your chart, see "Creating Databound
Charts" in Developing Fusion Web Applications with Oracle Application
Development Framework.

Customizing Chart Display Elements
You can customize most aspects of the ADF DVT Chart component's display,
including its labels, legend, axes, series, and animation effects. Some chart types also
allow the addition of reference objects, stacking behavior, or a dual Y-Axis.

Pie charts also support the ability to aggregate smaller values or explode a pie slice.

How to Configure Chart Labels
You can customize the style and position of chart data labels on all charts other than
spark charts. Depending on the chart type, you can also add a title, subtitle, footnote,
legend title, or axis title.

Chapter 23
Customizing Chart Display Elements

23-53

Tip:

Use data labels sparingly because they cause clutter and decrease
readability. Use data labels primarily to highlight outliers or important values
and not to show values for all data points.

How to Configure Chart Data Labels
To configure chart data labels, configure the attributes of the dvt:chartDataItem or
dvt:pieDataItem chart child component.

If you want the style and position of all chart or pie data items to be the same, you can
configure attributes directly on the chart component.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

Add data to your chart. For additional information, see Adding Data to Charts.

To configure data labels for charts:

1. In the Structure window, right-click dvt:chartDataItem or dvt:pieDataItem and
choose Go to Properties.

2. In the Properties window, expand the Appearance section.

3. To customize the data label colors, enter a value for the following:

• Color: Specify the RGB value in hexadecimal notation or choose Expression
Builder from the attribute's dropdown menu to enter an expression that
evaluates to the RGB value.

For example, enter #008000 to render the data label in green.

• BorderColor: For all charts except spark charts, specify the RGB value in
hexadecimal notation or choose Expression Builder from the attribute's
dropdown menu to enter an expression that evaluates to the RGB value.

For example, enter #FF0000 to render the data label in red.

• BorderWidth: For all charts except spark charts, specify a numeric value or
choose Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the numeric width value.

For example, enter 4 to render the data label border width at 4 units.

4. To customize the position and style of the data label on area, bar, bubble,
combination, line, and scatter charts:

a. In the Properties window, expand the Data section.

Chapter 23
Customizing Chart Display Elements

23-54

b. From the DataLabelPosition attribute's dropdown list, choose a location for
the data label.

By default, the DataLabelPosition attribute is set to auto which will center the
label on bubble and stacked bar charts, render the label inside the bar edge
for non-stacked bar charts, and render the label after the marker on line, area,
and scatter charts.

You can select Center to position the label on the center of the data point. For
bubble charts, if the label is too long, the content will be truncated.

You can also select aboveMarker, belowMarker, beforeMarker, and
afterMarker to position the label above, below, before, or after the marker for
area, bubble, line, and scatter charts. For bar charts, you can also select
insideBarEdge which renders the label inside the bar edge or outsideBarEdge
to render the data label on top of the bar for positive data values and below
the bar for negative data values.

c. To customize the text style of the data label, in the Style section, enter a value
for the StyleClass or InlineStyle attributes.

For example, if you want to specify a bold font for the data label, enter the
following for the InlineStyle attribute:

font-weight:bold;

d. To customize the position or text style of a specific chart data item, in the
Properties window, configure the LabelPosition, Style, or InlineStyle
attributes of the dvt:chartItem child component.

Note:

If you configure label positions on both the chart and its child data
item, the values you set for the chart's data item will override any
settings on the chart.

5. To customize the position and style of the data label on pie charts:

a. In the Structure window, right-click dvt:pieChart and choose Go to
Properties.

b. In the Properties window, from the SliceLabelPosition attribute's dropdown
list, choose a location for the data label.

By default, the SliceLabelPosition is set to auto which will position the label
inside if there is enough space in the slice, and outside the slide otherwise.
You can select inside or outside to explicitly position the label inside or
outside the slice respectively or none to remove the label entirely.

c. To customize the text style of the data label, in the Style section, enter a value
for the StyleClass or InlineStyle attributes.

For example, if you want to specify a bold font for the data label, enter the
following for the InlineStyle attribute:

font-weight:bold;

Chapter 23
Customizing Chart Display Elements

23-55

How to Configure Chart Element Labels
To configure a chart label, add the chart child component as needed, and configure
the style and position of the label. Depending upon the chart type, you can specify
labels for the chart's title, subtitle, and footnote.

Note:

Sparkcharts are condensed charts that contain minimal formatting and have
little support for labels. Use the spark chart's container to provide descriptive
text for the spark chart.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To add a title, subtitle or footnote to a chart:

1. In the Structure window, right-click dvt:typeChart and choose Go to Properties.

2. In the Properties window, expand the Appearance section.

3. To add a title to the chart:

• In the Properties window, enter a value for the title in the Title field.

You can enter text for the title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the chart's
title.

• From the TitleHAlign attribute's dropdown list, select the alignment to use for
the title.

By default, the title's alignment is set to start which aligns the title to the left
of the chart container in left-to-right mode. You can set the alignment to
center, which positions the title in the center of the chart container, or to end,
which aligns the title to the right end of the chart container in left-to-right mode.

You can also use plotAreaStart to align the title to the left of the plot area in
left-to right mode, plotAreaCenter to position the title in the center of the plot
area, and plotAreaEnd to align the title to the right of the plot area in left-to-
right mode.

In right-to-left mode, start and plotAreaStart will align the title to the right of
the chart container and plot area, respectively. end and plotAreaEnd will align
the title to the left of the chart container and plot area, respectively.

4. To add a subtitle to the chart, enter a value in the Subtitle field.

Chapter 23
Customizing Chart Display Elements

23-56

You can enter text for the subtitle or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the chart's
subtitle.

5. To add a footnote to the chart:

• In the Properties window, enter a value for the footnote in the Footnote field.

You can enter text for the footnote or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the chart's
footnote.

• From the FootnoteHAlign attribute's dropdown list, select the alignment to
use for the title.

By default, the footnote’s alignment is set to start which aligns the footnote to
the left of the chart container in left-to-right mode. You can set the alignment to
center, which positions the footnote in the center of the chart container, or to
end, which aligns the footnote to the right end of the chart container in left-to-
right mode.

You can also use plotAreaStart to align the footnote to the left of the plot
area in left-to right mode, plotAreaCenter to position the footnote in the center
of the plot area, and plotAreaEnd to align the footnote to the right of the plot
area in left-to-right mode.

In right-to-left mode, start and plotAreaStart will align the footnote to the
right of the chart container and plot area, respectively. end and plotAreaEnd
will align the footnote to the left of the chart container and plot area,
respectively.

How to Configure Chart Axis Labels
To configure a chart axis label, add a child axis component as needed, and configure
the style and position of the label. Depending on the chart type, you can specify the
legend title, or axis title and tick labels.

Note:

Sparkcharts are condensed charts that contain minimal formatting and have
little support for labels. Use the spark chart's container to provide descriptive
text for the spark chart.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure chart axis labels:

Chapter 23
Customizing Chart Display Elements

23-57

1. In the structure window, right-click dvt:typeChart and choose Insert Inside Chart
> (Chart X Axis or Chart Y Axis or Chart Y2 Axis).

2. Right-click the axis you added in the previous step and choose Go to Properties.

For example, right-click ChartXAxis and choose Go to Properties.

3. To add a title to the axis, in the Properties window, expand the Common section
and enter a value in the Title field.

You can enter text for the axis title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the axis title.

4. To configure axis tick labels, in the Structure window, right-click the
dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and choose Insert
Inside Axis > Chart Tick Label.

5. Right-click dvt:chartTickLabel and choose Go to Properties.

6. In the Properties window, enter values for the following:

• LabelStyle: Enter the CSS attribute to use for the axis label.

For example, if you want to specify a bold font for the axis label, enter the
following for the InlineStyle attribute:

font-weight:bold;

• Position: From the Position attribute's dropdown list, select inside to position
the labels inside the chart.

By default, the chart will automatically position the labels outside the axis.

• Rotation: From the Rotation attribute's dropdown list, select off to turn off
rotation.

By default, the chart will automatically rotate the labels by 90 degrees if
needed to fit more labels on the axis. The rotation will only be applied to
categorical labels for a horizontal axis.

• Scaling: From the attribute's dropdown list, select the scale factor for the
numeric value.

Scaling options range from none to quadrillion.

For information about customizing chart legend titles, see How to Configure Chart
Legends.

How to Configure Chart Legends
You can add a legend to all charts except the spark chart to identify the chart's series
and associated colors. If you chose a quick start layout that included a legend when
you created your chart, you should already have a legend on the page.

After you have added the legend, you can customize its position, configure a legend
title, or disable scrolling.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

Chapter 23
Customizing Chart Display Elements

23-58

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure a chart legend:

1. In the Structure window, expand the dvt:typeChart node.

2. If the dvt:chartLegend node is missing in the expanded display, right-click
dvt:typeChart and choose Insert Inside Chart > Chart Legend.

3. Right-click dvt:chartLegend and choose Go to Properties.

4. In the Properties window, enter values in the following fields as needed.

• Position: From the Position attribute's dropdown list, select a position for the
legend.

By default, the legend's position is set to auto which will position the legend on
the side or bottom of the chart, depending upon the size and content of the
chart.

You can set the position to start, which aligns the legend to the left in left-to-
right mode and aligns the legend to the right in to right-to-left mode, or end
which aligns the legend to the right in left-to-right mode and aligns the legend
to the left in right-to-left mode

You can also set the alignment to top which positions the legend at the top of
the chart or bottom to position the legend at the bottom of the chart.

• SymbolWidth: Enter a common width in pixels for all symbols in the legend.

You can enter text for the legend title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the legend
title.

• SymbolHeight: Enter a common height in pixels for all symbols in the legend.

You can enter text for the legend title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the legend
title.

• Title: Enter a title for the legend.

You can enter text for the legend title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the legend
title.

• TitleHAlign: From the TitleHAlign attribute's dropdown list, select an
alignment for the legend's title.

By default, the legend's alignment is set to start which aligns the legend's title
to the left in left-to-right mode and aligns the legend to the right in to right-to-
left mode.

You can set the alignment to center which positions the legend's title in the
center. You can also set the alignment to end which aligns the legend's title to
the right in left-to-right mode and aligns the title to the left in right-to-left mode.

• ReferenceObjectTitle: Enter a title for the reference object area, if one exists.

Chapter 23
Customizing Chart Display Elements

23-59

You can enter text for the title or choose Expression Builder from the
attribute's dropdown menu to enter an expression that evaluates to the title.

For information about adding reference objects to your chart, see Adding
Reference Objects to a Chart.

• Scrolling: From the Scrolling attribute's dropdown list, select the legend's
scrolling behavior.

By default, the chart's scrolling behavior is set to asNeeded which will add a
scrollbar to the legend if needed. You can select off to disable legend
scrolling.

• Size and MaximumSize: Enter the size and maximum size of the axis in
pixels or percentage. By default, the size and maximum size values are not
provided.

How to Format Chart Numerical Values
You can customize the appearance of numeric values on charts using the
dvt:chartValueFormat or dvt:chartTickLabel tags.

Figure 23-48 shows the effect of adding dvt:chartValueFormat and
dvt:chartTickLabel tags to a bar chart configured to display monthly salaries for a
fictitious department. In this example, the top bar chart is using default numeric
formatting. The bar chart at the bottom of the figure is configured to display the series
value and axis label as currency values.

Chapter 23
Customizing Chart Display Elements

23-60

Figure 23-48 Bar Chart Configured to Display Currency Values

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

Chapter 23
Customizing Chart Display Elements

23-61

How to Format Numeric Values on a Chart's Value, Value Label, or Axis Values
Use the dvt:chartValueFormat tag to format numeric values for the chart's value,
value label, or axis values.

The dvt:chartValueFormat tag allows you to specify the scaling for numeric display.

To format numeric values on a chart's value, value label, or axis values:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Chart Value Format.

2. Right-click the dvt:chartValueFormat node and choose Go to Properties.

3. In the Properties window, enter values for the following:

• Type: From the attribute's dropdown list, select the tag that identifies the chart
element that you wish to format. Valid values include x, y, y2, z, value, or
label.

For example, to format the numeric value for the bar chart's series shown in
Figure 23-48, select y from the Type attribute's dropdown list.

• Scaling: From the attribute's dropdown list, select the scale factor for the
numeric value.

Scaling options range from none to quadrillion.

• TooltipDisplay: From the attribute’s dropdown list, select whether a custom
tooltip label should be displayed or not. Valid values are off or auto. The
behavior of auto differs across chart types.

• TooltipLabel: Specify a text value or use the Expression Builder to set
custom labels for tooltip values.

How to Format Numeric Values on a Chart's Axis Label
Use the dvt:chartTickLabel tag to format the values on the axis labels.

The dvt:chartTickLabel tag allows you to specify the scaling for numeric display. It
also has a rotation property to specify whether the chart will automatically rotate the
labels by 90 degrees in order to fit more labels on the axis. The rotation will only be
applied to categorical labels for a horizontal axis. It also has a position property to
specify whether the axis labels will be positioned inside or outside the chart.

To format numeric values on a chart's axis label:

1. In the Structure window, expand the dvt:typeChart node.

2. If the expanded node does not contain the axis that you wish to format, right-click
dvt:typeChart and choose Insert Inside Chart > (Chart X Axis or Chart Y Axis
or Chart Y2 Axis).

3. Right-click the dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and
choose Insert Inside Axis > Chart Tick Label.

4. Right-click dvt:chartTickLabel and choose Go to Properties.

5. In the Properties window, enter values for the following:

• Rotation: From the Rotation attribute's dropdown list, select off to turn off
rotation.

Chapter 23
Customizing Chart Display Elements

23-62

By default, the chart will automatically rotate the labels by 90 degrees in order
to fit more labels on the axis. The rotation will only be applied to categorical
labels for a horizontal axis.

• Scaling: From the attribute's dropdown list, select the scale factor for the
numeric value.

Scaling options range from none to quadrillion.

How to Specify Numeric Patterns, Currency, or Percent
You can specify specific patterns for the numeric values or change the numeric display
to currency or percent by adding the af:convertNumber tag to the
dvt:chartValueFormat or dvt:chartTickLabel tags. For additional information about
using the af:convertNumber tag, see Validating and Converting Input.

To specify numeric patterns, currency, or percent using af:convertNumber:

1. In the Structure window, right-click dvt:chartTickLabel or dvt:chartValueFormat
and choose Insert Inside (Chart Tick Label or Chart Value Format) > Convert
Number.

2. Right-click af:convertNumber and choose Go to Properties.

3. In the Properties window, from the Type attribute's dropdown list, select the
desired numeric type.

By default, Type is set to number, but you can also select currency or percent.

4. Configure additional attributes as needed.

For example, you can specify which currency symbol to use in the
CurrencySymbol field. For help with an individual field or to look at the complete
tag documentation for the af:convertNumber tag, click Component Help.

Customizing a Chart Axis
Depending upon the chart type, you can configure a time axis on the x-axis or
customize the properties of a chart's x-axis, y-axis, y2-axis, or z-axis.

How to Configure a Time Axis
If your x-axis includes time data, then you can enable the time axis display. Charts
include support for time data that is based on regular or irregular intervals. Charts also
support mixed frequency time data, where the individual series contain differing dates.

Figure 23-49 shows four charts configured for a time axis. In the horizontal bar chart,
the time data is spaced equally. The vertical bar chart shows an example of irregularly
spaced data, and the chart provides a visual clue that there is no data for 2014. The
second vertical bar chart does not show the visual clue for the missing data. The
combination chart shows mixed frequency time data. In this example, the time data is
different for each series (chart) in the combination chart.

Chapter 23
Customizing Chart Display Elements

23-63

Figure 23-49 Charts Configured for Regular, Irregular, and Mixed Frequency Time Data

To configure a time axis, set the timeAxisType attribute's value to enabled for regular
or irregular data, set it to skipGaps to not indicate empty space in irregular data, and
set it to mixedFrequency for time data that varies by series.

The example below shows the code snippet on the JSF page that defines the
horizontal bar chart, bar charts, and combination chart, with the timeAxisType
definition highlighted in bold font.

<af:panelBox text="Time Axis Nested Labels: Year and Month"
 showDisclosure="false">
 <dvt:barChart orientation="horizontal" value="#{chartDataSource.monthlyTimeData}"
 var="row" hoverBehavior="dim" timeAxisType="enabled">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}"
 value="#{row.value}"/>
 </f:facet>
 </dvt:barChart>
</af:panelBox>
<af:panelBox text="Time Axis with Irregular Intervals" showDisclosure="false">
 <dvt:barChart value="#{chartDataSource.yearlyIrregularTimeData}"
 var="row" hoverBehavior="dim" timeAxisType="enabled">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}"
 value="#{row.value}"/>
 </f:facet>
 <dvt:chartXAxis>
 <dvt:majorTick rendered="true"/>
 </dvt:chartXAxis>

Chapter 23
Customizing Chart Display Elements

23-64

 </dvt:barChart>
</af:panelBox>
<af:panelBox text="timeAxisType= skipGaps" showDisclosure="false">
 <dvt:barChart value="#{chartDataSource.yearlyIrregularTimeData}" var="row"
hoverBehavior="dim" timeAxisType="skipGaps">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}"
value="#{row.value}"/>
 </f:facet>
 <dvt:chartXAxis>
 <dvt:majorTick rendered="true"/>
 </dvt:chartXAxis>
 </dvt:barChart>
</af:panelBox>
<af:panelBox text="Mixed Frequency Time Axis" showDisclosure="false">
 <dvt:comboChart value="#{chartDataSource.yearlyMixedFrequencyTimeData}"
 var="row" hoverBehavior="dim" timeAxisType="mixedFrequency">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}" x="#{row.x}"
y="#{row.y}"/>
 </f:facet>
 </dvt:comboChart>

The code that defines the charts' collection models and populate them with data is
stored in the chartDataSource managed bean shown in the first code sample in How
to Add Data to Area, Bar, Combination, and Line Charts.

The example below shows the getMonthlyTimeData(),
getYearlyIrregularTimeData(), and getYearlyMixedFrequencyTimeData() methods.
In this example, the getMonthlyTimeData() method calls the getTimeData() method
which is a reusable method that takes the series, group, and time data as its
arguments.

public CollectionModel getYearlyIrregularTimeData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 dataItems.add(new ChartDataItem("Series 1", new GregorianCalendar(2011, 7,
27).getTime(), 55));
 dataItems.add(new ChartDataItem("Series 1", new GregorianCalendar(2012, 7,
27).getTime(), 60));
 dataItems.add(new ChartDataItem("Series 1", new GregorianCalendar(2013, 7,
27).getTime(), 75));
 dataItems.add(new ChartDataItem("Series 1", new GregorianCalendar(2015, 1,
27).getTime(), 70));
 dataItems.add(new ChartDataItem("Series 1", new GregorianCalendar(2016, 1,
27).getTime(), 35));

 dataItems.add(new ChartDataItem("Series 2", new GregorianCalendar(2011, 7,
27).getTime(), 45));
 dataItems.add(new ChartDataItem("Series 2", new GregorianCalendar(2012, 7,
27).getTime(), 40));
 dataItems.add(new ChartDataItem("Series 2", new GregorianCalendar(2013, 7,
27).getTime(), 65));
 dataItems.add(new ChartDataItem("Series 2", new GregorianCalendar(2015, 1,
27).getTime(), 65));
 dataItems.add(new ChartDataItem("Series 2", new GregorianCalendar(2016, 1,
27).getTime(), 45));

 return ModelUtils.toCollectionModel(dataItems);
}
public CollectionModel getYearlyMixedFrequencyTimeData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();

Chapter 23
Customizing Chart Display Elements

23-65

 dataItems.add(new ChartDataItem("Series 1", "Group 1", new GregorianCalendar(2011,
7, 27).getTime(), 55));
 dataItems.add(new ChartDataItem("Series 1", "Group 2", new GregorianCalendar(2013,
7, 27).getTime(), 60));
 dataItems.add(new ChartDataItem("Series 1", "Group 3", new GregorianCalendar(2015,
7, 27).getTime(), 75));
 dataItems.add(new ChartDataItem("Series 1", "Group 4", new GregorianCalendar(2017,
7, 27).getTime(), 70));
 dataItems.add(new ChartDataItem("Series 1", "Group 5", new GregorianCalendar(2019,
7, 27).getTime(), 35));

 dataItems.add(new ChartDataItem("Series 2", "Group 1", new GregorianCalendar(2012,
1, 27).getTime(), 45));
 dataItems.add(new ChartDataItem("Series 2", "Group 2", new GregorianCalendar(2013,
7, 27).getTime(), 40));
 dataItems.add(new ChartDataItem("Series 2", "Group 3", new GregorianCalendar(2014,
7, 27).getTime(), 65));
 dataItems.add(new ChartDataItem("Series 2", "Group 4", new GregorianCalendar(2016,
1, 27).getTime(), 65));
 dataItems.add(new ChartDataItem("Series 2", "Group 5", new GregorianCalendar(2020,
7, 27).getTime(), 45));
 dataItems.add(new ChartDataItem("Series 3", "Group 1", new GregorianCalendar(2010,
7, 27).getTime(), 15));
 dataItems.add(new ChartDataItem("Series 3", "Group 2", new GregorianCalendar(2012,
7, 27).getTime(), 20));
 dataItems.add(new ChartDataItem("Series 3", "Group 3", new GregorianCalendar(2014,
7, 27).getTime(), 35));
 dataItems.add(new ChartDataItem("Series 3", "Group 4", new GregorianCalendar(2016,
7, 27).getTime(), 30));
 dataItems.add(new ChartDataItem("Series 3", "Group 5", new GregorianCalendar(2018,
7, 27).getTime(), 55));
 return ModelUtils.toCollectionModel(dataItems);
}
public CollectionModel getMonthlyTimeData() {
 return getTimeData(2, 10, 2013, 7, 1, Calendar.MONTH, 1);
}
private double getValue() {return Math.random() * 100;}
public CollectionModel getTimeData(int numSeries, int numGroups,
 int startYear, int startMonth, int startDate,
 int dateField, int addCount){
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 GregorianCalendar cal = new GregorianCalendar(startYear, startMonth, startDate);
 for(int group=0; group<numGroups; group++) {
 for(int series=0; series<numSeries; series++) {
 dataItems.add(new ChartDataItem("Series " + (series+1), cal.getTime(),
getValue()));
 }
 cal.add(dateField, addCount);
 }
 return ModelUtils.toCollectionModel(dataItems);
}

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Chapter 23
Customizing Chart Display Elements

23-66

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure a chart time axis:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, expand the Appearance section.

3. From the TimeAxisType attribute's dropdown list, select enabled if your chart
includes regular or irregular time data. Select skipGaps if your chart includes
irregular time data where the time skip should not be highlighted, such as in stock
data where the weekend periods do not matter. Select mixedFrequency if your
chart contains mixed frequency time data.

How to Customize the Chart Axis
Charts include support for customizing the x-axis, y-axis, and y2-axis. Depending upon
the axis type, you can customize the minimum and maximum values of the data and
axis, add a title, specify tick mark increments, configure viewport boundaries, and
specify whether the axis baseline starts at the minimum value of the data or at zero.

To customize a chart axis, add the dvt:chartXAxis, dvt:chartYAxis, or
dvt:chartY2Axis component to the chart and configure the properties for the axis in
the Properties window.

Table 23-6 lists the chart axis attributes and the axis on which they apply. Most
attributes have default settings which are based upon the data, and you only need to
change these if you want to modify the defaults. However, you must specify values for
the title, attributeChangeListener, and binding attributes if you want to use them.

Table 23-6 Chart Axis Attributes

Name Description X-Axis
Support?

Y-Axis
Support?

Y2-Axis
Support?

alignTickMarks Specifies whether the tick marks of the y1
and y2 axes are aligned.

No No Yes

attributeChangeListener Method reference to a listener for
renderer changes to a property without
the application's specific request.

Yes Yes Yes

baselineScaling Specifies whether the axis baseline starts
at the minimum value of the data or at
zero.

Yes Yes Yes

binding Specifies a binding reference to store a
specific instance of the axis from a
backing bean. Set this attribute only to
access code in a backing bean.

Yes Yes Yes

dataMaximum Specifies the maximum data value on a
numerical axis. If not set, attribute
defaults to the maximum value of the data
set.

Yes Yes Yes

dataMinimum Specifies the minimum data value on a
numerical axis. If not set, attribute
defaults to the maximum value of the data
set.

Yes Yes Yes

Chapter 23
Customizing Chart Display Elements

23-67

Table 23-6 (Cont.) Chart Axis Attributes

Name Description X-Axis
Support?

Y-Axis
Support?

Y2-Axis
Support?

id Specifies the component's identifier. Yes Yes Yes

majorIncrement Specifies the increment for the major ticks
of a numerical axis.

Yes Yes Yes

maximum Specifies the maximum value of the axis. Yes Yes Yes

maximumSize Specifies the maximum width or height of
the axis

Yes Yes Yes

minimum Specifies the minimum value of the axis. Yes Yes Yes

minimumIncrement Specifies the minimum increment
between tick marks on a numerical axis.

Yes Yes Yes

minorIncrement Specifies the increment for the minor ticks
of the axis.

Yes Yes Yes

position Specifies the location of the axis label in
relation to the plot area.

No Yes Yes

rendered Specifies whether the axis is rendered. Yes Yes Yes

scale Specifies whether the axis is linear or
logarithmic

Yes Yes Yes

size Specifies the width or height of the axis Yes Yes Yes

title Specifies the title of the axis. Yes Yes Yes

viewportEndGroup Specifies the end group of the current
viewport on group or time axes.

Yes No No

viewportStartGroup Specifies the start group of the current
viewport on group or time axes.

Yes No No

viewportMaximum Specifies the maximum x-coordinate or y-
coordinate of the current viewport on
bubble and scatter charts.

Yes Yes No

viewportMinimum Specifies the minimum x-coordinate of
the current viewport

Yes Yes No

Chart axes also support optional child components which allow you to customize the
major and minor tick marks, axis tick labels, and axis lines.

• dvt:majorTick and dvt:minorTick: Specifies the line color, style, and width and
baseline color, style and width of the chart's tick marks.

• dvt:chartAxisLine: Specifies the line color and width of the axis line.

• dvt:chartTickLabel: Specifies the scaling, styling, and rotation of the chart's tick
labels.

For details about configuring dvt:chartTickLabel, see How to Format Chart
Numerical Values and How to Configure Chart Element Labels.

• dvt:referenceArea and dvt:referenceLine: Specifies a reference area or line on
the axis.

For information about adding a reference area or line to your chart, see Adding
Reference Objects to a Chart.

Chapter 23
Customizing Chart Display Elements

23-68

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To customize a chart axis, axis line, and axis major or minor ticks:

1. In the Structure window, expand the dvt:typeChart node.

2. If the expanded node does not contain the axis that you wish to customize, right-
click dvt:typeChart and choose Insert Inside Chart > (Chart X Axis or Chart Y
Axis or Chart Y2 Axis).

3. Right-click the dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and
choose Go to Properties.

4. To customize a numerical axis, in the Properties window, enter values for the
following:

• BaselineScaling: From the BaselineScaling's attribute's dropdown list,
select min to set the axis baseline to the minimum value of the data. By
default, this attribute is set to zero.

• DataMaximum and DataMinimum: Enter the minimum and maximum values
for which data will be displayed.

By default, the chart will display the entire data set.

• MajorTickIncrement and MinorTickIncrement: Specify the increments for
the major and minor ticks.

By default, the tick increments are calculated from the data.

• Scale: From the attribute's dropdown list, select the scale type for the numeric
value.

You can select eitherlinear or log.

5. For all axis types, in the Properties window, enter values for the following
attributes.

• Minimum and Maximum: Enter the minimum and maximum axis values.

By default, the minimum and maximum values are calculated from the data.

• Size and MaximumSize: Enter the size and maximum size of the axis in
pixels or percentage. By default, the size and maximum size values are not
provided.

• Title: Specify the axis title. By default, the axis does not include a title.

6. To configure a viewport, in the Properties window, enter values for the
viewportEndGroup, viewportStartGroup, viewportMaximum, and
viewportMinimum attributes as needed.

For information about adding a viewport to your chart, see How to Configure Chart
Zoom and Scroll.

Chapter 23
Customizing Chart Display Elements

23-69

7. Configure additional attributes as needed.

For example, you can turn off alignment of the tick marks on the y1 and y2 axes of
a dual-Y chart using the AlignTickMarks attribute. For help with an individual field
or to look at the complete tag documentation for the axis, click Component Help.

8. Right-click the dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and
choose Insert Inside Axis > Chart Tick Label.

9. Right-click dvt:chartTickLabel and choose Go to Properties.

10. In the Properties window, enter values for the following attributes.

• Position: From the Position attribute's dropdown list, select inside to position
the labels inside the chart.

By default, the chart will automatically position the labels outside the axis.

• Rotation: From the Rotation attribute's dropdown list, select off to turn off
rotation.

By default, the chart will automatically rotate the labels by 90 degrees in order
to fit more labels on the axis. The rotation will only be applied to categorical
labels for a horizontal axis.

• Scaling: From the attribute's dropdown list, select the scale factor for the
numeric value.

Scaling options range from none to quadrillion.

11. To further customize the numeric value, in the Structure window, right-click
dvt:chartTickLabel and choose Insert Inside Chart Tick Label > Convert
Number.

12. Right-click af:convertNumber and choose Go to Properties.

13. In the Properties window, from the Type attribute's dropdown list, select the
desired numeric type.

By default, Type is set to number, but you can also select currency or percent.

14. Configure additional attributes as needed.

For example, you can specify which currency symbol to use in the
CurrencySymbol field. For help with an individual field or to look at the complete
tag documentation for the af:convertNumber tag, click Component Help.

15. To customize the chart's axis line, in the Structure window, right-click the
dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and choose Insert
Inside Axis > Chart Axis Line.

16. Right-click dvt:chartAxisLine and choose Go to Properties.

17. In the Properties window, enter values for the following attributes.

• LineColor: Specify the RGB value in hexadecimal notation or choose
Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the RGB value.

For example, enter #008000 to render the axis line's color in green.

• LineWidth: Enter the axis line's width in pixels. By default, LineWidth is set to
1.

Chapter 23
Customizing Chart Display Elements

23-70

18. To customize the axis major or minor ticks, in the Structure window, right-click the
dvt:chartXAxis, dvt:chartYAxis, or dvt:ChartY2Axis node and choose Insert
Inside Axis > (Major Tick or Minor Tick).

19. Right-click dvt:majorTick or dvt:minorTick and choose Go to Properties.

20. In the Properties window, enter values for the following attributes.

• BaselineColor: Specify the RGB value in hexadecimal notation or choose
Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the RGB value.

For example, enter #800000 to render the baseline color in red.

• BaselineStyle: From the BaselineStyle attribute's dropdown list, select the tick
mark's baseline style.

BaselineStyle accepts the values dashed, dotted or solid.

• BaselineWidth: Enter the tick mark's baseline width in pixels.

• LineColor: Specify the RGB value in hexadecimal notation or choose
Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the RGB value.

For example, enter #008000 to render the tick mark's color in green.

• LineStyle: From the LineStyle attribute's dropdown list, select the tick mark's
line style.

By default, LineStyle is set to solid, but you can select dashed or dotted to
change the default line style.

• LineWidth: Enter the tick mark's width in pixels. By default, LineWidth is set
to 1.

Configuring Dual Y-Axis
You can add a second y-axis to area, bar, combination, and line charts. This feature is
useful if you have two series with different ranges of data. For example, you could
have a bar chart that shows salary on one y-axis and commission percent on the
second.

To configure a dual y-axis, add the dvt:chartSeriesStyle component to your chart,
and set the assignedToY2 attribute to true. For instructions to configure the
dvt:chartSeriesStyle component, see How to Customize a Chart Series.

Adding Reference Objects to a Chart
You can add reference areas or lines to all charts except pie charts using the
dvt:referenceLine or dvt:referenceArea components. Reference areas are
associated with the chart's axis and typically are associated with the y-axis. Use
reference areas or lines to show target values or ranges.

Figure 23-50 shows the line chart displayed in Figure 23-40 with a reference area and
reference line. In this example, the reference area is configured with a light blue color
and a range between 200 and 250. The reference line is configured with a green color
and a value of 25.

Chapter 23
Customizing Chart Display Elements

23-71

Figure 23-50 Line Chart Configured With Reference Area and Reference Line

The example below shows the code snippet on the JSF page that defines the
reference area and line. In this example, the reference area and line are configured as
children of the chart's y-axis.

<dvt:chartYAxis title="Portfolio Value (thousands of USD)">
 <dvt:referenceArea id="ra1" color="#A0CEEC" maximum="250" minimum="200"
 displayInLegend="on" text="Target Portfolio Value"/>
 <dvt:referenceLine id="rl1" color="#008000" value="25" displayInLegend="on"
 text="Target Minimum" rendered="true" lineWidth="3"/>
</dvt:chartYAxis>

You can also specify multi-segment reference lines or areas as shown in Figure 23-51.
In this example, the bar chart is configured with a multi-segment reference line, and
the line chart is configured with a multi-segment reference area. In these examples,
the target values vary by year.

Chapter 23
Customizing Chart Display Elements

23-72

Figure 23-51 Multi-Segment Reference Line and Reference Area

Multi-segment reference lines or reference areas are defined by adding the
dvt:referenceAreaItem or dvt:referenceLineItem elements as children of the
dvt:referenceArea and dvt:referenceLine components. You can explicitly define a
reference area or line item for each segment in the reference line or area, or use the
af:iterator tag to loop through the segments.

The example below shows the code snippets on the JSF page that define the bar and
line charts. The code related to the reference area and reference line is highlighted in
bold.

<dvt:barChart value="#{chartDataSource.yearlyIrregularTimeData}"
 var="row" timeAxisType="enabled" inlineStyle="width:650px">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="Series 1" group="#{row.group}"
 value="#{row.value}"/>
 </f:facet>
 <dvt:chartYAxis maximum="100">
 <dvt:referenceLine color="#A0CEEC" displayInLegend="on" text="Target
Value"
 lineWidth="3" shortDesc="Target Value">
 <af:iterator id="it1"
value="#{chartDataSource.yearlyIrregularTimeData}"
 var="row">
 <dvt:referenceLineItem x="#{row.series == 'Series 1' ? row.group:
0}"
 value="#{row.series == 'Series 1' ? row.value +

Chapter 23
Customizing Chart Display Elements

23-73

15:0}"/>
 </af:iterator>
 </dvt:referenceLine>
 </dvt:chartYAxis>
 <dvt:chartLegend rendered="true"/>
</dvt:barChart>
 ...
<dvt:lineChart value="#{chartDataSource.yearlySingleTimeData}" var="row"
 timeAxisType="enabled" inlineStyle="width:650px" id="chart1">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}"
 value="#{row.value}"/>
 </f:facet>
 <dvt:chartYAxis>
 <dvt:referenceArea color="#A0CEEC" displayInLegend="on" text="Target
Range"
 shortDesc="Target Range">
 <af:iterator id="it3" value="#{chartDataSource.yearlySingleTimeData}"
 var="row">
 <dvt:referenceAreaItem x="#{row.group}" minimum="#{row.value - 15}"
 maximum="#{row.value + 15}"/>
 </af:iterator>
 </dvt:referenceArea>
 </dvt:chartYAxis>
 <dvt:chartLegend rendered="true"/>
</dvt:lineChart>

The data for the bar chart is defined in the getYearlyIrregularTimeData() method
and is shown in the second code sample in Customizing a Chart Axis, and the line
chart's data is defined in the getYearlySingleTimeData() method. Both methods are
contained in the chartDataSource managed bean.

The code below shows the getYearlySingleTimeData() method that defines the line
chart's collection model and populates it with sample data.

public CollectionModel getYearlySingleTimeData() {
 List<ChartDataItem> dataItems = new ArrayList<ChartDataItem>();
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2010, 1, 27).getTime(), 35));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2011, 1, 27).getTime(), 55));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2012, 1, 27).getTime(), 60));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2013, 1, 27).getTime(), 75));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2014, 1, 27).getTime(), 65));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2015, 1, 27).getTime(), 55));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2016, 1, 27).getTime(), 85));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2017, 1, 27).getTime(), 70));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2018, 1, 27).getTime(), 75));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2019, 1, 27).getTime(), 45));
 dataItems.add(new ChartDataItem("Series 1",
 new GregorianCalendar(2020, 1, 27).getTime(), 50));

Chapter 23
Customizing Chart Display Elements

23-74

 return ModelUtils.toCollectionModel(dataItems);
}

How to Add a Reference Object to a Chart
To add a reference object to a chart, add the dvt:referenceArea or
dvt:referenceLine component as a child of the chart's associated axis. The process
is the same for all charts except the spark charts which use reference objects wrapped
inside a reference object set for reference areas and lines.

To specify segmented reference lines or areas, add the dvt:referenceAreaItem or
dvt:referenceLineItem as a child of the dvt:referenceArea or dvt:referenceLine.
To use af:iterator to loop through the reference items, add the af:iterator as a child
of the chart's axis and then add the reference item.

Note:

To add a reference line or object to a spark chart, add the
dvt:referenceObjectSet component to the spark chart and configure a
dvt:referenceObject for each reference line or area. Consult the tag
documentation for additional information.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To add a reference line or reference area to a chart:

1. In the Structure window, expand the dvt:typeChart node.

2. If the expanded node does not contain the axis that will contain the reference line,
right-click dvt:typeChart and choose Insert Inside Chart > (Chart X Axis or
Chart Y Axis or Chart Y2 Axis).

3. Right click the dvt:axis node and choose Insert Inside Axis > Reference Line for
a reference line or choose Insert Inside Axis > Reference Area for a reference
area.

4. Right-click dvt:referenceLine or dvt:referenceArea and choose Go to Properties.

5. In the Properties window of the reference line, enter values for the following:

• Value: Specify the value on the axis where the line is to appear.

For example, enter 25 to position the line where the axis equals 25.

• Color: Specify the RGB value in hexadecimal notation or choose Expression
Builder from the attribute's dropdown menu to enter an expression that
evaluates to the RGB value.

Chapter 23
Customizing Chart Display Elements

23-75

For example, enter #008000 to display the reference line in green.

• LineStyle: From the attribute's dropdown list, select dashed or dotted to
change the default display from solid.

• LineType: From the attribute's dropdown list, select a line type. By default,
this attribute is set to auto. You can also set this to straight, curved,
stepped, centeredStepped, segmented, centeredSegmented or none.

• LineWidth: Enter the width in pixels for the line.

• Text: Enter a description for the reference line.

• DisplayedInLegend: From the attribute's dropdown list, select on to have the
reference line included in the chart's legend.

In the Properties window of the reference area, enter values for the following:

• Maximum: Specify the upper bound of the reference area.

For example, enter 300 to set the upper bound of the reference area to 300
along the chart's associated axis.

• Minimum: Specify the lower bound of the reference area.

For example, enter 250 to set the lower bound of the reference area to 250
along the chart's associated axis.

• Color: Specify the RGB value in hexadecimal notation or choose Expression
Builder from the attribute's dropdown menu to enter an expression that
evaluates to the RGB value.

For example, enter #A0CEEC to display the reference line in light blue.

• LineType: From the attribute's dropdown list, select a line type. By default,
this attribute is set to auto. You can also set this to straight, curved,
stepped, centeredStepped, segmented, centeredSegmented or none.

• Text: Enter a description for the reference line.

• DisplayedInLegend: From the attribute's dropdown list, select on to have the
reference area included in the chart's legend.

6. In the Structure window, to specify a segmented reference line and define the
reference line items using af:iterator, right-click dvt:referenceLine and
choose Insert Inside Reference Line Item > Iterator.

In the Structure window, to specify a segmented reference area and define the
reference area items using af:iterator, right-click dvt:referenceArea and
choose Insert Inside Reference Area Item > Iterator.

7. If working with a segmented reference line, right-click the af:iterator or
dvt:referenceLine node and choose Insert Inside (Iterator or Reference Line) >
Reference Line Item.

If working with a segmented reference area, right-click the af:iterator or
dvt:referenceArea node and choose Insert Inside (Iterator or Reference Area)
> Reference Area Item.

8. Right-click dvt:referenceLineItem or dvt:referenceAreaItem and choose Go to
Properties.

9. In the Properties window, enter values for the following:

• Value: Specify the value of the reference line item.

Chapter 23
Customizing Chart Display Elements

23-76

You can enter a static value or use an EL Expression that evaluates to the
reference line item's value. For example, to specify the value for the reference
line item for the line chart shown in Figure 23-51, enter #{row.series == 'Series
1' ? row.value + 15:0}.

• Maximum: Specify the maximum value of the reference area item.

You can enter a static value or use an EL Expression that evaluates to the
reference area item's value. For example, to specify the maximum value for
the reference area item for the line chart shown in Figure 23-51, enter
#{row.value + 15}.

• Minimum: Specify the minimum value of the reference area item.

You can enter a static value or use an EL Expression that evaluates to the
reference area item's value. For example, to specify the minimum value for the
reference area item for the line chart shown in Figure 23-51, enter
#{row.value + 15}.

• X: Specify the location on the x-axis where the reference line item or reference
area item is to be rendered.

For charts with time data, this is the time stamp. For charts with a categorical
axis, this is the index of the group, which starts at 0.

To specify the x-axis position for the line chart shown in Figure 23-51, enter
#{row.series == 'Series 1' ? row.group:0}.

10. To add additional reference line items, repeat Step 7 through Step 9 for each
additional item.

What You May Need to Know About Adding Reference Objects to Charts
The multi-segmented reference line or area is supported on bubble charts, scatter
charts, and charts configured with a time axis.

How to Configure a Stacked Chart
Stacked charts show cumulative values across groups. Stacked charts typically
contain two or more series which are aggregated into one bar, area, or line. For
example, you might want to show the total sales of three products, grouped by city. In
a clustered bar chart, the bar chart would display three bars, one for each product. In a
stacked bar chart, the three bars would be aggregated into one bar for each city.

Figure 23-52 shows the effect of stacking series in a bar chart. In this example, the five
series in the clustered bar chart at the top of the figure are configured as a stacked bar
chart at the bottom of the figure.

Chapter 23
Customizing Chart Display Elements

23-77

Figure 23-52 Stacked Bar Chart

If you chose a quick start layout that included a stacked display, then JDeveloper
automatically stacked the series by group. Otherwise, you can enable stacking by
setting the stack attribute to on.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure a stacked chart:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, from the Stack attribute's dropdown list, select on.

Customizing Chart Series
You can customize the fill of all series in a chart by setting the seriesEffect attribute
on the chart component.

Chapter 23
Customizing Chart Display Elements

23-78

You can customize the appearance of individual series in a chart by adding the
dvt:chartSeriesStyle component to your chart. Depending upon the chart type, you
can customize colors, markers, lines, fill effects and click actions. For combination
charts, you can also specify which chart to display.

Note:

Spark charts contain only a single series and do not support seriesEffect
or chartSeriesStyle. To customize the spark chart, enter values for the
dvt:sparkChart component in the Properties window. You can customize the
series color and specify which markers are displayed. For more information,
click Component Help in the Properties window.

How to Customize a Chart Series
To customize an individual series in a chart, add the dvt:chartSeriesStyle
component and configure its properties in the Properties Window.

Table 23-7 lists the attributes available on the chartSeriesStyle component and the
chart types for which they apply.

Table 23-7 dvt:chartSeriesStyle Tags

Chart Tag Description Supported Chart
Types

action Method reference to an action. area, bar, bubble,
combination, line

actionListener Method reference to an action listener. area, bar, bubble,
combination, line

areaColor Specifies the color of an area series. area, combination
(with area)

assignedToY2 Specifies whether the series should be
assigned to the Y2 axis.

area, bar,
combination, line

attributeChangeListene
r

Method reference to an attribute change
listener.

all

borderColor Specifies the border color of the series. all

borderWidth Specifies the border width of the series all

color Specifies the color of the series. all

displayInLegend Specifies whether the series is displayed
in the chart legend

all

drilling Specifies whether this group can be
drilled. Valid values are 'off' (default) and
'on'. When set to 'on', the existing
drillEvent will be fired when the user
clicks/taps on a the group label.

all

id Specifies the id of the component. all

lineStyle Specifies the appearance of the line. combination (with
line), line

Chapter 23
Customizing Chart Display Elements

23-79

Table 23-7 (Cont.) dvt:chartSeriesStyle Tags

Chart Tag Description Supported Chart
Types

lineType Specifies the appearance of line
connectors

area, bubble, scatter,
combination (with
line), line

lineWidth Specifies the width of the line in pixels. combination (with
line), line

markerColor Specifies the color of the data item
markers, if different than the series
color.

area, bubble,
combination (with
area or line), line,
scatter

markerDisplayed Specifies whether the data item markers
are displayed.

area, bubble,
combination (with
area or line), line,
scatter

markerShape Specifies the shape of the data item
markers.

area, bubble,
combination (with
area or line), line,
scatter

markerSize Specifies the size of the data item
markers if displayed.

area, bubble,
combination (with
area or line), line,
scatter

pattern Specifies the pattern of the series. all

rendered Specifies whether the component is
rendered.

all

series Identifies the series for which the series
style applies.

all

stackCategory String value that specifies which series
will be stacked together.

area, bar,
combination, line

type Specifies whether the series is displayed
as an area, bar, line, or lineWithArea
chart.

combination

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For information about configuring charts, see Configuring Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Chart Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To customize a chart series:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Facet seriesStamp.

2. If you plan on customizing more than one series in your chart, right-click f:facet -
dataStamp and choose Insert Inside Facet series Stamp > Group.

Chapter 23
Customizing Chart Display Elements

23-80

3. Right-click af:group or f:facet seriesStamp and choose Insert Inside (Group or
Facet seriesStamp) > Chart Series Style.

4. To add additional series style elements, right-click af:group and choose Insert
Inside Group > Chart Series Style for each additional element.

5. Right-click dvt:chartSeriesStyle and choose Go to Properties.

6. In the Properties window, enter values for the desired customization.

• Action: Specify the method reference to use for the action attribute, or choose
Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the method reference.

• ActionListener: Specify the method reference to use for the action listener, or
choose Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the method reference.

• AreaColor: Specify the RGB value in hexadecimal notation to use for the area
fill color, or choose Expression Builder from the attribute's dropdown menu
to enter an expression that evaluates to the RGB value.

For example, enter #000080 to display the area fill color in blue.

• AssignedToY2: From the attribute's dropdown list, select true to customize
the y2-axis.

• BorderColor: Specify the RGB value in hexadecimal notation to use for the
border color, or choose Expression Builder from the attribute's dropdown
menu to enter an expression that evaluates to the RGB value.

For example, enter #008000 to display the series border color in green.

• BorderWidth: Specify the numeric value to use for the border width, or
choose Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the numeric value.

For example, enter 4 to display the series border with a width of 4.

• Color: Specify the RGB value in hexadecimal notation to use for the series
color, or choose Expression Builder from the attribute's dropdown menu to
enter an expression that evaluates to the RGB value.

• DisplayInLegend: From the attribute's dropdown list, select false if you do
not want to display the series in the legend. By default, this attribute is set to
true.

• LineStyle: From the attribute's dropdown list, select a line style. By default,
this attribute is set to solid which will display a solid line. You can also set this
to dashed or dotted.

• LineType: From the attribute's dropdown list, select a line type. By default,
this attribute is set to auto. You can also set this to straight, curved,
stepped, centeredStepped, segmented, centeredSegmented or none.

• LineWidth: Specify the width in pixels for the line.

• MarkerColor: Specify the RGB value in hexadecimal notation to use for the
series color, or choose Expression Builder from the attribute's dropdown
menu to enter an expression that evaluates to the RGB value.

• MarkerDisplayed: From the attribute's dropdown list, select true to display
the line or area series marker. By default, this attribute is set to false.

• MarkerSize: Enter a value in pixels for the marker size.

Chapter 23
Customizing Chart Display Elements

23-81

• Pattern: From the attribute's dropdown list, select a series pattern.

Available patterns include smallChecker, smallCrosshatch,
smallDiagonalLeft, smallDiagonalRight, smallDiamond, smallTriangle,
largeChecker, largeCrosshatch, largeDiagonalLeft, largeDiagonalRight,
largeDiamond, and largeTriangle.

• Series: Enter the name of the series.

For example, to customize the first series in your chart, enter: Series 1.

If your application uses the Fusion technology stack and you are configuring a
databound chart, the Series field will display the available bindings in the
attribute's dropdown list. For more information about databound charts, see
Creating Databound Charts in Developing Fusion Web Applications with
Oracle Application Development Framework

• StackCategory: Enter a string value to denote the stackCategory of the
series. Series with the same stackCategory will be stacked together, allowing
for some series to remain solo while others are stacked as desired. This
attribute will only function if the stack attribute on the parent chart tag is set to
on.

For example, in a chart with five series, add a string such as stack1to the
StackCategory attribute of both Series 1 and Series 4 to stack them
together and leave the others as individual bars.

• Type: From the attribute's dropdown list, select the chart type to use for the
combination chart series.

Available choices include area, bar, line, or lineWithArea.

How to Configure Series Fill Effects on All Series in a Chart
To customize the series fill effects for all series in the chart, specify a value for the
seriesEffect attribute.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure series fill effects for all series in a chart:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, from the SeriesEffect attribute's dropdown list, select
the desired fill effect.

By default, the SeriesEffect attribute is set to gradient. You can select color to
render the chart without gradients or pattern to display each series in a different
pattern.

Chapter 23
Customizing Chart Display Elements

23-82

If you want to specify specific patterns for a series, see How to Customize a Chart
Series.

Customizing Chart Groups
Chart groups support hierarchical labels for data item groups. These labels can be
customized with styles, tooltips, and drilling.

You can customize chart group hierarchies by adding the dvt:chartGroup component
to your chart. To create each level of hierarchy, you can nest an additional
dvt:chartGroup tag. The hierarchy group labels can be unevenly distributed and
support custom styling, including font face and size, text color and backgrounds.

Note:

Spark charts contain only a single series and do not support chartGroup. To
customize the spark chart, enter values for the dvt:sparkChart component
in the Properties window. You can customize the series color and specify
which markers are displayed. For more information, click Component Help in
the Properties window.

How to Customize a Chart Group
To customize an individual group in a chart, add the dvt:chartGroup component to
the chart and configure its attribute values in the Properties Window.

Table 23-8 lists the attributes available on the chartGroup tag.

Table 23-8 dvt:chartGroup Attributes

Attribute Description

drilling Specifies whether this group can be drilled. Valid values are 'off' (default) and 'on'.
When set to 'on', the existing drillEvent will be fired when the user clicks/taps
on a the group label.

group Specifies the name of the group. The name will be used as a group label.

groupId Specifies the group ID for matching the group with the group or groupId of the
ChartDataItem. Required for leaf chartGroup elements when using
hierarchical groups. The groupId must be unique for each chartGroup instance.

labelStyl
e

Specifies the label style for the group specified by the group attribute.

rendered Specifies whether the component is rendered. Valid values are 'true' (default) and
'false'.

shortDesc Specifies the text that appears as a tooltip upon hovering over the component.
The tooltip is used for the group

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For information about configuring charts, see Configuring Charts.

Chapter 23
Customizing Chart Display Elements

23-83

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Chart Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To customize a chart group:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Facet groupStamp.

2. If you plan on customizing more than one non—hierarchical group in your chart,
right-click f:facet - groupStamp and choose Insert Inside Facet group Stamp >
Group.

3. Right-click af:group or f:facet groupStamp and choose Insert Inside (Group or
Facet groupStamp) > Chart Group.

4. To add additional group elements, right-click af:group and choose Insert Inside
Group > Chart Group for each additional element.

5. Right-click dvt:chartGroup and choose Go to Properties.

6. In the Properties window, enter values for the desired customization.

• Group: Enter a string value or choose Expression Builder from the attribute's
dropdown menu to provide an expression that evaluates to the string that will
be displayed as the group label.

• GroupId: Enter a string value or choose Expression Builder from the
attribute's dropdown menu to provide an expression that evaluates to a string
that matches the corresponding value of the ChartDataItem.

• LabelStyle: Enter a string value or choose Expression Builder from the
attribute's dropdown menu to provide an expression that evaluates to the
custom CSS markup for styling the group label.

• ShortDesc: Enter a string value or choose Select Text Resource or
Expression Builder from the attribute's dropdown menu to provide an
expression that evaluates to the string that will be displayed as a tooltip upon
hovering over the group.

How to Configure Hierarchical Labels Using Chart Groups

Chart groups support hierarchical nesting to represent multi-level grouping in data.
Figure 23-53 shows two charts with a hierarchical X-axis. The bar chart has even
hierarchical distribution and the default styling on group labels. The area chart has
uneven distribution and custom styles applied.

Chapter 23
Customizing Chart Display Elements

23-84

Figure 23-53 Hierarchical Group Labels in Chart Axis

The example below shows the code snippet on the JSF page for the bar and area
charts with custom hierarchical labels, with the relevant code for the labels highlighted
in bold font.

<dvt:barChart value="#{chartDataSource.brandData}" var="row" inlineStyle="width:
700px;height:400px" title="Hierarchical Group Labels">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.brand}" group=""
groupId="#{row.region}_#{row.year}" value="#{row.value}"/>
 </f:facet>
 <f:facet name="groupStamp">
 <dvt:chartGroup group="#{row.region}" groupId="#{row.region}">
 <dvt:chartGroup group="#{row.year}"
groupId="#{row.region}_#{row.year}"/>
 </dvt:chartGroup>
 </f:facet>
 <dvt:chartYAxis title="Number of units sold"/>
 <dvt:chartLegend rendered="true"/>

Chapter 23
Customizing Chart Display Elements

23-85

 <dvt:chartValueFormat type="group" tooltipLabel="Region" />
 <dvt:chartValueFormat type="group" tooltipLabel="Year" />
 <dvt:chartValueFormat type="series" tooltipLabel="Department" />
</dvt:barChart>

<dvt:areaChart value="#{chartDataSource.defaultAreaData}" var="row"
inlineStyle="width:700px;height:400px" title="Hierarchical Group Labels with Uneven
Hierarchy and Custom Styling">
 <f:facet name="dataStamp">
 <dvt:chartDataItem series="#{row.series}" group="#{row.group}"
value="#{row.value}"/>
 </f:facet>
 <f:facet name="groupStamp">
 <dvt:chartGroup group="Group AA" groupId="Group AA"
shortDesc="Outermost group" labelStyle="font-size: 20px; ">
 <dvt:chartGroup group="Inner #{row.group}"
groupId="#{row.group}" shortDesc="Sub Level 1" labelStyle="font-size:
14px; font-family: Comic Sans MS" rendered="#{row.group != 'Group B' and
row.group != 'Group C'}"/>
 <dvt:chartGroup group="Group AB" groupId="Group AB"
shortDesc="Sub Level 1" labelStyle="font-size: 20px; ">
 <dvt:chartGroup group="Inner #{row.group}"
groupId="#{row.group}" shortDesc="Sub Level 2" labelStyle="font-size:
14px; font-family: Comic Sans MS" rendered="#{row.group == 'Group C'}"/>
 </dvt:chartGroup>
 </dvt:chartGroup>
 </f:facet>
 <dvt:chartLegend rendered="false"/>
</dvt:areaChart>

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. SeeConfiguring Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. SeeAdditional Functionality for Chart Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To create a chart group hierarchy:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Facet groupStamp.

2. If you plan on customizing more than one non—hierarchical group in your chart,
right-click f:facet - groupStamp and choose Insert Inside Facet group Stamp >
Group.

3. Right-click af:group or f:facet groupStamp and choose Insert Inside (Group or
Facet groupStamp) > Chart Group.

4. To create a nested group in your hierarchy, right-click the parent dvt:chartGroup
and choose Insert Inside Chart Group > Chart Group for each additional level of
nesting.

5. Repeat step 3 to create non-nested groups. Repeat step 4 to add more branch
elements to your hierarchy.

Chapter 23
Customizing Chart Display Elements

23-86

6. Right-click a dvt:chartGroup tag you want to customize and choose Go to
Properties.

• Enter values in the Group and GroupId attributes to specify the data value for
the group.

• Enter values in appropriate attributes to configure the label styles.

7. Repeat step 6 for each dvt:chartGroup tag to provide data values and styles as
required.

To learn about customizing label styles, see How to Customize a Chart Group.

How to Configure the Pie Chart Other Slice
Use the Other slice to aggregate smaller data sets visually into one larger set for
easier comparison, as shown in Figure 23-36. To configure the Other slice, set a value
for the otherThreshold attribute which specifies the percentage under which the slice
would be aggregated into the Other slice. Optionally, you can set a value for the Other
slice color.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure the pie chart Other slice:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, expand the Appearance section.

By default, the SeriesEffect attribute is set to gradient. You can select color to
render the chart without gradients or pattern to display each series in a different
pattern.

If you want to specify specific patterns for a series, see How to Customize a Chart
Series.

3. In the OtherThreshold field, enter a value between 0 and 1 to set the percentage
under which the slide will be aggregated.

For example, if you want to aggregate all slices whose values are less than two
percent of the pie chart's total, enter 0.02.

4. Optionally, in the OtherColor field, specify the RGB value in hexadecimal notation
to use for the border color, or choose Expression Builder from the attribute's
dropdown menu to enter an expression that evaluates to the RGB value.

For example, enter #008000 to display the Other slice in green.

Chapter 23
Customizing Chart Display Elements

23-87

How to Explode Pie Chart Slices
You can configure the slices of a pie chart so that each slice is separated from the
other using the sliceGaps attribute of the dvt:pieChart tag or the explode attribute of
the dvt:pieDataItem tag. You can specify a value between 1 and 10 for the distance
between the slices.

Figure 23-54 shows the pie chart displayed in Figure 23-41 configured for exploding
slices. In this example, the explode attribute for the pie chart's data item is defined as
0.25.

Figure 23-54 Pie Chart Configured For Exploding Slices

You can also configure an individual slice to explode using the explode attribute. You
can also configure a selected slice to automatically explode using the
SelectionEffect attribute of the pie chart. Figure 23-55 shows the same pie chart
configured to explode the Series 1 slice.

Figure 23-55 Pie Chart Configured With Single Exploding Slice

To configure an individual slice, you can use an EL expression to identify the slice and
the value for the explode attribute. The individual slices in a pie chart are its series,
and you can reference the series number in the EL expression.

Chapter 23
Customizing Chart Display Elements

23-88

For example, to set the explode attribute for the first series (slice) in the pie chart to
0.5, enter the following for the EL expression: #{row.series == 'Series 1' ? 0.5 :
0}. If you wanted to set the explode attribute for the third series to 0.25, you could
enter the following for the EL expression: #{row.series == 'Series 3' ? 0.25 : 0}.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To explode pie slices:

1. In the Structure window, right-click dvt:pieDataItem and choose Go To
Properties.

2. In the Properties window, expand the Appearance section.

3. To explode all slices in the pie chart, in the Explode field, enter a value between 0
and 1.

4. To explode a single slice in the pie chart, in the Explode field, enter an EL
Expression that evaluates to the series name and explode value.

For example, to explode the first series in the pie chart shown in Figure 23-55,
enter the following in the Explode field: #{row.series == 'Series 1' ? 0.5 :
0}.

How to Configure Animation
To configure chart animation, add the af:transition tag as a child of the chart
component and configure the trigger type and transition effect.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure chart animation:

1. In the Structure window, click the chart component.

2. In the Source editor, add the af:transition tag as a child of the highlighted chart
component as shown in the following example.

<af:transition triggerType="display" transition="auto"/>

Chapter 23
Customizing Chart Display Elements

23-89

What You May Need to Know About Skinning and Customizing Chart
Display Elements

Charts also support skinning to customize the color and font styles for the top level
components as well as the axes, legend, series, marquee icon, labels, and plot area.
You can also use skinning to define the animation duration and chart series effect.

The code below shows the skinning key for a chart configured to show patterns for its
series fill effect.

af|dvt-chart
 {
 -tr-series-effect: pattern;
 }

For the complete list of chart skinning keys, see the Oracle Fusion Middleware Data
Visualization Tools Tag Reference for Oracle ADF Faces Skin Selectors. For
additional information about customizing your application using skinning and styles,
see Customizing the Appearance Using Styles and Skins.

Adding Interactive Features to Charts
You can add a variety of interactive features to ADF DVT charts, including data
cursors, hide and show behavior, hover behavior, selection support, popups, context
menus, and zoom and scroll.

How to Add a Data Cursor
Add a data cursor to your chart to allow the user to focus more easily on data points.
For charts where selection and other click interactivity is not enabled, the data cursor
can be used to provide feedback for the closest data item to the mouse or touch
gesture.

The data cursor is enabled by default for area and line charts on touch devices. To
add the data cursor explicitly, set the dataCursor attribute to on and define the data
cursor's behavior.

Figure 23-56 shows the line chart displayed in Figure 23-40 configured with a data
cursor. In this example, the data cursor displays the series name, group value and
series value. The box surrounding the data detail is displayed in the same color as the
series fill color.

Chapter 23
Adding Interactive Features to Charts

23-90

Figure 23-56 Line Chart With Data Cursor Showing Investor Detail

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure a chart data cursor:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, expand the Data section.

3. From the DataCursor attribute's dropdown list, select on to enable the data cursor.

4. From the DataCursorBehavior attribute's dropdown list, select smooth or snap to
specify the data cursor behavior.

By default, the data cursor's behavior is set to auto, and the data cursor moves
smoothly for line and area charts, and it snaps for other chart types. You can set
this to smooth or snap to set the behavior explicitly.

Note:

The content displayed in the data cursor's tooltip is determined by the
dvt:chartDataItem or dvt:pieDataItem component's shortDesc attribute.
You can edit this value in the Properties window for dvt:chartDataItem or
dvt:pieDataItem.

How to Configure Hide and Show Behavior
To configure hide and show behavior, which permits the user to click on a legend
series item to hide or show a series item, configure the chart's hideAndShowBehavior
attribute.

Chapter 23
Adding Interactive Features to Charts

23-91

Figure 23-57 shows a bar chart configured for hide and show behavior support. The
user can click multiple legend items to hide the respective series items, and click again
to show them again. The legend items have a white fill to indicate which series are
hidden.

Figure 23-57 Bar Chart Configured for Hide and Show Behavior

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

Chapter 23
Adding Interactive Features to Charts

23-92

To configure hide and show behavior:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, expand the Behavior section.

3. From the HideAndShowBehavior attribute's dropdown list, select withRescale or
withoutRescale to specify the data cursor behavior.

If you select withoutRescale, the chart will not rescale the axes to fit the data.
Select withRescale if you want the chart to rescale the axes.

How to Configure Legend and Marker Dimming
To configure legend and marker dimming, set the chart's hoverBehavior attribute to
dim. As the user hovers over each series, the remaining series dim from view.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure legend and marker dimming:

1. In the Structure window, right-click dvt:typeChart and choose Go To Properties.

2. In the Properties window, expand the Behavior section.

3. From the HoverBehavior attribute's dropdown list, select dim.

How to Configure Selection Support
Charts can be enabled for single or multiple selection of data markers. Enabling
selection is required for popups and context menus and for responding
programmatically to user clicks on the data markers. To enable selection support, set
the chart's dataSelection attribute to single or multiple.

After you have enabled selection support, you can specify a selection listener that will
respond to user clicks on the chart.

Figure 23-58 shows a bar chart configured for multiple selection support. The user can
click to select a single bar or use Ctrl-Click to select multiple bars. The bars highlight to
show which bars are selected, and a message is displayed at the top of the page
indicating which row key was selected.

Chapter 23
Adding Interactive Features to Charts

23-93

Figure 23-58 Bar Chart Configured for Multiple Selection

The example below shows the code on the JSF page that defines the bar chart and
selection listener, with the selection code highlighted.

<af:group id="g1">
 <af:outputText inlineStyle="font-size:large;" value="Selection Listener" id="ot1"/>
 <af:spacer width="50px"/>
 <af:outputText partialTriggers="chartSelect"
 value="#{chartDataSource.selectionState}"
 inlineStyle="font-size:larger;" id="ot2"/>
 <af:panelGroupLayout id="pgl1" layout="horizontal">
 <dvt:barChart id="chartSelect" value="#{chartDataSource.defaultBarData}"
 var="row" dataSelection="multiple"
 selectionListener="#{chartDataSource.selectionListener}">
 <dvt:chartLegend id="leg1" rendered="false"/>
 <f:facet name="dataStamp">
 <dvt:chartDataItem id="cdi1" value="#{row.value}" group="#{row.group}"
 series="#{row.series}"/>
 </f:facet>
 </dvt:barChart>
 </af:panelGroupLayout>
</af:group>

In this example, the code that defines the bar chart is included in a method named
defaultBarData(), and the selection listener is defined in a method named
selectionListener().

The code below shows the defaultBarData() and selectionListener() methods.
The methods and imports were added to the chartDataSource class created in the
first code sample in How to Add Data to Area, Bar, Combination, and Line Charts.

// Additional imports needed by selection listener
import oracle.adf.view.faces.bi.component.chart.UIChartBase;import
org.apache.myfaces.trinidad.event.SelectionEvent;
import org.apache.myfaces.trinidad.model.RowKeySet;

// Bar Chart data
public CollectionModel getDefaultBarData() { List<ChartDataItem> dataItems = new
ArrayList<ChartDataItem>(); dataItems.add(new ChartDataItem("Series 1", "Group A",
42)); dataItems.add(new ChartDataItem("Series 1", "Group B", 34));
dataItems.add(new ChartDataItem("Series 2", "Group A", 55)); dataItems.add(new
ChartDataItem("Series 2", "Group B", 30)); dataItems.add(new ChartDataItem("Series
3", "Group A", 36)); dataItems.add(new ChartDataItem("Series 3", "Group B", 50));
dataItems.add(new ChartDataItem("Series 4", "Group A", 22)); dataItems.add(new
ChartDataItem("Series 4", "Group B", 46)); dataItems.add(new ChartDataItem("Series
5", "Group A", 22)); dataItems.add(new ChartDataItem("Series 5", "Group B", 46));

Chapter 23
Adding Interactive Features to Charts

23-94

return ModelUtils.toCollectionModel(dataItems);
}

// Selection state
private String m_selection = "No Nodes Selected";
public String getSelectionState() {
 return m_selection;
}

// Selection Listener
public void selectionListener(SelectionEvent event) {
 UIChartBase chart = (UIChartBase) event.getComponent();
 RowKeySet rowKeySet = chart.getSelectedRowKeys();
 if(rowKeySet != null && rowKeySet.size() > 0) {
 StringBuilder sb = new StringBuilder("Selection: ");
 for(Object rowKey : rowKeySet) {
 sb.append(rowKey).append(", ");
 }
 // Remove the trailing comma and set the selection string
 sb.setLength(sb.length()-2);
 m_selection = sb.toString();
 }
 else
 m_selection = "No Nodes Selected";
}

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure chart selection support:

1. In the Structure window, right-click dvt:typeChart and choose Go to Properties.

2. In the Properties window, expand the Data section.

3. From the DataSelection dropdown list, select single or multiple to enable
selection support.

4. Optionally, to enable a selection listener, do the following.

a. Create the method or methods that define the selection listener, and add it to
the chart's managed bean.

If you need help creating classes, see "Working with Java Code" in
Developing Applications with Oracle JDeveloper. For help with managed
beans, see Creating and Using Managed Beans.

b. In the Properties window, in the SelectionListener field, enter the name of the
selection listener.

For example, for a managed bean named chartDataSource and a method
named selectionListener(), enter the following in the SelectionListener
field:#{chartDataSource.selectionListener}.

Chapter 23
Adding Interactive Features to Charts

23-95

You can also choose Edit from the SelectionListener attribute's dropdown
menu to select a managed bean and method in the Edit Property: Selection
Listener dialog, or choose Expression Builder to enter an expression that
returns the selection listener.

5. Configure any additional elements as needed.

For example, to duplicate the multiple selection example in this section, add the
af:outputText components shown in the first code sample in How to Configure
Selection Support.

How to Configure Popups and Context Menus
The process to add a popup or context menu is essentially the same. Add the
af:showPopupBehavior tag as a child of one of the chart's data items, define the
trigger type as click for popup menus or contextMenu for context menus, and add an
af:popup containing the desired behavior to the page.

Figure 23-59 shows the pie chart displayed in Figure 23-41 configured for popup
support. If the user clicks one of the pie slices, a note window pops up with a
message.

Figure 23-59 Pie Chart Configured With a Note Window Popup

The example below shows the code on the page for the popup menu shown in
Figure 23-59. In this example, the af:showPopupBehavior component uses the
popupId to reference the af:popup component. The af:popup component is configured
with the af:noteWindow component which is configured to display a simple message in
the af:outputFormatted component. The triggerType of the af:showPopupBehavior
tag is set to click, and the note window will launch when the user clicks one of the pie
chart's slices.

<af:group id="g1">
 <dvt:pieChart id="chart1" value="#{chartDataSource.defaultPieData}"
 var="row" dataSelection="single">
 <dvt:chartLegend id="leg1" rendered="true"/>
 <dvt:pieDataItem label="#{row.series}" value="#{row.value}" id="pdi1">
 <af:showPopupBehavior popupId="::noteWindowPopup" triggerType="click"
 align="afterStart"/>
 </dvt:pieDataItem>
 </dvt:pieChart>
 <af:popup childCreation="deferred" autoCancel="disabled"
 id="noteWindowPopup" clientComponent="true"

Chapter 23
Adding Interactive Features to Charts

23-96

 launcherVar="source" eventContext="launcher">
 <af:noteWindow id="nw1">
 <af:outputFormatted value="This is an example of a chart popup"
id="of1"/>
 </af:noteWindow>
 </af:popup>
</af:group>

You can change the popup to a context menu by simply changing the trigger type for
the af:showPopupBehavior component to contextMenu as shown in the following code
snippet:

<af:showPopupBehavior popupId="::noteWindowPopup" triggerType="contextMenu"/>

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

Add a popup component to your page. For help with configuring the af:popup
component, see Using Popup Dialogs, Menus, and Windows.

To add a popup or context menu to a chart:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Show Popup Behavior.

2. Right-click af:showPopupBehavior and choose Go to Properties.

3. In the Properties window, enter values for the following:

• PopupId: Specify the ID of the af:popup component.

• TriggerType: For popup menus, enter click. For context menus, enter
contextMenu.

Optionally, set values for Align, AlignId, and Disabled. Click Component Help
for more information about the af:showPopupBehavior component.

4. In the Structure window, right-click dvt:typeChart and choose Go to Properties.

5. In the Properties window, expand the Data section.

6. From the DataSelection dropdown list, select single or multiple to enable
selection support.

How to Configure Chart Zoom and Scroll
You can configure your chart to include marquee zoom and scroll which permits the
user to focus on an area of the chart or scroll through the data using the mouse. This
feature can be useful for large data sets.

Figure 23-60 shows a bubble chart configured for marque zoom and scroll. The user
can select an area on the chart and then release the mouse button to zoom in on the

Chapter 23
Adding Interactive Features to Charts

23-97

selected area. The user can also scroll the mouse wheel upward to zoom in on chart
data. To restore the chart to its original display, the user can scroll the mouse wheel
downward.

Figure 23-60 Bubble Chart Configured for Marquee Zoom and Scroll

To configure marque zoom and scroll, set a value for the chart's zoomAndScroll
attribute.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Chapter 23
Adding Interactive Features to Charts

23-98

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To configure marquee zoom and scroll:

1. In the Structure window, right-click dvt:typeChart and choose Go to Properties.

2. In the Properties window, expand the Behavior section.

3. From the ZoomAndScroll dropdown list, select the desired zoom and scroll
behavior. By default, this attribute is set to off. Available options include:

• delayed: Specifies that the chart update will wait until the zoom or scroll action
is done. Both zoom and scroll will be enabled.

Specify a delay if the chart display is slow to render.

• delayedScrollOnly: Specifies that the chart update will wait until the scroll
action is done. The marquee zoom icon will not be displayed.

• live: Specifies that the chart will be updated continuously as it is being
manipulated. Both zoom and scroll will be enabled.

• liveScrollOnly: Specifies that the chart will be updated continuously as it is
being manipulated. The marquee zoom icon will not be displayed.

You can also choose Expression Builder from the ZoomAndScroll attribute's
dropdown menu to enter an expression that returns the zoom and scroll behavior.

4. Optionally, to enable a selection listener, do the following.

a. Create the method or methods that define the selection listener, and add it to
the chart's managed bean.

If you need help creating classes, see "Working with Java Code" in
Developing Applications with Oracle JDeveloper. For help with managed
beans, see Creating and Using Managed Beans.

b. In the Properties window, in the SelectionListener field, enter the name of the
selection listener.

For example, for a managed bean named chartDataSource and a method
named selectionListener(), enter the following in the SelectionListener
field:#{chartDataSource.selectionListener}.

You can also choose Edit from the SelectionListener attribute's dropdown
menu to select a managed bean and method in the Edit Property: Selection
Listener dialog, or choose Expression Builder to enter an expression that
returns the selection listener.

5. Configure any additional elements as needed.

For example, to duplicate the multiple selection example in this section, add the
af:outputText components shown in the first code sample in How to Configure
Selection Support.

How to Configure Chart Overview Window
You can add a viewport to the chart which uses a small form factor to display the
entire data set, and then configure the original line chart to display a subset of the
data.

Chapter 23
Adding Interactive Features to Charts

23-99

Figure 23-61 shows the line chart in Figure 23-40 configured with an overview port.
When the user zooms in on a chart area, the viewport changes to match the user's
selection. The user can stretch or shrink the viewport dragging the handles on each
side of the viewport.

Figure 23-61 Line Chart Configured With Overview

To configure an overview window, add the overview facet and overview window to the
chart, and configure the chart's axis for the overview range.

Before you begin:

It may be helpful to have an understanding of how chart attributes and child tags can
affect functionality. For more information about configuring charts, see Configuring
Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Chart
Components.

Add a chart to your page. For help with adding a chart to a page, see How to Add a
Chart to a Page.

To add an overview window to your chart:

1. In the Structure window, right-click dvt:typeChart and choose Insert Inside Chart
> Facet overview.

2. Right-click f:facet - overview and choose Insert Inside Facet overview >
Overview.

3. Right-click dvt:overview and choose Go to Properties.

4. In the Properties window, enter values to style the overview window as desired.

For example, you can specify an inline style or style class to use for the overview
window. For help with the overview window properties, click Component Help.

5. If your chart does not include an x-axis, in the Structure window, right-click
dvt:typeChart and choose Insert Inside Chart > Chart XAxis.

Chapter 23
Adding Interactive Features to Charts

23-100

6. Right-click dvt:chartXAxis and choose Go to Properties.

7. In the Properties window, expand the Viewport section.

8. From the Viewport attribute's dropdown list, enter values for the following as
needed to set the viewport's range.

• ViewportStartGroup: Specifies the start group of the current viewport. This
attribute only applies to charts with a group or time x axis. If not specified, the
default start group is the first group in the data set.

For example, if your chart's groups consist of city data, you could enter the city
name for the ViewportStartGroup: London.

You can also choose Expression Builder from the attribute's dropdown menu
to enter an expression that returns the viewport's start group.

• ViewportEndGroup: Specifies the end group of the current viewport. This
attribute only applies to charts with a group or time x axis. If not specified, the
default end group is the last group in the data set.

• ViewportMinimum: Specifies the minimum x-axis coordinate of the current
viewport for zoom and scroll.

For a group axis, the group index will be treated as the x-axis coordinate. For
a time axis, the time stamp of the group will be treated as the x-axis
coordinate. If both viewportStartGroup and viewportMinimum are specified,
then viewportStartGroup takes precedence. If not specified, this value will be
the axis minimum.

You can also choose Expression Builder from the attribute's dropdown menu
to enter an expression that returns the viewport minimum. For the line chart
displayed in Figure 23-61, a method is added to the chartDataSource
managed bean to return the viewport minimum.

The code below shows a sample method that returns the viewport minimum.
In this example, the chart is configured with a viewport minimum of January 1,
2016.

// Add these imports to your bean
import java.util.Date;
import java.util.GregorianCalendar;

public Date getStockViewportMinimum() {
 return new GregorianCalendar(2016, 0, 1).getTime();
}

To use this method for your chart, enter the following for the
ViewportMinimum: #{chartDataSource.stockViewportMinimum}.

• ViewportMaximum: Specifies the maximum x-axis coordinate of the current
viewport for zoom and scroll.

You can also choose Expression Builder from the ViewportMaximum
attribute's dropdown menu to enter an expression that returns the zoom and
scroll behavior.

Chapter 23
Adding Interactive Features to Charts

23-101

24
Using Picto Chart Components

This chapter describes how to use the ADF Data Visualization Picto Chart component
to display data in picto charts using simple UI-first development. The chapter defines
the data requirements, tag structure, and options for customizing the look and
behavior of these components.

If your application uses the Fusion technology stack, you can use data controls to
create picto charts. For more information, see "Creating Databound Picto Charts" in
Developing Fusion Web Applications with Oracle Application Development
Framework.

• About the Picto Chart Component

• Using the Picto Chart Component

About the Picto Chart Component
The ADF DVT Picto Chart components use icons to visualize an absolute number, or
the relative sizes of the different parts of a population. Picto Charts are extensively
used in infographics as a more interesting and effective way to present numerical
information than traditional tables and lists.

Picto Charts are intended to be used in the default flowing layout. This makes the tool
versatile since it can be easily used to visually enhance or support information in text
or other ADF Data Visualization components. For example, the different slices of a
funnel chart can be represented in absolute numbers as different parts of a population
in a picto chart.

Picto Chart Use Cases and Examples
Picto Charts are a versatile tool that can be used along with other components to
display data in a visually appealing manner. There are several use cases.

Picto charts can be used to enhance statements about absolute numbers and act as a
visual aid. Figure 24-1 shows picto charts reflecting the absolute value mentioned in
the accompanying statements.

24-1

Figure 24-1 Picto Charts with Absolute Values

Picto Charts can be used to highlight a portion of a population as a comparison. This
works best when the ratio is small. Figure 24-2 shows a single picto chart configured
to highlight three out of twenty human figures to illustrate the point made in the
accompanying statement.

Figure 24-2 Simple Picto Chart to illustrate a Part of a Population

Another use case of picto charts is to create a comparison between parts of a
population by highlighting the distribution of parts. For example, Figure 24-3 shows
three picto charts together in the default flow layout, each configured to show the
number of medals won by the USA at the 2012 Summer Olympics. The three picto
charts have been configured to correlate the size of the circle with the rank of the
medal.

Chapter 24
About the Picto Chart Component

24-2

Figure 24-3 Picto Chart with varying sizes of items

Picto charts may also be used a set of singletons in order to display unique information
for each data point. Figure 24-4 shows a collection of picto charts to represent USA’s
medal count in the 2014 Winter Olympics. Thecount attribute for each picto chart is set
to 1 and the tooltip for each picto chart is configured to show the name of the athlete
who won that medal.

Figure 24-4 A collection of Singleton Picto Charts with Unique Information

Multiple picto charts can be arranged within a table to highlight business data.
Figure 24-5 shows a table with sales figures of Apple products in the years 2011 and
2012. Each square represents 10 million units.

Chapter 24
About the Picto Chart Component

24-3

Figure 24-5 Picto Charts arranged within Table

End User and Presentation Features of Picto Charts
Picto Charts have several end user and configurable presentation features.

Picto Charts support custom shapes via the source attribute.Figure 24-6 shows a
sample picto chart for a survey on preferred iconic character of choice. Three custom
shapes have been provided to indicate the survey options and results.

Figure 24-6 Picto Chart with Custom Shapes

Picto Charts have flowing layouts, which means that data items are rendered next to
each other in the direction provided, given that the container does not have a set width
and height.

Picto Chart data items can be rendered in different combinations of directions. Picto
charts may be laid out in a horizontal flow or a vertical flow depending on the value of
the layout attribute, and the data items can be rendered from any of the four corners
of the container. Figure 24-7 shows how data items are laid out in a horizontal layout
depending on the value of the layoutOrigin attribute.

Chapter 24
About the Picto Chart Component

24-4

Figure 24-7 Layout Origin for Picto Chart Data Items in a Horizontal Layout

Figure 24-8 shows how data items are laid out in a vertical layout depending on the
value of the layoutOrigin attribute.

Figure 24-8 Layout Origin for Picto Chart Data Items in a Vertical Layout

Additional Functionality for Picto Chart Components
You may find it helpful to understand other ADF Faces features before you implement
your picto chart. Additionally, once you have added a picto chart to your page, you
may find that you need to add functionality such as validation and accessibility.

Following are links to other functionality that picto chart components can use:

• Client-side framework: DVT components are rendered on the client when the
browser supports it. You can respond to events on the client using the
af:clientListener tag. For more information, see Listening for Client Events.

• Partial page rendering: You may want a picto chart to refresh to show new data
based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the picto chart displays
at runtime, those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: You can make your picto chart components accessible. For more
information, see Developing Accessible ADF Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For

Chapter 24
About the Picto Chart Component

24-5

additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of picto chart components
using an ADF skin that you apply to the application or by applying CSS style
properties directly using a style-related property (styleClass or inlineStyle). For
more information, see Customizing the Appearance Using Styles and Skins.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound picto charts based on how your ADF Business
Components are configured. For more information, see Creating Databound Picto
Charts in Developing Fusion Web Applications with Oracle Application
Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), and how data can
be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Using the Picto Chart Component
To use the ADF DVT Picto Chart component, add the picto chart to a page using the
Component Palette window. Then define the data for the picto chart and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window.

Picto Chart Data Requirements
The picto chart in its most basic form only requires a single numeric value.

The picto chart uses the value specified in the count attribute to display an absolute
representation of the number. To represent a portion of a population, two
pictoChartItem can be used, with two count attributes specified to represent the
active portion and inactive portion of the population. Similarly, to represent multiple
parts of a population, additional pictoChartItem may be used and styled to show
each part in a unique manner.

Data of type int, long or double may be used, since picto charts support fractional
values. Data may be provided as an absolute entity or mapped to a data control.

Chapter 24
Using the Picto Chart Component

24-6

How to Add a Picto Chart to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a picto chart to a JSF page. When you drag and drop a
picto chart component onto the page, the picto chart is added to your page, and you
can use the Properties window to specify data values and configure additional display
attributes.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. The figure shows the
dropdown menu for a picto chart value attribute.

Figure 24-9 Picto Chart Value Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a Picto Chart and the binding will be done for you. For
more information, see the "Creating Databound Picto Charts" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Before you begin:

It may be helpful to have an understanding of how picto chart attributes and picto chart
child tags can affect functionality. For more information, see Configuring Picto Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Picto Chart
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

Chapter 24
Using the Picto Chart Component

24-7

2. Create a view page as described in Creating a View Page.

To add a picto chart to a page:

1. In the ADF Data Visualization page of the Components window, drag and drop a
Picto Chart from the Common panel to the page.

2. In the Properties window, view the attributes for the Picto Chart. Use the Help
button or press F1 to display the complete tag documentation for the pictoChart
component.

3. In the Structure window, expand the dvt:pictoChart element to find the
dvt:pictoChartItem element. View and modify the attributes for the
dvt:pictoChartItem in the Properties window.

4. To create complex picto charts, right-click the dvt:pictoChart element and for
each part of the population you wish to add, choose Insert Inside Picto Chart >
Picto Chart Item.

What Happens When You Add a Picto Chart to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a picto chart
from the Components window onto a JSF page.

The generated code is:

<dvt:pictoChart id="pic1">
 <dvt:pictoChartItem id="pi1"/>
</dvt:pictoChart>

After inserting a picto chart component into the page, you can use the visual editor or
Properties window to add data or customize picto chart features. For information about
setting component attributes, see How to Set Component Attributes.

If you choose to bind the data to a data control when creating the picto chart,
JDeveloper generates code based on the data model. For more information, see the
Creating Databound Picto Charts section in Developing Fusion Web Applications with
Oracle Application Development Framework.

Configuring Picto Charts
The Picto Chart component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the picto chart.

The prefix dvt: occurs at the beginning of the name of each picto chart component,
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library. You can configure Picto Chart child components, attributes, and supported
facets in the following areas:

• Picto Chart (dvt:pictoChart): Wraps the picto chart child tags. Configure the
following attributes to control the picto chart display:

– layoutRowCount: The number of rows that the picto chart has.

– layoutColumnCount: The number of columns that the picto chart has.

– layout: The layout of the picto chart. May be horizontal or vertical.

– layoutOrigin: The location where the first pictoChartItem will be rendered.

Chapter 24
Using the Picto Chart Component

24-8

– rowHeight: The height of a row in pixels. Only applicable to picto charts using
a flowing layout.

– columnWidth: The width of a row in pixels. Only applicable to picto charts
using a flowing layout.

• Picto Chart data item (dvt:pictoChartItem): Use to define the properties for a
portion of the represented population. Configure the following attributes to control
the picto chart item display:

Table 24-1 Picto Chart Child Component Attributes

Child Tag
Attribute

Description

borderColo
r

The border color of the icon. Does not apply if custom image is specified.

borderWidt
h

The border width of the icon. Does not apply if custom image is specified.

color The color of the icon. Does not apply if custom image is specified.

columnSpan The number of columns each icon spans. Used for creating a picto chart
with mixed icon sizes. Defaults to 1.

count The item count. Supports fractional values. Defaults to 1.

name The name of the item. Used for default tooltip and accessibility.

rowSpan The number of rows each icon spans. Used for creating a picto chart with
mixed icon sizes. Defaults to 1.

shape The shape of the icon. Does not apply if custom image is specified.
Supported values are circle, diamond, human, plus, rectangle,
square, star, triangleUp and triangleDown.

source The image URI of the custom icon. If specified, it takes precedence over
shape.

sourceHove
r

The optional URI for the hover state. if not specified, the source image will
be used.

sourceHove
rSelected

The optional URI for the hover selected state. if not specified, the source
image will be used.

sourceSele
cted

The optional URI for the selected state. if not specified, the source image
will be used.

• Picto Chart facets: Picto charts do not support facets.

Chapter 24
Using the Picto Chart Component

24-9

25
Using Gauge Components

This chapter describes how to use the ADF Data Visualization dial, LED, rating, and
status meter gauge components using simple UI-first development. The chapter
defines the data requirements, tag structure, and options for customizing the look and
behavior of the components.
If your application uses the Fusion technology stack, you can use data controls to
create gauges. For more information, see "Creating Databound Gauges" in Developing
Fusion Web Applications with Oracle Application Development Framework.

This chapter includes the following sections:

• About the Gauge Component

• Using the Gauge Component

• Customizing Gauge Display Elements

• Adding Interactivity to Gauges

About the Gauge Component
ADF DVT Gauges are measuring instruments for indicating a quantity such as sales,
stock levels, temperature, or speed. Gauges typically display a single data value, often
more effectively than charts.

Using thresholds, gauges can show state information such as acceptable or
unacceptable ranges using color. For example, a gauge value axis might show ranges
colored red, yellow, and green to represent low, medium, and high states. When you
need to compare many data values at a glance, multiple gauges can be shown inside
table cells.

Best Practice Tip:

When multiple data values, such as the text values of thresholds and the
current value are required, a list or table component may be a better choice
than a gauge.

The gauge component supports four categories of gauge types: dial, LED, rating, and
status meter.

Gauge Component Use Cases and Examples
Gauges are typically used to display a single data point. The following types of gauges
are supported by the gauge component:

• Dial: Displays a metric value plotted on a circular axis. The gauge's background
attribute determines whether the gauge's background is displayed as a rectangle,

25-1

circle, or semicircle. An indicator points to the dial gauge's metric value on the
axis.

Figure 25-1 shows three dial gauges with backgrounds set to full circle, partial
circle, and rectangle. In all three examples, the gauge's metric value is 63.

Figure 25-1 Dial Gauge Examples

• LED: Graphically depicts a measurement, such as a key performance indicator
(KPI). Several styles of shapes are available for LED gauges, including round or
rectangular shapes that use color to indicate status, and triangles or arrows that
point up, left, right, or down indicate good (up), fair (left- or right-pointing), or poor
(down) states in addition to the color indicator. A human shape is also available.

Figure 25-2 shows LED gauges configured with a variety of shapes, sizes, and
thresholds.

Figure 25-2 LED Gauge Examples

• Rating: Displays and optionally accepts input for a metric value. This gauge is
typically used to show ratings for products or services, such as the star rating for a
movie.

Figure 25-3 shows six rating gauges configured with star, circle, diamond,
rectangle, triangle, and human shapes. Rating gauges may be changed to have
either a horizontal or vertical orientation.

Chapter 25
About the Gauge Component

25-2

Figure 25-3 Rating Gauge Examples

• Status Meter: Displays the metric value on a horizontal, circular or vertical axis. An
inner rectangle shows the current level of a measurement against the ranges
marked on an outer rectangle. Optionally, status meters can display colors to
indicate where the metric value falls within predefined thresholds.

Figure 25-4 shows examples of status meter gauges configured as horizontal,
circular and vertical status meters. The gauges are configured to use thresholds
that display color to indicate whether the gauge's value falls within an acceptable
range.

Figure 25-4 Status Meter Gauge Examples

The figure shows an example of a circular status meter gauge configured to
display a portion of the plot area. This is useful to depict key performance
indicators (KPI) in a functional and visually intriguing manner.

End User and Presentation Features of Gauge Components
ADF Data Visualization gauge components provide a range of presentation features,
such as shape variations, threshold display, visual effects, animation, and
customizable color and label styles.

Chapter 25
About the Gauge Component

25-3

The gauge components also support interactivity features such as popup and context
menus. All gauges also include value change support, which allows the user to change
the gauge's metric value.

Gauge Shape Variations
Gauge shapes are configurable and vary by gauge type.

• Dial gauges: The background attribute sets shape and shading. Figure 25-5 shows
the backgrounds available for dial gauges, which include the circle, dome, and
rectangular shapes with alta, antique, dark, or light shading.

Figure 25-5 Dial Gauge Backgrounds

• LED gauge: The type attribute sets the LED gauge's shape. Figure 25-6 shows
the types available for the LED gauge, which include circle, rectangle, arrow,
triangle, diamond, and star.

Figure 25-6 LED Gauge Types

• Status meter gauge: The orientation attribute determines whether the status
meter is displayed along a horizontal, a circular, or a vertical axis. Figure 25-4
shows status meter gauges configured as horizontal bars, circles and vertical bars.

• Rating gauge: The rating gauge's shape attribute determines the rating gauge's
shape. Figure 25-3 shows the shapes available for the rating gauge, which include
the star, diamond, circle, rectangle, and triangle shapes.

Chapter 25
About the Gauge Component

25-4

Gauge Thresholds
Gauge thresholds contain values that represent the upper bound of a range on the
status meter or LED gauge. Typically, thresholds are defined to indicate whether a
gauge's metric value falls within an acceptable range.

Figure 25-7 shows three each of horizontal, circular and vertical status meter gauges,
each configured to show a red indicator when the gauge's metric value is at or below
30, a yellow indicator when the metric value is at or below 60, and a green indicator
when the metric value is greater than 60.

Figure 25-7 Status Meter Gauge Thresholds

Figure 25-8 shows three LED gauges, each configured to display its shape in red
when the gauge's metric value is at or below 30, in yellow when the metric value is at
or below 60, and in green when the metric value is greater than 60.

Figure 25-8 LED Gauge Thresholds

Gauge Visual Effects
By default, gauges apply gradients and overlays to color display. You can disable
visual effects to achieve a flatter design.

Chapter 25
About the Gauge Component

25-5

The second row in Figure 25-9 shows the result of disabling visual effects on the three
LED gauges in Figure 25-8.

Figure 25-9 LED Gauges Showing Enabled and Disabled Visual Effects

Active Data Support (ADS)
Gauges support ADS by sending a Partial Page Refresh (PPR) request when an
active data event is received. The PPR response updates the components, animating
the changes as needed. Supported ADS events include updates to the value,
minimum, and maximum gauge attributes.

Note:

EL Operators are not supported within the EL Expressions for active
attributes.

For additional information about using the Active Data Service, see Using the Active
Data Service with an Asynchronous Backend.

Gauge Animation
Gauges support animation on initial display or data change using the af:transition
child tag.

Gauge Tooltips
You can configure a tooltip of contextual information to display when a user moves a
cursor over the gauge. This is done using the shortDesc attribute.

Figure 25-10 shows the tooltip for a dial gauge.

Figure 25-10 Circular Status Meter Gauge Displaying a Tooltip

Chapter 25
About the Gauge Component

25-6

Gauge Popups and Context Menus
You can configure gauges to display popups or context menus using the
af:showPopupBehavior tag.

Figure 25-11 shows a circular status meter gauge configured to show a popup when
the user clicks the gauge. The popup displays an output message in a note window.

Figure 25-11 Status Meter Gauge Displaying a Popup

Figure 25-12 shows a circular status meter gauge configured to show a context menu
when the user right-clicks the gauge. The context menu displays an output message in
a note window.

Figure 25-12 Status Meter Gauge Displaying a Context Menu

Gauge Value Change Support
You can configure gauges to accept input from the user to change the metric value.
For example, you could configure a rating gauge that allows the user to assign the
number of stars to a movie rating.

Figure 25-13 shows an example of a rating gauge configured to accept user input. The
gauge's initial metric value is 1. As the user glides the mouse over the stars, the color
changes to indicate the number of selected stars. To effect the change, the user clicks
the highlighted star with the largest desired value.

Figure 25-13 Rating Gauge Illustrating Value Change Support

Chapter 25
About the Gauge Component

25-7

Gauge Reference Lines (Status Meter Gauges)
You can configure status meter gauges to display a reference line. Reference lines
can be used in conjunction with thresholds to display trend information, such as the
previous value, and target information at the same time.

Figure 25-14 shows a horizontal, a circular, and a vertical status meter gauge
configured to show reference lines. Each gauge is configured to show one black
reference line with its value set to 65.

Figure 25-14 Status Meter Gauges Displaying Reference Lines

Additional Functionality of Gauge Components
You may find it helpful to understand other ADF Faces features before you implement
your gauge component. Additionally, once you have added a gauge component to
your page, you may find that you need to add functionality such as validation and
accessibility.

Following are links to other functionality that gauge components can use:

• Partial page rendering: You may want a gauge to refresh to show new data based
on an action taken on another component on the page. For more information, see
Rerendering Partial Page Content.

• Personalization: When enabled for users to change the way the gauge displays at
runtime, those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: You can make your gauge components accessible. For more
information, see Developing Accessible ADF Faces Pages.

• Skins and styles: You can customize the appearance of gauge components using
an ADF skin that you apply to the application or by applying CSS style properties
directly using a style-related property (styleClass or inlineStyle). For more
information, see Customizing the Appearance Using Styles and Skins.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound gauges based on how your ADF Business
Components are configured. For more information, see "Creating Databound

Chapter 25
About the Gauge Component

25-8

Gauges" in Developing Fusion Web Applications with Oracle Application
Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see "Designing a
Page Using Placeholder Data Controls" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), and how data can
be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Using the Gauge Component
To use the ADF DVT Gauge component, add the gauge to a page using the
Component Palette window. Then define the data for the gauge and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window.

Gauge Component Data Requirements
Gauges display the following kinds of data values:

• Metric: The value that the gauge is to plot. This value can be specified as static
data in the Value attribute in the Properties window. It can also be specified
through data controls. This is the only required data for a gauge.

• Minimum and maximum: Optional values that identify the lowest and highest
points on the gauge value axis. These values can be provided as dynamic data
from a data collection. They can also be specified as static data in the Minimum
and Maximum fields in the Properties window for the gauge.

The default minimum value for all gauges is 0. The default maximum value for dial,
LED, and status meters gauges is 100, and the default maximum value for rating
gauges is 5. You must change this value if your gauge's metric exceeds the
maximum value for your gauge to display properly.

• Thresholds: Optional values that can be provided as dynamic data from a data
collection to identify ranges of acceptability on the value axis of the gauge. You
can also specify these values as static data using gauge threshold tags in the
Properties window. For more information, see How to Configure Gauge
Thresholds.

Chapter 25
Using the Gauge Component

25-9

How to Add a Gauge to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a gauge to a JSF page. When you drag and drop a gauge
component onto the page, a Create Gauge dialog displays available categories of
gauge types, with descriptions, to provide visual assistance when creating gauges.
Figure 25-15 shows the Create Horizontal Status Meter Gauge dialog.

Figure 25-15 Create Gauge Dialog for Horizontal Status Meter

Once you complete the dialog, and the gauge is added to your page, you can use the
Properties window to specify data values and configure additional display attributes for
the gauge.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 25-16 shows the
Property menu for a gauge component value attribute.

Chapter 25
Using the Gauge Component

25-10

Figure 25-16 Gauge Value Attribute in Properties Window

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a gauge and the binding will be done for you. For more
information, see "Creating Databound Gauges" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child
components can affect functionality. For more information, see Configuring Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a gauge to a page:

Chapter 25
Using the Gauge Component

25-11

1. In the ADF Data Visualizations page of the Components window, from the Gauge
panel, drag and drop the desired gauge onto the page to open the Create Gauge
dialog.

2. In the Create Gauge dialog, click OK to add the gauge to the page.

3. In the Properties window, view the attributes for the gauge. Use the Component
Help button to display the complete tag documentation for the gauge component.

What Happens When You Add a Gauge to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a gauge
from the Components window onto a JSF page.

For all gauges but the rating gauge, JDeveloper adds the dvt:gaugeMetricLabel tag
to the page. For the status meter and LED gauges which support thresholds,
JDeveloper adds one dvt:gaugeThreshold tag representing the maximum bound of
the gauge.

The example below shows the default code that JDeveloper adds to the page for a
dial, LED, status meter, and rating gauge. In this example, each gauge is contained in
a grid cell of the af:panelGridLayout component. The gauge-related tags are
highlighted in bold.

<af:panelGridLayout id="pgl1">
 <af:gridRow marginTop="5px" height="auto" id="gr1">
 <af:gridCell marginStart="5px" width="50%" id="gc1">
 <dvt:dialGauge id="dialGauge1">
 <dvt:gaugeMetricLabel rendered="true" id="gml1"/>
 </dvt:dialGauge>
 </af:gridCell>
 <af:gridCell marginStart="5px" width="50%" id="gc2">
 <dvt:ledGauge id="ledGauge1" type="circle">
 <dvt:gaugeThreshold id="thr1" color="#d62800"/>
 <dvt:gaugeMetricLabel rendered="true" id="gml2"/>
 </dvt:ledGauge>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow marginTop="5px" height="auto" marginBottom="5px" id="gr2">
 <af:gridCell marginStart="5px" width="50%" id="gc4">
 <dvt:statusMeterGauge id="statusMeterGauge1">
 <dvt:gaugeThreshold id="thr3" color="#d62800"/>
 <dvt:gaugeMetricLabel rendered="true" id="gml3"/>
 </dvt:statusMeterGauge>
 </af:gridCell>
 <af:gridCell marginStart="5px" width="50%" marginEnd="5px" id="gc6">
 <dvt:ratingGauge id="ratingGauge1"/>
 </af:gridCell>
 </af:gridRow>
</af:panelGridLayout>

For information about the panel grid layout component, see How to Use the
panelGridLayout, gridRow, and gridCell Components to Create a Grid-Based Layout.

How to Add Data to Gauges
A gauge's metric value is the only required value for a gauge, and you specify this
value in the gauge's value attribute. You can specify the value for the value attribute

Chapter 25
Using the Gauge Component

25-12

as a static numeric value in the Properties window, in a managed bean that returns the
gauge's numeric value, or by binding a data control to a gauge.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To add data to a gauge:

1. Optionally, create the managed bean that will return the gauge's metric value.

If you need help creating classes, see "Working with Java Code" in Developing
Applications with Oracle JDeveloper. For help with managed beans, see Creating
and Using Managed Beans.

2. In the Structure window, right-click the dvt:typeGauge node and choose Go To
Properties.

3. In the Properties window, do one of the following:

• To add data to the gauge statically or to reference a managed bean that
returns the gauge's metric value, expand the Common section and specify the
metric value in the Value field.

You can enter a static numeric value or specify an EL expression that
references the managed bean and metric value.

For example, to specify an EL expression for a managed bean named gauge
that returns the gauge's metric value in a method named getGaugeMetric(),
enter the following in the Value field: #{gauge.gaugeMetric}.

For help with creating EL expressions, see How to Create an EL Expression.

• To bind the gauge to a data control, click Bind to ADF Control to select a
data collection.

For more information about using data controls to supply data to your gauge,
see "Creating Databound Gauges" in Developing Fusion Web Applications
with Oracle Application Development Framework.

4. If needed, in the Properties window, expand the Appearance section and enter
values for the Minimum and Maximum fields.

You can enter a static numeric value or specify an EL expression that references a
managed bean and minimum or maximum value.

Note:

If your gauge's metric value exceeds the default maximum value for the
gauge, you must change the maximum value or your gauge will not
display properly.

Chapter 25
Using the Gauge Component

25-13

If you want your LED or status meter gauge to display thresholds for predefined
ranges, add a dvt:gaugeThreshold tag for each threshold. For additional information,
see How to Configure Gauge Thresholds.

Configuring Gauges
The properties for the gauge component are sufficient to produce a gauge, but you
can modify the gauge properties to customize the display and behavior of the gauge.
You can also add and configure child components or supported facets to customize
the display and behavior of the gauge. The prefix dvt: occurs at the beginning of each
gauge component name indicating that the component belongs to the Tag Reference
for Oracle ADF Faces Data Visualization Tools tag library.

Configurable elements vary by gauge type. Some elements are available to all or more
than one gauge type and include:

• minimum and maximum: Attributes that specify the minimum and maximum values
for the gauge.

• inlineStyle: Attribute that specifies the style of the outer element (enclosing div)
of the component.

• shortDesc: Attribute that specifies the short description of this component. This is
used to customize the tooltip text that appears when the user hovers the mouse
over the gauge.

• visualEffects: Attribute that specifies whether gradients and overlays are
displayed. By default, this is set to auto, but you can also set this to none to turn
off visual effects.

• styleClass: Attribute that sets a CSS style class to use for this component.

• gaugeMetricLabel: Child component that determines the metric label's style,
visibility, scaling, and text type. This attribute is not available on the rating gauge
which uses the number of shapes as its metric value.

• readOnly: Attribute on dial, rating, and status meter gauges that determines
whether the user can change the gauge's metric value.

• gaugeThreshold: Child component that specifies a threshold for LED or status
meter gauges.

• borderColor: Attribute that specifies the border color of the LED or status meter
gauge's indicator.

• color: Attribute that specifies the fill color of the LED or status meter gauge's
indicator.

• orientation: Attribute that determines the shape direction of rating or status
meter gauges. This specifies whether rating gauges are rendered vertically or
horizontally, and whether status meter gauges are rendered vertically, horizontally,
or in a circular manner.

• title: Attribute that accepts a string value and defines the title for LED and status
meter gauges.

• titleStyle: Attribute that determines the styling options on the string value set in
the title attribute.

You can view a complete list of gauge tags and supported child components by
clicking Component Help in the Properties window for the gauge.

Chapter 25
Using the Gauge Component

25-14

Configuring Dial Gauges
Configurable elements specific to dial gauges include:

• background: Attribute that determines the shape and background style of the dial
gauge.

• indicator: Attribute that specifies the indicator style for the dial gauge.

• gaugeTickLabel: Child component that determines the tick label's style, visibility,
scaling, and text type.

Configuring LED Gauges
Configurable elements specific to LED gauges include:

• type: Attribute that specifies the shape of the LED gauge.

• size: Attribute that determines the relative size of the LED gauge.

• rotation: Attribute that specifies the rotation of LED gauges configured to use
arrow or triangle shapes.

Configuring Rating Gauges
Configurable elements specific to rating gauges include:

• shape: Attribute that determines the shape of the rating gauge increments.

• inputIncrement: Attribute that specifies the change increment when users edit the
metric value.

• unselectedShape: Attribute that determines the shape of gauge increments that
are not selected.

• changedStyle: Attribute that determines the color and border color of selected
gauge increments after a change in value has been made.

• selectedStyle: Attribute that determines the color and border color of gauge
increments that have been selected.

• unselectedStyle: Attribute that determines the color and border color of gauge
increments that are not selected.

• hoverStyle: Attribute that controls the color and border color of gauge increments
that are hovered on but not yet selected.

Configuring Status Meter Gauges
Configurable elements specific to status meter gauges include:

• indicatorSize: Attribute that determines the size of the indicator, relative to the
plot area. Accepts a positive numeric value.

• borderRadius: Attribute that determines the degree of curvature of the corners of
the indicator. Accepts a positive pixel value.

• plotArea: Attribute that determines whether or not the plot area is displayed.

Chapter 25
Using the Gauge Component

25-15

• plotAreaBorderRadius: Attribute that determines the degree of curvature of the
corners of the plot area. Accepts a positive pixel value. If this value isn’t specified,
the borderRadius attribute applies to both the indicator and the plot area.

• plotAreaColor: Attribute that determines the color of the plot area. Accepts a
color value or hex code.

• plotAreaBorderColor: Attribute that determines the color of the plot area border.
Accepts a color value or hex code.

• thresholdDisplay: Attribute that determines how thresholds are displayed.

• titlePosition: Attribute that controls the placement of the string value defined in
the title attribute. Accepts the values auto, center, and start.

There are configurable elements specific to circular status meter gauges which are
ignored by other status meter gauges. These include:

• innerRadius: Attribute that determines the radius of an inner circle in the gauge.
Accepts a value between 0 and 1.

• startAngle: Attribute that determines the angle at which the indicator starts being
drawn in a clockwise manner (and counterclockwise for BiDi locales). Accepts a
value between 0 and 360.

• angleExtent: Attribute that determines the extent to which the plot area is drawn.
The plot area is drawn starting at the startAngle and ending after the full angle
extent is drawn. Accepts a value between 0 and 360.

Customizing Gauge Display Elements
ADF DVT Gauges provide a number of useful customizations for display elements,
including thresholds, styles, numeric data values, visual effects, animation, and
reference lines.

How to Configure Gauge Thresholds
Thresholds are numerical data values in status meter or LED gauges that highlight a
particular range of values. Thresholds must be values between the minimum and the
maximum value for a gauge.

On status meter gauges, the range identified by a threshold is filled with a color that is
different than the color of other ranges. The threshold can be displayed on the
indicator or the plot area.

Figure 25-17 shows horizontal, circular, and vertical status meters configured for
thresholds. The gauges in the first row are configured to show the threshold on the
indicator. In the second row, the gauges are configured to display the current threshold
on the plot area. In the third row, the gauges are configured to display all thresholds on
the plot area.

Chapter 25
Customizing Gauge Display Elements

25-16

Figure 25-17 Status Meter Gauge Threshold Display Options

On LED gauges, the background is filled with the color defined for the threshold range
containing the metric value. Figure 25-18 shows three LED gauges configured with
thresholds using the same maximum bound and color values as the status meters
shown in Figure 25-17.

Figure 25-18 LED Gauges Configured with Three Thresholds

When you create a status meter or LED gauge by dragging the gauge to the page
from the Components window, JDeveloper adds one dvt:gaugeThreshold tag as a
child of the gauge. You can add additional thresholds by inserting additional
dvt:gaugeThreshold tags and defining the threshold's value and color attributes.

The data collection for a gauge can provide dynamic values for thresholds when the
gauge is databound. For information about using dynamic values for thresholds, see
"Creating Databound Gauges" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

Chapter 25
Customizing Gauge Display Elements

25-17

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To configure status meter or LED gauge thresholds:

1. In the Structure window, right-click the dvt:statusMeterGauge or dvt:LEDGauge
component and choose Insert Inside (Status Meter or LED) Gauge >
Threshold.

Depending upon how you created the gauge, you may already have one
dvt:gaugeThreshold component defined and can proceed to the next step for that
threshold.

2. Right-click the dvt:gaugeThreshold node and choose Go to Properties.

3. In the Properties window, set values for the following:

• Maximum: Specify the maximum bound for the threshold. You can enter an
integer value or use the dropdown menu to choose Expression Builder to
enter an EL Expression that represents the maximum bound.

You do not need to enter a value for the threshold representing the maximum
bound for the gauge. This value is automatically derived from the value in the
gauge's maximum attribute.

• Color: Specify the RGB value in hexadecimal notation or choose Expression
Builder from the attribute's dropdown menu to enter an expression that
evaluates to the RGB value.

For example, enter #0000FF to render the threshold in blue.

• BorderColor: Specify the RGB value in hexadecimal notation or choose
Expression Builder from the attribute's dropdown menu to enter an
expression that evaluates to the RGB value.

For example, enter #000000 to render the threshold's border color in black.

• ShortDesc: Specify the custom hover text for the threshold in plain text or
choose Expression Builder from the attribute's dropdown menu to enter an
EL expression that contains the text value.

4. Repeat Step 1 through Step 3 for each threshold that you want to configure.

5. For status meter gauges, set the following attributes to customize the threshold
display.

a. In the Structure window, right-click the dvt:statusMeterGauge and choose
Go to Properties.

b. In the Properties window, in the ThresholdDisplay field, use the dropdown
menu to customize the placement and appearance of the threshold.

By default, the threshold is displayed on the indicator. If you want the current
threshold displayed on the plot area, choose currentOnly. To display all
thresholds on the plot area, choose all.

c. In the PlotArea field, use the dropdown menu to turn the plot area display on
or off.

Chapter 25
Customizing Gauge Display Elements

25-18

By default, PlotArea is set to auto which will show the plot area when
thresholds are configure and ThresholdDisplay is set to currentOnly or all.
You can also set this to on or off.

d. In the Indicator field, enter any positive value to change the relative size of
the indicator.

For example, to set the indicator to consume 50% of the plot area, enter 0.5,
or to make the indicator twice as large as the plot area, enter 2.Figure 25-19
shows the effect of changing the indicator size to 0.5.

Figure 25-19 Status Meter Gauge Indicator Size Set to 0.5

Formatting Gauge Style Elements
You can customize the styling of gauges to change the initial size of a gauge and
apply style elements to labels and other presentation features.

How to Change Gauge Size and Apply CSS Styles
You can customize the width and height of a gauge by applying a CSS style or
specifying a value in the gauge's inlineStyle attribute.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To specify the size of or apply CSS styles to a gauge:

1. In the Structure window, right-click the gauge component and choose Go to
Properties.

2. To specify size: In the Properties window, expand the Style section. Specify the
initial size of the gauge in the InlineStyle attribute. You can specify a fixed size or
specify a relative percent for both width and height.

For example, to create a gauge that fills 50% of its container's width and has a
height of 200 pixels, use the following setting for the InlineStyle attribute:

width:50%;height:200px

Chapter 25
Customizing Gauge Display Elements

25-19

Best Practice Tip:

Instead of specifying width at 100% in the inlineStyle attribute, set the
styleClass attribute to AFStretchWidth.

3. To apply CSS styles: In the Properties window, expand the Style section and
enter the name of the style class in the StyleClass field.

For example, to set the width of the gauge to fill 100% of its container's width, use
the following setting for the StyleClass attribute:

AFStretchWidth

For information about applying CSS styles, see Customizing the Appearance
Using Styles and Skins.

How to Format Gauge Text
You can format the text in the following gauge child components:

• gaugeMetricLabel

• gaugeTickLabel

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To format gauge text:

1. In the Structure window, right-click dvt:gaugeMetricLabel or
dvt:gaugeTickLabel and choose Go to Properties.

2. In the Properties window, enter a value for LabelStyle.

This property accepts font-related CSS attributes such as font-weight and font-
size. For example, to set the label to bold, enter the following for LabelStyle:

font-weight:bold;

3. For status meter gauges, in the Properties window, select a value for Position.

This property controls the position of the label on the gauge. Possible options are:
auto, center, insideIndicatorEdge, outsideIndicatorEdge, outsidePlotArea,
and withTitle. auto will default to outsidePlotArea for horizontal/vertical and
center for circular status meter gauges.

You can also set the style attributes of gauge components globally across all pages in
your application by using a cascading style sheet (CSS) to build a skin, and
configuring your application to use the skin. By applying a skin to define the styles
used in gauge components, the pages in an application will be smaller and more

Chapter 25
Customizing Gauge Display Elements

25-20

organized, with a consistent style easily modified by changing the CSS file. For more
information, see What You May Need to Know About Skinning and Formatting Gauge
Style Elements.

What You May Need to Know About Skinning and Formatting Gauge Style
Elements

You can set the font and other style attributes of gauge components globally across all
pages in your application by using a cascading style sheet (CSS) to build a skin and
configuring your application to use the skin. By applying a skin to define the styles
used in gauge components, the pages in an application will be smaller and more
organized, with a consistent style easily modified by changing the CSS file.

You can use the ADF Data Visualization Tools Skin Selectors to define the styles for
gauge components. Gauge component skin selectors that support styling include the
following:

• af|dvt-dialGauge

• af|dvt-ledGauge

• af|dvt-ratingGauge

• af|dvt-ratingGauge::selected-shape

• af|dvt-ratingGauge::unselected-shape

• af|dvt-ratingGauge::hover-shape

• af|dvt-ratingGauge::changed-shape

• af|dvt-statusMeterGauge

• af|dvt-gaugeMetricLabel

• af|dvt-gaugeTickLabel

• af|dvt-gaugeThreshold

• af|dvt-gaugeThreshold::index$

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To use a custom skin to set gauge styles:

1. Add a custom skin to your application containing the defined skin style selectors
for the gauge subcomponents.

For example, specify the font family for all gauge metric labels in a mySkin.css file
as follows:

Chapter 25
Customizing Gauge Display Elements

25-21

af|dvt-gaugeMetricLabel
{
 font-weight:bold;
}

For help with creating a custom skin, see the "Creating an ADF Skin File" section
in Developing ADF Skins.

2. Configure the application to use the custom skin in the trinidad-config.xml file.

For help with configuring the application, see the "Applying the Finished ADF Skin
to Your Web Application" chapter of Developing ADF Skins.

For additional information about using styles and skins, see Customizing the
Appearance Using Styles and Skins.

How to Format Numeric Data Values in Gauges
You can use the gauge's gaugeMetricLabel child component to format the
appearance of the gauge's metric value in dial, LED, and status meter gauges. You
can also format the appearance of dial gauge tick labels using the gaugeTickLabel
child tag. Each component has a textType attribute that lets you specify whether you
want to display the metric value itself or a percentage that the value represents.

In some cases, this might be sufficient numeric formatting, but you can use properties
on the component to change scaling.

If you wish to further format the gauge metric or tick label value, you can use an ADF
Faces standard converter, af:convertNumber. For example, you may wish to display
the value as currency or display specific decimal settings.

You may also specify a custom label using the text attribute, in which case the
textType attribute will be ignored.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a dial, LED, or status meter gauge to your page. For help with adding a gauge to
a page, see How to Add a Gauge to a Page.

To format numeric values in a gauge:

1. If you are formatting a dial gauge's tick label, in the Structure window, right-click
the dvt:dialGauge component and choose Insert Inside Dial Gauge > Gauge
Tick Label.

2. In the Structure window, right-click the dvt:gaugeMetricLabel or
dvt:gaugeTickLabel node and choose Go to Properties.

3. In the Properties window, set values for the following:

• Scaling: Use the attribute's dropdown list to change the default scaling from
auto. You can select one of the available scaling options or none to turn off
scaling.

Chapter 25
Customizing Gauge Display Elements

25-22

• TextType: Use the attribute's dropdown list to change the default text type
from number to percent.

4. If you want to specify additional formatting for the data values displayed in the
gauge metric or tick label, do the following:

a. In the Structure window, right-click the dvt:gaugeMetricLabel or
dvt:gaugeTickLabel node and choose Insert Inside (Gauge Metric Label or
Gauge Tick Label) > Convert Number.

b. Right-click the af:convertNumber node and choose Go to Properties.

c. In the Properties window, specify values for the attributes of the
af:convertNumber component to produce additional formatting. Click Help or
press F1 to display the complete tag documentation for the af:convertNumber
component.

5. Alternatively, you can specify a custom label. In the Properties window of the
dvt:gaugeMetricLabel node, specify a value for the Text attribute. If the Text
attribute is specified, the TextType attribute will be ignored.

How to Disable Gauge Visual Effects
By default, gauges are displayed with gradient coloring and overlays as shown in
Figure 25-9. To disable these visual effects, set the gauge's visualEffects attribute to
none.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To disable visual effects on a gauge:

1. In the Structure window, right-click the dvt:typeGauge component and choose Go
to Properties.

2. In the Properties window, expand the Appearance section, and from the
VisualEffects attribute's dropdown list, select none.

How to Configure Gauge Animation
To configure gauge animation, add the af:transition tag as a child of the gauge
component and configure the trigger type and transition effect.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

Chapter 25
Customizing Gauge Display Elements

25-23

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To configure gauge animation:

1. In the Structure window, click the gauge component.

2. In the Source editor, add the af:transition tag as a child of the highlighted
gauge component as shown in the following example.

<af:transition triggerType="display" transition="auto"/>

How to Configure Status Meter Gauge Reference Lines
You can add reference lines to status meter gauges at specified values on the gauge's
axis. To configure reference lines, add the dvt:referenceLine component to the
status meter gauge and configure as needed.

The example below shows the code on the JSF page that creates the gauge and
reference lines in Figure 25-14.

<af:panelGroupLayout id="pgl1" layout="horizontal">
 <af:spacer width="5" id="s1"/>
 <dvt:statusMeterGauge value="90" indicatorSize="0.5" plotArea="on" id="smg1">
 <dvt:referenceLine color="#FFFFFF" value="75" id="rl1"/>
 <dvt:referenceLine color="#000000" value="95" id="rl2"/>
 <dvt:gaugeThreshold maximum="33" id="gt1"/>
 <dvt:gaugeThreshold maximum="67" id="gt2"/>
 <dvt:gaugeThreshold id="gt3"/>
 </dvt:statusMeterGauge>
 <af:spacer width="25" id="s2"/>
 <dvt:statusMeterGauge inlineStyle="width:50px;height:50px;"
 orientation="circular" value="90" id="smg2">
 <dvt:referenceLine color="#FFFFFF" value="75" id="rl3"/>
 <dvt:referenceLine color="#000000" value="95" id="rl4"/>
 <dvt:gaugeThreshold maximum="33" id="gt4"/>
 <dvt:gaugeThreshold maximum="67" id="gt5"/>
 <dvt:gaugeThreshold id="gt6"/>
 </dvt:statusMeterGauge>
</af:panelGroupLayout>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To add a reference line to a status meter gauge:

Chapter 25
Customizing Gauge Display Elements

25-24

1. In the Structure window, right-click the dvt:statusMeterGauge and choose Insert
Inside Status Meter Gauge > Reference Line.

2. Right-click the dvt:referenceLine node and choose Go to Properties.

3. In the Properties window, enter values for the following:

• Value: Specify the value for the reference line or choose Expression Builder
from the attribute's dropdown menu to enter an expression that evaluates to
the value.

• Color: Specify the RGB value in hexadecimal notation or choose Expression
Builder from the attribute's dropdown menu to enter an expression that
evaluates to the RGB value.

For example, to render the reference line in white, enter #000000.

• LineStyle: Use the attribute's dropdown list to change the line from solid to
dashed or dotted.

• LineWidth: Specify the width of the line.

Adding Interactivity to Gauges
ADF DVT Gauges can be made more interactive and user-friendly by adding tooltips,
popups, context menus, and value change support.

How to Configure Gauge Tooltips
You configure a gauge tooltip by setting a value for the gauge's shortDesc attribute.
You may also configure a custom tooltip for a gauge threshold by setting a value for
the threshold's shortDesc attribute. Note that the threshold tooltip will override the
parent gauge's tooltip.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

To add a tooltip to a gauge and gauge threshold:

1. In the Structure window, right-click the dvt:typeGauge component and choose Go
to Properties.

2. In the Properties window, expand the Accessibility section.

3. In the ShortDesc field, enter a description for the gauge. You can also use the
attribute's dropdown menu to open the Select Text Resource or Expression
Builder dialogs to select a text resource or EL expression that contains the
gauge's description.

4. In the Structure window, right-click the child dvt:gaugeThreshold component and
choose Go to Properties.

Chapter 25
Adding Interactivity to Gauges

25-25

5. In the Properties window, expand the Other section.

6. In the ShortDesc field, enter a description for the gauge threshold. You can also
use the attribute's dropdown menu to open the Expression Builder dialog to select
an EL expression that contains the gauge's description.

How to Add a Popup or Context Menu to a Gauge
The process to add a popup or context menu is essentially the same. Add the
af:showPopupBehavior tag as a child of the gauge component, define the trigger type
as click for popup menus or contextMenu for context menus, and add an af:popup
containing the desired behavior to the page.

The example below shows the code on the page for the popup menu shown in
Figure 25-11. In this example, the af:showPopupBehavior component uses the
popupId to reference the af:popup component. The af:popup component is configured
with the af:noteWindow component which is configured to display a simple message in
the af:outputFormatted component. The triggerType of the af:showPopupBehavior
tag is set to click, and the note window will launch when the user clicks anywhere in
the gauge.

<af:group id="g1">
 <dvt:dialGauge id="dialGauge1" value="63" shortDesc="Dial Gauge with Popup">
 <af:showPopupBehavior popupId="::noteWindowPopup"
triggerType="click"/>
 <dvt:gaugeMetricLabel rendered="true" id="gml1"/>
 </dvt:dialGauge>
 <af:popup childCreation="deferred" autoCancel="disabled"
 id="noteWindowPopup" launcherVar="source"
 clientComponent="true" eventContext="launcher">
 <af:noteWindow id="nw1">
 <af:outputFormatted value="This is an example of a gauge popup."
id="of1"
 shortDesc="Gauge Popup Example"/>
 </af:noteWindow>
 </af:popup>
</af:group>

You can change the popup to the context menu displayed in Figure 25-12 by simply
changing the trigger type for the af:showPopupBehavior component to contextMenu as
shown in the following code snippet:

<af:showPopupBehavior popupId="::noteWindowPopup" triggerType="contextMenu"/>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

Chapter 25
Adding Interactivity to Gauges

25-26

Add a popup component to your page. For help with configuring the af:popup
component, see Using Popup Dialogs, Menus, and Windows.

To add a popup or context menu to a gauge:

1. In the Structure window, right-click the gauge component and choose Insert
Inside Type Gauge > Show Popup Behavior.

2. Right-click af:showPopupBehavior and choose Go to Properties.

3. In the Properties window, enter values for the following:

• PopupId: Specify the ID of the af:popup component.

• TriggerType: For popup menus, enter click. For context menus, enter
contextMenu.

Optionally, set values for Align, AlignId, and Disabled. Click Component Help
for more information about the af:showPopupBehavior component.

How to Configure Value Change Support for a Gauge
You can allow users to change the metric value for a dial or rating gauge by setting the
gauge's readOnly attribute to false.

To process the change on the server, specify a listener in the gauge's
valueChangeListener attribute.

The code below shows an example of a value change listener for a rating gauge
configured to process a value change on the server. In this example, the rating gauge
and listener are contained in a managed bean named gaugeData. The listener is
named ratingChangedListener and simply outputs the new value to the console.

import javax.faces.event.ValueChangeEvent;

public class GaugeData {
 private Double gaugeValue = 3.0;
 public void ratingChangedListener (ValueChangeEvent e){
 if (e != null){
 gaugeValue = (Double) e.getNewValue();
 System.out.println("You clicked on " + gaugeValue + " stars");
 }
 }
 public Double getGaugeValue(){
 return gaugeValue;
 }
}

The example below shows the code on the JSF page for a rating gauge configured to
use the gaugeData managed bean.

dvt:ratingGauge id="ratingGauge1" readOnly="false" value="#{gaugeData.gaugeValue}"
 valueChangeListener="#{gaugeData.ratingChangedListener}">
</dvt:ratingGauge>

You can also process the change on the client using af:clientListener components
configured for valueChange and input event types. To use this method, you must
create JavaScript functions that perform change event handling.

The code below shows an example of a rating gauge configured with two
af:clientListener components, one to handle the valueChange event and one to

Chapter 25
Adding Interactivity to Gauges

25-27

handle the input event. In this example, the valueChangeListener function sends an
alert to the browser, and the inputListener function sends a message to the
browser's console log.

<script type="text/javascript" xmlns="http://www.w3.org/1999/xhtml">
 function valueChangeListener(event) {
 alert("valueChange for " + event.getSource().getId() + ": " +
 event.getOldValue() + " --> " + event.getNewValue());
 }
 function inputListener(event) {
 console.log("input for " + event.getSource().getId() + ": " +
 event.getValue());
 }
</script>
<dvt:ratingGauge id="ratingGauge1" readOnly="false" value="#{gauge.gaugeValue}">
 <af:clientListener method="valueChangeListener" type="valueChange"/>
 <af:clientListener method="inputListener" type="input"/>
</dvt:ratingGauge>

Note:

This example uses inline JavaScript for the purposes of illustration only.
Inline JavaScript can increase response payload size, will never be cached
in the browser, and can block browser rendering. Instead of using inline
JavaScript, consider putting all scripts in JavaScript libraries. For additional
information about adding JavaScript to a page, see Adding JavaScript to a
Page. For additional information about client-side event handling, see
Listening for Client Events.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and child tags can
affect functionality. For more information about configuring gauges, see Configuring
Gauges.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality of Gauge
Components.

Add a gauge to your page. For help with adding a gauge to a page, see How to Add a
Gauge to a Page.

If you are configuring server-side event handling, add the value change listener to the
gauge's managed bean. If you need help with managed beans, see Creating and
Using Managed Beans.

If you are configuring client-side event handling, create the JavaScript functions that
will handle the valueChange and input events. For additional information about client-
side event handling, see Listening for Client Events.

To configure value change support for a gauge:

1. If you are configuring server-side change support, do the following:

a. In the Structure window, right-click the gauge component and choose Go to
Properties.

Chapter 25
Adding Interactivity to Gauges

25-28

b. In the Properties window, expand the Common section if needed.

c. From the ReadOnly attribute's dropdown list, select False.

d. Expand the Behavior section.

e. From the ValueChangeListener attribute's dropdown menu, choose Edit to
select the gauge's managed bean and listener.

For example, to reference the gaugeData sample bean, select gaugeData from
the Managed Bean field's dropdown list, and select ratingChangedListener
for the method. You can also choose Expression Builder from the
ValueChangeListener attribute's dropdown menu to enter an EL expression
that evaluates to the gauge's listener.

2. If you are configuring client-side event support, do the following:

a. In the Structure window, right-click the gauge component and choose Insert
Inside Type Gauge > Client Listener.

b. In the Insert Client Listener dialog, enter the name of the JavaScript function
that will handle the event and the event type.

For example, to use the example valueChangeListener() function as shown in
the code sample above, enter valueChangeListener for the method and
valueChange for the event type.

c. Repeat Step 1 and Step 2 to insert additional client listeners as needed.

d. In the Structure window, right-click the gauge component and choose Go to
Properties.

e. In the Properties window, expand the Common section if needed.

f. From the ReadOnly attribute's dropdown list, select False.

Chapter 25
Adding Interactivity to Gauges

25-29

26
Using NBox Components

This chapter describes how to use the ADF Data Visualization NBox component to
display data in NBoxes using simple UI-first development. The chapter defines the
data requirements, tag structure, and options for customizing the look and behavior of
these components.
If your application uses the Fusion technology stack, you can use data controls to
create NBoxes. For more information, see "Creating Databound NBox Components" in
Developing Fusion Web Applications with Oracle Application Development
Framework.

This chapter includes the following sections:

• About ADF Data Visualization NBox Components

• Using the NBox Component

About the NBox Component
The ADF DVT NBox Component is a data grouping visualization that utilizes two
ranges of data to form a grid of cells, and each cell contains customizable nodes that
represent individual data items. NBox components are useful to group data with
multiple factors of consideration, such as employee potential against employee
performance.

ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

NBox Use Cases and Examples
The nBox component is comprised of two parts: the node that represents the data and
the grid that comprises the cells into which the nodes are placed. If the number of
nodes is greater than the space allocated for the cell, the NBox displays an indicator
that users can click to access the additional nodes.

For example, as illustrated in Figure 26-1 you can use the nBox component to compare
employee potential and performance data, where the row represents employee
potential and the column represents employee performance. The node that represents
the employee is stamped into the appropriate cell.

26-1

Figure 26-1 NBox Component Comparing Employee Potential and Performance

NBox nodes can also be styled with colors, markers, and indicators to represent each
unique value, or group, in the data set using attribute groups. Figure 26-2 shows an
NBox with employee nodes styled by department, role, and experience.

Figure 26-2 NBox Nodes Styled with Attribute Groups

NBox nodes representing attribute groups can also be configured to display by size
and number within each grid cell as illustrated in Figure 26-3, or across all cells are
illustrated in Figure 26-4.

Chapter 26
About the NBox Component

26-2

Figure 26-3 NBox Nodes Displayed by Size and Number Within Cells

Figure 26-4 NBox Nodes Displayed by Size and Number Across Cells

Chapter 26
About the NBox Component

26-3

End User and Presentation Features of NBoxes
The ADF Data Visualization nBox component provides a range of features for end
users, such as selection and tooltips. They also provide a range of presentation
features, such as legend display, and customizable node shapes and colors.

To use and customize NBox components, it may be helpful to understand these
features and components:

• Popup Support: NBox components can be configured to display popup dialogs,
windows, and menus that provide information or request input when the user clicks
or hovers the mouse over a node.

• Context Menus: NBoxes support the ability to display context menus to provide
additional information about the selected node.

• Attribute Groups: NBox nodes support the use of the dvt:attributeGroups tag
to generate stylistic attribute values such as colors, markers, images, or indicators
for each unique group in the data set.

• Legend Support: NBoxes display legends to provide a visual clue to the type of
data controlling the image and color. If the component uses attribute groups to
specify colors based on conditions such as level of performance, the legend can
also display the colors used and indicate what value each color represents.

• Node Selection Support: NBoxes support the ability to respond to user clicks on
one or more nodes to display information about the selected node(s).

• Tooltip Support: NBoxes support the ability to display additional information
about a node when the user moves the mouse over a node.

• Grouping: You can configure NBoxes to group nodes together based on attribute
groups and then display the group within each cell or across cells.

• Other Node Support: NBox components provide the ability to aggregate data if
your data model includes a large number of smaller contributors in relation to the
larger contributors.

• Maximize Row or Column: NBox rows or columns can be configured to magnify
a specify row or column in the NBox, or a cell at the intersection of a specified row
and column.

Additional Functionality for NBox Components
You may find it helpful to understand other ADF Faces features before you implement
your NBox component. Additionally, once you have added an NBox component to your
page, you may find that you need to add functionality such as validation and
accessibility.

Following are links to other functionality that NBox components can use:

• You may want an NBox to refresh a cell to show new data based on an action
taken on another component on the page. For more information, see Rerendering
Partial Page Content.

• Personalization: If enabled, users can change the way the NBox displays at
runtime, and those values will not be retained once the user leaves the page
unless you configure your application to allow user customization. For information,
see Allowing User Customization on JSF Pages.

Chapter 26
About the NBox Component

26-4

• Accessibility: NBox components are accessible, as long as you follow the
accessibility guidelines for the component. See Developing Accessible ADF Faces
Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of NBox components using
an ADF skin that you apply to the application or by applying CSS style properties
directly using a style-related property (styleClass or inlineStyle). For more
information, see Customizing the Appearance Using Styles and Skins.

• Content Delivery: You can configure your NBox to fetch data from the data source
immediately upon rendering the components, or on a second request after the
components have been rendered using the contentDelivery attribute. For more
information, see Content Delivery.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound NBoxes based on how your ADF Business
Components are configured. JDeveloper provides a wizard for data binding and
configuring your NBox. For more information, see the "Creating Databound NBox
Components" chapter of Developing Fusion Web Applications with Oracle
Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), image formats, and
how data can be displayed and edited. For more information, see Common
Functionality in Data Visualization Components.

Using the NBox Component
To use the ADF DVT NBox component, add the NBox to a page using the Component
Palette window. Then define the data for the NBox and complete the additional
configuration in JDeveloper using the tag attributes in the Properties window.

NBox Data Requirements
The ADF NBox component displays data in a grid layout, with a configurable number
of rows and columns used to represent two dimensions or measures of data. Nodes
represent the actual data and are stamped inside the grid's cells according to where
the node's value falls within the ranges or measures specified for the cells.

Chapter 26
Using the NBox Component

26-5

Data is supplied as a collections of data provided either as an implementation of the
List interface (java.util.ArryList), or a CollectionModel
(org.apache.myfaces.trinidad.model.CollectionModel). The data can be of any
type, typically String, int, or long.

The collection of NBox nodes requires an attribute that represents the unique Id for
each row in the collection. The collection is mapped using a value attribute to stamp
out each instance of the node using a component to iterate through the collection.
Each time a child component is stamped out, the data for the current component is
copied into a var property used by the data layer component in an EL Expression.
Once the NBox has completed rendering, the var property is removed, or reverted
back to its previous value. By convention, var is set to node or link.

The values for the value attribute must be stored in the node's or link's data model or
in classes and managed beans if you are using UI-first development.

Configuring NBoxes
The nBox component has configurable attributes and child components that you can
add or modify to customize the display or behavior of the NBox. The prefix dvt: occurs
at the beginning of each NBox component name indicating that the component
belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure NBox child components, attributes, and supported facets in the
following areas:

• NBox (dvt:nBox): Wraps the NBox nodes. Configure the following attributes to
control the NBox display:

– colunmsTitle: Optional label for the ordered list of columns from bottom to top
along the horizontal axis of the NBox grid.

– rowsTitle: Optional label for the ordered list of rows from start to end along
the vertical axis of the NBox grid.

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if an NBox node contains no data.

– groupBy: Use to group nodes together by listing the attribute group IDs in a
space-separated list.

– groupBehavior: Use to specify the display of a group of nodes within the cells
or across the cells of the NBox.

– Animation: Use a child af:transition tag to enable animation by setting a
triggerType attribute to display when the NBox initially displays, and to
dataChange when the values of the NBox nodes change.

– Maximize: Use the maximizedColumn or maximizedRow attributes to magnify a
specific column or row in the NBox. Specifying both attributes will magnify the
cell at the intersection of the specified row and column.

– Other group: Use the otherThreshold, and otherColor attributes to aggregate
child data into an Other node.

The NBox component supports the use of these f:facet elements:

– Columns: Use to specify the number and optional label of columns for the
NBox grid. An af:group element wraps the dvt:nBoxColumn elements

Chapter 26
Using the NBox Component

26-6

representing the ordered list of columns from bottom to top along the
horizontal axis of the grid.

– Rows: Use to specify the number and optional label of rows for the NBox grid.
An af:group element wraps the dvt:nBoxRow elements representing the
ordered list of rows from start to end along the vertical axis of the grid.

– cells: Use to configure the attributes of individual cells, for example,
background colors and labels. You can also use the countLabel and
showCount attributes to specify a custom node count label with percentages
and numbers after the cell label.

• NBox nodes (nBoxNode): Use to define the properties for an NBox node. The
component supports the use of these f:facet elements:

– icon: Specifies a dvt:marker to be used as the primary graphical element of
this node, such as an employee photo or human shape.

– indicator: Specifies a dvt:marker to be used as the secondary graphical
element of this node, such as a color bar.

• Attribute groups (attributeGroups): Use this optional child tag of an NBox node
child element, typically the dvt:marker component, to generate style values for
each unique value, or group, in the data set.

Attribute groups are necessary to provide information for the display of the NBox
and are therefore recommended.

• Legend (legend): Use to display multiple sections of marker and label pairs.
Define the legend as a child of the NBox component.

How to Add an NBox to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add an NBox to a JSF page. When you drag and drop an nBox
component onto the page, the NBox is added to your page, and you can use the
Properties window to specify data values and configure additional display attributes.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 26-5 shows the
dropdown menu for an NBox value attribute.

Chapter 26
Using the NBox Component

26-7

Figure 26-5 NBox Value Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create an NBox and the binding will be done for you. For more
information, see the "Creating Databound NBox Components" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Before you begin:

It may be helpful to have an understanding of how NBox attributes and child tags can
affect functionality. For more information, see Configuring NBoxes.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for NBox
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add an NBox to a page:

1. In the ADF Data Visualization page of the Components window, from the Common
panel, drag and drop an NBox onto the page.

2. In the Properties window, view the attributes for the NBox. Use the help button to
display the complete tag documentation for the nBox component.

3. Expand the Appearance section, and enter values for the following attributes:

• ColumnsTitle: Enter text to label the ordered list of columns from bottom to
top along the horizontal axis of the NBox grid. Alternatively, choose Select

Chapter 26
Using the NBox Component

26-8

Text Resource or Expression Builder from the attribute's dropdown menu to
select a text resource or EL expression.

• RowsTitle: Enter text to label the ordered list of rows from start to end along
the vertical axis of the NBox grid. Alternatively, choose Select Text Resource
or Expression Builder from the attribute's dropdown menu to select a text
resource or EL expression.

• Summary: Enter a summary of the NBox purpose and structure for
accessibility support.

4. In the Structure window, right-click the dvt:nBox element and choose Insert
Inside NBox > Facet Columns.

5. In the Structure window, right-click the f:facet - columns element and choose
Insert inside Facet columns > Group.

6. In the Structure window, right-click the Group element and for each column you
wish to add to the NBox, choose Insert inside Group > ADF Data Visualizations
> NBox Column.

7. In the Insert NBox Column dialog enter the value representing a defined range of
data within the column dimension of the NBox. For example, for an NBox
displaying a range of US population size across 3 columns, you might enter low,
medium, and high.

8. In the Structure window, right-click the dvt:nBox element and choose Insert
Inside NBox > Facet Rows.

9. In the Structure window, right-click the f:facet - row element and choose Insert
inside Facet Rows > Group.

10. In the Structure window, right-click the Group elements and for each row you wish
to add to the NBox, choose Insert inside Group > ADF Data Visualizations >
NBox Row.

11. In the Insert NBox Row dialog enter the value representing a defined range of data
within the row dimension of the NBox. For example, for an NBox displaying a
range of income levels across 3 rows, you might enter lower, medium, and upper.

What Happens When You Add an NBox to a Page
Developer generates only a minimal set of tags when you drag and drop an NBox from
the Components window onto a JSF page and choose not to bind the data during
creation.

The generated code is:

 <dvt:nBox id="nb1"/>

If you choose to bind the data to a data control when creating the NBox, JDeveloper
generates code based on the data model. For more information, see the "Creating
Databound NBox Components" section in Developing Fusion Web Applications with
Oracle Application Development Framework.

Chapter 26
Using the NBox Component

26-9

27
Using Pivot Table Components

This chapter describes how to use the ADF Data Visualization pivotTable and
pivotFilterBar components to display data in pivot tables using simple UI-first
development. The chapter defines the data requirements, tag structure, and options
for customizing the look and behavior of the components.
If your application uses the Fusion technology stack, then you can also use data
controls to create pivot tables. JDeveloper provides a wizard for data binding and
configuring your pivot table. For more information, see the "Creating Databound Pivot
Table and Pivot Filter Bar Components" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

This chapter includes the following sections:

• About the Pivot Table Component

• Using the Pivot Table Component

• Configuring Header and Data Cell Stamps

• Using Pivot Filter Bars

• Adding Interactivity to Pivot Tables

• Formatting Pivot Table Cell Content With CellFormat

About the Pivot Table Component
ADF DVT Pivot tables display data in a grid layout with unlimited layers of
hierarchically nested row header cells and column header cells. Similar to
spreadsheets, pivot tables provide the option of automatically generating subtotals and
totals for grid data.

A pivot table allows users to pivot or reposition row or column header data labels and
the associated data layer from one location on the row or column edge to another to
obtain different views of data, supporting interactive analysis.

A pivot filter bar is a component that can be added to a pivot table to provide the user
with a way to filter pivot table data in layers not displayed in one of the row or column
edges of the pivot table. Users can also drag and drop these layers between the pivot
filter bar and the associated pivot table to change the view of the data. A pivot filter bar
can also be used to change the graphical display of data in a graph.

Pivot Table and Pivot Filter Bar Component Use Cases and Examples
A pivot table displays a grid of data with rows and columns. Figure 27-1 shows a pivot
table with multiple attributes nested on its rows and columns.

27-1

Figure 27-1 Sales Pivot Table with Multiple Rows and Columns

Pivot table data cells support other data display components such as sparkcharts,
gauges, and graphs. Figure 27-2 shows a pivot table with sparkcharts illustrating data
trends over time in a data cell.

Figure 27-2 Pivot Table with Sparkcharts Stamped in Data Cells

Figure 27-3 shows a pivot table with graphs stamped in data cells.

Figure 27-3 Pivot Table with Graphs Stamped in Data Cells

Header and data cells in pivot tables can be customized to display image, icons or
links, and to display stoplight and conditional formatting. Figure 27-4 shows a pivot
table with conditional formatting to display levels of sales performance.

Chapter 27
About the Pivot Table Component

27-2

Figure 27-4 Conditional Data Cell Formatting

A pivot filter bar is a component that can be associated with a pivot table to provide the
user with a way to filter pivot table data in layers not displayed in the row or column
edges of the pivot table. Users can also drag and drop these layers between the pivot
filter bar and the associated pivot table to change the view of the data. Figure 27-5
shows a pivot filter bar associated with a pivot table.

Figure 27-5 Pivot Filter Bar Component Associated with Pivot Table

A pivot filter bar can also be used to change the display of data in a graph associated
with the pivot table. Figure 27-6 shows a filtered view of quarterly sales data displayed
simultaneously in a pivot table and on a bar graph.

Figure 27-6 Pivot Filter Bar Associated with Pivot Table and Graph

Chapter 27
About the Pivot Table Component

27-3

End User and Presentation Features of Pivot Table Components
The ADF Data Visualization pivot table component provides a range of features for
end users, such as pivoting, sorting columns, and selection of one or more rows,
columns, or cells, and then executing an application defined action on the selection. It
also provides a range of presentation features, such as unlimited layers of
hierarchically nested row header and column header cells.

Pivot Filter Bar
The data filtering capacity in a pivot table can be enhanced with an optional pivot filter
bar. Zero or more layers of data not already displayed in the pivot table row edge or
column edge are displayed in the page edge.

Figure 27-7 shows a pivot filter bar with Quarter and Month layers that can be used to
filter the data displayed in the pivot table.

Figure 27-7 Pivot Filter Bar with Data Layer Filters

Pivoting
You can drag any layer in a pivot table to a different location on the same edge, to the
opposite edge, or to the associated pivot filter bar (if present), to change the view of
the data in the pivot table. Any layer in a pivot filter bar can be dragged to a different
location within the pivot filter bar, or to the row or column edge of the pivot table. This
operation is called pivoting and is enabled by default.

When you move the mouse over a layer, the layer's pivot handle and an optional pivot
label are displayed. If you move the mouse over the pivot handle, the cursor changes
to a four-point arrow drag cursor. You can then use the handle to drag the layer to the
new location. If you move the mouse over a layer on the row edge, the pivot handle
appears above the layer, as shown in Figure 27-8.

Chapter 27
About the Pivot Table Component

27-4

Figure 27-8 Display of Pivot Handle on the Row Edge

If you move the cursor over a layer in the column edge, the pivot handle appears to
the left of the layer, as shown in Figure 27-9.

Figure 27-9 Display of Pivot Handle on the Column Edge

If, in Figure 27-8, you drag the pivot handle of the Time (Year) layer from the row edge
to the column edge between the Measure (Sales) layer and the Channel layer, the
pivot table will change shape as shown in Figure 27-10.

Figure 27-10 Sales Pivot Table After Pivot of Year

You can customize pivoting to disable pivot labels and pivoting. If both are disabled,
the pivot handle does not display when mousing over the layer.

Editing Data Cells
Pivot tables can contain both read-only and editable data cells. Editable cells are those
containing an input component, for example, af:inputText or af:comboBox.

When a pivot table containing editable cells is initially displayed, the first data cell is
selected and the pivot table is open for editing. Users can initiate editing anywhere in
the pivot table by clicking in a cell to edit or overwrite the cell value. Clicking in editable
cells enables the user to identify a specific location within the cell, and then navigate
within that cell using the arrow keys. Any edit performed on an editable cell can be
reverted by pressing Esc.

Chapter 27
About the Pivot Table Component

27-5

Note:

Pressing Esc will not revert a value selected in a list of values component, for
example af:inputComboboxListOfValues, since the value is submitted
immediately when the dropdown is closed.

Figure 27-11 shows a pivot table data cell open for direct editing.

Figure 27-11 Data Cell Open for Direct Editing

Data cells selected for dropdown list editing are displayed as shown in Figure 27-12.

Figure 27-12 Data Cell Open for Dropdown List Editing

While in editing mode, you can navigate through pivot table data cells using Tab or
Enter. To quickly navigate to the cell below or above the currently selected cell, use
Ctrl+arrow keys. When using the Enter key to navigate, an active link will automatically
be launched for a cell containing an active link. When using Tab or Shift+Tab to
navigate, data cells containing multiple editable components, as in the case of both an
af:inputDate and date picker in the same cell, the Tab highlights each editable
component in turn. When tabbing through the last column of the pivot table, the first
column of the next row is highlighted, and when Shift-Tabbing through the first column
in the pivot table, the last column of the previous row is highlighted.

Once editing mode is initiated, users can navigate through read-only data cells to
editable data cells, maintaining the editing mode. While an editable cell is selected,
you can select other cells using Ctrl or Shift+click without enabling editing in the new
cells and maintaining editing in the original cell.

Chapter 27
About the Pivot Table Component

27-6

Note:

• You can customize the submission of the modified data cell values. The
ValueSubmitPolicy attribute has two possible values, Immediate and
Lazy. With Immediate, the value is instantly submitted when the user
navigates to another cell. With Lazy, the value is not submitted until the
user navigates to another cell that requires a fetch, or the user performs
an action that sends a request to the server to submit the updated
values.

• In order to temporarily or permanently write values back to a set of cells
within a cube, called a writeback, the pivot table must be bound to a data
control or data model that supports writeback operations. A pivot table
row set based data control is transformed into a cube that supports
writeback operations.

Data and Header Sorting
Pivot tables support sorting of data within the pivot table. When sorting is enabled,
ascending and descending sort icons are displayed as the user hovers the mouse over
the innermost layer of the column header.

By default, the sortMode attribute of the pivotTable component is set to grouped,
effectively sorting the data grouped by the second-to-innermost layer of the row edge.
Figure 27-13 shows the data in the World Sales column sorted descending, where the
products within each year are grouped and thereby also sorted descending.

Figure 27-13 Ascending and Descending Sorting Icons in a Pivot Table

You can also sort data display by column and row headers using context menu
options. Setting the sort order on the column or row headers configures all the
columns and rows in that layer to be similarly sorted. Figure 27-14 shows a pivot table
with the US City column headers sorted Left to Right with a context menu option to
change the sort order to Right to Left.

Chapter 27
About the Pivot Table Component

27-7

Figure 27-14 Pivot Table Column Header Sorting

Figure 27-15 shows a pivot table with the Car row sorted with headers from Bottom to
Top with a context menu option or change the sort to Top to Bottom.

Figure 27-15 Pivot Table Row Header Sorting

Drilling
Pivot tables support two types of drilling including insert drilling, and filter drilling. With
insert drilling, the expand operation reveals the detail data while preserving the sibling
and aggregate data. With filter drilling, the expand operation displays the detail data
only, filtering out sibling and aggregate data.

For example, Figure 27-16 and Figure 27-17 illustrate how drilling is used to display
product data within each year; revealing that the 2007 total sales number of 52,500 is
composed of 25,500 for tents and 27,000 for canoes. This total contributes to the
aggregated total of all sales for all years of 128,172. Figure 27-16 shows a pivot table
using insert drilling with the total number of 52,500 displayed alongside the detail
numbers. The data for other years and the aggregated total for all years is also
available.

Chapter 27
About the Pivot Table Component

27-8

Figure 27-16 Pivot Table with Insert Drilling Enabled

Figure 27-17 shows a pivot table using filter drilling with only the detail numbers are
displayed. The numbers for other years, and the aggregated total for all years is
filtered out.

Figure 27-17 Pivot Table with Filter Drilling Enabled

At runtime, a drill icon is enabled in the parent attribute display label for both types of
drilling.

If you do not perform a pivot operation, then the drill operation will remain for the life of
the session. However, in the case of pivoting a drilled child attribute away from a
parent attribute, you can configure the desired behavior using Oracle MDS (Metadata
Services) customization. For information about creating customizable applications
using MDS, see the "Customizing Applications with MDS" chapter of Developing
Fusion Web Applications with Oracle Application Development Framework.

Scrolling and Page Controls
Pivot tables support both on-demand data scrolling and fixed page controls in order to
support large data sets while maintaining performance.

While scrolling, only the data that is scrolled into view in the pivot table is loaded. As
the user scrolls vertically or horizontally, data is fetched for the portion of the pivot
table that has scrolled into view, and data that is no longer needed is discarded.
Figure 27-18 shows a pivot table with a large data set using on-demand data scrolling.

Chapter 27
About the Pivot Table Component

27-9

Figure 27-18 On-Demand Data Scrolling in a Pivot Table

Instead of scrollbars, you can configure a page control to navigate large data sets in
pivot tables for desktop applications and for mobile browsers on touch devices. For
example, the page control for columns display at the top of the pivot table and the
page control for rows displays at the foot of the pivot table as shown in Figure 27-19.

Figure 27-19 Pivot Table Column and Row Page Controls

By default, on desktop devices, tables render a scroll bar that allows the user to scroll
through all rows. On tablet devices, instead of a scroll bar, the table is paginated and
displays a footer that allows the user to jump to specific pages of rows. You can
change the default (auto) value by setting the ScrollPolicy attribute to either scroll
or page based on the type of device.

Chapter 27
About the Pivot Table Component

27-10

You can customize the initial display of the pivot table by specifying the starting visible
row or column data cell or header layer. Use startRow and startColumn attributes to
specify the first visible row and column of data. Use rowHeaderStartLayer and
columnHeaderStartLayer attributes to specify the first visible row or header layer.
Upon initial display of the pivot table, the scrollbar or page control will automatically be
positioned for these attribute settings.

Persistent Header Layers
You can configure pivot tables to always display the labels that appear above each
row header layer and beside each column header layer.

This is useful when displaying large data sets to keep the column and row header
labels in view with the data. To configure persistent display of the row and column
header labels for the pivotTable component, set the layerLabelMode attribute to
rendered.

Split View of Large Data Sets
Pivot tables displaying large data sets can be configured to support a user defined split
view of the data. In a split view the pivot table is split into multiple panes vertically
and/or horizontally, facilitating a side-by-side viewing of rows or columns not located
next to each in the table.

When enabled, a listener is notified after a split is successfully added or removed from
the pivot table. For example, you might want to keep the aggregate level year
information viewable while scrolling through the weeks at the end of the year at the
same time.

By default, the option to split or unsplit a view of the data is available from any pivot
table header or data cell context menu. Users can split columns, rows, or rows and
columns to define the viewable panes of the pivot table. The portion of the available
space allocated to each pane is determined by the scroll position of the cell on which
the Split View command is invoked.

To split only columns, select the column header cell for the column that should be the
first column of the second pane, and in the context menu select Split View.
Figure 27-20 shows a columns only split view pivot table data.

Chapter 27
About the Pivot Table Component

27-11

Figure 27-20 Column Only Split View of Pivot Table Data

To split only rows, select the row header cell for the row that should be the first row of
the second pane, and in the context menu select Split View. Figure 27-21 shows a
row only split view of pivot table data.

Figure 27-21 Row Only Split View of Pivot Table Data

To split both rows and columns, select the data cell that should be the first cell of the
last pane, and in the context menu select Split View. Figure 27-22 shows a row and
column split view of pivot table data.

Chapter 27
About the Pivot Table Component

27-12

Figure 27-22 Row and Column Split View of Pivot Table Data

To return the pivot table from a split view to its original configuration, select any cell,
and in the context menu select Unsplit View as illustrated in Figure 27-23.

Figure 27-23 Pivot Table Unsplit View Command

Sizing
The pivot table autosizes rows, columns, and layers within the space allowed when the
pivot table is initially displayed. These rows, columns, and layers can be manually
resized.

The default size of a pivot table is a width of 300 pixels and a height of 300 pixels. At
runtime, you can change the size of rows, columns, or layers by dragging the row,
column, or layer separator to a new location. Position the cursor in the row or column

Chapter 27
About the Pivot Table Component

27-13

header on the separator between the row, column, or layer you want to resize and the
next row, column, or layer. When the cursor changes to a double-sided arrow, click
and drag the row, column, or layer dotted line separator to the desired location.
Figure 27-24 shows the double-sided arrow and dotted line resize indicators.

Figure 27-24 Pivot Table Resize Indicators

When you resize rows, columns, or layers, the new sizes remain until you perform a
pivot operation. After a pivot operation, the new sizes are cleared and the pivot table
rows, columns, and layers return to their original sizes.

If you do not perform a pivot operation, then the new sizes remain for the life of the
session. However, you cannot save these sizes through MDS (Metadata Services)
customization.

Header Cell Word Wrapping
Pivot cells support word wrapping for header cells. By default, the text in header cell
labels do not wrap if the text is longer than the default size of the header cell.

For long header labels you can set the headerCell component whitespace attribute to
normal to enable word wrapping. The default value is noWrap. Figure 27-10 shows a
pivot table with row header cells wrapped to accommodate long text labels for
Protective Gear and its drilled Black Hawk Knee Pads and Black Hawk Elbow Pads
header cells.

Chapter 27
About the Pivot Table Component

27-14

Figure 27-25 Pivot Table Header Cell Word Wrapping

Active Data Support (ADS)
Pivot tables and pivot filter bars support ADS by sending a Partial Page Refresh (PPR)
request when an active data event is received.

The PPR response updates the pivot table and pivot filter bar values as follows:

• If the ADS event results in an update to the value of one or more existing pivot
table data cells, the values are updated in place.

• If the ADS event results in an insert or delete of a row or column, or multiple rows
or columns, the entire pivot table is refreshed to display the change.

• ADS is only supported for a single stamped af:outputText or dvt:sparkChart
component in a data cell.

• If an event arrives while the pivot table is in an operation such as a pivot, the event
is buffered so that it can be applied after the operation is completed; except in the
case where the event is older that the data that the pivot operation just fetched, in
which case the event is discarded.

For additional information about using the Active Data Service, see Using the Active
Data Service with an Asynchronous Backend.

Additional Functionality for the Pivot Table Component
You may find it helpful to understand other ADF Faces features before you implement
your pivot table component. Additionally, once you have added a pivot table
component to your page, you may find that you need to add functionality such as
validation and accessibility.

Following are links to other functionality that pivot table components can use:

• You may want a pivot table to refresh a header cell, a data cell, or the entire pivot
table to show new data based on an action taken on another component on the
page. For more information, see Rerendering Partial Page Content.

Chapter 27
About the Pivot Table Component

27-15

• Personalization: If enabled, users can change the way the pivot table displays at
runtime, and those values will not be retained once the user leaves the page
unless you configure your application to allow user customization. For information,
see Allowing User Customization on JSF Pages.

• Accessibility: Pivot table and pivot filter bar components are accessible, as long as
you follow the accessibility guidelines for the component. See Developing
Accessible ADF Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of pivot table and pivot filter
bar components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see Customizing the Appearance Using
Styles and Skins.

• Content Delivery: You can configure your pivot table and pivot filter bar to fetch
data from the data source immediately upon rendering the components, or on a
second request after the components have been rendered using the
contentDelivery attribute. For more information, see Content Delivery.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound pivot tables based on how your ADF Business
Components are configured. JDeveloper provides a wizard for data binding and
configuring your pivot table. For more information, see the "Creating Databound
Pivot Table and Pivot Filter Bar Components" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), image formats, and
how data can be displayed and edited. For more information, see Common
Functionality in Data Visualization Components.

Using the Pivot Table Component
To use the ADF DVT Pivot Table component, add the pivot table to a page using the
Component Palette window. Then define the data for the pivot table and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window.

Chapter 27
Using the Pivot Table Component

27-16

Pivot Table Data Requirements
You can use any row set (flat file) data collection to supply data to a pivot table. The
pivot table component uses a data model to display and interact with data.

The specific data model is oracle.adf.view.faces.bi.model.DataModel.

Pivot tables require that the value attribute is set in JDeveloper. If you are using UI-
first development, the value of the value attribute must be stored in the pivot table's
data model or in classes and managed beans.

Configuring Pivot Tables
The pivot table (pivotTable) component has two child components, a header cell
(headerCell) and a data cell (dataCell). The pivot filter bar (pivotFilterBar) is a
sibling component that can be associated with the pivot table. These components are
defined by several configurable elements.

The prefix dvt: occurs at the beginning of each pivot table and pivot filter bar
component name indicating that the component belongs to the ADF Data Visualization
Tools (DVT) tag library.

Pivot tables display data in a grid layout with unlimited layers of hierarchically nested
row header cells and column header cells. Figure 27-26 shows a pivot table and its
associated pivot filter bar displaying the sales of electronic equipment.

Figure 27-26 Electronic Sales Pivot Table

Pivot table and pivot filter bar components are defined by the following terms using the
Electronic Sales Pivot Table in Figure 27-26:

• Edges: The axes in pivot tables, including:

– Row edge: The vertical axis to the left or right for right-to-left display of the
body of the pivot table. In Figure 27-26, the row edge contains two layers,

Chapter 27
Using the Pivot Table Component

27-17

Product Category and Product, and each row in the pivot table represents the
combination of a particular category and a particular product.

– Column edge: The horizontal axis above the body of the pivot table. In
Figure 27-26, the column edge contains two layers, Measure and US State,
and each column in the pivot table represents the combination of a particular
measure value (Sales or Units), and a particular geographic location (US
State).

– Page edge: The edge represented by the pivot filter bar, whose layers can be
filtered or pivoted with the layers in the row and column edges.

• Layers: Nested attributes that appear in a single edge. In Figure 27-26, the
following two layers appear in the column edge: Measure and Geography (Sales
and US State). The following two layers appear in the row edge: Category and
Product (Product Category and Product).

• Header cell: The labels that identify the data displayed in a row or column. Row
header cells appear on the row edge, and column header cells appear on the
column edge. In the sample, header cells include Cell Phones, iPod Speakers,
Sales, and Colorado.

• Data cell: The cells within the pivot table that contain data values, not header
information. In the sample, the first data cell contains a value of 1,499.99.

• QDR (Qualified Data Reference): A fully qualified data reference to a row, a
column, or an individual cell. For example, in Figure 27-26, the QDR for the first
data cell in the pivot table must provide the following information:

– Category=Audio Video

– Product=iPod Nano 1Gb

– Measure=Sales

– Geography=Colorado

Likewise, the QDR for the first row in the pivot table, which is also the QDR of the
"iPod Nano 1Gb" header cell, contains the following information:

– Category=Audio Video

– Product=iPod Nano 1Gb

Finally, the QDR for the "Sales" header cell contains the following information:

– Measure=Sales

How to Add a Pivot Table to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a pivot table to the page. Once the pivot table is added to
your page, you can use the Properties window to specify data values and configure
additional display attributes for the pivot table.

In the Properties window you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 27-27 shows the dropdown menu for a
pivot table component value attribute.

Chapter 27
Using the Pivot Table Component

27-18

Figure 27-27 Pivot Table Value Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a pivot table and the binding will be done for you.
JDeveloper provides a wizard for data binding and configuring your pivot
table. For more information, see the "Creating Databound Pivot Table and
Pivot Filter Bar Components" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how pivot table attributes and child tags
can affect functionality. For more information, see Configuring Pivot Tables.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for the Pivot
Table Component.

To add a pivot table to a page:

1. In the ADF Data Visualization page of the Components window, from the Pivot
Table panel, drag and drop a Pivot Table onto the page.

2. In the Properties window, view the attributes for the pivot table. Use the help
button to display the complete tag documentation for the pivotTable component.

3. Expand the Data section. Use this section to set the following attributes:

• Value: Specify an EL expression for the object to which you want the pivot
table to be bound. Can be an instance of
oracle.adf.view.faces.bi.model.DataModel.

• Var and VarStatus: Use to specify a variable to access cell data in stamped
dataCell and headerCell components. For more information, see Using var
and varStatus Properties.

Chapter 27
Using the Pivot Table Component

27-19

4. Expand the Appearance section. Use this section to set the following attributes:

• LayerLabelMode: Use to configure the pivot table to always display the labels
that appear above each row header layer and beside each column header
layer. To configure persistent display of the row and column header labels for
the pivotTable component, set the attribute to rendered. The default value is
hidden.

• PivotLabelVisible: Specify whether or not to display the labels on the pivot
handles. The default value is true.

• PreferredColumnHeaderHeight and PreferredRowHeaderWidth: As
desired, use to specify the column header height and the row header width in
percentages, for example 25% or 33.3%.

• Sizing: Use to specify how the pivot table's size in width and height is
determined. The default value is fixed where the pivot table is sized based on
the parent component if the parent stretches its children, or the width and
height CSS properties in its default skin, style class, or inline style if the parent
does not stretch its children.

You can also set the attribute to auto where if the parent stretches its children,
the pivot table is sized in the same way as the fixed attribute. If the parent
does not stretch its children, the pivot table will shrink to the size of its content
if the content is smaller than the pivot table, specifically:

width=min(content width, default width) and

height=min(content height, default height)

where "default width" and "default height" are the width and height CSS
properties in its default skin, style class, or inline style.

Note:

When this attribute is set to auto, the pivot table frame will initially be
displayed with the default size of the pivot table and then readjusted
to fit its contents. This can cause the layout of the page displaying
the pivot table to change after the page is initially displayed.

• StatusBarRendered: Use to specify whether or not the pivot table status bar
is display. The default value is false.

• EmptyText: Enter the text to use to describe an empty pivot table. If the text is
enclosed in an HTML tag, it will be formatted.

• Summary: Enter a statement of the pivot table's purpose and structure for use
by screen readers.

• DataFormat and HeaderFormat: While a less preferred strategy to
declaratively styling header and data cell stamps, you can use these attributes
to create formatting rules to customize content in data and header cells. For
more information, see Formatting Pivot Table Cell Content With CellFormat.

5. Expand the Behavior section. Use this section to set the following attributes:

• PivotEnabled: Specify whether or not to allow the end user to reposition the
view of the data in the pivot table. The default value is true.

Chapter 27
Using the Pivot Table Component

27-20

• ColumnFetchSize and RowFetchSize: Use to specify the number of columns
and rows in a data fetch block. The default value for columns is 10 and the
default value for rows is 25, which can be modified.

• ContentDelivery: Use to specify how content will be delivered from the data
source to the pivot table. The data can be delivered to the pivot table either by
default as soon as the data is available (whenAvailable), immediately upon
rendering (immediate), or lazily fetched after the shell of the component has
been rendered (lazy). For more information about content delivery to pivot
tables, see Content Delivery.

6. In the Structure window, right-click the dvt:pivotTable node and choose Insert
Inside Pivot Table > Header Cell.

7. In the Structure window, right-click the dvt:pivotTable node and choose Insert
Inside Pivot Table > Data Cell.

Configuring Pivot Table Display Size and Style
You can configure the pivot table, pivot filter bar, header cell and data cell's size and
style using the inlineStyle or styleClass attributes.

Both attributes are available in the Style section in the Properties window for the
dvt:pivotTable, dvt:pivotFilterBar, dvt:headerCell, or dvt:dataCell component.
Using these attributes, you can customize stylistic features such as fonts, borders, and
background elements.

You can also configure header cell and data cell child components using their styling
attributes. For example, you can use custom CSS styling with inlineStyle and
contentStyle attributes of a data cell af:outputText and af:inputText respectively:

<dvt:pivotTable id="goodPT"
 value="#{richPivotTableModel.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:dataCell id="dc1">
 <af:switcher id="sw1" facetName="#{richPivotTableModel.stampFacet}">
 <f:facet name="outputText">
 <af:outputText id="ot1" value="#{cellData.dataValue}"
 inlineStyle="#{myBean.textStyle}"/>
 </f:facet>
 <f:facet name="inputText">
 <af:inputText id="ot2" value="#{cellData.dataValue}"
 contentStyle="#{myBean.textStyle}" />
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
 </dvt:pivotTable>

Pivot tables and pivot filter bars also support skinning to customize many aspects of
the display of data and header cells and labels, and pivoting and sorting icons.

For the complete list of pivot table skinning keys, see the Oracle Fusion Middleware
Data Visualization Tools Tag Reference for Oracle ADF Faces Skin Selectors. For
additional information about customizing your application using skinning and styles,
see Customizing the Appearance Using Styles and Skins.

Chapter 27
Using the Pivot Table Component

27-21

The page containing the pivot table may also impose limitations on the ability to
change the size or style. For more information about page layouts, see Organizing
Content on Web Pages.

What Happens When You Add a Pivot Table to a Page
When a pivot table component is inserted into a JSF page using the Components
window, a basic pivot table tag is added to the source code as follows:

<dvt:pivotTable id="pt1"/>

If you have not already done so, you can then use the Components window to insert a
header cell and data cell. Configure the cell content through stamping. For more
information, see Configuring Header and Data Cell Stamps.

A Create Pivot Table wizard provides declarative support for data-binding and
configuring the pivot table. In the wizard pages you can:

• Specify the initial layout of the pivot table

• Associate and configure a pivot filter bar

• Specify alternative labels for the data layers

• Configure insert or filter drilling

• Define aggregation of data values

• Configure category and data sorting

For more information, see the "Creating Databound Pivot Tables" chapter of
Developing Fusion Web Applications with Oracle Application Development
Framework.

What You May Need to Know About Displaying Large Data Sets
When you are developing an ADF Faces web application, by default pivot tables use a
vertical or horizontal scroll bar for displaying rows over the size of the data being
fetched. Alternatively, you can configure a vertical or horizontal page control that
allows users to jump to specific pages of rows as illustrated in Figure 27-19. To
configure a page control for desktop devices, set the pivotTable component
scrollPolicy attribute to page.

By default, when rendered on mobile devices, pivot tables use a page control for
displaying rows over the size of the data being fetched. For pivot tables to display on a
mobile device, you must:

• Place the pivot table component within a flowing container (that is, a component
that does not stretch its children). For more information about flowing container
components, see Geometry Management and Component Stretching.

• Leave the scrollPolicy attribute set to auto (default for this setting on mobile
devices is paginated display of the pivot table).

If the pivot table is not in a flowing container, or if those attributes are not set correctly,
the pivot table will display a scroll bar instead of pages.

Chapter 27
Using the Pivot Table Component

27-22

Note:

For row-based data sets with more than 1000 rows, pre-calculate the
summary data in the database to limit the number of rows sent to the pivot
table, and thereby reduce resources necessary for data aggregation. You
can tune your view object to set how data is retrieved from the database.
Use the default setting of All Rows in batches of 1. For more information,
see "Consider the Appropriate Tuning Setting for Every View Object" in
Developing Fusion Web Applications with Oracle Application Development
Framework.

You can also specify the number of columns and rows in a data fetch block
by setting the columnFetchSize and rowFetchSize attributes of the
dvt:pivotTable component.

What You May Need to Know About Pivot Tables on Touch Devices
The ADF Faces framework is optimized to run in mobile browsers such as Safari. The
framework recognizes when a mobile browser on a touch device is requesting a page,
and then delivers only the JavaScript and peer code applicable to a mobile device.
However, while a standard ADF Faces web application will run in mobile browsers,
because the user interaction is different and because screen size is limited, when your
application needs to run in a mobile browser, you should create touch device-specific
versions of the pages. For more information, see Creating Web Applications for Touch
Devices Using ADF Faces.

What You May Need to Know About Skinning and Customizing the
Appearance of Pivot Tables

For the complete list of pivot table skinning keys, see the Oracle Fusion Middleware
Documentation Tag Reference for Oracle Data Visualization Tools Skin Selectors. To
access the list from JDeveloper, from the Help Center, choose Documentation Library,
and then Fusion Middleware Reference and APIs. For additional information about
customizing your application using skins, see Customizing the Appearance Using
Styles and Skins.

Configuring Header and Data Cell Stamps
Each immediate child of a ADF DVT Pivot Table component must be either a
headerCell or dataCell component. The pivot table can contain at most one
headerCell and at most one dataCell component. These components make it
possible to customize the cell content through stamping.

When you use stamping, child components are not created for every header cell or
data cell in a pivot table. Rather, the content of the component is repeatedly rendered,
or stamped, once per cell.

Each time a header or data cell is stamped, the value for the current cell is copied into
a var property, and additional data for the cell is copied into a varStatus property.
These properties can be accessed in EL expressions inside the header or data cell
component, for example, to pass the cell value to a stamped af:outputText

Chapter 27
Configuring Header and Data Cell Stamps

27-23

component. Once the pivot table has completed rendering, the var and varStatus
properties are removed, or reverted back to their previous values.

Using var and varStatus Properties
Pivot table var and varStatus properties are used to access cell data in stamped
dataCell and headerCell components. The var property names the EL expression
variable used to reference cell data within pivot table data cell stamps. In the stamped
dataCell or headerCell component, the var property must be referenced and
followed by a metadata keyword.

Table 27-1 shows the metadata keywords supported for data cells in a rowset data
model.

Table 27-1 Supported Metadata Keywords for Data Cells

Keyword Description

dataValue Most frequently useful keyword. Returns the data value Object
for the current cell. To specify the object's accessible field
through EL Expression, use the setting dataValue.fieldName.

dataCubeMax and
dataCubeMin

Returns a number that is the maximum and minimum,
respectively, for the measure of the cell across the values in the
cube.

dataIsTotal Returns a Boolean true if this cell is an aggregate.

dataAggregates If the cell is an aggregate, returns a List<String,Object> of
the column and value pairs representing the cells
(nonaggregate) that make up the aggregation for the given cell.

aggregateCollection If the cell is an aggregate, returns the List<String,Object>
of the column and value pairs in the cube that make up the cell's
aggregate value. Note that aggregateCollection is post-cube
and dataAggregates is not.

dataRow Returns a Map<String,Object> from attribute name to data
Object in the original row mapping. Usage: dataRow.foo, where
"foo" is one of the rowset attribute (column) names.

dataTypeColumn Returns a String representing the name of the rowset attribute
from which the value comes.

dataRowKey Returns the row data model's ADF Model row key,

dataKeyPath Returns the ADF Model key path object.

Table 27-2 shows the metadata keywords supported for header cells in a rowset data
model.

Table 27-2 Supported Metadata Keywords for Header Cells

Keyword Description

dataValue Most frequently useful keyword. Returns the data value Object
for the current cell. To specify the object's accessible field
through EL Expression, use the setting dataValue.fieldName.

value Returns the String value of the header cell. Also available in
cubic data models.

Chapter 27
Configuring Header and Data Cell Stamps

27-24

Table 27-2 (Cont.) Supported Metadata Keywords for Header Cells

Keyword Description

label Returns the String label for the header cell. Also available in
cubic data models.

isTotal Returns a Boolean true if the header cell represents an
aggregate.

drillState Returns an Integer value representing the drill state of the
current header cell, if applicable. 0 indicates "not drillable", 1
indicates "drillable", and 2 indicates "drilled". Also available in
cubic data models

memberMetadataColumn Returns the String attribute column of the header cell.

layerName Returns a String representing the name of the layer containing
the header cell.

layerLabel Returns a String representing the label (if any) for the layer
containing this header cell. May fall back to layerName.

The optional varStatus property names the EL expression variable used to provide
contextual information about the state of the component. In stamped dataCell or
headerCell components, the varStatus property must be referenced and followed by
one of the following:

• members: Valid only for the dataCell component. Provides access to the header
cells corresponding to the same row or column as the current data cell.

• model: Returns the DataModel for this component.

• cellIndex: Returns the cell index for this component.

• cellKey: Returns the cell key for this component.

For example you can use var and varStatus to access data from a stamped data cell
and to format the pivot table based on the header cell stamp:

<dvt:pivotTable
 id="pivotTable3"
 value="#{pivotTableMemberFormatting.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:headerCell>
 <af:switcher
 facetname="O___b_cellData_layerName__b__"
 defaultFacet="Other">
 <f:facet name="Product">
 <af:outputText id="ot1"
 value="#{cellData.dataValue}"
 inlineStyle="color:#{(cellData.dataValue == 'Canoes' ?
 'red' : 'blue')};"/>
 </f:facet>
 <f:facet name="Other">
 <af:outputText id="ot2" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>

 <dvt:dataCell>

Chapter 27
Configuring Header and Data Cell Stamps

27-25

 <af:outputText id="ot3" value="#{cellData.dataValue}"
 inlineStyle="color:#{(cellStatus.members.Product.dataValue ==
 'Canoes' ? 'red' : 'blue')};"/>
 </dvt:dataCell>
</dvt:pivotTable>

The code sample illustrates the syntax for using each data cell value property as
follows:

• var: [var property].[data cell metadata keyword]

In the code sample, the value of af:outputText is set to #{cellData.dataValue},
the value of the current cell.

• varStatus: [varStatus property].[members].[layer name].[header cell metadata
keyword]

The data cell component value references the pivot table varStatus (cellStatus)
followed by members to access the header cells corresponding to the same row or
column as the current data cell, followed by the name of the layer (Product)
containing the desired header cell, followed by the header cell metadata keyword
dataValue.

Using var and varStatus Properties shows the pivot table resulting from the code
sample.

Figure 27-28 Pivot Table with Formatting Based Header Cell Stamp

You can also use var and varStatus to stamp sparkcharts in pivot tables: and gauges
in pivot tables:

<dvt:pivotTable id="pivotTable1"
 value="#{pivotTableSparkChart.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:dataCell>
 <af:switcher id="s2"
 facetname="O___b_cellData_dataIsTotal__b__"
 defaultFacet="false">
 <f:facet name="true">
 <dvt:sparkChart id="sc1" shortDesc="Spark Chart"
 highMarkerColor="#008200"
 lowMarkerColor="#ff0000">
 <af:iterator id="i1"
 value="#{cellData.aggregateCollection}"
 var="sparks" >
 <dvt:sparkItem id="si1"
 value="#{sparks.dataValue}"/>
 </af:iterator>
 </dvt:sparkChart>
 </f:facet>

Chapter 27
Configuring Header and Data Cell Stamps

27-26

 <f:facet name="false">
 <af:outputText id="ot1" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:dataCell>

 <dvt:headerCell>
 <af:switcher id="s3"
 facetname="O___b_cellData_isTotal__b__"
 defaultFacet="false">
 <f:facet name="true">
 <af:outputText id="ot2" value="Trend"/>
 </f:facet>
 <f:facet name="false">
 <af:outputText id="ot3" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
</dvt:pivotTable>

The resulting pivot table is shown in Figure 27-2.

You can also use var and varStatus to stamp gauges in pivot tables:

<dvt:pivotTable
 id="pivotTable2"
 value="#{pivotTableGauge.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:dataCell>
 <dvt:gauge id="g1" shortDesc="Gauge"
 imageWidth="80" imageHeight="80" imageFormat="PNG_STAMPED"
 value="#{cellData.dataValue}"
 minValue="#{cellData.dataCubeMin}"
 maxValue="#{cellData.dataCubeMax}"/>
 </dvt:dataCell>
</dvt:pivotTable>

The resulting pivot table is displayed in Figure 27-3.

How to Configure Header and Data Cell Stamps
Only certain types of child components are supported by header cells or data cells. For
example, each header cell can contain read-only components. Each data cell can
contain read-only or input components, including all components with no activity and
most components that implement the EditableValueHolder or ActionSource
interfaces.

Header cells and data cells should have only one child component. If multiple children
are desired, they should be wrapped in another component. If no layout is desired,
af:group can be used, which simply renders its children without adding layout, and is
consequently lightweight. If layout is desired, a layout component like
af:panelGroupLayout can be used instead. For more information, see Grouping
Related Items.

Data cell editing is enabled by using an input component as the child component of
dataCell. At runtime you can open the cell for editing by clicking the cell in the pivot
table. For more information, see Editing Data Cells.

Chapter 27
Configuring Header and Data Cell Stamps

27-27

You can configure header cell stamping using af:switcher to vary the type of
stamped component by layer name, that is, a different content for Geography,
Channel, and so on using components as children of headerCell:

<dvt:pivotTable id="goodPT"
 inlineStyle="width:100%;height:600px;"
 binding="#{editor.component}"
 contentDelivery="immediate"
 value="#{pivotTableHeaderCellDemo.dataModel}"
 headerFormat="#{pivotTableHeaderCellDemo.getHeaderFormat}"
 dataFormat="#{pivotTableHeaderCellDemo.getDataFormat}"
 var="cellData"
 varStatus="cellStatus"
 summary="pivot table">
 <dvt:headerCell id="goodHC>
 <af:switcher id="sw" facetName="#{cellData.layerName}" defaultFacet="Other">
 <f:facet name="Geography">
 <af:group id="g1">
 <af:icon id="idicon11" name="info" shortDesc="Icon" />
 <af:outputText value="#{cellData.dataValue}" id="ot11"
 shortDesc="#{cellData.dataValue}" />
 </af:group>
 </f:facet>
 <f:facet name="Channel">
 <af:group id="g2">
 <af:panelGroupLayout id="pgl2" layout="vertical">
 <af:link shortDesc="Sample Link"
 icon="/images/pivotTableCSVDemo/smily-normal.gif"
 hoverIcon="/images/pivotTableCSVDemo/smily-glasses.gif"
 id="cil1"/>
 <af:outputText value="#{cellData.dataValue}" id="ot1" />
 </af:group>
 <af:button text="Go to Tag Guide page" immediate="true"
 action="guide" id="cb1"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="Product">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:outputText value="#{cellData.dataValue}" id="ot12" />
 <af:button text="Go to Tag Guide page" immediate="true"
 action="guide" id="cb2"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="Other">
 <af:link text="#{cellData.dataValue}"
 shortDesc="#{cellData.dataValue}" immediate="true"
 action="guide" id="idlink11"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
</dvt:pivotTable>

Figure 27-29 shows the resulting pivot table for the code sample.

Chapter 27
Configuring Header and Data Cell Stamps

27-28

Figure 27-29 Pivot Table Header Cell Stamps

You can configure data cell stamping using af:switcher to vary the type of stamped
component by measure, that is, a different content for Sales, Weight, and so on using
components as children of dataCell:

<dvt:pivotTable id="goodPT" var="cellData" varStatus="cellStatus">
 <dvt:dataCell>
 <af:switcher id="sw" facetName="#{cellStatus.members.MeasDim.value}"
 defaultFacet="Other">
 <f:facet name="Sales">
 <af:inputText id="idinputtext1" value="#{cellData.dataValue}" />
 </f:facet>
 <f:facet name="Units">
 <af:inputText id="idinputtext2" value="#{cellData.dataValue}" >
 <af:validateLength maximum="6" minimum="2" />
 </af:inputText>
 </f:facet>
 <f:facet name="Weight">
 <af:outputText id="idoutputtext1" value="#{cellData.dataValue}" />
 </f:facet>
 <f:facet name="Color">
 <af:selectOneChoice id="idselectonechoice"
 value="#{cellData.dataValue}" label="Color">
 <af:selectItem label="red" value="red" shortDesc="shortDesc sample"/>
 <af:selectItem label="coffee" value="coffee"
 shortDesc="Sample shortDesc text"/>
 <af:selectItem label="milk" value="milk"
 shortDesc="Another shortDesc sample"/
>
 </af:selectOneChoice>
 </f:facet>
 <f:facet name="Available">
 <af:selectBooleanCheckbox id="idselectbooleancheckbox"
 label="Availability" text="Item Available"
 autoSubmit="true"
 value="#{cellData.dataValue}"/>
 </f:facet>
 <f:facet name="Supply Date">
 <af:inputDate id="idinputdate1" value="#{cellData.dataValue}"
 label="Change Date:" simple="true" >
 <af:validateDateTimeRange maximum="2020-12-31" minimum="1980-12-31" />
 </af:inputDate>
 </f:facet>

Chapter 27
Configuring Header and Data Cell Stamps

27-29

 <f:facet name="Link">
 <af:link text="#{cellData.dataValue}" immediate="true"
 action="guide" id="idlink"/>
 </f:facet>
 <f:facet name="Size">
 <af:inputComboboxListOfValues label="Size"id="idInputComboboxListOfValues"
 value="#{cellData.dataValue}"
 searchDesc="Search Size"
 model="#{pivotTableEditBean.listOfValuesModel}"
 columns="3" />
 </f:facet>
 <f:facet name="Other">
 <af:outputText id="idoutputtext2" value="#{cellData.dataValue}" />
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
</dvt:pivotTable>

Figure 27-30 shows the resulting pivot table for the code sample.

Figure 27-30 Pivot Table Data Cell Stamps

Before you begin:

It may be helpful to have an understanding of how pivot table attributes and child tags
can affect functionality. For more information, see Configuring Pivot Tables.

You should already have a pivot table on your page. If you do not, follow the
instructions in this chapter to create a pivot table. For more information, see How to
Add a Pivot Table to a Page.

To add and configure a header or data cell stamp:

1. In ADF Data Visualization page of the Components window, from the Pivot Table
panel, drag and drop a Header Cell or Data Cell onto the pivot table in the visual
editor.

2. In the Structure window, right-click the dvt:headerCell or dvt:dataCell and
choose insert inside Header Cell or insert inside Data Cell > ADF Data
Visualization Components or ADF Faces.

3. In the Insert Item dialog, select the component you wish to stamp in the header or
data cell.

4. In the Structure window, select the component you inserted, and in the Properties
window, set the component attributes.

Chapter 27
Configuring Header and Data Cell Stamps

27-30

Using Pivot Filter Bars
You can enhance the data filtering capacity in a pivot table by adding an ADF DVT
Pivot Filter Bar. Any data layers specified in the pivot table can be moved to or
specified in the filter bar to filter the displayed data.

Zero or more layers of data not already displayed in the pivot table row edge or
column edge are displayed in the page edge. Figure 27-31 shows a pivot filter bar with
Quarter and Month layers that can be used to filter the data displayed in the pivot
table.

Figure 27-31 Pivot Filter Bar with Data Layer Filters

You can also change the display of data in the pivot table by pivoting layers between
the row, column, or page edges. Use the pivot handle to drag the layers between the
edges as desired. Figure 27-32 shows the modified pivot table and pivot filter bar
when the Channel data layer is pivoted to the page edge.

Figure 27-32 Pivot Table and Pivot Filter Bar After Pivot

You can style pivot filter bars using inlineStyle and styleClass attributes and
skinning keys. See Configuring Pivot Table Display Size and Style.

Chapter 27
Using Pivot Filter Bars

27-31

Using a Pivot Filter Bar with a Pivot Table
You can use a pivot filter bar component, pivotFilterBar, to work with a pivot table
component, pivotTable, by configuring the data model and associated properties to
work with both components:

<dvt:pivotFilterBar id="pf1" value="#{binding.pt.pivotFilterBarModel}"
 modelName="pt1Model"/>
<dvt:pivotTable id="pt1" value="#{binding.pt.dataModel}" modelName="pt1Model"
 partialTriggers="pf1"/>

You can associate a pivot filter bar with a pivot table in any of the following ways:

• Create a pivot table using the Data Controls Panel.

When you drag a data collection from the Data Controls Panel to create a pivot
table on your page, the Select Display Attributes page of the Create Pivot Table
wizard provides the option to create a pivot filter bar to associate with the pivot
table. You can choose to specify zero or more attributes representing data layers
in the page edge. The data model and associated properties are automatically
configured for you. For detailed information, see the "Creating Databound Pivot
Tables" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

• Add a pivot filter bar to a pivot table bound to data.

In the ADF Data Visualizations page of the Components window, from the Pivot
Table panel, you can drag a pivotFilterBar element adjacent to a pivotTable
element that has been bound to a data collection and the data binding will be done
for you.

• Add a pivot filter bar to a pivot table not bound to data.

In the ADF Data Visualizations page of the Components window, from the Pivot
Table panel, you can drag a pivotFilterBar element adjacent to a pivotTable
element that has not been bound to a data collection. In this instance, you must
configure the data model and associated properties in order for the pivot filter bar
to work with the pivot table.

Using a Pivot Filter Bar with a Graph
You can use a pivot filter bar to filter the graphical display of data in a graph. For
example, you can shows a filtered view of quarterly sales data displayed in both a
pivot table and on a graph as illustrated in Figure 27-6.

Use partial page rendering (PPR) to configure the pivot filter bar as a trigger with a
pivot table and a graph as targets. Once PPR is triggered, any component configured
to be a target will be rerendered. You configure a component to be a target by setting
the partialTriggers attribute to the relative ID of the trigger component. For
information about relative IDs, see Locating a Client Component on a Page. For more
information about PPR, see Rerendering Partial Page Content.

For example, to configure the pivot table and graph in Figure 27-6:

<dvt:pivotFilterBar id="pfb1" binding="#{editor.component}"
 value="#{pivotFilterBar.queryDescriptor}" modelName="model1"
 styleClass="AFStretchWidth"/>
<af:panelGroupLayout layout="horizontal" id="pgl2">

Chapter 27
Using Pivot Filter Bars

27-32

 <f:facet name="separator" >
 <af:separator id="s2"/>
 </f:facet>
 <af:spacer width="25px" id="s3"/>
 <dvt:pivotTable id="pt1" inlineStyle="width:400px" partialTriggers="::pfb1"
 value="#{pivotFilterBar.dataModel}" modelName="model1"
 summary="Quarterly Sales Pivot Table"/>
 <af:spacer width="50px" id="s4"/>
 <dvt:barGraph id="bar1" partialTriggers="::pfb1 ::pt1"
 value="#{pivotFilterBar.dataModel}" shortDesc="Quarterly Sales
 Bar Graph"/>
</af:panelGroupLayout>

What You May Need to Know About Skinning and Customizing the
Appearance of Pivot Filter Bars

For the complete list of pivot filter bar skinning keys, see the Oracle Fusion
Middleware Documentation Tag Reference for Oracle Data Visualization Tools Skin
Selectors. To access the list from JDeveloper, from the Help Center, choose
Documentation Library, and then Fusion Middleware Reference and APIs. For
additional information about customizing your application using skins, see Customizing
the Appearance Using Styles and Skins.

Adding Interactivity to Pivot Tables
ADF DVT Pivot tables and pivot filter bars support multiple user operations, including
data selection, exporting to an spreadsheet, and displaying in printable mode.

Using Selection in Pivot Tables
Selection in a pivot table allows a user to select one or more cells in a pivot table. Only
one of the three areas including the row header, column header, or data cells can be
selected at one time.

An application can implement features such as displaying customized content for a
context menu, based on currently selected cells. For example, to get the currently
selected header cells:

UIPivotTable pt = getPivotTable()
if (pt == null)
 return null;
HeaderCellSelectionSet headerCells = null;
if (pt.getSelection().getColumnHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getColumnHeaderCells();
} else if (pt.getSelection().getRowHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getRowHeaderCells();
}

At runtime, selecting a data cell highlights the cell, as shown in Figure 27-11.

Chapter 27
Adding Interactivity to Pivot Tables

27-33

Figure 27-33 Selected Data Cell

Using Partial Page Rendering
You can update pivot tables, data cells, and header cells by using partial page
rendering (PPR). For example, you may display totals in a pivot table when triggered
by a checkbox. PPR allows individual components on a page to be rerendered without
the need to refresh the entire page. For more information about PPR, see About
Partial Page Rendering.

Note:

By default, ADF pivot tables support automatic PPR, where any component
whose values change as a result of backend business logic is automatically
rerendered. If your application uses the Fusion technology stack, you can
enable the automatic partial page rendering feature on any page. For more
information, see the "What You May Need to Know About Partial Page
Rendering and Iterator Bindings" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

For a component to be rerendered based on an event caused by another component,
it must declare which other components are the triggers. Use the partialTriggers
attribute to provide a list of IDs of the components that should trigger a partial update
of the pivot table. The pivot table listens on the trigger components and if one of the
trigger components receives an event that will cause it to update in some way, the
pivot table is also updated.

For example, you can update a pivot table by displaying the totals when a checkbox is
triggered using the triggering component ID as the partialTriggers value.

<dvt:pivotTable id="goodPT"
 value="#{richPivotTableModel.dataModel}"
 partialTriggers="showTotals"/>

 <af:selectBooleanCheckbox id="showTotals" autoSubmit="true" label="Show Totals"
 value="#{richPivotTableModel.totalsEnabled}"/>

Exporting from a Pivot Table
You can export the data from a pivot table to a Microsoft Excel spreadsheet. You
create an action source, such as a button or link, add a exportPivotTableData
component, and associate it with the data you wish to export. You can configure the
component so that the entire pivot table will be exported, or so that only the rows,
columns, or data cells selected by the user will be exported. For example,

Chapter 27
Adding Interactivity to Pivot Tables

27-34

Figure 27-34 shows a pivot table that includes button components that allow users to
export the data to an Excel spreadsheet.

Figure 27-34 Pivot Table with Export to Excel Buttons

At runtime, when the user clicks the button, by default all the rows and columns are
exported in an Excel format written to the file specified in the filename attribute of the
component. Alternatively, you can configure the exportPivotTableData component so
that only user selections are exported, by setting the exportedData attribute to
selected. For example, for the Export to Excel buttons:

<dvt:pivotTable id="pivotTableToExport"
 binding="#{editor.component}"
 contentDelivery="immediate"
 value="#{pivotTableExport.dataModel}" summary="pivot table"/>

<h:panelGrid id="pfl" columns="2" cellpadding="3">
 <af:button text="Export All" id="exportAll">
 <dvt:exportPivotTableData exportedId="pivotTableToExport" type="excelHTML"
 exportedData="all" filename="all.xls"
 title="All pivotTable data"/>
 </af:button>
 <af:button text="Export Selected" id="exportSelected">
 <dvt:exportPivotTableData exportedId="pivotTableToExport" type="excelHTML"
 exportedData="selected" filename="selected.xls"
 title="Selected pivotTable data"/>
 </af:button>
</h:panelGrid>

Figure 27-35 shows the resulting Excel spreadsheet when the Export All button is
clicked.

Figure 27-35 Pivot Table Export to Excel Spreadsheet

Chapter 27
Adding Interactivity to Pivot Tables

27-35

Note:

You may receive a warning from Excel stating that the file is in a different
format than specified by the file extension. This warning can be safely
ignored.

Displaying Pivot Tables in Printable Pages
ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing. For example, you may want users to be able to print a
page (or a portion of a page), but instead of printing the page exactly as it is rendered
in a web browser, you want to remove items that are not needed on a printed page,
such as scrollbars and buttons. For information about creating simplified pages for
these outputs, see Using Different Output Modes .

When a pivot table and pivot filter bar is displayed on a JSF page to be output in
printable pages:

• All data cells in the pivot table are displayed.

• Limited client interactivity including cell select and row or column resizing is
supported.

• Pivoting, drilling, and sorting operations are not supported.

• Context menus including the ability to resize rows or columns is not supported.

• If configured, the pivot table data filter displayed in the pivot filter bar will be
displayed, although the contents cannot be changed.

Formatting Pivot Table Cell Content With CellFormat
Although a less preferred strategy, you can use a CellFormat method expression as
an alternative to declaratively styling header and data cell stamps in ADF DVT Pivot
Tables.

For more information about using inlineStyle and styleClass attributes. See
Configuring Pivot Table Display Size and Style.

All cells in a pivot table are either header cells or data cells. Before rendering a cell,
the pivot table calls a method expression. You can customize the content of pivot table
header cells and data cells by providing method expressions for the following
attributes of the pivotTable component:

• For header cells, use one of the following attributes:

– headerFormat: Use to create formatting rules to customize header cell content.

– headerFormatManager: Use only if you want to provide custom state saving for
the formatting rules of the application's pivot table header cells.

• For data cells, use one of the following attributes:

– dataFormat: Use to create formatting rules to customize data cell content.

– dataFormatManager: Use only if you want to provide custom state saving for
the formatting rules of the application's pivot table data cells.

Chapter 27
Formatting Pivot Table Cell Content With CellFormat

27-36

Using a CellFormat Object for a Data Cell
To specify customization of the content of a data cell, you must code a method
expression that returns an instance of
oracle.dss.adf.view.faces.bi.component.pivotTable.CellFormat.

An instance of a CellFormat object lets you specify an argument to change the CSS
style of a cell. For example, you might use this argument to change the background
color of a cell.

• Converter: An instance of javax.faces.convert.Converter, which is used to
perform number, date, or text formatting of a raw value in a cell.

• CSS style: Used to change the CSS style of a cell. For example, you might use
this argument to change the background color of a cell.

• CSS text style: Used to change the CSS style of the text in a cell. For example,
you might use this argument to set text to bold.

• New raw value: Used to change the cell's underlying value that was returned from
the data model. For example, you might choose to change the abbreviated names
of states to longer names. In this case, the abbreviation NY might be changed to
New York.

To create an instance of a CellFormat object for a data cell:

1. Construct an
oracle.adf.view.faces.bi.component.pivotTable.DataCellContext object for
the data cells that you want to format. The DataCellContext method requires the
following parameters in its constructor:

• model: The name of the dataModel used by the pivot table.

• row: An integer that specifies the zero-based row that contains the data cell on
which you are operating.

• column: An integer that specifies the zero-based column that contains the data
cell that you want to format.

• qdr: The QDR that is a fully qualified reference for the data cell that you want to
format.

• value: A java.lang.Object that contains the value in the data cell that you
want to format.

2. Pass the DataCellContext to a method expression for the dataFormat attribute of
the pivot table.

3. In the method expression, write code that specifies the kind of formatting you want
to apply to the data cells of the pivot table. This method expression must return a
CellFormat object.

Specifying a Cell Format
You can apply header and data cell formatting styles to emphasize aspects of the data
displayed in the pivot table. Figure 27-36 shows a pivot table with sales totals
generated for products and for product categories. In the rows that contain totals, this
pivot table displays text against a shaded background, a style change. This change

Chapter 27
Formatting Pivot Table Cell Content With CellFormat

27-37

shows in both the row header cells and the data cells for the pivot table. The row
headers for totals contain the text "Sales Total."

The pivot table also shows stoplight and conditional formatting of data cells. For more
information, see Configuring Stoplight and Conditional Formatting Using CellFormat .

Figure 27-36 Sales Data Per Product Category

For example, you can use this code to produce the required custom formats for the
sales totals, but not for the stoplight formatting:

public CellFormat getDataFormat(DataCellContext cxt)
{
 CellFormat cellFormat = new CellFormat(null, null, null);
 QDR qdr = cxt.getQDR();
 //Obtain a reference to the product category column.
 Object productCateg = qdr.getDimMember("ProductCategory");
 //Obtain a reference to the product column.
 Object product = qdr.getDimMember("ProductId");

 if (productCateg != null && productCateg.toString().equals("Sales Total"))
 {
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 else if (product != null && product.toString().equals("Sales Total")
 {
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 return cellFormat;
}

public CellFormat getHeaderFormat(HeaderCellContext cxt)
{
 if (cxt.getValue() != null)
 {
 String header = cxt.getValue().toString();
 if (header.equals("Sales Total"))

Chapter 27
Formatting Pivot Table Cell Content With CellFormat

27-38

 {
 return new CellFormat(null, "background-color:#C0C0C0");
 }
 }
 return null;
 }

The example includes the code for method expressions for both the dataFormat
attribute and the headerFormat attribute of the dvt:pivotTable tag. If you want to
include stoplight formatting in the pivot table, you might want to include the code from
Configuring Stoplight and Conditional Formatting Using CellFormat .

Configuring Stoplight and Conditional Formatting Using CellFormat
Stoplight and conditional formatting of the cells in a pivot table are examples of
customizing the cell content. For this kind of customization, an application might
prompt a user for a high value and a low value to be associated with the stoplight
formatting.

Generally three colors are used as follows:

• Values equal to and above the high value are colored green to indicate they have
no issues.

• Values above the low value but below the high value are colored yellow to warn
that they are below the high standard.

• Values at or below the low value are colored red to indicate that they fall below the
minimum acceptable level.

Figure 27-36 shows data cells with stoplight formatting for minimum, acceptable, and
below standards sales for States.

For example, you can use this code to performs stoplight formatting in a pivot table
that does not display totals:

public CellFormat getDataFormat(DataCellContext cxt)
{
 //Use low and high values provided by the application.
 double low = m_rangeValues.getMinimum().doubleValue() * 100;
 double high = m_rangeValues.getMaximum().doubleValue() * 100;

 CellFormat cellFormat = new CellFormat(null, null, null);

 // Create stoplight format
 if (isStoplightingEnabled())
 {
 String color = null;
 Object value = cxt.getValue();
 if (value != null && value instanceof Number)
 {
 double dVal = ((Number)value).doubleValue();
 if (dVal <= low)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_belowColor) + ";";
 }
 else if (dVal > low && dVal <= high)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_goodColor) + ";";
 }
 else if (dVal > high)

Chapter 27
Formatting Pivot Table Cell Content With CellFormat

27-39

 {
 color = "background-color:" + ColorUtils.colorToHTML(m_aboveColor) + ";";
 }
 }
 cellFormat.setStyle(color);
 }
 return cellFormat;
}

If you want to do stoplight formatting for a pivot table that displays totals, then you
might want to combine the code from Specifying a Cell Format (which addresses rows
with totals) with the code for stoplight and conditional formatting.

Chapter 27
Formatting Pivot Table Cell Content With CellFormat

27-40

28
Using Gantt Chart Components

This chapter describes how to use the ADF Data Visualization projectGantt,
resourceUtilizationGantt, and schedulingGantt components to display data in
Gantt charts using simple UI-first development. The chapter defines the data
requirements, tag structure, and options for customizing the look and behavior of the
components.
If your application uses the technology stack, then you can also use data controls to
create Gantt charts. For more information, see the "Creating Databound Gantt Chart
and Timeline Components" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

This chapter includes the following sections:

• About the Gantt Chart Components

• Using the Gantt Chart Components

• Customizing Gantt Chart Tasks and Resources

• Customizing Gantt Chart Display Elements

• Adding Interactive Features to Gantt Charts

About the Gantt Chart Components
An ADF DVT Gantt Chart is a visualization tool used to plan and track projects. It
comprises two regions, containing a bar chart and a table, and shows resources or
tasks in a defined and limited time frame. Gantt charts are useful for project
management, both at an overview and a transactional level.

A Gantt chart shows resources or tasks in a time frame with a distinct beginning and
end. Both regions of a Gantt chart present data differently, one displaying the Gantt
chart data in a table, and the other displaying the Gantt chart data graphically with a
resizable splitter between the two regions. The table and chart regions share the same
data and selection model, supporting and synchronizing scrolling, and expanding and
collapsing of rows between the two regions.

At runtime, Gantt charts provide interaction capabilities in the table region to the user
such as entering data, expanding and collapsing rows, showing and hiding columns,
navigating to a row, and sorting and totaling columns. In the chart region, users can
drag a task to a new date, select multiple tasks to create dependencies, and extend or
shorten the task date. A Gantt chart toolbar is available to support user operations
such as changing or filtering the view of the data, and creating, deleting, cutting,
copying, and pasting tasks.

Both Gantt chart regions are based on an ADF Faces tree table component. For
information about ADF tree tables, including virtualization of rows, see Using Tables,
Trees, and Other Collection-Based Components.

ADF Gantt chart components include a project Gantt chart (projectGantt), a resource
utilization Gantt chart (resourceUtlizationGantt), and a scheduling Gantt chart
(schedulingGantt).

28-1

Gantt Chart Component Use Cases and Examples
The Gantt chart provides the following types:

• Project Gantt chart: A project Gantt chart is used for project management. The
chart lists tasks vertically and shows the duration of each task as a bar on a
horizontal time line. It graphs each task on a separate line as shown in
Figure 28-1.

Figure 28-1 Project Gantt Chart for a Software Application

• Resource Utilization Gantt chart: A resource utilization Gantt chart graphically
shows the metrics for a resource, for example, whether resources are over or
under allocated. It shows resources vertically while showing their metrics, such as
allocation and capacity on the horizontal time axis. Figure 28-2 shows a resource
utilization Gantt chart illustrating how many hours are allocated and utilized for a
particular resource in a given time period.

Figure 28-2 Resource Utilization Gantt Chart for a Software Application

The metrics for a resource utilization Gantt chart can also be configured to display
as stacked bars, or as a horizontal line. Figure 28-3 shows a resource utilization
Gantt chart illustrating a stacked bar representing hours utilized for two metrics, a
vertical bar representing hours allocated, and a horizontal line representing a
threshold metric that steps through the chart.

Chapter 28
About the Gantt Chart Components

28-2

Figure 28-3 Resource Metrics Displayed as Stacked Bars and Stepped Line

• Scheduling Gantt chart: A scheduling Gantt chart is used for resource scheduling.
The chart is based on manual scheduling boards and shows resources vertically,
with corresponding activities on the horizontal time axis. Examples of resources
include people, machines, or rooms. The scheduling Gantt chart uses a single line
to graph all the tasks that are assigned to a resource as shown in Figure 28-4.

Figure 28-4 Scheduling Gantt Chart for a Software Application

End User and Presentation Features
To understand how Gantt charts are used and can be customized, it is helpful to
understand these elements and features.

Gantt Chart Regions
A Gantt chart is composed of two regions:

• A table region that displays Gantt chart data attributes in a table with columns. The
table region requires a minimum of one column, but you can define attributes for
as many columns as desired. By default, all the columns that you define when you
create a databound Gantt chart are visible in the table region although you can
selectively cause one or more of these columns to be hidden.

• A chart region displays a bar graph of the Gantt chart data along a horizontal time
axis. The time axis provides for major and minor settings to allow for zooming. The
major setting is for larger time increments and the minor setting is for smaller time
increments.

For example, in Figure 28-5, the scheduling Gantt chart table region contains columns
for Task Name and Resources, and the chart region graphs tasks on a time axis that
shows weeks within months.

Chapter 28
About the Gantt Chart Components

28-3

Figure 28-5 Project Gantt Chart Regions

Information Panel
The optional information panel displays both the information region that displays text
about a selected task, or metric about a selected resource, and the optional legend
that displays task types in the area beneath the Gantt chart. You must configure a
Gantt chart legend to enable the information panel.

Figure 28-6 shows an information panel for the scheduling Gantt chart in Figure 28-4
with information about a task selected in the chart region and the Gantt chart legend.

Figure 28-6 Scheduling Gantt Chart Information Panel

Toolbar
The Gantt chart toolbar allows users to perform operations on the Gantt chart. The
toolbar is visible in the Gantt chart by default.

The toolbar is composed of two sections:

• Menu bar: The left section of the toolbar contains a set of menus for the Gantt
chart. Each Gantt chart type has a set of default options. Figure 28-7 displays the
menu bar, which is visible in the Gantt chart by default. It contains the Task, Edit,
and View menus. You can change the visibility of the menu bar and customize
menu items.

Chapter 28
About the Gantt Chart Components

28-4

Note:

The default View menu is available by right-clicking header cells in the
Gantt table region, even when the menu bar items are hidden or
disabled.

Figure 28-7 Sample Menu Bar for a Gantt Chart

By default, Gantt chart View menu items support one or more of the following
operations:

– Configuring the visibility of columns in the table region.

– Expanding and collapsing the display of hierarchical data in the table region.

– Hiding and showing dependency lines between tasks in the chart region.

– Hiding and showing the Gantt chart legend.

– Specify a specific date in the Gantt chart. Figure 28-8 shows the View menu
Go to Date dialog.

Figure 28-8 Go to Date Dialog

– Changing the time scale of the Gantt chart. Figure 28-9 shows the View menu
Time Scale dialog.

Figure 28-9 Time Scale Dialog

Note:

The menu bar View menu items do not require that you write application
code to make them functional. However, you must provide application
code for any items that you want to use on the other menus.

Chapter 28
About the Gantt Chart Components

28-5

• Toolbar buttons: The right section of the toolbar displays a set of action buttons for
working with the Gantt chart. Each Gantt chart type has a set of default options.
Figure 28-10 shows a sample toolbar for a project Gantt chart.

Figure 28-10 Sample Toolbar for a Project Gantt Chart

Note:

In locales using right-to-left display, directional icons are displayed in
reverse order.

You can use the toolbar to change the time display on the Gantt chart. You can
zoom in and out on a time axis to display the chart region in different time units.

You can also use a specialized zoom-to-fit feature in which you select the amount
of time that you want to display in the chart region without a need to scroll the
chart. The Gantt chart time scale in the View menu automatically adjusts for the
selected dates. Figure 28-11 shows the zoom-to-fit toolbar option expanded for a
project Gantt chart.

Figure 28-11 Zoom-to-Fit Toolbar Option

Scrolling, Zooming, and Panning
The Gantt chart design lets you perform horizontal scrolling of the table and the chart
regions independently. This is especially helpful when you want to hold specific task or
resource information constant in the table region while scrolling through multiple time
periods of information in the chart region.

As an alternative to scrollbars, you can also display a horizontal page control that
allows the user to select and navigate through a multiple page Gantt chart.
Figure 28-12 shows a resource utilization Gantt chart configured with a horizontal
page control.

Chapter 28
About the Gantt Chart Components

28-6

Figure 28-12 Resource Utilization Gantt Chart Page Control

In addition to the toolbar zoom controls, users can also zoom in and out on the time
scale of a Gantt chart by holding the Ctrl key and using the mouse scroll wheel. A
tooltip displays to allow the user to keep track of the current level when zooming
through multiple levels at a time. This is especially useful for users with a scroll wheel
without a click function.

In project and scheduling Gantt charts, users can pan the chart area by dragging it
vertically and horizontally using the cursor. A move cursor displays when the user
clicks inside the chart area, other than on a task.

The Gantt chart also provides a user option to collapse and expand the display of the
table region using an icon available in the vertical space between the two regions.

Showing Dependencies
When dependencies between tasks are specified, project and scheduling Gantt charts
can optionally show dependency lines in the chart region. The option to display
dependency lines is available as a View menu item. Additionally for project Gantt
charts, you can show dependencies as a menu option for the predecessor or
successor task using a dropdown menu at the beginning or end of the task with a
dependency.

Figure 28-13 shows a project Gantt chart View menu with options for showing
dependencies as lines, menu items, or not displayed.

Figure 28-13 Project Gantt Chart Show Dependencies Options

Chapter 28
About the Gantt Chart Components

28-7

Figure 28-14 shows a project Gantt chart with dependency task menu items for a
successor and predecessor task.

Figure 28-14 Project Gantt Chart Dependency Task Menu Items

Context Menus
Right-clicking in the Gantt chart table or chart regions provides a context menu with a
standard set of menu items. You can provide your own set of menu items by using the
tablePopupMenu or chartPopupMenu facet.

For more information, see Customizing Gantt Chart Context Menus.

Figure 28-15 shows a custom context menu item displayed for a scheduling Gantt
chart task properties.

Figure 28-15 Custom Context Menu for Task

Right-clicking on the column headers in the table region of the Gantt chart displays the
default View menu, even if the menu bar is hidden or disabled.

Chapter 28
About the Gantt Chart Components

28-8

Figure 28-16 shows the default view menu in the context menu for column headers in
the table region of a Project Gantt chart.

Figure 28-16 View Context Menu in Table Region

Row Selection
You can configure selection for no rows, for a single row, or for multiple rows in the
chart region of a Gantt chart using the rowSelection attribute. You can select tasks for
a project Gantt chart or resources for a scheduling or resource utilization Gantt chart.
This setting allows you to execute logic against the selected tasks or resources. For
example, you may want users to be able to select a resource and display a calendar
based on that resource.

When the selected row in the table region changes, the component triggers a selection
event. This event reports which rows were just selected or deselected. While the
components handle selection declaratively, if you want to perform some logic on the
selected rows, you need to implement code that can access those rows and then
perform the logic. You can do this in a selection listener method on a managed bean.
For more information, see Performing an Action on Selected Tasks or Resources.

Note:

If you configure your component to allow multiple selection, users can select
one row and then press the shift key to select another row, and all the rows
in between will be selected. This selection will be retained even if the
selection is across multiple data fetch blocks. Similarly, you can use the Ctrl
key to select rows that are not next to each other.

For example, if you configure your Gantt chart table region to fetch only 25
rows at a time, but the user selects 100 rows, the framework is able to keep
track of the selection.

Chapter 28
About the Gantt Chart Components

28-9

Editing Tasks
In project and scheduling Gantt charts, users can move or resize the task bar of an
editable task in the chart region. Move the cursor over an editable task to display a
move cursor with an informational popup about the location of the curser. Click and
drag the task bar with its associated beginning and end dates to reposition the task in
the chart. If the beginning or ending date of a task is editable, a double-sided arrow is
displayed at the start or end of the task bar. Click and drag the date to the desired
location.

Figure 28-17 shows the move and resize cursors for an editable task in a project Gantt
chart.

Figure 28-17 Move and Resize Cursors for an Editable Task Bar

Server-Side Events
When a user interaction involves a change in data, the Gantt chart processes the
change by performing event handling and update of the data model. When configured
for a Gantt chart, validation ensures that the data submitted meets basic requirements,
for example, that a date is valid and does not fall into a nonworking time period. When
validation fails, the update of the data model is omitted, and an error message is
returned.

When a Gantt chart server-side event is fired, an event with validated information
about the change is sent to the registered listener. The listener is then responsible for
updating the underlying data model. A customized event handler can be registered by
specifying a method binding expression on the dataChangeListener attribute of the
Gantt chart component.

Server-side events supported by the Gantt chart include:

• Update of data in the table cells of the Gantt chart table region

• Create, update, delete, move, cut, copy, paste, indent, outdent of tasks

• Reassignment of resource by dragging the task bar from one row to another

• Drag the task bar to another date

• Extend the duration of a task

• Link or unlink tasks

• Select a row or multiple rows in the Gantt chart table region

Chapter 28
About the Gantt Chart Components

28-10

• Undo or redo of user actions

• Double-click on a task bar

Users can filter the data in a Gantt chart using a dropdown list from the toolbar. You
can create a custom filter.

Printing
The Gantt chart provides printing capability in conjunction with Apache or XML
Publisher by generating PDF files. For more information, see Printing a Gantt Chart.

Content Delivery
Gantt charts can be configured for how data is delivered from the data source. The
data can be delivered to the Gantt chart task bars either immediately upon rendering,
as soon as the data is available, or lazily fetch after the shell of the component has
been rendered.

By default, Gantt charts support the delivery of content from the data source when it is
available. The contentDelivery attribute is set to whenAvailable by default.

Gantt charts are virtualized, meaning not all data on the server is delivered to and
displayed on the client. You can configure Gantt charts to fetch a certain number of
rows or columns at a time from your data source based on date related values. Use
fetchSize and horizontalFetchSize to configure fetch size.

Additional Functionality for Gantt Chart Components
You may find it helpful to understand other ADF Faces features before you implement
your Gantt chart component. Additionally, once you have added a Gantt chart
component to your page, you may find that you need to add functionality such as
validation and accessibility.

Following are links to other functionality that Gantt chart components can use:

• Partial page rendering: You may want a Gantt chart to refresh to show new data
based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: Users can change the way the Gantt chart displays at runtime,
those values will not be retained once the user leaves the page unless you
configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: Gantt chart components are accessible, as long as you follow the
accessibility guidelines for the component. See Developing Accessible ADF Faces
Pages.

• Export to Excel: You can export the table region of the project Gantt chart using
af:exportCollectionActionListener. For more information, see Exporting Data
from Table, Tree, or Tree Table.

• Content Delivery: You configure your Gantt chart table region to fetch a certain
number of rows at a time from your data source using the contentDelivery
attribute. For more information, see Content Delivery.

• Automatic data binding: If your application uses the technology stack, then you
can create automatically bound Gantt charts based on how your ADF Business

Chapter 28
About the Gantt Chart Components

28-11

Components are configured. For more information, see the "Creating Databound
Gantt Chart and Timeline Components" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality,
such as how data is delivered, automatic partial page rendering (PPR), image
formats, and how data can be displayed and edited. For more information, see
Common Functionality in Data Visualization Components.

Using the Gantt Chart Components
To use the ADF DVT Gantt chart component, add the Gantt chart component to a
page using the Component Palette window. Then define the data collection for the
Gantt chart and complete the additional configuration in JDeveloper using the tag
attributes in the Properties window.

The data model for a Gantt chart can be either a tree (hierarchical) model or a
collection model that contains a row set or flat list of objects. When you bind a Gantt
chart to a data control, you specify how the collection in the data control maps to the
node definitions of the Gantt chart. See Creating Databound Gantt Chart and Timeline
Components in Developing Fusion Web Applications with Oracle Application
Development Framework.

Data for a Project Gantt Chart
The data model for a project Gantt chart supports hierarchical data and uses
TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by the TreeModel must have, at a minimum, the
following properties:

• taskId: The ID of the task.

• startTime: The start time of the task.

• endTime: The end time of the task.

Optionally, the object could implement the oracle.adf.view.faces.bi.model.Task
interface to ensure it provides the correct properties to the Gantt chart.

When binding the data to an ADF data control, the following node definitions are
available in a project Gantt chart:

Chapter 28
Using the Gantt Chart Components

28-12

• Task node: Represents a collection of tasks. The task node definition has the
following types of optional accessors:

– subTask (available only for project Gantt chart)

– splitTask

• Split task node: Represents a collection of split tasks. A split task node definition
does not have accessors.

• Dependency node: Represents a collection of dependencies for a task. A
dependency node definition does not have accessors.

• Recurring task node: Represents a collection of recurring tasks. A recurring task
node definition does not have accessors.

Table 28-1 shows a complete list of data object keys for the project Gantt chart.

Table 28-1 Data Object Keys for Project Gantt

Data Object Key Date Type and Description

actualEnd Date. The actual end time for normal and milestone tasks.

actualStart Date. The actual start time for normal and milestone tasks.

completedThrough Date. Completed through for normal and summary tasks.

critical Boolean. Specifies whether or not the task is critical for all tasks.

Dependency (node) A list of dependencies for a task. Data object keys for
dependencies include:

• fromId: The ID of the task where the dependency begins.
• toId: The ID of the task where the dependency ends.
• type: The type of the dependency. Valid values are start-

start, start-finish, finish-finish, finish-start,
start-before, start-together, finish-after, and
finish-together.

editsAllowed Boolean. Specifies whether or not a task bar can be edited in the
chart region.

endTime (required) Date. The end time for all tasks.

icon1 String. The first icon associated with the task bar for all tasks.
The icon might change depending on other attributes

icon2 String. The second icon associated with the tasks bar for all
tasks.

icon3 String. The third icon associated with the tasks bar for all tasks.

iconPlacement String. The alignment of the icon in the task bar for all tasks.
Valid values are left (default), right, inside, start, end,
innerLeft, innerRight, innerCenter, innerStart,
innerEnd.

isContainer Boolean. Specifies whether or not a node definition is a
container.

label String. The label associated with the task bar for all tasks.

labelPlacement String. The alignment of the label in the task bar for all tasks.
Valid values are left (default), right, inside, start, end,
innerLeft, innerRight, innerCenter, innerStart,
innerEnd.

Chapter 28
Using the Gantt Chart Components

28-13

Table 28-1 (Cont.) Data Object Keys for Project Gantt

Data Object Key Date Type and Description

percentComplete Integer. Percentage completed for normal and summary tasks.

Recurring tasks (node) The list of recurring tasks for all tasks.

Split tasks (node) The list of tasks without a continuous time line for all tasks.

startTime (required) Date. The starting time for all tasks.

Subtasks (node) An optional list of subtasks for all tasks.

taskId (required) String. The unique identifier for all tasks.

type Sting. The type of the tasks for all tasks.

Data for a Resource Utilization Gantt Chart
The data model for a resource utilization Gantt chart supports hierarchical data and
uses TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the
following properties:

• resourceId: The ID of the task.

• timeBuckets: A collection of time bucket objects for this resource.

Optionally, the object could implement the
oracle.adf.view.faces.bi.model.Resource interface to ensure it provides the
correct properties to the Gantt chart.

The collection of objects returned by the timeBuckets property must also have the
following properties:

• time: The date represented by the time bucket.

• values: A list of metrics for this resource.

When binding the data to an ADF data control, the following node definitions are
available in a Resource Utilization Gantt chart:

• Resource node: Represents a collection of resources. The resource node
definition has an optional subResources accessor that returns a collection of
subresources for the current resource.

• Time bucket node: Represents a collection of time slots with metrics defined.

• Time bucket details node: Optional child accessor to the time bucket node that
represents a collection of rows that would be rendered along with other metric
values in the time bucket.

Table 28-2 shows a complete list of data object keys for the resource utilization Gantt
chart.

Chapter 28
Using the Gantt Chart Components

28-14

Table 28-2 Data Object Keys for Resource Utilization Gantt

Data Object Key Data Type and Description

label String. The label associated with the task bar.

labelAlign String. The alignment of the label in the task bar. Valid values
are top (default) and inside.

resourceId (required) String. The unique identifier of a resource.

timeBuckets (required) List. The list of tasks associated with a resource.

timeBucketDetail List. The list of attributes associated with a resource.

time (required) Date. The start time of the time bucket.

values (required) Double. The values of the metrics.

Data for a Scheduling Gantt Chart
The data model for a scheduling Gantt chart supports hierarchical data and uses
TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the
following properties:

• resourceId: The ID of the resource.

• tasks: A collection of task objects for this resource.

Optionally, the object could implement the
oracle.adf.view.faces.bi.model.ResourceTask interface to ensure it provides the
correct properties to the Gantt chart.

The collection of objects returned by the tasks property must also have the following
properties:

• taskId: The ID of the task.

• startTime: The start time of the task.

• endTime: The end time of the task.

Optionally, a backgroundBars property can be set for each task object to customize
the appearance of individual background bars for a given resource over a daily time
interval, as in the case of a change in shift on a monthly, weekly, or even daily
schedule. The collection of objects returned by the backgroundBars property must
have the following properties:

• startTime: The start time of the task.

• endTime: The end time of the task.

• type: Linked to an instance of a backgroundBarFormat object that can be
registered with the Gantt chart through the TaskbarFormatManager.

When binding the data to an ADF data control, the scheduling Gantt chart has a
Resource node definition. The Resource node has the following types of accessors:

Chapter 28
Using the Gantt Chart Components

28-15

• subResources: Returns a collection of subresources for the current resource. This
accessor is optional.

• tasks: Returns a collection of tasks for the current resource. This accessor is
required. Tasks can also include a splitTask accessor.

Table 28-3 shows a complete list of data object keys for a scheduling Gantt chart.

Table 28-3 Data Object Keys for Scheduling Gantt Chart

Data Object Key Data Type and Description

Dependency (node) A list of dependencies for a task. Data object keys for
dependencies include:

• fromId: The ID of the task where the dependency begins.
• toId: The ID of the task where the dependency ends.
• type: The type of the dependency. Valid values are start-

start, start-finish, finish-finish, finish-start,
start-before, start-together, finish-after, and
finish-together.

endTime (required) Date. The end time for all the tasks.

icon1 String. The first icon associated with the task bar for all tasks.
The icon might change depending on other attributes.

icon2 String. The second icon associated with the task bar for all tasks.

icon3 String. The third icon associated with the task bar for all tasks.

iconPlacement String. The alignment of the icon in the task bar for all tasks.
Valid values are left (default), right, inside, inside_left,
inside_right, and inside_center. In locales using right-to-
left display, start and end values are also supported.

isContainer Boolean. Specifies whether or not a node definition is a
container.

label String. The label associated with the task bar for all tasks.

labelPlacement String. The alignment of the label in the task bar for all tasks.
Valid values are left (default), right, inside, inside_left,
inside_right, and inside_center. In locales using right-to-
left display, start and end values are also supported.

Recurring tasks (node) A list of recurring tasks for all tasks.

resourceId (required) String. The unique identifier of a resource.

Split tasks (node) A collection of tasks without a continuous time line for all tasks.

startTime (required) Date. The start time for all tasks.

startupTime Date. The startup time before a task begins.

Tasks (node) (required) A list of tasks associated with a resource.

taskId (required) String. The unique identifier of the task for all tasks.

taskType String. The type of the task for all tasks.

workingDaysOfTheWeek Object. A list of the working days of the week.

workingEndTime String. The work end time for the resource.

workingStartTime String. The work start time for the resource.

Chapter 28
Using the Gantt Chart Components

28-16

Gantt Chart Tasks and Resources
Project and scheduling Gantt charts use predefined tasks with a set of formatting
properties that describe how the tasks will be rendered in the chart area. All supported
tasks must have a unique identifier.

The following describes the supported tasks and how they appear in a Gantt chart:

• Normal: The basic task type. It is a plain horizontal bar that shows the start time,
end time, and duration of the task.

• Summary: The start and end date for a group of subtasks. A summary task cannot
be moved or extended. Instead, it is the responsibility of the application to execute
code to recalculate the start and end date for a summary task when the date of a
subtask changes. Summary tasks are available only for the project Gantt chart.

• Milestone: A specific date in the Gantt chart. There is only one date associated
with a milestone task. A milestone task cannot be extended but it can be moved. A
milestone task is available only for the project Gantt chart.

• Recurring: A task that is repeated in a Gantt chart, each instance with its own start
and end date. Individual recurring tasks can optionally contain a subtype. All other
properties of the individual recurring tasks come from the task which they are part
of. However, if an individual recurring task has a subtype, this subtype overrides
the task type.

• Split: A task that is split into two horizontal bars, usually linked by a line. The time
between the bars represents idle time due to traveling or down time.

• Scheduled: The basic task type for a scheduling Gantt chart. This task type shows
the starting time, ending time, and duration of a task, as well as startup time if one
is specified.

For normal, summary, and milestone tasks, additional attributes are supported that
would change the appearance and activity of a task. These style attributes include:

• percentComplete, completedThrough: An extra bar would be drawn to indicate
how far the task is completed. This is applicable to normal and summary task
types.

• critical: The color of the bar would be changed to red to mark it as critical. This
is applicable to normal, summary, and milestone task types.

• actualStart and actualEnd: When these attributes are specified, instead of
drawing one bar, two bars are drawn. One bar indicates the base start and end
date, the other bar indicates the actual start and end date. This is applicable to
normal and milestone task types.

Figure 28-18 displays a legend that shows common task types in a project Gantt chart.

Figure 28-18 Project Gantt Chart Legend for Task Types

Resource utilization Gantt charts graphically show resources vertically while displaying
their metrics, such as allocation and capacity on the horizontal time axis. The metrics

Chapter 28
Using the Gantt Chart Components

28-17

displayed for the tasks in a time bucket are rendered as specified by the
TaskbarFormat class and can be one of three types:

• BAR (default): Render the task as a vertical bar.

• STACKED: Render the task as a bar stacked on the previous bar.

• STEPPED_LINE: Render the task as a horizontal line.

Configuring Gantt Charts
The three Gantt chart components beginning with the prefix dvt: for each Gantt chart
tag name indicates that the tag belongs to the ADF Data Visualization Tools (DVT) tag
library:

• projectGantt

• resourceUtilizationGantt

• schedulingGantt

All Gantt chart components support the child tag ganttLegend to provide an optional
legend in the information panel of a Gantt chart. Some menu bar and toolbar functions
may or may not be available depending on whether the Gantt legend is specified.

In the Gantt chart table region, the ADF Faces af:column tag is used to specify the
header text, icons and alignment for the data, the width of the column, and the data
bound to the column. To display data in hierarchical form, a nodeStamp facet specifies
the primary identifier of an element in the hierarchy. For example, the "Task Name"
column might be used as the nodeStamp facet for a project Gantt chart. The example
below shows sample code for a project Gantt chart with "Task Name" as the
nodeStamp facet, with columns for Resource, Start Date, and End Date.

<dvt:projectGantt id="projectChart1" startTime="2008-04-12"
 endTime="2009-04-12"
 value="#{project.model}"
 var="task">
 <f:facet name="major">
 <dvt:timeAxis scale="months"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
</dvt:projectGantt>

Chapter 28
Using the Gantt Chart Components

28-18

In addition to the nodeStamp facet, other facets are used for customizations by the
Gantt chart components. Table 28-4 shows the facets supported by Gantt chart
components.

Table 28-4 Facets Supported by Gantt Chart Components

Facet Description

chartPopupMenu Specifies the component to use to identify additional controls to
appear in the context menu of the chart region. Must be an
af:popup component.

customPanel Specifies the component to use to identify controls to appear in
the custom tab of the task properties dialog.

major Specifies the component to use to identify the major time axis.
Must be a dvt:timeAxis component.

menuBar Specifies the component to use to identify additional controls to
appear in the Gantt menu bar. Must be an af:menu component

minor Specifies the component to use to identify the minor time axis.
Must be a dvt:timeAxis component.

nodeStamp Specifies the component to use to stamp each element in the
Gantt chart. Only certain types of components are supported,
including all components with no activity and most components
that implement the EditableValueHolder or ActionSource
interfaces. Must be an af:column component.

tablePopupMenu Specifies the component to use to identify additional controls to
appear in the context menu of the table region. Must be an
af:popup component.

toolbar Specifies the component to use to identify additional controls to
appear in the Gantt toolbar. Must be an af:toolbar
component.

How to Add a Gantt Chart to a Page
When you are designing your page using simple UI-first development, you use the
Components window to drag and drop a project, resource utilization, or scheduling
Gantt chart component onto a JSF page. Once the Gantt chart is added to your page,
you can use the Properties window to specify data values and configure additional
display attributes for the Gantt chart.

In the Properties window you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 28-19 shows the dropdown menu for a
project Gantt chart component startTime attribute.

Chapter 28
Using the Gantt Chart Components

28-19

Figure 28-19 Project Gantt Chart startTime Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a Gantt chart and the binding will be done for you. For
more information, see the "Creating Databound Gantt Chart and Timeline
Components" chapter of Developing Fusion Web Applications with Oracle
Application Development Framework

Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

To add a Gantt chart to a page:

1. In the ADF Data Visualizations page of the Components window, from the Gantt
chart panel, drag and drop a Project, Resource Utilization, or Scheduling Gantt
chart onto the page to open the Create Gantt chart dialog.

Optionally, use the dialog to bind the Gantt chart by selecting Bind Data Now and
entering or navigating to the ADF data control or ADF managed bean that
represents the data you wish to display on the Gantt chart. If you choose this
option, the data binding fields in the dialog will be available for editing. Otherwise,
click OK to add the component to the page. For help with the dialog, press F1 or
click Help.

2. In the Properties window, view the attributes for the Gantt chart. Use the help
button to display the complete tag documentation for the projectGantt,
resourceUtilizationGantt, or schedulingGantt, component.

Chapter 28
Using the Gantt Chart Components

28-20

3. Expand the Common section. Use this section to set the following attributes:

• StartTime: Enter the start time used to render the time period of the Gantt
chart.

• EndTime: Enter the end time used to render the time period of the Gantt
chart.

4. Expand the Gantt Data section. Use this section to set the following attributes:

• Value: Specify the data model, which must be of type
org.apache.myfaces.trinidad.model.TreeModel, using an EL Expression.

• Var: Specify the variable used to reference each element of the Gantt chart
data collection. Once this component has completed rendering, this variable is
removed, or reverted back to its previous value.

5. Expand the Appearance section. Use this section to set the following attributes:

• RowBandingInterval: Specify how many consecutive rows form a row group
for the purposes of color banding. By default, this is set to 0, which displays all
rows with the same background color. Set this to 1 if you want to alternate
colors.

• ShowMenuBar: Specify whether or not the menu bar should be shown in the
Gantt chart. If this attribute is set to false, then any custom menu bar items
specified in the menuBar facet will also be hidden.

• ShowToolbar: Specify whether or not the toolbar should be shown in the
Gantt chart. If this attribute is set to false, then any custom toolbar buttons
specified in the toolbar facet will also be hidden.

• Summary: Enter a description of the Gantt chart. This description is accessed
by screen reader users

6. Expand the Behavior section. Use this section to set the following attributes:

• InitiallyExpandAll: Specifies whether or not all the rows should be initially
expanded.

• FetchSize: Use to specify the number of rows in a data fetch block. The
default value for rows is 25. For more information about content delivery to
Gantt charts, see Content Delivery.

• FeaturesOff: Enter a space delimited list of end user features to disable at
runtime. The valid values will depend upon the type of Gantt chart.

7. Expand the Other section. Use this section to set the following attributes:

• TableColumnStretching: Use to indicate the type of stretching to apply to the
columns in the table region of the Gantt chart. Valid values include the
following:

– none (default): Use for optimal performance of the Gantt chart.

– last: Use to stretch the last column to fill up any unused space inside of
the viewport.

– blank: Use to automatically insert an empty blank column stretched to
span the entire wide of the table region.

– column: Use to stretch a specific leaf (non-group) column to fill up any
unused space inside of the column. Append the Id of the column to be
stretched to this value, for example:

Chapter 28
Using the Gantt Chart Components

28-21

column:ColId

– multiple: Use to stretch more than one column. You can set the widths in
the columns as percentages. For more information, see the tag
documentation for af:column.

Note:

Row headers and frozen columns will not be stretched in order to
prevent inaccessibility to the scrollable data body of the table region.

• TableActiveRowKey: Use to determine the currently active row on the table
region. By default, the value of this attribute is the first visible row of the table
region. When the table region is refreshed, that component scrolls to bring the
active row into view, if it is not already visible. When the user clicks on a row to
edit its contents, that row becomes the active row.

What Happens When You Add a Gantt Chart to a Page
When you use the Components window to create a Gantt chart, JDeveloper inserts
code in the JSF page.

The example below shows the code inserted in the JSF page for a project Gantt chart.

<dvt:projectGantt startTime="2011-03-20" endTime="2011-06-19" var="row"
id="pg1">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta5"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta6"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortable="false" headerText="col1" id="c11">
 <af:outputText value="#{row.col1}" id="ot11"/>
 </af:column>
 </f:facet>
 <af:column sortable="false" headerText="col2" id="c12">
 <af:outputText value="#{row.col2}" id="ot12"/>
 </af:column>
 <af:column sortable="false" headerText="col3" id="c13">
 <af:outputText value="#{row.col3}" id="ot13"/>
 </af:column>
 <af:column sortable="false" headerText="col4" id="c14">
 <af:outputText value="#{row.col4}" id="ot14"/>
 </af:column>
 <af:column sortable="false" headerText="col5" id="c15">
 <af:outputText value="#{row.col5}" id="ot15"/>
 </af:column>
</dvt:projectGantt>

Chapter 28
Using the Gantt Chart Components

28-22

Customizing Gantt Chart Tasks and Resources
Once you have added an ADF DVT Gantt Chart to your JSF page, you can create a
new task type, configure tasks to display as a stacked bar or horizontal line, and
display the attribute details for a task.

Creating a New Task Type
A task type is represented visually as a bar in the chart region of a Gantt chart. Task
types can be created in one of three ways.

You can create a new task type by:

• Defining the task type style properties in the JSF page or in a separate CSS file.

• Defining a TaskbarFormat object and registering the object with the
taskbarFormatManager.

• Modifying the properties of a predefined task type by retrieving the associated
TaskbarFormat object and updating its properties through a set method.

The TaskBarFormat object exposes the following properties:

• Fill color

• Fill image pattern

• Border color

• Images used for a milestone task

• Images used for the beginning and end of a summary task

For tasks that have more than one bar, such as a split or recurring task, properties are
defined for each individual bar.

The example below shows sample code to define the properties for a custom task type
in the JSF page.

<af:document>
 <f:facet name="metaContainer">
 <f:verbatim>
 <![CDATA[
 <style type="text/css">
 .onhold
{
 background-image:url('images/Bar_Image.png');
 background-repeat:repeat-x;
 height:13px;
 border:solid 1px #000000;
}
 </style>
]]>
 </f:verbatim>
 </f:facet>

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-23

The example below shows sample code to define a TaskbarFormat object fill and
border color and register the object with the taskbarFormatManager.

TaskbarFormat _custom = new TaskbarFormat("Task on hold", null, "onhold",
null);
//
_gantt.getTaskbarFormatManager().registerTaskbarFormat("FormatId",
_custom);
TaskbarFormat _custom = new TaskbarFormat("Task on hold", "#FF00FF", null,
"#00FFDD", 13);
// _gantt.getTaskbarFormatManager().registerTaskbarFormat("FormatId",
_custom);

Configuring Stacked Bars in Resource Utilization Gantt Charts
In a resource utilization Gantt chart, a time bucket displays the unit allocated and used
for a resource for a specified time period. By default, these units are rendered as
vertical bars in the chart region. You can also configure the graphical display to stack
two or more of the bars together.

For example, the resource utilization Gantt chart in Figure 28-3 stacks the RUN and
SETUP resource metrics into a vertical bar next to the AVAILABLE resource metric bar.

To configure stacked bars in a resource utilization Gantt chart, use the
setDisplayAs() method to update the TaskbarFormat object. Specifying a STACK
display renders the task as a metric stacked on the previous metric. The example
below shows a managed bean that configures the RUN metric to stack on the previous
metric, SETUP.

public class ResourceUtilizationGantt
{
 private TreeModel m_model;
 public String[] getMetrics()
 {
 return new String[]{"SETUP", "RUN", "AVAILABLE"};
 }

 public TaskbarFormatManager getTaskbarFormatManager()
 {
 TaskbarFormatManager _manager = new TaskbarFormatManager();
 TaskbarFormat _format = TaskbarFormat.getInstance("Run Hours",
 UIResourceUtilizationGantt.MIDNIGHT_BLUE_FORMAT);
 _format.setStacked(true);

 _manager.registerTaskbarFormat("SETUP",
TaskbarFormat.getInstance("Setup
 Hours", UIResourceUtilizationGantt.BRICK_RED_FORMAT));
 _manager.registerTaskbarFormat("RUN", _format);
 _manager.registerTaskbarFormat("AVAILABLE",
 TaskbarFormat.getInstance("Available Hours",
 UIResourceUtilizationGantt.TEAL_FORMAT));
 return _manager;
 }

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-24

Configuring a Resource Capacity Line
In addition to displaying the resource metrics as vertical bars in the chart region of a
resource utilization Gantt chart, you can configure a metric to display as a horizontal
line in the chart region. This is useful for displaying capacity metrics, such as a
resource threshold level.

For example, Figure 28-3 shows a resource utilization Gantt chart with a capacity line
displaying a threshold metric across the stacked RUN and SETUP metrics, and the
ALLOCATED metric bars.

To configure a resource capacity line in a resource utilization Gantt chart, use the
setDisplayAs() method to update the TaskbarFormat object. Specifying a
STEPPED_LINE display renders the task as a horizontal line over the vertical bars,
stepping through each metric. The example below shows the managed bean that
configures the resource metric THRESHOLD to step through the vertical bar metrics.

public class ResourceUtilizationGanttSteppedLine
{
 private TreeModel m_model;
 public String[] getMetrics()
 {
 return new String[]{"SETUP", "RUN", "AVAILABLE", "THRESHOLD"};
 }
 public TaskbarFormatManager getTaskbarFormatManager()
 {
 TaskbarFormatManager _manager = new TaskbarFormatManager();
 TaskbarFormat _format = TaskbarFormat.getInstance("Run Hours",
 UIResourceUtilizationGantt.MIDNIGHT_BLUE_FORMAT);
 _format.setStacked(true);

 _manager.registerTaskbarFormat("SETUP",
TaskbarFormat.getInstance("Setup
 Hours", UIResourceUtilizationGantt.BRICK_RED_FORMAT));
 _manager.registerTaskbarFormat("RUN", _format);
 _manager.registerTaskbarFormat("AVAILABLE",
 TaskbarFormat.getInstance("Available Hours",
 UIResourceUtilizationGantt.TEAL_FORMAT));

 MetricFormat _threshold = new MetricFormat("threshold", "#FF0000",
null,
 "#FF0000", MetricFormat.Display.STEPPED_LINE);
 _manager.registerTaskbarFormat("THRESHOLD", _threshold);
 return _manager;
 }

Displaying Resource Attribute Details
By default, the time buckets in resource utilization Gantt charts display a fixed size
metric.

For example, the Gantt chart in Figure 28-20 displays stacked RUN and SETUP metrics,
and ALLOCATED metric bars for a table of company resources.

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-25

You may wish to break out the detail for a time bucket metric by attributes associated
with the resource. For example, the resource utilization Gantt chart in Figure 28-20
illustrates the detail values for a BUDGET metric by actual values for time spent on each
product.

Figure 28-20 Resource Utilization Gantt Chart Metric Attribute Details

To configure the display of the attribute details for a resource, you will need add a child
timeBucketDetails accessor to the page definition file. The example below shows the
sample code for adding the accessor to the page definition file.

<nodeDefinition DefName="model.GanttRugResourceAppView" type="Resources">
 <AttrNames>
 <Item Value="ResourceId" type="resourceId"/>
 </AttrNames>
 <Accessors>
 <Item Value="GanttRugTimebucketAppView" type="timeBuckets"/>
 </Accessors>
</nodeDefinition>
<nodeDefinition type="TimeBuckets"
DefName="model.GanttRugTimebucketAppView">
 <AttrNames>
 <Item type="time" Value="StartDate"/>
 <Item type="metric" Value="Budget"/>
 </AttrNames>
 <Accessors>
 <Item Value="GanttRugProductAppView" type="timeBucketDetails"/>
 </Accessors>
</nodeDefinition>
<nodeDefinition type="TimeBucketDetails">
 <AttrNames>
 <Item type="metric" Value="Actual"/>
 <Item type="format" Value="Product"/>

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-26

 </AttrNames>
</nodeDefinition>

To configure the attribute details for a resource in a resource utilization Gantt chart,
use the setDisplayAs() method to update the TaskbarFormat object. The example
below shows the managed bean that configures the attribute detail metrics for the
BUDGET resource bar.

public class ResourceUtilizationGanttAttributeDetail
{
 private TreeModel m_model;

 public String[] getMetrics()
 {
 return new String[] {};
 }

 public TaskbarFormatManager getTaskbarFormatManager()
 {
 TaskbarFormatManager _manager = new TaskbarFormatManager();

 _manager.registerTaskbarFormat("Wilson",
 TaskbarFormat.getInstance("Wilson",
 UIResourceUtilizationGantt.MIDNIGHT_BLUE_FORMAT));
 _manager.registerTaskbarFormat("Umbro",
TaskbarFormat.getInstance("Umbro",
 UIResourceUtilizationGantt.BRICK_RED_FORMAT));
 _manager.registerTaskbarFormat("Rbk",
TaskbarFormat.getInstance("Rbk",
 UIResourceUtilizationGantt.LAVENDER_FORMAT));
 _manager.registerTaskbarFormat("Puma",
TaskbarFormat.getInstance("Puma",
 UIResourceUtilizationGantt.TEAL_FORMAT));
 ...
 return _manager;
 }

 public TreeModel getModel()
 {
 if (m_model == null)
 m_model =

SampleModelFactory.getResourceUtilizationGanttAttributeDetailModel();

 return m_model;
 }
}

Configuring Background Bars in Scheduling Gantt Charts
Scheduling Gantt charts use a single line to graph all the tasks assigned to a resource.
You can configure a working time attribute that applies a specified background color to
a given resource over a daily time interval. This time interval is repeated across all

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-27

working days of the week, and can be different for any given resource. However, if a
resource's working time interval changes on a monthly, weekly, or even daily
schedule, you can configure a background bar to represent that individual schedule.

To configure a background bar to a scheduling Gantt chart, set a backgroundBars
property on the Gantt chart's model, and for each object contained within the
collection, specify a startTime, endTime, and type. Each type can be linked to an
instance of a backgroundBarFormat object registered with the TaskbarFormatManager.
For more information, see Creating a New Task Type.

The scheduling Gantt chart in Figure 28-21 shows an individualized schedule for each
resource represented as a background bar.

Figure 28-21 Scheduling Gantt Chart with Background Bars

To configure the background bars details for a resource in a scheduling Gantt chart,
use the setDisplayAs() method to update the TaskbarFormat object. The example
below shows the managed bean that configures the background bar details for each
resource.

public class SchedulingGanttBackgroundBars extends SchedulingGanttBase
{
 private TreeModel m_model;
 public TreeModel getModel()
 {
 if (m_model == null)
 m_model =
SampleModelFactory.getSchedulingGanttBackgroundBarsModel();
 return m_model;
 }
 public String[] getLegendKeys()
 {return new String[]{"taskName", "taskType", "startTime",
 "endTime", "%timezone%"};
 }

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-28

 public String[] getLegendLabels()
 {return new String[]{"Task Name", "Task Type",
 "Start Time", "End Time", "Time Zone"};
 }

 public TaskbarFormatManager getTaskbarFormatManager()
 {
 TaskbarFormatManager _manager = new TaskbarFormatManager();
 //create and register new colors
 _manager.registerBackgroundBarFormat("fillColor",
 new BackgroundBarFormat("fillColor", "#f6f7c3", null));
 _manager.registerBackgroundBarFormat("fillColor2",
 new BackgroundBarFormat("fillColor2", "#d9f4fa", null));
 //register predefined colors
 _manager.registerTaskbarFormat("gold",
TaskbarFormat.getInstance("Gold",
 UISchedulingGantt.GOLD_FORMAT));
 _manager.registerTaskbarFormat("green",
TaskbarFormat.getInstance("Green",
 UISchedulingGantt.GREEN_FORMAT));
 _manager.registerTaskbarFormat("orange",
 TaskbarFormat.getInstance("Orange",
 UISchedulingGantt.ORANGE_FORMAT));
 _manager.registerTaskbarFormat("levander",
 TaskbarFormat.getInstance("Levander",
 UISchedulingGantt.LAVENDER_FORMAT));
 _manager.registerTaskbarFormat("lime",
TaskbarFormat.getInstance("Lime",
 UISchedulingGantt.LIME_FORMAT));
 //create and register new colors
 _manager.registerTaskbarFormat("blue",
 new TaskbarFormat("Blue", "#0000FF", null, "#0000FF", 13));
 _manager.registerTaskbarFormat("purple",
 new TaskbarFormat("Purple", "#5518AB", null, "#5518AB", 13));
 _manager.registerTaskbarFormat("aqua",
 new TaskbarFormat("Aqua", "#76EEC6", null, "#76EEC6", 13));
 _manager.registerTaskbarFormat("gray",
 new TaskbarFormat("Gray", "#BEBEBE", null, "#BEBEBE", 13));
 _manager.registerTaskbarFormat("tan",
 new TaskbarFormat("Tan", "#D2B48C", null, "#D2B48C", 13));
 return _manager;
 }
}

The example below shows sample code on the JSF page for the scheduling Gantt
chart shown in Figure 28-21.

<dvt:schedulingGantt id="schedulingGantBackgroundBars"
 startTime="2006-12-21 06:00"
 endTime="2006-12-21 18:00"
 value="#{schedulingGanttBackgroundBars.model}"
 var="resourceObj"
 taskbarFormatManager="#{schedulingGanttBackgroundBars.
 taskbarFormatManager}"

Chapter 28
Customizing Gantt Chart Tasks and Resources

28-29

 summary="Scheduling Gantt Background Bars Demo">
 <f:facet name="major">
 <dvt:timeAxis scale="days" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="hours" id="ta2"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column headerText="Employee Name" id="c1">
 <af:outputText value="#{resourceObj.resourceName}" id="ot1"/>
 </af:column>
 </f:facet>
 <af:column headerText="Department" id="c2">
 <af:outputText value="#{resourceObj.department}" id="ot2"/>
 </af:column>
 <dvt:ganttLegend keys="#{schedulingGanttBackgroundBars.legendKeys}"

labels="#{schedulingGanttBackgroundBars.legendLabels}"
 id="gl1"/>
</dvt:schedulingGantt>

Customizing Gantt Chart Display Elements
ADF DVT Gantt charts support a number of configurations. You can customize a Gantt
chart to display nonworking days of the week, turn off user interaction features, specify
the time axes, add and customize a legend, customize toolbars and context menus,
and configure a custom data filter.

Customizing Gantt Chart Toolbars and Menus
The Gantt chart toolbar subcomponent allows users to perform operations on the
Gantt chart. The left section of the toolbar is a menu bar that contains a set of default
menu options for each Gantt chart type. The right section of the toolbar displays a set
of default action buttons for working with each Gantt chart type.

You can customize Gantt chart menus and toolbars by supplying your own items, and
adding, removing, and rearranging items within the toolbar or menu. Use the
toolBarLayout and menuBarLayout attributes of the Gantt chart component to specify
the contents and arrangement of buttons and menu items as a set of space-separated
Strings. Submenus are designated by using brackets in the menuBarLyout attribute as
in:

taskMenu [cut copy]

For example, Figure 28-22 shows a customized toolbar and menu bar for a project
Gantt chart.

Figure 28-22 Project Gantt Chart Custom Toolbar and Menu Bar

Chapter 28
Customizing Gantt Chart Display Elements

28-30

The example below shows sample code for specifying the custom toolbar and menu
bar in Figure 28-22:

<dvt:projectGantt id="gantt1"
value="#{bindings.OrderEmployee1.projectGanttModel}"
 dataChangeListener="#{bindings.OrderEmployee1.
 projectGanttModel.processDataChanged}"
 var="row" startTime="2012-07-01" endTime="2013-05-15"
 initiallyExpandAll="true"
 summary="Project Gantt chart for shipping orders"
 toolBarLayout="cut copy paste link unlink"
 menuBarLayout="editTask [cut copy]">
 ...
</dvt:projectGantt>

Table 28-5 shows the valid values for the toolBarLayout attribute.

Table 28-5 Valid Values for ToolBarLayout Attributes

Value Feature Disabled

all Show all standard toolbar items for all Gantt charts.

clipboard Cut, Copy, and Paste tasks for all Gantt charts.

createTask Create Task toolbar task for project and scheduling Gantt charts.

copy Copy task for all Gantt charts.

cut Cut task for all Gantt charts.

delete Delete task for all Gantt charts.

edit Changes to the data model for all Gantt charts.

filter Data filter operation for all Gantt charts.

indent Indent task for project and scheduling Gantt charts.

indentGroup Indent group of tasks for project and scheduling Gantt charts.

indentSplitLinkGroup Indent /////.

legend Hide and Show legend toolbar items for all Gantt charts.

link Link task for project and scheduling Gantt charts.

linkGroup Link group of tasks for project and scheduling Gantt charts.

outdent Outdent tasks for project and scheduling Gantt charts.

paste Paste task for all Gantt charts.

print Print task for all Gantt charts.

redo Redo task for all Gantt charts.

separator Vertical line separating toolbar items for all Gantt charts.

undo Undo task for all Gantt charts.

undoFilterGroup Undo //// all Gantt charts.

undoGroup Undo /// Resource menu item for scheduling Gantt chart.

undoLink Undo link for /// Task menu item for project and scheduling Gantt
charts.

Chapter 28
Customizing Gantt Chart Display Elements

28-31

Table 28-5 (Cont.) Valid Values for ToolBarLayout Attributes

Value Feature Disabled

updateTask Update Task item for project and scheduling Gantts.

zoomIn Zoom in task for all Gantt charts.

zoomInOutGroup Zoom in and out tasks ///for all Gantt charts.

zoomOut Zoom out task for all Gantt charts.

zoomTo Zoom to Fit item for all Gantt charts.

zoomToGroup Zoom ///.

Table 28-6 shows the valid values for the MenuBarLayout attributes.

Table 28-6 Valid Values for MenuBarLayout Attributes

Value Feature Disabled

all Show all standard menu bar items for all Gantt charts.

asList for all Gantt charts.

asHier Gantt charts.

collapseAll Gantt charts.

collapseAllBelow Gantt charts.

columnsMenu Gantt charts.

copy Copy task for all Gantt charts.

createTask Undo //// all Gantt charts.

cut Cut task for all Gantt charts.

delete Delete task for all Gantt charts.

dependencyLines Gantt charts.

edit Changes to the data model for all Gantt charts.

editMenu for all Gantt charts.

expand Gantt charts.

expandAll Gantt charts.

expandAllBelow Gantt charts.

filter Filter task for project and scheduling Gantt charts.

goToDate Indent ////task for project and scheduling Gantt charts.

indent Indent /////.

indentGroup Undo //// all Gantt charts.

legend Hide and Show legend toolbar items for all Gantt charts.

link Link task for project and scheduling Gantt charts.

linkGroup Link //// for project and scheduling Gantt charts.

listPaneMenu Undo //// all Gantt charts.

Chapter 28
Customizing Gantt Chart Display Elements

28-32

Table 28-6 (Cont.) Valid Values for MenuBarLayout Attributes

Value Feature Disabled

merge Undo //// all Gantt charts.

outdent Outdent tasks for project and scheduling Gantt charts.

paste Paste task for all Gantt charts.

print Print task for all Gantt charts.

properties Gantt charts.

redo Redo task for all Gantt charts.

resourceMenu Undo //// all Gantt charts.

separator Vertical line separating toolbar items for all Gantt charts.

split Undo //// all Gantt charts.

splitGroup Undo //// all Gantt charts.

taskMenu Undo //// all Gantt charts.

timeBucketMenu Undo //// all Gantt charts.

timeScale Undo //// all Gantt charts.

undo Undo task for all Gantt charts.

undoGroup Undo /// Resource menu item for scheduling Gantt chart.

undoLink Undo link for /// Task menu item for project and scheduling Gantt
charts.

unlink Update Task item for project and scheduling Gantts.

updateTask Zoom in task for all Gantt charts.

viewMenu Undo //// all Gantt charts.

Creating Custom Toolbar and Menu Items
You can supply your own menu items and toolbar button by using the String menuItem
to add custom items to the menu bar, and the String button to add custom items to the
toolbar. The Gantt chart merges the new menu items with the standard items in the
Gantt chart.

The example below shows sample code for specifying a new menu item.

<dvt:projectGantt var="task">
<f:facet name="menuBar">
 <af:menu text="My Menu">
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 </af:menu>
</f:facet>
</dvt:projectGantt>

Chapter 28
Customizing Gantt Chart Display Elements

28-33

The example below shows sample code for specifying a new toolbar button.

<dvt:schedulingGantt var="task">
<f:facet name="toolbar">
 <af:toolbar>
 <af:button text="Custom" disabled="true"/>
 </af:toolbar>
</dvt:schedulingGantt>

Actions initiated on the menu bar and toolbar buttons are handled through a registered
listener, DataChangeListener, on the Gantt chart component. For example, when a
user presses the delete button in the toolbar, a DataChangeEvent with the ID of the
task selected for deletion would be fired on the server. The registered listener is then
responsible for performing the actual deletion of the task, and the Gantt chart data
model is refreshed with the updated information.

You can register DataChangeListener by specifying a method binding using the
dataChangeListener attribute on the Gantt chart tag. For example, if you put the code
in a backing bean in a method called handleDataChange, then the setting for the
dataChangeListener attribute becomes: "#{myBackingBean.handleDataChange}".

The example below shows sample code in a backing bean.

public void handleDataChanged(DataChangeEvent evt)
{
if (DataChangeEvent.DELETE == evt.getActionType())
 …………
}

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create Gantt charts. By default, a dataChangeListener is
automatically provided for events. For more information, see the "What You
May Need to Know About Data Change Event Handling" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Customizing Gantt Chart Context Menus
When users right-click in the Gantt chart table or chart regions, a context menu is
displayed to allow users to perform operations on the Gantt chart. A standard set of
options is provided for each region.

You can customize Gantt chart context menus by supplying your own items, and
adding, removing, and rearranging items within the menu. Use the
chartPopupMenuLayout and tablePopupMenuLayout attributes of the Gantt chart
component to specify the contents and arrangement of context menu items as a set of
space-separated Strings.

For example, Figure 28-23 shows a customized table region context menu for a
project Gantt chart.

Chapter 28
Customizing Gantt Chart Display Elements

28-34

Figure 28-23 Project Gantt Chart Custom Table Region Context Menu

The example below shows sample code for specifying the custom table region context
menu in Figure 28-23.

<dvt:projectGantt id="gantt1"
value="#{bindings.OrderEmployee1.projectGanttModel}"
 dataChangeListener="#{bindings.OrderEmployee1.
 projectGanttModel.processDataChanged}"
 var="row" startTime="2012-07-01" endTime="2013-05-15"
 initiallyExpandAll="true"
 summary="Project Gantt chart for shipping orders"
 tablePopupMenuLayout="updateTask delete indent outdent"
 ...
</dvt:projectGantt>

Table 28-7 shows the valid values for the tablePopupMenuLayout attribute.

Table 28-7 Valid Values for TablePopupMenuLayout Attributes

Value Feature Disabled

all Show all standard table region context menu items for all Gantt
charts.

clipboard Cut, Copy, and Paste table region content menu tasks for all
Gantt charts.

copy Copy task for all Gantt charts.

cut Cut task for all Gantt charts.

delete Delete task for all Gantt charts.

edit Changes to the data model for all Gantt charts.

indent Indent task for project and scheduling Gantt charts.

indentGroup Indent group of tasks for project and scheduling Gantt charts.

outdent Outdent tasks for project and scheduling Gantt charts.

paste Paste task for all Gantt charts.

scrollToTask Redo task for all Gantt charts.

separator Vertical line separating toolbar items for all Gantt charts.

updateTask Update Task item for project and scheduling Gantts.

Chapter 28
Customizing Gantt Chart Display Elements

28-35

Table 28-8 shows the valid values for the chartPopupMenuLayout attribute.

Table 28-8 Valid Values for ChartPopupMenuLayout Attributes

Value Feature Disabled

all Show all standard chart region context menu items for all Gantt
charts.

clipboard Cut, Copy, and Paste tasks for all Gantt charts.

copy Copy task for all Gantt charts.

cut Cut task for all Gantt charts.

delete Delete task for all Gantt charts.

edit Changes to the data model for all Gantt charts.

link Link task for project and scheduling Gantt charts.

linkGroup Link group of tasks for project and scheduling Gantt charts.

merge Outdent tasks for project and scheduling Gantt charts.

paste Paste task for all Gantt charts.

properties Print task for all Gantt charts.

separator Vertical line separating toolbar items for all Gantt charts.

split Undo task for all Gantt charts.

splitGroup Undo //// all Gantt charts.

unLink Undo link for /// Task menu item for project and scheduling Gantt
charts.

updateTask Update Task item for project and scheduling Gantts.

You can supply your own menu items using the tablePopupMenu and chartPopupMenu
facets in your Gantt chart. The Gantt chart merges the new menu items with the
standard items in the Gantt chart. The example below shows sample code for
specifying a custom menu item in the table region context menu.

<dvt:projectGantt startTime="#{test.startTime}" endTime="#{test.endTime}"
 value="#{test.treeModel}" var="task">

 <f:facet name="tablePopupMenu">
 <af:popup>
 <af:commandMenuItem text="Custom" disabled="true"/>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

You can also dynamically change the context menu at runtime. The example below
shows sample code to update a custom context menu on a task bar based on which
task is selected in the chart region of a project Gantt chart.

<dvt:projectGantt var="task"
 taskSelectionListener="#{backing.handleTaskSelected}">
 <f:facet name="chartPopupMenu">
 <af:popup id="p1" contentDelivery="lazyUncached">

Chapter 28
Customizing Gantt Chart Display Elements

28-36

 <af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

The handleTaskSelected method is specified in a backing bean. The example below
shows sample code for the backing bean.

public void handleTaskSelected(TaskSelectionEvent evt)
{
 JUCtrlHierNodeBinding _task = (JUCtrlHierNodeBinding)evt.getTask();
 String _type = _task.getAttribute("TaskType");

 RichPopup _popup = m_gantt.getFacet("chartPopupMenu");
 if (_popup != null)
 {
 RichMenu _menu = (RichMenu)_popup.getChildren().get(0);
 _menu.getChildren().clear();
 if ("Summary".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 1");
 _menu.getChildren().add(_item); }
 else if ("Normal".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 2");
 _menu.getChildren().add(_item); }
 }
}

For more information about using the af:popup components see Using Popup Dialogs,
Menus, and Windows.

How to Customize the Time Axis of a Gantt Chart
Every Gantt chart is created with a major time axis and a minor time axis. Each time
axis has a facet that identifies the level of the axis as major or minor.

The default time axis settings for all Gantt charts are:

• Major time axis: Weeks

• Minor time axis: Days

You can customize the settings of a time axis. However, the setting of a major axis
must be a higher time level than the setting of a minor axis. The following values for
setting the scale on a dvt:timeAxis component are listed from highest to lowest:

• twoyears

• year

Chapter 28
Customizing Gantt Chart Display Elements

28-37

• halfyears

• quarters

• twomonths

• months

• twoweeks

• weeks

• days

• sixhours

• threehours

• hours

• halfhours

• quarterhours

The example below shows sample code to set the time axis of a Gantt chart to use
months as a major time axis and weeks as the minor time axis.

<f:facet name="major">
 <dvt:timeAxis scale="months"/>
</f:facet>
<f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
</f:facet>

The time units you specify for the major and minor axes apply only to the initial display
of the Gantt chart. At runtime, the user can zoom in or out on a time axis to display the
time unit level at a different level.

You can create a custom time axis for the Gantt chart and specify that axis in the
scale attribute of dvt:timeAxis. The custom time axis will be added to the Time Scale
dialog at runtime.

Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

You should already have a Gantt chart on your page. If you do not, follow the
instructions in this chapter to create a Gantt chart. For information, see How to Add a
Gantt Chart to a Page.

To create and use a custom time axis:

Chapter 28
Customizing Gantt Chart Display Elements

28-38

1. Implement the CustomTimescale.java interface to call the method
getNextDate(Date currentDate) in a loop to build the time axis. The example
below shows sample code for the interface.

public interface CustomTimescale
{
 public String getScaleName();
 public Date getPreviousDate(Date ganttStartDate);
 public Date getNextDate(Date currentDate);
 public String getLabel(Date date);
}

2. In the Structure window, right-click a Gantt chart node and choose Go to
Properties.

3. In the Other attributes category of the Properties window, for the
CustomTimeScales attribute, register the implementation of the interface for the
custom time axis.

The customTimeScales attribute's value is a java.util.Map object. The specified
map object contains pairs of key/values. The key is the time scale name
(fiveyears), and the value is the implementation of the CustomTimeScale.java
interface. For example:

customTimesScales="#{project.customTimescales}"

4. Also in the Properties window, set the Scale attribute for major and minor time
axis, and specify the ZoomOrder attribute to zoom to the custom times scales.
The example below shows sample code for setting a threeyears minor time axis
and a fiveyears major time axis.

<f:facet name="major">
 <dvt:timeAxis scale="fiveyears" id="ta1" zoomOrder="fiveyears
threeyears years halfyears quarters months weeks days hours"/>
</f:facet>
<f:facet name="minor">
 <dvt:timeAxis scale="threeyears" id="ta2"/>
</f:facet>

Creating and Customizing a Gantt Chart Legend
The optional Gantt chart legend subcomponent includes an area that displays detailed
information about the selected task, or metrics about the selected time bucket, and a
legend that displays the symbol and color code bar used to represent each type of
task in a Gantt chart. At runtime, users can hide or show the information panel using a
toolbar button.

The ganttLegend tag must be added as a child of the Gantt chart tag in order to
provide the legend areas. The content of the legend areas is automatically generated
based on the properties for each type of task registered with the
taskbarFormatManager.

You can customize the information displayed when a task or time bucket is selected by
using the keys and label attributes on the Gantt chart legend tag. The keys attribute
should specify the data object keys used to retrieve the value to display and the
labels attribute should contain the corresponding labels for the values retrieved with

Chapter 28
Customizing Gantt Chart Display Elements

28-39

the keys. If these attributes are not specified, the legend will use the entire space of
the information panel.

You can also add icons to the legend by using the iconKeys and iconLabels attributes
on the Gantt chart legend tag. Icons will be automatically resized to 12 by 12 pixels if
the icon size is too large.

The example below shows sample code to display information about an On Hold task
in the legend of a project Gantt chart.

<dvt:projectGantt var="task">
 <dvt:ganttLegend id="gl" keys="TaskName StartTime EndTime" labels="Name
Start Finish" icons="images/wait.png" iconLabels="OnHold"/>
</dvt:projectGantt>

How to Specify Custom Data Filters
You can change the display of data in a Gantt chart using a data filter dropdown list on
the toolbar. Gantt charts manage all predefined and user-specified data filters using a
FilterManager.

Filter objects contain information including:

• A unique ID for the filter

• The label to display for the filter in the dropdown list

• An optional JavaScript method to invoke when the filter is selected

You can define your own filter by creating a filter object and then registering the object
using the addFilter method on the FilterManager. The example below shows
sample code for registering a Resource filter object with the FilterManager.

FilterManager _manager = m_gantt.getFilterManager();

// ID for filter display label javascript callback (optional)
_manager.addFilter((new Filter(RESOURCE_FILTER, "Resource...",
"showResourceDialog")));

When the user selects a filter, a FilterEvent is sent to the registered FilterListener
responsible for performing the filter logic. The filterListener attribute on the Gantt
chart component is used to register the listener. When implemented by the application,
the data model is updated and the Gantt chart component displays the filtered result.
The example below shows sample code for a FilterListener.

public void handleFilter(FilterEvent event)
 {
 String _type = event.getType();
 if (FilterEvent.ALL_TASKS.equals(_type))
 {
 // update the gantt model as appropriate
 }
 }

Before you begin:

Chapter 28
Customizing Gantt Chart Display Elements

28-40

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

You should already have a Gantt chart on your page. If you do not, follow the
instructions in this chapter to create a Gantt chart. For information, see How to Add a
Gantt Chart to a Page.

To specify a custom data filter:

1. In the Structure window, right-click the Gantt chart component and choose Go to
Properties.

2. In the Behavior category of the Properties window, in the FilterListener field,
enter a method reference to the FilterListener you defined. For example,
"#{project.handleFilter}".

Specifying Nonworking Days in a Gantt Chart
You can specify nonworking days in a Gantt chart. By default, nonworking days are
shaded gray, but you can select a custom color to be used for nonworking days.

How to Specify Weekdays as Nonworking Days
If certain weekdays are always nonworking days, then you can indicate the days of the
week that fall in this category.

Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

You should already have a Gantt chart on your page. If you do not, follow the
instructions in this chapter to create a Gantt chart. For information, see How to Add a
Gantt Chart to a Page.

To identify weekdays as nonworking days:

1. In the Structure window, right-click the Gantt chart component and choose Go to
Properties.

2. In the Appearance category of the Properties window, in the
NonWorkingDaysOfWeek field, enter the string of days that you want to identify as
nonworking days for each week. For example, to specify that Saturday and
Sunday are nonworking days, enter the following string: "sat sun".

Alternatively, you can create a method in a backing bean to programmatically
identify the nonworking days. For example, if you put the code in a backing bean
in a method called getNonWorkingDaysOfWeek, then the setting for the

Chapter 28
Customizing Gantt Chart Display Elements

28-41

nonWorkingDaysOfWeek attribute becomes: "#{myBackingBean.nonWorkingDays}".
The example below shows sample code in a backing bean.

public int[] getNonWorkingDaysOfWeek(){ if (locale == Locale.EN_US
 return new int[] {Calendar.SATURDAY, Calendar.SUNDAY}; else }

3. Optionally, specify a custom color in the NonWorkingDaysColor field. The value
you enter for this attribute must be a hexadecimal color string.

How to Identify Specific Dates as Nonworking Days
You can enter specific dates as nonworking days in a Gantt chart when individual
weekdays are not sufficient.

Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

You should already have a Gantt chart on your page. If you do not, follow the
instructions in this chapter to create a Gantt chart. For information, see How to Add a
Gantt Chart to a Page.

To identify specific dates as nonworking days:

1. In the Structure Window, right-click the Gantt chart component and choose Go to
Properties.

2. In the Properties window, select the Appearance attributes category.

3. In the nonWorkingDays field, enter the string of dates that you want to identify as
nonworking days. For example: "2008-07-04 2008-11-28 2008-12-25".

Alternatively, for more flexibility, you can create a method in a backing bean to
programmatically identify the nonworking days. For example, if you put the code in
a backing bean in a method called getNonWorkingDays, then the setting for the
nonWorkingDays attribute becomes: "#{myBackingBean.nonWorkingDays}".

4. Optionally, specify a custom color in the nonWorkingDaysColor field. The value
you enter for this attribute must be a hexadecimal color string.

How to Apply Read-Only Values to Gantt Chart Features
User interactions with a Gantt chart can be customized to disable features by setting
the featuresOff property to specify read-only values.

Table 28-9 shows the valid values and the disabled feature for the Gantt chart types.

Table 28-9 Valid Values for Read-Only Attributes

Value Feature Disabled

asListMenu Show as List menu item for all Gantt charts.

asHierMenu Show as Hierarchy menu item for all Gantt charts/

Chapter 28
Customizing Gantt Chart Display Elements

28-42

Table 28-9 (Cont.) Valid Values for Read-Only Attributes

Value Feature Disabled

clipboard Cut, Copy, and Paste tasks for all Gantt charts.

clipboardMenu Cut, Copy, and Paste menu items for all Gantt charts.

clipboardToolbar Cut, Copy, and Paste toolbar items for all Gantt charts.

clipboardRightMenu Cut, Copy, and Paste right menu items for all Gantt charts.

collapseAllBelowMenu Collapse All Below menu item for all Gantt charts.

collapseAllMenu Collapse All menu item for all Gantt charts.

columnsMenu Columns menu item for all Gantt charts.

createResourceMenu Create Resource menu item for resource utilization and
scheduling Gantt charts.

createResourceMT Create Resource menu and toolbar items for resource utilization
and scheduling Gantt charts.

createResourceToolbar Create Resource toolbar item for resource utilization and
scheduling Gantt charts.

createTaskMenu Create Task menu for project and scheduling Gantt charts.

createTaskMT Create Task menu and toolbar for project and scheduling Gantt
charts.

createTaskToolbar Create Task toolbar for project and scheduling Gantt charts.

deleteMenu Delete menu item for project and scheduling Gantt charts.

deleteMenus Delete menu, right menu, and toolbar items for project and
scheduling Gantt charts.

deleteRightMenu Delete right menu item for project and scheduling Gantt charts.

deleteToolbar Delete toolbar item for project and scheduling Gantt charts.

dependencyLines Show and Hide dependency lines for project and scheduling
Gantt charts. This includes the dependency menu option for
project Gantt charts.

edit Changes to the data model for all Gantt charts.

editMenu Edit menu item for all Gantt charts.

expandAllBelowMenu Expand All Below menu item for all Gantt charts.

expandAllMenu Expand All menu item for all Gantt charts.

expandMenu Expand menu item for all Gantt charts.

filter Hide the data filter operation on the toolbar for all Gantt charts.

goToDateMenu Go to Date menu item for all Gantt charts.

indenting Indent and Outdent tasks for project and scheduling Gantt
charts.

indentingMenu Indent and Outdent menu items: Task for project, and Resource
for scheduling and resource utilization resource Gantt charts.

indentingMenus Indent and Outdent menu and toolbar and right menu items for
all Gantt charts.

indentingRightMenu Indent and Outdent right menu items for all Gantt charts.

Chapter 28
Customizing Gantt Chart Display Elements

28-43

Table 28-9 (Cont.) Valid Values for Read-Only Attributes

Value Feature Disabled

indentingToolbar Indent and Outdent toolbar items for all Gantt charts.

legend Hide and Show legend and task information for all Gantt charts.

legendMenu Hide and Show legend menu items for all Gantt charts.

legendToolbar Hide and Show legend toolbar items for all Gantt charts.

linking Link and Unlink tasks for project and scheduling Gantt charts.

linkingMenu Link and Unlink menu items for project and scheduling Gantt
charts.

linkingMenus Link and Unlink menu, right menu, and toolbar items for project
and scheduling Gantt charts.

linkingRightMenu Link and Unlink right menu items for project and scheduling
Gantt charts.

linkingToolbar Link and Unlink toolbar items for project and scheduling Gantt
charts.

listPaneMenu List Pane menu item for all Gantt charts.

print Print task for all Gantt charts.

printMenu Print menu item for all Gantt charts.

printToolbar Print toolbar item for all Gantt charts.

properties Show property dialogs for all Gantt charts.

propertiesMenu Properties menu item for all Gantt charts.

propertiesRightMenu Properties right menu item for all Gantt charts.

resourceMenu Resource menu item for resource utilization and scheduling
Gantt charts.

snapToMenu Snap To menu item scheduling Gantt chart.

snapToRightMenu Snap To right menu item for scheduling Gantt chart.

split Split and Merge tasks for project Gantt chart.

splittingMenu Split and Merge menu items for project Gantt chart.

splittingMenus Split and Merge menu, right menu, and toolbar items for project
Gantt chart.

splittingRightMenu Split and Merge right menu items for project Gantt chart.

splittingToolbar Split and Merge toolbar items for project Gantt chart.

taskMenu Task menu for project and scheduling Gantt charts.

timeAxisMenu Time Axis menu item for all Gantt charts.

timeBucketMenu Time Bucket menu item for resource utilization Gantt chart.

undo Undo and redo tasks for all Gantt charts.

undoMenu Undo and Redo menu items for all Gantt charts.

updateResourceMenu Update Resource menu item for scheduling Gantt chart.

updateTaskMenu Update Task menu item for project and scheduling Gantt charts.

Chapter 28
Customizing Gantt Chart Display Elements

28-44

Table 28-9 (Cont.) Valid Values for Read-Only Attributes

Value Feature Disabled

updateTaskMT Update Task Edit item, Update Task toolbar item, and right
menu items for project and scheduling Gantts.

updateTaskRightMenu Update Task right menu item for project and scheduling Gantt
charts.

updateTaskToolbar Update Task toolbar item for project and scheduling Gantt
charts.

undoToolbar Undo and Redo toolbar items for all Gantt charts.

view Show as list, Show as hierarchy, Columns, Expand and Collapse
tasks for all Gantt charts.

viewMenu View menu items for all Gantt charts.

zoom Changes to the zoom level for all Gantt charts.

zoomToolbar Zoom menu item for all Gantt charts.

zoomToToolbar Zoom to Fit menu toolbar item for all Gantt charts.

Before you begin:

It may be helpful to have an understanding of how Gantt chart attributes and Gantt
chart child components can affect functionality. For more information, see Configuring
Gantt Charts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Gantt Chart
Components.

You should already have a Gantt chart on your page. If you do not, follow the
instructions in this chapter to create a Gantt chart. For information, see How to Add a
Gantt Chart to a Page.

To set read-only values on Gantt chart features:

1. In the Structure window, right-click the Gantt chart node and choose Go to
Properties.

2. In the Behavior attributes category of the Properties window, for the featuresOff
attribute, enter one or more String values to specify the Gantt chart features to
disable.

For example, to disable user interactions for editing the data model, printing, or
changing the zoom level of a Gantt chart, use the following setting for the
featuresOff attribute: edit print zoom

Alternatively, you can create a method in a backing bean to programmatically
identify the features to be disabled. For example, if you put the code in a backing
bean in a method called whatToTurnOff that returns a String array of the values,
then the setting for the featuresOff attribute becomes:
"#{BackingBean.whatToTurnOff}".

Chapter 28
Customizing Gantt Chart Display Elements

28-45

What You May Need to Know About Skinning and Customizing the
Appearance of Gantt Charts

For the complete list of Gantt chart skinning keys, see the Oracle Fusion Middleware
Documentation Tag Reference for Oracle Data Visualization Tools Skin Selectors. To
access the list from JDeveloper, from the Help Center, choose Documentation Library,
and then Fusion Middleware Reference and APIs. For additional information about
customizing your application using skins, see Customizing the Appearance Using
Styles and Skins.

Adding Interactive Features to Gantt Charts
ADF DVT Gantt Charts support multiple interactive features, including adding a page
control as an alternative to a scrollbar, synchronized scrolling, adding a double-click
event to a task bar, and printing Gantt charts.

Performing an Action on Selected Tasks or Resources
A Gantt chart allows users to select one or more rows in the table region of a Gantt
chart representing tasks or resources and perform some actions on those rows. When
the selection state of a Gantt chart changes, the Gantt chart triggers selection events.
A selectionEvent event reports which rows were just deselected and which rows
were just selected.

To listen for selection events on a Gantt chart, you can register a listener on the Gantt
chart either using the selectionListener attribute or by adding a listener to the Gantt
chart using the addselectionListener() method. The listener can then access the
selected rows and perform some actions on them.

The current selection, that is the selected row or rows, are the RowKeySet object, which
you obtain by calling the getSelectedRowKeys() method for the Gantt chart. To
change a selection programmatically, you can do either of the following:

• Add rowKey objects to, or remove rowKey objects from, the RowKeySet object.

• Make a particular row current by calling the setRowIndex() or the setRowKey()
method on the Gantt chart. You can then either add that row to the selection, or
remove it from the selection, by calling the add() or remove() method on the
RowKeySet object.

The example below shows a portion of a Gantt chart in which a user can select some
rows then click the Delete button to delete those rows. Note that the actions listener is
bound to the performDelete method on the mybean managed bean.

<f:facet name="nodeStamp">
 <af:column headerText= ...>
 <af:outputText binding="#{mybean.table}" value= ... />
 </af:column>
 ...
</f:facet>
<af:button text="Delete" actionListener="#{mybean.performDelete}"/>

Chapter 28
Adding Interactive Features to Gantt Charts

28-46

The example below shows an actions method, performDelete, which iterates through
all the selected rows and calls the markForDeletion method on each one.

public void performDelete(ActionEvent action)
{
 UIXTable table = getTable();
 Iterator selection = table.getSelectedRowKeys().iterator();
 Object oldKey = table.getRowKey();
 try
 {
 while(selection.hasNext())
 {
 Object rowKey = selection.next();
 table.setRowKey(rowKey);
 MyRowImpl row = (MyRowImpl) table.getRowData();
 //custom method exposed on an implementation of Row interface.
 row.markForDeletion();
 }
 }
 finally
 {
 // restore the old key:
 table.setRowKey(oldKey);
 }
}

Using Page Controls for a Gantt Chart
For Gantt chart table regions, you can use a page control as an alternative to
horizontal scrolling for both desktop applications and for mobile browsers on touch
devices. This control is only available when there are more rows than the data fetch
size, and the component is not being stretched by its containing layout component.

The page control displays as a footer to the table region as shown in Figure 28-24.

Figure 28-24 Gantt Chart Page Control

When you are developing an ADF Faces web application, by default Gantt chart table
regions use a horizontal scroll bar for displaying columns over the size of the data
being fetched. To configure a page control for desktop devices, for the
schedulingGantt, projectGantt, or resourceUtilizationGantt component table
region, set the scrollPolicy attribute to page.

While a standard ADF Faces web application will run in mobile device browsers,
because the user interaction is different and because screen size is limited, when your

Chapter 28
Adding Interactive Features to Gantt Charts

28-47

application needs to run on a mobile device, you should create touch device-specific
versions of the pages. For more information, see Creating Web Applications for Touch
Devices Using ADF Faces.

By default, when rendered on mobile devices, Gantt chart table regions display a page
control that allows the user to jump to specific pages of rows. For all Gantt charts to
display on a mobile device, you should:

• Place the Gantt chart component within a flowing container (that is, a component
that does not stretch its children). For more information about flowing container
components, see Geometry Management and Component Stretching.

• Leave the scrollPolicy attribute set to auto (default for this setting on mobile
devices is paginated display of the pivot table).

If the Gantt chart is not in a flowing container, or if those attributes are not set
correctly, the table region will display a scroll bar instead of pages.

Configuring Synchronized Scrolling Between Gantt Charts
You can configure synchronized horizontal scrolling between the chart side of two
Gantt charts by using an af:clientListener component.

For example, you may wish to synchronize the scroll bars of a project Gantt chart and
a resource utilization Gantt chart to view tasks and resources for the same project as
illustrated in Figure 28-25.

Figure 28-25 Synchronized Scrolling Between Gantt Charts

To configure synchronized scrolling between Gantt charts, use an af:clientListener
component to listen for the chartHorizontalScroll event on the chart side of the
Gantt chart being scrolled and set the scroll position on the other Gantt chart.

In this example, inline JavaScript is used to define the methods for synchronized
scrolling within an af:resource tag. The example below shows the code for the

Chapter 28
Adding Interactive Features to Gantt Charts

28-48

synchronized scrolling methods. For more information, see Adding JavaScript to a
Page.

<af:resource type="javascript">
 var gantt1ScrollStart = null;
 var gantt2ScrollStart = null;
 //called when the top gantt component is scrolled
 function handleTopScroll(event)
 {
 var eventScrollStart = event.getScrollStart();
 if (gantt2ScrollStart == null || gantt2ScrollStart ==
eventScrollStart)
 {
 // clear synced gantt scroll start
 gantt2ScrollStart = null;
 // find the corresponding gantt component
 var gantt = AdfPage.PAGE.findComponent("demo:gantt2");
 if (gantt1ScrollStart != event.getScrollStart())
 {
 // set the scrollStart position of the synced gantt to match
the
 event's value
 var scrollStart = gantt.getChartScrollStart();
 if (scrollStart != eventScrollStart)
 {
 //save the scrollStart value to stop feedback
 gantt1ScrollStart = eventScrollStart;
 gantt.setChartScrollStart(eventScrollStart);
 }
 }
 }
 event.cancel();
 }

 // called when the bottom gantt component is scrolled
 function handleBottomScroll(event)
 {
 var eventScrollStart = event.getScrollStart();
 if (gantt1ScrollStart == null || gantt1ScrollStart ==
eventScrollStart)
 {
 // clear synced gantt scroll start
 gantt1ScrollStart = null;
 // find the corresponding gantt component
 var gantt = AdfPage.PAGE.findComponent("demo:gantt1");
 if (gantt2ScrollStart != event.getScrollStart())
 {
 // set the scrollStart position of the synced gantt to match
the
 event's value
 var scrollStart = gantt.getChartScrollStart();
 if (scrollStart != eventScrollStart)
 {
 //save the scrollStart value to stop feedback
 gantt2ScrollStart = eventScrollStart;

Chapter 28
Adding Interactive Features to Gantt Charts

28-49

 gantt.setChartScrollStart(eventScrollStart);
 }
 }
 }
 event.cancel();
 }
 </af:resource

The example below shows the code in both Gantt charts to specify a clientListener
to listen for the Gantt charts' scrollEvent of type chartHorizontalScroll and invoke
the handleTopScroll and handleBottomScroll methods defined in the af:resource
component in the above example.

<dvt:projectGantt id="gantt1" var="task" startTime="2008-04-22"
 endTime="2008-09-31" inlineStyle="height:400px;"
 value="#{projectGantt.model}"
 tooltipKeys="#{projectGantt.tooltipKeys}"
 tooltipKeyLabels="#{projectGantt.tooltipLabels}"
 summary="Project Gantt">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days" id="ta2"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name" id="c1">
 <af:outputText value="#{task.taskName}" id="ot1"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource" id="c2">
 <af:outputText value="#{task.resourceName}" id="ot2"/>
 </af:column>
 <af:column headerText="Start Date" id="c3">
 <af:outputText value="#{task.startTime}" id="ot3"/>
 </af:column>
 <af:column headerText="End Date" id="c4">
 <af:outputText value="#{task.endTime}" id="ot4"/>
 </af:column>
 <dvt:ganttLegend keys="#{projectGantt.legendKeys}"
 labels="#{projectGantt.legendLabels}"
 id="gl1"/>
 <af:clientListener type="chartHorizontalScroll"
method="handleTopScroll"/>
</dvt:projectGantt>
<dvt:schedulingGantt id="gantt2" startTime="2006-12-21 01:00"
 endTime="2006-12-22 23:00"
 value="#{schedulingGantt.model}" var="resourceObj"
 inlineStyle="height:400px;"
 tooltipKeyLabels="#{schedulingGantt.tooltipLabels}"
 tooltipKeys="#{schedulingGantt.tooltipKeys}"
 summary="Scheduling Gantt Demo">
<f:facet name="major">
 <dvt:timeAxis scale="days" id="ta3"/>

Chapter 28
Adding Interactive Features to Gantt Charts

28-50

</f:facet>
<f:facet name="minor">
 <dvt:timeAxis scale="hours" id="ta4"/>
</f:facet>
<f:facet name="nodeStamp">
 <af:column headerText="Employee Name" id="c5">
 <af:outputText value="#{resourceObj.resourceName}" id="ot5"/>
 </af:column>
</f:facet>
 <af:column headerText="Department" id="c6">
 <af:outputText value="#{resourceObj.department}" id="ot6"/>
 </af:column>
<dvt:ganttLegend keys="#{schedulingGantt.legendKeys}"
 labels="#{schedulingGantt.legendLabels}"
 id="gl2"/>
 <af:clientListener type="chartHorizontalScroll"
method="handleBottomScroll"/>
</dvt:schedulingGantt>

Printing a Gantt Chart
The ADF Gantt chart provides a helper class (GanttPrinter) that can generate a
Formatted Object (FO) for use with Apache or XML Publisher to produce PDF files.

Print Options
In general, the GanttPrinter class prints the Gantt chart content as it appears on your
screen. For example, if you hide the legend in the Gantt chart, then the legend will not
be printed. Similarly, if you deselect a column in the List Pane section of the View
Menu, then that column will not be visible in the Gantt chart and will not appear in the
printed copy unless you take advantage of the column visibility print option.

You can use the following print options in the GanttPrinter class:

• Column visibility: The setColumnVisible method lets you control whether
individual columns in the list region of the Gantt chart will appear in the printed
output.

For example, to hide the first column in the list region of a Gantt chart, use the
following code, where the first parameter of the method is the zero-based index of
the column and the second parameter indicates if the column should be visible in
the printed Gantt chart: _printer.setColumnVisible(o, false);

• Margins: The setMargin method of the GanttPrinter lets you specify the top,
bottom, left, and right margins in pixels as shown in the following code, where
_printer is an instance of the GanttPrinter class:

_printer.setMargin(25, 16, 66, 66);

• Page size: The setPageSize method of the GanttPrinter class lets you specify
the height and width of the printed page in pixels as shown in the following code,
where _printer is an instance of the GanttPrinter class:

_printer.setPageSize (440, 600);

• Time period: The setStartTime and setEndTime methods of the GanttPrinter
class let you identify the time period of the Gantt chart that you want to print.

Chapter 28
Adding Interactive Features to Gantt Charts

28-51

The example below shows sample code for setting a specific time period in the
Gantt chart for printing, where startDate and endDate are variables that represent
the desired dates and _printer is an instance of the GanttPrinter class.

_printer.setStartTime(startDate);
_printer.setEndTime(endDate);

Action Listener to Handle the Print Event
The Gantt chart toolbar includes a print button that initiates a print action. To print a
Gantt chart, you must create an ActionListener to handle the print event.

The code in the ActionListener should include the following processes:

1. Access the servlet’s output stream.

2. Generate the FO. This process includes creating an instance of the GanttPrinter
class and entering the code for any print options that you want to use.

3. Generate the PDF.

The example below shows the code for an ActionListener that handles the print
event. This listener includes settings for all the print options available in the
GanttPrinter helper class.

public void handleAction(GanttActionEvent evt)
{
 if (GanttActionEvent.PRINT == evt.getActionType())
 {
 FacesContext _context = FacesContext.getCurrentInstance();
 ServletResponse _response = (ServletResponse)
 _context.getExternalContext().getResponse();
 _response.setContentType("application/pdf");
 ServletOutputStream _sos = _response.getOutputStream();
 // Generate FO.
 GanttPrinter _printer = new GanttPrinter(m_gantt);
 // Set column visibility by column index.
 _printer.setColumnVisible(0, false);
 // Set start and end date.
 _printer.setStartTime(startDate);
 _printer.setEndTime(endDate);
 // Set top, bottom, left, and right margins in pixels.
 _printer.setMargin(25, 16, 66, 66);
 // Set height and width in pixels.
 _printer.setPageSize(440, 660);
 File _file = File.createTempFile("gantt", "fo");
 OutputStream _out = new FileOutputStream(_file);
 _printer.print(_out);
 _out.close();
 // generate PDF.
 FOProcessor _processor = new FOProcessor();
 _processor.setData(new FileInputStream(_file),"UTF-8"));
 _processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 _processor.setOutput(_sos);
 _processor.generate();
 _context.responseComplete();
 response.setHeader("Cache-Control", "no-cache");

Chapter 28
Adding Interactive Features to Gantt Charts

28-52

 }
}

Adding a Double-Click Event to a Task Bar
Gantt chart components support a double-click event on a task bar. For example, you
may want to display detailed information about a task in a popup window.

Figure 28-26 shows a project Gantt chart with a double-click event on a task bar.

Figure 28-26 Task Bar with Double-Click Event

The example below show sample code for adding a double-click event to a task bar.

<dvt:projectGantt id="projectGanttDoubleClick"
 startTime="2008-04-01" endTime="2008-09-30"
 value="#{projectGanttDoubleClick.model}"
 var="task"
 doubleClickListener="#{projectGanttDoubleClick.handleDoubleClick}">
</dvt:projectGantt>

Implement the handleDoubleClick method in a backing bean, for example:

public void handleDoubleClick(DoubleClick event)

Using Gantt Charts as a Drop Target or Drag Source
You can add drag and drop functionality that allows users to drag an item from a
collection, for example, a row from a table, and drop it into another collection
component, such as a tree. Project and scheduling Gantt chart components can be
enabled as drag sources as well as drop targets for ADF table or tree table
components. A resource utilization Gantt chart component can be enabled only as a
drop target.

The application must register the Gantt chart component as a drag source or drop
target by adding the af:collectionDragSource or af:collectionDropTarget
behavior tags respectively as a child to the Gantt tag. For example, you can use the
af:collectionDragSource to register a drop listener that would be invoked when a
project Gantt chart task is dragged from a table region onto a separate table.

Chapter 28
Adding Interactive Features to Gantt Charts

28-53

Figure 28-27 shows a project Gantt chart with tasks dragged from the table region
onto a table of tasks.

Figure 28-27 Project Gantt Chart as Drag Source

The example below shows sample code for adding drag and drop functionality to a
project Gantt chart.

<dvt:projectGantt id="projectGanttDragSource"
 startTime="2008-04-01" endTime="2008-09-30"
 value="#{projectGanttDragSource.model}"
 var="task"
 summary="Project Gantt Drag Source Demo">
 <f:facet name="major">
 <dvt:timeAxis scale="months" id="ta1"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="weeks" id="ta2"/>
 </f:facet>
 <af:collectionDragSource actions="COPY MOVE" modelName="treeModel"/>
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name" id="c1">
 <af:outputText value="#{task.taskName}" id="ot1"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource" id="c2">
 <af:outputText value="#{task.resourceName}" id="ot2"/>
 </af:column>
 <af:column headerText="Start Date" id="c3">
 <af:outputText value="#{task.startTime}" id="ot3"/>
 </af:column>
 <af:column headerText="End Date" id="c4">
 <af:outputText value="#{task.endTime}" id="ot4"/>

Chapter 28
Adding Interactive Features to Gantt Charts

28-54

 </af:column>
 </dvt:projectGantt>

The example below shows sample code for the listener method for handling the drop
event.

public DnDAction onTableDrop(DropEvent evt)
{
 Transferable _transferable = evt.getTransferable();

 // Get the drag source, which is a row key, to identify which row has
been dragged.
 RowKeySetImpl _rowKey =
(RowKeySetImpl)_transferable.getTransferData(DataFlavor.ROW_KEY_SET_FLAVOR)
.getData();

 // Set the row key on the table model (source) to get the data.
 // m_tableModel is the model for the Table (the drag source).
 object _key = _rowKey.iterator().next();
 m_tableModel.setRowKey(_key);

 // See on which resource this is dropped (specific for scheduling
Gantt chart).
 String _resourceId = _transferable.getData(String.class);
 Resource _resource = findResourceById(_resourceId);

 // See on what time slot did this dropped.
 Date _date = _transferable.getData(Date.class);

 // Add code to update your model here.

 // Refresh the table and the Gantt chart.

RequestContext.getCurrentInstance().addPartialTarget(_evt.getDragComponent(
));
 RequestContext.getCurrentInstance().addPartialTarget(m_gantt);

 // Indicate the drop is successful.
 return DnDAction.COPY;
}

For a detailed procedure about adding drag and drop functionality for collections, see
Adding Drag and Drop Functionality for Collections.

Chapter 28
Adding Interactive Features to Gantt Charts

28-55

29
Using Timeline Components

This chapter describes how to use the ADF Data Visualization timeline component to
display data using simple UI-first development. The chapter defines the data
requirements, tag structure, and options for customizing the look and behavior of the
component.
If your application uses the Fusion technology stack, then you can also use data
controls to create timelines. For more information, see the "Creating Databound Gantt
Chart and Timeline Components" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

This chapter includes the following sections:

• About Timeline Components

• Using Timeline Components

• Adding Data to Timeline Components

• Customizing Timeline Display Elements

• Adding Interactive Features to Timelines

About Timeline Components
An ADF DVT Timeline is an interactive data visualization tool that allows users to view
events in chronological order and easily navigate forwards and backwards within a
defined time range. Events are represented as timeline items using simple ADF
components to display information such as text and images, or supply actions such a
links.

A dual timeline can be configured to display two series of events to allow a side-by-
side comparison of related information. The timeline component also supports an
adjustable time range to change the view for zooming in or out.

Timeline Use Cases and Examples
A timeline is composed of the display of events as timeline items along a time axis, a
movable overview window that corresponds to the period of viewable time in the
timeline, and an overview time axis that displays the total time increment for the
timeline. A horizontal zoom control is available to change the viewable time range.
Timeline items corresponding to events display related information or actions and are
represented by a line feeler to the time axis and a marker in the overview time axis.

For example, the timeline in Figure 29-1 is configured to display the chronological
order of Employee Presentations in the ADF Faces Components Demo application. In
this example, timeline items representing each event display information about the
event with a label and a subheading. The overview window defines the time range for
the display of the timeline items, adjustable by changing the zoom control or by
changing the edges of the window to a larger or smaller size. When selection is
configured, the timeline item, line feeler, and the event marker in the overview panel
are highlighted.

29-1

Figure 29-1 Timeline of Employee Hire Dates

A dual timeline can be used for comparison of up to two series of events. Figure 29-2
illustrates a dual timeline comparing employee change events for two employees over
a ten year time period. Timeline events are displayed using a quarterly year time axis
within the three plus year overview window. The current date is represented with a line
in the overview time axis.

Figure 29-2 Dual Timeline Comparing Employee Change Events

End User and Presentation Features
To understand how timelines are used and can be customized, it is helpful to
understand these elements and features.

Timeline Overview Options
By default timelines support an overview panel that includes a movable overview
window corresponding to the period of viewable time in the timeline. An optional

Chapter 29
About Timeline Components

29-2

overview time axis that displays the total time increment for the timeline with
adjustable zoom levels can be added to a timeline.

Figure 29-3 shows a timeline of speaking engagements with the overview panel
displaying events occurring during a specific time period of the timeline. The time axis
for the timeline displays the total time increment with adjustable zoom levels between
hourly and half years.

Figure 29-3 Timeline Overview Panel and Time Axis

Layout Options
By default, timelines are displayed in a horizontal orientation with events laid out along
a horizontal time axis and overview panel. You can change the layout to a vertical
orientation with events displayed along a vertical time axis and overview panel. While
you can specify that timeline items in a horizontal orientation will not overlap each
other in the display, you cannot apply that configuration to items in a vertical
orientation.

Figure 29-4 illustrates a timeline of speaking events, with a vertical orientation.

Chapter 29
About Timeline Components

29-3

Figure 29-4 Timeline Horizontal and Vertical Orientations

Timeline Item Selection
Each event displayed in the timeline is represented as a timeline item that can include
data display components such as images, text, and text labels, or actions such as
links, buttons, and menus. A line feeler connects the event to the date in the time axis
of the timeline. Events are represented in the overview panel as a configurable
marker.

By default timeline items are not configured for selection at runtime. You can configure
selection of a single or multiple timeline items. At runtime the event, the line feeler, and
the marker in the overview panel are highlighted.

Content Delivery
Timelines can be configured for how data is delivered from the data source. The data
can be delivered to the timeline either immediately upon rendering, as soon as the
data is available, or lazily fetch after the shell of the component has been rendered. By
default, timelines support the delivery of content from the data source when it is
available. The contentDelivery attribute is set to whenAvailable by default.

Timelines are virtualized, meaning not all data on the server is delivered to and
displayed on the client. You can configure timelines to fetch a certain number of rows
or columns at a time from your data source based on date related values. Use
fetchStartTime and fetchEndTime to configure fetch size.

Chapter 29
About Timeline Components

29-4

Timeline Image Formats
Timelines support the following image formats: HTML5, Flash, and Portable Network
Graphics (PNG). All image formats support locales using right-to-left display.

By default, timelines will display in the best output format supported by the client
browser. If the best output format is not available on the client, the application will
default to an available format. For example, if the client does not support HTML5, the
application will use:

• Flash, if the Flash Player is available

You can control the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Configuring Flash as Component Output Format.

• PNG output format

Although static rendering, such as maintaining pan and zoom state of the Flash
display, is fully supported when using the printable PNG output format, certain
interactive features are not available including:

– Animation

– Context menus

– Drag and drop gestures

– Popup support

– Selection

Timeline Display in Printable or Emailable Pages
ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing or emailing. For example, you may want users to be able
to print a page (or a portion of a page), but instead of printing the page exactly as it is
rendered in a web browser, you want to remove items that are not needed on a printed
page, such as scrollbars and buttons. If a page is to be emailed, the page must be
simplified so that email clients can correctly display it.

ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing or emailing. For example, you may want users to be able
to print a page (or a portion of a page), but instead of printing the page exactly as it is
rendered in a web browser, you want to remove items that are not needed on a printed
page, such as scrollbars and buttons. If a page is to be emailed, the page must be
simplified so that email clients can correctly display it. For information about creating
simplified pages for these outputs, see Using Different Output Modes .

When a timeline is displayed on a JSF page to be output in printable or emailable
pages:

• Only the events currently in view on the timeline will be included in the content.

• In email mode, the events will be displayed as a table.

• In print mode, the timeline overview is not rendered.

Chapter 29
About Timeline Components

29-5

Additional Functionality for Timeline Components
You may find it helpful to understand other ADF Faces features before you implement
your timeline component. Additionally, once you have added a timeline to your page,
you may find that you need to add functionality such as validation and accessibility.

Following are links to other functionality that timeline components can use:

• Partial page rendering: You may want a timeline to refresh to show new data
based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the timeline displays at
runtime. Those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: Timeline components are accessible, as long as you follow the
accessibility guidelines for the component. See Developing Accessible ADF Faces
Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Content Delivery: You can configure your timeline to fetch data from the data
source immediately upon rendering the components, or on a second request after
the components have been rendered using the contentDelivery attribute. For
more information, see Content Delivery.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound timelines based on how your ADF Business
Components are configured. For more information, see the "Creating Databound
Gantt Chart and Timeline Components" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how content is delivered, automatic partial page rendering (PPR), and how data
can be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Chapter 29
About Timeline Components

29-6

Using Timeline Components
To use the ADF DVT Timeline component, add the timeline to a page using the
Component Palette window. Then define the data for the timeline and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window.

Timeline Component Data Requirements
The data layer for the timeline component is specified in its child, the timeSeries
component. You must specify at least one time series, at most two in the case of a
dual timeline, using a model to access data from the underlying source.

The specific model class to use is an instance of
org.apache.myfaces.trinidad.model.CollectionModel. This class extends the JSF
DataModel class and adds on support for row keys. In the DataModel class, rows are
identified entirely by index. However, to avoid issues if the underlying data changes,
the CollectionModel class is based on row keys instead of indexes.

You may use other model instances, such as java.util.List, java.util.ArrayList,
and javax.faces.model.DataModel. The timeline series component will automatically
convert the instance into a CollectionModel, but without any additional functionality.
For information about the CollectionModel class, see the MyFaces Trinidad Javadoc
at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/
index.html.

Timelines require that the following attributes be set for the timelineSeries
component in JDeveloper:

• value: An EL Expression that references the data model represented in the
timeline.

• var: The name of a variable to be used during the rendering phase to reference
each element in the timeline collection. This variable is removed or reverted back
to its initial value once rendering is complete.

Each immediate child of a timeSeries component must be at most one timeItem
component. This component makes it possible to customize the event content through
its title, description and thumbnail attributes.

Each time a time item is created, the value for the current item is copied into a var
property, and optionally, additional data for the item is copied into a varStatus
property. These properties can be accessed in EL expressions inside the time item
component, for example, to pass the item value to the title attribute. Once the
timeline has completed rendering, the var and varStatus properties are removed, or
reverted back to their previous values.

The values for the value, var, and optionally, varStatus attributes must be stored in
the timeline's data model or in classes and managed beans if you are using UI-first
development.

The example below shows a code sample that adds a TimelineCBBean managed bean
to your application that references the class or bean that contains the data, and

Chapter 29
Using Timeline Components

29-7

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

optionally, adds any other methods to customize the timeline. Not all list items in the
data set specified by the ArrayList class are included in the example.

//imports needed by methods
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.Set;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.bean.RequestScoped;
import javax.faces.component.behavior.ClientBehavior;
import javax.faces.component.behavior.ClientBehaviorHint;
import javax.faces.event.AjaxBehaviorEvent;
import oracle.adf.view.faces.bi.component.timeline.UITimeSeries;
import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.ModelUtils;
import org.apache.myfaces.trinidad.model.RowKeySet;
@ManagedBean(name="cb")
public class TimelineCBBean
{
 private CollectionModel m_model;
 public TimelineCBBean()
 {
 super();
 }
 public CollectionModel getModel()
 {
 if (m_model != null)
 return m_model;
 ArrayList _list = new ArrayList(10);
 _list.add(new EmpEvent("0", parseDate("01.13.2010"), "Oracle
Application
 Express", "se198AyXcsk", null));
 _list.add(new EmpEvent("1", parseDate("01.27.2010"), "Larry Ellison
on the
 Sun-Oracle Close", "ylNgcD2Ay6M", null));
 ...

 m_model = ModelUtils.toCollectionModel(_list);
 return m_model;
 }
 public void handleKey(AjaxBehaviorEvent event)
 {
 ClientBehavior _behavior = (ClientBehavior)event.getBehavior();
 Set<ClientBehaviorHint> _hints = _behavior.getHints();
 UITimeSeries _series =
 (UITimeSeries)event.getComponent().findComponent("ts1");
 if (_series == null)
 return;
 RowKeySet _rowKeySet = _series.getSelectedRowKeys();
 Iterator _iterator = _rowKeySet.iterator();

Chapter 29
Using Timeline Components

29-8

 ArrayList _list = (ArrayList)m_model.getWrappedData();
 while (_iterator.hasNext())
 {
 Object _rowKey = _iterator.next();
 Object _event = m_model.getRowData(_rowKey);
 _list.remove(_event);
 }
 }
 private static Date parseDate(String date)
 {
 Date ret = null;
 try
 {
 ret = s_format.parse(date);
 }
 catch (ParseException e)
 {
 e.printStackTrace();
 }
 return ret;
 }
static DateFormat s_format = new SimpleDateFormat("MM.dd.yyyy");

The managed bean example provides the data model for the Employee Presentations
timeline displayed in Figure 29-5. You can find the complete source code for the
TimelineCBBean in the ADF Faces Components Demo application. For information
about the demo application, see ADF Faces Components Demo Application .

Figure 29-5 Timeline of Employee Presentations

Configuring Timelines
The timeline component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the timeline. The prefix dvt:

Chapter 29
Using Timeline Components

29-9

occurs at the beginning of each timeline component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure timeline child components, attributes, and supported facets in the
following areas:

• Timeline component (timeline): The parent component that wraps the timeline
child components and facets.

• Timeline series (timeSeries): The immediate child of the timeline component used
to specify the data layer for the timeline. You must specify at least one series in a
timeline. You can also specify up to one additional series to be used for a
comparison between timelines.

The timeline series component supports facets that can be used to configure
context menus including:

– bodyContextMenu: Specifies a context menu that is displayed on non-
selectable elements in the timeline component.

– contextMenu: Specifies a context menu that is displayed on any selectable
element in the timeline component.

• Timeline item (timeItem): The child of timeSeries that represents an event in the
timeline.

• Marker (marker): A configurable shape that represents the event in the overview
panel. The attributes are specified in a named overviewItem facet child of the
timeItem component.

• Time axis (timeAxis): Child of timeline used to specify the time axis and
timelineOverview used to specify the overview time axis.

• Timeline overview (timelineOverview): An optional component used to provide a
macro view of all of the events from all timeline series in the timeline. Users can
scroll through the timeline using a zoom control.

How to Add a Timeline to a Page
When you are designing your page using UI-first development, you use the
Components window to add a timeline to a JSF page. When you drag and drop a
timeline component onto the page, a timeline artifact and source code is added to the
Visual Editor, and the tag structure is added to the Structure window.

After the timeline is added to your page, you can use the Properties window to specify
data values and configure display attributes. In the Properties window you can use the
dropdown menu for each attribute field to display a property description and options
such as displaying an EL Expression Builder or other specialized dialogs. Figure 29-6
shows the dropdown menu for a timeline endTime attribute.

Chapter 29
Using Timeline Components

29-10

Figure 29-6 Timeline endTime Attribute Value

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a timeline and the binding will be done for you. For more
information, see the "Creating Databound Timelines" section in Developing
Fusion Web Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how timeline attributes and timeline child
tags can affect functionality. For more information, see Configuring Timelines.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Timeline
Components.

To add a timeline to a Page:

1. In the ADF Data Visualization page of the Components window, from the Gantt
section, drag and drop a Timeline component onto the page.

2. In the Properties window, view the attributes for the timeline. Use the help button
to display the complete tag documentation for the timeline component.

3. Expand the Appearance section, and enter values for the following attributes:

• EndTime: Enter the ending date to use for the timeline time range using the
format yyyy-mm-dd. Select an end date that will include events in the data
collection you wish to display on the timeline. By default the current date is
used for this attribute.

• StartTime: Enter the starting date to use for the timeline time range using the
format yyyy-mm-dd. Select a start date that will include events in the data
collection you wish to display on the timeline. By default the current date is
used for this attribute.

Chapter 29
Using Timeline Components

29-11

4. Optionally, enter values for the following attributes:

• Orientation: Use the attribute's dropdown menu to change the default layout
from horizontal to vertical.

For sample images of timeline orientation, see Layout Options.

• ItemPosition: If you are using a vertical orientation for the timeline, by default
timeline items will not overlap each other vertically in the available space for
the timeline. The default value is noOverlap. In a vertical orientation, this
attribute does not apply to the horizontal display of timeline items.

You can use an attribute value of random to specify that timeline items will
randomly lay out the items vertically in the available space for the timeline.

• Summary: Enter a summary of the timeline's purpose and structure for screen
reader support.

• TimeZone: Enter the time zone to use for the timeline. If not set, the value is
identified from the AdfFacesContext.

5. Expand the Behavior section, and optionally enter values for the following
attributes:

• ItemSelection: Use the dropdown list to specify whether or not timeline items
in the timeline are selectable. Valid values are single (default), multiple, or
none. This setting applies to both timeline series in a dual timeline.

• SortData: Use to set whether timeline events are sorted automatically by the
timeline based on the time of the event, or manually sorted by the data model
to which it is bound. Valid values are auto (default) or none.

• FetchStartTime and FetchEndTime: Use these attributes to specify the start
and end dates to use for delivering content from the data source.

6. To set the time axis for the timeline, do the following:

a. In the Structure window, right-click the timeline node and select Insert
Inside Timeline > Time Axis.

b. In the Insert Time Axis dialog, enter the scale to use for the time axis of the
timeline. Valid values are twoyears, years, quarters, twomonths, months,
twoweeks, weeks, days, sixhours, threehours, hours, halfhours, and
quarterhours.

7. To add an optional timeline time axis to the timeline, do the following:

a. In the Structure window, right-click the timeline node and select Insert
Inside Timeline > Timeline Overview.

b. In the Structure window, right-click the timelineOverview node and select
Insert Inside TimelineOverview > Time Axis.

c. In the Insert Time Axis dialog, enter the scale to use for the overview time axis
display of the timeline. Valid values are twoyears, years, quarters,
twomonths, months, twoweeks, weeks, days, sixhours, threehours, hours,
halfhours, and quarterhours.

What Happens When You Add a Timeline to a Page
JDeveloper generates a single timeline tag and a default axis tag when you drag and
drop a timeline from the Components window onto a JSF page without setting any
additional attributes in the Properties window.

Chapter 29
Using Timeline Components

29-12

The example below shows the generated code.

<dvt:timeline startTime="2017-02-21" endTime="2017-02-21" id="t1">
 <dvt:timeAxis scale="months" id="ta5"/>
</dvt:timeline>

If you choose to use the Data Controls panel to bind the data to a data control when
creating the timeline, JDeveloper generates code based on the data model. See
Creating Databound Gantt Chart and Timeline Components in Developing Fusion Web
Applications with Oracle Application Development Framework.

Adding Data to Timeline Components
You can add data to the ADF DVT Timeline using UI-first development by creating
classes and managed beans, and then using methods to automate the creation of the
tree model and reference the data classes and beans. Timeline components require a
collection data model to display attributes.

For example, to create the Employee Presentation timeline illustrated in Figure 29-5,
you must provide a data model that includes a qualifying date value and details about
the events.

How to Add Data to a Timeline
To add data to the timeline using UI-first development, create the classes, managed
beans, and methods that will create the model and reference the classes, beans, or
methods in JDeveloper.

Before you begin:

It may be helpful to have an understanding of how timeline attributes and timeline child
tags can affect functionality, as described in Configuring Timelines.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features, as described in Additional Functionality for Timeline
Components.

Add a timeline to your page. For help, see How to Add a Timeline to a Page. Confirm
that the start time and end time for the timeline is consistent with the data model you
are using.

Create the classes and managed beans that will define the timeline's data model and
supply the data to the timeline. For information and examples, see Timeline
Component Data Requirements. If you need help creating classes, see Working with
Java Code in Developing Applications with Oracle JDeveloper. For help with managed
beans, see Creating and Using Managed Beans.

To add data to the timeline in UI-first development:

1. In the Structure window, right-click the timeline node and choose Insert Inside
Timeline > Time Series.

2. Right-click the timeSeries node and choose Go to Properties.

3. In the Properties window, expand the Common section, and set the following
attributes:

Chapter 29
Adding Data to Timeline Components

29-13

• Value: Specify an EL expression for the model to which you want the timeline
to be bound. This must be an instance of
org.apache.myfaces.trinidad.model.CollectionModel.

Note:

You may use other model instances, such as java.util.List, array,
and javax.faces.model.DataModel. The timeline component will
automatically convert the instance into a CollectionModel.

For example, reference the managed bean you created to instantiate the
timeline. In the employee presentation example, the timeline managed bean is
named cb, and the data is instantiated when the timeline is referenced. To use
the employee presentation data example with a timeline, enter the following in
the Value field for the EL expression: #{cb.Model}.

• Var: Enter the name of a variable to be used during the rendering phase to
reference each element in the timeline collection. This variable is removed or
reverted back to its initial value once rendering is complete.

For example, enter evt in the Var field to reference each element in the
employees presentation data example.

• VarStatus: Optionally, enter the name of a variable during the rendering
phase to access contextual information about the state of the component,
such as the collection model or loop counter information. This variable is
removed or reverted back to its initial value once rendering is complete.

4. In the Structure window, right-click the timeSeries node and choose Insert Inside
Time Series > Time Item to add a component to display the timeline series data.

5. In the Properties window for the dvt:timeItem, expand the Common section and
enter the following values

• Value: Enter an EL Expression that references the date-related value you wish
to display as an item on the timeline. For example, in a collection of date-
related employee presentations, you could display presentation date as a
timeline item.

For example, to reference the employee presentations data source, enter
#{evt.date}.

• EndTime: Optionally, you can configure timeline items to represent a duration
in time. By adding an end time to the value of the timeline item, you can
represent a span of time instead of a single instant in time.

• Title: Enter an EL Expression that references the main text output for each
date-related value in the time item. For example, in a collection of date-related
employee presentations, you could display the presentation subject as a title.

To use the presentation subject as suggested, enter #{evt.description}.

• Description: Enter an EL Expression that references the subtext output for
each date-related value in the time item. For example, in a collection of date-
related employee presentations, you could display the presentation date and
time as a description.

To use the date for the subtitle as suggested, enter #{evt.date}.

Chapter 29
Adding Data to Timeline Components

29-14

• Thumbnail: Enter the image URL to use as a thumbnail for every individual
time item. If you have to use multiple images depending on your time items,
you can use an EL expression in the URL.

For example, to use the categories of presentations for the thumbnail, enter /
resources/images/timeline/#{evt.type}.png"/, where the specified
images folder contains files that match the names of the presentation types in
the data collection. The EL expression will evaluate to the type name and
search for a PNG file of the same name to use as the item thumbnail.

6. To configure the marker representing the timeline item that displays in the timeline
overview panel, do the following:

a. In the Structure window, right-click the overviewItem facet and select Insert
Inside f:facet-overviewItem > Marker.

b. In the Properties window, set values to specify shape, size, and fill color as
desired. By default, the marker displayed in the overview panel is a square
shape.

For help with creating EL expressions, see How to Create an EL Expression.

For information about timeline items, see Configuring a Timeline Item Duration.

What You May Need to Know About Configuring Data for a Dual
Timeline

You can add up to one additional timeline series to configure a dual timeline to
compare two series of events. The procedure for adding and configuring another
timeSeries component is the same.

The following example shows the code for the dual timeline displayed in Figure 29-2:

<af:panelGroupLayout layout="horizontal">
 <af:selectOneChoice id="soc" label="Employee (TOP)"
value="#{timeline.firstEmp}"
 autoSubmit="true"
 valueChangeListener="#{timeline.handleValueChange}">
 <af:forEach items="#{timeline.employees}" var="ce">
 <af:selectItem label="#{ce.name}" value="#{ce.id}"/>
 </af:forEach>
 </af:selectOneChoice>
 <af:spacer width="5"/>
 <af:outputText value="vs."/>
 <af:spacer width="5"/>
 <af:selectOneChoice id="soc2" label="Employee (BOTTOM)"
 value="#{timeline.secondEmp}"
 autoSubmit="true"
 valueChangeListener="#{timeline.handleValueChange}">
 <af:forEach items="#{timeline.employees}" var="ce">
 <af:selectItem label="#{ce.name}" value="#{ce.id}"/>
 </af:forEach>
 </af:selectOneChoice>
</af:panelGroupLayout>

 <dvt:timeline id="tl1" startTime="2000-01-01" endTime="2011-12-31"
 inlineStyle="width:1024px;height:500px"

Chapter 29
Adding Data to Timeline Components

29-15

itemSelection="single"
 currentTime="2010-04-01">
 <dvt:timeSeries id="ts1" var="evt" value="#{timeline.firstModel}"
 contentDelivery="lazy">
 <dvt:timeItem id="ti1" value="#{evt.date}" group="#{evt.group}"
 title="#{evt.description}" description="#{evt.date}"
 thumbnail="/resources/images/timeline/#{evt.type}.png">
 <f:facet name="overviewItem">
 <dvt:marker id="m1" shape="circle" fillColor="#ff0000"/>
 </f:facet>
 </dvt:timeItem>
 </dvt:timeSeries>
 <dvt:timeSeries id="ts2" var="evt" value="#{timeline.secondModel}"
 contentDelivery="lazy">
 <dvt:timeItem id="ti2" value="#{evt.date}"
 title="#{evt.description}" description="#{evt.date}"
 thumbnail="/resources/images/timeline/#{evt.type}.png">
 <f:facet name="overviewItem">
 <dvt:marker id="m2" shape="circle" fillColor="#0000ff"/>
 </f:facet>
 </dvt:timeItem>
 </dvt:timeSeries>
 <dvt:timeAxis id="ta1" scale="quarters"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview>
</dvt:timeline>

What You May Need to Know About Adding Data to Timelines
The examples in this chapter use classes and managed beans to provide the data to
the timeline. If your application uses the Fusion technology stack, then you can use
data controls to create a timeline and the binding will be done for you.

For more information, see the "Creating Databound Gantt Charts and Timelines"
chapter of Developing Fusion Web Applications with Oracle Application Development
Framework.

Alternatively, if you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls are ready,
then you should consider using placeholder data controls, rather than manually
binding the components. Using placeholder data controls will provide the same
declarative development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data Controls" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Customizing Timeline Display Elements
You can configure ADF DVT Timeline items using a number of customization options
and attributes. You can also add a custom time scale to your timeline and its overview
window.

Chapter 29
Customizing Timeline Display Elements

29-16

Customizing Timeline Items
Time items represent the events displayed in the timeline. The timeItem component
does not currently support customization via stamping.

Time items are represented in the timeline overview panel as a configurable shape.
You can specify the following attributes for a time item marker:

• fillColor: The color of the marker shape. Valid values are RGB hexadecimal
colors.

• opacity: The opacity of the fill color of the marker. Valid values range from 0
percent for transparent, to 100 percent for opaque.

• shape: The shape of the overview marker for each selected timeline series value.
Valid values are one of seven prebuilt shapes circle (default), diamond, human,
plus, square, triangleDown, and triangleUp. This attribute is not supported for
timelines with a vertical orientation.

• scaleX and scaleY: The scaleX (horizontal) and scaleY (vertical) scale factor.
Valid value is a numerical percentage. JDeveloper will automatically resize a
marker to fit within the timeline overview area if the marker is too large. These
attributes are not supported for timelines with a vertical orientation.

Configuring a Timeline Item Duration
Instead of specifying a specific instance of time for a timeline item you can configure a
span or duration of time.

For example, Figure 29-7 shows a timeline with timeline items that span one or more
hours in duration and display as a bar. The timeline overview panel also represents
the timeline items using a bar display.

Figure 29-7 Timeline Items with Time Durations

Chapter 29
Customizing Timeline Display Elements

29-17

To specify a timeline duration bar, set both the value and endTime attributes for the
timeItem component. The values must be stored in the timeline's data model or in
classes and managed beans if you are using UI-first development. In the following
sample code, the timeline item dates are configured as a duration bar:

<dvt:timeline id="tl1" startTime="2013-09-21" endTime="2013-09-27"
itemSelection="multiple"
 orientation="horizontal"
summary="Timeline Durations Demo">
 <dvt:timeSeries id="ts1" var="evt" value="#{timeline.durationModel}">
 <dvt:timeItem id="ti1" value="#{evt.date}" endTime="#{evt.endDate}"
 title="#{evt.description}"
description="#{evt.date}"/>
 </dvt:timeSeries>
 <dvt:timeAxis id="ta1" scale="hours" zoomOrder="weeks days hours"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="months"/>
 </dvt:timelineOverview>
</dvt:timeline>

How to Add a Custom Time Scale to a Timeline
You can create a custom time scale for the timeline and overview axes. The custom
time scale is configured in the scale attribute of the dvt:timeAxis.

Before you begin:

It may be helpful to have an understanding of how timeline attributes and timeline child
components can affect functionality. For more information, see Configuring Timelines.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Timeline
Components.

You should already have a timeline on your page. If you do not, follow the instructions
in this chapter to create a timeline. For information, see How to Add a Timeline to a
Page.

To create and use a custom time axis:

1. Implement the CustomTimescale.java interface to call the method
getNextDate(Date currentDate) in a loop to build the time axis. The example
below shows sample code for the interface.

public interface CustomTimescale
{
 public String getScaleName();
 public Date getPreviousDate(Date timelineStartDate);
 public Date getNextDate(Date currentDate);
 public String getLabel(Date date);
}

2. In the Structure window, right-click a timeline node and choose Go to
Properties.

Chapter 29
Customizing Timeline Display Elements

29-18

3. Expand the Advanced category of the Properties window, for the
CustomTimeScales attribute, register the implementation of the interface for the
custom time axis.

The customTimeScales attribute's value is a java.util.Map object. The specified
map object contains pairs of key/values. The key is the time scale name
(fiveyears), and the value is the implementation of the CustomTimeScale.java
interface. For example:

customTimesScales="#{timeline.customTimescales}"

4. To use the custom time scale in the time axis or overview time axis, in the
Structure window, right-click the dvt:timeAxis node and in the Properties window,
enter the custom time scale name.

The example below shows sample code for setting a threeyears time axis and a
fiveyears overview time axis.

<dvt:timeline>
 <dvt:timeAxis id="ta1" scale="threeyears"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="fiveyears"/>
 </dvt:timelineOverview>
</dvt:timeline>

What You May Need to Know About Skinning and Customizing the
Appearance of Timelines

For the complete list of timeline skinning keys, see the Oracle Fusion Middleware
Documentation Tag Reference for Oracle Data Visualization Tools Skin Selectors. To
access the list from JDeveloper, from the Help Center, choose Documentation Library,
and then Fusion Middleware Reference and APIs. For additional information about
customizing your application using skins, see Customizing the Appearance Using
Styles and Skins.

Adding Interactive Features to Timelines
You can add interactive features to ADF DVT Timeline components, including support
for popups, custom context menus, and drag and drop operations.

How to Add Popups to Timeline Items
Timeline timeItem components can be configured to display popup dialogs, windows,
and menus that provide information or request input from end users. Using the
af:popup component with other ADF Faces components, you can configure
functionality to allow your end users to show and hide information in secondary
windows, input additional data, or invoke functionality such as a context menu.

With ADF Faces components, JavaScript is not needed to show or hide popups. The
af:showPopupBehavior tag provides a declarative solution, so that you do not have to
write JavaScript to open a popup component or register a script with the popup
component. For more information about these components, see Using Popup Dialogs,
Menus, and Windows.

Chapter 29
Adding Interactive Features to Timelines

29-19

Configuring Timeline Context Menus
You can define timeline context menus using these context menu facets:

• bodyContextMenu: Specifies a context menu that is displayed on non-selectable
elements in the timeline component.

• contextMenu: Specifies a context menu that is displayed on any selectable
element in the timeline component.

Each facet supports a single child component. Context menus are currently only
supported in Flash and HTML5.

You create a context menu by using af:menu components within an af:popup
component. You can then invoke the context menu popup from another component,
based on a specified trigger. For more information about configuring context menus,
see Using Popup Dialogs, Menus, and Windows.

Due to technical limitations when using the Flash rendering format, context menu
contents are currently displayed using the Flash Player's context menu. This imposes
several limitations defined by the Flash Player:

• Flash does not allow for submenus it its context menu.

• Flash limits custom menu items to 15. Any built-in menu items for the component,
for example, a pie graph interactiveSliceBehavior menu item, will count
towards the limit,

• Flash limits menu items to text-only. Icons or other controls possible in ADF Faces
menus are not possible in Flash menus.

• Each menu caption must contain at least one visible character. Control characters,
new lines, and other white space characters are ignored. No caption can be more
than 100 characters long.

• Menu captions that are identical to another custom item are ignored, whether the
matching item is visible or not. Menu captions are compared to built-in captions or
existing custom captions without regard to case, punctuation, or white space.

• The following captions are not allowed, although the words may be used in
conjunction with other words to form a custom caption: Save, Zoom In, Zoom
Out, 100%, Show All, Quality, Play, Loop, Rewind, Forward, Back, Movie not
loaded, About, Print, Show Redraw Regions, Debugger, Undo, Cut, Copy,
Paste, Delete, Select All, Open, Open in new window, and Copy link.

• None of the following words can appear in a custom caption on their own or in
conjunction with other words: Adobe, Macromedia, Flash Player, or Settings.

Additionally, since the request from Flash for context menu items is a synchronous
call, a server request to evaluate EL is not possible when the context menu is invoked.
To provide context menus that vary by selected object, the menus will be pre-fetched if
the context menu popup uses the setting contentDelivery="lazyUncached". For
context menus that may vary by state, this means that any EL expressions within the
menu definition will be called repeatedly at render time, with different selection and
currency states. When using these context menus that are pre-fetched, the application
must be aware of the following:

• Long running or slow code should not be executed in any EL expression that may
be used to determine how the context menu is displayed. This does not apply to

Chapter 29
Adding Interactive Features to Timelines

29-20

af:commandMenuItem attributes that are called after a menu item is selected, such
as actionListener.

• In the future, if the Flash limitations are solved, the ADF context menu may be
displayed in place of the Flash context menu. To ensure upgrade compatibility,
you should code such that an EL expression will function both in cases where the
menu is pre-fetched, and also where the EL expression is evaluated when the
menu is invoked. The only component state that applications should rely on are
selection and currency.

Chapter 29
Adding Interactive Features to Timelines

29-21

30
Using Map Components

This chapter describes how use ADF Faces Data Visualization map and thematicMap
components to display data in geographic and thematic maps using simple UI-first
development. The chapter defines the data requirements, tag structure, and options
for customizing the look and behavior of the components.
If your application uses the Fusion technology stack, then you can also use data
controls to create geographic map themes and thematic map area and point data
layers to display data. For more information, see the "Creating Databound Geographic
and Thematic Map Components" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

This chapter includes the following sections:

• About Map Components

• Using the Geographic Map Component

• Customizing Geographic Map Display Attributes

• Customizing Geographic Map Themes

• Adding a Toolbar to a Geographic Map

• Using Thematic Map Components

• Defining Thematic Map Base Maps

• Customizing Thematic Map Display Attributes

• Adding Interactive Features to Thematic Maps

About Map Components
An ADF DVT Geographic Map represents business data in one or more interactive
layers of information (known as themes), superimposed on a single map. An ADF DVT
Thematic Map represents business data as patterns in stylized areas or associated
markers.

Geographic maps require a configuration that contains a URL to a remote Oracle
Application Server (AS) MapViewer service, and optionally, a geocoder service if
address data will have to be converted to longitude and latitude.

Thematic maps do not require a connection to an Oracle MapViewer service. Thematic
maps focus on data without the geographic details in a geographic map.

Map Component Use Cases and Examples
ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing business data. Each component
needs to be bound to data before it can be rendered since the appearance of the
components is dictated by the data that is displayed.

30-1

Both geographic and thematic maps are designed to display data. Geographic maps
focus on data that is best displayed with details such as roads or rivers. and requires
configuration to an Oracle MapViewer service and optionally, a geocoder service.
Thematic maps focus on data trends or patterns without the visual clutter of
geographic details and do not require configuration to an Oracle MapViewer or
geocoder service.

Geographic maps support a variety of map themes, each of which must be bound to a
data collection. The following kinds of map themes are available:

• Color: Applies to regions. For example, a color theme might identify a range of
colors to represent the population in the states of a region or the popularity of a
product in the states of a region. A geographic map can have multiple color
themes visible at different zoom levels. For example, a color theme at zoom levels
1 to 5 might represent the population of a state, and the county median income at
zoom levels 6 to 10.

• Point: Displays individual latitude/longitude locations in a map. For example, a
point theme might identify the locations of warehouses in a map. If you customize
the style of the point that is displayed, you might choose to use a different image
for the type of inventory (electronics, housewares, garden supplies) in a set of
warehouses to differentiate them from each other.

• Graph: Creates any number of pie graph themes and bar graph themes. However,
only one graph theme can be visible at a given time. You select the desired theme
from the View menu of the map toolbar. Graph themes can show statistics related
to a given region such as states or counties. For example, a graph theme could
display the sales values for a number of products in a state.

Figure 30-1 displays a geographic map with color, point, and graph themes.

Chapter 30
About Map Components

30-2

Figure 30-1 Geographic Map of Southwest US with Color, Point, and Pie Graph
Themes

Figure 30-2 shows a geographic map with a customized bar graph theme.

Figure 30-2 Geographic Map with Custom Bar Graph Theme

Thematic maps display trends or patterns in data associated with a geographic
location. Data is stylized by region, for example, using a fill color based on data
values, associating a marker with the region, or both.

Chapter 30
About Map Components

30-3

Figure 30-3 shows a thematic map that displays unemployment rates by states in the
US. The map displays multiple selection of the states with an employment rate of
2.0-4.0 percent.

Figure 30-3 Thematic Map of Unemployment Rates in the US

Figure 30-4 shows a thematic map that displays a graduated symbol for the size of the
major cities in South America.

Figure 30-4 Thematic Map with City by Size in South American

Chapter 30
About Map Components

30-4

End User and Presentation Features of Maps
The ADF Data Visualization map and thematic map components provides a range of
features for end users, such as panning and zooming and legend display. It also
provides a range of presentation features, such as state management.

Geographic Map End User and Presentation Features
To understand how geographic maps are used and can be customized, it may be
helpful to review these elements and features:

• Viewport: The container for the geographic map and its presentation features. The
default size is 600px by 375px and is customizable.

• Base map: The background geographic data, zoom levels, and the appearance
and presence of items such as countries, cities, and roads. By default, geographic
maps use based maps from the remote Oracle MapViewer service. The base map
can be any image that can be configured using a map viewer and map builder, for
example, the floor maps of office buildings.

• Zoom control: Pan icons and a zoom slider that render in the upper left-hand
corner of the map. Figure 30-5 shows a map zoom control that is zoomed out all
the way (that is, the zoom level is set to 0). At zero, the entire map is displayed.

You can customize the location and the initial setting of the zoom control in the map
component. The View menu in the map toolbar lets you determine the visibility of
the zoom control. By default, the initial zoom level for a map is set to 0.

Figure 30-5 Zoom Control of a Map

– Pan icons: Icons (with arrows that point north, south, east, west, northeast,
northwest, southeast, and southwest) at the top of the zoom control. You can
use these icons to move the entire map in specific directions.

– Zoom slider: Slider with a thumb for large scale zooming and icons for
zooming a single level. You can use the plus icon to zoom in and the minus
icon to zoom out one level at a time. When the thumb is at the bottom of the
slider, the zoom level is zero.

• Scale: Two horizontal bars that display in the lower left-hand corner of the map
below the information panel and above the copyright. Figure 30-6 shows the scale.
The top bar represents miles (mi) and the bottom bar represents kilometers (km).
Labels appear above the miles bar and below the kilometers bar in the format:
[distance] [unit of measure]. The length and distance values of the bars change as
the zoom level changes and as the map is panned.

Chapter 30
About Map Components

30-5

Figure 30-6 Map Information Panel, Scale, and Copyright

• Information panel: Displays latitude and longitude in the lower left-hand corner
above the scale. Figure 30-6 shows the information panel. By default, the
information panel is not visible. You can display this panel from the View menu or
by clicking the Information button on the toolbar.

• Measurement panel: Displays either distance, area, or radius depending on which
tools in the toolbar are currently in use. Text appears in the following format: [label]
[value] [unit of measure] to the right of the information panel. Figure 30-7 shows
the measurement panel with a distance measurement. Area measurement and
radius measurement appear in a similar manner with the appropriate labels.

Figure 30-7 Map Measurement Panel Beside the Information Panel

The following tools provide information in the measurement panel:

– Area measurement: Appears only when the Area, Rectangular Selection, or
Multi-Point Selection tools are active.

– Distance measurement: Appears only when the Distance tool is active.

– Radius measurement: Appears only when the Circular Selection tool is active.

• Copyright: Appears in the lower left-hand corner of the map and contains text that
you can customize in the map component.

• Overview map: Consists of a miniature view of the main map as shown in
Figure 30-8. This map appears in the lower right-hand corner of the main map and
lets you change the viewable region of the main map without having to use the
pan tool or the pan icons.

Figure 30-8 Overview Map

The following items are part of the overview map:

– Reticule: Appears in a small window that you can move across a miniature
view of the main map. The position of the reticule in the miniature map

Chapter 30
About Map Components

30-6

determines the viewable area of the main map. As you move the reticule, the
main map is updated automatically.

– Show/Hide icon: Appears in the upper left-hand corner when the overview
map is displayed. When you click the Show/Hide icon, the overview map
becomes invisible and only the icon can be seen in the lower right corner of
the main map.

• Toolbar: Appears in association with the map to provide user controls to adjust the
display of the map and map themes.

The toolbar contains the following elements in the sequence listed:

– View menu: Lets the user control which themes are visible, select a specific
theme for display, and determine the visibility of the zoom control, information
panel, and the legend. Figure 30-9 show a sample View menu.

Figure 30-9 Map View Menu

The Themes option on the View menu provides a dialog to configure a
geographic map when multiple themes are available. Figure 30-10 shows a
sample map themes dialog.

Figure 30-10 Map Themes Dialog

– Toolbar buttons: Provides user controls to interact with the geographic map
including:

* Pan: Use to pan the map by drag and drop operation within the view

* Zoom: Use to zoom in or out in the map view

* Selection: Use to select shaped (rectangle, circle, or polygon) areas or
points on the map. The themes within the selection will be highlighted

* Measurement: Use to hide or show the map distance and area
measurements tools

* Legend: Use to hide or show the map legend

Chapter 30
About Map Components

30-7

* Information panel: Use to hide or show the map information panel

Figure 30-11 shows the features supported by the map toolbar buttons

Figure 30-11 Map Toolbar Button Features

Thematic Map End User and Presentation Features
To understand how thematic maps are used and can be customized, it may be helpful
to review these elements and features:

• Viewport: The container for the thematic map and its presentation features. The
default size is 600px by 375px and is customizable.

• Base map: The background geographic area. Each base map includes several
sets of regions and one fixed set of cities referred to as points. A set of regions or
cities is referred to as a layer. Only one base map and one layer may be displayed
at a time, with the exception of enabled drilling. The base maps prebuilt for the
thematic map include:

– United States

– United States and Canada

– World

– Africa

– Asia

– Europe

– North America

– Latin America

– South America

– APAC (Asia Pacific)

– EMEA (Europe, Middle East, and Africa)

– World Regions

Note:

The thematic map component supports custom base maps For more
information, see Defining Thematic Map Base Maps.

• Area layers and labels: Each base map includes several regions that represent
levels in a geographical hierarchy. For example, in the United States map the
hierarchy is country > states > counties. The hierarchical relationship supports
drilling in the region. When displayed, the cities associated with the base map will

Chapter 30
About Map Components

30-8

appear as data points. By default, each region in an area layer displays a label
that can be customized.

Thematic maps support one or more custom area layers, a named group of
regions based on either an existing area layer or another custom region. A custom
region fits naturally into the geographical hierarchy of the base map. For example,
a custom area layer based on the Counties layer would appear between the US
States and US Counties layers in the hierarchy.

• Data layers: Each thematic map data layer is bound to a data collection and
represents the data as an area, or a marker, or both. A map layer may display only
one data layer at a time, whereas multiple data markers may appear at the same
time. There are two types of data layers:

– Area data layers: Area definitions associated with a geographic area, or by
points associated with a map position as in longitude and latitude, or x an y
coordinates. Data is stylized with color and pattern fills, or a data marker, or
both.

– Point data layers: Point locations associated with a map position as in
longitude and latitude, or x and y coordinates. Data is represented by a marker
or image using shapes available with the thematicMap component, custom
shapes, or graphic files.

• Control panel: Optional tool that allows user to control the following operations:

– Pan and zoom control: Use to pan the map, and zoom and center the map
within the view.

– Zoom to fit: Use to center and fit the full view of the map within the viewport.

– Zoom buttons: Use to zoom in or out on the view of the thematic map.

– Show/hide control panel button: Use to show or hide the control panel.

– Reset button: Available when drilling is enabled for the thematic map. Use to
reset map to display with no drilling in regions.

– Drill buttons: Available when drilling is enabled for the thematic map. Use
arrows pointing up or down to drill up or down in a map region.

Figure 30-12 shows the control panel with drilling enabled in the map.

Figure 30-12 Control Panel with Drilling Enabled

• Context menus: By default, thematic maps display context menus for the viewport
background, map regions, and data markers. Custom context menu items can be
added to the default menus.

Figure 30-13 shows the default context menu for the map viewport. The same
menu items are available for data markers.

Chapter 30
About Map Components

30-9

Figure 30-13 Map Viewport Background Context Menu

Figure 30-14 shows the context menu for a map region.

Figure 30-14 Map Region Context Menu

• State management: By default, display changes made to a thematic map such as
center, zoom, selection, and drill state persist across sessions, and carry over to
printing.

• Image formats: By default, thematic maps will display in the best output format
supported by the client browser. If the best output format is not available on the
client, the application will default to an available format. Thematic maps support
the following image formats: HTML5, Flash, and Portable Network Graphics
(PNG). All image formats support locales with right-to-left display.

• Printing: Thematic maps are printed using a PNG output format, maintaining any
zoom or pan state in the map.

• Animation: By default, thematic maps are animated upon initial rendering of the
map, when the data associated with the map changes, and when a region is drilled
in the map.

• Drilling: When enabled, drilling of the next layer in the geographical hierarchy is
displayed. For example, the counties within a US state are displayed when the
user double-clicks a state region. Drilling icons are added to the Control Panel
when drilling is enabled.

• Drag and drop: Maps can be configured to support these operations:

– Drag selected map regions or data markers to another page component.

– Move data markers from one location to another on the map.

– Drag data elements from another page component to a map region or data
marker.

• Disable features: End user features including map zoom, zoom-to-fit, and pan can
be disabled for a thematic map. When disabled, the controls are removed from the
control panel.

Chapter 30
About Map Components

30-10

• Tooltips: By default, thematic maps use tooltips to orient the user to the map
location and associated data when moving the cursor over the map.

• Zooming: Thematic maps can be configured to scale markers on zoom, to fit data
on initial zoom, and to isolate data layer zooming.

Additional Functionality for Map Components
You may find it helpful to understand other ADF Faces features before you implement
your map component. Additionally, once you have added a map component to your
page, you may find that you need to add functionality such as validation and
accessibility.

Following are links to other functionality that map components can use:

• Partial page rendering: You may want a map to refresh to show new data based
on an action taken on another component on the page. For more information, see
Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the map displays at
runtime, and those values will not be retained once the user leaves the page
unless you configure your application to allow user customization. For information,
see Allowing User Customization on JSF Pages.

• Accessibility: Geographic and thematic map components are accessible, as long
as you follow the accessibility guidelines for the component. See Developing
Accessible ADF Faces Pages.

• Skins and styles: You can customize the appearance of gauge components using
an ADF skin that you apply to the application or by applying CSS style properties
directly using a style-related property (styleClass or inlineStyle). For more
information, see Customizing the Appearance Using Styles and Skins.

• Content Delivery: You can configure your thematic map area and point data layers
to fetch a certain number of rows from your data source using the
contentDelivery attribute. For more information, see Content Delivery.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound maps based on how your ADF Business
Components are configured. For more information, see the "Creating Databound
Geographic and Thematic Map Components" chapter of Developing Web User
Interfaces with Oracle ADF Faces.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), image formats, and

Chapter 30
About Map Components

30-11

how data can be displayed and edited. For more information, see Common
Functionality in Data Visualization Components.

Using the Geographic Map Component
When you create an ADF DVT Geographic map, you are prompted to select a base
map that an administrator has already configured using the Map Builder tool of Oracle
Spatial. During configuration, the map administrator defines the zoom levels that the
map supports. These levels also determine the zoom capability of the geographic
map.

Administrators also have the option of creating predefined map themes using the Map
Builder tool. For example, a predefined theme might use specific colors to identify
regions. In the geographic map component, you can select such a predefined map
theme, but you cannot modify it because this theme is part of the base map.

The base map becomes the background on which you build interactive themes of
information using the geographic map component. You can create as many themes as
you wish, but you must define at least one map theme.

Geographic maps have the following data requirements:

• Map configuration requirements:

– Map Viewer URL: You must provide a URL for the location of the Oracle
Application Server MapViewer service. This service is required to run the base
map that provides the background for the layers in the ADF geographic map
component. OracleAS MapViewer is a programmable tool for rendering maps
using spatial data managed by Oracle Spatial. The URL is:

http://elocation.oracle.com/mapviewer

– Geocoder URL: If you want to convert street addresses into coordinates, then
you must provide the URL for the Geocoder for the geographic map. A
Geocoder is a Web service that converts street addresses into longitude and
latitude coordinates for mapping. The URL is:

http://elocation.oracle.com/geocoder/gcserver

• Base map: You must have a base map created by the Map Builder tool in
OracleAS MapViewer. This base map must define polygons at the level of detail
that you require for your map themes to function as desired. For example, if you
have a map pie graph or bar graph theme that you want to use for creating graphs
in each state of a certain region, then you must have a base map that defines
polygons for all these states at some zoom level. You can display only one graph
in a polygon.

• Map themes: Each map theme must be bound to a data collection. The data
collection must contain location information that can be bound to similar
information in the base map.

Configuring Geographic Map Components
The geometric map has parent components, map child components, and components
that modify map themes. The prefix dvt: occurs at the beginning of each map
component name indicating that the component belongs to the ADF Data Visualization
Tools (DVT) tag library. You can configure the following map components:

Chapter 30
Using the Geographic Map Component

30-12

• Map (map): The main map component. Unlike other data visualization components,
the map component is not bound to data. Instead, all the map theme child
components are bound individually to data collections. The map component
contains general information about the map including the identification of the base
map, the URL for the remote server that is running Oracle Application Server
MapViewer service and the URL for the Geocoder Web service that converts
street addresses into longitude and latitude coordinates for mapping.

The map component supports the following map child components:

– Color theme (mapColorTheme): Map layer that you bind to a data collection.
The color theme can be used to identify regions on a base maps.

– Point theme (mapPointTheme): Map layer that you bind to a data collection.
The point theme identifies individual locations on a map.

Optionally, you can use child map point style components
(mapPointStyleItem) if you want to customize the image that represents
points that fall in a certain data value range. To define multiple images, create
a component for each image and specify the associated data value range and
image.

– Bar graph theme (mapBarGraphTheme): Map layer that you bind to a data
collection. This theme displays a bar graph at points to represent multiple data
values related to that location. For example, this tag might be used to display a
graph that shows inventory levels at warehouse locations.

Optionally, use the map bar graph series set component (mapBarSeriesSet) to
wrap map bar graph series components (mapBarSeriesItem) if you want to
customize the color of the bars in a map bar graph. Each map bar graph
component customizes the color of one bar in a map bar graph.

– Pie graph theme (mapPieGraphTheme): Map layer that you bind to a data
collection. This theme displays a pie graph at specific points to represent
multiple values at that location. For example, this tag might be used to display
a graph that shows inventory levels at warehouse locations.

Optionally, use the map pie slice set component (mapPieSliceSet) to wrap
map pie slice components (mapPieSliceItem) if you want to customize the
color of the slices in a map pie graph. Each map pie slice component
customizes the color of one slice in a map pie graph.

– Predefined graph theme (predefinedTheme): Map layer defined using the Map
administrator tool stored along with the map metadata in the database. The
predefined theme tag is used when you have your own custom Oracle AS
MapViewer instance and need to display large datasets that can be rendered
directly by the map viewer.

– Map legend (mapLegend): Created automatically when you create a map. Use
this component to customize the map legend.

– Overview map (mapOverview): Created automatically when you create a map.
Use this tag to customize the overview map that appears in the lower right-
hand corner of the map.

• Toolbar (mapToolbar): A parent component that allows the map toolbar to be
placed in any location on a JSF page that contains a map. This toolbar contains a
mapID attribute that points to the map associated with the toolbar. The toolbar lets
you perform significant interaction with the map at runtime including the ability to
display the map legend and to perform selection and distance measurement. The
map toolbar tag has no child components.

Chapter 30
Using the Geographic Map Component

30-13

How to Add a Geographic Map to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a geographic map to a JSF page. When you drag and
drop a geographic map component onto the page, you are prompted to configure the
an Oracle MapViewer service, and optionally a geocoder service.

Once you complete the configuration, and the geographic map is added to your page,
you can use the Properties window to configure additional display attributes for the
map.

In the Properties window you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 30-15 shows the dropdown menu for a
thematic map component mapServerConfigId attribute.

Figure 30-15 Geographic Map MapServerConfigId Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a geographic map and the binding will be done for you. For
more information, see the "Creating Databound Geographic Maps" chapter
of Developing Fusion Web Applications with Oracle Application Development
Framework.

Before you begin:

It may be helpful to have an understanding of how geographic map attributes and
geographic map child components can affect functionality. For more information, see
Configuring Geographic Map Components.

Chapter 30
Using the Geographic Map Component

30-14

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Map
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a geographic map to a page:

1. In the ADF Data Visualizations page of the Components window, from the Map
panel, drag and drop a Geographic map onto the page to open the Create
Geographic Map dialog. Use the dialog Maps page to specify Map Configuration
in one of two ways:

• Use the dropdown list to choose an available configuration, or

• Click the Add icon to open the Create Geographic Map Configuration dialog.

In the dialog you can specify the MapViewer URL and Geocoder URL from
the respective dropdown list, or click the Add icon to open the Create URL
Connection dialog for each URL.

Note:

For the Oracle AS MapViewer service use this URL: http://
elocation.oracle.com/mapviewer

For the Oracle AS Geocoder service use this URL: http://
elocation.oracle.com/geocoder/gcserver

For help with the dialog, press F1 or click Help. As you complete each dialog to
create the configuration, the settings are reflected in the Create Geographic Map
dialog. Figure 30-16 shows a sample completed dialog.

Chapter 30
Using the Geographic Map Component

30-15

Figure 30-16 Maps Page of the Create Geographic Map Dialog

2. Optionally, use the map Preview control panel to make adjustments to the center
and zoom level of the base map. When you click Refresh, the Starting X (X
coordinate of the center), Starting Y (Y coordinate of the center), and Zoom Level
(initial zoom level) values are updated. If you need help, press F1 or click Help.

Note:

Optionally, use the Themes page of the Create Geographic Map dialog
to add and configure color, point, bar graph, or pie graph themes to
display data on the map.

When you create a geographic map using the Data Controls panel and
the theme binding dialogs, the data bindings are created for you. For
more information, see the "Creating Databound Geographic and
Thematic Maps" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

3. In the Properties window, view the attributes for the geographic map. Use the help
button to display the complete tag documentation for the map component.

4. Expand the Appearance section. Use this section to set the following attributes:

• ShowScaleBar: Use to specify the display of the map scale bar. The default
value is false.

• ZoomBarPosition: Use to specify the location of the map zoom bar. The
default value is West for placement on the left side of the map. Other valid
values include East for placement on the right side of the map, and none for
no zoom bar display.

Chapter 30
Using the Geographic Map Component

30-16

• AutoZoomThemeId: Use to specify the id of the theme where the map view
and zoom level will be centered upon initial map display. The value set in the
AutoZoomStrategy will be used to determine how the map adjusts the center
and zoom level.

• ShowInfoArea: Use to specify the display of the information area. The default
value is true.

• MapZoom: Use to specify the initial zoom level of the geographic map. The
zoom levels are defined in the map cache instance as part of the base map.

• Unit: Use to specify the unit of measurement to use for the geographic map.
The default value is miles. The attribute can also be set to meters.

• Selection subsection: Use the attributes in this subsection to define the
appearance of the area (rectangular, circular, polygon) and point selection
tools. For more information, see How to Customize and Use Map Selections.

5. Expand the Other section. Use this section to set the following attributes:

• AutoZoomStrategy: Use to specify how the map adjusts the center and zoom
level. If the AutoZoomStrategy value is set to MAXZOOM (default), the map
will zoom to the maximum level where all objects in AutoZoomThemeId are
visible. If the AutoZoomStrategy is set to CENTERATZOOMLEVEL, the map
will center on the theme in AutoZoomThemeId, and will use the value in the
MapZoom attribute as the starting zoom level.

• Summary: Enter a description of the geographic map. This description is
accessed by screen reader users.

What Happens When You Add a Geographic Map to a Page
When you use a Components window to add a geographic map to a page, JDeveloper
adds code to the JSF page. The example below shows the code added to the JSF
page.

<dvt:map startingY="46.06" startingX="-78.67" mapZoom="1"
 mapServerConfigId="mapConfig2"
 baseMapName="ELOCATION_MERCATOR.WORLD_MAP"
 inlineStyle="width:600px; height:375px;" id="m2">
 <f:facet name="rtPopup"/>
 <f:facet name="popup"/>
</dvt:map>

Note:

JDeveloper automatically inserts two popup facets. The rtPopup facet
supports a single child component for a right-click af:menu. The popup facet
supports a single child component for a left click af:dialog or
af:noteWindow. For more information about configuring popup components,
see Using Popup Dialogs, Menus, and Windows.

You can then configure the geographic map to display data in color, point, pie graph or
bar graph themes using the ADF Data Controls panel and the theme binding dialogs.
For information about configuring geographic maps to display data, see the "Creating

Chapter 30
Using the Geographic Map Component

30-17

Databound Geographic and Thematic Maps" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

What You May Need to Know About Active Data Support for Map
Point Themes

Geographic map point themes support Active Data Support (ADS) by sending a Partial
Page Refresh (PPR) request when an active data event is received.

The PPR response updates the point theme values as follows:

• For update events, the point will update to the new values. If there is a latitude/
longitude change, the point will animate to its new location.

• For removal events, the point will be removed from the point theme.

• For insert events, a new point corresponding to the latitude/longitude sent in the
change data will be created and visible on the base map.

For additional information about using the ADS, see Using the Active Data Service
with an Asynchronous Backend.

Customizing Geographic Map Display Attributes
You can customize the geographic display attributes of the ADF DVT Geographic Map
component, such as the size of the map, how the map centers and zoom the map
size, zoom strategy, the appearance of selected regions, and the display of the map
legend.

How to Adjust the Map Size
You can control the width and height of the map by using the inlineStyle attribute in
the dvt:map tag.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

To adjust the size of a map:

1. In the Structure window, right-click the dvt:map component and choose Go to
Properties.

2. In Properties window, expand the Style section. Specify the initial size of the map
in the InlineStyle attribute.

For example, to specify a width of 600 pixels and a height of 400 pixels, use the
following setting:

width:600px;height:400px

Chapter 30
Customizing Geographic Map Display Attributes

30-18

For a map that uses half the available width and height of the page, use the
following setting:

width:50%;height:50%

Best Practice Tip:

Instead of specifying width at 100% in the inlineStyle attribute, set the
styleClass attribute to AFStretchWidth.

How to Specify Strategy for Map Zoom Control
You can customize how the geographic map display attributes for the initial zoom
level, starting location, initial map theme, and zoom strategy.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured at least one map color, point, pie graph, or bar
graph theme to display data on the map.

To control the initial zoom and starting location on a map:

1. In the Structure window, right-click the dvt:map component and choose Go to
Properties.

2. In the Properties window, expand the Appearance section. Use this section to set
the following attributes:

• AutoZoomThemeID: Enter the Id of the first theme that will be displayed.

• ZoomBarStrategy: Select the default value MAXZOOM to direct the map to
zoom down to the maximum level where all objects in the AutoZoomThemeId
are visible, or select CENTERATZOOMLEVEL to direct the map to center on
the theme in AutoZoomThemeId and to set the zoom level to the value in the
MapZoom attribute.

• If you want to change the starting location on the map, enter latitude and
longitude in StartingX and StartingY respectively.

• MapZoom: Enter the beginning zoom level for the map. This setting is
required for the zoom bar strategy CENTERATZOOMLEVEL.

Note:

The property autoZoomThemeID takes precedence over the property
set in mapZoom.

Chapter 30
Customizing Geographic Map Display Attributes

30-19

How to Customize and Use Map Selections
The geographic map provides selection tools for map areas displaying data in color,
pie graph, and bar graph themes. By default, the selection tools are available on the
map toolbar and include options for rectangular, circular, polygonal, or point selection.

Figure 30-17 show the use of the polygon tool to select an area in a map with a color
theme.

Figure 30-17 Polygon Selection Tool in Map

You can customize the attributes used by the selection tools when users make
selection on a colorTheme, barGraphTheme, and pieGraphTheme, using the rectangle
tool, circle tool, polygon tool or point tool on the mapToolbar.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured at least one map color, point, pie graph, or bar
graph theme to display data on the map.

To customize map selection tool attributes:

1. In the Structure window, right-click the dvt:map component and choose Go to
Properties.

2. In the Properties window, expand the Appearance section. Use this section to set
the following attributes:

• SelectionFillColor: Use to specify the fill color for the selected region. Valid
values are RGB hexadecimal. For example, color="#000000" for black. The
default value is #49E0F6.

Chapter 30
Customizing Geographic Map Display Attributes

30-20

• SelectionStrokeColor: Use to specify the stroke color for the selected region.
Valid values are RGB hexadecimal. For example, color="#000000" for black,
the default color.

• SelectionOpacity: Use to specify the opacity of the fill color for the selected
region. Valid values range from 0 to 100, where 0 is 100% transparent, and
100 is opaque. The default value is 40.

When an end user clicks on a selection tool and uses the tool to highlight an area on
the map, the data values in that area can be displayed in another UI element such as
a table, or totalled in the information panel, by using a selection listener.

Figure 30-18 shows a map with the states selected in the area outlined in the color
red. The related information about the area is displayed in an associated table.

Figure 30-18 Selected Map Area with Table Data Display

You can provide a selection listener that totals the values associated with a map area
selected with one of the map selection tools such as the rectangular selection tool.
The total is displayed in an area under the map. You must provide a class that takes
MapSelectionEvent as an argument in a backing bean method. The example below
shows sample code for a backing bean.

package view;
import java.util.Iterator;
import oracle.adf.view.faces.bi.component.geoMap.DataContent;
import oracle.adf.view.faces.bi.event.MapSelectionEvent;
public class SelectionListener {
 private double m_total = 0.0;
 public SelectionListener() {
 }
 public void processSelection(MapSelectionEvent mapSelectionEvent) {
 // Add event code here...
 m_total = 0.0;
 Iterator selIterator = mapSelectionEvent.getIterator();
 while (selIterator.hasNext())
 {
 DataContent dataContent = (DataContent) selIterator.next();
 if (dataContent.getValues() != null)
 {
 Double allData[] = dataContent.getValues();

Chapter 30
Customizing Geographic Map Display Attributes

30-21

 m_total += allData[0];
 }
 }
 }
 public double getTotal () {
 return m_total;
 }
 public void setTotal (double total) {
 m_total = total;
 }
}

To provide a selection listener to total map selection values:

1. In the Structure window, right-click the dvt:map component and choose Go to
Properties.

2. In the Properties window, expand the Behavior section. For the
SelectionListener attribute, enter a method reference that points to the backing
bean. For example:

#{eventBean.processSelection}

How to Customize the Map Legend
The map legend provides an explanation of the map theme data in symbol and label
pairs. The legend displays by default in a popup upon initial display of the map, and
when a map toolbar is added and configured, the map legend can display in a window
when the user clicks the legend toolbar button.

When multiple themes are configured, a dropdown list is available to display the
legend for each theme. Figure 30-19 shows a map displaying the legend for one of its
multiple themes.

Figure 30-19 Geographic Map Theme Legend Display

Chapter 30
Customizing Geographic Map Display Attributes

30-22

Note:

In order for the legend toolbar button to be available, you must add and
configure a toolbar to the map. For more information, see Adding a Toolbar
to a Geographic Map.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured at least one map color, point, pie graph, or bar
graph theme to display data on the map.

To customize a map legend:

1. In the Structure window, right-click the dvt:map component and choose Insert
Inside Geographic Map > Legend.

2. In the Properties window, expand the Common section. In this section set the
following attributes:

• InitialShown: Use to specify whether or not the map legend is displayed in a
popup upon initial display of the map. The default value is true.

• Width: Enter the width of the legend. The default value is 200px.

• Height: Enter the height of the legend. The default value is 150px.

• PointThemeLabel: Enter the label to use for the map point theme in the
legend. All point themes are shown as one option in the dropdown list. The
default value is Point Theme.

• NumberOfColumns: Enter the number of columns to use for displaying the
colors of a color map theme in the legend.

For example, if a color theme has 15 colors, and the value of the attribute is
set to 3, then the legend will show 5 rows on the legend for the theme, where
each row has 3 columns.

What You May Need to Know About Skinning and Customizing the
Appearance of Geographic Maps

For the complete list of geographic map skinning keys, see the Oracle Fusion
Middleware Documentation Tag Reference for Oracle Data Visualization Tools Skin
Selectors. To access the list from JDeveloper, from the Help Center, choose
Documentation Library, and then Fusion Middleware Reference and APIs. For
additional information about customizing your application using skins, see Customizing
the Appearance Using Styles and Skins.

Chapter 30
Customizing Geographic Map Display Attributes

30-23

Customizing Geographic Map Themes
Each of the ADF DVT Geographic Map themes, color, point, pie chart, and bar chart,
can be customized using one or more of the following: the map theme binding dialogs,
the attributes of the theme tag, or the child tags of the theme tag.

How to Customize Zoom Levels for a Theme
For all map themes, you must verify that the theme specifies zoom levels that match
the related zoom levels in the base map. For example, if the base map shows counties
only at zoom levels 6 through 8, then a theme that displays points or graphs by county
should be applied only at zoom levels 6 through 8.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured at least one map color, point, pie graph, or bar
graph theme to display data on the map.

To customize the zoom levels of a map theme:

1. In the Structure window, right-click the dvt:mapColorTheme,
dvt:mapPointTheme, dvt:mapBarGraphTheme, or dvt:mapPieGraphTheme
component that you want to customize, and choose Go to Properties.

2. In the Properties window, expand the Appearance section. For the MinZoom and
MaxZoom attribute, enter the desired low and high zoom values, respectively.

How to Customize the Labels of a Map Theme
By default, the Id attribute of a map theme is used as the label when that theme is
displayed in the legend or in the View menu, Theme Selection dialog. You can
customize map theme labels using shortLabel and menuLabel attributes to create
meaningful labels that identify both the theme type (color, point, bar graph, or pie
graph) and the data (such as population, sales, or inventory) so that users can easily
recognize the available themes.

Use these attributes to create meaningful labels that identify both the theme type
(color, point, bar graph, or pie graph) and the data (such as population, sales, or
inventory) so that users can easily recognize the available themes.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

Chapter 30
Customizing Geographic Map Themes

30-24

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured at least one map color, point, pie graph, or bar
graph theme to display data on the map.

To customize the labels of a map theme:

1. In the Structure window, right-click the dvt:mapColorTheme,
dvt:mapPointTheme, dvt:mapBarGraphTheme, or dvt:mapPieGraphTheme
component that you want to customize, and choose Go to Properties.

2. In the Properties window expand the Appearance section. Use this section to set
the following attributes:

• ShortLabel: Use to specify a label for the theme when displayed in the map
legend.

• MenuLabel: Use to specify a label for the theme in the View menu, Theme
Selection dialog.

For example, you might want to enter the following text for a color theme that
colors New England states according to population:

shortLabel="Color - Population, NE Region"

How to Customize Color Map Themes
When you create a color map theme, you can customize the colors used for the
coloring of the background layer. You can specify the colors associated with the
minimum and maximum ranges, and then specify the number of color ranges for the
theme. For example, if the colors relate to the population on the map, the least
populated areas display the minimum color and the most populated areas display the
maximum color. Graduated colors between the minimum and maximum color are
displayed for ranges between these values.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured a map color theme to display data on the map.

To customize the colors of a color map theme:

1. In the Structure window, right-click the dvt:mapColorTheme component and
choose Go to Properties.

2. In the Properties window, expand the Theme Data section. Use this section to set
the following attributes:

• If you want to change the default colors associated with the minimum and
maximum range of data values, then select the desired colors for the
MinColor and MaxColor attributes respectively.

Chapter 30
Customizing Geographic Map Themes

30-25

• If you want to change the default number of color ranges for this theme,
change the integer in the BucketCount attribute.

For example, if <dvt:mapColorTheme minColor="#000000" maxColor= "#ffffff"
bucketCount="5"/>, then the colors for the five buckets are: #000000, #444444,
#888888, #bbbbbb, #ffffff.

Alternatively, you can specify the color for each bucket. To specify colors for multiple
buckets, for the ColorList attribute of mapColorTheme, bind a color array to the
attribute or use a semicolon-separated string. Color can be specified using RGB
hexadecimal.

For example, if the value is colorList="#ff0000;#00ff00;#0000ff", then the value of
the first bucket is red, the second bucket is green, and the third bucket is blue.

How to Customize Point Images in a Point Theme
A map point theme uses a default image to identify each point. However, you can
specify multiple custom images for a point theme and identify the range of data values
that each image should represent, using a mapPointStyleItem component for each
custom image you want to use in a map point theme.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured a map point theme to display data on the map.

To customize the images for points in a map point theme:

1. In the Structure window, right-click the dvt:mapPointTheme component and
choose Insert Inside Map Point Theme > Point Style Item.

2. In the Properties window, expand the Common section. Use this section to set the
following attributes:

• ImageURL: Use to specify the path to the image file to display on the map for
a point that falls in the data value range for this custom image. Alternatively,
you can choose Edit from the attribute dropdown menu to open a dialog to
navigate to the image file.

• MaxValue and MinValue: Use to specify the data value range that this custom
image represents by entering minimum values and maximum values for each
attribute respectively.

• Id: Enter a unique identifier for the custom image that you are defining.

• ShortLabel: Use to specify the descriptive text that you want to display in front
of the actual data value when a user hovers the cursor over a point that falls in
the range represented by this tag.

For example, you might want to enter the following text for a custom point that
falls in the lowest data value range:

Low Inventory

Chapter 30
Customizing Geographic Map Themes

30-26

• HoverURL: Optionally, specify the path to a different image to use when the
end user moves the mouse over an image on the map.

• SelectedURL: Optionally, specify the path to a different image to use when
the end user selects an image on the map.

3. Repeat Step 2 for each custom image that you want to create for your point
theme.

What Happens When You Customize the Point Images in a Map
When you use the point style item components to specify a custom image
representing a range of data values for a point theme, a child mapPointStyleItem tag
is defined inside the parent mapPointTheme tag.

The initial point style setting (ps0) applies to values that do not exceed 500. This point
style displays an image for very low inventory and provides corresponding tooltip
information.

The second point style setting (ps1) applies to values between 500 and 1000. This
point style displays an image for low inventory and provides corresponding tooltip
information.

The final point style setting (ps2) applies to values between 1000 and 1600. This point
style displays an image for high inventory and provides corresponding tooltip
information.

The example below shows the code generated on a JSF page for a map point theme
that has three custom point images that represent ranges of inventory at each
warehouse point.

<dvt:map id="map1"
...
 <dvt:mapPointTheme id="mapPointTheme1"
 shortLabel="Warehouse Inventory"
 value="{bindings.WarehouseStockLevelsByProduct1.geoMapModel}">
 <dvt:mapPointStyleItem id="ps0" minValue="0"
 maxValue="500"
 imageURL="/images/low.png"
 selectedImageURL="/images/lowSelected.png"
 shortLabel="Very Low Inventory"/>
 <dvt:mapPointStyleItem id="ps1" minValue="500"
 maxValue="1000"
 imageURL="/images/medium.png"
 selectedImageURL="/images/mediumSelected.png"
 shortLabel="Low Inventory"/>
 <dvt:mapPointStyleItem id="ps2" minValue="1000"
 maxValue="1600"
 imageURL="/images/regularGreen.png"
 selectedImageURL="/images/regularGreenSelected.png"
 shortLabel="High Inventory"/>
 </dvt:mapPointTheme>
</dvt:map>

Chapter 30
Customizing Geographic Map Themes

30-27

How to Customize the Bars in a Bar Graph Theme
When you create a map bar graph theme, default colors are assigned to the bars in
the graph. You can customize the colors of the bars. Use one mapBarSeriesSet tag to
wrap all the mapBarSeriesItem tags for a bar graph theme and insert a
mapBarSeriesItem tag for each bar in the graph.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured a map bar graph theme to display data on the
map.

To customize the color of the bars in a map bar graph theme:

1. In the Structure window, right-click the dvt:mapBarGraphTheme tag and choose
Insert Inside Bar Graph Theme > Map Bar Series Set.

There are no attributes to set for this tag. It is used to wrap the individual bar
series item tags.

2. In the Structure window, right-click the dvt:mapBarSeriesSet tag and choose
Insert Inside Bar Series Set > Map Bar Series Item.

3. In the Properties window, set the following attributes:

• Id: Enter a unique Id for the bar series item.

• Color: Enter the unique color to use for the bar. Valid values are RGB
hexidecimal colors. Alternatively, you can choose Edit from the attribute
dropdown menu to open an Edit Property: Color dialog.

4. Repeat Step 3 for each bar in the graph.

Note:

To find and modify the sequence of the bars in the graph, examine the
Edit Bar Graph Map Theme Binding dialog by clicking the Edit icon for
the mapBarGraphTheme component. The sequence of the entries in the
Series Attribute column of that dialog determines the sequence that
bars appear in the graph. After selecting an existing series, use the
arrow icons (Up, Down, Top, Bottom) to reorder the series or use the
Delete icon to delete that series.

Chapter 30
Customizing Geographic Map Themes

30-28

What Happens When You Customize the Bars in a Map Bar Graph
Theme

When you use the Edit Bar Graph Map Theme Binding dialog to customize the bars in
a map bar graph theme, the sequence of the bars reflect the sequence of the entries in
the Series Attribute column in the dialog.

The example below shows sample source code generated on the JSF page when you
customize the bars in a map bar graph.

<dvt:map
...
 <dvt:mapBarGraphTheme
 ...
 <dvt:mapBarSeriesSet>
 <dvt:mapBarSeriesItem color="#333399" id="bar1"/>
 <dvt:mapBarSeriesItem color="#0000ff" id="bar2"/>
 </dvt:mapBarSeriesSet>
 </dvt:mapBarGraphTheme>
</dvt:map>

How to Customize the Slices in a Pie Graph Theme
When you create a map pie graph theme, default colors are assigned to the slices in
the graph. You can customize the colors of the slices. Use one mapPieSliceSet tag to
wrap all the mapPieSliceItem tags for a pie graph theme and insert a
mapPieSliceItem tag for each slice in the graph.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

You should have already configured a map pie graph theme to display data on the
map.

To customize the color of the slices in a map pie graph theme:

1. In the Structure window, right-click the dvt:mapPieGraphTheme tag and choose
Insert Inside Pie Graph Theme > Pie Slice Set.

There are no attributes to set for this tag. It is used to wrap the individual pie graph
item tags.

2. In the Structure window, right-click the dvt:mapPieSliceSet node and choose
Insert Inside Map Pie Slice Set > Pie Slice Item.

3. In the Properties window, set the following attributes:

• Id: Enter a unique Id for the pie slice item.

Chapter 30
Customizing Geographic Map Themes

30-29

• Color: Enter the unique color to use for the pie slice. Valid values are RGB
hexidecimal colors. Alternatively, you can choose Edit from the attribute
dropdown menu to open an Edit Property: Color dialog.

4. Repeat Step 3 for each pie slice in the graph.

Note:

To find and modify the sequence of the slices in the graph, examine the
Edit Pie Graph Map Theme Binding dialog by clicking the Edit icon for
the mapPieGraphTheme component. The sequence of the entries in the
Pie Slice Attribute column of that dialog determines the sequence that
bars appear in the graph. After selecting an existing pie slice, use the
arrow icons (Up, Down, Top, Bottom) to reorder the slices or use the
Delete icon to delete that slice.

What Happens When You Customize the Slices in a Map Pie Graph
Theme

When you use the Edit Pie Graph Map Theme Binding dialog to customize the slices
in a map pie graph theme, the sequence of the slices reflect the sequence of the
entries in the Pie Slices Attribute column of the dialog.

The example below shows sample code generated in a JSF page when you customize
the slices in a map pie graph.

<dvt:map
...
 <dvt:mapPieGraphTheme
 ...
 <dvt:mapPieSliceSet>
 <dvt:mapPieSliceItem color="#ffffff" id="slice1"/>
 <dvt:mapPieSliceItem color="#ffff00" id="slice2"/>
 <dvt:mapPieSliceItem color="#ff0000" id="slice3"/>
 </dvt:mapPieSliceSet>
 </dvt:mapPieGraphTheme>
</dvt:map>

Adding a Toolbar to a Geographic Map
When you create an ADF DVT Geographic Map, you can also add and configure a
map toolbar to display the legend and information panel, select themes (if you have
multiple themes of the same type) or use any of the distance measurement, area
measurement, or selection tools.

Figure 30-20 shows a map toolbar.

Figure 30-20 Geographic Map Toolbar

Chapter 30
Adding a Toolbar to a Geographic Map

30-30

For more information about toolbar functionality, see Geographic Map End User and
Presentation Features.

How to Add a Toolbar to a Map
The map toolbar is a separate component and can be positioned on the JSF page
above or below the map.

Before you begin:

It may be helpful to have an understanding of how map attributes and map child tags
can affect functionality. For more information, see Configuring Geographic Map
Components.

You should already have a map on your page. If you do not, follow the instructions in
this chapter to create a map. For information, see How to Add a Geographic Map to a
Page.

To add and configure a map toolbar:

1. In the Structure window, right-click the dvt:map component and choose Insert
before Geographic Map or Insert after Geographic Map > ADF Data
Visualization to open the ADF Data Visualization Item dialog.

2. Use the dialog to select Toolbar to open the Create Map Toolbar dialog.

3. From the dialog dropdown list, choose the ID of the map on which this toolbar will
operate and click OK.

4. In the Properties window, expand the Common section. In this section set the
following attributes:

• ShowDistanceTools: Use to specify whether or not the distance tool is
available on the toolbar. The default value is true.

• ShowSelectThemeDialog: Use to specify whether or not the Select Theme
dialog is available on the View menu of the toolbar. The default value is true.

• ShowSelectThemeMenuItem: Use to specify whether or not the Select
Theme option is available on the View menu of the toolbar. The default value
is true.

• ShowSelectionTools: Use to specify whether or not the selection tools, area
rectangle, circle, polygon, or point tool is available on the toolbar. The default
value is true.

• ShowViewMenu: Use to specify whether or not the View menu is available on
the toolbar. The default is true.

• ShowZoomTools: Use to specify whether or not the zoom in and zoom out
tools are available on the toolbar. The default is true.

What Happens When You Add a Toolbar to a Map
When you add a toolbar to a map, the following occurs:

• A toolbar appears in the JSF page above or below the map as specified. By
default, the toolbar contains all the tools unless you change the visibility of one or
more tools.

Chapter 30
Adding a Toolbar to a Geographic Map

30-31

• Source code is generated and appears in the JSF page above or below the code
for the map.

The example below shows sample code for a toolbar that is associated with a map
with the ID of map_us. The example shows the location of the code for the map.

<af:form>
 <dvt:mapToolbar mapId="map_us" id="T1"/>
 <dvt:map id="map_us"
 ...
 </dvt:map>
</af:form>

Using Thematic Map Components
To display data in ADF DVT thematic maps, a named data collection is required. A
data collection represents a set of data objects (also known as a row set) in the data
model. Each object in a data collection represents a specific structured data item (also
known as a row) in the data model.

Configuring Thematic Maps
The thematic map has a parent component that specifies the geographic base map
and child components that are used to style map regions with colors, patterns, or
markers, or both, or to add a legend to the map. The prefix dvt: occurs at the
beginning of each thematic map component name indicating that the component
belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure the following map components:

• Thematic map component (thematicMap): The main thematic map component
used to specify the base map upon which data is displayed. The thematic map is
packaged with prebuilt base maps including a USA base map, a world base map,
as well as base maps for continents and regions of the world such as EMEA and
APAC. The thematic map component does not require a map service to display a
base map.

• Layer (areaLayer): Use to specify the layers in the base map that are displayed.
Each areaLayer component references a single layer, for example, Country, or
States in the USA base map, and only the map layers for which an areaLayer tag
is present will be displayed. Data is then associated with a layer by nesting a data
layer within the layer. The areaLayer child tags are area data layer
(areaDataLayer) and point data layer (pointDataLayer).

• Area Data Layer (areaDataLayer): Use to associate map layers with a data
collection. Using stamping, each row of data in the data model can be identified by
a style, for example a color or pattern; a marker, for example a circle or square; or
an image.

Chapter 30
Using Thematic Map Components

30-32

Note:

When you use stamping, child components are not created for every
area, marker, or image in a thematic map. Rather, the content of the
component is repeatedly rendered, or stamped, once per data attribute,
such as the rows in a data collection.

Each time a child component is stamped, the data for the current
component is copied into a var property used by the data layer
component in an EL Expression. Once the thematic map has completed
rendering, the var property is removed, or reverted back to its previous
value.

The location of the data layer is identified by its immediate child, the areaLocation
tag. This component specifies the location of the named region or area in the map
layer. The three types of data that can be stylized in a child tag to the
areaLocation tag include:

– Area (area): Use to stamp out stylistic attributes such as fill colors, patterns, or
opacity onto the geographical regions of the map.

– Marker (marker): Use to stamp out built-in or custom shapes associated with
data points on the map. Markers can be customized with different stylistic
attributes such as colors and patterns based on their underlying data.

– Images (af:image): Use to stamp out an image associated with geographical
regions of the map.

Note:

Instead of directly specifying the style attributes for the area or marker
tags, you can use a child attributeGroups tag to generate the style
attribute type automatically based on categorical definitions of the data
set. If the same style attribute is set in both the area or marker tags, and
by an attributeGroups tag, the attributeGroups style type will take
precedence.

Note:

You can format a numerical value represented in the area or marker tag,
for example, apply a currency format, by using an af:convertNumber
tag. For more information, see How to Format Numeric Data Values in
Area and Marker Labels.

The basic tag structure for configuring a data layer in a thematic map is illustrated
as follows:

<dvt:thematicMap basemap="usa"...>
 <dvt:areaLayer layer="states">

Chapter 30
Using Thematic Map Components

30-33

 <dvt:areaDataLayer value="#{mydata.collectionModel}" var="row">
 <dvt:areaLocation name="#{row.State}">
 <dvt:area> OR <dvt:marker> OR <af:image>
 <dvt:attributeGroups> OR <af:convertNumber>
 </dvt:attributeGroups> OR </af:convertNumber>
 </dvt:area> OR </dvt:marker> OR </af:image>
 </dvt:areaLocation>
 </dvt:areaLayer>
 </dvt:areaLayer>
 <dvt:areaLayer layer="counties"/>
</dvt:thematicMap>

• Point data layer (pointDataLayer): Use to associate a map with a specific data
point or a map layer with a data collection. The data point can be specified by a
named point in a map layer, for example, cities in the USA map, or by longitude
and latitude. Using stamping, each point in the data model can be identified by a
marker, for example a circle or square, or an image.

Note:

When you use stamping, child components are not created for every
marker or image in a thematic map. Rather, the content of the
component is repeatedly rendered, or stamped, once per data attribute,
such as the rows in a data collection.

Each time a child component is stamped, the data for the current
component is copied into a var property used by the point layer
component in an EL Expression. Once the thematic map has completed
rendering, the var property is removed, or reverted back to its previous
value.

The location of the point layer is identified in its immediate child, a pointLocation
tag. You can configure the location to specify longitude and latitude, or by the
location of the named area in the map layer. The two types of data that can be
stylized in a child tag to the pointLocation tag include:

– Marker (marker): Use to stamp out built-in or custom shapes associated with
data points on the map. Markers can be customized with different stylistic
attributes such as colors and patterns based on their underlying data.

– Images (af:image): Use to stamp out an image associated with geographical
regions of the map.

Note:

Instead of directly specifying the style attributes for the marker tag, you
can use a child attributeGroups tag to generate the style attribute type
automatically based on categorical definitions of the data set. If the same
style attribute is set in both the marker tags, and by an attributeGroups
tag, the attributeGroups style type will take precedence.

Chapter 30
Using Thematic Map Components

30-34

Note:

You can format a numerical value represented in the marker tag, for
example, apply a currency format, by using an af:convertNumber tag.
For more information, see How to Format Numeric Data Values in Area
and Marker Labels.

The basic tag structure for configuring a point data layer in a thematic map is
illustrated as follows:

<dvt:thematicMap basemap="usa"...>
 <dvt:areaLayer layer="states">
 <dvt:pointDataLayer id="pdl1" value="#{bean.pointData" var="row">
 <dvt:pointLocation type="pointXY"
 pointX="#{row.longitude}"
 pointY="#{row.latitude}">
 <dvt:marker> OR <af:image>
 <dvt:attributeGroups> OR <af:convertNumber>
 </dvt:attributeGroups> OR </af:convertNumber>
 </dvt:marker> OR </af:image>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

When a point data layer is configured as a direct child of the thematic map
component, the data points are always displayed as a global point layer. If the
point layer is nested inside a map layer, the data points are only displayed when
that map layer is displayed.

The tag structure for nesting point data layers is illustrated following. In the
illustration, point data layer pd1 is only displayed when the states layer is
displayed. Point data layer pd2 is always displayed.

<dvt:thematicMap basemap="usa"...>
 <dvt:areaLayer layer="states">
 <dvt:areaDataLayer.../>
 <dvt:pointDataLayer id="pdl1" ...>
 </dvt:areaLayer>
 <dvt:areaLayer layer="counties"/>
 <dvt:pointDataLayer id="pdl2"...'>
</dvt:thematicMap>

• Custom layer (customAreaLayer): Use to create a new map layer from
independent region data and insert the newly created layer into the layer
hierarchy. The custom layer is created by extending a predefined map layer and
aggregating the lower level regions to form the new regions in the custom layer.
After defining a custom map layer, it is used in the same way as any other map
layer

Use the child customArea component to specify the regions from the predefined
base map that will be aggregated to form the new area.

Chapter 30
Using Thematic Map Components

30-35

• Categorical attributes (attributeGroups): Use to generate stylistic attribute values
such as colors or shapes based on categorical data values in a data set.

An alternative to configuring a default stamp across all areas or markers in the
thematic map, you use an area or marker component child attributeGroups tag
to generate the style attribute type automatically based on categorical groups in
the data set. If the same style attribute is set in both the area or marker tag, and
by an attributeGroups tag, the attributeGroups style type will take precedence.

Based on the attribute representing the column in the data model to group by, the
attributeGroups component can generate style values for each unique value, or
group, in the data. The type property of the attributeGroups tag specifies the
type of stylistic attribute for which values are produced. Supported types for area
components are color, pattern, and opacity. Supported types for marker
components are color, shape, pattern, opacity, scaleX, and scaleY. These
types can be combined in a space-delimited list to generate multiple stylistic
properties for each unique data value.

The default style values that are generated are defined using CSS style properties
in the ADF skin. Each attributeGroups type has a default ramp defined in the
ADF skin that can be customized by setting the index-based selectors to the
desired values.

To achieve a finer level of detail in the display of data, the grouping rules specified
in the attributeGroups component can be overridden by two types of rules
defined in these child components:

– Matching rule (attributeMatchRule): Use to substitute an attribute when the
data matches a certain value.

– Exception rule (attributeExceptionRule): Use to replace an attribute value
with another when a particular boolean condition is met.

Note:

The attributeMatchRule and attributeExceptionRule tags use a child
f:attribute tag to define the override values, where the name property
defines the type of attribute (such as color or shape), and the value
property defines the override value to use (such as red or square). When
the value property of the attributeGroups tag overrides the value in the
group property of the attributeMatchRule, then the style value in the
child f:attribute will be assigned to that group of data instead of the
next value from the default ramp.

The f:attribute tag name property must match one of the attributes
listed in the type of the attributeGroups tag grouping rules. If the value
provided by an override also happens to be in the prebuilt ramp returned
by the attributeGroups, then that value will only be used by the
overrides and will be skipped in the prebuilt ramp.

• Legend (legend): Use to display an explanatory table of the map's styled data in
symbol and label pairs. Legend components support symbols for color, shape,
custom shape, fill pattern, opacity, and images.

– Legend section (legendSection): Use one or more to point to a thematic map
area, marker, attributeGroups, or af:image components stamped to style

Chapter 30
Using Thematic Map Components

30-36

the data displayed in the map. Legend items sourced from the
attributeGroups component split area or marker attribute types into different
sections.

– Legend group (showLegendGroup): Use to create a disclosable section that
contains legend section components.

Using the Layer Browser
JDeveloper provides a Layer Browser as a tool to ease the development of structuring
map layers, data layers, and styling areas and markers to display data in a thematic
map. The Layer Browser displays on top of the thematic map in the visual editor and
can be repositioned and resized. If not visible, right-click in the map and choose Open
Layer Browser.

The Layer Browser visually represents the logical structure of the thematic map and its
hierarchical map layers and components. Selection of a component in the Layer
Browser is coordinated with selection in the Properties window, Structure window, and
page source code.

The Layer Browser toolbar provides controls for the following operations:

• Add: Provides a dropdown menu for opening a create map layer, data layer, area,
or marker dialog to add and configure the component and add source code to the
thematic map. The menu choices are provided to maintain the correct structure of
the thematic map

• Edit: Open a data layer, area, or marker binding dialog to modify the settings for
the component and change the thematic map source code.

• Delete: Remove a selected map layer, data layer, area or marker from the
thematic map structure and source code.

The Layer Browser displays the Id for each component represented in the hierarchical
structure. Components are automatically assigned a unique, consecutively numbered
id value. Map layers (areaLayer) are assigned al1, al2, al3, and so on. Custom
layers (customAreaLayer) are assigned cal1, cal2, cal3, and then referenced by an
areaLayer component within the consecutive order. Data layers including area
(areaDataLayer) and point (pointDataLayer) components are assigned dl1,dl2, dl3,
and so on. When a point layer (pointDataLayer) is added as a direct child of the
thematic map, it is a global point layer and always displayed in the thematic map.
Markers (marker) are assigned m1, m2, m3 and so on. Areas (area) are assigned a1, a2,
a3, and so on.

Figure 30-21 shows a Layer Browser displaying the hierarchical structure of a thematic
map.

Chapter 30
Using Thematic Map Components

30-37

Figure 30-21 Thematic Map Layer Browser

How to Add a Thematic Map to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a thematic map to a JSF page. When you drag and drop a
thematic map component onto the page, the Component Gallery displays available
base maps, prebuilt regional layers, and a custom layer option to provide visual
assistance when creating thematic maps.

Figure 30-22 show the Component Gallery for thematic maps with the United States
base map and states layer selected.

Chapter 30
Using Thematic Map Components

30-38

Figure 30-22 Component Gallery for Thematic Maps

Once you complete the dialog, and the thematic map is added to your page, you can
use the Properties window to specify data values and configure additional display
attributes for the map.

In the Properties window you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 30-23 shows the dropdown menu for a
thematic map component tooloTipDisplay attribute.

Chapter 30
Using Thematic Map Components

30-39

Figure 30-23 Thematic Map ToolTipDisplay Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a thematic map and the binding will be done for you. See
the "Creating Databound Thematic Maps" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. See Configuring Thematic
Maps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Map Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a thematic map to a page:

Chapter 30
Using Thematic Map Components

30-40

1. In the ADF Data Visualizations page of the Components window, from the Map
panel, drag and drop a Thematic map onto the page to open the Create Thematic
Map dialog in the Component Gallery.

Use the dialog to select the thematic map base map and layer in the prebuilt map
hierarchy that you want the thematic map to display. For help with the dialog,
press F1 or click Help.

2. In the Properties window, view the attributes for the thematic map. Use the help
button to display the complete tag documentation for the thematicMap component.

3. Expand the Common section. Use this section to set the following attributes:

• Basemap: If you want to change the base map selected in the Component
Gallery, use the dropdown list to select any of the following valid values: usa,
world, africa, asia, australia, europe, northAmerica, southAmerica, apac,
emea, latinAmerica, usaAndCanada, or worldRegions.

• Map Layers: Use the dialog that displays inside the Properties window to add
additional map layers you wish to display in the thematic map. For example,
the USA base map includes a map layer for the country, the states, the
counties, the cities (points), and a custom layer. Use the dropdown list
associated with the Add icon to add available map layers in the predefined
geographic hierarchy, to create a custom map layer and insert it into the
hierarchy, or to add a global point layer into the base map. Use the Delete
icon to delete a layer you do not wish to display in the thematic map.
Figure 30-24 shows the map layers dialog highlighted in the Properties
window for the thematicMap component.

Figure 30-24 Map Layers Dialog in the Properties Window

4. Expand the Appearance section. Use this section to set the following attributes:

• TooltipDisplay: By default (auto), thematic maps automatically display
tooltips using prebuilt map labels when the user moves the cursor over the
map. If data is available, the label is concatenated with the shortDesc attribute
from the area or marker component stamp. Other valid values include none to
disable the display of tooltips, and shortDesc to display only the data coming
from the stamps, not including the prebuilt label of the base map.

• Animation subsection: Use the animation attributes in this subsection to
configure animation in thematic maps.

5. Expand the Behavior section. Use this section to set the following attributes:

Chapter 30
Using Thematic Map Components

30-41

• Drilling: Use to enable drilling the data view between thematic map layers.
From the dropdown list select on to enable drilling. The default value is off.

• MaintainDrill: Use to specify an optional true value for maintaining the drilled
state of a previously drilled area when a new area is drilled. The default value
is false.

• DrillBehavior: Use to specify an optional zoomToFit effect on the area being
drilled. The default value is none.

• ControlPanelBehavior: Use the dropdown list to select the display of the
thematic map control panel. The default value is initCollapsed for only display
of the hide/show button. Other valid values include hidden and initExpanded.

• FeaturesOff: Enter a space delimited list of end user features to disable at
runtime. Valid values are pan, zoom, and zoomToFit. The default value is
none.

• MaxZoom: Enter any number greater than 1.0 to specify the maximum zoom
level for the component. A value of 10.0 indicates that the map can be zoomed
in until the base map appears at 10x, the viewport zoomed to fit size. The
default value is 6.0.

6. Expand the Other category. For the Summary attribute, enter a description of the
thematic map. This description is accessed by screen reader users.

You can also use the Layer Browser to add map layers to the thematic map. See
Using the Layer Browser.

Customizing Thematic Map Display Attributes describes additional ways of
customizing the map.

How to Configure Animation Effects described how to use animation attributes.

What Happens When You Add a Thematic Map to a Page
When you use the Components window to create a thematic map, JDeveloper inserts
code in the JSF page. The example below shows the code inserted in the JSF page.

<dvt:thematicMap basemap="usa" id="tm1">
 <dvt:areaLayer layer="states" id="al1"/>
</dvt:thematicMap>

The Layer Browser displays the hierarchical structure of the thematic map.
Figure 30-25 shows the Layer Browser after using the Components window to create a
thematic map.

Figure 30-25 Thematic Map Layer Browser

Chapter 30
Using Thematic Map Components

30-42

You can then configure the thematic map to display data in stylized areas or markers
using the ADF Data Controls panel and the thematic map binding dialogs. For
information about configuring thematic maps to display data, see the "Creating
Databound Thematic Maps" section in Developing Fusion Web Applications with
Oracle Application Development Framework.

What You May Need to Know About Thematic Map Image Formats
Thematic maps support the following image formats: HTML5, Flash, and Portable
Network Graphics (PNG). All image formats support locales with right-to-left display.
By default, thematic maps will display in the best output format supported by the client
browser.

If the best output format is not available on the client, the application will default to an
available format. For example, if the client does not support HTML5, the application
will use:

• Flash, if the Flash Player is available

You can control the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Configuring Flash as Component Output Format.

• PNG output format

Although static rendering, such as maintaining pan and zoom state of the Flash
display, is fully supported when using the printable PNG output format, certain
interactive features are not available including:

– Animation

– Context menus

– Drag and drop gestures

– Popup support

– Selection

Defining Thematic Map Base Maps
The ADF DVT thematic map component support the use of an extensive set of prebuilt
base maps with layers that represent a set of regions. You can also define a custom
base map for your thematic map using a set of mapProvider APIs or configuring an
XML metadata file to identify data points on an image file.

Using Prebuilt Base Maps
Each base map provided for the thematic map component has two or more prebuilt
map layers that represent a set of regions. For example, the world base map includes
a map layer for continents and another layer for countries.

The regions in the lower level map layers are aggregated to make up the next level in
the geographical hierarchy. The map layer is specified in the layer attribute of the
areaLayer component. Each base map includes several sets of regions and one fixed
set of cities.

Table 30-1 shows the valid map layers for each base map.

Chapter 30
Defining Thematic Map Base Maps

30-43

Table 30-1 Prebuilt Base Maps and Layers

Base Map Layers

usa country, states, counties

world continents, countries

worldRegions regions, countries

africa, asia, australia,
europe, northAmerica,
southAmerica

continents, countries

apac, emea,
latinAmerica,
usaAndCanada

regions, countries, cities

When you are binding your data collection to a thematic map, you must provide a
column in the data model that specifies the location of the area or point data using the
map location Ids of the regions from the base map for which the data is being
displayed. Area locations are specified in the name attribute of the areaLocation
component, and point locations are specified in the pointName attribute for the
pointLocation component when its type attribute is set to pointName.

You can download a comma-separated value (CSV) file for each of the prebuilt map
layers with a complete listing of all the thematic map base map location Ids. Find these
links in the tag documentation for the areaLocation component, name attribute. To
access tag documentation for the data visualization components, select the
component in the Structure window and click the help button in the Properties window.

For more information, see the "What You May Need to Know About Base Map
Location Ids" section in the Developing Fusion Web Applications with Oracle
Application Development Framework.

Defining a Custom Base Map Using Map Provider APIs
In addition to using the prebuilt base maps, thematic maps can be configured to
retrieve geographic data from any data source including a database or an eLocation
service such as Oracle MapViewer or geocoder service using any file type. The
thematic map component mapProvider attribute requires an object of type
oracle.adf.view.faces.bi.component.thematicMap.mapProvider.MapProvider. The
MapProvider APIs allow the custom base map to be configured and used like a
prebuilt base map with the same functionality including drilling, labels, custom region
support, and point layers.

For example, Figure 30-26 displays a custom Canada base map that uses the
mapProvider attribute to retrieve geographic data from a GeoJSON formatted zip file.

Chapter 30
Defining Thematic Map Base Maps

30-44

Figure 30-26 Thematic Map Custom Base Map

Use these abstract and utility classes to configure a custom basemap:

• oracle.adf.view.faces.bi.component.thematicMap.mapProvider.MapProvider:
Abstract class that provides the APIs to render a custom basemap. Use an EL
Java callback to pass an implementation of this class to the mapProvider attribute
on dvt:thematicMap.

To view an implementation of the mapProvider class for the Canada custom base
map example, see Sample Code for Thematic Map Custom Base Map.

• oracle.adf.view.faces.bi.component.thematicMap.mapProvider.utils.MapPr
oviderUtils: Utility class that provides APIs for converting Java 2D objects to a
SVG path command.

• oracle.adf.view.faces.bi.component.thematicMap.mapProvider.LayerArea:
Abstract class that provides APIs to get the data that the thematic map component
requires to render a dvt:areaLayer and is used by the getLayerAreas() and
getChildAreas() methods on the abstract MapProvider class.

To view an implementation of the layerArea class for the Canada custom base
map example, see Sample Code for Thematic Map Custom Base Map Area Layer.

• oracle.adf.view.faces.bi.component.thematicMap.mapProvider.Projection:
If required, abstract class that provides an API for projecting points from the

Chapter 30
Defining Thematic Map Base Maps

30-45

dvt:pointDataLayer for a custom base map and is used by the getProjection()
method on the abstract MapProvider class. An identity projection class
(oracle.adf.view.faces.bi.component.thematicMap.mapProvider.IdentityPro
jection) will be provided and returned by default by the MapProvider class if no
point projections need to be performed.

You can view the complete Javadoc for these classes in JDeveloper. From the toolbar
select Navigate > Go to Javadoc and enter the class name in the search field.
Figure 30-27 shows the search dialog.

Figure 30-27 Custom Base Map APIs in Javadoc

On the JSF page, the code for the thematic map using the Canada custom base map
is as follows:

<dvt:thematicMap id="tm1" summary="Map Provider" basemap="canada"
 mapProvider="#{mapProviderBean.callback}"
initialZooming="auto">
 <af:transition transition="auto" triggerType="display"/>
 <dvt:areaLayer layer="territories" id="al1" labelDisplay="off">
 <dvt:areaDataLayer selectionMode="none" id="adl1"
 value="#{mapProviderBean.territories}" var="row"
 varStatus="rowStatus">
 <dvt:areaLocation id="l1" name="#{row.id}">
 <dvt:area id="a1" value="#{row.value}">
 <dvt:attributeGroups id='ag1' type="color"
 value="#{row.categories[0]}"
 label="#{row.categories[0] == 'Group 1' ?
 'Territory C' :
 (row.categories[0] == 'Group 2' ?
 'Territory A' : 'Territory B')}"/>
 </dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

Chapter 30
Defining Thematic Map Base Maps

30-46

Defining a Custom Base Map Using Image Files
The thematic map component also supports the definition of a custom base map using
an XML metatdata file to define data points on an associated image.

For example, the thematic map in Figure 30-28 shows a custom base map of an office
floor plan with points defined for each office location. In the example, a tooltip identifies
if the office space is occupied or available.

Figure 30-28 Custom Base Map with Defined Point Layer

To define a custom base map using an image file, you must create an xml metadata
file that defines the image to use for the map and add the file to your project source. In
the office floor plan example, a static points for each office is specified by number, as
shown in the example below.

<basemap id='floorplan'>
 <layer id='floor1'>
 <image height='813' width='1300'
 source='/resources/images/thematicMap/floorplan.jpg'/>
 </layer>
 <points>
 <point x='140' y='170' name='100' longLabel='Office 100'/>
 <point x='523' y='130' name='101' longLabel='Office 101'/>
 <point x='298' y='300' name='102' longLabel='Office 102'/>
 <point x='368' y='300' name='103' longLabel='Office 103'/>
 <point x='298' y='380' name='104' longLabel='Office 104'/>
 <point x='368' y='380' name='105' longLabel='Office 105'/>
 <point x='120' y='460' name='106' longLabel='Office 106'/>
 <point x='190' y='460' name='107' longLabel='Office 107'/>

Chapter 30
Defining Thematic Map Base Maps

30-47

 <point x='120' y='540' name='108' longLabel='Office 108'/>
 <point x='190' y='540' name='109' longLabel='Office 109'/>
 <point x='298' y='460' name='110' longLabel='Office 110'/>
 <point x='368' y='460' name='111' longLabel='Office 111'/>
 <point x='298' y='540' name='112' longLabel='Office 112'/>
 <point x='368' y='540' name='113' longLabel='Office 113'/>
 <point x='455' y='460' name='114' longLabel='Office 114'/>
 <point x='525' y='460' name='115' longLabel='Office 115'/>
 <point x='455' y='540' name='116' longLabel='Office 116'/>
 <point x='525' y='540' name='117' longLabel='Office 117'/>
 <point x='298' y='620' name='118' longLabel='Office 118'/>
 <point x='368' y='620' name='119' longLabel='Office 119'/>
 <point x='298' y='700' name='120' longLabel='Office 120'/>
 <point x='368' y='700' name='121' longLabel='Office 121'/>
 <point x='455' y='620' name='122' longLabel='Office 122'/>
 <point x='525' y='620' name='123' longLabel='Office 123'/>
 <point x='455' y='700' name='124' longLabel='Office 124'/>
 <point x='525' y='700' name='125' longLabel='Office 125'/>
 <point x='617' y='715' name='126' longLabel='Office 126'/>
 <point x='752' y='715' name='127' longLabel='Office 127'/>
 <point x='870' y='715' name='128' longLabel='Office 128'/>
 <point x='940' y='715' name='129' longLabel='Office 129'/>
 <point x='1018' y='715' name='130' longLabel='Office 130'/>
 </points>
</basemap>

In the thematic map component you then specify an area layer which points to the
definition in the metadata file using the basemap attribute.You can then define an area
layer with a specify an area layer with named points, as shown in the example below.

<dvt:thematicMap id="tm1" summary="Custom Base Map" basemap="floorplan"
 animationOnDisplay="none"
 source="/resources/images/thematicMap/offices.xml"
 inlineStyle="background-color:transparent;height:540px;
 width:810px;"
 controlPanelBehavior="hidden" panning="none"
zooming="none">
 <dvt:areaLayer layer="floor1" id="al1">
 <dvt:pointDataLayer id="pdl1" selectionMode="single"
partialTriggers="::::t1"
 value="#{officesBean.currentFloor.offices}"
var="row"
 animationOnDataChange="alphaFade"
varStatus="rowStatus">
 <dvt:pointLocation id="pl1" pointName="#{row.id}" type="pointName">
 <dvt:marker id="m1" shape="human" opacity="1" gradientEffect="none"
 fillColor="#{row.color}" scaleX="3" scaleY="3"
 shortDesc="#{row.categories[0]}"/>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

Chapter 30
Defining Thematic Map Base Maps

30-48

In the metadata file you can also specify different images for different screen
resolutions and display directions. The thematic map component chooses the correct
image for the layer based on the screen resolution and direction. The display direction
can be either left-to-right or right-to-left. The default direction for the image is left-to-
right, which you can change to right-to-left by setting the dir attribute of the image
component to rtl. The example below shows sample code for a metadata file with
images for a custom base map at different screen resolutions.

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-800x800-rtl.png"
 width="2560"
 height="1920"
 dir="rtl" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 <image source="/maps/car-200x200-rtl.png"
 width="640"
 height="480"
 dir="rtl" />
 </layer>
</basemap>

You can define an area layer with a point data layer, or define the point data layer as a
direct child of the thematic map component. If the point layer is nested inside a map
layer, the data points are only displayed when that map layer is displayed. When a
point data layer is configured as a direct child of the thematic map component, the
data points are always displayed as a global point layer. The example below shows
sample code for a thematic map with a point data layer defined for an area layer.

<dvt:thematicMap id="tm1" basemap="car" source="customBasemaps/map1.xml" >
 <dvt:areaLayer id="al1" layer="exterior" >
 <dvt:pointDataLayer id="pdl1"
 var="row"

value="{bindings.thematicMapData.collectionModel}" >
 <dvt:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvt:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

Chapter 30
Defining Thematic Map Base Maps

30-49

The example below shows sample code for a thematic map with a point data layer as
a direct child of the thematic map component.

<dvt:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml"
>
 <dvt:areaLayer id="al1" layer="exterior" />
 <dvt:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvt:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvt:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvt:pointLocation>
 </dvt:pointDataLayer>
</dvt:thematicMap>

Customizing Thematic Map Display Attributes
You can customize the display attributes of ADF DVT thematic maps labels, including
prebuilt map layer labels and labels for area and marker components that stamp out
the data values for the thematic map. You can also configure tooltips to display data
when the user moves the cursor over the map.

Data values that require special formatting, for example, currency or percentages, can
be configured to display special symbols and decimal points.

How to Customize Thematic Map Labels
By default, each region in each map layer for a prebuilt base map has a label with a
short and long type, for example, BRA and Brazil in the countries layer of the world
base map.

The map layer is specified by the areaLayer component in the layer attribute, for
example:

<dvt:areaLayer id="al1" layer="countries">

Note:

Labels are only displayed when they fit within the named region of the map
layer. When a label does not fit inside the region, it is not displayed unless
leader lines determining the alternate label location are provided for that
layer in the base map. Only the prebuilt usa map provides leader lines for
labels outside the states layer.

Figure 30-29 shows the default labels for the europe and usa base maps.

Chapter 30
Customizing Thematic Map Display Attributes

30-50

Figure 30-29 Default Labels for Europe and USA Base Maps

You can customize the default labels provided by the base map for display and style.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

To customize a map layer label:

1. In the Structure window, right-click the dvt:areaLayer component representing the
map layer for which you wish to customize the label, and choose Go to
Properties.

2. In the Properties window, expand the Appearance section, and set the following
attributes:

• LabelDisplay: Use the dropdown list to select how the prebuilt base map
labels for the layer are to be displayed. Valid values are: auto (default) to
display the label if there is sufficient space in the region; on to display the
base map labels for all regions of this layer; and off to disable the display of
labels.

• LabelStyle: Enter the font-related CSS styles to use for the label font.

• LabelType: Use the dropdown list to select the prebuilt base map labels to
display. Valid values are short (default) to display the short labels defined in
the base map, for example, TX, and long to display the long labels defined in
the base map, for example, Texas.

You can also override the default labels in the base map by specifying attributes for
the area components that stamp out stylistic attributes such as fill colors, patterns, or
opacity onto the geographic regions of the map, and for marker components that
stamp out built-in or custom shapes associated with data points on the map.

To customize area and marker labels:

1. In the Structure window, right-click the dvt:area component or dvt:marker
component representing the stamp for which you wish to customize the label, and
choose Go to Properties.

Chapter 30
Customizing Thematic Map Display Attributes

30-51

2. In the Properties window, expand the Other section, and set the following
attributes:

• LabelDisplay: Use the dropdown list to select on to display the text displayed
in the value attribute.

• Value: Enter the text you wish to use for the area or marker label when
LabelDisplay is set to on.

• LabelStyle: Enter the font-related CSS styles to use for the area or marker
label font.

• LabelPosition: Available only for the marker label. Use the dropdown list to
select the position relative to the marker that the specified value label should
be displayed. Valid values are center (default), top, and bottom.

Note:

If a marker is displayed on a region, that is as a child component to a
pointLocation for an areaDataLayer, and that marker has a label,
then the label associated with the base map region will not be
displayed.

• ShortDesc: Enter the short description you wish to use for the area or marker
stamp. This value is used for the tooltip that displays when the user moves the
cursor over the area or marker. For more information, see How to Configure
Tooltips to Display Data.

How to Configure Tooltips to Display Data
By default, thematic maps automatically display tooltips using map layer labels when
the user moves the cursor over the map. If data is available, the map layer label is
concatenated with the value from the area or marker component stamp. You can also
configure the tooltip to only display available data.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

To configure tooltips to display data:

1. In the Structure window, right-click the dvt:thematicMap component and choose
Go to Properties.

2. In the Properties window, expand the Appearance section. For the TooltipDisplay
attribute choose auto to display the label concatenated with the value of the area
or marker stamp, or shortDesc to only display the value.

3. In the Structure window, right-click the dvt:area component or dvt:marker
component representing the stamp for which you wish to display data in the tooltip,
and choose Go to Properties.

Chapter 30
Customizing Thematic Map Display Attributes

30-52

4. In the Properties window, expand the Other section. For the ShortDesc attribute
enter the value you want to display in the tooltip. For example, if an area
component value attribute is #{row.data}, use that same value for the shortDesc
attribute.

How to Format Numeric Data Values in Area and Marker Labels
Thematic map area and marker components can display numeric data values in
labels, for example a dollar value, or a percentage. Area and marker labels are
specified in the value attribute of the component.

You can format numeric data values by adding a standard ADF converter,
af:convertNumber, as a child of the area or marker component, or by specifying a
converter through an EL Expression directly on the component. If both a converter and
a child af:convertNumber tag are specified, then the properties of the child tag take
precedence.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

You should already have configured an area or marker label in your thematic map. If
you do not, follow the instructions in this chapter to customize an area or marker label.
For more information, see How to Customize Thematic Map Labels.

To format numeric data values in area or maker labels:

1. In the Structure window, right-click the dvt:area or dvt:marker component
representing the stamp you wish to format, and choose Insert Inside Area or
Insert Inside Marker > Convert Number.

2. In the Properties window, specify values for the attributes of the
af:convertNumber component to produce numeric formatting. Use the help
button to display the complete tag documentation for the af:convertNumber
component.

The example below shows sample code for formatting numeric data values for an area
and a marker label.

...
<dvt:area id="a2" labelDisplay="on" value="#{mapBean.value}" >
 <af:convertNumber id="cn1" type="currency"/>
</dvt:area>
<dvt:marker id="m2" labelDisplay="on" value="#{mapBean.value}" >
 <af:convertNumber id="cn1" type="currency"/>
</dvt:marker>
...

Alternatively, specify a converter through an EL expression directly on the area or
marker component. For example:

Chapter 30
Customizing Thematic Map Display Attributes

30-53

<dvt:marker id="m1" labelDisplay="on" value="#{mapBean.value}"
 converter="#{mapBean.myConverter}"/>

How to Configure Thematic Map Data Zooming
Thematic maps support customized data zooming features. You can configure the
initial zoom of a thematic map to fit the rendered area and point data layers without
displaying the entire base map. You can also configure a thematic map to render and
zoom on an isolated data area.

For example, the thematic map in Figure 30-30 displays area and point data layers for
US states. In the example, data is not rendered for all states in the US base map. The
initial zoom fits to the boundaries of the data layers.

Figure 30-30 Thematic Map with Initial Zoom on Data Layers

To set the initial zoom to fit rendered data layers, on the dvt:thematicMap component,
set the initalZooming property to auto.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map with a defined data layer on your page. If you
do not, follow the instructions in this chapter to create a thematic map. For more
information, see How to Add a Thematic Map to a Page.

To configure the initial zoom:

Chapter 30
Customizing Thematic Map Display Attributes

30-54

1. In the Structure window, right-click the dvt:thematicMap component, and choose
Go to Properties.

2. In the Properties window, expand the Behavior section, and set the
InitalZooming property to auto to automatically focus the zoom on the rendered
data layers. The default value is none.

Use the help button to display the complete tag documentation for the
dvt:thematicMap component.

The thematic map in Figure 30-31 shows the 2012 presidential election results by
county for the state of Florida. In the example, an isloatedRowKey property on the
dvt:areaDataLayer is set to isolate the state of Florida on the states area layer and
US base map. The disclosedRowKey attribute on the dvt:areaDataLayer is set to
show Florida drilled down to the counties area layer and stylized with color to
represent the winning candidate's color for each county.

Figure 30-31 Thematic Map of 2012 Presidential Election Results for Florida

To configure zoom on an isolated data area:

1. In the Structure window, right-click the dvt:areaDataLayer component, and
choose Go to Properties.

2. In the Properties window, expand the Behavior section, and set the
IsolatedRowKey property to the area corresponding to the isolated row key for
which you wish to display data.

3. For the DisclosedRowKey property, specify the row keys for the disclosed
regions of the data layer. Each entry in the set is a row key.

The example below shows the code for configuring the thematic map in Figure 30-31.

<dvt:thematicMap id="thematicMap" basemap="usa" drilling="off"
 animationOnDisplay="alphaFade"
 controlPanelBehavior="hidden" summary="presidential map"
 inlineStyle="background-color:transparent;
 width:400px;border:none;">
 <dvt:areaLayer id="al1" layer="states">
 <dvt:areaDataLayer id="adl1"
 disclosedRowKeys="#{electionBean.disclosedRowKey}"
 contentDelivery="lazy"

Chapter 30
Customizing Thematic Map Display Attributes

30-55

 isolatedRowKey="#{electionBean.isolatedRowKey}"
 value="#{electionBean.state}" var="row"
 varStatus="rowStatus">
 <dvt:areaLocation id="loc1" name="#{row.id}">
 <dvt:area id="a1" fillColor="#{row.color}"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
 <dvt:areaLayer id="al2" layer="counties">
 <dvt:areaDataLayer id="adl2" value="#{electionBean.counties}"
var="row"
 varStatus="rowStatus"
 selectionMode="single" contentDelivery="lazy">
 <dvt:areaLocation id="loc2" name="#{row.id}">
 <dvt:area id="a2" fillColor="#{row.color}">
 </dvt:area>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

How to Configure Invisible Area Layers
By design, thematic maps focus on data within a defined geographic location. In some
instances you may wish to display your data without showing the default background
color or boundaries of the area layer.

For example, the thematic map in Figure 30-32 displays global GDP (gross domestic
product) per capita by country in millions of US dollars using markers scaled by size
and label font. In the example, displaying background colors or boundaries of the
countries represented by markers do not contribute to an understanding of the data
and may in fact, distract from the overall display.

Figure 30-32 Thematic Map Displaying Global GDP Per Capita

You can override the default area layer color and border display without using a
skinning key by setting the areaStyle property CSS attributes for background-color
and border-color to transparent on the dvt:areaLayer component.

Chapter 30
Customizing Thematic Map Display Attributes

30-56

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map with a defined area layer on your page. If
you do not, follow the instructions in this chapter to create a thematic map. For more
information, see How to Add a Thematic Map to a Page.

To configure invisible area layers:

1. In the Structure window, right-click the dvt:areaLayer component representing the
geographic area you wish to you wish to format, and choose Go to Properties.

2. In the Properties window, expand the Other section, and for the AreaStyle
property, set semi-colon separated CSS values background-color and border-
color to transparent. For example:

background-color:transparent;border-color:transparent

Use the help button to display the complete tag documentation for the
dvt:areaLayer component.

The thematic map in Figure 30-32 uses scaled markers and associated labels to
represent a country's GDP per capita. In the example, a minimum GDP value is set to
not show labels on smaller markers. The example below shows the code for
configuring the markers and labels.

<dvt:marker id="m1" scaleX="#{(5 + row.categories[0]/25)}"
 value="#{row.categories[2]}"
 labelStyle="font-size:#{row.categories[0]/25 + 30}px;"
opacity="0.75"
 labelDisplay="#{row.categories[0]/25 le 20 ? 'off' : 'on'}"
 gradientEffect="none"
 scaleY="#{(5 + row.categories[0]/25)}"
 shortDesc="\$#{row.categories[1]} Million">
 <dvt:attributeGroups id="ag1" type="color" value="#{row.id}"/>
</dvt:marker>

Note:

To maintain the relative size of the scaled markers and labels to the thematic
map when it is zoomed in or out, set the dvt:thematicMap component
markerZoomBehavior property to zoom.

For detailed information about configuring markers to represent thematic map data,
see the "Styling Areas, Markers, and Images to Display Data" section of Developing
Fusion Web Applications with Oracle Application Development Framework.

Chapter 30
Customizing Thematic Map Display Attributes

30-57

What You May Need to Know About Skinning and Customizing the
Appearance of a Thematic Map

Thematic maps also support skinning to customize the color and font styles for
thematic map layers, areas, and markers. In addition, you can use skinning to define
the styles for a thematic map area when the user hovers the mouse over or selects it.

The example below shows the skinning key for a thematic map area configured to
show the border color in red when the user selects it.

af|dvt-area:sekected
 {
 -tr-border-color:#0000FF;
 }

For the complete list of thematic map skinning keys, see the Oracle Fusion
Middleware Documentation Tag Reference for Oracle Data Visualization Tools Skin
Selectors. To access the list from JDeveloper, from the Help Center, choose
Documentation Library, and then Fusion Middleware Reference and APIs. For
additional information about customizing your application using skins, see Customizing
the Appearance Using Styles and Skins.

Adding Interactive Features to Thematic Maps
ADF DVT Thematic maps include support for interaction features including selection
and action events, drilling, popups, animation, and drag and drop operations.

How to Configure Selection and Action Events in Thematic Maps
You can configure your thematic map components to allow users to select one or more
areas or markers across multiple data layers. By default, selection is not enabled. You
configure selection on areaDataLayer and pointDataLayer components to allow
selection of one or multiple area or marker stamps.

Once selection is enabled, you can configure an area or marker stamp with an action
listener to specify and handle a custom event such as displaying output text or
navigating to another page. For more information about ADF action events, see
Handling Events.

Figure 30-33 shows a thematic map configured to display output text when a human
marker is clicked, and navigate to another JSF page when a circle marker is clicked.

Chapter 30
Adding Interactive Features to Thematic Maps

30-58

Figure 30-33 Thematic Map Action Events

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

You should have already configured a data layer with an area or marker to display
data on your thematic map.

To configure selection and action events:

1. In the Structure window, right-click the dvt:areaDataLayer or dvt:pointDataLayer
component and choose Go to Properties.

2. In the Properties window, expand the Behavior section. For the SelectionMode
attribute choose single to enable single selection of an area or marker, or
multiple to enable multiple selection of areas or markers.

3. In the Structure window, right-click the dvt:area component or dvt:marker
component representing the stamp for which you wish to configure an action
event, and choose Go to Properties.

4. In the Properties window, expand the Behavior section. In this section set the
following attributes:

• Action: Enter a reference to an action method sent by the component, or the
static outcome of an action. For example, mapAction.

• ActionListener: Enter a method reference to an action listener. For example,
#{tmapEventBean.processClick}

Chapter 30
Adding Interactive Features to Thematic Maps

30-59

The example below shows sample code for configuring markers to fire action events.

<f:facet name="center">
 <dvt:thematicMap id="thematicMap"
 imageFormat="flash" basemap="usa"
 inlineStyle="width:98%;height:95%;"
 summary="Thematic map showing action events">
 <dvt:areaLayer id="areaLayer" layer="states"
 labelDisplay="off">
 <dvt:areaDataLayer id="dataLayer"
 contentDelivery="immediate"
 value="#{tmapBean.colorModel}"
 var="row"
 varStatus="rowStatus"
 selectionMode="single">
 <dvt:areaLocation id="dataLoc"
 name="#{row.name}">
 <dvt:marker id="marker1"
 shape="human" scaleX="3"
 scaleY="3"
 fillColor="#666699"
 actionListener="#{tmapEventBean.processClick}"
 rendered="#{row.category == 'category1'}"
 shortDesc="Human shape"/>
 <dvt:marker id="marker2"
 shape="circle"
 scaleX="2" scaleY="2"
 fillColor="#006666"
 action="mapAction"
 rendered="#{row.category == 'category2'}"
 shortDesc="Circle shape"/>
 </dvt:areaLocation>
 </dvt:areaDataLayer>
 </dvt:areaLayer
 </dvt:thematicMap>
</f:facet>
<f:facet name="end">
 <af:outputText value="#{tmapEventBean.clickString}"
 id="ot1"

partialTriggers="thematicMap:areaLayer:dataLayer:marker1"/>
</f:facet>

You can also configure an area or point data layer with a selection listener for
declarative master-detail processing, for example, to display the thematic map
associated data in another UI component on the page such as a table. For more
information, see the "What You May Need to Know About Configuring Master-Detail
Relationships" section in Developing Fusion Web Applications with Oracle Application
Development Framework.

How to Add Popups to Thematic Map Areas and Markers
Thematic map area and marker components can be configured to display popup
dialogs, windows, and menus that provide information or request input from end users.

Chapter 30
Adding Interactive Features to Thematic Maps

30-60

Using the af:popup component with other ADF Faces components, you can configure
functionality to allow your end users to show and hide information in secondary
windows, input additional data, or invoke functionality such as a context menu.

With ADF Faces components, JavaScript is not needed to show or hide popups. The
af:showPopupBehavior tag provides a declarative solution, so that you do not have to
write JavaScript to open a popup component or register a script with the popup
component. For more information about these components, see Using Popup Dialogs,
Menus, and Windows.

For example, you may want to associate a popup to display information in a dialog or
note window with thematic map areas or markers. Figure 30-34 shows a thematic map
area (Texas) clicked to display a dialog of data about voting results, and the cursor
hovered over marker (human) displaying a note window of data about a specific
location.

Figure 30-34 Area Dialog and Marker Note Window

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

You should already have created the popup components for the thematic map area or
marker components to reference. The example below shows sample code for the
dialog to be referenced when an area stamp is clicked.

<af:popup id="pop1" contentDelivery="lazyUncached" launcherVar="source"
 eventContext="launcher">
 <af:setPropertyListener from="#{tmapPopupBean.colorModel.rowData}"

Chapter 30
Adding Interactive Features to Thematic Maps

30-61

 to="#{tmapPopupBean.source}"
 type="popupFetch"/>
 <af:dialog id="nw1" modal="false" type="none"
 title="Results - #{tmapPopupBean.source.fullName}">
 <af:panelGroupLayout id="pgl6">
 <af:panelGroupLayout id="pgl7" layout="horizontal"
 halign="center">
 <af:outputText value="Candidate 1" id="ot2"
 inlineStyle="color:#{tmapPopupBean.strColor2};
 font-size:medium;"/>
 <af:spacer width="50" height="10" id="spacer1"/>
 <af:outputText value="Candidate 2" id="ot1"
 inlineStyle="color:#{tmapPopupBean.strColor1};
 font-size:medium;"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl5" layout="horizontal"
 halign="center">
 <dvt:pieGraph id="graph1" subType="PIE"
 inlineStyle="height:250.0px;width:250.0px"

tabularData="#{tmapPopupBean.graphData[tmapPopupBean.source]}"
 imageFormat="PNG">
 <dvt:background fillTransparent="true"/>
 <dvt:graphPieFrame fillTransparent="true"/>
 <dvt:seriesSet>
 <dvt:series index="0" color="#{tmapPopupBean.color1}"/>
 <dvt:series index="1" color="#{tmapPopupBean.color2}"/>
 </dvt:seriesSet>
 <dvt:sliceLabel rendered="true">
 <dvt:graphFont id="graphFont1" size="14"/>
 </dvt:sliceLabel>
 <dvt:pieLabel rendered="false"/>
 <dvt:legendArea rendered="false"/>
 </dvt:pieGraph>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:dialog>
</af:popup>

The example below shows sample code for the note window to be referenced when
the user hovers the mouse over a marker stamp.

<af:popup id="pop2" contentDelivery="lazyUncached" launcherVar="source"
 eventContext="launcher">
 <af:setPropertyListener from="#{tmapPopupBean.pointModel.rowData}"
 to="#{tmapPopupBean.noteSource}"
 type="popupFetch"/>
 <af:noteWindow id="nw2">
 <af:panelGroupLayout id="pgl8" halign="center" layout="vertical">
 <af:outputText value="Latitude: #{tmapPopupBean.noteSource.latitude}"
 id="ot4"/>
 <af:outputText value="Longitude:
#{tmapPopupBean.noteSource.longitude}"
 id="ot5"/>

Chapter 30
Adding Interactive Features to Thematic Maps

30-62

 </af:panelGroupLayout>
 </af:noteWindow>
</af:popup>

For more information about popup components, see Using Popup Dialogs, Menus,
and Windows.

To add a popup to an area or marker:

1. In the Structure window, right-click the dvt:area or dvt:marker component and
choose insert Inside Area or Insert Inside Marker > Show Popup Behavior.

2. In the Properties window, set the following attributes:

• PopupId: Enter the ID of the popup referenced by the area or marker
component. An ID beginning with a colon will be treated as absolute after
trimming off the colon.

• TriggerType: Enter the event type that will trigger the popup being displayed.
Valid values for thematic map area or marker components are action, click
and mouseHover.

• Align: From the dropdown list, choose how the popup should be aligned with
the area or marker component.

• AlignID: Enter the ID of the area or marker component associated with the
popup. An ID beginning with a colon will be treated as absolute after trimming
off the colon.

The example below shows sample code for adding popup components to the area and
marker stamps in a thematic map.

<dvt:thematicMap id="thematicMap" imageFormat="flash
 basemap="usa" summary="Thematic map showing voting data
in US">
 <dvt:legend label="Legend">
 <dvt:showLegendGroup label="Voting Majority">
 <dvt:legendSection source="areaLayer:dataLayer:area1"/>
 </dvt:showLegendGroup>
 <dvt:legendSection source="areaLayer:pointLayer:marker1"/>
</dvt:legend>
<dvt:areaLayer id="areaLayer" layer="states">
 <dvt:areaDataLayer id="dataLayer" contentDelivery="immediate"
 value="#{tmapPopupBean.colorModel}"
 var="row" varStatus="rowStatus">
 <dvt:areaLocation id="areaLoc" name="#{row.name}">
 <dvt:area id="area1"
 fillColor="#{row.value > 50 ? tmapPopupBean.color1 :
 tmapPopupBean.color2}"
 <f:attribute name="legendLabel" value="#{row.value > 50 ?
'Candidate 2' :
 'Candidate 1'}" />
 <af:showPopupBehavior triggerType="click"
 popupId="::::pop1"
 alignId="area1"
 align="endAfter"/>
 </dvt:area>
 </dvt:areaLocation>

Chapter 30
Adding Interactive Features to Thematic Maps

30-63

 </dvt:areaDataLayer>
 <dvt:pointDataLayer id="pointLayer"
 value="#{tmapPopupBean.pointModel}" var="row"
 varStatus="rowStatus"
 contentDelivery="immediate">
 <dvt:pointLocation id="pointLoc" type="pointXY"
 pointX="#{row.longitude}"
 pointY="#{row.latitude}">
 <dvt:marker id="marker1" shape="human" fillColor="#FF9900"
 scaleX="3" scaleY="3"
 <f:attribute name="legendLabel" value="Location of Interest" />
 <af:showPopupBehavior
triggerType="mouseHover"
 alignId="marker1"
 popupId="::::pop2"
 align="endAfter"/>
 </dvt:marker>
 </dvt:pointLocation>
 </dvt:pointDataLayer>
 </dvt:areaLayer>
</dvt:thematicMap>

How to Configure Animation Effects
By default, thematic maps are animated upon initial rendering of the map, when the
data associated with the map changes, and when a region is drilled in the map. You
can customize the default setting of each animation event.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

To customize animation effects in a thematic map:

1. In the Structure window, right-click the thematicMap component and choose Go
to Properties.

2. In the Properties window, expand the Appearance section. Use this section to set
the following attributes:

• AnimationDuration: Enter the animation duration in milliseconds. The default
value is 1000.

• AnimationOnDisplay: Use the dropdown list to select the animation effect
upon initial display of the thematic map. The default value is zoom.

• AnimationOnDrill: Use the dropdown list to select the animation effect when
a map layer is drilled to a lower level. The default value is alphaFade.

• AnimationOnMapChange: Use the dropdown list to select the animation
effect when the value of the area or point data layer changes, or when the
base map changes. The default value is none.

Chapter 30
Adding Interactive Features to Thematic Maps

30-64

Table 30-2 shows the animation effect available for each supported thematic map
event.

Table 30-2 Thematic Map Animation Effects

Animation Effect AnimationOnDispl
ay

AnimationOnD
rill

AnimationOnMapCha
nge

none x x x

alphaFade x x x

conveyorFromLeft x x

conveyorFromRight x x

cubeToLeft x x

cubeToRight x x

flipLeft x x

flipRight x x

slideToLeft x x

slideToRight x x

transitionToLeft x x

transitionToRight x x

zoom x x

How to Add Drag and Drop to Thematic Map Components
The ADF Faces framework provides the ability to drag and drop items from one place
to another on a page. For thematic maps, area and marker components can be used
as a drag source by adding and configuring a child af:dragSource component, and
areaLayer components can be used as a drop target by adding and configuring a child
af:dropTarget component.

For example, you could drag an area representing the population for a state in a USA
map and drop it into a table to display the data.

Before you begin:

It may be helpful to have an understanding of how thematic map attributes and
thematic map child components can affect functionality. For more information, see
Configuring Thematic Maps.

You should already have a thematic map on your page. If you do not, follow the
instructions in this chapter to create a thematic map. For more information, see How to
Add a Thematic Map to a Page.

To use an area or marker as a drag source:

1. In the Structure window, right-click the area or marker component you are
configuring as a drag source, and choose Insert Inside Area or Insert Inside
Marker > Drag source.

2. In the Properties window, specify the actions attribute.

Chapter 30
Adding Interactive Features to Thematic Maps

30-65

The example below shows sample code for adding and configuring an area as a drag
source.

<dvt:area id="area" fillColor="#{tmapTargetActualBean.colorObj}"
 shortDesc="#{tmapTargetActualBean.tooltip}">
 <af:dragSource actions="COPY" discriminant="DnDDemoModel"/>
</dvt:area>

To use a map layer as a drop target:

1. In the Structure window, right-click the areaLayer component you are configuring
as a drop target, and choose Insert Inside Area Layer > Drop Target.

2. Enter an expression for the dropListener that evaluates to a method on a
managed bean that will handle the event.

3. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

The example below shows sample code for adding and configuring a map layer as a
drop target.

<dvt:areaLayer id="areaLayer" layer="states">
 <af:dropTarget actions="COPY"

dropListener="#{TestDropHandler.handleCollectionFireDrop}">
 <af:dataFlavor flavorClass="java.util.Collection"/>
 </af:dropTarget>
</dvt:areaLayer>

For more information about adding drag and drop functionality, see Adding Drag and
Drop Functionality for Components.

Chapter 30
Adding Interactive Features to Thematic Maps

30-66

31
Using Hierarchy Viewer Components

This chapter describes how to use the ADF Data Visualization hierarchyViewer
component to display data in hierarchy viewers using simple UI-first development. The
chapter defines the data requirements, tag structure, and options for customizing the
look and behavior of the components.
If your application uses the Fusion technology stack, then you can also use data
controls to create hierarchy viewers. For more information, see the "Creating
Databound Hierarchy Viewer, Treemap, and Sunburst Components" chapter of
Developing Fusion Web Applications with Oracle Application Development
Framework.

This chapter includes the following sections:

• About Hierarchy Viewer Components

• Using Hierarchy Viewer Components

• Managing Nodes in a Hierarchy Viewer

• Using Panel Cards

• Configuring Navigation in a Hierarchy Viewer

• Customizing the Appearance of a Hierarchy Viewer

• Adding Interactivity to a Hierarchy Viewer Component

• Adding Search to a Hierarchy Viewer

About Hierarchy Viewer Components
ADF DVT Hierarchy viewer components are used to display hierarchical data, i.e. data
that contains master-detail relationships within itself. For example, you could create a
hierarchy viewer that renders an organization chart from a data collection that contains
information about the relationships between employees in an organization.

Hierarchy viewers use a shape called a node to reference the data in a hierarchy. The
shape and content of the nodes is configurable, as well as the visual layout of the
nodes. Nodes can display multiple views in a panel card.

Hierarchy Viewer Use Cases and Examples
A hierarchy viewer visually displays hierarchical data and the master-detail
relationships. Figure 31-1 shows a segment of a hierarchy viewer component at
runtime that includes a control panel, a number of nodes, and links that connect the
nodes. The nodes include a panel card that uses af:showDetailItem elements to
display multiple sets of data.

31-1

Figure 31-1 Hierarchy Viewer Component with Control Panel and Nodes

End User and Presentation Features
The ADF Data Visualization hierarchy viewer component provides a range of features
for end users, such as panning and zooming and changing the layout view. It also
provides a range of presentation features, such as changing node shape, lines, and
labels.

Layouts
You can define the initial layout of the hierarchy viewer when you insert the component
on the page from either the Data Controls panel to bind a data collection to the
hierarchy viewer component or from the Components window to insert the component
and bind to data later.

The layout of nodes in a hierarchy viewer is configurable and includes the following
types of layouts:

• Vertical top down

Figure 31-2 shows an example of a vertical top down layout.

Chapter 31
About Hierarchy Viewer Components

31-2

Figure 31-2 Hierarchy Viewer Vertical Top Down Layout

• Vertical bottom up

• Horizontal left-to-right

Figure 31-3 shows an example of a horizontal left-to-right layout.

Figure 31-3 Hierarchy Viewer Horizontal Left-to-Right Layout

• Horizontal right-to-left

• Horizontal, direction depends on the locale

• Tree, indented tree

Figure 31-4 shows an example of a tree layout.

Chapter 31
About Hierarchy Viewer Components

31-3

Figure 31-4 Hierarchy Viewer Tree Layout

• Radial, root node in center and successive child levels radiating outward from their
parent nodes

• Circle, root node in center and all leaf nodes arranged in concentric circle, with
parent nodes arranged within the circle

Figure 31-5 shows an example of a circle layout.

Figure 31-5 Hierarchy Viewer Circle Layout

Chapter 31
About Hierarchy Viewer Components

31-4

Navigation
At runtime, the node contains controls that allow users to navigate between nodes and
to show or hide other nodes by default. The end user uses the controls on the node to
switch dynamically between the content that the panel cards reference.

At runtime, if a user double-clicks another node that has a value specified for its
setAnchorListener property, that node becomes the anchor node.

At runtime, when a user moves the mouse over a node at zoom levels less than 76%,
a hover window displaying node content at zoom level 100% is automatically
displayed, allowing the user to see the full information regardless of zoom level. The
controls on the hover window are active.

Panning
By default, panning in a hierarchy viewer is accomplished by clicking and dragging the
component to reposition the view, or by using the panning control in the Control Panel.

You can disable the panning effect by setting the panning property to none.

Control Panel
The hierarchy viewer Control Panel provides tools for a user to manipulate the position
and appearance of a hierarchy viewer component at runtime.

By default, it appears in a hidden state in the upper left-hand corner of the hierarchy
viewer, as illustrated by Figure 31-6.

Figure 31-6 Control Panel in Hidden State

Users click the Hide or Show Control Panel button shown in Figure 31-6 to hide or
expand the Control Panel. Figure 31-7 shows the expanded Control Panel.

Figure 31-7 Control Panel in Show State

Table 31-1 describes the functionality that the controls in the Control Panel provide to
users. The Panel Selector is automatically enabled if a node in your hierarchy viewer

Chapter 31
About Hierarchy Viewer Components

31-5

component contains a panel card with af:showDetailItem elements to display
additional data. The Layout Selector appears automatically if the hierarchy viewer
component uses one of the following layouts:

• Vertical top down

• Horizontal left to right

• Tree

• Radial

• Circle

Table 31-1 Elements in the Control Panel

Control Name Description

Zoom to Fit Allows user to zoom a hierarchy viewer component so
that all nodes are visible within the viewport.

Zoom Control Allows user to zoom the hierarchy viewer component.

Hide or Show Hides or shows the Control Panel.

Panel Selector If you configured a panel card, displays the list of
af:showDetailItem elements that you have defined.
Users can use the panel selector to show the same
panel on all nodes at once.

Chapter 31
About Hierarchy Viewer Components

31-6

Table 31-1 (Cont.) Elements in the Control Panel

Control Name Description

Layout Selector Allows a choice of layouts. Users can change the layout
of the hierarchy viewer component from the layout you
defined to another one of the layout options presented
by the component.

Printing
Hierarchy viewers are printed using the HTML view in the browser.

Bi-directional Support
Hierarchy viewers support bi-directional text in node content, the search panel, and the
display of search results. Bi-directional text is text containing text in both text
directionalities, both right-to-left (RTL) and left-to-right (LTR). It generally involves text
containing different types of alphabets such as Arabic or Hebrew scripts.

Hierarchy viewers also provide bi-directional support for flipping panel cards from one
node view to the next and for swapping the locations of the Control Panel and Search
Panel if those elements are defined.

State Management
Hierarchy viewers support state management for user actions such as node selection,
expansion, and lateral navigation. When a user selects a node, expands a node or
navigates to the left or right within the same parent to view the next set of nodes, that
state is maintained if the user returns to a page after navigating away, as in a tabbed
panel.

State management is supported through hierarchy viewer attributes including
disclosedRowKeys, selectedRowKeys, and layout.

Additional Functionality for Hierarchy Viewer Components
You may find it helpful to understand other ADF Faces features before you implement
your hierarchy viewer component. Additionally, once you have added a hierarchy
viewer component to your page, you may find that you need to add functionality such
as validation and accessibility.

Following are links to other functionality that hierarchy viewer components can use:

Chapter 31
About Hierarchy Viewer Components

31-7

• Partial page rendering: You may want a hierarchy viewer to refresh to show new
data based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: Users can change the way the hierarchy viewer displays at
runtime. Those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: You can make your hierarchy viewer components accessible. For
more information, see Developing Accessible ADF Faces Pages.

• Content Delivery: You can configure your hierarchy viewer to fetch a certain
number of rows at a time from your data source using the contentDelivery
attribute. For more information, see Content Delivery.

• Skins and styles: You can customize the appearance of hierarchy viewers using
an ADF skin that you apply to the application or by applying CSS style properties
directly using a style-related property (styleClass or inlineStyle). For more
information, see Customizing the Appearance Using Styles and Skins.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound hierarchy viewers based on how your ADF
Business Components are configured. For more information, see the "Creating
Databound Hierarchy Viewer, Treemap, and Sunburst Components" chapter of
Developing Fusion Web Applications with Oracle Application Development
Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), image formats, and
how data can be displayed and edited. For more information, see Common
Functionality in Data Visualization Components.

Using Hierarchy Viewer Components
To use the Hierarchy Viewer component, add the hierarchy viewer to a page using the
Component Palette window. Then define the data for the hierarchy viewer and
complete the additional configuration in JDeveloper using the tag attributes in the

Chapter 31
Using Hierarchy Viewer Components

31-8

Properties window. The hierarchy viewer component uses the same data model as the
ADF Faces tree component.

A hierarchy viewer component requires data collections where a master-detail
relationship exists between one or more detail collections and a master detail
collection. You can test whether it is possible to bind a data collection to a hierarchy
viewer component by first binding it to an ADF Faces tree component. If you can
navigate the data collection using the ADF Faces tree component, it should be
possible to bind it to a hierarchy viewer component.

When you add a hierarchy viewer component to a JSF page, JDeveloper adds a tree
binding to the page definition file for the JSF page. For information about how to
populate nodes in a tree binding with data, see Using Trees to Display Master-Detail
Objects in Developing Fusion Web Applications with Oracle Application Development
Framework.

The data collections that you bind to nodes in a hierarchy viewer component must
contain a recursive accessor if you want users to be able to navigate downward from
the root node of the hierarchy viewer component. For information about navigating a
hierarchy viewer component, see Configuring Navigation in a Hierarchy Viewer.

Configuring Hierarchy Viewer Components
JDeveloper generates the following elements in JSF pages when you drag and drop
components from the Components window onto a JSF page or when you use the
Create Hierarchy Viewer dialog to create a hierarchy viewer component as described
in the "Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components"
chapter of Developing Fusion Web Applications with Oracle Application Development
Framework.

• Hierarchy viewer (hierarchyViewer): Wraps the node and link elements.

• Node (node): A node is a shape that references the data in a hierarchy, for
example, employees in an organization or computers in a network. You configure
the child elements of the node element to reference whatever data you want to
display. The node element supports the use of one or more f:facet elements that
display content at different zoom levels (100%, 75%, 50%, and 25%). The f:facet
element supports the use of many ADF Faces components, such as
af:outputText, af:image, and af:panelGroupLayout, in addition to the ADF Data
Visualization panelCard component.

At runtime, the node contains controls that allow users to navigate between nodes
and to show or hide other nodes by default. For information about specifying node
content and defining zoom levels, see How to Specify Node Content.

• Link (link): You set values for the attributes of the link element to connect one
node with another node. For information about how to customize the appearance
of the link and add labels, see How to Configure the Display of Links and Labels.

• Panel card (panelCard): Provides a method to switch dynamically between
multiple sets of content referenced by a node element using animation by, for
example, horizontally sliding the content or flipping a node over.

The f:facet tag for each zoom level supports the use of a dvt:panelCard
element that contains one or more af:showDetailItem elements defining the
content to be displayed at the specified zoom level. At runtime, the end user uses
the controls on the node to switch dynamically between the content that the

Chapter 31
Using Hierarchy Viewer Components

31-9

af:showDetailItem elements reference. For more information, see Using Panel
Cards.

Note:

Unlike the other elements, the dvt:panelCard element is not generated if
you choose the default quick layout option when using the Components
window to create a hierarchy viewer.

How to Add a Hierarchy Viewer to a Page
You use the Components window to add a hierarchy viewer to a JSF page. When you
drag and drop a hierarchy viewer component onto the page, the Create Hierarchy
Viewer dialog displays available categories of hierarchy viewer layouts, with
descriptions, to provide visual assistance when creating hierarchy viewers.

Figure 31-8 shows the Create Hierarchy Viewer dialog for hierarchy viewers with the
vertical top down layout type selected.

Figure 31-8 Create Hierarchy Viewer Dialog

Once you select the hierarchy viewer layout, and the hierarchy viewer is added to your
page, you can use the Properties window to specify data values and configure
additional display attributes for the hierarchy viewer. Alternatively, you can choose to

Chapter 31
Using Hierarchy Viewer Components

31-10

bind the data during creation and use the Properties window to configure additional
display attributes.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 31-9 shows the
dropdown menu for a hierarchy viewer component Value attribute.

Figure 31-9 Hierarchy Viewer Value Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a hierarchy viewer and the binding will be done for you. For
more information, see the "Creating Databound Hierarchy Viewer, Treemap,
and Sunburst Components" section in Developing Fusion Web Applications
with Oracle Application Development Framework

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy child tags can affect functionality. For more information, see Configuring
Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a hierarchy viewer to a page:

1. In the ADF Data Visualizations page of the Components window, from the
Hierarchy Viewer panel, drag and drop a Hierarchy Viewer onto the page to open
the Create Hierarchy Viewer dialog.

Chapter 31
Using Hierarchy Viewer Components

31-11

Use the dialog to select the hierarchy viewer layout type. For help with the dialog,
click Help or press F1.

2. In the Create Hierarchy Viewer dialog, click OK to add the hierarchy viewer to the
page.

Optionally, use the dialog to bind the hierarchy viewer by selecting Bind Data
Now and navigating to the ADF data control that represents the data you wish to
display on the treemap. If you choose this option, the data binding fields in the
dialog will be available for editing. For help with the dialog, press F1 or click Help.

3. In the Properties window, view the attributes for the hierarchy viewer. Use the
Help button to display the complete tag documentation for the hierarchyViewer
component.

4. Expand the Common section. Use this section to set the following attributes:

• Layout: Specify the hierarchical layout of the hierarchy viewer. For a
description with illustration of the valid values, see Layouts.

• Ancestor Levels (show sub-menu): Use to set the displayLevelsAncestor
attribute that specifies the number of ancestor levels to display during initial
render. This property is zero-based. A value of 0 means that no ancestor
levels above the root will be shown. The default value is 0.

• Descendent Levels (show sub-menu): Use to set the
displayLevelsChildren attribute that specifies the number of child levels to
display during initial render. This property is zero-based. A value of 0 means
that no child levels below the root will be shown; the root itself will be shown.
The default value is 1, which means that the root and the first level of children
will be shown.

Note:

You can also use the disclosedRowKeys attribute to specify the
number of child levels to display during initial render. If you specify
both disclosedRowKeys and displayLevelsChildren attributes, the
disclosedRowKeys attribute takes precedence over
displayLevelsChildren.

• Nodes Per Level (show sub-menu): Use to set the levelFetchSize attribute
that specified the number of child nodes that will be fetched and displayed at a
single time for each expanded parent node. Additional child nodes may be
fetched and displayed by using the lateral navigation controls shown in the
hierarchy viewer. The default value is 25.

5. Expand the Hierarchy Viewer Data section. Use this section to set the following
attributes:

• Value: Specify the data model for the hierarchy viewer; can be an instance of
javax.faces.TreeModel.

• Var: Specify the variable used to reference each element of the hierarchy
viewer data collection. Once this component has completed rendering, this
variable is removed or reverted back to its previous value.

6. Expand the Appearance section. Use this section to set the following attributes:

Chapter 31
Using Hierarchy Viewer Components

31-12

• Summary: Enter a description of the hierarchy viewer. This description is
accessed by screen reader users.

• EmptyText: Specify the text to display when a hierarchy viewer does not
display data.

7. Expand the Behavior section. Use this section to set the following attributes:

• ControlPanelBehavior: Specify the behavior of the Control Panel. For more
information, see How to Configure the Display of the Control Panel.

• Panning: Specify panning behavior. The default value is auto for click and
drag panning. You can also set it to none to disable panning.

What Happens When You Add a Hierarchy Viewer to a Page
When a hierarchy viewer component is inserted into a JSF page using the Create
Hierarchy Viewer dialog, a set of child tags that support customization of the hierarchy
viewer is automatically inserted. The hierarchy viewer component uses elements such
as af:panelGroupLayout, af:spacer, and af:separator to define how content is
displayed in the nodes.

The example below shows the code generated when the component is created by
insertion from the Components window. Code related to the hierarchy viewer elements
is highlighted in the example.

<dvt:hierarchyViewer id="hv1" layout="hier_vert_top" styleClass="AFStretchWidth">
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node width="233" height="330" id="n1">
 <f:facet name="zoom100">
 <af:panelGroupLayout layout="vertical"
 styleClass="AFStretchWidth AFHVNodeStretchHeight AFHVNodePadding"
 id="pgl1">
 <af:panelGroupLayout layout="horizontal" id="pgl2">
 <af:panelGroupLayout styleClass="AFHVNodeImageSize" id="pgl3">
 <af:image source="#{null}" styleClass="AFHVNodeImageSize" id="i1"/>
 </af:panelGroupLayout>
 <af:spacer width="5" height="5" id="s1"/>
 <af:panelGroupLayout layout="vertical" id="pgl4">
 <af:outputText value=" attribute value1
 styleClass="AFHVNodeTitleTextStyle" id="ot1"/>
 <af:outputText value=" attribute value2"
 styleClass="AFHVNodeSubtitleTextStyle" id="ot2"/>
 <af:outputText value=" attribute value3"
 styleClass="AFHVNodeTextStyle" id="ot3"/>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 <af:spacer height="5" id="s2"/>
 <af:separator id="s3"/>
 <af:spacer height="5" id="s4"/>
 <dvt:panelCard effect="slide_horz" styleClass="AFHVNodePadding" id="pc1">
 <af:showDetailItem text="first group title " id="sdi1">
 <af:panelFormLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
AFHVNodePadding"
 id="pfl1">
 <af:panelLabelAndMessage label="attribute label4"
 styleClass="AFHVPanelCardLabelStyle" id="plam1">
 <af:outputText value="attribute value4"
 styleClass="AFHVPanelCardTextStyle" id="ot4"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label5"

Chapter 31
Using Hierarchy Viewer Components

31-13

 styleClass="AFHVPanelCardLabelStyle" id="plam2">
 <af:outputText value="attribute value5"
 styleClass="AFHVPanelCardTextStyle" id="ot5"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label6"
 styleClass="AFHVPanelCardLabelStyle" id="plam3">
 <af:outputText value="attribute value6"
 styleClass="AFHVPanelCardTextStyle" id="ot6"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 <af:showDetailItem text="second group title " id="sdi2">
 <af:panelFormLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
AFHVNodePadding"
 id="pfl2">
 <af:panelLabelAndMessage label="attribute label7"
 styleClass="AFHVPanelCardLabelStyle" id="plam4">
 <af:outputText value="attribute value7"
 styleClass="AFHVPanelCardTextStyle" id="ot7"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label8"
 styleClass="AFHVPanelCardLabelStyle" id="plam5">
 <af:outputText value="attribute value8"
 styleClass="AFHVPanelCardTextStyle" id="ot8"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label9"
 styleClass="AFHVPanelCardLabelStyle" id="plam6">
 <af:outputText value="attribute value9"
 styleClass="AFHVPanelCardTextStyle" id="ot9"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 </dvt:panelCard>
 </af:panelGroupLayout>
 </f:facet>
 </dvt:node>
</dvt:hierarchyViewer>

What You May Need to Know About Hierarchy Viewer Rendering and
Image Formats

By default, the hierarchy viewer component renders in HTML5. When HTML5 is not
supported by the browser and Flash 10 or higher is available on the client, the
hierarchy viewer is rendered in a Flash Player. If HTML5 and Flash10 or higher are not
available, the hierarchy viewer is rendered in HTML4. While HTML4 rendering follows
HTML5 and Flash rendering as closely as possible, there are some differences.

For the most part, hierarchy viewer display and features are supported with the
following exceptions:

• Isolate and restore nodes is not available.

• Node shapes are limited to rectangular.

• For links, the link end connector is not supported, link type is limited to orthogonal,
and link style is limited to a solid line.

• For the control panel, all panel cards cannot be switched, panning is limited to
scroll bars, and zooming and zoom to fit is limited to four zoom facets.

Chapter 31
Using Hierarchy Viewer Components

31-14

• Search is not supported.

• Emailable page is not supported.

• Node detail hover window is not supported.

Managing Nodes in a Hierarchy Viewer
A node is a shape that represents the individual elements in an ADF DVT hierarchy
viewer component at runtime. Examples of individual elements in a hierarchy viewer
component include an employee in an organization chart or a computer in a network
diagram.

By default, each node in a hierarchy viewer component includes controls that allow
users to do the following:

• Navigate to other nodes in a hierarchy viewer component.

The top of each node contains a single Isolate or Restore button. The Isolate
button allows the user to reduce the hierarchy temporarily to the chosen node and
its displayed children. Users click Restore to return the hierarchy to the original
view.

• Show or hide child nodes of the currently selected node in a hierarchy viewer
component.

The single Show or Hide button appears on the bottom of every node. When a
user clicks one of these icons, the page displays or hides the node's children if
they exist, and the component generates a RowDisclosureEvent event. You can
register a custom rowDisclosureListener method to handle any processing in
response to the event in the same way as an af:tree component. For more
information, see What You May Need to Know About Programmatically Expanding
and Collapsing Nodes.

If you use a panel card to display different sets of information for the node that the
hierarchy viewer component references, controls at the bottom of the node allow the
user to change the information set in the active node. For more information, see Using
Panel Cards.

Figure 31-10 shows an example of a node with controls that allow an end user to
isolate the node as the anchor node, show the child nodes, and change the node to
show different sets of information in the active node. For information about how to
configure the controls on a node, see How to Configure the Controls on a Node.

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-15

Figure 31-10 Hierarchy Viewer Node Controls

How to Specify Node Content
Although a node contains controls by default that allow you to navigate to a node and
show or hide nodes, nodes do not by default include content unless you used a quick
start layout when creating the hierarchy viewer component. You must define what
content a node renders at runtime.

You can specify node content when you associate data bindings with the hierarchy
viewer component as described in the "Creating Databound Hierarchy Viewer,
Treemap, and Sunburst Components" chapter of Developing Fusion Web Applications
with Oracle Application Development Framework. You can also specify content that is
stored in a managed bean.

By default, a hierarchy viewer component that you create contains one node with one
facet element that has a zoom level of 100%:

<f:facet name="zoom100"/>

You can insert three more instances of the facet element into the hierarchy viewer
component with the following zoom levels:

• 25%: zoom25

• 50%: zoom50

• 75%: zoom75

Use these zoom level definitions to improve readability of node content when the
hierarchy viewer is zoomed out to display more nodes and less display room is
available in each node. You can define a subset of the available data collection within
one or more of the facet elements. For example, if you have a data collection with
node attributes that reference data about a company department such as its name,

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-16

location, and number, you can specify a facet element with a zoom level of 50% that
references the node attribute for just the department's name and number.

At runtime, when a user moves the mouse over a node at any zoom level less than
76%, a hover window displaying node content at zoom level 100% is automatically
displayed, allowing the user to see the full information regardless of zoom level. The
controls on the hover window are active.

Each of the facet elements that you insert can be used to reference other components.
You can use one or more of the following ADF Faces components when you define
content for a node in a hierarchy viewer component. The node component's facet
support the following components:

• Layout components including: af:panelFormLayout, af:panelGroupLayout,
af:separator, af:showDetailItem, and af:spacer. For more information about
using these components, see Organizing Content on Web Pages.

• Menu components including: af:menu and af:menuItem. For more information
about these components, see Using Menus, Toolbars, and Toolboxes.

• Output components including: af:outputFormatted and af:outputText. For more
information about these components, see Using Output Components.

• Message component af:panelLabelAndMessage. For more information about this
component, see Displaying Tips, Messages, and Help.

• Navigation components including: af:button, af:link, and af:commandMenuItem.
For more information about these components, see Working with Navigation
Components.

• Image component af:image. For information about how to use the af:image
component, see Including Images in a Hierarchy Viewer.

• af:showPopupBehavior: For information about how to use the
af:showPopupBehavior component, see Configuring a Hierarchy Viewer to Invoke
a Popup Window.

• Hierarchy viewer child component dvt:panelCard: For information about how to
use the dvt:panelCard component, see Using Panel Cards.

Note:

Unsupported components are flagged at design time.

By default, the hierarchy viewer component renders in HTML5. When HTML5 is not
available, the hierarchy viewer will render in Flash or HTML4, and certain properties
that you specify as node content may not be supported. For more information, see
What You May Need to Know About Hierarchy Viewer Rendering and Image Formats.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-17

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To add a node to a hierarchy viewer component:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose
Insert Inside Hierarchy Viewer > Node.

The following entry appears in the JSF page:

<dvt:node>
 <f:facet name="zoom100"/>
</dvt:node>

2. In the Structure window, right-click dvt:node and choose Go to Properties.

3. Configure the appropriate properties in the Properties window.

For example, set a value for the Type property to associate a node component
with an accessor. The following code appears in the JSF page if you associate
model.HvtestView with the node:

<dvt:node type="model.HvtestView"/>

For more information, see Specifying a Node Definition for an Accessor.

How to Configure the Controls on a Node
The node component (node) exposes a number of properties that allow you to
determine if controls such as Restore, Isolate, Show, or Hide appear at runtime. It also
exposes properties that determine the size and shape of the node at runtime.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy child tags can affect functionality. For more information, see Configuring
Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer node on your page. If you do not, follow
the instructions in this chapter to add a node to a hierarchy viewer. For more
information, see How to Specify Node Content.

To configure the controls on a node:

1. In the Structure window, right-click dvt:node and choose Go to Properties.

2. In the Properties window, in the Appearance section, configure properties for the
node, as described in Table 31-2.

Table 31-2 Node Configuration Properties

To do this: Set the following value for this property:

Configure the Hide or Show controls to
appear or not on a node.

Set showExpandChildren to False to hide
the controls. By default the property is set to
True.

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-18

Table 31-2 (Cont.) Node Configuration Properties

To do this: Set the following value for this property:

Configure the Restore or Isolate controls to
appear or not on the node.

Set the showIsolate property to False to
hide these controls on the node. By default
the property is set to true.

Configure the Navigate Up control to appear
or not on the node.

Set the showNavigateUp property to False
to hide this control on the node. By default
the property is set to true.

If the showNavigateUp property is set to
true, for the control to render, you must
also set a value for the hierarchy viewer
component's navigateUpListener
property, as described in How to Configure
Upward Navigation in a Hierarchy Viewer.

Configure the height and width of a node. Set values for the width and height
properties.

Select the shape of the node. Select a value from the Shape dropdown
list. Available values are:

• ellipse

• rect

• roundedRect (default)

3. For information about configuring the properties in the Style section of the
Properties window for the node component, see Changing the Style Properties of
a Component .

The hover detail window is automatically displayed when the user moves the mouse
over the node at zoom levels less than 76%, reflecting the shape attribute set for the
node. A node with the shape attribute roundedRect, for example, will have a hover
window with the same attribute, as shown in Figure 31-11.

You can disable the display of the detail window when hovering a node that is not at
the 76-100% zoom level. For more information, see How to Disable the Hover Detail
Window.

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-19

Figure 31-11 Hover Window in Hierarchy Viewer Node

Specifying a Node Definition for an Accessor
By default, you associate a node component with an accessor when you use the
Create Hierarchy Viewer dialog to create a hierarchy viewer component, as described
in the "Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components"
chapter of Developing Fusion Web Applications with Oracle Application Development
Framework. The Create Hierarchy Viewer dialog sets the node component's type
property to a specific accessor.

You can configure a node component's type property to use one or more specified
accessors. Alternatively, you can configure a node component's rendered property to
use a node definition across accessors, as described in Associating a Node Definition
with a Particular Set of Data Rows. When the hierarchy viewer component determines
which node definition to use for a particular data row, it first checks for a match on the
type property:

• If the type property matches and the rendered property value is true (default), the
hierarchy viewer component uses the node definition.

• If the type property does not match, the hierarchy viewer component uses the first
node definition whose rendered property evaluates to true. The result of
evaluating the rendered property does not affect the type property.

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-20

Associating a Node Definition with a Particular Set of Data Rows
You can use a node component's rendered property to associate the node with a
particular set of data rows or with a single data row. The rendered property accepts a
boolean value so you can write an EL expression that evaluates to true or false to
determine what data rows you associate with a node definition.

For example, assume that you want a node to display data based on job title. You
write an EL expression for the node component's rendered property similar to the
following pseudo EL expression that evaluates to true when a job title matches the
value you specify (in this example, CEO):

rendered="#{node.title == 'CEO'}"

When you use the node component's rendered property in this way, you do not define
a value for the node component's type property.

Note:

The hierarchy viewer will use the first node definition whose rendered
property evaluates to true. The order of the hierarchy viewer's node
definitions is important.

How to Specify Ancestor Levels for an Anchor Node
The anchor node of a hierarchy viewer component is the root of the hierarchy returned
by the tree binding. Depending on the use case, there can be multiple root nodes, for
example, a hierarchy viewer component that renders an organization chart with one or
more managers. When a hierarchy viewer component renders at runtime, the node
that has focus is the anchor node. If a user double-clicks another node at runtime that
has a value specified for its setAnchorListener property, that node becomes the
anchor node.

You can configure the hierarchy viewer to display one or more levels above the anchor
node, the ancestor levels. For example, if you search for an employee in a company,
you may wish to display the chain of management above the employee. Specify
ancestor levels using the displayLevelsAncestor property.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy child tags can affect functionality. For more information, see Configuring
Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to add a hierarchy viewer to your page. For more
information, see How to Add a Hierarchy Viewer to a Page.

To specify the number of ancestor levels for an anchor node:

Chapter 31
Managing Nodes in a Hierarchy Viewer

31-21

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go
to Properties.

2. Expand the Common section of the Properties window.

3. In the Ancestor Levels field, specify the number of levels of ancestor nodes that
you want to appear at runtime.

For example, the following entry appears in the JSF page if you entered 2 as the
number of ancestor levels for the anchor node.

displayLevelsAncestor="2"

4. Save changes to the JSF page.

Using Panel Cards
You can use the ADF panel card component in conjunction with the ADF DVT
hierarchy viewer component to hold different sets of information for the nodes that the
hierarchy viewer component references. The panel card component is an area inside
the node element that can include one or more af:showDetailItem elements.

Each of the af:showDetailItem elements references a set of content. For example, a
hierarchy viewer component that renders an organization chart would include a node
for employees in the organization. This node could include a panel card component
that references contact information using an af:showDetailItem element and another
af:showDetailItem element that references salary information.

A panel card component displays the content referenced by one af:showDetailItem
element at runtime. The panel card component renders navigation buttons and other
controls that allow the user to switch between the sets of data referenced by
af:showDetailItem elements. The controls that allow users to switch between
different sets of data can be configured with optional transitional effects. For example,
you can configure a panel card to horizontally slide between one set of data
referenced by an af:showDetailItem element to another set of data referenced by
another af:showDetailItem element.

How to Create a Panel Card
You can insert a panel card component into the JSF page that renders the hierarchy
viewer component by using the context menu that appears when you select the Facet
zoom element in the Structure window for the JSF page.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy child tags can affect functionality. For more information, see Configuring
Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To create a panel card:

Chapter 31
Using Panel Cards

31-22

1. In the Structure window, right-click the zoom level within the node where you want
to create a panel card.

For example, select f:facet - zoom100.

2. If the selected facet does not already contain a panelGroupLayout component,
select Insert Inside zoomLevel > Panel Group Layout to create a container for
the panel card.

3. Use the Properties window to configure the properties of the panel group layout.

For more information about configuring panel group layout components, see How
to Use the panelGroupLayout Component.

4. In the Structure window, right-click the af:panelGroupLayout node and select
Insert Inside Panel Group Layout > Panel Card.

5. Use the Properties window to configure the panel card's properties.

For example, set a value for the Effect property in the Advanced properties for the
panel card component to specify the effect used when transitioning between
content on the panel card. Valid values are:

• slideHorz (default)

Old content slides out on one side while new content slides in from the other
side.

• immediate

Content displays immediately with no transition effect.

• flipHorz

The showDetailItem flips over to reveal new contents.

• nodeFlipHorz

The entire node flips over to reveal new contents.

• cubeRotateHorz

The showDetailItem rotates as if on the face of a cube to reveal new
contents.

• nodeCubeRotateHorz

The entire node rotates as if on the face of a cube to reveal new contents.

Note:

Valid values also include slide_horz, flip_horz, node_flip_horz,
cube_rotate_horz, and node_cube_rotate_horz. These values are
deprecated in favor of the mixed case values, but you may still see them
in use in older code and documentation.

6. In the Structure window, right-click dvt:panelCard and choose Insert Inside
Panel Card > Show Detail Item.

7. Use the Properties window to configure the properties of the af:showDetailItem
element. For help with the Properties window, click Help or press F1.

Chapter 31
Using Panel Cards

31-23

8. Add elements to the af:showDetailItem element to display the desired content. In
the Structure window, right-click af:showDetailItem and choose the element to
insert.

For example, if your hierarchy viewer renders an organization chart, you could add
an element to display the employee's ID. In the Structure window, right-click
af:showDetailItem and choose Insert Inside Show Detail Item > ADF Faces >
Output Text.

9. Use the Properties window to configure the properties for the elements you added
to the af:showDetailItem element in Step 8. For help with the Properties window,
click Help or press F1.

10. Repeat Step 6 through Step 9 for each set of content that you want the panel card
to display.

What Happens at Runtime: How the Panel Card Component Is
Rendered

At runtime, a node appears and displays one panel card component. Users can click
the navigation buttons at the bottom of the panel card to navigate to the next set of
content referenced by one of the panel card's af:showDetailItem child elements.

Figure 31-12 shows a node with a panel card component where two different
af:showDetailItem child elements reference different sets of information (Contact and
Address). The controls in the example include arrows to slide through the panel cards
as well as buttons to directly select the panel card to display. Tooltips display for both
control options.

Figure 31-12 Runtime View of a Node with a Panel Card

Configuring Navigation in a Hierarchy Viewer
By default, an ADF DVT hierarchy viewer component has downward navigation
configured for root and inner nodes. You can configure the hierarchy viewer

Chapter 31
Configuring Navigation in a Hierarchy Viewer

31-24

component to enable upward navigation and to determine the number of nodes to
appear when a user navigates between nodes on the same level.

For more information about node types, see Managing Nodes in a Hierarchy Viewer.

How to Configure Upward Navigation in a Hierarchy Viewer
If you want to configure upward navigation for a hierarchy view component, you
configure a value for the hierarchy viewer component's navigateUpListener property.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To configure upward navigation for a hierarchy viewer component:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go
to Properties.

2. In the Properties window, expand the Behavior section of the Properties window
and write a value in the Navigate Up field for the hierarchy viewer component's
navigateUpListener property that specifies a method to update the data model so
that it references the new anchor node when the user navigates up to a new
anchor node.

If you need help specifying a value, choose Method Expression Builder from the
Navigate Up dropdown menu to enter the Method Expression Builder dialog. For
help with the Method Expression Builder dialog, click Help or press F1.

3. Save the page.

How to Configure Same-Level Navigation in a Hierarchy Viewer
Same-level navigation between the nodes in a hierarchy viewer component is enabled
by default. You can configure the hierarchy viewer component to determine how many
nodes to display at a time.

When you do this, controls appear that enable users to navigate to the following:

• Left or right to view the next set of nodes

• First or last set of nodes in the collection of available nodes

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

Chapter 31
Configuring Navigation in a Hierarchy Viewer

31-25

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To configure same-level navigation in a hierarchy viewer component:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go
to Properties.

2. Expand the Common section of the Properties window and specify the number of
nodes that you want to appear at runtime in the Nodes Per Level field
(levelFetchSize).

For example, the following entry appears in the JSF page if you entered 3 as the
number of nodes:

levelFetchSize="3"

3. Save the page.

What Happens When You Configure Same-Level Navigation in a
Hierarchy Viewer

At runtime, the hierarchy viewer component renders the number of nodes that you
specified as a value for the hierarchy viewer component's levelFetchSize property. It
also renders controls that allow users to do the following:

• Navigate to the left or right to view the next set of nodes

• Navigate to the first or last set of nodes in the collection of available nodes

Figure 31-13 shows a runtime example where levelFetchSize="3". When a user
moves the mouse over the control, as shown in the circled area in Figure 31-13, the
control that allows users to navigate to the last set of nodes appears.

Chapter 31
Configuring Navigation in a Hierarchy Viewer

31-26

Figure 31-13 Hierarchy Viewer Component with Same-Level Navigation

Customizing the Appearance of a Hierarchy Viewer
You can customize the ADF DVT hierarchy viewer component size and appearance
including adding images, configuring the display of the control panel and hover detail
window, and customizing links and labels.

You can change the appearance of your hierarchy viewer component by changing
skins and component style attributes, as described in Customizing the Appearance
Using Styles and Skins.

How to Adjust the Display Size and Styles of a Hierarchy Viewer
You can configure the hierarchy viewer's size and style using the inlineStyle and
styleClass attributes. Both attributes are available in the Style section in the
Properties window for the dvt:hierarchyViewer or dvt:node component. Using these
attributes, you can customize stylistic features such as fonts, borders, and background
elements.

The styleClass attribute is a CSS style class selector used to group a set of inline
styles. The style classes can be defined using an EL Expression that evaluates to a
style class at runtime. You can also specify an ADF public style class. For example,
you can use AFHVNodeImageSize to set the size of an image to fit inside a hierarchy
viewer.

The inlineStyle attribute is a list of CSS styles, separated by semicolons, that can
set individual style attributes. For example, you can specify color:blue;font-
style:italic to change the color and font style of an af:outputText component.

Chapter 31
Customizing the Appearance of a Hierarchy Viewer

31-27

For additional information about using the styleClass and inlineStyle attributes, see
Changing the Style Properties of a Component .

The page containing the hierarchy viewer may also impose limitations on the ability to
change the size or style. For more information about page layouts, see Organizing
Content on Web Pages.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To adjust the size or style of a hierarchy viewer:

1. In the Structure window for the JSF page that contains the hierarchy viewer
component, right-click the dvt:hierarchyViewer node and choose Go to
Properties.

2. To adjust the size or style of the hierarchy viewer using inline styles, in the
Properties window, expand the Style section and specify the following values for
the InlineStyle property:

• width

Write a value in percent (%) or pixels (px). The default value for width is 100%.

• height

Write a value in percent (%) or pixels (px). The default value for height is 600px.

The final value that you enter for InlineStyle must use this syntax:

width:100%;height:600px;

3. To adjust the size or style of the hierarchy viewer using style classes, in the
Properties window, specify a value for the StyleClass property.

For example, to specify 100% for the height of the hierarchy viewer, enter the
following for StyleClass: AFStretchHeight.

4. Save changes to the JSF page.

Including Images in a Hierarchy Viewer
You can configure a hierarchy viewer component to display images in the nodes of a
hierarchy viewer component at runtime. This can be useful where, for example, you
want pictures to appear in an organization chart.

Insert an af:image component with the source attribute bound to the URL of the
desired image. The following code example renders an image.

<af:panelGroupLayout>
 <af:image source="/person_id=#{node.PersonId}"

Chapter 31
Customizing the Appearance of a Hierarchy Viewer

31-28

 shortDesc="Employee Image"
 styleClass=AFHVNodeImageSize"/>
</af:panelGroupLayout>

For more information about the af:panelGroupLayout component, see How to Use the
panelGroupLayout Component.

How to Configure the Display of the Control Panel
Although you cannot configure the Control Panel to appear in another location, you
can configure the hierarchy viewer component to act as follows when the hierarchy
viewer component renders at runtime:

• Appears in an expanded or show state

• Appears in a collapsed or hidden state

• Does not appear to users

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To configure the display of the Control Panel:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go
to Properties.

2. In the Properties window, expand the Appearance section and choose one of the
following values from the ControlPanelBehavior dropdown list:

• hidden

Select this value if you do not want the Control Panel to appear at runtime.

• initCollapsed

This is the default value. The Control Panel appears in a collapsed or hidden
state at runtime.

• initExpanded

Select this value if you want the Control Panel to appear in an expanded or
show state at runtime.

3. Save changes to the JSF page.

Chapter 31
Customizing the Appearance of a Hierarchy Viewer

31-29

How to Configure the Display of Links and Labels
In a hierarchy viewer the relationships between nodes are represented by lines that
link the nodes. The links can be configured to include labels.

Figure 31-14 illustrates links and labels in a hierarchy viewer.

Figure 31-14 Hierarchy Viewer Links and Labels

You can customize the appearance of links and labels by setting properties of the
dvt:link element in a hierarchy viewer. Figure 31-15 illustrates links with a dashDot
value set for the linkStyle attribute.

Figure 31-15 Links with dashDot Link Style

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create one. For more information, see How to Add a
Hierarchy Viewer to a Page.

To customize the display of links and labels:

1. In the Structure window, right-click the dvt:link node and choose Go to
Properties.

2. In the Properties window, set the following attributes to customize the appearance
of links between nodes in a hierarchy viewer as desired:

• LinkStyle: Sets the style of the link, for example, dotted or dashed line.

• LinkColor: Sets the color of the link.

• LinkWidth: Sets the width of the link, in pixels.

• LinkType: Sets the type of link, for example, direct line or smooth curved line
fitted to what would have been a single right angle.

• EndConnectorType: Sets the style of the link connection end to none
(default) or arrowOpen.

Chapter 31
Customizing the Appearance of a Hierarchy Viewer

31-30

3. Also in the Properties window, enter text for the label associated with the link in
the Label property.

Alternatively, specify an EL expression to stamp out the link label based on the
child node. For example, write an EL expression similar to the following where the
node var attribute refers to the child node associated with the link.

label="{node.relationship}"

For more information about creating EL expressions, see Creating EL
Expressions.

4. Optionally, also in the Properties window, use the Rendered property to stamp the
link for a particular relationship between nodes. The property accepts a boolean
value so you can write an EL expression that evaluates to true or false to
determine if the link represents the relationship. For example, assume that you
want a link to display based on reporting relationship. You write an EL expression
for the link component's Rendered property similar to the following EL expression
that evaluates to true when the relationship matches the value you specify (in this
example, CONSULTANT):

rendered="#{node.relationship == "CEO"}

How to Disable the Hover Detail Window
By default, the hover window automatically displays when the zoom level is below
76%. If your hierarchy viewer uses popups, the hover window can interfere with the
popup display. You can use the hierarchy viewer detailWindow attribute to turn off the
display of the hover window.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For information, see How to
Add a Hierarchy Viewer to a Page.

To disable the hierarchy viewer hover window:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go
to Properties.

2. In the Properties window, expand the Behavior section and select one of the
following values from the DetailWindow dropdown list:

• auto

This is the default value. The hover window is always enabled.

• none

Select this value if you do not want to enable the hover window.

Chapter 31
Customizing the Appearance of a Hierarchy Viewer

31-31

What You May Need to Know About Skinning and Customizing the
Appearance of a Hierarchy Viewer

Hierarchy viewers also support skinning to customize the color and font styles for the
top level components as well as the nodes, buttons, and links. In addition, you can use
skinning to define the styles for a hierarchy viewer when the user hovers the mouse
over or selects a navigation button.

The example below shows the skinning key for a hierarchy viewer configured to show
the border color of the panel card's navigation button in black when the user selects it.

af|dvt-panelCard::navigation-button:active
 {
 -tr-border-color:#000000;
 }

For the complete list of hierarchy viewer skinning keys, see the Oracle Fusion
Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces Skin
Selectors. For additional information about customizing your application using skins,
see Customizing the Appearance Using Styles and Skins.

Adding Interactivity to a Hierarchy Viewer Component
You can configure an ADF DVT hierarchy viewer component to invoke popup
windows, display menus with functionality and data from other pages in your Oracle
Fusion web application, or support drag and drop functionality.

How to Configure Node Selection Action
By default, clicking a hierarchy viewer node at runtime selects the node. You can
customize this interaction by setting the clickBehavior attribute on the dvt:node
component.

Valid values for this property include:

• focus: The node receives focus and is selected when clicked (default).

• expandCollapse: Child node elements are either expanded or collapsed,
depending on their current expansion state.

• isolateRestore: The node is either isolated or restored, depending on its current
state.

• none: Clicking the node does nothing.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-32

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For information, see How to
Add a Hierarchy Viewer to a Page.

To configure node selection action:

1. In the structure window, right-click the dvt:node node and choose Go to
Properties.

2. In the Properties window, expand the Behavior section and choose the value for
ClickBehavior from the attribute's dropdown list.

3. Save changes to the JSF page.

Configuring a Hierarchy Viewer to Invoke a Popup Window
You can invoke a popup window from a hierarchy viewer node by specifying values for
the af:showPopupBehavior tag and invoking it from a command component, for
example, af:button. You must nest the command component that invokes the popup
inside an f:facet element in a node of the hierarchy viewer component.

The triggerType property of an af:showPopupBehavior tag used in this scenario
supports only the following values:

• action

• mouseHover

For example, Figure 31-16 shows a modal popup invoked from an HR Detail link in
the node. The example below shows sample code for creating the popup.

Figure 31-16 Modal Popup in Hierarchy Viewer Node

<af:popup id="popupDialog" contentDelivery="lazyUncached"
eventContext="launcher"
 launcherVar="source">
 <af:setPropertyListener from="#{source.currentRowData}"
 to="#{myBean.selectedEmployee}"
type="popupFetch"/>
 <af:dialog title="Employee HR Detail">
 <af:panelFormLayout>
 <af:panelLabelAndMessage label="Name" >
 <af:outputText value="#{myBean.selectedEmployee.firstName}

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-33

#{myBean.selectedEmployee.lastName}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="Offical Title" >
 <af:outputText value="#{myBean.selectedEmployee.officalTitle}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="HR Manager Id" >
 <af:outputText value="#{myBean.selectedEmployee.hrMgrPersonId}"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="HR Rep Id" >
 <af:outputText value="#{myBean.selectedEmployee.hrRepPersonId}"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:dialog>
</af:popup>

The example below shows sample code for the invoking the popup from a hierarchy
viewer component. For brevity, elements such as <af:panelGroupLayout>,
<af:spacer>, and <af:separator> are not included in the sample code.

<f:facet name="zoom100">
 ...
 <dvt:panelCard effect="slideHorz"
 ...
 <af:showDetailItem text="Contact "
 ...
 <af:button text="Show HR Detail"
 inlineStyle="font-size:14px;color:#383A47"
 id = bu1>
 <af:showPopupBehavior popupId="::popupDialog" triggerType="action"
 align="endAfter" alignId="bu1" />
 </af:button>
 </showDetailItem>
 </dvt:panelCard>
</f:facet>

For more information about using the af:showPopupBehavior tag, see Declaratively
Invoking a Popup.

Configuring Hierarchy Viewer Drag and Drop
Hierarchy Viewers support a variety of drag and drop scenarios between components.

Hierarchy viewers support the following drag and drop scenarios:

• Drag and drop one or more nodes within a hierarchy viewer

• Drag one or more nodes from a hierarchy viewer to another component

• Drag one or more items from another component to a hierarchy viewer

Figure 31-17 shows a hierarchy viewer configured to allow drags and drops within
itself. In this example, if you click a node, you can drag it to the background to make it
another root in the hierarchy or drag it to another node to add it as a child of that node.

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-34

Figure 31-17 Hierarchy Viewer Showing a Node Drag

Figure 31-18 shows the result of a drag to the hierarchy viewer background. Nancy
Green and her subordinates are now shown as a new tree in the hierarchy.

Figure 31-18 Hierarchy Viewer After Node Drag to Background

If you drag the node to another node, the dragged node and its children become the
child of the targeted node. Figure 31-19 shows the result of the drag to the node
containing the data for Nina Evans. Nancy Green and her subordinates are now
shown as subordinates to Nina Evans.

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-35

Figure 31-19 Hierarchy Viewer After Node Drag to Another Node

Figure 31-20 shows an example of the same hierarchy viewer configured to allow
drops to or drags from an af:outputFormatted component. In this example, the user
can drag one or more nodes to the drop text, and the text will change to indicate which
node(s) the user dragged and which operation was performed. If the user drags from
the drag text to a hierarchy viewer node or background, the text will change to indicate
where the text was dragged and which operation was performed.

Figure 31-20 Hierarchy Viewer Configured for Drag and Drop to Another Component

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-36

Figure 31-21 shows a portion of the same hierarchy viewer after the user dragged the
nodes containing the data for Nina Evans and James Marlow to the drop text.

Figure 31-21 Hierarchy Viewer After Multiple Node Drag

If the user drags from the drag text to a hierarchy viewer node or background, the text
will change to indicate where the text was dragged and which operation was
performed. Figure 31-22 shows a portion of the same hierarchy viewer after a user
drags the text to the hierarchy viewer background.

Figure 31-22 Hierarchy Viewer After Text Drag to Hierarchy Viewer Background

How to Configure Hierarchy Viewer Drag and Drop
To add drag support to a hierarchy viewer, which will allow components or other
hierarchy viewers to drag nodes from it, add the af:dragSource tag to the hierarchy

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-37

viewer and add the af:dropTarget tag to the component receiving the drag. The
component receiving the drag must include the
org.apache.myfaces.trinidad.model.RowKeySet data flavor as a child of the
af:dropTarget and also define a dropListener method to respond to the drop event.

To add drop support to a hierarchy viewer, which will allow components or other
hierarchy viewers to drag items to it, add the af:dropTarget tag to the hierarchy
viewer and include the data flavors that the hierarchy viewer will support. Add a
dropListener method to a managed bean that will respond to the drop event.

The following procedure shows how to set up a hierarchy as a simple drag source or
drop target for the af:outputFormatted component shown in Figure 31-20. For more
detailed information about configuring drag and drop on ADF Faces or ADF Data
Visualization components, see Adding Drag and Drop Functionality.

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You will need to complete these tasks:

• Add a hierarchy viewer to your page. For more information, see How to Add a
Hierarchy Viewer to a Page.

• Create any additional components needed to support the drag and drop.

For example, the page in Figure 31-20 uses an af:panelGroupLayout component
containing af:outputFormatted and af:panelList components to provide
instructions to the user. The page also uses an af:panelSplitter component to
separate the drag and drop af:outputFormatted component text from the
hierarchy viewer.

The code example below shows the completed page for the additional
components. The hierarchy viewer details are omitted.

<af:panelStretchLayout id="psl1" topHeight="auto" endWidth="auto">
 <f:facet name="top">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:spacer width="10px" id="s8"/>
 <af:panelGroupLayout id="pgl14">
 <af:outputFormatted value="Hierarchy Viewer Drag and Drop
Example"
 id="of4" inlineStyle="font-size:small;
 font-weight:bold;"/>
 <af:panelList id="pl1"
 inlineStyle="font-size:x-small;">
 <af:outputFormatted value="Click and hold on a node for more
than one-half second to initiate the drag. Use Ctrl+Click to select
multiple nodes."
 id="of1" inlineStyle="font-size:x-small;"/>
 <af:outputFormatted value="Drag one or more nodes from the
hierarchy viewer to the drop text. The text will change to show which

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-38

node(s) you dragged and the operation performed."
 id="of2" inlineStyle="font-size:x-small;"/>
 <af:outputFormatted value="Drag the drag text to one of the
hierarchy viewer nodes or background. The text will change to show
where you dropped it and the operation performed."
 id="of3" inlineStyle="font-size:x-small;"/>
 </af:panelList>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="center">
 <af:panelSplitter id="ps1" orientation="horizontal"
splitterPosition="125"
 positionedFromEnd="false"
styleClass="AFStretchWidth">
 <f:facet name="first">
 <af:panelSplitter id="ps2" orientation="vertical">
 <f:facet name="first">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:separator id="s1"/>
 <af:outputFormatted value="#{hvBean.dropText}"
 clientComponent="true"
 inlineStyle="font-size:small; font-weight:bold;"
 id="of5">
 <af:dropTarget actions="COPY MOVE LINK"

dropListener="#{hvBean.fromDropListener}">
 <af:dataFlavor

flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
 </af:outputFormatted>
 <af:spacer width="200" id="s11"/>
 <af:separator id="s3"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="second">
 <af:panelGroupLayout id="pgl1">
 <af:separator id="s12"/>
 <af:outputFormatted value="#{hvBean.dragText}"
 clientComponent="true"
 inlineStyle="font-size:small; font-weight:bold;"
id="of6">
 <af:componentDragSource/>
 </af:outputFormatted>
 <af:separator id="s10"/>
 </af:panelGroupLayout>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 <f:facet name="second">
 <dvt:hierarchyViewer id="shv" styleClass="AFStretchWidth"
 controlPanelBehavior="initExpanded"
 var="node" detailWindow="none"
 value="#{XMLParser.employees}"

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-39

 contentDelivery="immediate"
 summary="HV Drag and Drop Sample"

navigateUpListener="#{XMLParser.doNavigateUp}">
 <af:dragSource actions="COPY MOVE LINK"
defaultAction="MOVE"/>
 <af:dropTarget actions="COPY MOVE LINK"
 dropListener="#{hvBean.toDropListener}">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node width="233" height="330"
 setAnchorListener="#{XMLParser.doSetAnchor}" id="n1"
 showNavigateUp="#{node.topNode == false}"
 showExpandChildren="#{node.hasChildren}">
 <f:facet name="zoom100">
 < remaining hierarchy viewer contents omitted >
 </dvt:hierarchyViewer>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
</af:panelStretchLayout>

For additional information about af:outputFormatted components, see Using
Output Components. For help with the af:panelGroupLayout component or other
page layout components, see Organizing Content on Web Pages.

To configure hierarchy viewer drag and drop:

1. To configure a hierarchy viewer as a drop target, in the Components window, from
the Operations panel, drag a Drop Target and drop it as a child to the hierarchy
viewer.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the hierarchy
viewer's managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named toDropListener() on a managed bean
named hvBean, choose Edit, select hvBean from the dropdown menu, and click
New on the right of the Method field to create the toDropListener() method.

The example below shows the sample drop listener and supporting methods for
the hierarchy viewer displayed in Figure 31-20.

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import
oracle.adf.view.faces.bi.component.hierarchyViewer.UIHierarchyViewer;
import javax.faces.component.UIComponent;

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-40

// variables need by methods
private String dragText = "Drag this text onto a node or the hierarchy
viewer background";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor =
DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 sb.append("Drop Site: ");
 if(rowKey != null) {
 sb.append("Node: ");
 sb.append(getLabel(dropComponent, rowKey));
 }
 else {
 sb.append("Background");
 }
 }
 // Update the output text
 this._dragText = sb.toString();

RequestContext.getCurrentInstance().addPartialTarget(event.getDragCompon
ent());
 return event.getProposedAction();
}
private String getLabel(UIComponent component, Object rowKey) {
 if(component instanceof UIHierarchyViewer) {
 UIHierarchyViewer hv = (UIHierarchyViewer) component;
 Employee rowData = (Employee) hv.getRowData(rowKey);
 return rowData.getFirstName() + " " + rowData.getLastName();
 }
 return null;
}

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-41

private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UIHierarchyViewer) {
 UIHierarchyViewer hv = (UIHierarchyViewer) component;
 ClientRowKeyManager crkm = hv.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}
public String getDragText() {
 return _dragText;
}

Note:

This method references an Employee class that defines the attributes for
the hierarchy viewer. If your hierarchy viewer uses a different class,
substitute the name of that class instead.

If you want to look at the source code for the Employee class used in this
example, you can find the source code for it and other supporting
classes in the ADF Faces Components Demo application. For more
information about the demo application, see ADF Faces Components
Demo Application .

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter the object that the drop target will accept.
Alternatively, use the dropdown menu to navigate through the object hierarchies
and choose the desired object.

For example, to allow the af:outputFormatted component to drag text to the
hierarchy viewer, enter java.lang.Object in the Insert Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget node and choose Go to
Properties.

6. In the Properties window, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

7. To use the hierarchy viewer as the drop target, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drag
Source as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source as a child to an
af:outputFormatted component.

b. In the Structure window, right-click the af:dragSource node and choose Go to
Properties.

c. In the component's Value field, reference the public variable that you created
in the drop listener for the hierarchy viewer in Step 2.

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-42

For example, for a drop listener named toDropListener() and a variable
named dropText, enter the following in the component's Value field:

#{hvBean.dropText}

8. To configure the hierarchy viewer as a drag source, in the Components window,
from the Operations panel, drag and drop a Drag Source as a child to the
hierarchy viewer.

9. In the Properties window, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

10. To specify the default action that the drag source will support, use the
DefaultAction attribute's dropdown menu to choose COPY, MOVE, or LINK.

The hierarchy viewer in the drag and drop example in Figure 31-20 uses MOVE as
the default action.

11. To make another component the drop target for drags from the hierarchy viewer,
do the following:

a. In the Components window, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, the page in the drag and drop example in Figure 31-20 contains
an af:outputFormatted component that displays the results of the drop.

b. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named fromDropListener() on a managed
bean named hvBean, choose Edit, select hvBean from the dropdown menu,
and click New on the right of the Method field to create the
fromDropListener() method.

The example below shows the sample drop listener for the hierarchy viewer
displayed in Figure 31-20. This example uses the same imports and helper
methods used in, and they are not included here.

// Additional import needed for listener
import org.apache.myfaces.trinidad.model.RowKeySet;
// Variables needed by method
private String dropText = "Drop a node here";
// Drop listener
public DnDAction fromDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<RowKeySet> dataFlavor =
DataFlavor.getDataFlavor(RowKeySet.class);
 RowKeySet rowKeySet = transferable.getData(dataFlavor);
 if(rowKeySet == null || rowKeySet.getSize() <= 0)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-43

 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 sb.append("Nodes: ");
 UIComponent dragComponent = event.getDragComponent();
 for(Object rowKey : rowKeySet) {
 sb.append(getLabel(dragComponent, rowKey));
 sb.append(", ");
 }
 // Remove the trailing ,
 sb.setLength(sb.length()-2);
 // Update the output text
 this.dropText = sb.toString();

RequestContext.getCurrentInstance().addPartialTarget(event.getDropCo
mponent());
 return event.getProposedAction();
}

c. Click OK to enter the Insert Data Flavor dialog.

d. In the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

For example, to allow the af:outputFormatted component to drag text to the
hierarchy viewer, enter org.apache.myfaces.trinidad.model.RowKeySet in
the Insert Data Flavor dialog.

e. In the Structure window, right-click the af:dropTarget node and choose Go to
Properties.

f. In the Properties window, in the Actions field, enter a list of the operations
that the drop target will accept, separated by spaces. Allowable values are:
COPY, MOVE, or LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

g. In the component's value field, reference the public variable that you created
in the drop listener for the treemap or sunburst in Step 2.

For example, for a drop listener named fromDropListener() and a variable
named dragText, enter the following in the component's Value field:

#{hvBean.dragText}

Chapter 31
Adding Interactivity to a Hierarchy Viewer Component

31-44

What You May Need to Know About Configuring Hierarchy Viewer Drag and
Drop

You can disable the ability to drag a node by setting its draggable attribute to no.

Adding Search to a Hierarchy Viewer
The ADF DVT hierarchy viewer component search functionality looks through the data
structure of the hierarchy viewer and presents matches in a scrollable list. Users can
double-click a search result to display the matching node as the anchor node in the
hierarchy viewer. When enabled, a search panel is displayed in the upper right-hand
corner of the hierarchy viewer, and results are displayed below the search panel.

Figure 31-23 shows a sample search panel.

Figure 31-23 Hierarchy Viewer Search Panel

Figure 31-24 shows sample search results.

Figure 31-24 Hierarchy Viewer Sample Search Results

How to Configure Searching in a Hierarchy Viewer
Add the dvt:search tag as a child of the dvt:hierarchyViewer tag to enable
searching, and dvt:searchResults as a child of dvt:search to specify how to handle
the results.

Search in a hierarchy viewer is based on the searchable attributes or columns of the
data collection that is the basis of the hierarchy viewer data model. Using a query
results collection defined in data controls in Oracle ADF, JDeveloper makes this a
declarative task. For more information, see the "How to Create a Databound Search in
a Hierarchy Viewer" section in Developing Fusion Web Applications with Oracle
Application Development Framework.

Chapter 31
Adding Search to a Hierarchy Viewer

31-45

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Configuring Hierarchy Viewer Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Hierarchy
Viewer Components.

You should already have a hierarchy viewer on your page. If you do not, follow the
instructions in this chapter to create a hierarchy viewer. For more information, see
How to Add a Hierarchy Viewer to a Page.

To configure search in a hierarchy viewer:

1. In the Structure window, right-click the dvt:hierarchyViewer node and choose
Insert Inside Hierarchy Viewer > Search.

2. In the Properties window, set the following attributes to configure the search
functionality:

• Value: Specify the variable to hold the search text.

• ActionListener: Enter the listener called to perform the search.

• InitialBehavior: Specify how the search panel is initially displayed. Valid
values are initCollapsed for initially collapsed, initExpanded for initially
expanded, or hidden for completely hidden from view.

3. Optionally, to configure a component that will use the af:query component to
launch an advanced search outside of the hierarchy viewer component:

a. In the Structure window, expand the dvt:search node.

b. Right-click the af:link node and choose Go to Properties.

c. In the Properties window, configure any desired properties for the af:link
node.

For example, to change the text that displays Advanced for the advanced
search, enter a value for the Text attribute.

d. To add a popup that will display the advanced search options to the user, in
the Structure window, right-click the af:link node and choose Insert Inside
Link > ADF Faces > Show Popup Behavior.

e. To complete the popup configuration, add the af:popup component to your
page and configure the af:query component to perform the search.

For help with configuring popups, see Declaratively Invoking a Popup. For
more information about the query component, see Using the query
Component.

4. In the Structure window, right-click the dvt:search node and choose Insert Inside
Search > Search Result.

5. In the Properties window, set the following attributes to configure the display of the
search results:

• Value: Specify the search results data model. This must be an instance of
oracle.adf.view.faces.bi.model.DataModel.

Chapter 31
Adding Search to a Hierarchy Viewer

31-46

• Var: Enter the name of the EL variable used to reference each element of the
hierarchy viewer collection. Once this component has completed rendering,
this variable is removed, or reverted back, to its previous value.

• VarStatus: Enter the name of the EL variable used to reference the varStatus
information. Once this component has completed rendering, this variable is
removed, or reverted back, to its previous value.

• ResultListener: Specify a reference to an action listener that will be called
after a row in the search results is selected.

• EmptyText: Specify the text to display when no results are returned.

• FetchSize: Specify the number of result rows to fetch at a time.

6. In the Structure window, right-click the dvt:searchResults node and choose
Inside Search Result > Set Property Listener.

7. In the Properties window, set the following attributes to map the search results
node from the results model to the corresponding hierarchy viewer model:

• From: Specify the source of the value, a constant or an EL expression.

• To: Specify the target of the value.

• Type: Choose action as the value.

8. In the Structure window, do the following to specify the components to stamp out
the search results:

• To wrap the output of the search results, right-click the f:facet-content node
and choose Insert Inside Facet > ADF Faces > Panel Group Layout.

• To display the search results, insert the ADF Faces output components inside
the af:panelGroupLayout node to display the search results.

For example, to display output text, right-click the af:panelGroupLayout node
and choose Insert Inside Panel Group Layout > Output Text.

The following output appears in the code after inserting and configuring two
af:outputText elements:

<af:outputText value="#{resultRow.Lastname} " id="ot1"
 inlineStyle="color:blue;"/>
<af:outputText value="#{resultRow.Firstname}" id="ot2"/>

Each stamped row references the current row using the var attribute of the
dvt:searchResults tag.

The example below shows sample code for configuring search in a hierarchy viewer.

<dvt:hierarchyViewer>
 ... hierarchy viewer details omitted
 <dvt:search id="searchId" value="#{bindings.lastNameParam.inputValue}"
 actionListener="#{bindings.ExecuteWithParams1.execute}">
 <f:facet name="end">
 <af:link text="Advanced" styleClass="AFHVAdvancedSearchLinkStyle"
id="l2">
 <af:showPopupBehavior popupId="::mypop" triggerType="action"/>
 </af:link>
 </f:facet>
 <dvt:searchResults id="searchResultId"
 emptyText="#{bindings.searchResult1.viewable ?

Chapter 31
Adding Search to a Hierarchy Viewer

31-47

'No match.' : 'Access Denied.'}"
 fetchSize="25"
 value="#{bindings.searchResult1.collectionModel}"

resultListener="#{bindings.ExecuteWithParams.execute}"
 var="resultRow">
 <af:setPropertyListener from="#{resultRow.Id}"
 to="#{bindings.employeeId.inputValue}"
 type="action"/>
 <f:facet name="content">
 <af:panelGroupLayout layout="horizontal">
 <af:outputText value="#{resultRow.Lastname} " id="ot1"
 inlineStyle="color:blue;"/>
 <af:outputText value="#{resultRow.Firstname}" id="ot2"/>
 </af:panelGroupLayout>
 </f:facet>
 </dvt:searchResults>
 </dvt:search>
</dvt:hierarchyViewer>

What You May Need to Know About Configuring Search in a Hierarchy
Viewer

The search results stamp display in the size specified in its outermost container, the
af:panelGroupLayout. By default, this size is 100 x 30 pixels. If you need to adjust the
size of the search results display, configure the InlineStyle attribute of the
af:panelGroupLayout.

For more information, see How to Use the panelGroupLayout Component.

Chapter 31
Adding Search to a Hierarchy Viewer

31-48

32
Using Treemap and Sunburst Components

This chapter describes how to use the ADF Data Visualization treemap and sunburst
components to display hierarchical data in treemaps and sunbursts using simple UI-
first development. The chapter defines the data requirements, tag structure, and
options for customizing the look and behavior of the components.
If your application uses the Fusion technology stack, then you can also use data
controls to create treemaps and sunbursts. For more information, see the "Creating
Databound Hierarchy Viewer, Treemap, and Sunburst Components" chapter of
Developing Fusion Web Applications with Oracle Application Development
Framework.

This chapter includes the following sections:

• About the Treemap and Sunburst Components

• Using the Treemap and Sunburst Components

• Adding Data to Treemap and Sunburst Components

• Customizing Treemap and Sunburst Display Elements

• Adding Interactive Features to Treemaps and Sunbursts

About the Treemap and Sunburst Components
ADF DVT Treemaps and Sunbursts are visualizations to provide a two-dimensional,
aesthetically pleasing representation of hierarchical data. Each data component is
represented using a shape called a node. Use Treemaps and Sunbursts to easily
identify significant data and points of interest.

For example, you can use a treemap or sunburst to display quarterly regional sales
and to identify sales trends, using the size of the node to indicate each region's sales
volume and the node's color to indicate whether that region's sales increased or
decreased over the quarter. The appearance and content of the nodes are
configurable at each level of the hierarchy.

Treemap and Sunburst Use Cases and Examples
Treemaps display nodes as a set of nested rectangles. Each branch of the tree is
given a rectangle, which is then tiled with smaller rectangles representing sub-
branches.

Figure 32-1 shows a treemap displaying United States census data grouped by
regions, with the color attribute used to indicate median income levels. States with
larger populations display in larger-sized nodes than states with smaller populations.

32-1

Figure 32-1 Treemap Displaying United States Population and Median Income
by Regions

Sunbursts display the nodes in a radial rather than a rectangular layout, with the top of
the hierarchy at the center and deeper levels farther away from the center. Figure 32-2
shows the same census data displayed in a sunburst.

Figure 32-2 Sunburst Displaying United States Population and Median Income
by Regions

Chapter 32
About the Treemap and Sunburst Components

32-2

Both treemaps and sunbursts can display thousands of data points in a relatively small
spatial area. These components are a good choice for identifying trends for large
hierarchical data sets, where the proportional size of the nodes represents their
importance compared to the whole. Color can also be used to represent an additional
dimension of information.

Use treemaps if you are primarily interested in displaying two metrics of data using
size and color at a single layer of the hierarchy. Use sunbursts instead if you want to
display the metrics for all levels in the hierarchy. Drilling can be enabled to allow the
end user to traverse the hierarchy and focus in on key parts of the data.

If your application uses a smaller data set or you wish to emphasize the parent/child
relationship between the nodes, then consider using the tree, treeTable, or
hierarchyViewer component. For information about using trees and tree tables, see
Using Tables, Trees, and Other Collection-Based Components. For information about
using hierarchy viewers, see Using Hierarchy Viewer Components.

End User and Presentation Features of Treemaps and Sunbursts
The ADF Data Visualization treemap and sunburst components provide a range of
features for end users, such as drilling, grouping, and filtering. They also provide a
range of presentation features, such as layout variations, legend display, and
customizable colors and label styles.

To use and customize treemap and sunburst components, it may be helpful to
understand these features and components:

Treemap and Sunburst Layouts
You define the initial layout of the treemap or sunburst when you insert the component
on the page from either the Data Controls panel to bind a data collection to the
treemap or sunburst component or from the Components window to insert the
component.

The sunburst component has only one layout, as shown in Figure 32-2.

The layout of nodes in a treemap component is configurable and includes the following
types of layouts:

• Squarified, nodes are laid out to be as square as possible.

The squarified layout is optimized so that the user can most easily compare the
relative sizes of the nodes and is the layout displayed in Figure 32-3.

Chapter 32
About the Treemap and Sunburst Components

32-3

Figure 32-3 Treemap Displaying United States Data in Squarified Layout

• Slice and dice horizontal, nodes are first laid out horizontally across the width of
the treemap and then vertically across the height of the treemap.

This layout is optimized for animation because the relative ordering of the nodes
remains constant. Figure 32-4 displays the sample United States census data in
the slice and dice horizontal layout.

Figure 32-4 Treemap Displaying United States Census Data in Slice and
Dice Horizontal Layout

• Slice and dice vertical, nodes are first laid out vertically across the height of the
treemap and then horizontally across the width of the treemap.

Chapter 32
About the Treemap and Sunburst Components

32-4

This layout is also optimized for animation because the relative ordering of the
nodes remains constant. Figure 32-5 displays the sample United States census
data in the slice and dice vertical layout.

Figure 32-5 Treemap Displaying United States Census Data in Slice and
Dice Vertical Layout

Attribute Groups
Treemaps and sunbursts support the use of the dvt:attributeGroups tag to generate
stylistic attribute values such as colors for each unique group in the data set.

In treemaps and sunbursts, the data values determine which color to display. Both
components display continuous data by selecting a color across a gradient, in which
the nodes change color gradually based on the data values. The treemap in
Figure 32-1 uses gradients to display the median income as a range of data.

For discrete data, treemaps and sunbursts display a specific color, also based on the
data value. Figure 32-6 shows the same United States census population using two
colors to distinguish between high and low median incomes.

Chapter 32
About the Treemap and Sunburst Components

32-5

Figure 32-6 Treemap Displaying Discrete Attribute Groups

Attribute groups are required for legend support and make it easier to customize the
color and pattern of the nodes.

Legend Support
Treemaps and sunbursts display legends below the components to provide a visual
clue to the type of data controlling the size and color. If the component uses attribute
groups to specify colors based on conditions such as income levels, the legend can
also display the colors used and indicate what value each color represents.

The treemap in Figure 32-6 displays a legend for a treemap using discrete attribute
groups. The legend makes it easy to determine which colors are used to indicate low
or high median incomes.

If your treemap uses continuous attribute groups, the legend displays the colors used
as a gradient. The treemap in Figure 32-1 shows a legend for a treemap using
continuous attribute groups to indicate median income levels.

Pattern Support
Treemaps and sunbursts display patterns when values are specified for the
fillPattern attribute on the child nodes. The pattern is drawn with a white
background, and the fillColor value determines the foreground color.

Figure 32-7 shows a sunburst configured with an assortment of fill patterns.

Chapter 32
About the Treemap and Sunburst Components

32-6

Figure 32-7 Sunburst Illustrating Pattern Fill

Node Selection Support
Treemaps and sunbursts support the ability to respond to user clicks on one or more
nodes to display information about the selected node(s).

Figure 32-8 shows a treemap configured for multiple selection support.

Figure 32-8 Treemap Illustrating Multiple Selection Support

Chapter 32
About the Treemap and Sunburst Components

32-7

Tooltip Support
Treemaps and sunbursts support the ability to display additional information about a
node when the user moves the mouse over a node.

Figure 32-9 shows the tooltip that is displayed when the user moves the mouse over
the Alaska node.

Figure 32-9 Treemap Displaying a Tooltip

The tooltip permits the user to see information about the data that may not be obvious
from the visual display. Configuring tooltips on treemaps and sunbursts is
recommended due to the space-constrained nature of the components.

Popup Support
Treemap and sunburst components can be configured to display popup dialogs,
windows, and menus that provide information or request input when the user clicks or
hovers the mouse over a node.

Figure 32-10 shows a sample popup displayed when a user hovers the mouse over
one of the treemap nodes.

Chapter 32
About the Treemap and Sunburst Components

32-8

Figure 32-10 Treemap Popup on Mouse Hover

Figure 32-11 shows a similar popup window that is displayed when the user clicks on
one of the sunburst nodes.

Figure 32-11 Sunburst Popup on Mouse Click

Context Menus
Treemaps and sunbursts support the ability to display context menus to provide
additional information about the selected node.

Figure 32-12 shows a context menu displayed when the user right-clicks on one of the
sunburst nodes.

Chapter 32
About the Treemap and Sunburst Components

32-9

Figure 32-12 Treemap Context Menu

Drilling Support
Treemap and sunburst components support drilling to navigate through the hierarchy
and display more detailed information about a node.

Figure 32-13 shows the treemap that is displayed when a user clicks on the West
Region header text in Figure 32-6. The user can navigate back up the hierarchy by
clicking on the United States > West Region breadcrumb.

Figure 32-13 Treemap Drilled on a Group Node Header

Chapter 32
About the Treemap and Sunburst Components

32-10

The user can also double-click on a node to set the node as the root of the hierarchy
as shown in Figure 32-14.

Figure 32-14 Treemap Drilled on a Node

To drill on a sunburst component, the user double-clicks a sunburst node to set it as
the root of the hierarchy as shown in Figure 32-15. The user can navigate back up the
hierarchy by clicking the United States > West Region breadcrumb or by pressing the
shift key and double-clicking the West Region node.

Chapter 32
About the Treemap and Sunburst Components

32-11

Figure 32-15 Sunburst Drilled on a Node

Sunbursts also provide the ability to expand or collapse the children of a selected
node. Users click the Expand icon that appears when the user moves the mouse over
the node to expand it. To collapse the children, users click the Collapse icon.

Figure 32-16 shows a sunburst configured for asymmetric drilling.

Chapter 32
About the Treemap and Sunburst Components

32-12

Figure 32-16 Sunburst Configured for Asymmetric Drilling

Other Node Support
Treemap and sunburst components provide the ability to aggregate data if your data
model includes a large number of smaller contributors in relation to the larger
contributors.

Figure 32-17 shows the census treemap displayed in Figure 32-6 with the Other node
configured. In this example, the South Carolina, Delaware, West Virginia, and
District of Columbia nodes in the South Atlantic region are represented by the Other
node.

Chapter 32
About the Treemap and Sunburst Components

32-13

Figure 32-17 Treemap Displaying Other Node

Drag and Drop Support
Treemap and sunburst components support drag and drop both as a drop source and
a drop target.

Figure 32-18 shows a treemap configured as a drag source. When the user drags one
of the nodes to the text on the right, the text changes to reflect which node was
dragged.

Figure 32-18 Treemap Configured as a Drag Source

Chapter 32
About the Treemap and Sunburst Components

32-14

Figure 32-19 shows a treemap configured as a drop target. When the user drags the
text on the right to one of the nodes, the text changes to reflect which node received
the text.

Figure 32-19 Treemap Configured as a Drop Target

Sorting Support
Treemap and sunburst components support sorting to display nodes with the same
parent by size. This feature is useful if your data model is not already sorted because it
makes comparison of the nodes easier.

Figure 32-20 shows a sorted treemap. The nodes are arranged in decreasing size,
making it easy to see which regions have the largest population.

Figure 32-20 Sorted Treemap

Chapter 32
About the Treemap and Sunburst Components

32-15

Note:

Treemaps support sorting in the slice and dice layouts only.

Treemap and Sunburst Image Formats
Treemaps and sunbursts support the following image formats: HTML5, Flash, and
Portable Network Graphics (PNG).

By default, treemaps and sunbursts will display in the best output format supported by
the client browser. If the best output format is not available on the client, the
application will default to an available format. For example, if the client does not
support HTML5, the application will use:

• Flash, if the Flash Player is available.

You can control the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Configuring Flash as Component Output Format.

• PNG output format. Although static rendering is fully supported when using a PNG
output format, certain interactive features are not available including:

– Animation

– Context menus

– Drag and drop gestures

– Popup support

– Selection

Advanced Node Content
Treemaps and sunbursts provide a content facet on the nodes to add content that
would not normally fit into a text label. For sunbursts, the advanced content is
displayed on the root node. For treemaps, the advanced content is displayed on the
leaf nodes.

Figure 32-21 shows an example of a sunburst using advanced node content on the
root node. In this example, the root node displays an image and title in addition to the
node text.

Chapter 32
About the Treemap and Sunburst Components

32-16

Figure 32-21 Sunburst Displaying Advanced Root Node Content

Figure 32-22 shows an example of a treemap using advanced node content.

Figure 32-22 Treemap Displaying Advanced Node Content

Chapter 32
About the Treemap and Sunburst Components

32-17

Note:

Advanced node content is limited to af:outputText, af:panelGroupLayout,
af:spacer, and af:image components. For details about configuring
advanced node content, see Configuring Treemap and Sunburst Advanced
Node Content.

Printing and Email Support
ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing or for emailing. For example, you may want users to be
able to print a page (or a portion of a page), but instead of printing the page exactly as
it is rendered in a web browser, you want to remove items that are not needed on a
printed page, such as scroll bars and buttons.

If a page is to be emailed, the page must be simplified so that email clients can
correctly display it. For information about creating simplified pages for these outputs,
see Using Different Output Modes .

Active Data Support (ADS)
Treemaps and sunbursts support ADS by sending a Partial Page Refresh (PPR)
request when an active data event is received. The PPR response updates the
components, animating the changes as needed.

Supported ADS events include:

• Node size updates

• Node color updates

• Node label updates

• Node insertion

• Node deletion

• Enhanced node content changes

For additional information about using the Active Data Service, see Using the Active
Data Service with an Asynchronous Backend.

Isolation Support (Treemap Only)
Treemaps provide isolation support to focus on comparisons within groups of
displayed data. Users click the Isolate icon that appears when the user moves the
mouse over the group header to maximize the group.

Figure 32-23 shows the Isolate icon that appears when the user moves the mouse
over the South Atlantic group header.

Chapter 32
About the Treemap and Sunburst Components

32-18

Figure 32-23 Isolate Icon Displayed on Treemap Group Header

Figure 32-24 shows the treemap that is displayed when the users click the Isolate icon
for the South Atlantic region in Figure 32-23.

To restore the treemap to the original view, users click the Restore icon.

Figure 32-24 Treemap Isolated on a Group

Treemap Group Node Header Customization (Treemap Only)
When the treemap displays multiple levels, the parent level is displayed in a group
header. By default, the group header is displayed with a white background, and the
group's title is aligned to the left in left-to-right mode and displayed with black text.

Figure 32-25 shows a portion of a treemap with node headers. In this example, the
South Region and South Atlantic headers are formatted with the default formatting.

Chapter 32
About the Treemap and Sunburst Components

32-19

Figure 32-25 Treemap Showing Default Node Header Formatting

You can customize the headers to use the node's color, change the text alignment or
customize the font.

Figure 32-26 shows the same treemap with the node header formatted to use the
node's color, align the title to the center and change the font size and color.

Figure 32-26 Treemap Showing Formatted Group Node Headers

In this example, the treemap nodes are displayed in red when the income levels are
lower than $50,000, and the treemap nodes are displayed in blue when the income
levels are higher than $50,000. The South Atlantic node header is displayed in blue
because the color is calculated from the same rules that were used to calculate the
color of the individual nodes. In this case, the income levels of all nodes contained
within the South Atlantic division are higher than $50,000. However, the South Region
node header is displayed in red because it also includes the West South Central and
East South Central divisions. In this case, the income levels of all nodes contained
within the South Region is less than $50,000.

Additional Functionality for Treemap and Sunburst Components
You may find it helpful to understand other ADF Faces features before you implement
your treemap or sunburst component. Additionally, once you have added a treemap or
sunburst to your page, you may find that you need to add functionality such as
validation and accessibility.

Following are links to other functionality that treemap and sunburst components can
use:

Chapter 32
About the Treemap and Sunburst Components

32-20

• Partial page rendering: You may want a treemap or sunburst to refresh to show
new data based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the treemap or
sunburst displays at runtime. Those values will not be retained once the user
leaves the page unless you configure your application to allow user customization.
For information, see Allowing User Customization on JSF Pages.

• Skins and styles: You can customize the appearance of treemap or sunburst
components using an ADF skin that you apply to the application or by applying
CSS style properties directly using a style-related property (styleClass or
inlineStyle). For more information, see Customizing the Appearance Using
Styles and Skins.

• Accessibility: You can make your treemap and sunburst components accessible.
For more information, see Developing Accessible ADF Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound treemaps and sunbursts based on how your
ADF Business Components are configured. For more information, see the
"Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components"
chapter of Developing Fusion Web Applications with Oracle Application
Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), and how data can
be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Using the Treemap and Sunburst Components
To use the ADF DVT Treemap and Sunburst components, add the selected
component to a page using the Component Palette window. Then define the data for
the treemap or sunburst and complete the additional configuration in JDeveloper using
the tag attributes in the Properties window.

Chapter 32
Using the Treemap and Sunburst Components

32-21

Treemap and Sunburst Data Requirements
Treemap and sunburst components require data collections where a master-detail
relationship exists between one or more detail collections and a master detail
collection. Both components use the same data model as the ADF Faces tree
component.

For more information about the tree component, see Displaying Data in Trees.

Treemaps and sunbursts require that the following attributes be set in JDeveloper:

• value: the size of the node

• fillColor: the color of the node

• label: a text identifier for the node

The values for the value and label attributes must be stored in the treemap's or
sunburst's data model or in classes and managed beans if you are using UI-first
development. You can specify the fillColor values in the data model, classes, and
managed beans, or declaratively in the Properties window.

Figure 32-27 shows a subset of the data used to generate the treemap in Figure 32-1.
This is the same data used to generate the sunburst in Figure 32-2.

Figure 32-27 Treemap and Sunburst Sample Data

In this example, United States is the root node with three child levels: region,
division, and state.

In order to configure a treemap or sunburst successfully, ensure that the data adheres
to the following rules:

• Each child node can have only one parent node.

• There can be no skipped levels.

To create a treemap or sunburst model in UI-first development, use classes and
managed beans to define the tree node and tree model, populate the tree with data
and add additional methods as needed to configure the treemap or sunburst.

See Sample Code for Treemap and Sunburst Census Data Example for sample code
that defines the classes and managed beans used in both the treemap and sunburst
census data examples.

Chapter 32
Using the Treemap and Sunburst Components

32-22

Using the Treemap Component
To use the treemap component, add the treemap to a page and complete the
additional configuration in JDeveloper.

Configuring Treemaps
The treemap component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the treemap. The prefix dvt:
occurs at the beginning of each treemap component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure treemap child components, attributes, and supported facets in the
following areas:

• Treemap (dvt:treemap): Wraps the treemap nodes. Configure the following
attributes to control the treemap display.

– Labels: Use the colorLabel and sizeLabel attributes to identify the color and
size metrics for the treemap. Treemaps require these labels for legend display.

– Legend source (legendSource): Use this attribute to display a legend for
treemaps configured with attribute groups. Specify the id of the attribute group.

– Display child levels (displayLevelsChildren): Specify the number of child
levels to display. By default, treemaps display the root and the first two child
levels.

– Animation: Use the animationOnDisplay attribute to control the initial
animation and the animationOnDataChange attribute to control subsequent
animations. To change the animation duration from the default duration of 500
milliseconds, modify the animationDuration attribute.

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if a treemap node contains no data.

– Group gaps (groupGaps): Specify the gaps to display between groups. By
default, this attribute is set to outer, and the treemap displays gaps between
the outer nodes only. You can remove all gaps by setting this attribute to none
or add gaps between all groups by setting this attribute to all.

– Sorting (sorting): If your treemap uses a slice and dice layout, use this
attribute to sort all nodes having the same parent in descending size.

– Other group: Use the otherThreshold, otherThresholdBasis, otherColor,
and otherPattern attributes to aggregate child data into an Other node.

• Treemap node (dvt:treemapNode): child of the treemap component. This tag
defines the size and color for each node in the treemap and is stamped for each
row in the data model. If you want to vary the stamp by row, use the ADF Faces
af:switcher component, and insert a treemap node for each row. Configure the
following attributes to control the node display:

– value (required): Specify the value of the treemap node. The value determines
the relative size of the node within the treemap.

– fillColor (required): Specify the fill color for the node in RGB hexadecimal.
This value is also required for the treemap to display properly.

Chapter 32
Using the Treemap and Sunburst Components

32-23

– fillPattern: Specify an optional fill pattern to use. The pattern is drawn with
a white background and the foreground color uses the color specified in the
fillColor attribute.

– groupLabelDisplay: Specify where you want the group label to appear. By
default this value is set to header which will display the label on the group
header. You can also set it to off to turn off the label display or node to
display the label inside the node.

– label: Specify the label for the node.

– labelDisplay: Specify where you want the node label to appear. By default,
this attribute is set to node which will display the label inside the node, but you
can also set it to off to turn off the label display.

You can further customize the label display by setting the labelHalign,
labelStyle, and labelValign attributes.

• Treemap node header (dvt:treemapNodeHeader): optional child of the treemap
node. Add this attribute to configure the following node header attributes:

– isolate: By default, this attribute is set to on, but you can set it to off to
disable isolation support.

– labelStyle: Specify the font style.

– useNodeColor: By default, this attribute is set to off. Set this to on to display
the node's color in the header.

– titleHalign: Specify where you want the title to appear in the header. By
default, this attribute is set to start which aligns the title to the left in left-to-
right mode and aligns it to the right in to right-to-left mode.

• Attribute group (dvt:attributeGroup): optional child of the treemap node. Add this
attribute to generate fillColor and fillPattern values automatically based on
categorical bucketing or continuous classification of the data set.

• Supported facets: optional children of the treemap or treemap node. The treemap
component supports facets for displaying popup components, and the treemap's
node component supports a content facet for providing additional detail when the
treemap node's label is not sufficient.

Treemaps also share much of the same functionality and tags as other DVT
components. For a complete list of treemap tags, consult the Tag Reference for Oracle
ADF Faces Data Visualization Tools. For information about additional functionality for
treemap components, see Additional Functionality for Treemap and Sunburst
Components.

How to Add a Treemap to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a treemap to a JSF page. When you drag and drop a
treemap component onto the page, a Create Treemap dialog displays.

Figure 32-28 shows the Create Treemap dialog.

Chapter 32
Using the Treemap and Sunburst Components

32-24

Figure 32-28 Create Treemap Dialog Using UI-First Development

If you click OK, the treemap is added to your page, and you can use the Properties
window to specify data values and configure additional display attributes. Alternatively,
you can choose to bind the data during creation and use the dialog to configure the
associated node data.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 32-29 shows the
dropdown menu for a treemap value attribute.

Figure 32-29 Treemap Value Attribute Dropdown Menu

Chapter 32
Using the Treemap and Sunburst Components

32-25

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a treemap and the binding will be done for you. For more
information, see the "Creating Databound Hierarchy Viewer, Treemap, and
Sunburst Components" section in Developing Fusion Web Applications with
Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how treemap attributes and treemap
child tags can affect functionality. For more information, see Configuring Treemaps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a treemap to a page:

1. In the ADF Data Visualization page of the Components window, from the Common
panel, drag and drop a Treemap onto the page to open the Create Treemap
dialog.

2. In the Create Treemap dialog, click OK to add the treemap to the page.

Optionally, use the dialog to bind the treemap by selecting Bind Data Now and
navigating to the ADF data control that represents the data you wish to display on
the treemap. If you choose this option, the data binding fields in the dialog will be
available for editing. For help with the dialog, press F1 or click Help.

3. In the Properties window, view the attributes for the treemap. Use the help button
to display the complete tag documentation for the treemap component.

4. Expand the Appearance section, and enter a value for the Summary attribute.

Enter a summary of the treemap’s purpose and structure for accessibility support.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute's dropdown menu to select a text resource or EL expression

What Happens When You Add a Treemap to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a treemap
from the Components window onto a JSF page and choose not to bind the data during
creation.

The example below shows the generated code for the treemap.

<dvt:treemap id="t1">
 <f:facet name="multiSelectContextMenu"/>
 <f:facet name="contextMenu"/>
 <f:facet name="bodyContextMenu"/>

Chapter 32
Using the Treemap and Sunburst Components

32-26

 <dvt:treemapNode id="tn1"/>
</dvt:treemap>

If you choose to bind the data to a data control when creating the treemap, JDeveloper
generates code based on the data model. For more information, see the "Creating
Databound Hierarchy Viewer, Treemap, and Sunburst Components" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Using the Sunburst Component
To use the sunburst component, add the sunburst to a page and complete the
additional configuration in JDeveloper.

Configuring Sunbursts
The sunburst component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the treemap. The prefix dvt:
occurs at the beginning of each treemap component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure sunburst child components, attributes, and supported facets in the
following areas:

• Sunburst (dvt:sunburst): Wraps the sunburst nodes. Configure the following
attributes to control the sunburst display.

– Labels: Use the colorLabel and sizeLabel attributes to identify the color and
size metrics for the sunburst. Sunbursts require these labels for legend
display.

– Legend source (legendSource): Use this attribute to display a legend for
sunbursts configured with attribute groups. Specify the id of the attribute
group.

– Display child levels (displayLevelsChildren): Specify the number of child
levels to display. By default, sunbursts display the root and the first two child
levels.

– Animation: Use the animationOnDisplay attribute to control the initial
animation and the animationOnDataChange attribute to control subsequent
animations. To change the animation duration from the default duration of 500
milliseconds, modify the animationDuration attribute.

– Rotation (rotation): Use this attribute to enable client-side sunburst rotation.

– Start angle (startAngle): Specify the starting angle of the sunburst.

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if a sunburst node contains no data.

– Sorting (sorting): If your treemap uses a slice and dice layout, use this
attribute to sort all nodes having the same parent in descending size.

– Other group: Use the otherThreshold, otherThresholdBasis, otherColor,
and otherPattern attributes to aggregate child data into an Other node.

• Sunburst node (dvt:sunburstNode): child of the sunburst component. This tag
defines the size and color for each node in the sunburst and is stamped for each

Chapter 32
Using the Treemap and Sunburst Components

32-27

row in the data model. If you want to vary the stamp by row, use the ADF Faces
af:switcher component, and insert a sunburst node for each row. Configure the
following attributes to control the node display:

– value (required): Specify the value of the sunburst node. The value
determines the relative size of the node within the sunburst.

– fillColor (required): Specify the fill color for the node in RGB hexadecimal.
This value is also required for the sunburst to display properly.

– fillPattern: Specify an optional fill pattern to use. The pattern is drawn with
a white background and the foreground color uses the color specified in the
fillColor attribute.

– label: Specify the label for the node.

– labelDisplay: Specify how you want the node label to appear. By default, this
attribute is set to auto, and the sunburst will display rotated labels inside the
node if the client supports rotated text. If the client does not support rotated
text, the sunburst will display horizontal labels inside the node instead. You
can also set it to off to turn off the label display, to on to display horizontal
labels within the nodes, or to rotated to display rotated labels.

Note:

Rotated text is not supported on all client technologies. In particular,
rotated text is not supported on clients using the Flash image format.
If the client does not support rotated text and the labelDisplay
attribute is set to auto or rotated, the sunburst will display horizontal
labels within the nodes.

– labelHalign: Specify the label alignment for the node. By default, this
attribute is set to center which aligns the label in the center of a node slice.
You can also set this to inner which aligns the label to the inner side of a
slice, or outer which aligns the label to the outer side of a slice.

– radius: Specify the radius of the node relative to the other nodes. By default,
this attribute is set to 1. You can specify a value or enter an El Expression that
returns the radius for the node.

• Attribute group (dvt:attributeGroup): optional child of the sunburst node. Add
this attribute to generate fillColor and fillPattern values automatically based
on categorical bucketing or continuous classification of the data set.

• Supported facets: optional children of the sunburst or sunburst node. The
sunburst component supports facets for displaying popup components, and the
sunburst's node component supports a content facet for providing additional detail
when the sunburst node's label is not sufficient.

Sunbursts also share much of the same functionality and tags as other DVT
components. For a complete list of sunburst tags, consult the Tag Reference for
Oracle ADF Faces Data Visualization Tools. For information about additional
functionality for sunburst components, see Additional Functionality for Treemap and
Sunburst Components.

Chapter 32
Using the Treemap and Sunburst Components

32-28

How to Add a Sunburst to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a sunburst to a JSF page. When you drag and drop a
sunburst component onto the page, a Create Sunburst dialog displays.

Figure 32-30 shows the Create Sunburst dialog.

Figure 32-30 Create Sunburst Dialog Using UI-First Development

If you click OK, the sunburst is added to your page, and you can use the Properties
window to specify data values and configure additional display attributes. Alternatively,
you can choose to bind the data during creation and use the dialog to configure the
associated node data.

In the Properties window you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 32-31 shows the dropdown menu for a
sunburst value attribute.

Chapter 32
Using the Treemap and Sunburst Components

32-29

Figure 32-31 Sunburst Value Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a sunburst and the binding will be done for you. For more
information, see the "Creating Databound Hierarchy Viewer, Treemap, and
Sunburst Components" section in Developing Fusion Web Applications with
Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how sunburst attributes and sunburst
child tags can affect functionality. For more information, see Configuring Treemaps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a sunburst to a page:

1. In the ADF Data Visualization page of the Components window, from the Common
panel, drag and drop a Sunburst onto the page to open the Create Sunburst
dialog.

2. In the Create Sunburst dialog, click OK to add the sunburst to the page.

Optionally, use the dialog to bind the sunburst by selecting Bind Data Now and
navigating to the ADF data control that represents the data you wish to display on
the sunburst. If you choose this option, the data binding fields in the dialog will be
available for editing. For help with the dialog, press F1 or click Help.

Chapter 32
Using the Treemap and Sunburst Components

32-30

3. In the Properties window, view the attributes for the sunburst. Use the help button
to display the complete tag documentation for the sunburst component.

4. Expand the Appearance section, and set a value for the Summary attribute.

Enter text to describe the sunburst's purpose and structure for accessibility
support. Alternatively, choose Select Text Resource or Expression Builder from
the attribute's dropdown menu to select a text resource or EL expression.

What Happens When You Add a Sunburst to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a sunburst
from the Components window onto a JSF page and choose not to bind the data during
creation.

The example below shows the generated code.

<dvt:sunburst id="s1">
 <f:facet name="multiSelectContextMenu"/>
 <f:facet name="contextMenu"/>
 <f:facet name="bodyContextMenu"/>
 <dvt:sunburstNode id="sn1"/>
</dvt:sunburst>

If you choose to bind the data to a data control when creating the sunburst,
JDeveloper generates code based on the data model. For more information, see the
"Creating Databound Hierarchy Viewer, Treemap, and Sunburst Components" section
in Developing Fusion Web Applications with Oracle Application Development
Framework.

Adding Data to Treemap and Sunburst Components
You can add data to the ADF DVT Treemap or Sunburst using UI-first development by
creating classes and managed beans, and then using methods to automate the
creation of the tree model and reference the data classes and beans.

How to Add Data to Treemap or Sunburst Components
Because treemaps and sunbursts use the same data model, the process for adding
data to the treemap or sunburst is similar.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap or sunburst to your page. For help with adding a treemap to a page,
see How to Add a Treemap to a Page. For help with sunbursts, see How to Add a
Sunburst to a Page.

Chapter 32
Adding Data to Treemap and Sunburst Components

32-31

To add data to the treemap or sunburst in UI-first development:

1. Create the classes and managed beans that will define the treemap's tree model
and supply the data to the treemap. See Treemap and Sunburst Data
Requirements for additional information and examples. If you need help creating
classes, see the "Working with Java Code" chapter of Developing Applications
with Oracle JDeveloper. For help with managed beans, see Creating and Using
Managed Beans.

2. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go To Properties.

3. In the Properties window, in the Appearance section, enter a value for the
DisplayLevelsChildren attribute to change the number of child levels displayed
on the treemap. By default, this value is set to 2.

For example, the treemap and sunburst in the census data example have three
child levels to represent regions, divisions, and states, and you would set this
value to 3 to duplicate the example.

4. In the Common section, set the following attributes:

• Value: Specify an EL expression for the object to which you want the treemap
or sunburst to be bound. This must be an instance of
org.apache.myfaces.trinidad.model.TreeModel.

For example, reference the managed bean you created to instantiate the
treemap or sunburst. In the census data example, the treemap managed bean
is named treemap, and the census data is instantiated when the treemap is
referenced. To use the census data example with a treemap, enter the
following in the Value field for the EL expression: #{treemap.censusData}.

For help with creating EL expressions, see How to Create an EL Expression.

• Var: Enter the name of a variable to be used during the rendering phase to
reference each element in the treemap collection. This variable is removed or
reverted back to its initial value once rendering is complete.

For example, enter row in the Var field to reference each element in the
census data example.

• VarStatus: Optionally, enter the name of a variable during the rendering
phase to access contextual information about the state of the component,
such as the collection model or loop counter information. This variable is
removed or reverted back to its initial value once rendering is complete.

5. In the Structure window, right-click the dvt:treemapNode node or
dvt:sunburstNode and choose Go To Properties.

6. In the Common section, use the Value attribute's dropdown menu to choose
Expression Builder.

7. In the Expression Builder dialog, create the EL expression that will reference the
size data for the treemap or sunburst node, using the variable you specified for the
Var attribute when creating your component and the method you created to return
the size of the node.

For example, in the census data example, the Var attribute is named row and the
size is stored in the m_size variable which is returned by the getSize() method in
the TreeNode class shown in the first code sample in Sample Code for Treemap
and Sunburst Census Data Example in Appendix F. To reference the size data in
the census data example, create the following expression: #{row.size}.

Chapter 32
Adding Data to Treemap and Sunburst Components

32-32

8. In the Properties window, expand the Appearance section and enter values for
the following attributes:

• FillColor: Specify the fill color of the node. You can enter the color in RGB
hexadecimal or use the attribute's dropdown menu to choose Expression
Builder and create an EL expression.

For example, you could enter #FF0000 to set the node's fill color to red.
However, you might want your treemap or sunburst node to change color
based on the color metric. In the census data example in Figure 32-1, the fill
color is calculated from income data.

The example below shows the sample method used by the census data
example. To reference this example in the Expression Builder, create the
following expression: #{row.color}.

import java.awt.Color;

private static Color getColor(double value, double min, double max)
{
 double percent = Math.max((value - min) / max, 0);
 if(percent > 0.5) {
 double modifier = (percent - 0.5) * 2;
 return new Color((int)(modifier*102), (int)(modifier*153), (int)
(modifier*51));
 }
 else {
 double modifier = percent *2;
 return new Color((int)(modifier*204), (int)(modifier*51), 0);
 }
}

• Label: Specify the node's label. You can enter text or use the attribute's
dropdown menu to choose Expression Builder and create an EL expression.

For example, the census data example uses a method that converts the node
data into strings for label display. See the last code sample in Sample Code
for Treemap and Sunburst Census Data Example in Appendix F for the
convertToString () method. The TreeNode class uses the output from the
convertToString() method to set the text variable which is used for the label
display. To reference this example in the Expression Builder dialog, create the
following expression: #{row.text}.

Note:

You can also use attribute groups to set the fillColor and label attribute.
Attribute groups are optional, but you must use them if you want your
treemap or sunburst to change color or pattern based on a given condition,
such as high versus low income. For information about configuring attribute
groups, see How to Configure Treemap and Sunburst Discrete Attribute
Groups.

Chapter 32
Adding Data to Treemap and Sunburst Components

32-33

What You May Need to Know about Adding Data to Treemaps and
Sunbursts

The examples in this chapter use classes and managed beans to provide the data to
the treemap and sunburst. If your application uses the Fusion technology stack, then
you can use data controls to create a sunburst and the binding will be done for you.

For more information, see the "Creating Databound Hierarchy Viewer, Treemap, and
Sunburst Components" section in Developing Fusion Web Applications with Oracle
Application Development Framework.

Alternatively, if you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls are ready,
then you should consider using placeholder data controls, rather than manually
binding the components. Using placeholder data controls will provide the same
declarative development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data Controls" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Customizing Treemap and Sunburst Display Elements
ADF DVT Treemaps and Sunbursts are highly customizable and allow many
configurations to suit business data. You can configure elements such as attribute
groups, legends, labels, patterns, skins, sizes, and even animation. You can also
aggregate smaller data contributors and change the order of nodes.

Configuring Treemap and Sunburst Display Size and Style
You can configure the treemap or sunburst's size and style using the inlineStyle or
styleClass attributes. Both attributes are available in the Style section in the
Properties window for the dvt:treemap or dvt:sunburst component.

Using these attributes, you can customize stylistic features such as fonts, borders, and
background elements.

For additional information about using the inlineStyle or styleClass attributes, see
Customizing the Appearance Using Styles and Skins.

The page containing the treemap or sunburst may also impose limitations on the ability
to change the size or style. For more information about page layouts, see Organizing
Content on Web Pages.

What You May Need to Know About Skinning and Configuring Treemap and
Sunburst Display Size and Style

Treemaps and sunbursts also support skinning to customize the color and font styles
for the top level components as well as the nodes, node headers, and icons used for
treemap isolation and sunburst expansion and collapse. You can also use skinning to
define the styles for a treemap or sunburst node or a treemap node header when the
user hovers the mouse over or selects a node or node header. If the node or node

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-34

header is drillable, you can use skinning to define the styles when the user hovers the
mouse over or selects it.

The example below shows the skinning key for a sunburst configured to show the
node's text in bold when the user selects it.

af|dvt-sunburstNode::selected
 {
 -tr-font-weight: bold;
 }

For the complete list of treemap and sunburst skinning keys, see the Oracle Fusion
Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces Skin
Selectors. For additional information about customizing your application using skinning
and styles, see Customizing the Appearance Using Styles and Skins.

Configuring Pattern Display
You can configure the treemap or sunburst node to display patterns using the
fillPatternattribute.

The available patterns are:

• none (default)

• smallChecker

• smallCrosshatch

• smallDiagonalLeft

• smallDiagonalRight

• smallDiamond

• smallTriangle

• largeChecker

• largeCrosshatch

• largeDiagonalLeft

• largeDiagonalRight

• largeDiamond

• largeTriangle

To configure the treemap or sunburst node to display patterns, specify the
fillPattern attribute on the dvt:treemapNode or dvt:sunburstNode node. You can
also use discrete attribute groups to specify the fill pattern. For more information about
discrete attribute groups, see How to Configure Treemap and Sunburst Discrete
Attribute Groups.

Configuring Treemap and Sunburst Attribute Groups
Use attribute groups to generate stylistic attribute values such as colors or shapes
based on categorical bucketing of a data set. Treemaps and sunbursts support both
discrete and continuous attribute groups for setting the color and pattern of the child
nodes.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-35

Use a discrete attribute group if you want the color or pattern to depend upon a given
condition, such as high or low income levels. Use the continuous attribute group if you
want the color to change gradually between low and high values.

How to Configure Treemap and Sunburst Discrete Attribute Groups
Configure discrete attribute groups by adding the dvt:attributeGroups tag to your
treemap or sunburst and defining the conditions under which the color or pattern will
be displayed.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

To configure a treemap or sunburst discrete attribute group:

1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode
node and choose Insert Inside Component Node > Attribute Groups.

For example, to configure a treemap discrete attribute group, right-click the
dvt:treemapNode node and choose Insert Inside Treemap Node > Attribute
Groups.

2. Right-click the dvt:attributeGroups element and choose Go to Properties.

3. In the Properties window, expand the Appearance section.

4. From the Value attribute's dropdown menu, choose Expression Builder and
create an expression that references the color metric and the condition that will
control the color display.

For example, if you want your treemap to display different colors for median
income levels higher or lower than $50,000 as shown in Figure 32-6, create an
expression similar to the following expression for the Value field:

#{row.income > 50000}

For help with creating EL expressions, see How to Create an EL Expression.

5. From the Label attribute's dropdown menu, choose Expression Builder and
create an expression for the legend that describes what the discrete colors or
patterns represent.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-36

For example, to let the user know that the colors represent high and low median
income levels, create an expression similar to the following expression for the
Label field:

#{row.income > 50000 ? 'High Income' : 'Low Income'}

6. From the Type attribute's dropdown menu, choose Edit.

7. From the Edit Property dialog, choose color, pattern, or both, and click OK.

If you choose both color and pattern and build the page now, the treemap or
sunburst will use default colors and patterns for the discrete attribute group.

Figure 32-32 shows the treemap that displays if you accept the default colors and
patterns in the census data example.

Figure 32-32 Treemap Discrete Attribute Group with Default Colors and
Patterns

8. Optionally, to change the attribute group's default colors, do the following:

a. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert Inside Attribute Groups > Attribute Match Rule.

The dvt:attributeMatchRule tag is used to replace an attribute when the
data matches a given condition. In the census data example, the condition is
median income higher than $50,000.

b. Right-click the dvt:attributeMatchRule element and choose Go to
Properties.

c. In the Group field, enter true if you want the color to display when the
condition is true, or enter false if you want the color to display when the
condition is false.

For example, enter true to choose the color to display in the census data
example when the median income level is higher than 50000.

d. In the Structure window, right-click the dvt:attributeMatchRule element and
choose Insert Inside Match Rule > Attribute.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-37

e. In the Insert Attribute dialog, enter color for the name field and a color in the
value field, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to
set the value to green, enter the following in the value field: #00AA00.

f. Repeat step 8.a through step 8.e if you want to change the default color for
the other half of the condition.

For example, add another match rule to define the color that displays when the
income is under 50000, and set the Group field to false.

9. Optionally, to change the attribute group's default patterns, do the following:

a. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert Inside Attribute Groups > Attribute Match Rule.

b. Right-click the dvt:attributeMatchRule element and choose Go to
Properties.

c. In the Group field, enter true if you want the pattern to display when the
condition is true, or enter false if you want the pattern to display when the
condition is false.

d. In the Structure window, right-click the dvt:attributeMatchRule element and
choose Insert Inside Attribute Match Rule > Attribute.

e. In the Insert Attribute dialog, enter pattern for the Name field and a supported
pattern in the Value field, and click OK.

For example, enter smallDiamond in the Value field to change the pattern to
small diamonds. For the list of available patterns, see Configuring Pattern
Display.

f. Repeat step 9.a through step 9.e if you want to change the default color for
the other half of the condition.

For example, add another match rule to define the color that displays when the
income is under 50000, and set the Group field to false.

The example below shows the code on the JSF page if you configure a discrete
attribute group for the treemap shown in Figure 32-6.

<dvt:treemap id="t1" summary="SampleTreemap" value="#{treemap.censusData}"
 var="row" colorLabel="Median Household Income" sizeLabel="Population"
 displayLevelsChildren="3" emptyText="No Data to Display"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low
Income'}"
 type="color">
 <dvt:attributeMatchRule id="amr1" group="true">
 <f:attribute name="color" value="#00AA00"/>
 </dvt:attributeMatchRule>
 <dvt:attributeMatchRule id="amr2" group="false">
 <f:attribute name="color" value="#AA0000"/>
 </dvt:attributeMatchRule>
 </dvt:attributeGroups>
 <f:facet name="content"/>
 </dvt:treemapNode>
</dvt:treemap>

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-38

How to Configure Treemap or Sunburst Continuous Attribute Groups
Configure continuous attribute groups by adding the dvt:attributeGroups tag to your
treemap or sunburst and defining the colors to be displayed at the minimum and
maximum levels of the data range. The attribute group will use the data to determine
the data range and display labels in the legend with corresponding values, but you can
also configure the attribute group to use different ranges or labels.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

To configure a treemap or sunburst continuous attribute group:

1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode
node and choose Insert Inside Component Node > Attribute Groups.

For example, to configure a treemap continuous attribute group, right-click the
dvt:treemapNode node and choose Insert Inside Treemap Node > Attribute
Groups.

2. Right-click the dvt:attributeGroups element and choose Go to Properties.

3. In the Properties window, expand the Appearance section.

4. From the Value attribute's dropdown menu, choose Expression Builder and
enter an expression that references the color metric.

For example, to specify an EL expression that returns the income data from the
census example, choose Expression Builder and enter the following value in the
Value field: #{row.income}. For help with creating EL expressions, see How to
Create an EL Expression.

5. In the Type field, enter color.

6. In the AttributeType field, use the attribute's dropdown menu to choose
continuous.

7. Optionally, set values for the following minimum or maximum range and labels:

• MinValue: Enter the minimum boundary for the range. Alternatively, choose
Expression Builder from the attribute's dropdown menu and enter the
expression that returns the minimum boundary.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-39

For example, enter 35000 in the MinValue field to set the lower boundary of
the range to 35,000.

• MaxValue: Enter the maximum boundary for the range. Alternatively, choose
Expression Builder from the attribute's dropdown menu and enter the
expression that returns the maximum bound.

• MinLabel: Enter the label for the minimum value to be displayed in the legend.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute's dropdown menu to select a text resource or EL expression.

For example, enter $35000 in the MinLabel field to set the label displayed in
the legend to $35000.

• MaxLabel: Enter the label for the maximum value to be displayed in the
legend. Alternatively, choose Select Text Resource or Expression Builder
from the attribute's dropdown menu to select a text resource or EL expression.

8. To define the colors used for the minimum and maximum bounds of the range, do
the following:

a. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert Inside Attribute Groups > Attribute.

b. In the Insert Attribute dialog, enter color1 for the name and a value for the
minimum boundary, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to
set the value of the minimum bound to a dark green, which is the color used in
the attribute group in Figure 32-1, enter the following in the value field:
#14301C.

c. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert Inside Attribute Groups > Attribute.

d. In the Insert Attribute dialog, enter color2 for the name and a value for the
maximum boundary, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to
set the value of the maximum bound to a light green, which is the color used in
the attribute group in Figure 32-1, enter the following in the value field:
#68C182.

Figure 32-9 shows the code on the JSF page if you configure the continuous attribute
group shown in Figure 32-1.

<dvt:treemap id="t1" summary="SampleTreemap" value="#{treemap.censusData}"
 var="row" colorLabel="Median Household Income"
sizeLabel="Population"
 displayLevelsChildren="3" emptyText="No Data to Display"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income}" type="color"
 attributeType="continuous" minValue="35000"
 maxValue="70000" minLabel="$35000"
maxLabel="$70000">
 <f:attribute name="color1" value="#14301C"/>
 <f:attribute name="color2" value="#68C182"/>
 </dvt:attributeGroups>
 <f:facet name="content"/>

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-40

 </dvt:treemapNode>
</dvt:treemap>

What You May Need to Know About Configuring Attribute Groups
If you use the Other node to aggregate nodes for display, the Other node will not use
the color or pattern of the configured attribute group.

For more information, see What You May Need to Know About Configuring the
Treemap and Sunburst Other Node.

How to Configure Treemap and Sunburst Legends
Legends display automatically when you specify values for the following attributes:

• sizeLabel: Specify the text that describes the size metric of the component.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute's dropdown menu to select a text resource or EL expression.

• colorLabel: Specify the text that describes the color metric of the component.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute's dropdown menu to select a text resource or EL expression.

• legendSource: Optionally, specify the id of the attribute group used in the treemap
or sunburst display.

If your treemap or sunburst does not use attribute groups, the legend display will
be limited to the text descriptions that you specified for the size and color labels.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

To configure a treemap or sunburst legend:

1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go to Properties.

2. In the Properties window, expand the Appearance section.

3. In the SizeLabel field, enter the text that the legend will display to describe the
size metric.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-41

For example, enter Population in the SizeLabel field to indicate that the size of
the nodes in the treemap or sunburst is based on population.

You can also use the dropdown menu to choose a text resource or EL expression
from the Expression Builder dialog. For example, to specify an EL expression that
returns the size from the census data example, choose Expression Builder and
enter the following value in the SizeLabel field: #{row.size}. For help with
creating EL expressions, see How to Create an EL Expression.

4. In the ColorLabel field, enter the text that the legend will display to describe the
color metric.

For example, enter Median Household Income in the ColorLabel field to indicate
that the size of the nodes in the treemap or sunburst is based on population.

Alternatively, use the dropdown menu to enter a text resource or select an
expression from the Expression Builder. For example, to specify an EL expression
that returns the color from the census data example, choose Expression Builder
and enter the following value in the ColorLabel field: #{color.size}.

5. If your treemap or sunburst uses attribute groups, reference the id of the
attributeGroups component as follows:

a. From the LegendSource property's dropdown menu, choose Edit.

b. In the Edit Property: LegendSource dialog, expand each component and
locate the attributeGroups component.

c. Select the attributeGroups component and click OK.

Configuring the Treemap and Sunburst Other Node
Use the Other node to aggregate smaller data sets visually into one larger set for
easier comparison. You can aggregate the data sets based on the size of the node's
parent or the size of the treemap or sunburst component's root node.

How to Configure the Treemap and Sunburst Other Node
Configure the treemap or sunburst Other node by setting values for the following
attributes:

• otherThreshold: Specify the percentage of the parent or root node under which a
node would be aggregated into the Other node. Valid values range from 0
(default) to 1.

For example, a value of 0.1 would cause all nodes that are less than 10% of their
parent's value to be aggregated into the Other node. In Figure 32-17, the
otherThreshold is set to.08 or eight percent which aggregated the South
Carolina, Delaware, West Virginia, and District of Columbia nodes in the South
Atlantic region.

If you increase the value to 0.1 or 10%, the Maryland node is added to the
aggregation. Figure 32-33 shows the same treemap with the otherThreshold
attribute set to 0.1.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-42

Figure 32-33 Treemap Showing Other Node With otherThreshold Set to 10
Percent

• otherThresholdBasis: Specify the basis used to apply the otherThreshold value
as either a percentage of the root node or as a percentage of the node's parent
node. Valid values are:

– parentPercentage: Nodes are compared against the size of the parent node
when applying otherThreshold. This is the default behavior and the setting
used for the figures in this section.

For example, if one of the nodes in the treemap has a parent in the Other
node, the child node will also be aggregated into the Other node when you
drill down to its level, regardless of the node's value. If two child nodes have
the same value but one node's parent is in the Other node, that child node will
be aggregated into the Other node.

– rootPercentage: Nodes are compared against the size of the treemap or
sunburst's root node when applying otherThreshold.

For example, if you set otherThreshold to 0.1, all nodes whose values are
less than 10% of the total sunburst display will be included in Other regardless
of the size of their parents.

• otherColor: Specify a reference to a method that takes the RowKeySet of all nodes
contained within the current Other node and returns a String for the color of the
Other node.

For example, the census data example uses a method to calculate the mean
income of all the nodes contained within the Other node. If the mean household
income is less than 50,000, the method returns the same color value used to
display low income as the non-aggregated nodes in the treemap. Notice how the
color changed on the Other node in Figure 32-33 to reflect the higher mean
income when the Maryland node is included in the Other node.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-43

The example below shows the sample method to specify the otherColor value
based on the mean income in the census data example.

import org.apache.myfaces.trinidad.model.RowKeySet;
import org.apache.myfaces.trinidad.model.TreeModel;

public String otherColor(RowKeySet set) {
 // The color should be the mean income of the contained regions.
Note that it should actually
 // be the median, but we can't calculate that with the available
information.
 TreeModel tree = getCensusRootData();
 // Loop through and get the population + average income
 double population = 0;
 double average = 0;
 for(Object rowKey : set) {
 CensusData.CensusTreeNode item = (CensusData.CensusTreeNode)
tree.getRowData(rowKey);
 population += item.getSize().doubleValue();
 average += item.getSize().doubleValue() * item.getIncome();
 }
 // Calculate the average
 average = average / population;
 // Match the attr groups used by the demos
 return average > 50000 ? "#CC3300" : "#003366";
}

• otherPattern: Optionally, specify a reference to a method that takes the
RowKeySet of all nodes contained within the current Other node and returns a
String for the pattern of the Other node.

The example below shows the sample code for a method that sets the pattern fill
to smallDiamond on the Other node.

import org.apache.myfaces.trinidad.model.RowKeySet;
public String otherPattern(RowKeySet rowKeySet) {
 return "smallDiamond";
}

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-44

about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• Create the method that takes the RowKeySet of all nodes contained within the
current Other node and returns a String for the color of the Other node.

To use the United States census data example, add the sample otherColor()
method in the example above to a managed bean.

If you need help with managed beans, see Creating and Using Managed Beans.

• Optionally, create the method that takes the RowKeySet of all nodes contained
within the current Other node and returns a String for the pattern of the Other
node.

To use the United States census data example, add the sample otherPattern()
method in the example above to a managed bean.

To add the Other node to a treemap or sunburst:

1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go to Properties.

2. In the Properties window, expand the Other section and enter a value for the
following attributes:

• OtherThreshold: Enter the percentage of nodes to be aggregated as a value
between 0 and 1.

• OtherThresholdBasis: To change the default basis used to apply the
otherThreshold value to a percentage of the size of the sunburst or treemap
component's root node, choose rootPercentage from the dropdown list.

• OtherColor: Choose Edit from the dropdown menu and select the managed
bean and method that sets the otherColor attribute.

For example, for a managed bean named treemap and a method named
otherColor, enter the following in the OtherColor field:
#{treemap.otherColor}.

• OtherPattern: Choose Edit from the dropdown and select the managed bean
and method that sets the otherPattern attribute.

For example, for a managed bean named treemap and a method named
otherPattern, enter the following in the OtherPattern field:
#{treemap.otherPattern}.

What You May Need to Know About Configuring the Treemap and Sunburst
Other Node

Because the Other node is an aggregation of individual nodes, its behavior will be
different than other treemap and sunburst child nodes when managing children,
attribute groups, selection, tooltips, and popup support.

Specifically, you should be aware of the following differences:

• Child nodes: Children of the aggregated nodes are not displayed unless you set
the treemap or sunburst component's otherThresholdBasis attribute.

• Other node display with attribute groups: If you use attribute groups to specify a
color or pattern, that color or pattern will not be displayed on the Other node. If
you want the Other node to display the same color or pattern as the attribute

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-45

group, you must create methods in a managed bean to return a color or pattern
that makes sense.

• Selection behavior: Other nodes are not selectable if you change node selection
support from the default value of multiple selection to single node selection.

• Tooltips: Tooltips display the number of nodes within the Other node and are not
customizable.

• Popups: By default, popups will not display on the Other node.

When a user invokes a popup on a node, that node is made current on the
component (and its model), allowing the application to determine context.
Treemaps and sunbursts use the af:showPopupBehavior tag to determine context,
but this tag does not support making multiple nodes current. If you want your
treemap or sunburst to display a popup on the Other node, you must create a
method in a managed bean that calls the getPopupContext() method on the
UITreemap or UISunburst component to determine the context of the aggregated
nodes.

Configuring Treemap and Sunburst Sorting
Sorting is enabled by default if your treemap or sunburst uses the Other node.
Otherwise you must enable it by setting the dvt:treemap or dvt:sunburst sorting
attribute to on in the Properties window.

Treemaps support sorting in the slice and dice layouts only.

Configuring Treemap and Sunburst Advanced Node Content
You can configure advanced node content by defining a content facet on the treemap
or sunburst node.

Both treemaps and sunbursts support the following Oracle Application Development
Framework tags:

• af:image

• af:outputText

• af:panelGroupLayout

• af:spacer

Only a single child is supported for layout reasons, and you must use
af:panelGroupLayout to wrap multiple child components. Interactive behaviors are
also not supported for components within this facet.

How to Add Advanced Node Content to a Treemap
You can configure advanced node content on a treemap by defining the content facet
on the dvt:treemapNode node.

Before you begin:

It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes and
child tags, see Configuring Treemaps.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-46

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap to your page. For more information, see How to Add a Treemap to a
Page.

To add advanced node content to a treemap:

1. In the Structure window, expand the dvt:treemapNode.

2. To configure the facet, in the Structure window, right-click the f:facet - content
node and choose to Insert Inside f:facet - content one of the following:

• Image

• Output Text

• Panel Group Layout

• Spacer

To insert more than one component, choose the Panel Group Layout and
add the image, output text, or spacers as required by your application. For
help with configuring panel group layouts, see How to Use the
panelGroupLayout Component.

For help with configuring images and output text, see Using Output
Components.

How to Add Advanced Root Node Content to a Sunburst:
Configure advanced node content on a sunburst by defining the rootContent facet on
the dvt:sunburstNode node.

Before you begin:

It may be helpful to have an understanding of sunburst attributes and child tags can
affect functionality. For information about configuring sunburst attributes and child
tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a sunburst to your page. For more information, see How to Add a Sunburst to a
Page.

To add advanced root node content to a sunburst:

1. In the Structure window, expand the dvt:sunburst node.

2. To configure the facet, in the Structure window, right-click the f:facet - content
node and choose to Insert Inside f:facet - rootContent one of the following:

• Image

• Output Text

• Panel Group Layout

• Spacer

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-47

To insert more than one component, choose the Panel Group Layout and
add the image, output text, or spacers as required by your application. For
help with configuring panel group layouts, see How to Use the
panelGroupLayout Component.

For help with configuring images and output text, see Using Output
Components.

What You May Need to Know About Configuring Advanced Node Content on
Treemaps

Treemaps are meant to display two dimensions of data using size and color. Node
content should be used to identify the treemap node, such as with labels or images,
and should not be relied upon to display many additional dimensions of data.
Applications should consider using popups for additional content since they will not
have aspect ratio or small size issues like treemap nodes.

How to Configure Animation in Treemaps and Sunbursts
Treemaps and sunbursts support multiple types of animations. By default, no
animation is displayed, but you can add animation to the treemap or sunburst when it
initially displays. You can also customize the animation effects when a data change
occurs on the component.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

To add animation effects to a treemap or sunburst:

1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go to Properties.

2. In the Properties window, expand the Appearance section and set a value for the
following attributes:

• AnimationDuration: Specify the duration of the animation in milliseconds.
The default value is 500. For data changes, the animation occurs in stages,
and the default value is 500 for each stage of the animation.

• AnimationDisplay: Use the dropdown menu to specify the type of animation
to apply when the component is initially rendered. By default, this is set to
none.

• AnimationOnDataChange: Use the dropdown menu to specify the type of
animation to apply when data is changed in the treemap or sunburst. By
default, this is set to activeData for Active Data Service data change events.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-48

For treemap and sunburst, the auto type is recommended because it will
apply animation for both Partial Page Refresh and Active Data Service Events.

Table 32-1 shows the list of supported animation effects.

Table 32-1 Treemap and Sunburst Animation Effects

Animation Effect AnimationOnDisplay AnimationOnDataChange

none x x

activeData x

alphaFade x x

auto x

cubeToLeft x (treemap only)

cubeToRight x (treemap only)

fan x (sunburst only)

flipLeft x (sunburst only)

flipRight x (sunburst only)

slideToLeft x

slideToRight x

transitionToLeft x

transitionToRight x

zoom x x

Configuring Labels in Treemaps and Sunbursts
Treemaps and sunbursts support customization of label display for the following
elements:

• colorLabel and sizeLabel: These labels are used in the legend display. For
additional information about configuring these labels, see How to Configure
Treemap and Sunburst Legends.

• treemapNodeHeader: The title displayed in treemap node headers is configurable.
For additional information about customizing the treemap node header title, see
Configuring Treemap Node Headers and Group Gap Display.

• node labels: You can configure the size, style, and display of node labels on both
treemaps and sunbursts. The options for configuration are slightly different
between the components, due to the differences in layouts.

How to Configure Treemap Leaf Node Labels
You can onfigure treemap node labels by setting label attributes on the treemap node.

Before you begin:

It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes and
child tags, see Configuring Treemaps.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-49

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap to your page. For more information, see How to Add a Treemap to a
Page.

To configure treemap leaf node labels:

1. In the Structure window, right-click the dvt:treemapNode node and choose Go to
Properties.

2. In the Properties window, expand the Appearance section and set a value for the
following attributes:

• LabelDisplay: Use the dropdown menu to specify whether or not labels are
displayed on the leaf nodes. The default is node which displays the label inside
the leaf node. To turn off the label display, choose off.

• LabelHalign: Use the dropdown menu to specify the horizontal alignment for
labels displayed within the node. The default value is center. To align the title
to the left in left-to-right mode and to the right in right-to-left more, set this
value to start.You can also set this to end which aligns the title to the right in
left-to-right mode and to the left in right-to-left mode.

• LabelValign: Use the dropdown menu to specify the vertical alignment for
labels displayed within the node. The default value is center. You can change
this to top or bottom.

• LabelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

font-size:14px;color: #FFFFFF

For the complete list of CSS attributes, visit the World Wide Web Consortium's
web site at:

http://www.w3.org/TR/CSS21/

• GroupLabelDisplay: Use the dropdown menu to specify the label display
behavior for group nodes. The default value is header which will display the
group node label in the node header. You can also set this to off or to node
which will display the label inside the node.

How to Configure Sunburst Node Labels
You can configure sunburst node labels by setting and customizing label attributes on
the sunburst node.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-50

http://www.w3.org/TR/CSS21/

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a sunburst to your page. For more information, see How to Add a Sunburst to a
Page.

To configure sunburst node labels:

1. In the Structure window, right-click the dvt:sunburstNode node and choose Go
to Properties.

2. In the Properties window, expand the Appearance section and set a value for the
following attributes:

• LabelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

font-size:14px;color: #FFFFFF

For the complete list of CSS attributes, visit the World Wide Web Consortium's
web site at:

http://www.w3.org/TR/CSS21/

• LabelDisplay: Use the dropdown menu to specify the label display for the
nodes. The default value is auto which displays rotated labels within the
nodes if the client's environment supports rotated text. If the client's
environment does not support rotated text, the sunburst will display horizontal
text inside the node. You can also set this to off to turn off the label display, to
on to display horizontal labels within the nodes, or to rotated to display
rotated labels within the nodes.

Note:

If the labelDisplay attribute is set to rotated and the client's
environment does not support rotated text, the sunburst will display
horizontal labels within the nodes. This is the same behavior as the
default auto setting.

• LabelHalign: Use the dropdown menu to specify the alignment of node labels.
The default value is center which aligns the labels in the center of the node
slices. You can also set this to inner which aligns the label to the inner side of
a slice or outer which aligns the label to the outer side of a slice.

Configuring Sunburst Node Radius
By default, sunbursts allocate the same amount of display area for each node in the
sunburst. If you want to increase the display area allocated to one of the nodes, set
the node's radius attribute.

Figure 32-34 shows a sunburst configured with two nodes, where the inner node
represents states and the outer node represents cities within those states. The node

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-51

http://www.w3.org/TR/CSS21/

radius is the straight line separating each member of the node and is a segment of the
sunburst's total radius.

Figure 32-34 Sunburst Showing a Node With Radius Set to 2

A sunburst's total radius equals the radius of the longest subtree in the sunburst. A
subtree represents the path from the root node to the leaf node and may consist of
one or more nodes with one or more layers. In Figure 32-34, the subtree representing
Massachusetts + Springfield is highlighted.

A sunburst's node radius is set to 1 by default, and a sunburst with two nodes
representing two layers has a total radius of 2. To increase the display area for one of
the nodes, increase the value of its radius. In Figure 32-34, the inner node is
configured with its radius set to 2, and the leaf node's radius is set to 1. In this
example, the sunburst's total radius is 3, and the inner node will use 2/3 of the
available display area.

Note:

If your sunburst defines a single node for all layers in the sunburst, setting
the radius attribute will have the effect of increasing the size of the root
node's display to match the size of the other layers. If you want to vary the
layers, use the ADF Faces af:switcher component, and insert a f:facet
containing a dvt:node for each row.

How to Configure a Sunburst Node Radius
You can use the Properties window to set a value for the sunburst node radius.

Before you begin:

It may be helpful to have an understanding of how sunburst attributes and child tags
can affect functionality. For more information about configuring treemap attributes. For
more information about configuring sunburst attributes and child tags, see Configuring
Sunbursts.

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-52

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a sunburst to your page. For more information, see How to Add a Sunburst to a
Page.

To configure a sunburst node radius:

1. In the Structure window, right-click the dvt:sunburstNode node and choose Go
to Properties.

2. In the Properties window, expand the Other section.

3. In the Radius field, enter a numeric value for the radius or use the attribute's
dropdown menu to enter an EL expression that returns the radius value.

What You May Need to Know about Configuring the Sunburst Node Radius
When you change the sunburst's node radius, node labels may no longer display
properly. You can adjust the alignment of the node labels using the labelHalign
attribute.

For additional information, see How to Configure Sunburst Node Labels.

Configuring Treemap Node Headers and Group Gap Display
Treemap node headers are displayed by default whenever there are two or more child
levels in the treemap. Configure the node header if you wish to change the default
display.

Group gaps are displayed between the outer group nodes by default. Configure group
gaps if you wish to change the way group gaps are displayed between the nodes.

How to Configure Treemap Node Headers
Configure treemap node headers by adding the dvt:treemapNodeHeader element to
your treemap node and setting values for the following attributes:

• labelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For the complete list of CSS attributes, visit the World Wide Web Consortium's
web site at:

http://www.w3.org/TR/CSS21/

• titleHalign: Specify the horizontal alignment of the header's title. By default, this
attribute is set to start which aligns the title to the left in left-to-right mode and to
the right in right-to-left mode. You can set this to center which aligns the title to
the center or to end which aligns the title to the right in left-to-right mode and to the
left in right-to-left mode.

• useNodeColor: Set this to on to have the header use the node color of the parent
node.

Before you begin:

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-53

http://www.w3.org/TR/CSS21/

It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes and
child tags, see Configuring Treemaps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap to your page. For more information, see How to Add a Treemap to
a Page.

• If you did not bind the treemap to a data control when you added the component to
the page, add data to the treemap. For information about adding data to treemaps
or sunbursts using UI-first development, see Adding Data to Treemap and
Sunburst Components.

To configure a treemap node header:

1. In the Structure window, right-click the dvt:treemapNode node and choose Insert
Inside Treemap Node > Treemap Node Header.

2. Right-click the dvt:treemapNodeHeader node and choose Go to Properties.

3. In the Properties window, enter a value for the following attributes:

• LabelStyle: Enter the style for the node header title.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

font-size:14px;color: #FFFFFF

• TitleHalign: Use the attribute's dropdown menu to change the default
alignment to center or end. By default, this attribute is set to start which
aligns the title to the left in left-to-right mode or to the right in right-to-left mode.

• UseNodeColor: Use the attribute's dropdown menu to change the default to
on.

What You May Need to Know About Treemap Node Headers
When you choose to use the node color in the header, the node color used is the color
that would have been displayed in the treemap if that node was the bottom level of the
treemap.

If your treemap is using the same color scheme across all hierarchical levels, then
using the node color in the header can provide useful information. However, if you
have specified a different color scheme for different levels of the hierarchy, using the
node color may not make sense.

How to Customize Treemap Group Gaps
Customize the group gaps displayed between nodes by setting a value for the
groupGaps attribute.

Before you begin:

Chapter 32
Customizing Treemap and Sunburst Display Elements

32-54

It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes and
child tags, see Configuring Treemaps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap to your page. For more information, see How to Add a Treemap to a
Page.

To customize treemap group gap display:

1. In the Structure window, right-click the dvt:treemap node and choose Go to
Properties.

2. In the Properties window, expand the Appearance section.

3. Use the GroupGaps dropdown menu to select a value for the group gap display.
Valid values are:

• outer (default): Gaps are displayed between the outer group nodes.

• all: Gaps are displayed between all group nodes.

• none: No gaps are displayed between group nodes.

Adding Interactive Features to Treemaps and Sunbursts
ADF DVT Treemaps and Sunbursts have a number of interactive features to enhance
user experience, such as tooltips, popups, selection support, context menus, and
drilling. Treemaps also provide support for isolation of group nodes.

Configuring Treemap and Sunburst Tooltips
Define tooltips by specifying a value for the dvt:treemapNode or dvt:sunburstNode
shortDesc attribute. You can specify simple text in this attribute, or you can specify an
EL expression that pulls data from the treemap or sunburst and displays the additional
detail about the node.

Figure 32-35 shows a sunburst displaying the name and size of one of the sunburst
nodes.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-55

Figure 32-35 Sunburst Tooltip

To configure the tooltip to display detail about the node's label and size data, reference
the label and size attributes in an EL expression. The EL expression pulls data from
the managed bean that references the methods for setting the label and size
attributes.

For example, to specify the values for the label and size attributes in the United States
census example, enter the following for the shortDesc attribute in JDeveloper:

#{row.text}
#{row.size}

Configuring Treemap and Sunburst Popups
Define popups in treemaps or sunbursts using the af:popup and
af:showPopupBehavior tags.

Using the af:popup component with treemap and sunburst components, you can
configure functionality to allow your end users to show and hide information in
secondary windows, input additional data, or invoke functionality such as a context
menu. See Configuring Treemap and Sunburst Context Menus to see how to display a
context menu using the af:popup component.

How to Add Popups to Treemap and Sunburst Components
With ADF Faces components, JavaScript is not needed to show or hide popups. The
af:showPopupBehavior tag provides a declarative solution, so that you do not have to

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-56

write JavaScript to open a popup component or register a script with the popup
component.

This section provides an example for configuring a sunburst or treemap component to
display popups using the af:showPopupBehavior tag.

To configure a popup using the af:showPopupBehavior and af:popup tags, define the
af:popup component and associated methods, insert the af:showPopupBehavior tag
as a child of the dvt:treemapNode or dvt:sunburstNode component and configure the
af:showPopupBehavior component's tags for the trigger type and reference to the
af:popup component's id attribute.

Figure 32-36 shows a treemap configured to display a brief message and the name of
the treemap node as the user hovers the mouse over the treemap.

Figure 32-36 Treemap Showing Popup on Mouse Hover

The example below shows the code on the page to declare the popup.

<af:group id="g1">
 <af:outputText value="Hover on a node to show a popup."
 inlineStyle="font-size:medium;" id="ot1"/>
 <af:panelGroupLayout layout="horizontal" id="pgl1">
 <dvt:treemap id="treemap" value="#{treemap.censusData}" var="row"
 colorLabel="Median Household Income"
sizeLabel="Population"
 displayLevelsChildren="3" legendSource="ag1"
 inlineStyle="width:700px; height:450px;"
 summary="Treemap Popup">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <af:showPopupBehavior popupId="::noteWindowPopup"
 triggerType="mouseHover"/>
 <dvt:attributeGroups id="ag1" value="#{row.income}"
 type="color"
 attributeType="continuous"
 minValue="35000" maxValue="70000"
 minLabel="$35000" maxLabel="$70000">

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-57

 <f:attribute name="color1" value="#14301C"/>
 <f:attribute name="color2" value="#68C182"/>
 </dvt:attributeGroups>
 </dvt:treemapNode>
 </dvt:treemap>
 </af:panelGroupLayout>
 <af:popup childCreation="deferred" autoCancel="disabled"
 id="noteWindowPopup" launcherVar="source"
 eventContext="launcher" clientComponent="true"
 contentDelivery="lazyUncached">
 <af:setPropertyListener from="#{source.currentRowData.text}"
 to="#{treemap.noteWindowMessage}"
 type="popupFetch"/>
 <af:noteWindow id="nw1">
 <af:outputFormatted value="Hello from #{treemap.noteWindowMessage}"
 id="of8"/>
 </af:noteWindow>
 </af:popup>
</af:group>

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• Add the ADF Faces popup component to your page and insert the menu, dialog, or
window that you want the popup to display.

For example, the popup in Figure 32-36 uses a note window to display the "Hello
from Texas" message. To use this example, insert the ADF Faces noteWindow
component inside the popup component, and insert the ADF Faces
outputFormatted component inside the note window. The sample code is
displayed in the code example above.

The example popup also includes the ADF Faces setListener component that
retrieves the data from the treemap for use by the note window. In this example,
the data is retrieved from the text attribute of the current node
(source.currentRowData.text) and then stored in the noteWindowMessage string

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-58

variable in the treemap managed bean. To use this example, add the code shown
in the example below to the treemap bean:

private String noteWindowMessage = null;

public void setNoteWindowMessage(String noteWindowMessage) {
 this.noteWindowMessage = noteWindowMessage;
}
public String getNoteWindowMessage() {
 return noteWindowMessage;
}

If you need help with managed beans, see Creating and Using Managed Beans.
For additional details about using popup windows to display dialogs, menus, and
windows, see Using Popup Dialogs, Menus, and Windows.

• Create any additional components needed to display the selection.

For example, the page in Figure 32-36 uses an af:outputText component to
prompt the user to hover on a node to show a popup. For additional information
about configuring af:outputText components, see Displaying Output Text and
Formatted Output Text.

To add a popup to a treemap or sunburst:

1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode
node and choose Insert Inside Component Node > Show Popup Behavior.

For example, to add the popup to a treemap, right-click the dvt:treemapNode
node and choose Insert Inside Treemap Node > Show Popup Behavior.

2. Right-click the af:showPopupBehavior node and choose Go to Properties.

3. In the Properties window, enter a value for the following attributes:

• TriggerType: Enter a value for the actions that will trigger the popup. Valid
values are click and mouseHover.

• PopupId: Reference the id of the popup component. You can enter the id
directly or use the attribute's dropdown menu to choose Edit and select the id
in the Edit Property: PopupId dialog.

For example, to reference the popup in the census data example, enter the
following value for the PopupId:

::noteWindowPopup

What You May Need to Know About Adding Popups to Treemaps and Sunburst
Components

Treemaps and sunbursts currently support only the click and mouseHover trigger
types.

Popups do not display on the Other node. For additional information, see What You
May Need to Know About Configuring the Treemap and Sunburst Other Node.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-59

Configuring Treemap and Sunburst Selection Support
The treemap and sunburst components support single or multiple node selection. If
the component allows multiple selections, users can select multiple nodes using a
Control+click operation.

How to Add Selection Support to Treemap and Sunburst Components
When a user selects or deselects a node, the treemap or sunburst component invokes
a selectionEvent event. You can register a custom selectionListener instance that
can do post-processing on the treemap or sunburst component based on the selected
node or nodes.

Figure 32-37 shows a simple example of a sunburst configured to use a custom
selection listener. As the user makes single or multiple selections, the console displays
the name of the node or nodes selected and the number of nodes added or removed
from the selection.

Figure 32-37 Sunburst Illustrating Custom Selection Listener

The example below shows the selectionListener method used to respond to the
user clicks and generate the output to the console. Store this method in the sunburst's
managed or backing bean.

import javax.faces.component.UIComponent;
import oracle.adf.view.faces.bi.component.sunburst.UISunburst;
import org.apache.myfaces.trinidad.event.SelectionEvent;
import org.apache.myfaces.trinidad.model.RowKeySet;

public void selectionListener(SelectionEvent event) {
 UIComponent component = event.getComponent();
 if(component instanceof UISunburst) {
 UISunburst sunburst = (UISunburst) component;
 StringBuilder s = new StringBuilder();

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-60

 // Get the selected row keys and print
 RowKeySet selectedRowKeys = sunburst.getSelectedRowKeys();
 System.out.println(selectedRowKeys.size() + " Nodes Currently
Selected:");
 if (selectedRowKeys != null) {
 for (Object rowKey : selectedRowKeys) {
 TreeNode rowData = (TreeNode)sunburst.getRowData (rowKey);
 s.append (rowData.getText()).append(", ");
 }
 if (s.length() > 0)
 s.setLength (s.length() - 2);
 System.out.println(s);
 }
 // Get the row keys that were just added to the selection
 RowKeySet addedRowKeys = event.getAddedSet();
 System.out.println(addedRowKeys.size() + " Nodes Added");
 // Get the row keys that were just removed from the selection
 RowKeySet removedRowKeys = event.getRemovedSet();
 System.out.println(removedRowKeys.size() + " Nodes Removed");
 }
 }

You declare the selection listener method in the treemap or sunburst component's
selectionListener attribute and add any additional components to display the
selection to the JSF page. In the example in this section, the listener is simply
displaying the output to the console, and only the prompt to the user to make the
selection is added to the page. The example below shows the portion of the page used
to set up the sunburst. The selectionListener attribute is highlighted in bold font.

<af:panelGroupLayout id="pgl12">
 <af:group id="g5">
 <af:outputText value="Click on a node to make a selection. Use Ctrl-
click for multiple nodes."
 inlineStyle="font-size:large;" id="ot3"/>
 <dvt:sunburst id="s1" summary="SampleSunburst"
value="#{sunburst.censusData}"
 var="row" varStatus="rowStatus" displayLevelsChildren="3"
 colorLabel="Median Household Income"
sizeLabel="Population"
 inlineStyle="width:500px;height:500px;"
 selectionListener="#{sunburst.selectionListener}">
 <dvt:sunburstNode id="sn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
#{row.size}">
 <dvt:attributeGroups id="ag1" type="color "
 value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' :
'Low Income'}"
 minLabel="Low" maxLabel="High">
 </dvt:attributeGroups>
 </dvt:sunburstNode>
 </dvt:sunburst>
 </af:group>
</af:panelGroupLayout>

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-61

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• Create the method that will define the selectionListener and return the selection
state and store it in the treemap or sunburst component's managed or backing
bean.

To use the same census data example, copy the example code into a managed
bean named sunburst. If you need help with managed beans, see Creating and
Using Managed Beans.

• Create any additional components needed to display the selection.

For example, the page in Figure 32-37 uses an af:outputText component to
prompt the user to click on a node to make a selection. For additional information
about configuring af:outputText components, see Displaying Output Text and
Formatted Output Text.

To add selection support to a treemap or sunburst:

1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go to Properties.

2. In the Properties window, expand the Behavior section and set the following
properties:

• NodeSelection: Set to single to enable selection support for single nodes
only. Multiple selection is enabled by default.

• SelectionListener: Enter the name of the method to be called when the user
clicks on the nodes.

For example, for a managed bean named sunburst and a method named
selectionListener, enter the following in the SelectionListener field:
#{sunburst.selectionListener}.

What You May Need to Know About Adding Selection Support to Treemaps
and Sunbursts

Because treemaps and sunbursts use the same data model as the Tree component,
selection events are defined in the
org.apache.myfaces.trinidad.event.SelectionEvent library.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-62

For additional information about selection support in a tree model, see What Happens
at Runtime: Tree Component Events.

For additional information about event handling in JDeveloper, see Handling Events.

Configuring Treemap and Sunburst Context Menus
You can configure both treemaps and sunbursts to display context menus when a user
right-clicks a node.

How to Configure Treemap and Sunburst Context Menus
Define treemap and sunburst context menus using these context menu facets:

• bodyContextMenu: Specifies a context menu that is displayed on non-selectable
elements in the treemap or sunburst component.

• contextMenu: Specifies a context menu that is displayed on any selectable
element in the treemap or sunburst component.

• multiSelectContextMenu: Specifies a content menu that is displayed when
multiple elements are selected in the treemap or sunburst component.

Each facet on a JSP or JSPX page supports a single child component. Facelets
support multiple child components. For all of these facets to work, selection must be
enabled in the treemap or sunburst's properties. Context menus are currently only
supported in Flash.

You create a context menu by using af:menu components within an af:popup
component. You can then invoke the context menu popup from another component,
based on a specified trigger. For more information about configuring context menus,
see Using Popup Dialogs, Menus, and Windows.

Figure 32-38 shows a sample treemap configured to display a context menu using the
contextMenu facet when the user right-clicks on one of the treemap's regions,
divisions, or nodes.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-63

Figure 32-38 Treemap Context Menu

If the user selects View Details for Midwest Region, the application can provide
additional information about the Midwest Region node.

Figure 32-39 shows the text output that is displayed below the treemap after the user
chooses to view the details for the Midwest Region. In this example, the output simply
verifies what the user clicked on, but this context menu could also be used to present
additional details about the Midwest Region.

Figure 32-39 Context Menu Sample Output After Click

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-64

The example below shows the sample code used to configure the example treemap
and the context menu.

<af:group id="g1">
 <af:outputFormatted value="Right click to display context menu."
id="of1"/>
 <dvt:treemap id="t1" displayLevelsChildren="3" summary="Sample Treemap"
 var="row" value="#{treemap.censusData}"
 varStatus="rowStatus"
 binding="#{treemapContextMenu.treemap}"
 colorLabel="Median Household Income"
 sizeLabel="Population"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
Population: #{row.size}<br/
>Income: #{row.income}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' :
'Low Income'}"
 type="color">
 </dvt:attributeGroups>
 </dvt:treemapNode>
 <f:facet name="contextMenu">
 <af:popup id="p1" contentDelivery="lazyUncached">
 <af:menu text="menu 1" id="m1">
 <af:commandMenuItem text="View Details for
#{treemapContextMenu.selectionState}"
 id="cmi1"

actionListener="#{treemapContextMenu.menuItemListener}"/>
 <af:group id="g2">
 <af:commandMenuItem text="Add Task" id="cmi2"

actionListener="#{treemapContextMenu.menuItemListener}"/>
 <af:commandMenuItem text="Add Notes" id="cmi3"

actionListener="#{treemapContextMenu.menuItemListener}"/>
 </af:group>
 </af:menu>
 </af:popup>
 </f:facet>
 </dvt:treemap>
 <af:spacer width="10" id="s1"/>
 <af:outputFormatted value="#{treemapContextMenu.status}" id="of2"
 clientComponent="true"
 binding="#{treemapContextMenu.outputFormatted}"/>
</af:group>

The example uses a backing bean named treemapContextMenu for the methods to set
the treemap, return the selection state and respond to user clicks on the context menu.
This example also uses the same classes and methods to set up the data for the

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-65

treemap as described in Adding Data to Treemap and Sunburst Components. The
example below shows the code for the ContextMenuSample class.

import javax.faces.component.UIComponent;
import javax.faces.event.ActionEvent;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import oracle.adf.view.rich.component.rich.nav.RichCommandMenuItem;
import oracle.adf.view.rich.component.rich.output.RichOutputFormatted;
import org.apache.myfaces.trinidad.context.RequestContext;

public class ContextMenuSample {
 private UITreemap treemap;
 private String status;
 private RichOutputFormatted outputFormatted;
public ContextMenuSample() {
}
public void setTreemap(UITreemap treemap) {
 this.treemap = treemap;
}
public UITreemap getTreemap() {
 return treemap;
}
public String getSelectionState() {
 if (treemap != null) {
 return TreemapSample.convertToString(treemap.getSelectedRowKeys(),
treemap);
 } else
 return null;
 }
public String getStatus() {
 return status;
 }
public void setOutputFormatted(RichOutputFormatted outputFormatted) {
 this.outputFormatted = outputFormatted;
 }
public RichOutputFormatted getOutputFormatted() {
 return outputFormatted;
 }
/**
 * Called when a commandMenuItem is clicked. Updates the outputText
with information about the menu item clicked.
 * @param actionEvent
 */
public void menuItemListener(ActionEvent actionEvent) {
 UIComponent component = actionEvent.getComponent();
 if (component instanceof RichCommandMenuItem) {
 RichCommandMenuItem cmi = (RichCommandMenuItem)component;
 // Add the text of the item into the status message
 StringBuilder s = new StringBuilder();
 s.append("You clicked on \"").append(cmi.getText()).append("\".

");
 this.status = s.toString();
 // Update the status text component

RequestContext.getCurrentInstance().addPartialTarget(this.outputFormatted);

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-66

 }
 }
}

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• Create the managed bean that will define the actionListener and return the
selection state.

To use the same census data example, copy the example code given above into a
backing bean named treemapContextMenu. If you need help with managed beans,
see Creating and Using Managed Beans.

• Create any additional components needed to support the context menu.

For example, the page in Figure 32-38 uses an af:outputText component to
prompt the user to right-click to display a context menu. When the user selects the
custom context menu item, the page uses an af:outputFormatted component to
display a message confirming which node the user selected.

See the code sample given above for the details needed to configure the
additional components. For additional information about af:outputText and
af:outputFormatted components, see Displaying Output Text and Formatted
Output Text.

To add a context menu to a treemap or sunburst:

1. If your application is using a backing bean, do the following:

a. In the Structure window, right-click the dvt:treemap or dvt:sunburst node
and choose Go to Properties.

b. Expand the Advanced section and enter a value for the Binding attribute to
associate the treemap with the managed bean that contains the methods for
the context menu. Alternatively, choose Edit from the attribute's dropdown
menu to create or select an existing bean and method.

The binding attribute is needed for the census data example because it includes
the code to set up the treemap, but it also uses the data and methods from the
same classes and methods that were described in How to Add Data to Treemap or
Sunburst Components. For example, for a backing bean named

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-67

treemapContextMenu, enter the following in the Binding field:
#{treemapContextMenu.treemap}.

2. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Insert Inside Treemap or Insert Inside Sunburst > Facet.

3. In the Insert Facet dialog, enter the name of the facet that corresponds to the type
of context menu that you wish to create.

For example, to define a contextMenu facet, enter the following in the Name field:
contextMenu.

4. Click OK.

The facet is created as a child of the dvt:treemap or dvt:sunburst node.

5. In the Structure window, right-click the f:facet - context menu node and choose
Insert Inside Facet > ADF Faces > Popup.

6. Right-click the af:popup node and choose Go to Properties.

7. In the Properties window, set the following properties:

• ContentDelivery: Set this to LazyUncached.

• AutoCancel: Set this to <default> enabled.

• ChildCreation: Set this to <default> immediate.

8. In the Structure window, right-click the af:popup node and choose Insert Inside
Popup > Menu.

9. In the Structure window, right-click the af:menu node and choose Insert Inside
Menu > Menu Item to create a menu item.

10. Right-click the af:commandMenuItem and choose Go to Properties.

11. In the Properties window, expand the Common section and set the following
properties:

• Text: Enter the text to display in the menu.

For example, to duplicate the treemap census data example, enter the
following in the Text field: View Details for
#{treemapContextMenu.selectionState}.

• ActionListener: Enter the name of the method to be called when the user
selects the menu item.

For example, for a managed bean named treemapContextMenu and a method
named menuItemListener, enter the following in the ActionListener field:
#{treemapContextMenu.menuItemListener}.

12. Repeat Step 9 through Step 11 for each menu item that you want the context
menu to display.

Tip:

To group related menu items, wrap the ADF Faces af:group component
around the af:commandMenuItem as shown in the code sample above for
the Context Menu class. For information about the af:group component,
see Grouping Related Items.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-68

13. To configure additional context menu facets, repeat Step 2 through Step 12.

What You May Need to Know About Configuring Treemap and Sunburst
Context Menus

Due to technical limitations when using the Flash rendering format, context menu
contents are currently displayed using the Flash Player's context menu.

This imposes several limitations defined by the Flash Player:

• Flash does not allow for submenus it its context menu.

• Flash limits custom menu items to 15. Any built-in menu items for the component,
for example, a pie graph interactiveSliceBehavior menu item, will count
towards the limit,

• Flash limits menu items to text-only. Icons or other controls possible in ADF Faces
menus are not possible in Flash menus.

• Each menu caption must contain at least one visible character. Control characters,
new lines, and other white space characters are ignored. No caption can be more
than 100 characters long.

• Menu captions that are identical to another custom item are ignored, whether the
matching item is visible or not. Menu captions are compared to built-in captions or
existing custom captions without regard to case, punctuation, or white space.

• The following captions are not allowed, although the words may be used in
conjunction with other words to form a custom caption: Save, Zoom In, Zoom
Out, 100%, Show All, Quality, Play, Loop, Rewind, Forward, Back, Movie not
loaded, About, Print, Show Redraw Regions, Debugger, Undo, Cut, Copy,
Paste, Delete, Select All, Open, Open in new window, and Copy link.

• None of the following words can appear in a custom caption on their own or in
conjunction with other words: Adobe, Macromedia, Flash Player, or Settings.

Additionally, since the request from Flash for context menu items is a synchronous
call, a server request to evaluate EL is not possible when the context menu is invoked.
To provide context menus that vary by selected object, the menus will be pre-fetched if
the context menu popup uses the setting contentDelivery="lazyUncached". For
context menus that may vary by state, this means that any EL expressions within the
menu definition will be called repeatedly at render time, with different selection and
currency states. When using these context menus that are pre-fetched, the application
must be aware of the following:

• Long running or slow code should not be executed in any EL expression that may
be used to determine how the context menu is displayed. This does not apply to
af:commandMenuItem attributes that are called after a menu item is selected, such
as actionListener.

• In the future, if the Flash limitations are solved, the ADF context menu may be
displayed in place of the Flash context menu. To ensure upgrade compatibility,
you should code such that an EL expression will function both in cases where the
menu is pre-fetched, and also where the EL expression is evaluated when the
menu is invoked. The only component state that applications should rely on are
selection and currency.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-69

Configuring Treemap and Sunburst Drilling Support
Drilling support enables the user to navigate through the treemap or sunburst
hierarchy by clicking the component's group headers or by double-clicking the
individual nodes.

How to Configure Treemap and Sunburst Drilling Support
Enable drilling support through the treemap or sunburst node's drilling attribute.

JDeveloper includes the necessary code to support drilling. However, you may want
the application to perform some other task when the node is drilled. You can define a
method to perform the additional task and add it as a drill listener to the treemap's or
sunburst's managed or backing bean.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• If you wish to add a drill listener, create the method that will define the listener and
add it to the treemap's managed or backing bean.

For more information about handling events, see Handling Events. If you need
help with beans, see Creating and Using Managed Beans.

To add drilling support to a treemap or sunburst

1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode
node and choose Go to Properties.

2. In the Properties window, expand the Advanced section, and use the Drilling
attribute's dropdown list to set the Drilling attribute to one of the following values:

• replace: allows the user to double-click a node to set it as the new root of the
treemap or sunburst

• insert (sunburst only): allows the user to expand or collapse the children of a
node

• insertAndReplace (sunburst only): allows the user to double-click a node to
set it as the root of the hierarchy and allows the user to expand or collapse the
children of a node

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-70

3. If your application includes a drill listener, do the following:

a. In the Structure window, right-click the dvt:treemap node and choose Go to
Properties.

b. In the Properties window, expand the Behavior section.

c. From the DrillListener attribute's dropdown menu, choose Edit.

d. In the Edit Property dialog, use the search box to locate the treemap's
managed bean.

e. Expand the managed bean node and select the method that contains the drill
listener.

f. Click OK.

The expression is created.

For example, for a managed bean named sampleTreemap and a method
named sampleDrillListener, the Expression Builder generates the
code#{sampleTreemap.sampleDrillListener} as the value for the drill
listener.

What You May Need to Know About Treemaps and Drilling Support
Drilling is recommended when there are additional layers of data that can be
displayed. Unlike isolation, it is a server side operation that will fetch additional data
from the tree model. To focus on group data that is already displayed, use the treemap
isolate feature.

For more information, see Configuring Isolation Support (Treemap Only).

How to Add Drag and Drop to Treemaps and Sunbursts
You can configure treemaps and sunbursts as drag sources and drop targets for drag
and drop operations between supported components on a page.

To add drag support to a treemap or sunburst, add the af:dragSource tag to the
treemap and add the af:dropTarget tag to the component receiving the drag. The
component receiving the drag must include the
org.apache.myfaces.trinidad.model.RowKeySet data flavor as a child of the
af:dropTarget and also define a dropListener method to respond to the drop event.

To add drop support to a treemap or sunburst, add the af:dropTarget tag to the
treemap or sunburst and include the data flavors that the treemap or sunburst will
support. Add a dropListener method to a treemap or sunburst managed bean that will
respond to the drop event.

The following procedure shows how to set up a treemap or sunburst as a simple drag
source or drop target. For more detailed information about configuring drag and drop
on ADF Faces or ADF Data Visualization components, see Adding Drag and Drop
Functionality.

Before you begin:

It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring treemap
attributes and child tags, see Configuring Treemaps. For information about configuring
sunburst attributes and child tags, see Configuring Sunbursts.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-71

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

You will need to complete these tasks:

• Add a treemap or sunburst to your page. For more information, see How to Add a
Treemap to a Page or How to Add a Sunburst to a Page.

• If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Adding Data to Treemap and Sunburst Components.

• Create any additional components needed to support the drag and drop.

For example, the page in Figure 32-18 uses an af:outputText component to
prompt the user to drag a treemap node to the indicated text. When the user drags
a node to the text, the page uses an af:outputFormatted component to display a
message confirming which node the user dragged.

The example below shows the sample code for the completed page. For additional
information about af:outputText and af:outputFormatted components, see
Displaying Output Text and Formatted Output Text.

<af:group id="g1">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:outputText value="Drag Source Demo" inlineStyle="font-
size:large;" id="ot2"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:outputText value="Drag a Treemap Node to the Text" id="ot1"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3"
 colorLabel="Median Household Income"
 sizeLabel="Population" summary="Discrete
Treemap"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
Population: #{row.size}<br/
>Income: #{row.income}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low
Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dragSource defaultAction="COPY" actions="COPY MOVE LINK"/>
 </dvt:treemap>
 <af:spacer width="20" id="s2"/>
 <af:outputFormatted value="#{treemap.dropText}" id="of1">
 <af:dropTarget dropListener="#{treemap.fromDropListener}">
 <af:dataFlavor
flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
 </af:outputFormatted>

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-72

 </af:panelGroupLayout>
</af:group>

The example below shows the sample code for the page in Figure 32-19. In this
example, the treemap is configured as the drop target.

<af:group id="g1">
 <af:panelGroupLayout id="pgl4" layout="horizontal">
 <af:outputText value="Drop Target Demo" inlineStyle="font-
size:large;"/>
 <af:spacer width="10" id="s2"/>
 <af:outputText value="Drag From the Text to the Treemap" id="ot1"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3"
 colorLabel="Median Household Income"
 sizeLabel="Population" summary="Discrete
Treemap"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
Population: #{row.size}<br/
>Income: #{row.income}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low
Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dropTarget dropListener="#{treemap.toDropListener}"
 actions="MOVE COPY LINK">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
 </dvt:treemap>
 <af:spacer width="20" id="s1"/>
 <af:outputFormatted value="#{treemap.dragText}" id="of1"
 clientComponent="true">
 <af:componentDragSource/>
 </af:outputFormatted>
 </af:panelGroupLayout>
</af:group>

To add drag and drop support to a treemap or sunburst:

1. To configure a treemap or sunburst as a drop target, in the Components window,
from the Operations panel, drag a Drop Target and drop it as a child to the
treemap or sunburst component.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the treemap's or
sunburst's managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named toDropListener() on a managed bean
named treemap, choose Edit, select treemap from the dropdown menu, and click
New on the right of the Method field to create the toDropListener() method.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-73

The example below shows the sample drop listener and supporting methods for
the treemap displayed in Figure 32-19.

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import javax.faces.component.UIComponent;
// variables need by methods
private String dragText = "Drag this text onto a node";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor =
DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 if(rowKey != null) {
 sb.append("Drop Site: ");
 sb.append(getLabel(dropComponent, rowKey));
 }
 }
 // Update the output text
 this.dragText = sb.toString();

RequestContext.getCurrentInstance().addPartialTarget(event.getDragCompon
ent());
 return event.getProposedAction();

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-74

}

public String getDragText() {
 return dragText;
}

private String getLabel(UIComponent component, Object rowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 TreeNode rowData = (TreeNode) treemap.getRowData(rowKey);
 return rowData.getText();
 }
 return null;
}

private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 ClientRowKeyManager crkm = treemap.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter the object that the drop target will accept.
Alternatively, use the dropdown menu to navigate through the object hierarchies
and choose the desired object.

For example, to allow the af:outputFormatted component to drag text to the
treemap, enter java.lang.Object in the Insert Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget node and choose Go to
Properties.

6. In the Properties window, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

7. To use the treemap or sunburst as the drop target, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drag
Source as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source as a child to an
af:outputFormatted component.

b. In the Properties window, in the component's Value field, reference the public
variable that you created in the drop listener for the treemap or sunburst in
Step 2.

For example, for a drop listener named toDropListener() and a variable
named dropText, enter the following in the component's Value field:

#{treemap.dropText}

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-75

8. To configure the treemap or sunburst as a drag source, in the Components
window, from the Operations panel, drag and drop a Drag Source as a child to the
treemap or sunburst.

9. In the Properties window, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

10. To specify the default action that the drag source will support, use the
DefaultAction attribute's dropdown menu to choose COPY, MOVE, or LINK.

The treemap in the drag and drop example in Figure 32-18 uses COPY as the
default action.

11. To make another component the drop target for drags from the treemap or
sunburst, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, the page in the drag and drop example in Figure 32-19 contains
an af:outputFormatted component that displays the results of the drop.

b. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named fromDropListener() on a managed
bean named treemap, choose Edit, select treemap from the dropdown menu,
and click New on the right of the Method field to create the
fromDropListener() method.

The example below shows the sample drop listener for the treemap displayed
in Figure 32-18. This example uses the same imports and helper methods
used in the drop listener example above, and they are not included here.

// Additional import needed for listener
import org.apache.myfaces.trinidad.model.RowKeySet;
// Variables needed by method
private String dropText = "Drop a node here";
// Drop listener
public DnDAction fromDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<RowKeySet> dataFlavor =
DataFlavor.getDataFlavor(RowKeySet.class);
 RowKeySet rowKeySet = transferable.getData(dataFlavor);
 if(rowKeySet == null || rowKeySet.getSize() <= 0)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-76

 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 sb.append("Nodes: ");
 UIComponent dragComponent = event.getDragComponent();
 for(Object rowKey : rowKeySet) {
 sb.append(getLabel(dragComponent, rowKey));
 sb.append(", ");
 }
 // Remove the trailing ,
 sb.setLength(sb.length()-2);
 // Update the output text
 this.dropText = sb.toString();

RequestContext.getCurrentInstance().addPartialTarget(event.getDropCo
mponent());
 return event.getProposedAction();
}

c. Click OK to enter the Insert Data Flavor dialog.

d. In the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

For example, to allow the af:outputFormatted component to drag text to the
treemap, enter org.apache.myfaces.trinidad.model.RowKeySet in the Insert
Data Flavor dialog.

e. In the Structure window, right-click the af:dropTarget node and choose Go to
Properties.

f. In the Properties window, in the Actions field, enter a list of the operations
that the drop target will accept, separated by spaces. Allowable values are:
COPY, MOVE, or LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

g. In the component's Value field, reference the public variable that you created
in the drop listener for the treemap or sunburst in Step 2.

For example, for a drop listener named fromDropListener() and a variable
named dragText, enter the following in the component's Value field:

#{treemap.dragText}

Configuring Isolation Support (Treemap Only)
Isolation allows the user to click a group header to maximize the display of the group's
data. The isolation feature is enabled by default when the group header is displayed.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-77

How to Disable Isolation Support
If you wish to disable isolation, set the Isolate attribute of the
dvt:treemapNodeHeader node to off.

Before you begin:

It may be helpful to have an understanding of how treemap attributes and treemap
child tags can affect functionality. For more information, see Configuring Treemaps.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Treemap
and Sunburst Components.

Add a treemap to your page. For more information, see How to Add a Treemap to a
Page.

Add treemap node headers to your treemap. For more information, see How to
Configure Treemap Node Headers.

To disable isolation support on a treemap group:

1. In the Structure window, expand the dvt:treemapNode node.

2. Right-click the dvt:treemapNodeHeader node and choose Go to Properties.

3. In the Properties window, expand the Advanced section.

4. From the Isolate attribute's dropdown menu, choose off.

5. If your treemap has multiple nodes, repeat Step 1 through Step 4 to disable
isolation support for each of the nodes.

What You May Need to Know About Treemaps and Isolation Support
Isolation is a client-side operation that allows the user to focus on data that is already
displayed. If your treemap has multiple child levels and you want the user to access
levels that are not already displayed, use drilling instead.

To add drilling support, see How to Configure Treemap and Sunburst Drilling Support.

Chapter 32
Adding Interactive Features to Treemaps and Sunbursts

32-78

33
Using Diagram Components

This chapter describes how to use the ADF Data Visualization diagram component to
display data in diagrams using simple UI-first development. The chapter defines the
data requirements, tag structure, and options for customizing the look and behavior of
the component.
If your application uses the Fusion technology stack, then you can also use data
controls to create diagrams. For more information, see the "Creating Databound
Diagrams" section in the Developing Fusion Web Applications with Oracle Application
Development Framework.

This chapter includes the following sections:

• About the Diagram Component

• Using the Diagram Component

• Using the Diagram Layout Framework

About the Diagram Component
ADF DVT Diagrams are flexible and highly configurable components that can display a
wide range of data items. Use diagrams to model, represent, and visualize information
using a shape called a node to represent data, and links to represent relationships
between nodes.

Diagrams can represent basic data using simple shapes or images with a label, or
more complex data using zoom levels and stylistic attribute values such as colors for
each unique group in the data set. The layout of diagram links and nodes is configured
through a framework using one or more custom JavaScript files. The framework
supports rendering in multiple platforms including SVG and Java2D.

For example, diagrams can model a database schema to logically group objects such
as tables, views, and stored procedures; represent an employee tree with a complex
set of information for each employee at different zoom levels; or visualize the net
migration between US states using a sunburst layout.

Diagram Use Cases and Examples
Diagrams use shapes for the node, and lines for links to represent the relationships
between the nodes. Figure 33-1 shows a simple diagram configured in a circular
layout pattern with circles and lines representing the relationships between them. The
example includes the default control panel for diagram zooming.

33-1

Figure 33-1 Simple Diagram with Nodes and Links with Control Panel

Diagrams can also be configured to visually display hierarchical data with a master-
detail relationship. Figure 33-2 shows an employee tree diagram at runtime that
includes a control panel, a number of nodes, and links that connect the nodes. Also
illustrated is a node panel card that uses af:showDetailItem elements to display
multiple sets of data at different zoom levels.

Figure 33-2 Employee Tree Diagram with Control Panel

The diagram component can also be configured to display an arc diagram, a graphical
display to visualize graphs in a one-dimensional layout. Nodes are displayed along a
single axis, while representing the edges or connections between nodes with arcs.

Chapter 33
About the Diagram Component

33-2

Figure 33-3 shows an arc diagram that use characters from Victor Hugo's "Les
Miserables" novel to display co-appearances between any pair of characters that
appear in the same chapter of the book.

Figure 33-3 Arc Diagram Displaying Character Co-Appearances

Diagrams can be configured to display a database schema. Figure 33-4 shows a
database schema layout diagram with an overview window, a simplified view of the
diagram that provides the user with context and navigation options.

Figure 33-4 Database Schema Layout Diagram with Overview

Diagrams can also be configured in a sunburst layout to display quantitative
hierarchical data across two dimensions, represented visually by size and color.
Figure 33-5 shows a diagram displaying US state to state migration data using
attribute groups to display net results.

Chapter 33
About the Diagram Component

33-3

Figure 33-5 Diagram Displaying State to State Net Migration Data

End User and Presentation Features of Diagrams
The ADF Data Visualization diagram component provides a range of features for end
users, such as zooming, grouping, and panning. They also provide a range of
presentation features, such as legend display, and customizable colors and label
styles.

To use and customize diagram components, it may be helpful to understand these
features and components:

• Control Panel: Provides tools for a user to manipulate the position and
appearance of a diagram component at runtime. By default, it appears in a hidden
state in the upper left-hand corner of the diagram. Users click the Hide or Show
Control Panel button to hide or expand the control panel.

Figure 33-6 shows the control panel expanded to display the zoom controls and
zoom-to-fit option.

Figure 33-6 Diagram Control Panel

Chapter 33
About the Diagram Component

33-4

• Zooming: Enabled by default, users can change the view of the diagram in an
expanded or collapsed display. The maximum and minimum scale of the zoom
can be configured for the diagram.

• Panning: Enabled by default, users can select the diagram in any open area and
move the entire diagram right, left, up, and down to reposition the view.

Note:

The PanDirection attribute allows you to decide whether to constrain
panning to horizontal or vertical only.

• LayoutBehaviour: Lets users control whether the diagram calls out to the
application to perform layout at each individual container level or just once
globally.

• Popup Support: Diagram components can be configured to display popup
dialogs, windows, and menus that provide information when the user clicks or
hovers the mouse over a node. Figure 33-7 shows a node popup window when
the user mouses over the node.

Figure 33-7 Diagram Node Popup

• Legend Support: Diagrams display legends to provide a visual clue to the type of
data represented by the shapes and color. If the component uses attribute groups
to specify colors based on conditions, the legend can also display the colors used
and indicate what value each color represents.

• Overview Window: Displays a simplified view of the diagram that provides the
user with context and navigation options. The Overview Window viewport can be
dragged to pan the diagram. Users click the Hide or Show Overview Window
button to hide or expand the window. Figure 33-8 shows the overview window
expanded and panned to display a portion of a database schema layout.

Figure 33-8 Overview Window

• Context Menus: Diagrams support the ability to display context menus to provide
additional information about the selected node.

• Attribute Groups: Diagram nodes support the use of the dvt:attributeGroups
tag to generate stylistic attribute values such as colors for each unique group in
the data set.

Chapter 33
About the Diagram Component

33-5

• Selection Support: Diagrams support the ability to respond to user clicks on one
or more nodes or links to display information about the selected element.

• Tooltip Support: Diagrams support the ability to display additional information
about a node or link when the user moves the mouse over the element.
Figure 33-9 shows node and link tooltips.

Figure 33-9 Node and Link Tooltips

• Drilling Support: Diagram components support drilling to navigate through a
hierarchy and display more detailed information about a node.

• Highlighting Support: Diagrams can be configured to highlight the view of nodes
and links when the user hovers the mouse over an element in the diagram.
Highlighting can be specified for these values: none, node, nodeAndIncomingLinks,
nodeAndOutgoingLinks, and nodeAndLinks. Figure 33-10 shows the highlighted
view of a node upon hover in a diagram when the nodeAndLinks value is specified.

Figure 33-10 Node Highlighting Configuration

Figure 33-11 shows the highlighted view of a link upon hover in a diagram when
the nodeAndLinks value is specified.

Chapter 33
About the Diagram Component

33-6

Figure 33-11 Link Highlighting Configuration

• Stacking: You can group nodes and display the nodes in a stacked display.
Figure 33-12 shows a stack of nodes. By default, the number of nodes in the stack
are displayed.

Figure 33-12 Grouped Nodes Displayed as a Stack

• Container Nodes: Nodes can represent a hierarchical relationship using one or
more container nodes. Figure 33-13 shows a set of container nodes in a database
schema.

Figure 33-13 Diagram Container Nodes in a Database Schema

• Node Controls: A tooltip describing the control is displayed by default.

Chapter 33
About the Diagram Component

33-7

Table 33-1 Diagram Node Controls

Control Name Description

Isolate Allows user to detach a single node for isolated
display in the diagram.

Preview Stack Allows user to display all the nodes in a group.

Unstack Allows user to display a grouped set of nodes so that
all nodes are visible.

Restack Allows user to collapse a set of associated nodes
into a grouped display.

Restore If you configured a panel card, displays the list of
af:showDetailItem elements that you have
defined. Users can use the panel selector to show
the same panel on all nodes at once.

Close Allows user to display all the nodes in a group.

Drill Allows user to navigate through the node’s hierarchy
and display additional detail about a node.

Chapter 33
About the Diagram Component

33-8

Table 33-1 (Cont.) Diagram Node Controls

Control Name Description

Additional Links Allows user to display the links and nodes associated
with a selected node.

• Palette: Diagrams support a panel of node and link items that can be used for
drag and drop into a layout configuration. Users click the Hide or Show Palette
button to hide or expand the window. Figure 33-14 shows a palette of nodes and
links available for creating a diagram.

Figure 33-14 Palette of Diagram Nodes and Links

• Display in Printable or Emailable Pages: ADF Faces allows you to output your
JSF page from an ADF Faces web application in a simplified mode for printing or
emailing. For example, you may want users to be able to print a page (or a portion
of a page), but instead of printing the page exactly as it is rendered in a web
browser, you want to remove items that are not needed on a printed page, such as
scrollbars and buttons. If a page is to be emailed, the page must be simplified so
that email clients can correctly display it. For information about creating simplified
pages for these outputs, see Using Different Output Modes .

Additional Functionality for Diagram Components
You may find it helpful to understand other ADF Faces features before you implement
your diagram component. Additionally, once you have added a diagram component to
your page, you may find that you need to add functionality such as validation and
accessibility.

Following are links to other functionality that diagram components can use:

Chapter 33
About the Diagram Component

33-9

• You may want a diagram to refresh a node to show new data based on an action
taken on another component on the page. For more information, see Rerendering
Partial Page Content.

• Personalization: If enabled, users can change the way the diagram displays at
runtime, and those values will not be retained once the user leaves the page
unless you configure your application to allow user customization. For information,
see Allowing User Customization on JSF Pages.

• Accessibility: Diagram components are accessible, as long as you follow the
accessibility guidelines for the component. See Developing Accessible ADF Faces
Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of diagram components
using an ADF skin that you apply to the application or by applying CSS style
properties directly using a style-related property (styleClass or inlineStyle). For
more information, see Customizing the Appearance Using Styles and Skins.

• Content Delivery: You can configure your diagram to fetch data from the data
source immediately upon rendering the components, or on a second request after
the components have been rendered using the contentDelivery attribute. For
more information, see Content Delivery.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound diagrams based on how your ADF Business
Components are configured. JDeveloper provides a wizard for data binding and
configuring your diagram. For more information, see the "Creating Databound
Diagram Components" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), image formats, and
how data can be displayed and edited. For more information, see Common
Functionality in Data Visualization Components.

Using the Diagram Component
To use the ADF DVT Diagram component, add the diagram component to a page
using the Component Palette window. Then define the data for the diagram and

Chapter 33
Using the Diagram Component

33-10

specify the JavaScript method to invoke the diagram layout. Complete any additional
configuration in JDeveloper using the tag attributes in the Properties window.

Diagram Data Requirements
A diagram represents two sets of separate, but related data objects; a set of nodes,
and a set of links that join those nodes. Data is supplied as two separate collections of
data provided either as an implementation of the List interface (java.util.ArryList),
or a CollectionModel (org.apache.myfaces.trinidad.model.CollectionModel).

The data can be of any type, typically String, int, or long.

Both collections of diagram nodes and links require an attribute that represents the
unique Id for each row in the collection. The collections are mapped using a value
attribute to stamp out each instance of the node or link using a component to iterate
through the collection. Each time a child component is stamped out, the data for the
current component is copied into a var property used by the data layer component in
an EL Expression. Once the diagram has completed rendering, the var property is
removed, or reverted back to its previous value. By convention, var is set to node or
link.

The values for the value attribute must be stored in the node's or link's data model or
in classes and managed beans if you are using UI-first development.

Note:

The CollectionModel includes data provided by the ADF binding layer in the
form of a table or hierarchical binding, which can be used to data bind from
the ADF model using data controls.

Configuring Diagrams
The diagram component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the diagram.

The prefix dvt: occurs at the beginning of each diagram component name indicating
that the component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure diagram child components, attributes, and supported facets in the
following areas:

• Diagram (dvt:diagram): Wraps the collection of nodes (diagramNodes) and links
(diagramLinks), and specifies the layout (clientLayout) reference for the
diagram. Configure the following attributes to control the diagram display:

– Animation: Use the animationOnDisplay attribute to control the initial
animation. To change the animation duration from the default duration of 500
milliseconds, modify the animationDuration attribute.

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if there are no nodes to display.

Chapter 33
Using the Diagram Component

33-11

– Zoom (zooming): By default the diagram can be displayed in an expanded or
compressed view. Use maxZoom and minZoom to specify the size of the scale of
the zoom.

– Pan (panning): By default with a device specific gesture, users can select and
move the diagram up, down, right, or left.

• Client layout (clientLayout): Used to register a JavaScript method invoked to
perform layout for a diagram. For detailed information, see Using the Diagram
Layout Framework.

• Diagram nodes (diagramNodes): Wraps the collection of diagram nodes. Configure
the following attributes to manage the collection of diagram nodes:

– value: Specify the data model for the node collection. Can be an instance of
javax.faces.CollectionModel.

– var: Name of the EL variable used to reference each element of the node
collection.

– varStatus: Use to provide contextual information about the state of the
component.

– groupBy: Use to stack nodes by listing the attribute group IDs in a space-
separated list.

– highlightBehavior: Use to specify the highlight behavior when the user
hovers the mouse over a node in the diagram. Valid values are: none, node,
nodeAndIncomingLinks, nodeAndOutgoingLinks, and nodeAndLinks.

• Node (diagramNode): Used to stamp out each instance of the node in the
(diagramNodes) collection. A node is a shape that references the data in a
diagram, for example, employees in an organization or computers in a network.

The node component supports the use of these f:facet elements:

– Zoom: Supports the use of one or more f:facet elements that display content
at different zoom levels, with more detail content available at the higher zoom
levels.

* f:facet name="zoom100"

* f:facet name="zoom75"

* f:facet name="zoom50"

* f:facet name="zoom25"

The f:facet element supports the use of many ADF Faces components as
child components, such as af:outputText, af:image, and
af:panelGroupLayout, in addition to the ADF Data Visualization marker and
panelCard components.

At runtime, the node contains controls that allow users to navigate between
nodes and to show or hide other nodes by default. For information about
specifying node content and defining zoom levels, see

– Label: Provides the ability to specify a label that can be independently
positioned by the layout.

– Background: Use to specify a background for the zoom facets, automatically
scaled to fit the node size. Content is stamped on top of the background. The
facet supports af:image and dvt:marker.

Chapter 33
Using the Diagram Component

33-12

– Overlay: Use to position one or more markers overlaid on the zoom facets.
The overlay is positioned using a dvt:pointLocation element for a
dvt:marker. Use an af:group element when specifying more than one overlay
marker.

– Container: Templates provided for stamping out areas of a parent (container)
node. Available for specifying top, bottom, right, left, and left-to-right reading
direction right and left areas.

• Attribute groups (attributeGroups): Use this optional child tag of a diagram node
child element, typically the dvt:marker component, to generate style values for
each unique value, or group, in the data set. You can also apply attribute groups to
more than one component, for example, in all defined zoom facets to maintain
consistency while zooming, or to set the background color of an
af:panelGroupLayout. For more information, see

Attribute groups are necessary to provide information for the display of the
diagram legend and are therefore recommended. For more information, see

• Links (diagramLinks): Wraps the collection of diagram links. Configure the
following attributes to manage the collection of diagram links:

– value: Specify the data model for the link collection. Can be an instance of
javax.faces.CollectionModel.

– var: Name of the EL variable used to reference each element of the link
collection.

– varStatus: Use to provide contextual information about the state of the
component.

– highlightBehavior: Use to specify the highlight behavior when the user
hovers the mouse over a link in the diagram. Valid values are: none and link.

• Link (diagramLink): Use to stamp out each instance of the link in the
(diagramLinks) collection. Links connect one node with another node. You can
configure the display of links using the following attributes:

– linkColor: Use to specify the color of the link using a CSS named color.

– linkStyle: Use to specify the appearance of the link. Valid values are solid
(default), dash, dot, dashDot.

– linkWidth: Use to specify the width in pixels for the link. The default value is
1.

– startConnectorType: When required, use to specify one of the available
images to use for the starting node link connector. Valid values are none,
arrowOpen, arrow, arrowConcave, circle, rectangle, and rectangleRounded.

– endConnectorType: When required, use to specify one of the available images
to use for the terminal node link connector. Valid values are none, arrowOpen,
arrow, arrowConcave, circle, rectangle, and rectangleRounded.

– label: use to specify the label to use for the link.

The link component supports the use of these f:facet elements:

– startConnector: Supports the use of a custom image for the starting node link
connector.

– endConnector: Supports the use of a custom image for the terminal node link
connector.

Chapter 33
Using the Diagram Component

33-13

– label: Supports the use of a custom label for the link.

For information about how to customize the appearance of the link and add labels,
see

• Legend (legend): Use to display multiple sections of marker and label pairs.
Define the legend as a child of the diagram component.

• Palette (palette): Use to create a panel for creating nodes and links elements
(paletteItem). The palette can display multiple sections of node and label pairs,
supporting custom title headers and declarative control over the ordering of such
sections. The palette can contain multiple sections (paletteSection) of nodes and
a single section of links (paletteLinkDefs).

What You May Need to Know About Using the Default Diagram Layout
When you create a diagram using UI-first development in JDeveloper, a Create
Diagram wizard provides the option of using a default client layout that you can use or
edit to specify the layout of your diagram. The default layout is based on force-directed
graph drawing algorithms.

To view the complete code for the default layout, you can view the file in JDeveloper,
or see Code Sample for Default Client Layout.

When you create a diagram using the default client layout, JDeveloper performs the
following actions:

• Registers the layout with the ADF runtime environment as a JavaScript (JS)
feature. The creation process automatically adds a JS file in the
ViewController/src/js/layout directory with the following naming convention:

ApplicationNameDiagramLayout.js

For example, if your application is named DiagramSample, the JS file is named
DiagramSampleDiagramLayout.js.

• Creates the adf-js-features.xml file if it doesn't already exist and adds the
ApplicationNameDiagramLayout as the feature-name and the path to the JS file
as the feature-class. The file is placed in the ViewController/src/META-INF
directory.

The following example shows the adf-js-features.xml file for an application
named DiagramSample.

<?xml version="1.0" encoding="UTF-8" ?>
<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>DiagramSampleDiagramLayout</feature-name>
 <feature-class>js/layout/DiagramSampleDiagramLayout.js</feature-class>
 </feature>
</features>

• References the JavaScript file from the diagram using the dvt:clientLayout
element.

The following example shows the sample code referencing the JavaScript file:

<dvt:diagram layout="DiagramSampleDiagramLayout" id="d2"
 <dvt:clientLayout method="DiagramSampleDiagramLayout.forceDirectedLayout"
 featureName="DiagramSampleDiagramLayout"
 name="DiagramSampleDiagramLayout"/>

Chapter 33
Using the Diagram Component

33-14

...
</diagram>

• Configures the development environment to copy the .js file type from the source
path to the output directory when invoking the Make or Build command.

When you design and use a custom client layout for your diagram, you must complete
these actions manually. For more information, see How to Register a Custom Layout.

How to Add a Diagram to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a diagram to a JSF page. When you drag and drop a
diagram component onto the page, a Create Diagram wizard displays.

If you click Finish, the diagram is added to your page, and you can use the Properties
window to specify data values and configure additional display attributes. Alternatively,
you can choose to bind the data during creation and use the Configure Diagram
wizard - Node and Link Data page to configure the associated node and link data.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. Figure 33-15 shows the
dropdown menu for a dialog layout attribute.

Figure 33-15 Diagram Layout Attribute Dropdown Menu

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a diagram and the binding will be done for you. For more
information, see the "Creating Databound Diagram Components" section in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Before you begin:

Chapter 33
Using the Diagram Component

33-15

It may be helpful to have an understanding of how diagram attributes and child tags
can affect functionality. For more information, see Configuring Diagrams.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Diagram
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a diagram to a page:

1. In the ADF Data Visualization page of the Components window, from the Common
panel, drag and drop a Diagram onto the page to open the Create Diagram
wizard.

2. In the Client Layout page, choose one of the following options:

• Default Client Layout: Use the layout available in JDeveloper. The layout is
based on force-directed graph drawing algorithms.

• Custom Client Layout: Use a custom designed client layout.

• No Layout: Create the diagram without specifying a layout for the nodes and
links.

If you select the default layout or specify a custom layout, you can open the file in
JDeveloper. You can also click Edit Component Definition in the Properties
window to display the Edit Diagram - Configure Client Layout dialog and then click
Search to display the method in the popup.

3. Click Finish to add the diagram to the page.

Note:

If the JSP page is run, only the control panel will be displayed since the
diagram is not bound to data at this point.

Optionally, click Next to use the wizard to bind the diagram on the Node and Link
Data page by navigating to the ADF data control that represents the data you wish
to display on the diagram nodes and links. If you choose this option, the data
binding fields in the dialog will be available for editing. For help with the dialog,
press F1 or click Help.

4. In the Properties window, view the attributes for the diagram. Use the help button
to display the complete tag documentation for the diagram component.

5. Expand the Appearance section, and enter values for the following attributes:

• ControlPanelBehavior: Use the attribute's dropdown menu to change the
default display of the control panel from initCollapsed to initExpanded or
Hidden.

• Summary: Enter a summary of the diagram's purpose and structure for
screen reader support.

Chapter 33
Using the Diagram Component

33-16

What Happens When You Add a Diagram to a Page
JDeveloper generates a set of tags when you drag and drop a diagram from the
Components window onto a JSF page and choose not to bind the data during creation.

The generated code is:

<dvt:diagram layout="DiagramSampleDiagramLayout" id="d2">
 <dvt:clientLayout method="DiagramSampleDiagramLayout.forceDirectedLayout"
 featureName="DiagramSampleDiagramLayout"
 name="DiagramSampleDiagramLayout"/>
 <dvt:diagramNodes id="dn1">
 <dvt:diagramNode id="dn2">
 <f:facet name="zoom100">
 <dvt:marker id="m1"/>
 </f:facet>
 </dvt:diagramNode>
 </dvt:diagramNodes>
 <dvt:diagramLinks id="dl1">
 <dvt:diagramLink id="dl2"/>
 </dvt:diagramLinks>
</dvt:diagram>

If you choose to bind the data to a data control when creating the diagram, JDeveloper
generates code based on the data model. For more information, see the "Creating
Databound Diagram Components" section in Developing Fusion Web Applications with
Oracle Application Development Framework.

How to Create Diagram Nodes
When the diagram is added to your page, you can use the Configure Diagram wizard -
Diagram Nodes page to configure nodes to the diagram.

If you click Finish, the default characteristics of a diagram node’s marker are added to
the diagram.

Before you begin:

It may be helpful to have an understanding of how diagram attributes and child tags
can affect functionality. See Configuring Diagrams.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. See Additional Functionality for Diagram Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To create diagram nodes:

1. In the ADF Data Visualization page of the Components window, from the Common
panel, drag and drop a Diagram onto the page to open the Create Diagram wizard

2. In the Client Layout page, choose one of the following options:

• Default Client Layout: Use the layout available in JDeveloper. The layout is
based on force-directed graph drawing algorithms.

Chapter 33
Using the Diagram Component

33-17

• Custom Client Layout: Use a custom designed client layout.

• No Layout: Create the diagram without specifying a layout for the nodes and
links.

3. Click Next to use the wizard to bind the diagram on the Node and Link Data page
by navigating to the ADF data control that represents the data you wish to display
on the diagram nodes and links.

4. In the Node and Link Data page, choose the appropriate value from the Node Id
dropdown menu.

5. Click Next to go to the Diagram Nodes page and configure the default display
characteristics of a diagram node.

6. Click Finish to add the node to the diagram.

Note:

Optionally, if you need more control, you can specify attribute groups to
apply display properties to markers based upon grouping rules

7. In the Properties window, view the attributes for the node. Use the help button to
display the complete tag documentation for the diagramNode component.

8. Expand the different sections, and enter appropriate values.

Note:

• In the Other section, the DragFlavor and DropFlavors attributes
control which nodes can be dragged onto which drop targets.

• In the Other section, the OverviewContainerStyle and
OverviewStyles attributes control how nodes are displayed in the
overview. The OverviewContainerStyle attribute represents the
style in the Overview Window when the node is disclosed and the
OverviewStyle attribute represents the style when the node is not
disclosed.

Using the Diagram Layout Framework
The ADF DVT Diagram layout framework supports the display of diagram nodes and
links in whatever configuration meets the business needs of the diagram. Written in
JavaScript and based on HTML5, the framework supports rendering in multiple
platforms, including SVG and Java2D.

Diagrams require a client layout configuration defined in a JavaScript method that you
add to the application as a feature. Client layouts specify how to lay out the nodes and
links on a page. Diagrams can be configured to work with more than one layout, as in
the case of parent and child nodes, but at least one layout must be registered with the
application. All node and link display rendering is specified by the diagram component
and all layout logic is contained in the layout JavaScript file.

Chapter 33
Using the Diagram Layout Framework

33-18

The diagram component includes a default layout based on force-directed graph
drawing algorithms that you can use and modify as needed. The default
forceDirectedLayout positions the diagram nodes so that all the links are of more or
less equal length, and there are as few crossing links as possible

You can also provide your own client layout configuration in a JavaScript object that
you add as an application feature using the DVT Diagram APIs.

Layout Requirements and Processing
The basic process of laying out a diagram is to loop though an array of nodes and an
array of links and set positioning information on each of them.

Custom diagram layout code uses the DVT diagram base classes defined in
Table 33-2.

Table 33-2 DVT Diagram Base Classes

Base Class Description/Methods (partial)

DvtDiagramLayoutContex
t

Defines the context for a layout call.

layout: getLayout(), getLayoutAttributes(),
getContainerId(), get/setContainerPadding(),
getComponentSize(), get/setViewport()

nodes: getNodeCount(), getNodeByIndex(),
getNodeById()

links: getLinkCount(), getLinkByIndex(), getLinkById()

helpers: isLocaleR2L(), localToGlobal()

DvtDiagramLayoutContex
tLink

Defines the link context for a layout call.

top level: getId(), get/setPoints(),
getStartConnectorOffset(), getEndConnectorOffset(),
getLinkWidth(), getLayoutAttributes(), isPromoted()

start/end nodes: getStartId(), getEndId()

labels: get/setLabelPosition(), getLabelBounds(), get/
setLabelRotationAngle(), get/
setLabelRotationPoint()

DvtDiagramLayoutContex
tNode

Defines the node context for a layout call.

top level: getId(), getBounds(), getContentBounds(),
get/setPosition(), getLayoutAttributes(),
getContainerId(), get/setContainerPadding()

state: isReadOnly(), isDisclosed(), getSelected()

labels: get/setLabelPosition(), getLabelBounds(), get/
setLabelRotationAngle(), get/
setLabelRotationPoint()

DvtDiagramPoint Point class, used for function parameters and return values
(x,y).

DvtDiagramRectangle Rectangle, Dimension class, used for function parameters and
return values (x,y,w,h).

You can view the entire JavaScript API for the DVT Diagram here

Chapter 33
Using the Diagram Layout Framework

33-19

Configuring Diagram Layouts
The DVT diagram child clientLayout component identifies the JavaScript needed to
run the layout of the nodes and links using an alias referenced by the diagram in the
layout attribute. The DVT clientLayout component is responsible for laying out all
Diagram nodes and links.

The DVT diagram component is unique in its flexibility, allowing users to build custom
layouts. It does not contain pre-built layouts, hence giving users control over the layout
and appearance via JavaScript functions. Diagrams can use multiple client layouts; for
example, when you have a parent container node and a child node, but at least one
layout must be registered with the application. When implementing a client layout, it is
important to consider factors such as node and link interaction, zoom behavior, and
locale (including BiDi locales).

The DVT clientLayout component has three attributes:

• name: Alias for the layout referenced from the diagram's layout property.

• method: Identifies the name of a JavaScript function that will perform the layout.

• featureName: Identifies the JavaScript source files required to locate and run the
function identified in the method attribute.

How to Register a Custom Layout
When you create a custom layout for a diagram, you must configure the ADF Faces
runtime environment by performing the following actions:

• Register the layout with the ADF runtime environment as a JavaScript (JS)
feature.

• Create the adf-js-features.xml file if it doesn't already exist and add the
ApplicationNameDiagramLayout as the feature-name and the path to the JS file
as the feature-class.

• Reference the JavaScript file from the diagram using the dvt:clientLayout
element.

• Configure the development environment to copy the .js file type from the source
path to the output directory when invoking the Make or Build command.

Before you begin:

It may be helpful to have an understanding of how diagram attributes and child tags
can affect functionality. For more information, see Configuring Diagrams.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Diagram
Components.

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To register a custom layout:

Chapter 33
Using the Diagram Layout Framework

33-20

1. In the application ViewController/src/js/layout directory, add the custom
JavaScript file using the following naming convention:

ApplicationNameDiagramLayout.js

For example, if your application is named DiagramSample, the JS file is named
DiagramSampleDiagramLayout.js.

2. In the Applications Window > Projects Panel, right click the ViewController/src/
META-INF folder and choose New > XML file.

3. In File Name enter adf-js-features.xml and click OK.

4. In the XML Editor define a feature name and associate the name with a JavaScript
file. For example:

<?xml version="1.0" encoding="utf-8"?>
<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>DiagramSampleDiagramLayouts</feature-name>
 <feature-class>js/layouts/DiagramSampleDiagram.js</feature-class>
 </feature>
</features>

5. Double-click the project in the Application Navigator to open the Project Properties
dialog.

6. In the Compiler settings page > Copy File Types to Output Directory, add a .js file
type to the semi-colon separated list. The completed dialog is shown below:

7. Click OK.

Designing Simple Client Layouts
Client layouts specify the layout of nodes and links in a diagram.

Chapter 33
Using the Diagram Layout Framework

33-21

For example, the layout of diagram nodes in a simple vertical pattern is shown in
Figure 33-16.

Figure 33-16 Vertical Diagram Node Layout

In the layout, the layout context object passed to the layout function contains the
information about the number of nodes using the getNodeCount() API, and provides
access to each node object using the getNodeByIndex() API. After looping through the
nodes to access each node, a call to setPosition() API is used to locate the node on
the diagram space. The position is passed in the form of a DvtDiagramPoint() object
which defines the simple x and y coordinates.

The JavaScript code for a simple vertical layout of nodes is here:

var DemoVerticalLayout = {
};

/**
 * Main function that does the layout (Layout entry point)
 * @param {DvtDiagramLayoutContext} layoutContext Object that defines a context for
layout call
 */
DemoVerticalLayout.layout = function (layoutContext) {
 var padding = 10; //default space between nodes, that can be overwritten by layout
attributes
 var currX = 0; //x coodinate for the node's center
 var currY = 0; //y coordinate for the node's top edge
 var nodeCount = layoutContext.getNodeCount();
 for (var ni = 0;ni < nodeCount;ni++) {
 var node = layoutContext.getNodeByIndex(ni);
 var bounds = node.getContentBounds();
 //Position the node - in order to do it find a position for the node's top left
corner
 //using the node bounds, currX to center the node horizontally and currY for the
node's top edge
 node.setPosition(new DvtDiagramPoint(currX - bounds.x - bounds.w * .5, currY));
 currY += bounds.h + padding;
 }
};

Chapter 33
Using the Diagram Layout Framework

33-22

A client layout specifying the links connecting the diagram nodes is shown in
Figure 33-17.

Figure 33-17 Vertical Node Client Layout with Links

In the layout, the layout context object passed to the layout function contains the
information about the number of links using the getLinkCount() API, and provides
access to each link object using the getLinkByIndex() API. After looping through the
links to access each link, a call to setPosition() API is used to locate the link on the
node. The position is passed in the form of a DvtDiagramPoint() object which defines
the simple x and y coordinates.

The JavaScript code for a vertical client layout with links is here:

var DemoVerticalLayoutWithLinks = {
};

/**
 * Main function that does the layout (Layout entry point)
 * @param {DvtDiagramLayoutContext} layoutContext Object that defines a context for
layout call
 */
DemoVerticalLayoutWithLinks.layout = function (layoutContext) {
 //reading optional attributes that could be defined on the page
 var layoutAttrs = layoutContext.getLayoutAttributes();
 var padding = (layoutAttrs && layoutAttrs["nodePadding"]) ?
parseInt(layoutAttrs["nodePadding"]) : 10;

 // layout/position nodes
 var currX = 0;
 var currY = 0;
 var nodeCount = layoutContext.getNodeCount();
 for (var ni = 0;ni < nodeCount;ni++) {
 var node = layoutContext.getNodeByIndex(ni);
 var bounds = node.getContentBounds();
 DemoVerticalLayoutWithLinks.positionNode(node, currX, currY);
 currY += bounds.h + padding;
 }

Chapter 33
Using the Diagram Layout Framework

33-23

 //position links
 for (var li = 0;li < layoutContext.getLinkCount();li++) {
 var link = layoutContext.getLinkByIndex(li);
 DemoVerticalLayoutWithLinks.positionLink(layoutContext, link);
 }
};

/**
 * Helper function that positions the node using x,y coordinates
 * @param {DvtDiagramLayoutContextNode} node Node to position
 * @param {number} x Horizontal position for the node center
 * @param {number} y Vertical position for the node top edge
 */
DemoVerticalLayoutWithLinks.positionNode = function (node, x, y) {
 var bounds = node.getContentBounds();
 node.setPosition(new DvtDiagramPoint(x - bounds.x - bounds.w * .5, y));
};

Figure 33-18 shows a client layout of container nodes with parent and child nodes.

Figure 33-18 Client Layout with Container Nodes

The JavaScript code for a client layout with container nodes is here:

var DemoContainersLayout = {};

/**
 * Main function that does the layout (Layout entry point)
 * @param {DvtDiagramLayoutContext} layoutContext Object that defines a context for
layout call
 */
DemoContainersLayout.layout = function(layoutContext) {
 var nodeCount = layoutContext.getNodeCount();
 var currX = 0;
 // iterate through the nodes in the layer and position them horizontally
 for (var ni = 0; ni < nodeCount; ni++) {
 var node = layoutContext.getNodeByIndex(ni);
 node.setPosition(new DvtDiagramPoint(currX, 0));
 currX += node.getBounds().w + 10;
 }
};

Chapter 33
Using the Diagram Layout Framework

33-24

Note:

• The setContainerPadding method sets the container padding. The top,
right, bottom, left can be specified as a number or auto. You can specify
auto as the value for the setContainerPadding method to prevent the
facet information from being truncated.

• The LayoutBehaviour attribute indicates whether a specified layout
should be used globally to layout the entire diagram at once. The
attribute has two possible values, container and global. With
container, the nodes and links that belong to the currently processed
container will get added to the layout. With global, the nodes and links
will get added to the specified layout on the diagram. All the other
layouts specified on container nodes will be ignored.

You can view and download additional layout examples on the ADF Faces
Components Demo application. See Downloading and Installing the ADF Faces
Components Demo Application.

Chapter 33
Using the Diagram Layout Framework

33-25

34
Using Tag Cloud Components

This chapter describes how to use the ADF Data Visualization Tag Cloud component
to display data in tag clouds using simple UI-first development. The chapter defines
the data requirements, tag structure, and options for customizing the look and
behavior of these components.

If your application uses the Fusion technology stack, you can use data controls to
create tag clouds. For more information, see "Creating Databound Tag Clouds" in
Developing Fusion Web Applications with Oracle Application Development Framework

• About the Tag Cloud Component

• Using the Tag Cloud Component

About the Tag Cloud Component
An ADF DVT Tag Cloud is a visual representation for text data, typically used to
visualize free form text or tag metadata for a website. Tag clouds are useful for
displaying non-prioritized data collections, such as a list of countries or states, or
mutually exclusive data in a collection, such as music genres.

The importance or frequency of each tag is shown with font size or color. This
visualization is useful for quickly identifying the most prominent terms in a set.

Tag Cloud Use Cases and Examples
Tag Clouds are made up of an array of tags. There are a number of use cases.

Tag clouds are most useful to quickly gauge the relative percentage power of an item
in a population. For example, Figure 34-1 shows the results of a survey wherein
respondents disclosed which social media networks they use.

Figure 34-1 Simple Tag Cloud with Cloud Layout

34-1

Tag Clouds may also be displayed in a rectangular layout. This is most useful for
formal data, website tag searches, or if the cloud needs to be contained within a fixed
container. Figure 34-2 shows the latest census data for population of the states in the
US. The tags are configured to show the population in the tooltip for the tag.

Figure 34-2 Tag Cloud with Rectangular Layout

Tags may be divided into groups, and these groups may be represented in a legend.
This is useful for quickly dividing tags by criteria. For example, Figure 34-3 shows US
states bifurcated into groups of low or high population. The condition provided
classifies states with less than 5 million people as low population and with more than 5
million people as high population. Tag clouds accept both match and exception rules
to allow for complex grouping.

Figure 34-3 Tag Cloud with Colored Groups and Legend

End User and Presentation Features of Tag Clouds
Tag Clouds have a number of presentation features that make it a versatile and useful
tool for tag representation.

Chapter 34
About the Tag Cloud Component

34-2

Tag Clouds can be configured to hide and show series using legend items. By clicking
on a legend item, all tags mapped to that legend item will be hidden. This is indicated
by a hollow square in the legend. Figure 34-4 shows the high and low population tag
cloud with the low population states hidden.

Figure 34-4 Tag Cloud Hide and Show Series

Tag Clouds can be configured to highlight groups by hovering over the tags or the
corresponding legend items. Figure 34-5 shows the high and low population tag cloud.
In the first case, hovering over the low population legend item dims all other groups. In
the second case, hovering over a high population tag dims all other groups.

Figure 34-5 Tag Cloud Highlighting

Tag Cloud items support drag and drop using the af:dragSource and af:dropTarget
attributes. Items may be dragged across any items that support those two attributes.
For example, Figure 34-6 shows the social media usage tag cloud, with two items
dragged out of the cloud and dropped into a table component.

Chapter 34
About the Tag Cloud Component

34-3

Figure 34-6 Tag Cloud Drag and Drop

Tag Clouds support context menus. Figure 34-7 shows the social media tag cloud
configured with a custom context menu to display additional options for each tag.

Figure 34-7 Tag Cloud Context Menu

Tag clouds also support single action behavior, such as linking, via the action and
actionListener attributes, or individual tag links via the destination attribute.

Additional Functionality for Tag Cloud Components
You may find it helpful to understand other ADF Faces features before you implement
your tag cloud. Additionally, once you have added a tag cloud to your page, you may
find that you need to add functionality such as validation and accessibility.

Following are links to other functionality that tag cloud components can use:

Chapter 34
About the Tag Cloud Component

34-4

• Client-side framework: DVT components are rendered on the client when the
browser supports it. You can respond to events on the client using the
af:clientListener tag. For more information, see Listening for Client Events.

• Partial page rendering: You may want a tag cloud to refresh to show new data
based on an action taken on another component on the page. For more
information, see Rerendering Partial Page Content.

• Personalization: When enabled, users can change the way the tag cloud displays
at runtime, those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Allowing User Customization on JSF Pages.

• Accessibility: You can make your tag cloud components accessible. For more
information, see Developing Accessible ADF Faces Pages.

• Touch devices: When you know that your ADF Faces application will be run on
touch devices, the best practice is to create pages specific for that device. For
additional information, see Creating Web Applications for Touch Devices Using
ADF Faces.

• Skins and styles: You can customize the appearance of tag cloud components
using an ADF skin that you apply to the application or by applying CSS style
properties directly using a style-related property (styleClass or inlineStyle). For
more information, see Customizing the Appearance Using Styles and Skins.

• Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound tag clouds based on how your ADF Business
Components are configured. For more information, see "Creating Databound Tag
Cloud Components" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Note:

If you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls
are ready, then you should consider using placeholder data controls,
rather than manually binding the components. Using placeholder data
controls will provide the same declarative development experience as
using developed data controls. For more information, see the "Designing
a Page Using Placeholder Data Controls" section in Developing Fusion
Web Applications with Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such
as how data is delivered, automatic partial page rendering (PPR), and how data can
be displayed and edited. For more information, see Common Functionality in Data
Visualization Components.

Using the Tag Cloud Component
To use the ADF DVT Tag Cloud component, add the tag cloud to a page using the
Component Palette window. Then define the data for the tag cloud and complete the
additional configuration in JDeveloper using the tag attributes in the Properties
window.

Chapter 34
Using the Tag Cloud Component

34-5

Tag Cloud Data Requirements
Tag clouds require a collection of string items which are represented as the tags or
words in the component.

The label attribute accepts a string item or a collection of strings to display as tags.

Optionally, you can also provide a numeric value for the tags to the value attribute,
which will be used to modify the relative size of each tag. You can also provide
grouping information using the dvt:attributeGroups child tag, wherein tags in the
same group will be rendered in the same color.

How to Add a Tag Cloud to a Page
When you are designing your page using simple UI-first development, you use the
Components window to add a tag cloud to a JSF page. When you drag and drop a tag
cloud component onto the page, the tag cloud is added to your page, and you can use
the Properties window to specify data values and configure additional display
attributes.

In the Properties window you can click the icon that appears when you hover over the
property field to display a property description or edit options. The figure shows the
dropdown menu for a tag cloud value attribute.

Note:

If your application uses the Fusion technology stack, then you can use data
controls to create a Tag Cloud and the binding will be done for you. For more
information, see the "Creating Databound Tag Clouds" section in Developing
Fusion Web Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how tag cloud attributes and tag cloud
child tags can affect functionality. For more information, see Configuring Tag Clouds.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Tag Cloud
Components

You must complete the following tasks:

1. Create an application workspace as described in Creating an Application
Workspace.

2. Create a view page as described in Creating a View Page.

To add a tag cloud to a page:

1. In the ADF Data Visualization page of the Components window, drag and drop a
Tag Cloud from the Common panel to the page.

2. In the Properties window, view the attributes for the Tag Cloud. Use the Help
button or press F1 to display the complete tag documentation for the tagCloud
component.

Chapter 34
Using the Tag Cloud Component

34-6

3. In the Structure window, expand the dvt:tagCloud element to find the
dvt:tagCloudItem element. View and modify the attributes for the
dvt:tagCloudItem in the Properties window.

What Happens When You Add a Tag Cloud to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a tag cloud
from the Components window onto a JSF page.

The generated code is:

<dvt:tagCloud id="tc1"/>

After inserting a tag cloud component into the page, you can use the visual editor or
Properties window to add data or customize tag cloud features. For information about
setting component attributes, see How to Set Component Attributes.

If you choose to bind the data to a data control when creating the tag cloud,
JDeveloper generates code based on the data model. For more information, see the
"Creating Databound Tag Clouds" section in Developing Fusion Web Applications with
Oracle Application Development Framework

Configuring Tag Clouds
The Tag Cloud component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the tag cloud.

The prefix dvt: occurs at the beginning of the name of each tag cloud component,
indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag
library. You can configure Tag Cloud child components, attributes, and supported
facets in the following areas:

• Tag Cloud (dvt:tagCloud): Wraps the tag cloud child tags. Configure the following
attributes to control the tag cloud display:

– hideAndShowBehavior: Specifies the hide/show behavior when clicking on
legend items. This attribute is only applicable when attribute groups are used
to color the tag cloud items.

– hoverBehavior: Specifies the behavior when hovering over word cloud or
legend items. This attribute is only applicable when attribute groups are used
to color the tag cloud items.

– layout: Specifies the built-in layout to use for tag display. The attribute may be
set to rectangular, wherein items are displayed in a rectangular shape, or
cloud, wherein items are displayed with weighted words in the center and
lighter words towards the edges.

– legendSource: Specifies the id of the dvt:attributeGroups used for display in
the legend. This dvt:attributeGroups element must be a child of a
dvt:tagCloudItem within this component.

– selectionMode: Specifies whether a tag cloud item can be selected or not.
Allows for single or multiple selection.

Chapter 34
Using the Tag Cloud Component

34-7

• Tag Cloud Item (dvt:tagCloudItem): Use to define the properties for the displayed
data in the tag cloud. Configure the following attributes to control the display of the
tag cloud item display:

Table 34-1 Tag Cloud Child Component Attributes

Child Tag
Attributes

Description

action Specifies a reference to an action method sent by the component, or
the static outcome of an action.

actionListener Specifies a method reference for an action listener.

destination Specifies the URL this component references.

shortDesc Specifies the custom tooltip text for the tag cloud item.

inlineStyle Specifies the CSS style for the tag item. It accepts font-related CSS
attributes like font-name, font-family, font-weight, font-style, and color.
Font-size will be ignored as font-size is determined by the layout.

label Specifies the text string for this tag cloud item.

value Specifies the value of this tag cloud item. The value determines the
relative size of the node within the tag cloud.

• Tag Cloud Facets: Tag clouds do not support facets.

Chapter 34
Using the Tag Cloud Component

34-8

Part VI
Completing Your View

Part VI explains how to add application-wide functionality to your ADF Faces
application, including using skins, localization, accessibility, user customization, drag
and drop, print and email output modes, and active data.

Specifically, it contains the following chapters:

• Customizing the Appearance Using Styles and Skins

• Internationalizing and Localizing Pages

• Developing Accessible ADF Faces Pages

• Allowing User Customization on JSF Pages

• Adding Drag and Drop Functionality

• Using Different Output Modes

• Using the Active Data Service with an Asynchronous Backend

35
Customizing the Appearance Using Styles
and Skins

This chapter describes how to customize the appearance of an ADF application by
changing component style attributes or by using ADF skins. Information about the
tools that you can use to create ADF skins is also provided in addition to details about
how to enable end users to change an application's ADF skin at runtime.
This chapter includes the following sections:

• About Customizing the Appearance Using Styles and Skins

• Changing the Style Properties of a Component

• Enabling End Users to Change an Application's ADF Skin

• Using Scalar Vector Graphics Image Files

About Customizing the Appearance Using Styles and Skins
ADF skin is a type of CSS (Cascading Style Sheet) file that lets you customize the
appearance of the ADF application user interface in ways that are not feasible to
define using CSS style properties alone. You can also override the ADF skin
properties of the user interface using the style-related properties exposed by individual
ADF Faces components.

You can customize the appearance of ADF Faces and ADF Data Visualization
components using an ADF skin that you apply to the application or by applying CSS
style properties directly to an ADF Faces or ADF Data Visualization component if the
component exposes a style-related property (styleClass or inlineStyle). Choosing
the latter option means that you override style properties defined in your application's
ADF skin for the component. You might do this when you want to change the style for
an instance of a component on a page rather than for all components throughout the
application or you want to programmatically set styles conditionally. For example, you
want to display text in red only under certain conditions. For more information, see
Changing the Style Properties of a Component.

An ADF skin is a type of CSS file where you define CSS style properties based on the
Cascading Style Sheet (CSS) specification for the component for which you want to
customize the appearance. The ADF skin defines rules that determine how to apply
CSS style properties to specific components or groups of components. The end user's
browser interprets these rules and overrides the browser's default settings. Figure 35-1
and Figure 35-2 demonstrate the result that applying ADF skins can have on the
appearance of the ADF Faces and ADF Data Visualization components that appear in
your application. Figure 35-1 shows a page from the File Explorer application with the
alta ADF skin applied.

35-1

Figure 35-1 Index Page Using the Alta Skin

Figure 35-2 shows the same page from the same application with the skyros ADF skin
applied.

Figure 35-2 Index Page Using the Skyros Skin

Chapter 35
About Customizing the Appearance Using Styles and Skins

35-2

A new web application that you create in this release uses the alta skin by default.
Migrated web applications continue to use their existing ADF skin. To get the full
benefit of the Oracle Alta UI system, Oracle recommends that you go beyond simply
using the alta skin and design your application around the Oracle Alta UI Design
Principles. Designing your application using these principles enables you to make use
of the layouts, responsive designs and components the Oracle Alta UI system
incorporates to present content to your end users in a clean and uncluttered way. For
more information about the Oracle Alta UI system and the Oracle Alta UI Design
Principles, see http://www.oracle.com/webfolder/ux/middleware/alta/index.html and for
information about Oracle Alta UI Patterns, see http://www.oracle.com/webfolder/ux/
middleware/alta/patterns/index.html.

The File Explorer application provides several ADF skins to customize the appearance
of the application. You can view the source files for these ADF skins and the File
Explorer application. For more information, see About the ADF Faces Components
Demo Application.

It is beyond the scope of this guide to explain the concept of CSS. For extensive
information on style sheets, including the official specification, visit the World Wide
Web Consortium's website at:

http://www.w3.org/

It is also beyond the scope of this guide to describe how to create, modify, or apply
ADF skins to your application. Oracle ADF provides editors in JDeveloper and the
Theme Editor to assist you with these tasks. See Working with ADF Skins in
JDeveloper in Developing ADF Skins.

If you create multiple ADF skins, you can configure your application so that end users
choose the ADF skin that they want the application to use. For more information, see
Enabling End Users to Change an Application's ADF Skin.

Customizing the Appearance Use Cases and Examples
You can customize an ADF skin to serve a number of purposes. For example, you
might define properties in an ADF skin so that the application highlights a data row
rendered by an ADF Faces table component after an end user selects it to provide
feedback, as illustrated in Figure 35-3.

Figure 35-3 ADF Skin Properties in an ADF Table Component

Chapter 35
About Customizing the Appearance Using Styles and Skins

35-3

http://www.oracle.com/webfolder/ux/middleware/alta/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.oracle.com/webfolder/ux/middleware/alta/patterns/index.html
http://www.w3.org/

Use ADF skin properties to define behavior and appearance that you cannot specify
using only CSS or that is dependent on component properties and, as a result, is not
feasible to define using CSS. For example, ADF Faces supports animation in browsers
where CSS 3 animations are not available. If you want to configure the duration of an
animation, use an ADF skin property to do so. Example 35-1 shows how an ADF skin
property defines the duration that an ADF Faces carousel component displays the
spin animation to be 500 milliseconds long.

Example 35-1 Using an ADF Skin Property to Specify Length of Spin Animation

af|carousel {
 -tr-spin-animation-duration: 500;
}

Additional Functionality for Customizing the Appearance
You may find it helpful to understand other ADF Faces features and non-ADF Faces
features before you decide to customize the appearance of your application. The
following links provide more information that may be useful to know:

• Using parameters in text: You can use the ADF Faces EL format tags if you want
the text displayed in a component to contain parameters that will resolve at
runtime. For more information, see How to Use the EL Format Tags.

• Internationalization and localization: The ADF skin that you create to apply to
your application can be customized as part of a process to internationalize and
localize ADF Faces pages. For more information about this process, see
Internationalizing and Localizing Pages.

• Accessibility: The ADF skin that you create to apply to your application can be
customized as part of a process to make your ADF Faces pages accessible. For
more information about this process, see Developing Accessible ADF Faces
Pages.

• Touch Devices: ADF Faces components may behave and display differently on
touch devices. For more information, see Creating Web Applications for Touch
Devices Using ADF Faces.

• Drag and Drop: You can configure your components so that the user can drag
and drop them to another area on the page. For more information, see Adding
Drag and Drop Functionality.

Changing the Style Properties of a Component
ADF Faces components expose style-related properties that you can customize to
alter the ADF skin properties that determine the look and feel of the ADF application
user interface.

You can adjust the look and feel of any component at design time by changing the
component's style-related properties, inlineStyle and styleClass, both of which
render on the root DOM element. Any style-related property (inlineStyle or
styleClass) you specify at design time overrides the comparable style specified in the
application's ADF skin for that particular instance of the component. Any value you
specify for a component's inlineStyle property overrides a value set for the
styleClass attribute.

The inlineStyle attribute is a semicolon-delimited string of CSS styles that can set
individual attributes, for example, background-color:red; color:blue; font-

Chapter 35
Changing the Style Properties of a Component

35-4

style:italic; padding:3px. The styleClass attribute is a CSS style class selector
used to group a set of inline styles. The style classes can be defined using an ADF
public style class, for example, .AFInstructionText, sets all properties for the text
displayed in an af:outputText component.

Note:

Do not use styles to achieve stretching of components. Using styles to
achieve stretching is not declarative and, in many cases, will result in
inconsistent behavior across different web browsers. Instead, you can use
the geometry management provided by the ADF Faces framework to achieve
component stretching. For more information about layouts and stretching,
see Geometry Management and Component Stretching.

How to Set an Inline Style
Set an inline style for a component by defining the inlineStyle attribute. You can use
inline style to specify the style of a component for that instance of the component. For
more information, see Arranging Contents to Stretch Across a Page.

Before you begin:

It may be helpful to have an understanding of how the inlineStyle attribute relates to
other attributes. For more information, see Changing the Style Properties of a
Component .

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for
Customizing the Appearance .

To set an inline style:

1. In the JSF page, select the component for which you want to set an inline style.

2. In the Properties window, expand the Style section and enter the inline style you
want to use in the InlineStyle field.

Alternatively, you can select the style features that you want from dropdown lists,
as shown in Figure 35-4.

Chapter 35
Changing the Style Properties of a Component

35-5

Figure 35-4 Setting an inlineStyle Attribute

JDeveloper adds the corresponding code for the component to the JSF page.
Example 35-2 shows the source for an af:outputText component with an
inlineStyle attribute.

3. You can use an EL expression for the inlineStyle attribute itself to conditionally
set inline style attributes. For example, if you want the date to be displayed in red
when an action has not yet been completed, you could use the code similar to that
in Example 35-3.

4. The ADF Faces component may have other style attributes not available for styling
that do not register on the root DOM element. For example, for the af:inputText
component, set the text of the element using the contentStyle property, as shown
in Example 35-4.

Example 35-2 InlineStyle in the Page Source

<af:outputText value="outputText1" id="ot1"
 inlineStyle="color:Red; text-decoration:overline;"/>

Example 35-3 EL Expression Used to Set an inlineStyle Attribute

<af:outputText value="#{row.assignedDate eq
 null?res['srsearch.unassignedMessage']:row.assignedDate}"
 inlineStyle="#{row.assignedDate eq null?'color:rgb(255,0,0);':''}"
 id="ot3"/>

Example 35-4 Using the contentStyle Property

<af:inputText value="outputText1"
 contentStyle="color:Red;" id="it1"/>

How to Set a Style Class
You can define the style for a component using a style class. You create a style class
to group a set of inline styles. Use the styleClass attribute to reference the style
class.

Before you begin:

Chapter 35
Changing the Style Properties of a Component

35-6

It may be helpful to have an understanding of how the styleClass attribute relates to
other attributes. For more information, see Changing the Style Properties of a
Component .

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for
Customizing the Appearance .

To set a style using a style class:

1. In the JSF page, select the component for which you want to define a style.

2. In the Properties window, expand the Style section and enter the name of the
style class that you want the component to use in the StyleClass field.

Example 35-5 shows an example of a style class being used in the page source.

3. You can also use EL expressions for the styleClass attribute to conditionally set
style attributes. For example, if you want the date to be displayed in red when an
action has not yet been completed, you could use code similar to that in
Example 35-3.

Example 35-5 Page Source for Using a Style Class

<af:outputText value="Text with a style class"
 styleClass="overdue" id="ot4"/>

Enabling End Users to Change an Application's ADF Skin
The ADF skins named in the ADF application trinidad-config.xml file can be
exposed to end users so that they may change the ADF application look and feel to
suit their locale.

You can configure your application to enable end users select an alternative ADF skin.
You might configure this functionality when you want end users to render the
application's page using an ADF skin that is more suitable for their needs. For
example, you want your application to use an ADF skin with features specific to a
Japanese locale when a user's browser is Japanese. An alternative example is where
you want your application to use an ADF skin that is configured to make your
application's pages more accessible for users with disabilities.

Figure 35-5 shows how you might implement this functionality by configuring a
component (for example, af:commandMenuItem) to allow end users to change the ADF
skin the application uses at runtime. Configure the component on the JSF page to set
a scope value that can later be evaluated by the skin-family property in the
trinidad-config file.

Figure 35-5 Changing an Application's ADF Skin

Chapter 35
Enabling End Users to Change an Application's ADF Skin

35-7

How to Enable End Users Change an Application's ADF Skin
You enable end users change an application's ADF skin by exposing a component that
allows them to update the value of the skin-family property in the trinidad-config
file.

Before you begin:

It may be helpful to have an understanding of how the changes that you make can
affect functionality. For more information, see Enabling End Users to Change an
Application's ADF Skin.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for
Customizing the Appearance.

To enable end users change an application's ADF skin:

1. Open the main JSF page where you want to configure the component(s) that you
use to set the skin family.

2. Configure a number of components (for example, af:commandMenuItem
components) that allow end users to choose one of a number of available ADF
skins at runtime, as shown in Figure 35-5.

Example 35-6 shows how you configure af:commandMenuItem components that
allow end users to choose available ADF skins at runtime, as shown in
Figure 35-5. Each af:commandMenuItem component specifies a value for the
actionListener attribute. This attribute passes an actionEvent to a method
(skinMenuAction) on a managed bean named skins if an end user clicks the
menu item.

3. Write a method (for example, skinMenuAction) on a managed bean named skins
to store the value of the ADF skin selected by the end user. Example 35-7 shows
a method that takes the value the end user selected and uses it to set the value of
skinFamily in a managed bean. The method in Example 35-7 also invokes a
method to reload the page after it sets the value of skinFamily.

4. In the Applications window, double-click the trinidad-config.xml file.

5. In the trinidad-config.xml file, write an EL expression to dynamically evaluate
the skin family:

<skin-family>#{skins.skinFamily}</skin-family>

Example 35-6 Using a Component to Set the Skin Family

<af:menu text="Change Skin" id="skins" binding="#{backing_ChangeSkin.skins}">
 <af:commandMenuItem id="skin1" text="skyros" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='skyros'}"/>
 <af:commandMenuItem id="skin3" text="fusion" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='fusion'}"/>
 <af:commandMenuItem id="skin4" text="fusion-projector" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='fusion-projector'}"/>
 <af:commandMenuItem id="skin5" text="simple" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='simple'}"/>

Chapter 35
Enabling End Users to Change an Application's ADF Skin

35-8

 <af:commandMenuItem id="skin6" text="skin1" type="radio"
 actionListener="#{skins.skinMenuAction}"
 selected="#{skins.skinFamily=='skin1'}"/>
</af:menu>

Example 35-7 Managed Bean Method to Change ADF Skin

 public void skinMenuAction(ActionEvent ae)
 {
 RichCommandMenuItem menuItem = (RichCommandMenuItem)ae.getComponent();

 // Invoke another managed bean method to set the value of skinFamily
 setSkinFamily(menuItem.getText());

 // Invoke a method to reload the page. The application reloads the page
 // using the newly selected ADF skin.
 reloadThePage();
 }

What Happens at Runtime: How End Users Change an Application's
ADF Skin

At runtime, the end user uses the component that you exposed to select another ADF
skin. In Example 35-6, this is one of a number of af:commandMenuItem components.
This component submits the value that the end user selected to a managed bean that,
in turn, sets the value of a managed bean property (skinFamily). At runtime, the
<skin-family> property in the trinidad-config file reads the value from the
managed bean using an EL expression.

Using Scalar Vector Graphics Image Files
Scalar Vector Graphics (SVG) images files are used to define vector-based graphics
for the web in XML format. Use inline SVG images via CSS and Javascript for the ADF
Faces components to access various elements available within the SVG DOM.

ADF Faces supports the use of SVG image files to render icons. ADF Faces
components that reference this type of image render an HTML tag in the
generated page at runtime.

As an alternative to HTML tag, some ADF Faces components expose an
additional iconDelivery attribute that you can set to render a page that uses an HTML
<svg> tag rather than an HTML tag. Rendering the HTML <svg> tag gives SVG
authors more control over the rendered SVG image file, such as, for example, color
changes based on an alias in a skin.

You can set the iconDelivery attribute to the following values:

• auto: ADF Faces framework handles the SVG image rendering internally. When
set to auto, user can override the framework behavior by setting the -tr-icon-
delivery skin property to reference/inline/fetchAndInline values.

• reference: When set to reference, HTML tag is rendered. By default, the
iconDelivery attribute is set to reference.

• inline and fetchAndInline: When set to inline or fetchAndInline , HTML
<SVG> tag is rendered.

Chapter 35
Using Scalar Vector Graphics Image Files

35-9

Set to fetchAndInline if you want to allow browsers to cache the SVG file while still
being able to inline the SVG content in the HTML page. Use of the inline or
fetchAndInline values for the iconDelivery attribute only works for SVG images.

The following components support SVG inline and fetchAndInline values for the
iconDelivery attribute:

• RichActiveCommandToolbarButton

• RichActiveImage

• RichCommandButton

• RichCommandImageLink

• RichCommandMenuItem

• RichCommandNavigationItem

• RichCommandToolbarButton

• RichGoButton

• RichGoImageLink

• RichGoMenuItem

• RichImage

• RichMenu

• RichPanelBox

• RichShowDetailItem

• RichIcon

Note:

The RichIcon component supports only the inline value for the
iconDelivery attribute and does not support fetchAndInline value.

An example of a component that exposes the iconDelivery attribute is
showDetailItem. See Tag Reference for Oracle ADF Faces.

What You May Need to Know About Inline SVG Support in
ADF Faces

ADF supports styling inline Scalar Vector Graphics (SVG) by adding a style class in
skin file and referencing it in the SVG content. This feature is required only when it is
desirable to style SVG icons which will be used across the pages and components of
the application in a specific way for one or more instances.

As ADF now supports inline SVG icon, you can render SVG icons directly into the ADF
page's DOM so that the SVG icons can use the styles from the ADF skin. For
example, if you want to style an SVG icon based on the style class from ADF skin, you
can add TestSVGIcon style in the skin file and reference the same in the SVG content.

Chapter 35
What You May Need to Know About Inline SVG Support in ADF Faces

35-10

See Working with Style Classes in the Fusion Middleware Skin Editor User's Guide for
Oracle Application Development Framework.

In ADF Faces, if you want to style a particular component or a component instance
added to a page in a different way from what is present in the ADF skin, you can do so
by using the styleClass attribute. By default, ADF Faces framework enables CSS
content compression for better performance and as a result, the CSS selectors are
compressed both in the generated CSS and in the DOM. In inline SVG, since the
content is fetched and inlined from an external file, the class reference will not be
compressed, whereas the styleClass attribute value in the DOM is compressed by
the framework. This results in a mismatch between what is being referenced and what
is present in the generated CSS. Therefore, just adding a style class to the component
instance in inline SVG is not sufficient.

If you want to style an SVG icon based on the component container styleClass, for
example, if you have a command button in a page with inline SVG and want to style
this button differently by changing the background fill only in some pages, you can use
the styleClass attribute. When you have the styleClass attribute on a button that
renders inline SVG , which in turn references a style class TestSVGIcon, there will be
a mismatch due to compression in DOM. The style class gets rendered as
class=x20f in the DOM and the inline SVG content is rendered as
class=TestSVGIcon.

Take for example, the following CSS, where redGraphics is added to the ADF button
container and svg-icon01 is the style class used inside SVG DOM:

.redGraphics .svg-icon01 {
fill: #ff0000;
}

The CSS generated by the framework will have both the normal and short versions of
the style as in the code below:

.redGraphics .svg-icon01, .x2he .x2hf {
fill: #ff0000;
}

However, in the DOM, there is a mismatch as style class added to button root DOM is
compressed while style used in SVG is not. As a result the SVG icon's background-fill
color is not applied when rendered. The redGraphics container style class is
compressed during rendering and applied to DOM, while the svg-icon01 style class in
SVG DOM is not compressed as in the following code.

<div class="x2he">
 <svg class="svg-icon01"/>
</div>

To avoid this mismatch and style the inline SVG icon based on the component
container style class, use the @no-compress atRule to declare no CSS compression for
particular styles defined within @no-compress. ADF Faces provides a no-compress
server side atRule, @no-compress, to render certain user provided style classes without
compressing the styleClass attributes so that the style classes appear in the DOM
without change. See the Apache Trinidad Skinning page on the Apache MyFaces

Chapter 35
What You May Need to Know About Inline SVG Support in ADF Faces

35-11

https://docs.oracle.com/cd/E21764_01/user.1111/e21420/adfsg_style_class.htm#ADFSG440.

website for the list of server-side atRules at https://myfaces.apache.org/trinidad/
devguide/skinning.html#server-side-at-rules.

The @no-compressrule is applicable only for non-namespace selectors to indicate that
these selectors are not compressed both in the generated CSS and in the DOM. The
selectors that are defined in @no-compress rule in the CSS file of the application skin
ensures that certain style classes are not compressed by ADF Faces framework at
runtime. This is also useful if these selectors are referred to elsewhere in the
application. Style definitions once defined as no-compress will never be compressed
at any level regardless of another rule, such as agent, platform and so on and the
order in which they are generated.

The following example does not compress the selector in CSS or in the DOM.

@no-compress {
.TestSVGIcon {
 border-color: Fuchsia;
 }
}

Since no-compress is not supported for namespace selectors, in the following
example, the selector will be written to CSS as .x1m5{color: red;} and compressed
in both the DOM and generated CSS.

@no-compress {
af|button::link {
 color: red;
 }
}

If there is a combination of namespace and non-namespace selectors, then only the
non-namespace part is written without any compression. The non-namespace selector
in the following example is written to CSS as .x77 .TextHighlight {font-weight:
bold;}.

@no-compress {
af|button::link .TextHighlight {
 font-weight: bold;
 }
}

Assume that your page contains a commandToolbarButton with a root styleclass as
NoCompressStyle that is applied on the component root. The SVG edit icon is inlined
to display on the button. The following example displays the JSF snippet for the
button.

<af:commandButton text="Edit" id="cb1" styleClass="NoCompressStyle" icon="skins/
edit.svg"
 iconDelivery="inline" iconPosition="leading"/>

In the above example, the edit.svg file contains the other style class TestSvgIcon.

Page without the no-compress rule

ADF Faces, by default enables CSS content compression. Therefore, the class names
are compressed in the generated HTML DOM and style class name in the SVG file is
not compressed. This results in styles not getting applied on the SVG icon. The
generated CSS will contain the styles like .xvf .xbv {} and the uncompressed
version .NoCompressStyle .TestSvgIcon as in the following example.

Chapter 35
What You May Need to Know About Inline SVG Support in ADF Faces

35-12

https://myfaces.apache.org/trinidad/devguide/skinning.html#server-side-at-rules.
https://myfaces.apache.org/trinidad/devguide/skinning.html#server-side-at-rules.

.NoCompressStyle {
 border-color: red;
 }
 .NoCompressStyle .TestSVGIcon {
 height: 16px;
 width: 16px;
 background:
 transparent;
 }

The generated HTML DOM is given below where the class names are marked in bold.

<button id="cb1" class="x20n x7j" onclick="return false;">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" class="xfb TestSVGIcon"
 width="100px" height="100px" viewBox="0 0 100 100" enable-background="new 0 0 100
100" xml:space="preserve"><g> <g>
<path
d="M67.041,78.553h-6.49h0c-0.956,0-1.73,0.774-1.73,1.73h-0.007v3.01H18.173V36.16h17.7
23c0.956,0,1.73-0.774,1.73-1.73
V16.707h21.188l0,12.34h0.016c0.047,0.913,0.796,1.641,1.721,1.641h6.49c0.925,0,1.674-0
.728,1.721-1.641h0.009v-0.088
c0,0,0-0.001,0-0.001c0-0.001,0-0.001,0-0.002l0-16.457h-0.005V8.48c0-0.956-0.774-1.73-
1.73-1.73h-2.45v0H35.895v0h-1.73
L8.216,32.7v2.447v1.013v52.912v2.447c0,0.956,0.774,1.73,1.73,1.73h1.582h53.925h1.582c
0.956,0,1.73-0.774,1.73-1.73v-2.448
h0.005l0-8.789l0-0.001C68.771,79.328,67.997,78.553,67.041,78.553z"></path> </
g> <g>
<path
d="M91.277,39.04L79.656,27.419c-0.676-0.676-1.771-0.676-2.447,0L45.404,59.224l0.069,0
.069l-0.109-0.029l-4.351,16.237
l0.003,0.001c-0.199,0.601-0.066,1.287,0.412,1.765c0.528,0.528,1.309,0.638,1.948,0.341
l0.002,0.006l16.08-4.309l-0.01-0.037
l0.023,0.024l31.806-31.806C91.953,40.811,91.953,39.716,91.277,39.04z
M46.305,72.353l2.584-9.643l7.059,7.059L46.305,72.353z"></path>
 </g></g>
 </svg>
 Edit
</button>

Page with no-compress rule applied on both the style classes in the skin file

The following example displays the generated CSS for a page where a no-compress
rule is applied and the .NoCompressStyle .TestSvgIcon {} style is applied on the
SVG icon which is inlined. These style class names are not compressed even in
compression mode, which is the default mode in production.

@no-compress {
 .NoCompressStyle {
 border-color: red;
 }

 .NoCompressStyle .TestSVGIcon {
 height: 16px;
 width: 16px;
 background: transparent;
 }
}

The example HTML DOM is given below where the class names are marked in bold.

Chapter 35
What You May Need to Know About Inline SVG Support in ADF Faces

35-13

<button id="cb1" class="NoCompressStyle x7j" onclick="return false;">
 <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" class="xfb TestSVGIcon"
 width="100px" height="100px" viewBox="0 0 100 100" enable-background="new 0 0 100
100" xml:space="preserve"><g> <g>
<path
d="M67.041,78.553h-6.49h0c-0.956,0-1.73,0.774-1.73,1.73h-0.007v3.01H18.173V36.16h17.7
23c0.956,0,1.73-0.774,1.73-1.73
V16.707h21.188l0,12.34h0.016c0.047,0.913,0.796,1.641,1.721,1.641h6.49c0.925,0,1.674-0
.728,1.721-1.641h0.009v-0.088
c0,0,0-0.001,0-0.001c0-0.001,0-0.001,0-0.002l0-16.457h-0.005V8.48c0-0.956-0.774-1.73-
1.73-1.73h-2.45v0H35.895v0h-1.73
L8.216,32.7v2.447v1.013v52.912v2.447c0,0.956,0.774,1.73,1.73,1.73h1.582h53.925h1.582c
0.956,0,1.73-0.774,1.73-1.73v-2.448
h0.005l0-8.789l0-0.001C68.771,79.328,67.997,78.553,67.041,78.553z"></path> </
g> <g>
<path
d="M91.277,39.04L79.656,27.419c-0.676-0.676-1.771-0.676-2.447,0L45.404,59.224l0.069,0
.069l-0.109-0.029l-4.351,16.237
l0.003,0.001c-0.199,0.601-0.066,1.287,0.412,1.765c0.528,0.528,1.309,0.638,1.948,0.341
l0.002,0.006l16.08-4.309l-0.01-0.037
l0.023,0.024l31.806-31.806C91.953,40.811,91.953,39.716,91.277,39.04z
M46.305,72.353l2.584-9.643l7.059,7.059L46.305,72.353z"></path>
 </g></g>
 </svg>
 Edit
</button>

Chapter 35
What You May Need to Know About Inline SVG Support in ADF Faces

35-14

36
Internationalizing and Localizing Pages

This chapter describes how to configure an ADF application so that the application can
be used in a variety of locales and international user environments. Key features such
as JDeveloper's ability to automatically generate resource bundles, how you can
manually define resource bundles and locales in addition to configuring ADF Faces
localization properties for your application are also described.
This chapter includes the following sections:

• About Internationalizing and Localizing ADF Faces Pages

• Using Automatic Resource Bundle Integration in JDeveloper

• Manually Defining Resource Bundles and Locales

• Configuring Pages for an End User to Specify Locale at Runtime

• Configuring Optional ADF Faces Localization Properties

About Internationalizing and Localizing ADF Faces Pages
JDeveloper simplifies the process of providing locale-specific resources, such as the
translatable text displayed by the ADF Faces components, as well as text for
messages, by grouping the text in a base resource bundle that you may version for
any number of locales.

Internationalization is the process of designing and developing products for easy
adaptation to specific local languages and cultures. Localization is the process of
adapting a product for a specific local language or culture by translating text and
adding locale-specific components. A successfully localized application will appear to
have been developed within the local culture. JDeveloper supports easy localization of
ADF Faces components using the abstract class java.util.ResourceBundle to
provide locale-specific resources.

When your application will be viewed by users in more than one country, you can
configure your JSF page or application to use different locales so that it displays the
correct language for the language setting of a user's browser. For example, if you
know your page will be viewed in Italy, you can localize your page so that when a
user's browser is set to use the Italian language, text strings in the browser page
appear in Italian.

ADF Faces components may include text that is part of the component, for example
the af:table component uses the resource string af_table.LABEL_FETCHING for the
message text that displays in the browser while the af:table component fetches data
during the initial load of data or while the user scrolls the table. JDeveloper provides
automatic translation of these text resources into 28 languages. These text resources
are referenced in a resource bundle. You must enable support for each language that
you want your application to support by specifying the <supported-locale> element in
the faces-config.xml file. For example, if you set the browser to use the language in
Italy, and you add <supported-locale>it</supported-locale> to the faces-
config.xml file, any text contained within the components automatically displays in
Italian. For more information, see How to Register a Locale for Your Application.

36-1

For any text you add to a component, for example if you define the label of an
af:button component by setting the text attribute, you must provide a resource
bundle that holds the actual text, create a version of the resource bundle for each
locale, and add a <locale-config> element to define default and support locales in
the application's faces-config.xml file. You must also add a <resource-bundle>
element to your application's faces-config.xml file in order to make the resource
bundles available to all the pages in your application. Once you have configured and
registered a resource bundle, the Expression Builder displays the key from the bundle,
making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF Faces
components, JDeveloper supports automatic resource bundle synchronization for any
translatable string in the visual editor. When you edit components directly in the visual
editor or in the Properties window, text resources are automatically created in the base
resource bundle. For more information, see Using Automatic Resource Bundle
Integration in JDeveloper.

Note:

Any text retrieved from the database is not translated. This document
explains how to localize static text, not text that is stored in the database.

Internationalizing and Localizing Pages Use Cases and Examples
Assume, for example, that you have a panel box with a title of My Purchase Requests.
Rather than set the literal string, My Purchase Requests, as the value of the
af:panelBox component's text attribute, you bind the value of the text attribute to a
key in the UIResources resource bundle. The UIResources resource bundle is
registered in the faces-config.xml file for the application, as shown in the following
example.

<resource-bundle>
 <base-name>resources.UIResources</base-name>
 <var>res</var>
</resource-bundle>

The resource bundle is given a variable name (in this case, res) that can then be used
in EL expressions. On the page, the text attribute of the af:panelBox component is
then bound to the myDemo.pageTitle key in that resource bundle, as shown in the
folloiwng example.

<af:panelBox text="#{res['myDemo.pageTitle']}"

 id="pb1">

The UIResources resource bundle has an entry in the English language for all static
text displayed on each page in the application, as well as for text for messages and
global text, such as generic labels. Example 36-1 shows the keys for the myDemo
page. Example 36-2 shows the resource bundle version for the Italian (Italy) locale,
UIResources_it. Note that there is no entry for the selection facet's title, yet it was
translated from Select to Seleziona automatically. That is because this text is part of
the ADF Faces table component's selection facet.

Chapter 36
About Internationalizing and Localizing ADF Faces Pages

36-2

Note that text in the banner image and data retrieved from the database are not
translated.

Example 36-1 Resource Bundle Keys for the myDemo Page Displayed in
English

#myDemo Screen
myDemo.pageTitle=My Purchase Requests
myDemo.menubar.openLink=Open Requests
myDemo.menubar.pendingLink=Requests Awaiting customer

Example 36-2 Resource Bundle Keys for the myDemo Page Displayed in Italian

#myDemo Screen
myDemo.pageTitle=Miei Ticket
myDemo.menubar.openLink=Ticket Aperti
myDemo.menubar.pendingLink=Ticket in Attesa del Cliente

Additional Functionality for Internationalizing and Localizing Pages
You may find it helpful to understand other ADF Faces features before you
internationalize or localize your application. Additionally, once you have
internationalized or localized your application, you may find that you need to add
functionality such as accessibility or render ADF Faces components from right to left.
Following are links to other functionality that you can use.

• Using parameters in text: You can use the ADF Faces EL format tags if you want
the text displayed in a component to contain parameters that will resolve at
runtime. For more information, see How to Use the EL Format Tags.

• Pseudo-classes: ADF skins support a number of pseudo-classes that you can
use to change how an application renders in a particular locale. For example,
the :rtl pseudo-class renders ADF Faces components from right to left. This may
be useful if your application is localized into languages, such as Arabic and
Hebrew, that read from right to left. For more information, see Customizing the
Appearance Using Styles and Skins.

• Accessibility: You can make the pages in your application accessible. For more
information, see Developing Accessible ADF Faces Pages.

• Global resource strings: The default resource bundle stores the global resource
strings that ADF Faces components support and the resource strings that are
specific to individual components. For information about these resource strings,
see the Tag Reference for Oracle ADF Faces Skin Selectors.

• Touch Devices: ADF Faces components may behave and display differently on
touch devices. For more information, see Creating Web Applications for Touch
Devices Using ADF Faces

• Drag and Drop: You can configure your components so that the user can drag
and drop them to another area on the page. For more information, see Adding
Drag and Drop Functionality

Using Automatic Resource Bundle Integration in JDeveloper
JDeveloper simplifies the process of creating text resources that you add to ADF
Faces components, using a text resource editor to synchronize translatable strings
with the base resource bundle.

Chapter 36
Using Automatic Resource Bundle Integration in JDeveloper

36-3

JDeveloper supports the automatic creation of text resources in the default resource
bundle when editing ADF Faces components in the visual editor. To treat user-defined
strings as static values, clear the Automatically Synchronize Bundle checkbox in
the Project Properties dialog, as described in How to Set Resource Bundle Options.

Automatic resource bundle integration can be configured to support one resource
bundle per page or project.

You can edit translatable text strings using the Select Text Resource dialog shown in
Figure 36-1. The dialog can be accessed from the Properties window by clicking the
icon that appears when you hover over the property field of a translatable property and
select Select Text Resource from the context menu. For more information on using
this dialog, see How to Create an Entry in a JDeveloper-Generated Resource Bundle.

Figure 36-1 Select Text Resource Dialog

How to Set Resource Bundle Options
You can set resource bundle options for your project in the Project Properties dialog.

Before you begin:

It may help to understand how JDeveloper manages resource bundles. For more
information, see Using Automatic Resource Bundle Integration in JDeveloper.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

Chapter 36
Using Automatic Resource Bundle Integration in JDeveloper

36-4

To set resource bundle options for a project:

1. In the Applications window, double-click the project.

2. In the Project Properties dialog, select Resource Bundle to display the resource
bundle options, as shown in Figure 36-2.

Figure 36-2 Project Properties Resource Bundle dialog

3. If you want JDeveloper to automatically generate a default resource file, select
Automatically Synchronize Bundle.

4. Select one of the following resource bundle file options:

• One Bundle Per Project - configured in a file named
<ProjectName>.properties.

• One Bundle Per File - configured in a file named <FileName>.properties.

5. Select the resource bundle type from the dropdown list:

• List Resource Bundle

• Properties Bundle

• XML Localization Interchange File Format (XLIFF) Bundle

6. Click OK.

What Happens When You Set Resource Bundle Options
JDeveloper generates one or more resource bundles of a particular type based on the
selections that you make in the resource bundle options part of the Project Properties
dialog, as illustrated in Figure 36-2. It generates a resource bundle the first time that
you invoke the Select Text Resource dialog, as illustrated in Figure 36-1.

Assume, for example, that you select the One Bundle Per Project checkbox and the
List Resource Bundle value from the Resource Bundle Type dropdown list. The first

Chapter 36
Using Automatic Resource Bundle Integration in JDeveloper

36-5

time that you invoke the Select Text Resource dialog, JDeveloper generates one
resource bundle for the project. The generated resource bundle is a Java class named
after the default project bundle name in the Project Properties dialog (for example,
ViewControllerBundle.java).

JDeveloper generates a resource bundle as an .xlf file if you select the XML
Localization Interchange File Format (XLIFF) Bundle option and a .properties file
if you select the Properties Bundle option.

By default, JDeveloper creates the generated resource bundle in the view subdirectory
of the project's Application Sources directory.

How to Create an Entry in a JDeveloper-Generated Resource Bundle
JDeveloper generates one or more resource bundles based on the values you select
in the resource bundle options part of the Project Properties dialog. It generates a
resource bundle the first time that you invoke the Select Text Resource dialog from a
component property in the Properties window.

JDeveloper writes key-value pairs to the resource bundle based on the values that you
enter in the Select Text Resource dialog. It also allows you to select an existing key-
value pair from a resource bundle to render a runtime display value for a component.

Before you begin:

It may help to understand how JDeveloper manages resource bundles. For more
information, see Using Automatic Resource Bundle Integration in JDeveloper.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To create an entry in the resource bundle generated by JDeveloper:

1. In the JSF page, select the component for which you want to write a runtime value.

For example, select an af:inputText component.

2. In the Properties window, select Select Text Resource from the context menu
that appears when you click the icon that appears when you hover over a property
field to create a new entry in the resource bundle.

The Select Text Resource entry in the context menu only appears for properties
that support text resources. For example, the Label property of an af:inputText
component.

3. Write the value that you want to appear at runtime in the Display Value input field,
as illustrated in Figure 36-1.

JDeveloper generates a value in the Key input field.

4. Optionally, write a description in the Description input field.

Note:

JDeveloper displays a matching text resource in the Matching Text
Resource field if a text resource exists that matches the value you
entered in the Display Value input field.

Chapter 36
Using Automatic Resource Bundle Integration in JDeveloper

36-6

5. Click Save and Select.

What Happens When You Create an Entry in a JDeveloper-Generated
Resource Bundle

JDeveloper writes the key-value pair that you define in the Select Text Resource
dialog to the resource bundle. The options that you select in the resource bundle
options part of the Project Properties dialog determine what type of resource bundle
JDeveloper writes the key-value pair to. For more information, see What Happens
When You Set Resource Bundle Options.

The component property for which you define the resource bundle entry uses an EL
expression to retrieve the value from the resource bundle at runtime. For example, an
af:inputText component's Label property may reference an EL expression similar to
the following:

#{viewcontrollerBundle.Label1}

where viewcontrollerBundle references the resource bundle and Label1 is the key
for the runtime value.

Manually Defining Resource Bundles and Locales
The ADF application supports creating resource bundles as a Java class, property file,
or XLIFF file when you need to define text resources outside of the JDeveloper editors.

A resource bundle contains a number of named resources, where the data type of the
named resources is String. A bundle may have a parent bundle. When a resource is
not found in a bundle, the parent bundle is searched for the resource. Resource
bundles can be either Java classes, property files, or XLIFF files. The abstract class
java.util.ResourceBundle has two subclasses:

• java.util.PropertyResourceBundle

• java.util.ListResourceBundle

A java.util.PropertyResourceBundle is stored in a property file, which is a plain-text
file containing translatable text. Property files can contain values only for String
objects. If you need to store other types of objects, you must use a
java.util.ListResourceBundle class instead.

For more information about using XLIFF, see http://docs.oasis-open.org/xliff/
xliff-core/xliff-core.html

To add support for an additional locale, replace the values for the keys with localized
values and save the property file, appending a language code (mandatory) and an
optional country code and variant as identifiers to the name, for example,
UIResources_it.properties.

The java.util.ListResourceBundle class manages resources in a name and value
array. Each java.util.ListResourceBundle class is contained within a Java class
file. You can store any locale-specific object in a java.util.ListResourceBundle
class. To add support for an additional locale, you create a subclass from the base
class, save it to a file with a locale or language extension, translate it, and compile it
into a class file.

Chapter 36
Manually Defining Resource Bundles and Locales

36-7

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

The ResourceBundle class is flexible. If you first put your locale-specific String objects
in a java.util.PropertyResourceBundle file, you can still move them to a
ListResourceBundle class later. There is no impact on your code, because any call to
find your key will look in both the java.util.ListResourceBundle class and the
java.util.PropertyResourceBundle file.

The precedence order is class before properties. So if a key exists for the same
language in both a class file and a property file, the value in the class file will be the
value presented to you. Additionally, the search algorithm for determining which
bundle to load is as follows:

1. (baseclass)+(specific language)+(specific country)+(specific variant)

2. (baseclass)+(specific language)+(specific country)

3. (baseclass)+(specific language)

4. (baseclass)+(default language)+(default country)+(default variant)

5. (baseclass)+(default language)+(default country)

6. (baseclass)+(default language)

For example, if your browser is set to the Italian (Italy) locale and the default locale of
the application is US English, the application attempts to find the closest match,
looking in the following order:

1. it_IT

2. it

3. en_US

4. en

5. The base class bundle

Tip:

The getBundle method used to load the bundle looks for the default locale
classes before it returns the base class bundle. If it fails to find a match, it
throws a MissingResourceException error. A base class with no suffixes
should always exist as a default. Otherwise, it may not find a match and the
exception is thrown.

You must create a base resource bundle that contains all the text strings that are not
part of the components themselves. This bundle should be in the default language of
the application. You can create a resource bundle as a property file, as an XLIFF file,
or as a Java class. After a resource bundle file has been created, you can edit the file
using the Edit Resource Bundles dialog.

How to Create a Resource Bundle as a Property File or an XLIFF File
You can create a resource bundle as a property file or as an XLIFF file.

Before you begin:

It may help to understand what types of resource bundle you can create. For more
information, see Manually Defining Resource Bundles and Locales.

Chapter 36
Manually Defining Resource Bundles and Locales

36-8

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To create a resource bundle as a property file or an XLIFF file:

1. In the Applications window, right-click where you want to place the resource
bundle file and choose New > From Gallery.

Note:

If you are creating a localized version of the base resource bundle, save
the file to the same directory as the base file.

2. In the New Gallery, select General and then File, and click OK.

3. In the Create File dialog, enter a name for the file using the convention
<name><_lang>.properties for the using the properties file or <name><_lang>.xlf
for using the XLIFF file, where the <_lang> suffix is provided for translated files, as
in _de for German, and omitted for the base language.

Note:

If you create a localized version of a base resource bundle, you must
append the ISO 639 lowercase language code to the name of the file.
For example, the Italian version of the UIResources bundle is
UIResources_it.properties. You can add the ISO 3166 uppercase
country code (for example it_CH, for Switzerland) if one language is
used by more than one country. You can also add an optional
nonstandard variant (for example, to provide platform or region
information).

If you are creating the base resource bundle, do not append any codes.

4. Enter the content for the file. You can enter the content manually by entering the
key-value pairs. You can use the Edit Resource Bundle dialog to enter the key-
value pairs, as described in How to Edit a Resource Bundle File.

• If you are creating a property file, create a key and value for each string of
static text for this bundle. The key is a unique identifier for the string. The
value is the string of text in the language for the bundle. If you are creating a
localized version of the base resource bundle, any key not found in this
version inherits the values from the base class.

Note:

All non-ASCII characters must be UNICODE-escaped or the
encoding must be explicitly specified when compiling, for example:

javac -encoding ISO8859_5 UIResources_it.java

Chapter 36
Manually Defining Resource Bundles and Locales

36-9

For example, the key and the value for the title of the myDemo page is:

myDemo.pageTitle=My Purchase Requests

• If you are creating an XLIFF file, enter the proper tags for each key-value pair.
For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="myResources" datatype="xml">
 <body>
 <trans-unit id="NAME">
 <source>Name</source>
 <target/>
 <note>Name of employee</note>
 </trans-unit>
 <trans-unit id="HOME_ADDRESS">
 <source>Home Address</source>
 <target/>
 <note>Adress of employee</note>
 </trans-unit>
 <trans-unit id="OFFICE_ADDRESS">
 <source>Office Address</source>
 <target/>
 <note>Office building </note>
 </trans-unit>
 </body>
 </file>
</xliff>

5. After you have entered all the values, click OK.

How to Create a Resource Bundle as a Java Class
You can create a resource bundle as a Java class.

Before you begin:

It may help to understand what types of resource bundle you can create. For more
information, see Manually Defining Resource Bundles and Locales.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To create a resource bundle as a Java class:

1. In the Applications window, right-click where you want the file to be placed and
choose New > From Gallery.

Note:

If you are creating a localized version of the base resource bundle, it
must reside in the same directory as the base file.

2. In the New Gallery, select General and then Java Class, and click OK.

3. In the Create Java Class dialog, enter a name and package for the class. The
class must extend java.util.ListResourceBundle.

Chapter 36
Manually Defining Resource Bundles and Locales

36-10

Note:

If you are creating a localized version of a base resource bundle, you
must append the ISO 639 lowercase language code to the name of the
class. For example, the Italian version of the UIResources bundle might
be UIResources_it.java. You can add the ISO 3166 uppercase country
code (for example it_CH, for Switzerland) if one language is used by
more than one country. You can also add an optional nonstandard
variant (for example, to provide platform or region information).

If you are creating the base resource bundle, do not append any codes.

4. Implement the getContents() method, which returns an array of key-value pairs.
Create the array of keys for the bundle with the appropriate values. Or use the Edit
Resource Bundles dialog to automatically generate the code, as described in How
to Edit a Resource Bundle File. Example 36-3 shows a base resource bundle Java
class.

Note:

Keys must be String objects. If you are creating a localized version of
the base resource bundle, any key not found in this version will inherit
the values from the base class.

Example 36-3 Base Resource Bundle Java Class

package sample;

import java.util.ListResourceBundle;

public class MyResources extends ListResourceBundle {

 @Override
 protected Object[][] getContents() {
 return contents;
 }

 static final Object[][] contents {
 {"button_Search", "Search"},
 {"button_Reset", "Reset"}
 };
}

How to Edit a Resource Bundle File
After you have created a resource bundle property file, XLIFF file, or Java class file,
you can edit it using the source editor.

Before you begin:

It may help to understand what types of resource bundles you can define and edit. For
more information, see Manually Defining Resource Bundles and Locales.

Chapter 36
Manually Defining Resource Bundles and Locales

36-11

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To edit a resource bundle after it has been created:

1. From the main menu, choose Application > Edit Resource Bundles from the
main menu.

2. In the Edit Resource Bundles dialog, select the resource bundle file you want to
edit from the Resource Bundle dropdown list, as shown in Figure 36-3, or click
the Search icon to launch the Select Resource Bundle dialog if the resource
bundle file you want to edit does not appear in the Resource Bundle dropdown
list.

Figure 36-3 Edit Resource Bundle Dialog

3. In the Select Resource Bundle dialog, select the file type from the File type
dropdown list. Navigate to the resource bundle you want to edit, as shown in
Figure 36-4. Click OK.

Chapter 36
Manually Defining Resource Bundles and Locales

36-12

Figure 36-4 Select Resource Bundle Dialog

4. In the Edit Resource Bundles dialog, click the Add icon to add a key-value pair, as
shown in Figure 36-5. When you have finished, click OK.

Figure 36-5 Adding Values to a Resource Bundle

How to Register a Locale for Your Application
You must register the locales that you want your application to support in the
application's faces-config.xml file.

Before you begin:

It may help to understand how you can manually manage resource bundles. For more
information, see Manually Defining Resource Bundles and Locales.

Chapter 36
Manually Defining Resource Bundles and Locales

36-13

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To register a locale for your application:

1. In the Applications window, expand the WEB-INF node and double-click faces-
config.xml.

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Application navigation tab.

4. In the Application page, in the Locale Config section, click Add to add the code
for the locale, as shown in Figure 36-6.

Figure 36-6 Adding a Locale to faces-config.xml

After you have added the locales, the faces-config.xml file should have code
similar to the following:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>ca</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>zh_CN</supported-locale>
 </locale-config>

How to Register a Resource Bundle in Your Application
You must register the resource bundles that you want your application to use in the
application's faces-config.xml file.

Before you begin:

It may help to understand how you can manually manage resource bundles. For more
information, see Manually Defining Resource Bundles and Locales.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To register a resource bundle:

Chapter 36
Manually Defining Resource Bundles and Locales

36-14

1. In the Applications window, expand the WEB-INF node and double-click faces-
config.xml.

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Application navigation tab.

4. In the Application page, in the Resource Bundle section, click Add and enter the
fully qualified name of the base bundle that contains messages to be used by the
application and a variable name that can be used to reference the bundle in an EL
expression, as shown in Figure 36-7.

Figure 36-7 Adding a Resource Bundle to faces-config.xml

After you have added the resource bundle, the faces-config.xml file should have
code similar to the following:

<resource-bundle>
 <base-name>oracle.summit.SummitADF</base-name>
 <var>res</var>
</resource-bundle>

How to Use Resource Bundles in Your Application
You set your page encoding and response encoding to all supported languages and
you bind to the resource bundle.

Before you begin:

It may help to understand how you can manually manage resource bundles. For more
information, see Manually Defining Resource Bundles and Locales.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To use a base resource bundle on your page:

1. If your page is a JSP document, set your page encoding and response encoding
to be a superset of all supported languages. If no encoding is set, the page
encoding defaults to the value of the response encoding set using the
contentType attribute of the page directive. The following example shows the
encoding for a sample page.

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

2. Bind all attributes that represent strings of static text displayed on the page to the
appropriate key in the resource bundle, using the variable defined in the faces-

Chapter 36
Manually Defining Resource Bundles and Locales

36-15

config.xml file for the <resource-bundle> element. The following example shows
the code for the View button on the myDemo page.

<af:button text="#{res['myDemo.buttonbar.view']}"
 . . . />

Tip:

If you type the following syntax in the source editor, JDeveloper displays
a dropdown list of the keys that resolve to strings in the resource bundle:

<af:button text="#{res.

JDeveloper completes the EL expression when you select a key from the
dropdown list.

3. You can also use the adfBundle keyword to resolve resource strings from specific
resource bundles as EL expressions in the JSF page.

The usage format is #{adfBundle[bundleID] [resource_Key]}, where
bundleID is the fully qualified bundle ID, such as project.EmpMsgBundle, and
resource_Key is the resource key in the bundle, such as Deptno_LABEL.
Example 36-4 shows how adfBundle is used to provide the button text with a
resource string from a specific resource bundle.

Example 36-4 Binding Using adfBundle

<af:button text="#{adfBundle['project.EmpMsgBundle'] ['Deptno_LABEL']}"

What You May Need to Know About ADF Skins and Control Hints
If you use an ADF skin and have created a custom resource bundle for the skin, you
must also create localized versions of the resource bundle. Similarly, if your
application uses control hints to set any text, you must create localized versions of the
generated resource bundles for that text.

What You May Need to Know About Overriding a Resource Bundle in
a Customizable Application

An override bundle is a resource bundle with key-value pairs that differ from the base
resource bundle that you want to use in a customizable application that you develop
using the Oracle Metadata Services (MDS) framework. If you create an override
bundle, you need to configure your application's adf-config.xml file to support the
overriding of the base resource bundle. For example, if you have a base resource
bundle with the name oracle.demo.CustAppUIBundle, you configure an entry in your
application's adf-config.xml file, as shown in Example 36-5, to make it overrideable.
Once it is marked as overriden, any customizations of that bundle will be stored in your
customizable application's override bundle. The override bundle is maintained in both
the default role in JDeveloper and in the customizable application. To avoid having to
manage this override bundle in two locations, Oracle recommends that you:

• Create a separate resource bundle from the base resource bundle using
JDeveloper's default role

Chapter 36
Manually Defining Resource Bundles and Locales

36-16

• Add the key-value pairs that you want to override in your customizable application
from the base resource bundle to this separate resource bundle

In the customizable application you pick these key-value pairs from the separate
resource bundle. This makes sure that you do not create new key-value pairs in your
customizable application's override bundle and that only the customizable application
uses the override bundle.

For more information about the adf-config.xml file, see Configuration in adf-
config.xml. For more information about creating customizable applications using MDS,
see the "Customizing Applications with MDS" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

Example 36-5 Entry for Override Bundle in adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:config="http://xmlns.oracle.com/bc4j/configuration"
 xmlns:adf="http://xmlns.oracle.com/adf/config/properties">
...
<adf-resourcebundle-config xmlns="http://xmlns.oracle.com/adf/resourcebundle/config">
 <applicationBundleName>oracle/app.../xliffBundle/FusionAppsOverrideBundle</
applicationBundleName>
 <bundleList>
 <bundleId override="true">oracle.demo.CustAppUIBundle</bundleId>
 </bundleList>
</adf-resourcebundle-config>
</adf-config>

Configuring Pages for an End User to Specify Locale at
Runtime

You can configure the ADF application to support end user selection of the locale-
specific resource bundles at runtime.

You can configure an application so end users can specify the locale at runtime rather
than the default behavior where the locale settings of the end user's browser
determine the runtime locale. Implement this functionality if you want your application
to allow end users to specify their preferred locale and save their preference.

How to Configure a Page for an End User to Specify Locale
Create a new page or open an existing page. Configure it so that:

• It references a backing bean to store locale information

• An end user can invoke a control at runtime to update the locale information in the
backing bean

• The locale attribute of the f:view tag references the backing bean

Before you begin:

It may help to understand the configuration options available to you. For more
information, see Configuring Pages for an End User to Specify Locale at Runtime.

Chapter 36
Configuring Pages for an End User to Specify Locale at Runtime

36-17

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To configure a page for an end user to specify locale:

1. Create a page with a backing bean to store locale information.

For more information, see How to Create JSF Pages.

2. Provide a control (for example, a selectOneChoice component) that an end user
can use to change locale.

For example, in the Components window, from the Text and Selection panel, drag
a Choice component and drop it onto the page.

3. Bind the control to a backing bean that stores the locale value, as illustrated in the
following example.

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

4. Bind the locale attribute of the f:view tag to the locale value in the backing bean.

a. In the Structure window for the JSF page, right-click the f:view tag and
choose Go to Properties.

b. In the Properties window, expand the Common section and choose
Expression Builder from the context menu that appears when you click the
icon that appears when you hover over the Locale field.

c. In the Expression Builder, bind to the locale value in the backing bean, as
shown in Figure 36-8.

Chapter 36
Configuring Pages for an End User to Specify Locale at Runtime

36-18

Figure 36-8 Expression Builder Binding the Locale Attribute to a
Backing Bean

5. Save the page.

What Happens When You Configure a Page to Specify Locale
JDeveloper generates a reference to the backing bean for the command component
that you use to change the locale. Example 36-6 shows an example using the
selectOneChoice component. JDeveloper also generates the required methods in the
backing bean for the page. Example 36-7 shows extracts for the backing bean that
correspond to Example 36-6.

Example 36-6 selectOneChoice Component Referencing a Backing Bean

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

Example 36-7 Backing Bean Methods to Change Locale

package view.backing;

...
import oracle.adf.view.rich.component.rich.input.RichSelectOneChoice;

public class ChangeLocale {
 ...
 ...
 private RichSelectOneChoice soc1;
 ...

Chapter 36
Configuring Pages for an End User to Specify Locale at Runtime

36-19

 ...

 ...
 public void setD2(RichDocument d2) {
 this.d2 = d2;
 }

 ...

 public void setSoc1(RichSelectOneChoice soc1) {
 this.soc1 = soc1;
 }

 public RichSelectOneChoice getSoc1() {
 return soc1;
 }

 public void setSi1(RichSelectItem si1) {
 this.si1 = si1;
 }
...
}

What Happens at Runtime: How an End User Specifies a Locale
At runtime, an end user invokes the command component you configured to change
the locale of the application. The backing bean stores the updated locale information.
Pages where the locale attribute of the f:view tag reference the backing bean render
using the locale specified by the end user.

The locale specified by the end user must be registered with your application. For
more information about specifying a locale and associated resource bundles, see How
to Register a Locale for Your Application.

Configuring Optional ADF Faces Localization Properties
The ADF application provides properties that can assist in translation for a specific
locale beyond text resources.

Along with providing text translation, ADF Faces also automatically provides other
types of translation, such as currency codes and support for bidirectional rendering
(also known as BiDi support). The application will automatically be displayed
appropriately, based on the user's selected locale. However, you can also manually
set the following localization settings for an application in the trinidad-config.xml
file:

• <currency-code>: Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format currency fields
that do not specify a currency code in their own converter.

• <number-grouping-separator>: Defines the separator used for groups of numbers
(for example, a comma). ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses and
formats.

Chapter 36
Configuring Optional ADF Faces Localization Properties

36-20

• <decimal-separator>: Defines the separator used for the decimal point (for
example, a period or a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses and
formats.

• <right-to-left>: Defines the direction in which text appears in a page. ADF
Faces supports bidirectional rendering and automatically derives the rendering
direction from the current locale, but you can explicitly set the default page
rendering direction by using the values true or false.

• <formatting-locale>: Defines the date and number format appropriate to the
selected locale. By default, ADF Faces will format dates and numbers in the same
locale used for localized text. If you want dates and numbers formatted in a
different locale, you can use an IANA-formatted locale (for example, ja, fr-CA). The
contents of this element can also be an EL expression pointing at an IANA string
or a java.util.Locale object.

• To set the time zone used for processing and displaying dates, and the year offset
that should be used for parsing years with only two digits, use the following
elements:

– <time-zone>: By default, ADF Faces uses the time zone used by the
application server if no value is set. If needed, you can use an EL expression
that evaluates to a TimeZone object. This value is used by
org.apache.myfaces.trinidad.converter.DateTimeConverter while
converting strings to Date.

– <two-digit-year-start>: This value is specified as a Gregorian calendar
year and is used by
org.apache.myfaces.trinidad.converter.DateTimeConverter to convert
strings to Date. This element defaults to the year 1950 if no value is set. If
needed, you can use a static integer value or an EL expression that evaluates
to an Integer object.

For more information about the elements that you can configure in the trinidad-
config.xml file, see Configuration in trinidad-config.xml.

How to Configure Optional Localization Properties
You can configure optional localization properties by entering elements in your
application's trinidad-config.xml file.

Before you begin:

It may help to understand what optional localization properties you can modify. For
more information, see Manually Defining Resource Bundles and Locales.

You may also find it helpful to understand functionality that can be added using other
Oracle ADF features. For more information, see Additional Functionality for
Internationalizing and Localizing Pages.

To configure optional localization properties:

1. In the Applications window, expand the WEB-INF node and double-click trinidad-
config.xml.

Chapter 36
Configuring Optional ADF Faces Localization Properties

36-21

2. In the Trinidad Configuration Elements page of the Components window, drag the
localization element that you want to configure and drop it inside the <trinidad-
config> element.

3. Enter the desired value.

Example 36-8 shows a sample trinidad-config.xml file with all the optional
localization elements set.

Example 36-8 Configuring Currency Code and Separators for Numbers and Decimal Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

<formatting-locale>
 #{request.locale}
</formatting-locale>

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

Chapter 36
Configuring Optional ADF Faces Localization Properties

36-22

37
Developing Accessible ADF Faces Pages

This chapter describes how to add accessibility support to ADF Faces components by
configuring trinidad-config.xml with the <accessibility-mode> and
<accessibility-profile> elements. This chapter also describes accessibility
guidelines for ADF pages that use partial page rendering, scripting, styles, and certain
page and navigation structures.
This chapter includes the following sections:

• About Accessibility Support In ADF Faces

• Specifying Component-Level Accessibility Properties

• Creating Accessible Pages

• Creating Accessible Active Data Components

• Running Accessibility Audit Rules

About Accessibility Support In ADF Faces
ADF Faces components support creating user interfaces that comply with established
accessibility guidelines for visually and physically impaired end users.

Accessibility involves making your application usable for persons with disabilities such
as low vision or blindness, deafness, or other physical limitations. This means creating
applications that can be used without a mouse (keyboard only), used with a screen
reader for blind or low-vision users, and used without reliance on sound, color, or
animation and timing.

ADF Faces user interface components have built-in accessibility support for visually
and physically impaired users. User agents such as a web browser rendering to
nonvisual media such as a screen reader can read component text descriptions to
provide useful information to impaired users.

While the ADF Faces accessibility guidelines for components, page, and navigation
structures is useful, it is not a substitute for familiarity with accessibility standards and
performing accessibility testing with assistive technology.

Access key support provides an alternative method to access components and links
using only the keyboard. ADF Faces accessibility audit rules provide direction to
create accessible images, tables, frames, forms, error messages, and popup windows
using accessible HTML markup. Additional framework and platform issues presented
by client-side scripting, in particular using asynchronous JavaScript and XML (AJAX),
have been addressed in Oracle's accessibility strategy.

Oracle software implements the U.S. Section 508 and Web Content Accessibility
Guidelines (WCAG). The interpretation of these standards is available at http://
www.oracle.com/accessibility/standards.html.

While the ADF Faces accessibility guidelines for components, page, and navigation
structures is useful, it is not a substitute for familiarity with accessibility standards and

37-1

http://www.oracle.com/accessibility/standards.html
http://www.oracle.com/accessibility/standards.html

performing accessibility testing with assistive technology. While creating your
application, make sure that the following criterion are met:

• Success criterion for sensory characteristics.

For more information, see the section on Success Criterion 1.3.3 [Sensory
Characteristics] in http://www.w3.org/TR/UNDERSTANDING-WCAG20/
Overview.html#contents.

• Success criterion for images of text.

For more information, see the section on Success Criterion 1.4.5 [Images of Text]
in http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents.

• Success criterion for visible focus.

For more information, see the section on Success Criterion 2.4.7 [Focus Visible] in
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents.

• Success criterion for elements receiving focus.

For more information, see the section on Success Criterion 3.2.1 [On Focus] in
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents.

• Success criterion for consistent identification of functional components

For more information, see the section on Success Criterion 3.2.4 [Consistent
Identification] in http://www.w3.org/TR/UNDERSTANDING-WCAG20/
Overview.html#contents.

Additional Information for Accessibility Support in ADF Pages
You may also find it helpful to understand other ADF Faces features before you make
your application accessible. Following are links to other features that work with
accessibility.

• Internationalization and localization: The ADF skin that you create to apply to
your application can be customized as part of a process to internationalize and
localize ADF Faces pages. For more information about this process, see
Internationalizing and Localizing Pages.

• Keyboard shortcuts: Keyboard shortcuts provide an alternative to pointing
devices for navigating the page. For more information about how to use keyboard
shortcuts with accessibility, see Keyboard Shortcuts.

Accessibility Support Guidelines at Sign-In
When developing an application, it is a good practice to provide options for users after
application sign-in. The sign-in flow consists of two pages, as described here:

1. Sign-in page

2. Application home page

Note that the application may have additional authentication security set up and the
product-specific home page.

Chapter 37
About Accessibility Support In ADF Faces

37-2

http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html#contents

Specifying Component-Level Accessibility Properties
ADF Faces components define a variety of properties that must be specified to make
ADF applications accessible by visually or physically impaired end users.

Guidelines for component-specific accessibility are provided in ADF Faces Component
Accessibility Guidelines. The guidelines include a description of the relevant property
with examples and tips. For information about auditing compliance with ADF Faces
accessibility rules, see Running Accessibility Audit Rules.

Access key support for ADF Faces input or command and go components such as
af:inputText, af:button, and af:link involves defining labels and specifying
keyboard shortcuts. While it is possible to use the tab key to move from one control to
the next in a web application, keyboard shortcuts are more convenient and efficient.

To specify an access key for a component, set the component's accessKey attribute to
a keyboard character (or mnemonic) that is used to gain quick access to the
component. You can set the attribute in the Properties window or in the page source
using & encoding.

The same access key can be bound to several components. If the same access key
appears in multiple locations in the same page, the rendering agent will cycle among
the components accessed by the same key. That is, each time the access key is
pressed, the focus will move from component to component. When the last component
is reached, the focus will return to the first component.

Using access keys on af:button and af:link components may immediately activate
them in some browsers. Depending on the browser, if the same access key is
assigned to two or more go components on a page, the browser may activate the first
component instead of cycling through the components that are accessed by the same
key.

To develop accessible page and navigation structures, follow the additional
accessibility guidelines described in Creating Accessible Pages.

ADF Faces Component Accessibility Guidelines
To develop accessible ADF Faces components, follow the guidelines described in the
component's tag documentation, and in Table 37-1. Components not listed in
Table 37-1 do not have accessibility guidelines.

Note:

In cases where the label property is referenced in the accessibility
guidelines, the labelAndAccessKey property may be used where available,
and is the preferred option.

Unless noted otherwise, you can also label ADF Faces input and select
controls by:

• Specifying the for property in an af:outputLabel component

• Specifying the for property in an af:panelLabelAndMessage component

Chapter 37
Specifying Component-Level Accessibility Properties

37-3

Table 37-1 ADF Faces Components Accessibility Guidelines

Component Guidelines

af:activeImage Specify the shortDesc property.

If the image is only present for decorative purposes and
communicates no information, set shortDesc to the empty
string.

af:chooseColor For every af:chooseColor component, there must be at
least one af:inputColor component with a chooseId
property, which points to the af:chooseColor component.

af:chooseDate For every af:chooseDate component, there must be at
least one af:inputDate component with a chooseId
property, which points to the af:chooseDate component.

af:column Specify the headerText property, or provide a header
facet.

In a table, you must identify at least one column
component as a row header by setting rowHeader to true
or unstyled. Ensure that the rowHeader column provides
a unique textual value, and columns that contain an input
component are not assigned as the row header.

For every child input component, set the Simple attribute
to true, and ensure that the input component has a label
assigned. The label is not displayed, but is present on the
page so that it can be read by screen reader software.

If you wish to provide help information for the column, use
helpTopicId.

If you use a filter facet to set a filter on a column, ensure
that the filter component has a label assigned.

af:button

af:link

One of the following properties must be specified: text,
textAndAccessKey, or shortDesc (used in conjunction
with icon). The text should specify the action or destination
activated by the component and make sense when read
out of context. For example use "go to index" instead of
"click here".If present, the text or textAndAccessKey
property is used as the label for the component. For an
icon only button or link, the shortDesc labels the
component. Unique buttons or links must have unique text.

af:commandMenuItem

af:commandNavigationItem

One of the following properties must be specified: text,
textAndAccessKey, or shortDesc.

Usually, the text or textAndAccessKey property is used
as the label for the component. Unique buttons and links
must have unique text.

af:dialog

af:document

Specify the title property.

If you wish to provide help information, use helpTopicId.

Chapter 37
Specifying Component-Level Accessibility Properties

37-4

Table 37-1 (Cont.) ADF Faces Components Accessibility Guidelines

Component Guidelines

af:goMenuItem Specify the text property. The text should specify where
the link will take the user and make sense when read out of
context. For example use "go to index" instead of "click
here." Multiple links that go to the same location must use
the same text and unique links must have unique text.

Usually, the text or textAndAccessKey property is used
as the label for the component. Unique buttons and links
must have unique text.

af:icon Specify the shortDesc property. If the icon is only present
only for decorative purposes and communicates no
information, set shortDesc to the empty string.

af:image Specify the shortDesc property. If the image is only
present for decorative purposes and communicates no
information, set shortDesc to the empty string.

Use the longDescURL property for images where a
complex explanation is necessary. For example, charts and
graphs require a description file that includes all the details
that make up the chart.

af:inlineFrame Specify the shortDesc property.

af:inputColor

af:inputComboboxListOfValu
es

af:inputDate

af:inputFile

af:inputListOfValues

af:inputNumberSlider

af:inputNumberSpinbox

af:inputRangeSlider

af:inputText

Specify the label property.

For af:inputComboboxListOfValues and
af:inputListOfValues components, the searchDesc
must also be specified.

If you wish to provide help information, use helpTopicId.

af:outputFormatted The value property must specify valid HTML.

af:outputLabel Specify the value or valueAndAccessKey property.

af:media When including multimedia content in your application,
make sure that all accessibility requirements for that media
are met.

Here are some examples:

• If including audio only content, provide an alternate
way of conveying the same information, such as a
textual transcript of the audio.

• Any audio that plays automatically for more than 3
seconds must have a pause, stop, or mute control.

• If including video only content, provide an alternate
way of conveying the same information, such as a
textual or audio transcript.

• When including video content with audio, captions
(and audio descriptions) should also be available.

Chapter 37
Specifying Component-Level Accessibility Properties

37-5

Table 37-1 (Cont.) ADF Faces Components Accessibility Guidelines

Component Guidelines

af:panelBox

af:panelHeader

Specify the text property.

If you wish to provide help information, use helpTopicId.

af:panelLabelAndMessage Specify the label or labelAndAccessKey property.
When using this component to label an ADF Faces input or
select control, the for property must be specified.

If you wish to provide help information, use helpTopicId.

af:panelSplitter

af:panelStretchLayout

Refer to How to Use Page Structures and Navigation.

af:panelWindow Specify the title property.

If you wish to provide help information, use helpTopicId.

af:poll When using polling to update content, allow end users to
control the interval, or to explicitly initiate updates instead
of polling.

af:query Specify the following properties:

• headerText
• addFieldsButtonAccessKey
• addFieldsButtonText
• resetButtonAccessKey
• resetButtonText
• saveButtonAccessKey
• saveButtonText
• searchButtonAccessKey
• searchButtonText

If you wish to provide help information, use helpTopicId.

af:quickQuery Specify the label and searchDesc properties.

If you wish to provide help information, use helpTopicId.

af:region If you wish to provide help information, use helpTopicId.

af:richTextEditor Specify the label property.

If you wish to provide help information, use helpTopicId.

af:selectBooleanCheckbox

af:selectBooleanRadio

One of the following properties must be specified: text,
textAndAccessKey, or label.

If you wish to provide help information, use helpTopicId.

af:selectItem Specify the label property. Note that using the for
attribute of af:outputLabel and
af:panelMessageAndLabel components is not an
acceptable alternative.

Chapter 37
Specifying Component-Level Accessibility Properties

37-6

Table 37-1 (Cont.) ADF Faces Components Accessibility Guidelines

Component Guidelines

af:selectManyCheckbox

af:selectManyChoice

af:selectManyListbox

af:selectManyShuttle

af:selectOneChoice

af:selectOneListbox

af:selectOneRadio

af:selectOrderShuttle

Specify the label property.

For the af:selectManyShuttle and
af:selectOrderShuttle components, the
leadingHeader and trailingHeader properties must be
specified.

If you wish to provide help information, use helpTopicId.

af:showDetailHeader Specify the text property.

If you wish to provide help information, use helpTopicId.

af:showDetailItem One of the following properties must be specified: text,
textAndAccessKey, or shortDesc.

af:showPopupBehavior Specify the triggerType property.

For all popups that are accessible with the mouse, make
sure they are also through the keyboard. For example, if
you want to display a note window on mouseOver, set up
two showPopupBehavior tags: one triggering on
mouseOver and one triggering on action, so that a
keyboard only can also access the popup.

Do not show a popup on focus or blur event types. It
makes application difficult to use by a keyboard-only user.
While these are available event types, they should not be
used in any real application with showPopupBehavior.

af:table

af:treeTable

Specify the summary property. The summary should
describe the purpose of the table.

All table columns must have column headers.

If a label is specified for an input component inside
af:column, ADF Faces automatically inserts row
information into the application-specified label of the input
component. Typically, the application-specified label
matches the column header text, and along with the
inserted row information it provides a unique identity for
each input component.

Using ADF Faces Table Components with a Screen Reader
If you are using ADF Faces table components in your web application, you must
designate a column (or columns) that best describe the row information as the row
header columns. The row header columns are used by screen reader software to
announce the row when the end user selects it.

Sometimes, for display purposes, you may not want to have a row header. In such a
case, you must define one or more columns in the table to have the rowHeader
attribute set to unstyled. The unstyled row header columns do not display differently
than other columns, but are properly identified as the row headers for accessibility.

Chapter 37
Specifying Component-Level Accessibility Properties

37-7

ADF Data Visualization Components Accessibility Guidelines
To develop accessible ADF Data Visualization Components, follow the accessibility
guidelines described in Table 37-2. Components not listed do not have accessibility
guidelines.

Table 37-2 ADF Data Visualization Components Accessibility Guidelines

Component Guideline

dvt:projectGantt

dvt:resourceUtilizationGantt

dvt:schedulingGantt

Specify the summary property. The summary should describe the
purpose of the Gantt chart component.

dvt:areaChart

dvt:barChart

dvt:bubbleChart

dvt:comboChart

dvt:funnelChart

dvt:horizontalLineChart

dvt:lineChart

dvt:pieChart

dvt:scatterChart

Charts automatically assign a value to the shortDesc property for the
following chart child components when you add them to a page. The
property describes the series, group, and value information for the
component.

• dvt:chartDataItem
• dvt:funnelDataItem
• dvt:pieDataItem

Specify the shortDesc property for the following chart reference objects
when used. The property should describe the purpose and data
information of the component.

• dvt:referenceArea
• dvt:referenceLine

dvt:diagram Specify the summary property. The summary should describe the
purpose of the component.

Also specify the shortDesc property for the dvt:diagramNode and
dvt:diagramLinkchild components. The property should contain
information identifying the label and node data for the node.

dvt:dialGauge

dvt:ledGauge

dvt:ratingGauge

dvt:statusMeterGauge

Specify the shortDesc property. The property should describe the
purpose and data information of the gauge.

dvt:hierarchyViewer Specify the summary property. The summary should describe the
purpose of the component.

dvt:map Specify the summary property. The summary should describe the
purpose of the geographic map.

dvt:nBoxNode Specify the shortdesc property. The property should describe the
purpose and data of the node.

dvt:pivotTable Specify the summary property. The summary should describe the
purpose of the timeline component.

dvt:sparkChart Specify the shortDesc property. The property should describe the
purpose and data of the spark chart component.

dvt:stockGraph Specify the shortDesc property. The shortDesc property should
describe the purpose of the graph.

Chapter 37
Specifying Component-Level Accessibility Properties

37-8

Table 37-2 (Cont.) ADF Data Visualization Components Accessibility Guidelines

Component Guideline

dvt:sunburst Specify the summary property. The summary should describe the
purpose of the component.

Also specify the shortDesc property for the dvt:sunburstNode child
component. The property should contain information identifying the label
and node data for the node.

dvt:thematicMap Specify the summary property. The summary should describe the
purpose of the thematic map.

dvt:timeline Specify the summary property. The summary should describe the
purpose of the pivot table component.

dvt:treemap Specify the summary property. The summary should describe the
purpose of the component.

Also specify the shortDesc property for the dvt:treemapNode child
components. The property should contain information identifying the
label and node data for the node.

Note:

DVT chart, sunburst, and treemap components conform to the Accessible
Rich Internet Applications Suite (WAI-ARIA) technical specification. The
WAI-ARIA framework defines roles, states, and properties to make widgets,
navigation, and behaviors accessible. For more information about WAI-ARIA,
see http://www.w3.org/WAI/intro/aria.

How to Define Access Keys for an ADF Faces Component
In the Properties window of the component for which you are defining an access key,
enter the mnemonic character in the accessKey attribute field. When simultaneously
setting the text, label, or value and mnemonic character, use the ampersand (&)
character in front of the mnemonic character in the relevant attribute field.

Before you begin:

It may be helpful to have an understanding of component-level accessibility guidelines.
For more information, see Specifying Component-Level Accessibility Properties. You
may also find it helpful to understand functionality that can be added using other ADF
Faces features. For more information, see Additional Information for Accessibility
Support in ADF Pages.

Defining Access Keys

Use one of four attributes to specify a keyboard character for an ADF Faces input or
command and go component:

• accessKey: Use to set the mnemonic character used to gain quick access to the
component. For command and go components, the character specified by this
attribute must exist in the text attribute of the instance component; otherwise, ADF

Chapter 37
Specifying Component-Level Accessibility Properties

37-9

http://www.w3.org/WAI/intro/aria

Faces does not display the visual indication that the component has an access
key.

The following example shows the code that sets the access key to the letter h for
the af:link component. In Internet Explorer, when the user presses the keys ALT
+H, the text value of the component will be brought into focus. Note that the ALT
key might not act as the access key in every web browser. Refer to the browser's
documentation to know the shortcut keys of the browser.

<af:link text="Home" accessKey="h">

• textAndAccessKey: Use to simultaneously set the text and the mnemonic
character for a component using the ampersand (&) character. In JSPX files, the
conventional ampersand notation is &. In JSP files, the ampersand notation is
simply &. In the Properties window, you need only the & character.

The following example shows the code that specifies the button text as Home and
sets the access key to H, the letter immediately after the ampersand character, for
the af:button component.

<af:button textAndAccessKey="&Home"/>

• labelAndAccessKey: Use to simultaneously set the label attribute and the access
key on an input component, using conventional ampersand notation.

The following example shows the code that specifies the label as Date and sets
the access key to a, the letter immediately after the ampersand character, for the
af:selectInputDate component.

<af:inputSelectDate value="Choose date" labelAndAccessKey="D&ate"/>

• valueAndAccessKey: Use to simultaneously set the value attribute and the access
key, using conventional ampersand notation.

The following example shows the code that specifies the label as Select Date and
sets the access key to e, the letter immediately after the ampersand character, for
the af:outputLabel component.

<af:outputLabel for="someid" valueAndAccessKey="Select Dat&e"/>
<af:inputText simple="true" id="someid"/>

Access key modifiers are browser and platform-specific. If you assign an access key
that is already defined as a menu shortcut in the browser, the ADF Faces component
access key will take precedence. Refer to your specific browser's documentation for
details.

In some browsers, if you use a space as the access key, you must provide the user
with the information that Alt+Space or Alt+Spacebar is the access key because there
is no way to present a blank space visually in the component's label or textual label.
For that browser you could provide text in a component tooltip using the shortDesc
attribute.

How to Define Localized Labels and Access Keys
Labels and access keys that must be displayed in different languages can be stored in
resource bundles where different language versions can be displayed as needed.
Using the <resource-bundle> element in the JSF configuration file available in JSF
1.2, you can make resource bundles available to all the pages in your application
without using a f:loadBundle tag in every page.

Before you begin:

Chapter 37
Specifying Component-Level Accessibility Properties

37-10

It may be helpful to have an understanding of component-level accessibility guidelines.
For more information, see Specifying Component-Level Accessibility Properties. You
may also find it helpful to understand functionality that can be added using other ADF
Faces features. For more information, see Additional Information for Accessibility
Support in ADF Pages.

To define localized labels and access keys:

1. Create the resource bundles as simple.properties files to hold each language
version of the labels and access keys. For details, see How to Create a Resource
Bundle as a Property File or an XLIFF File.

2. Add a <locale-config> element to the faces-config.xml file to define the default
and supported locales for your application. For details, see How to Register a
Locale for Your Application.

3. Create a key and value for each string of static text for each resource bundle. The
key is a unique identifier for the string. The value is the string of text in the
language for the bundle. In each value, place an ampersand (& or amp) in front of
the letter you wish to define as an access key.

For example, the following code defines a label and access key for an edit button
field in the UIStrings.properties base resource bundle as Edit:

srlist.buttonbar.edit=&Edit

In the Italian language resource bundle, UIStrings_it.properties, the following
code provides the translated label and access key as Aggiorna:

srlist.buttonbar.edit=A&ggiorna

4. Add a <resource-bundle> element to the faces-config.xml file for your
application. The following example shows an entry in a JSF configuration file for a
resource bundle.

<resource-bundle>
 <var>res</var>
 <base-name>resources.UIStrings</base-name>
</resource-bundle>

Once you set up your application to use resource bundles, the resource bundle keys
show up in the Expression Language (EL) editor so that you can assign them
declaratively.

In the following example, the UI component accesses the resource bundle:

<af:outputText value="#{res['login.date']}"/

For more information, see Internationalizing and Localizing Pages.

Creating Accessible Pages
Certain features of ADF Faces pages, such as partial page rendering or page
navigation, must be considered to make ADF applications accessible by visually or
physically impaired end users.

In addition to component-level accessibility guidelines, you should also follow page-
level accessibility guidelines when you design your application. While component-level
guidelines may determine how you use a component, page-level accessibility

Chapter 37
Creating Accessible Pages

37-11

guidelines are more involved with the overall design and function of the application as
a whole.

The page-level accessibility guidelines are for:

• Using partial page rendering

• Using scripting

• Using styles

• Using page structures and navigation

• Using WAI-ARIA landmark regions

When designing the application pages, you must follow these general accessibility
guidelines described in Table 37-3.

Table 37-3 General Accessibility Guidelines

Guideline Action

Avoid using raw HTML
content

If possible, avoid using raw HTML content. If raw HTML content is
required, use af:outputFormatted and ensure that the content
is valid.

Use the clearest and
simplest language
appropriate for a site's
content

Ensure language clarity and simplicity across the application.

Provide keyboard
alternatives to drag and
drop

Any functionality that uses drag and drop operations must also be
exposed through a keyboard-accessible interface, such as Cut,
Copy, and Paste menu items.

Review accessibility
standards

You must be aware of relevant accessibility standards, such as the
Web Content Accessibility Guidelines. Although the ADF Faces
framework and components hide many of the implementation
details, you should be familiar with these guidelines.

Write text that describes
the link's purpose

Ensure that the purpose of each link can be determined from the
link text alone, or from the link text together with its
programmatically determined link context, except where the
purpose of the link would be ambiguous to users in general.

Provide information about
the general layout of the
site, such as a site map or
table of contents

Ensure that site layout requirements are met.

Provide multiple ways to
locate a page

Ensure that page access requirements are met across the
application. Pages that are the result of a process, or a step in a
process, can be excluded.

Provide visual separation
between adjacent links

Ensure that adjacent links are visually separated, and that a single
link containing white space does not appear as multiple links.

Provide accessibility
support for non-ADF
content

Ensure that non-ADF Faces content in the page is accessible. The
content can come from other Oracle products, or any third-party
products.

Provide accessibility
support for external
documents

Ensure that external documents, such as Word documents and
PDF files, are accessible. The documents could be generated by
the product, or be shipped with the product, and must have least
one accessible version.

Chapter 37
Creating Accessible Pages

37-12

The guidelines described in this section, and its subsections, follow Oracle Global
HTML Accessibility Guidelines, which combines the guidelines of Section 508 and
Web Content Accessibility Guidelines. ADF Faces components ease your
responsibility, as they implicitly meet several accessibility guidelines. For example,
ADF Faces renders the lang attribute on every page, and all headers rendered by
ADF Faces components use the appropriate HTML header elements.

How to Use Partial Page Rendering
Screen readers do not reread the full page in a partial page request. When using
Partial Page Rendering (PPR), you must follow the guidelines described in Table 37-4.

Table 37-4 Partial Page Rendering Guidelines for Accessibility

Guideline Action

Prefer downstream partial
page changes

Partial page rendering causes the screen reader software to read
the page starting from the component that triggered the partial
action. Therefore, place the target component after the component
that triggers the partial request; otherwise, the screen reader
software will not read the updated target.

For example, the most common PPR use case is the master-detail
user interface, where selecting a value in the master component
results in partial page replacement of the detail component. In such
scenarios, the master component must always appear before the
detail component in the document order.

Provide guidance for
partial page changes

Screen reader or screen magnifier users may have difficulty
determining exactly what content has changed as a result of partial
page rendering activity. It may be helpful to provide guidance in the
form of inline text descriptions that identify relationships between
key components in the page. For example, in a master-detail
scenario, inline text might explain that when a row on master
component is updated, the detail component is also updated.
Alternatively, a help topic might explain the structure in the page
and the relationships between components.

How to Use Scripting
Client-side scripting should not be used for any application problem for which there is
a declarative solution and so should be kept to a minimum.

When using scripting, you must follow these guidelines as described in Table 37-5.

Table 37-5 Scripting Guidelines for Accessibility

Guideline Action

Keep scripting to a
minimum

Avoid client-side scripting.

Do not interact with the
component Document
Object Model (DOM)
directly

ADF Faces components automatically synchronize with the screen
reader when DOM changes are made. Direct interaction with the
DOM is not allowed.

Chapter 37
Creating Accessible Pages

37-13

Table 37-5 (Cont.) Scripting Guidelines for Accessibility

Guideline Action

Do not use JavaScript
timeouts

Screen readers do not reliably track modifications made in
response to timeouts implemented using the JavaScript
setTimeout() or setInterval() APIs. Do not call these
methods.

Provide keyboard
equivalents

Some users may not have access to the mouse input device. For
example, some users may be limited to keyboard use only, or may
use alternate input devices or technology such as voice recognition
software. When adding functions using client-side listeners, ensure
that the function is accessible independent in device. Practically
speaking this means that:

• All functions must be accessible using the keyboard events.
• Click events should be preferred over mouse-over or mouse-

out.
• Mouse-over or mouse-out events should additionally be

available through the click event.

Avoid focus changes Focus changes can be confusing to screen reader users as they
involve a change of context. Design your application to avoid
changing the focus programmatically, especially in response to
focus events. Additionally, do not set popup windows to be
displayed in response to focus changes because standard tabbing
is disrupted.

Provide explicit popup
triggers

Screen readers do not automatically respond to inline popup
startups. To force the screen reader software to read the popup
contents, the ADF Faces framework explicitly moves the keyboard
focus to any popup window just after it is opened. An explicit popup
trigger such as a link or button must be provided, or the same
information must be available in some other keyboard or screen
reader accessible way.

Provide text description
for embedded objects

Ensure that each embedded object has a proper text description
associated with it. The OBJECT element must specify the title
attribute; the APPLET element must specify the alt attribute.

Run the audit report to verify the audit rule for af:media.

Provide links to download
required plug-ins

ADF Faces does not make use of any plug-ins such as Java,
Flash, or PDF. You must ensure that the appropriate links are
provided for plug-ins required by the application.

Provide accessible
content for plug-ins

Ensure that all content conveyed by applets and plug-ins is
accessible, or provide an alternate means of accessing equivalent
content.

Avoid input-device
dependency for event
handlers

Ensure that event handlers are input device-independent, except
for events not essential to content comprehension or application
operation, such as mouse rollover image swaps.

In addition to scripting guidelines, you must also provide some programming
guidelines. Many of these guidelines are implicitly adopted by ADF Faces and no
action is required to implement them. The programming guidelines are listed in
Table 37-6.

Chapter 37
Creating Accessible Pages

37-14

Table 37-6 Application Programming Guidelines for Accessibility

Guideline Action

Avoid using markup to
redirect pages

No action required. ADF Faces does not use markup to redirect
pages.

Specify the DOCTYPE of
each page

No action required. ADF Faces specifies the DOCTYPE for every
page.

Avoid using ASCII
characters to render
drawings or figures

Ensure that no ASCII art is included in the application.

Avoid disrupting the
features of the platform
that are defined, in the
documentation intended
for application developers,
as having an accessibility
usage

No action required. ADF Faces ensures that content generated by
the ADF Faces components does not disrupt platform accessibility
features.

Describe components that
control the appearance of
other components

Ensure that ADF Faces components that control other components
have proper descriptions. The control over other components may
include enabling or disabling, hiding or showing, or changing the
default values of other controls.

Always use well-formed
HTML code

No action required. ADF Faces is responsible for ensuring that its
components generate well-formed HTML code.

Do not use depreciated
HTML elements

No action required. ADF Faces is responsible for ensuring that its
components do not use deprecated HTML elements.

Ensure that section
headings are self-
explanatory, and use
header elements H1
through H6

No action required. All headers rendered by ADF Faces
components use the appropriate HTML header elements.

Ensure that the list
content uses appropriate
HTML list elements

No action required. All lists rendered by ADF Faces components
use the appropriate HTML list elements, such as OL, UL, LI, DL,
DT, and DD.

Mark quotations with
proper elements

Ensure that quotations are appropriately marked up using Q or
BLOCKQUOTE elements. Do not use quotation markup for formatting
effects such as indentation.

Identify the primary
natural language of each
page with the lang
attribute on the HTML
element

No action required. ADF Faces renders the lang attribute on every
page.

Ensure that all form
elements have a label
associated with them
using markup

Run the audit report. The Verify that the component is
labeled audit rule warns about missing labels.

Provide unique titles to
each FRAME or IFRAME
elements

Run the audit report. The Verify that the component has a
short description audit rule warns when af:inlineFrame is
missing the shortDesc title.

Note that ADF Faces af:inlineFrame does not provide access to
longDesc.

Chapter 37
Creating Accessible Pages

37-15

Table 37-6 (Cont.) Application Programming Guidelines for Accessibility

Guideline Action

Provide a title to each
page of the frame

Run the audit report. The Verify that the component has a
title audit rule warns when af:document is missing the title
attribute.

Ensure that popup
windows have focus when
they open, and focus must
return to a logical place
when the popup window is
closed

Popup windows provided by ADF Faces components always
appear in response to explicit user action. ADF Faces also ensures
that focus is properly moved to the popup window on launch and
restored on dismiss. However, for popup windows which are
launched manually through af:clientListener or
af:showPopupBehavior, you must ensure that the pop-up
window is launched in response to explicit user action.

How to Use Styles
ADF Faces components are already styled and you may not need to make any
changes. When using cascading style sheets (CSS) to directly modify the default
appearance of ADF Faces components, you must follow the guidelines as described in
Table 37-7.

Table 37-7 Style Guidelines for Accessibility

Guideline Action

Keep CSS use to a
minimum

You are not required to specify CSS directly to the ADF
components, as they are already styled.

Do not override default
component appearance

Be aware of accessibility implications when you override default
component appearance. Using CSS to change the appearance of
components can have accessibility implications. For example,
changing colors may result in color contrast issues.

Use scalable size units When specifying sizes using CSS, use size units that scale relative
to the font size rather than absolute units. For example, use em, ex
or % units rather than px. This is particularly important when
specifying heights using CSS, because low-vision users may scale
up the font size, causing contents restricted to fixed or absolute
heights to be clipped.

Do not use CSS
positioning

Use CSS positioning only in the case of positioning the stretched
layout component. Do not use CSS positioning elsewhere.

Use style sheets to
change the layout and
presentation of the screen

No action required. ADF Faces uses structural elements with style
sheets to implement layout.

Create a style of
presentation that is
consistent across pages

No action required. ADF Faces provides a consistent style of
presentation via its skinning architecture.

Do not use colors or font
styles to convey
information or indicate an
action

Ensure that colors, or font styles, are not used as the only visual
means of conveying information, indicating an action, prompting a
response, or distinguishing a visual element.

Chapter 37
Creating Accessible Pages

37-16

How to Use Page Structures and Navigation
When using page structures and navigation tools, you must follow the guidelines as
described in Table 37-8.

Table 37-8 Style Guidelines for Page Structures and Navigation

Guideline Action

Use af:panelSplitter
for layouts

When implementing geometry-managed layouts, using
af:panelSplitter allows users to:

• Redistribute space to meet their needs
• Hide or collapse content that is not of immediate interest.

If you are planning to use af:panelStretchLayout, you
should consider using af:panelStretchLayout instead
when appropriate.

These page structure qualities are useful to all users, and are
particularly helpful for low-vision users and screen-reader
users

As an example, a chrome navigation bar at the top of the page
should be placed within the first facet of a vertical
af:panelSplitter component, rather than within the top
facet of af:panelStretchLayout component. This allows
the user to decrease the amount of space used by the bar, or
to hide it altogether. Similarly, in layouts that contain left,
center, or right panes, use horizontal splitters to lay out the
panes.

Enable scrolling of flow
layout contents

When nesting flow layout contents (for example layout controls
inside of geometry-managed parent components such as
af:panelSplitter or af:panelStretchLayout), wrap
af:panelGroupLayout with layout="scroll" around the flow
layout contents. This provides scrollbars in the event that the font
size is scaled up such that the content no longer fits. Failure to do
this can result in content being clipped or truncated.

Use header based
components to identify
page structure

HTML header elements play an important role in screen readability.
Screen readers typically allow users to gain an understanding of
the overall structure of the page by examining or navigating across
HTML headers. Identify major portions of the page through
components that render HTML header contents including:

• af:panelHeader
• af:showDetailHeader
• af:showDetailItem in af:panelAccordion (each

accordion in a pane renders an HTML header for the title area)

Use af:breadCrumbs to
identify page location

Accessibility standards require that users be able to determine their
location within a web site or application. The use of
af:breadCrumbs achieves this purpose.

Use af:skipLinkTarget to
provide a skip link target

The af:skipLinkTarget tag provides a way to automatically
generate a skip link at the beginning of the page. This is helpful for
both screen reader and keyboard users, who benefit from the
ability to skip over page-level chrome that is repeated on all
pages.The af:skipLinkTarget tag should be specified once per
page template.

Chapter 37
Creating Accessible Pages

37-17

Table 37-8 (Cont.) Style Guidelines for Page Structures and Navigation

Guideline Action

Maintain consistency for
navigational mechanisms
that are repeated on
multiple pages

Ensure navigation consistency by using the ADF Faces navigation
components.

Provide a method for
skipping repetitive content

If repetitive content (including navigation links) is provided at the
top of a page, ensure that the af:skipLinkTarget is used to skip
over the repetitive content.

How to Use Images and Tables
When using images, you must follow the guidelines as described in Table 37-9.

Table 37-9 Style Guidelines for Images

Guideline Action

Specify description in alt
attribute of non-decorative
images

Run the audit report. The Verify that the component has a
short description audit rule warns about missing
shortDesc attributes. Ensure that shortDesc value is meaningful.

Ensure that decorative
images, such as spacer
images, specify an
alt="" attribute

Run the audit report. The Verify that the component has a
short description audit rule warns about missing
shortDesc attributes. Ensure that shortDesc value is meaningful.

Specify description in alt
attribute of complex
images, such as charts

Ensure that the longDesc attribute is specified for complex
af:image components.

Provide audio or text
alternative for prerecorded
synchronized media, such
as videos

Ensure that the appropriate audio or text alternatives are provided.

Provide captions for
prerecorded synchronized
media

Ensure that the appropriate captions are provided. Captions are
not required if the synchronized media is an alternative to text and
is clearly labeled.

When using tables, you must follow the guidelines as described in Table 37-10.

Table 37-10 Style Guidelines for Tables

Guideline Action

Always provide row or
column headers in tables

The ADF Faces table based components provide proper HTML
markup for row or column header data.

Run the audit report. The Verify that table columns have
headers audit rule warns when column header data is missing.
Applications which use trh:tableLayout to construct data or
layout tables are responsible for ensuring that such tables adhere
to all Oracle accessibility guidelines.

Chapter 37
Creating Accessible Pages

37-18

Table 37-10 (Cont.) Style Guidelines for Tables

Guideline Action

Provide a description for
each table component
using the summary
attribute or CAPTION
element.

Run the audit report. The Verify that tables has summaries
audit rule warns when data tables are missing the summary
attribute.

Ensure that layout tables
do not use the TH
element.

No action required. ADF Faces ensures that layout components do
not use TH for layout tables.

Ensure that layout tables
specify summary="" and
do not have the CAPTION
element

No action required. ADF Faces ensures that the layout
components generate an empty summary for layout tables.

Provide correct reading
sequence in a layout table

No action required. ADF Faces ensures that the reading sequence
is correct for any layout tables that it generates.

How to Use WAI-ARIA Landmark Regions
The WAI-ARIA standard defines different sections of the page as different landmark
regions. Together with WAI-ARIA roles, they convey information about the high-level
structure of the page and facilitate navigation across landmark areas. This is
particularly useful to users of assistive technologies such as screen readers.

ADF Faces includes landmark attributes for several layout components, as listed in
Table 37-11.

Table 37-11 ADF Faces Components with Landmark Attributes

Component Attribute

decorativeBox topLandmark

centerLandmark

panelGroupLayout landmark

panelSplitter firstLandmark

secondLandmark

panelStretchLayout topLandmark

startLandmark

centerLandmark

endLandmark

bottomLandmark

These attributes can be set to one of the WAI-ARIA landmark roles, including:

• banner

• complimentary

• contentinfo

Chapter 37
Creating Accessible Pages

37-19

• main

• navigation

• search

When any of the landmark-related attributes is set, ADF Faces renders a role attribute
with the value you specified.

Creating Accessible Active Data Components
The ADF Faces accessibility implementation generates standard W3C-defined aria
attributes in the page’s DOM (Document Object Model) of ADS (active data service)
components. These attributes ensure updates to ADS components comply with
accessibility guidelines so that a screen reader may announce meaningful output. You
may customize what the screen reader may announce using pass-through attributes in
the page.

Note:

All ADS components generate aria attributes in the page’s DOM by default
and therefore support the screen reader without requiring a special reader
mode.

ADF has the following implementation of these standard aria attributes for interpreting
change events on dynamically changing ADS components:

• aria-live indicates whether the screen reader should announce scalar value
changes to ADS components. By default, ADF will generate an aria-live
attribute with the value of polite for any ADS component that displays scalar
values.

• aria-atomic is an optional attribute of both scalar and collection-based
components (such as tables) that enables the screen reader to get additional
context around the updated data, such as the label of the ADS component, when
announcing new value changes.

• aria-relevant is an optional attribute of collection-based components (such as
tables) that controls which type of updates to a collection are announced. By
default, additions and updates are announced. With pass-though attributes this
attribute can be changed to announce any combination of additions, updates and
deletions.

Note:

For more details about these ADF-supported aria attributes and their allowed
values, see https://www.w3.org/TR/wai-aria/states_and_properties.

ADF also supports the JSF specification to add custom attributes to the DOM, when
you want to customize the response of the screen reader to ADS component updates.
This capability is called passthrough, and is utilized to pass the aria attributes to the
generated page markup. The ADF implementation of pass-through attributes supports

Chapter 37
Creating Accessible Active Data Components

37-20

passing the attributes with the addition of the following namespaces as defined by
jcp.org in the JSF or JSP page definition:

xmlns:f="http://xmlns.jcp.org/jsf/core" and xmlns:p="http://
xmlns.jcp.org/jsf/passthrough"

For more information about ADF support for pass-though attributes, see What You
May Need to Know About Pass-Through Attributes.

Use Case Description

Two types of ADS components exist with regards to accessibility and screen reader
responses to change events: scalar components and collection-based components.
The accessibility implementation for scalar components, such as activeOutputText,
relies on the screen reader default behavior and is controlled by standard aria pass-
through attributes. Whereas, in the case of collection-based components including
af:table, af:tree, and af:treeTable, ADF relies on the
AdfPage.PAGE.announceToAssistiveTechnology API to craft a string for
announcement and places the string in a separate section of the rendered page. The
collection-based components do not use aria pass-through attributes to achieve the
default response.

Default Screen Reader Responses

ADF supports the following default behavior when responding to change events in
ADS components. Configuration by the user is not necessary to achieve the default
screen reader response.

• For scalar components, such as activeOutputText, announce a new value when
it is convenient so that interruptions of the screen reader are avoided. Only the
changed value is announced (the component label is not included in the
announcement) and the change will only be announced at the end of the current
sentence, or after the user pauses typing. At runtime, ADF adds aria-
live="polite" on the generated DOM of the component.

• For collection-based components, such as tables, announce row update with row
details, announce row insert with row header only, and ignore row deletes. At
runtime, the AdfPage.PAGE.announceToAssistiveTechnology API crafts a string
for the announcement and places it in separate section of the generated page.

Modified Screen Reader Responses

In addition to the default screen reader response to active-data change events, the
user may modify certain responses by configuring pass-through attributes in the page
markup.

The following table describes the response modifications supported on scalar ADS
components.

Chapter 37
Creating Accessible Active Data Components

37-21

Table 37-12 Supported Modifications to Default Screen Reader Response for
Scalar Components With Active Data

Custom Value Change Event
Response

User Configuration

announce label and value
change

User adds aria-atomic="true" on the containing
af:panelGroupLayout of the component. At runtime, ADF
passes through aria-atomic="true" and adds aria-
live="polite" on the generated DOM of the containing the
component.

allow interruptions to announce
value change

User adds aria-live="assertive" on the containing
af:panelGroupLayout of the component. At runtime, ADF
passes through aria-live="assertive" on the generated
DOM of the component.

allow interruptions to announce
label and value change

User adds aria-atomic="true" and aria-
live="assertive" on the containing
af:panelGroupLayout of the component. At runtime, ADF
passes through aria-atomic="true" and aria-
live="assertive" on the generated DOM of the
component

turn off announcements User adds aria-live="off" on the containing
af:panelGroupLayout of the component. ADF passes
through aria-atomic="off" on the DOM of the container.

The following table describes the response modifications supported on collection-
based active-data components.

Table 37-13 Supported Modifications to Default Screen Reader Response for
Collection-Based Components with Active Data

Row-Level Change Event
Response

User Configuration

announce row insertions with
row details (not only the row
header)

User adds data-aria-read-whole-row="true" on the
component. At runtime, ADF passes through data-aria-
read-whole-row="true" on the DOM of the component.

announce row deletions with
row header only

User adds aria-relevant="all" on the component. At
runtime, ADF passes through aria-relevant="all" on the
DOM of the component.

announce row deletions with
row details (not only the row
header)

User adds aria-relevant="all" and data-aria-read-
whole-row="true" on the component. At runtime, ADF
passes through aria-relevant="all" and data-aria-
read-whole-row="true" on the DOM of the component.

revert to default behavior of
screen reader software

User adds aria-live="polite" | "assertive" on the
component. At runtime, ADF passes through aria-
live="xx" on the DOM of the component.

read the entire table on any
updates

User adds aria-live="polite" and aria-
atomic="true" on the component. At runtime, ADF passes
through aria-live="polite" and aria-atomic="true"
on the DOM of the component.

Chapter 37
Creating Accessible Active Data Components

37-22

Table 37-13 (Cont.) Supported Modifications to Default Screen Reader
Response for Collection-Based Components with Active Data

Row-Level Change Event
Response

User Configuration

turn off announcements User adds aria-live="off" on the component. At runtime,
ADF passes through aria-live="off" on the DOM of the
component.

How to Customize the Screen Reader Response for Scalar Active
Data Components

By default, screen readers will announce a new value upon active data components
updates. You can customize the default screen reader response for active data
updates to achieve a more meaningful announcement of the component label and the
new value.

To alter the default screen reader response for a scalar active data component:

1. In the source view of the page, locate the scalar active data component whose
response you want to customize.

2. In the active data component or it’s containing panel, add the desired aria-prefixed
markup attribute and value.

Tip: When more than one active data scalar component is contained in a panel,
you can add the aria attribute to the containing panel. This will modify the screen
reader response for all active data components based on the same aria attribute.
In the following example, the p:aria-atomic attribute placed on the containing
af:panelGroupLayout modifies the default screen reader response for the
af:outputText component.

Note:

Any aria attribute that you use with scalar active data components must
be designated by the “p:” namespace. For example, the p:aria-
atomic="true" attribute identifies the namespace by the prepended p:.
Additionally, the page must include these namespaces that enable the
use of pass-through attributes: xmlns:f="http://xmlns.jcp.org/jsf/
core" and xmlns:p="http://xmlns.jcp.org/jsf/passthrough". For
more information, see What You May Need to Know About Pass-
Through Attributes.

<f:view xmlns:f="http://xmlns.jcp.org/jsf/core" xmlns:h="http://java.sun.com/jsf/
html" xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
 <af:document title="simple active text 2">
 <af:messages/>
 <af:form>
 <af:outputText value="Aria atomic set on the info to read label and
value"
 inlineStyle="font:normal bolder 14pt Arial"/>

Chapter 37
Creating Accessible Active Data Components

37-23

 <af:spacer height="20"/>
 <af:panelGroupLayout id="plm1" p:aria-atomic="true">
 <af:outputText value="Active Output Text: "/>
 <af:activeOutputText id="text"
value="#{bindings.beanData.collectionModel.firstRow.name}"/>
 </af:panelGroupLayout>
 <af:spacer height="20"/>
 </af:form>
 </af:document>
</f:view>

When you use p:aria-atomic="true", the screen reader will announce the label
together with the new value on the active data component without interrupting the
user’s current task. Other customizations that you can specify allow the
announcements to interrupt the current task so the user will be immediately notified of
a change:

• p:aria-live="assertive" to allow interruptions to announce only value changes.

• p:aria-atomic="true" and p:aria-live="assertive" to allow interruptions to
announce label and value change together

When you want to turn off announcements for specific active data components, add
p:aria-live="off" to the component or components’ containing panel.

How to Customize the Screen Reader Response for Collection-Based
Active Data Components

Collection-based active data components including af:table, af:tree, and
af:treeTable provide default accessibility behavior to ensure that a screen reader will
announce a row/node update, row/node insertion, and row/node deletion. You can
customize the default screen reader response for collection-based active data updates
to achieve a more meaningful announcement of the update in the context of the
collection.

Before you begin:

It may be helpful to have an understanding of the accessibility use cases for collection-
based components. For more information, see Creating Accessible Active Data
Components.

It may be helpful to have an understanding of the default screen response to active
data updates for collection-based components. For more information, see Creating
Accessible Active Data Components.

You must ensure that your collection-based component adheres to the guidelines
described in ADF Faces Component Accessibility Guidelines. For example, a table,
tree, or treeTable component must have a short description defined by the summary
property and a table component must have a row header that resolves to readable
text.

To alter the default screen reader response for a collection-based active data
component:

1. In the source view of the page, locate the collection-based active data component
whose response you want to customize.

2. In the active data component, add the desired aria-prefixed markup attribute and
value.

Chapter 37
Creating Accessible Active Data Components

37-24

Collection-based components rely on a variety of aria attributes placed on the
component itself to modify the default screen reader response to active data
updates.

Note:

Any aria attribute that you use with collection-based active data
components must be designated by the “p:” namespace. For example,
the p:aria-relevant="all" attribute identifies the namespace by the
prepended p:. Additionally, the page must include these namespaces
that enable the use of pass-through attributes: xmlns:f="http://
xmlns.jcp.org/jsf/core" and xmlns:p="http://xmlns.jcp.org/jsf/
passthrough". For more information, see What You May Need to Know
About Pass-Through Attributes.

The following table shows the attributes that you add to the af:table component
to achieve the desired customization. In this example, the table identifies updates
to employee address records, where the table is named address and the allowed
customization are described for a row identifying employee Mark.

Table 37-14 Allowed Accessibility Customizations for Table Components
with Active Data

Customize
Response

User Configuration Announcement
Format

Announcement
Example

announce
row
insertions
with row
details (not
only the row
header)

p:data-aria-read-
whole-row="true"

Row inserted in {table's
name} {textual row
content}

Row inserted in address
table Mark Birch Lane
95050 Redwood Shores

announce
row
deletions
with row
header only

p:aria-
relevant="all"

Row deleted from
{table's name}
{rowheader}

Row deleted from
address table Mark

announce
row
deletions
with row
details (not
only the row
header)

p:aria-
relevant="all" and
p:data-aria-read-
whole-row="true"

Row deleted from
{table's name} {textual
row content}

Row deleted from
address table Mark
Birch Lane 95050
Mountain View

read the
entire table
upon any
updates

p:aria-
live="polite" and
p:aria-
atomic="true"

Reads the entire table Not provided

The following table shows the attributes that you add to the af:treeTable
component to achieve the desired customization. In this example, the table refers
to employee address records, where the tree table is named address and the

Chapter 37
Creating Accessible Active Data Components

37-25

allowed customization are described for a non-root node identifying employee
Mark, which is a child in the tree table of parent node Twain.

Table 37-15 Allowed Accessibility Customizations for Tree Table
Components with Active Data

Customize
Response

User Configuration Announcement
Format

Announcement
Example

announce
row
insertions
made on
the tree
table root
node with
row details
(not only
the row
header)

p:data-aria-read-
whole-row="true"

Row inserted in {tree
table’s name} {textual
row content}

Row inserted in address
tree table Mark Birch
Lane 95050 Redwood
Shores

announce
row
deletions
made on
the tree
table non-
root node
with rows
node stamp

p:aria-
relevant="all"

Row deleted from {tree
table's name} parent
node {immediate parent
row's node text} {row's
node stamp text}

Row deleted from
address tree table,
parent node Twain,
Mark

announce
row
deletions
made on
tree table
non-root
node with
row context

p:aria-
relevant="all" and
data-aria-read-
whole-row="true"

Row deleted from {tree
table's name} parent
node {immediate parent
row's node text} {textual
row content}

Row deleted from
address tree table,
parent node Twain,
Mark Birch Lane 95050
Mountain View

read the
entire tree
table upon
any
updates

p:aria-
live="polite" and
p:aria-
atomic="true"

Reads the entire tree
table

Not provided

The following table shows the attributes that you add to the af:tree component to
achieve the desired customization. In this example, the table refers to employee
address records, where the tree is named address and the allowed customizations
are described for a node identifying employee Mark, which is a child in the tree of
parent node Twain.

Chapter 37
Creating Accessible Active Data Components

37-26

Table 37-16 Allowed Accessibility Customizations for Tree Components
with Active Data

Customize
Response

User Configuration Announcement
Format

Announcement
Example

announce
row
deletions
made on
the tree root
node

p:aria-
relevant="all"

Node deleted from
{tree's name} {node text}

Node deleted from
address tree, Mark

announce
row
deletions
made on
tree non-
root node

p:aria-
relevant="all"

Node deleted from
{tree's name} parent
node {immediate
parent's node text}
{node text}

Node deleted from
address tree, parent
node Twain, Mark

read the
entire tree
upon any
updates

p:aria-
live="polite" and
p:aria-
atomic="true"

Reads the entire tree
table

Not provided

Alternatively, when you can prefer to disable the announcements supported by the
ADF AdfPage.PAGE.announceToAssistiveTechnology API for collection-based active
data components, you have two options:

• Turn off ADF-supported announcements, but allow announcements supported by
the default behavior of the screen reader and browser, then set aria-
live="polite" | "assertive" on the collection-based component.

• Turn off announcements entirely, then set aria-live="off" on the collection-
based component.

What You May Need to Know About Pass-Through Attributes
The ADF implementation of pass-through attributes supports passing the attributes
through to both JSF and JSP markup. JSF web pages that you create with ADF
components also support all JSF specification formats for implementing pass-through
attributes. However, in the case of JSP pages, your page must use the ADF tag
af:passThroughAttribute to add the custom attributes on the runtime generated
DOM (Document Object Model) for the page.

As a prerequisite, JSF and JSP page definitions must specify the following
namespaces as defined by jcp.org:

• xmlns:f="http://xmlns.jcp.org/jsf/core"

• xmlns:p="http://xmlns.jcp.org/jsf/passthrough"

For example:

<f:view xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">

Chapter 37
Creating Accessible Active Data Components

37-27

Note:

Please note that the xmlns:f="http://xmlns.jcp.org/jsf/core"
namespace is the replacement for xmlns:f="http://java.sun.com/jsf/
core". Pass through only works with the new version.

You may work with pass-through attributes in various ways:

• Using the p:name="value" tag

• Using the f:passThroughAttribute name="xx" value="yy" tag

• Using the f:passThroughAttributes
value="#{binding.mapofpassthoughattributes}" with an EL-bound pass-
through value, where the value must evaluate to a Map<String, Object> having
all the pass-through name- value combinations you want to add to the runtime
generated markup.

The following JSF snippet shows examples of all three ways to use pass-through
attributes in a page.

<f:view xmlns:f="http://xmlns.jcp.org/jsf/core" xmlns:h="http://java.sun.com/jsf/
html" xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <h:head>
 <title>untitled1</title>
 </h:head>
 <h:body>
 <h:form>
 <af:inputText columns="150" id="t1" value="this is a simple one with a
passthrough"
 p:type="email">
 </af:inputText>
 <af:spacer></af:spacer>
 <af:inputText columns="150" id="t2" value="this one uses
f:passThroughAttribute">
 <f:passThroughAttribute name="type" value="email"/>
 </af:inputText>
 <af:spacer></af:spacer>
 <af:inputText columns="150" id="t5" value="uses an
f:passThroughAttributes map">
 <f:passThroughAttributes value="#{SampleBean.passthroughs}"/>
 </af:inputText>
 <af:spacer></af:spacer>
 </h:form>
 </h:body>
 </html>
</f:view>

The following runtime generated DOM shows the pass-through result for each of the
above usages, where the type attribute of the table element is email. Only the table
element is stamped for the pass-through attribute because it is the outermost element
and none of the inner elements have the pass-through attribute.

Chapter 37
Creating Accessible Active Data Components

37-28

Note:

At runtime, pass-through attributes are stamped on the outermost markup
element of the component with the pass-through attribute definition.

<table cellspacing="0" cellpadding="0" border="0" role="presentation" summary=""
id="j_idt5:t1" class="af_inputText"
 type="email">
 <tbody>
 <tr>
 <td class="af_inputText_label"></td>
 <td valign="top" nowrap="" class="AFContentCell">
 <input type="text" value="this is a simple one with a passthrough"
size="150" class="af_inputText_content"
 style="width:auto" name="j_idt5:t1" id="j_idt5:t1::content">
 </td>
 </tr>
 </tbody>
</table>

<table cellspacing="0" cellpadding="0" border="0" role="presentation" summary=""
id="j_idt5:t2" class="af_inputText"
 type="email">
 <tbody>
 <tr>
 <td class="af_inputText_label"></td>
 <td valign="top" nowrap="" class="AFContentCell">
 <input type="text" value="this one uses f:passThroughAttribute"
size="150" class="af_inputText_content"
 style="width:auto" name="j_idt5:t2" id="j_idt5:t2::content">
 </td>
 </tr>
 </tbody>
</table>

<table cellspacing="0" cellpadding="0" border="0" role="presentation" summary=""
id="j_idt5:t5" class="af_inputText"
 type="email" genre="personal">
 <tbody>
 <tr>
 <td class="af_inputText_label"></td>
 <td valign="top" nowrap="" class="AFContentCell">
 <input type="text" value="uses an f:passThroughAttributes map"
size="150" class="af_inputText_content"
 style="width:auto" name="j_idt5:t5" id="j_idt5:t5::content">
 </td>
 </tr>
 </tbody>
</table>

When you use the ADF tag in either the JSF or JSP page, observe the following
conditions and limitations:

1. af:passThroughAttribute value can be expression language (EL) bound where
the name property is a string.

2. af:passThroughAttribute can be used to overwrite any rendered default value.

Chapter 37
Creating Accessible Active Data Components

37-29

3. af:passThroughAttribute is stamped only on the root element (outermost) of the
component. None of the nested inner elements should have them.

4. af:passThroughAttribute with name property defined as elementName is treated
specially. If an af:passThroughAttribute is set with elementName, then the
element's name itself changes to its value. For example:

<af:passThroughAttribute name="elementName" value="test" ...>

will render the root element of the component in the generated page markup as:

<test>..........</test>

Running Accessibility Audit Rules
JDeveloper supports generating accessibility compliance reports for ADF applications
by allowing you to run accessibility-specific audit rules on the application.

JDeveloper provides ADF Faces accessibility audit rules to investigate and report
compliance with many of the common requirements described in ADF Faces
Component Accessibility Guidelines.

How to Create an Audit Profile
You can create an audit profile from the Preferences dialog.

Before you begin:

It may be helpful to have an understanding of accessibility audit rules. For more
information, see Running Accessibility Audit Rules. You may also find it helpful to
understand functionality that can be added using other ADF Faces features. For more
information, see Additional Information for Accessibility Support in ADF Pages.

To create an audit profile:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, choose Audit > Profiles.

3. In the Audit: Profiles dialog, clear all checkboxes, and then select the Application
Development Framework > ADF Faces > Accessibility checkbox.

4. Click Save As and save the profile with a unique name.

Figure 37-1 illustrates the settings of the Audit: Profiles dialog to create an
accessibility audit profile.

Chapter 37
Running Accessibility Audit Rules

37-30

Figure 37-1 Audit Profile Settings for ADF Faces Accessibility

5. Click OK.

How to Run Audit Report
Running an audit report requires creating and running an audit profile.

Before you begin:

It may be helpful to have an understanding of accessibility audit rules. For more
information, see Running Accessibility Audit Rules. You may also find it helpful to
understand functionality that can be added using other ADF Faces features. For more
information, see Additional Information for Accessibility Support in ADF Pages.

To run the audit report:

1. From the main menu, choose Build > Audit target.

2. In the Audit dialog, from the Profile dropdown menu, choose the ADF Faces
accessibility audit profile you created.

Figure 37-2 Audit Dialog To Run an Audit Report

3. Click Run to generate the report.

Chapter 37
Running Accessibility Audit Rules

37-31

The audit report results are displayed in the Log window. After the report generation is
complete, you can export the report to an HTML file by clicking the Export icon in the
Log window toolbar.

Chapter 37
Running Accessibility Audit Rules

37-32

38
Allowing User Customization on JSF
Pages

This chapter describes how changes to certain UI components that the user makes at
runtime can persist for the duration of the session.
Alternatively, you can configure your application so that changes persist in a
permanent data repository. Doing so means that the changes remain whenever the
user reenters the application. To allow this permanent persistence, you need to use
the Oracle Metadata Service (MDS), which is part of the full Fusion technology stack.
Using MDS and the full Fusion stack also provides the following additional persistence
functionality:

• Persisting additional attribute values

• Persisting search criteria

• Persisting the results of drag and drop gestures in the UI

• Reordering components on a page at runtime

• Adding and removing components and facets from the page at runtime

For information and procedures for using Oracle MDS, see the "Allowing User
Customizations at Runtime" chapter of Developing Fusion Web Applications with
Oracle Application Development Framework.

This chapter includes the following sections:

• About User Customization

• Implementing Session Change Persistence

About User Customization
Users of ADF applications can make personalization changes to the ADF Faces
components that, depending on the application configuration, may or may not persist
for the duration of the user session. However, implicit personalization is supported by
ADF Faces for a wide variety of UI aspects.

Many ADF Faces components allow users to change the display of the component at
runtime. For example, a user can change the location of the splitter in the
panelSplitter component or change whether or not a panel displays detail contents.
By default, these changes live only as long as the page request. If the user leaves the
page and then returns, the component displays in the manner it is configured by
default. However, you can configure your application so that the changes persist
through the length of the user's session. This way the changes will stay in place until
the user leaves the application.

Table 38-1 shows the changes by component that provide default personalization
capabilities:

38-1

Table 38-1 Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

panelBox

showDetail

showDetailHeader

showDetailItem

disclosed Display or hide content Users can display or hide
content using an icon in
the header. Detail
content will either display
or be hidden, based on
the last action of the
user.

showDetailItem
(used in a
panelAccordion
component)

flex Height of multiple
components

The heights of multiple
showDetailItem
components are
determined by their
relative value of the flex
attribute. The
showDetailItem
components with larger
flex values will be taller
than those with smaller
values. Users can
change these
proportions, and the new
values will be persisted.

showDetailItem
(used in a
panelAccordion
component)

inflexibleHeig
ht

Size of a panel Users can change the
size of a panel, and that
size will remain.

panelSplitter collapsed Collapse splitter sides Users can collapse either
side of the splitter. The
collapsed state will
remain as last configured
by the user.

panelSplitter splitterPositi
on

Splitter position The position of the
splitter in the panel will
remain where last moved
by user.

richTextEditor editMode Selected edit mode The editor will display
using the mode (either
WYSIWYG or source)
last selected by the user.

calendar activeDay Active day The day considered
active in the current
display will remain the
active day.

calendar view Display activities view The view (day, week,
month, or list) that
currently displays
activities will be retained.

panelWindow

dialog

contentHeight Height of a panel window
or a dialog

Users can change the
height of a panelWindow
or dialog popup
component, and that
height will remain.

Chapter 38
About User Customization

38-2

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

panelWindow

dialog

contentWidth Width of a panel window
or a dialog

Users can change the
width of a panelWindow
or dialog popup
component, and that
width will remain.

button

link

windowHeight Inline dialog height When an inline popup
dialog is launched using
the ADF Faces dialog
framework or an ADF
taskflow, if the user
manually resizes the
dialog, any associated
windowHeight value on
the command component
that launched the dialog
is also changed and will
remain. This feature only
applies to inline dialogs
and not browser window
dialogs.

button

link

windowWidth Inline dialog width When an inline popup
dialog is launched using
the ADF Faces dialog
framework or an ADF
taskflow, if the user
manually resizes the
dialog, any associated
windowWidth value on
the command component
that launched the dialog
is also changed and will
remain. This feature only
applies to inline dialogs
and not browser window
dialogs.

column displayIndex Column reordering ADF Faces columns can
be reordered by the user
at runtime. The
displayIndex attribute
determines the order of
the columns. (By default,
the value is set to -1 for
each column, which
means the columns will
display in the same order
as the data source).
When a user moves a
column, the value on
each column is changed
to reflect the new order.
These new values will be
persisted.

Chapter 38
About User Customization

38-3

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

column frozen Column scrollability ADF Faces columns can
be frozen so that they will
not scroll. When a
column's frozen
attribute is set to true,
all columns before that
column (based on the
displayIndex value)
will not scroll. When you
use the table with a
panelCollection
component, you can
configure the table so
that a button appears
that allows the user to
freeze a column. For
more information, see
How to Display a Table
on a Page.

column noWrap Column text set to wrap
or not

The content of the
column will either wrap or
not. You need to create
code that allows the user
to change this attribute
value. For example, you
might create a context
menu that allows a user
to toggle the value from
true to false.

column selected Selected column The selected column is
based on the column last
selected by the user.

column visible Column set to be visible
or not

The column will either be
visible or not, based on
the last action of the
user. You will need to
write code that allows the
user to change this
attribute value. For
example, you might
create a context menu
that allows a user to
toggle the value from
true to false.

column width Column width The width of the column
will remain the same size
as the user last set it.

Chapter 38
About User Customization

38-4

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

table filterVisible Display or hide filter ADF Faces tables can
contain a component that
allows users to filter the
table rows by an attribute
value. For a table that is
configured to use a filter,
the filter will either be
visible or not, based on
the last action of the
user. You will need to
write code that allows the
user to change this
attribute value. For
example, you might
create a button that
allows a user to toggle
the value from true to
false.

dvt:areaGraph

dvt:barGraph

dvt:bubbleGraph

dvt:comboGraph

dvt:horizontal
BarGraph

dvt:lineGraph

dvt:scatterGraph

timeRangeMode Mode of time range to
display data on graph
time axis

The time range for the
data displayed on a
graph time axis can be
specified for all data
visualization graph
components. By default,
all data is displayed. The
time range can also be
set for a relative time
range from the last or first
data point, or an explicit
time range. You will need
to write code that allows
the user to change this
attribute value. For
example, you might
create a dropdown list to
choose the time range for
a graph.

dvt:ganttLegend visible Display or hide legend for
Gantt chart

The legend for data
visualization project,
resource utilization, and
scheduling Gantt chart
components will either be
visible or not inside the
information panel. You
will need to write code
that allows the user to
change this attribute
value, for example, a
hide and show button to
display the legend.

Chapter 38
About User Customization

38-5

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

dvt:hierarchyVie
wer

layout Hierarchy viewer layout
options

The data visualization
hierarchy viewer
component supports nine
hierarchy layout options
including a top-to-bottom
vertical, tree, circle,
radial, and so on. Users
can change the layout in
the map control panel
and the last selected
layout will be retained.

dvt:map mapZoom Map zoom level This data visualization
geographic map
component attribute
specifies the beginning
zoom level of the map.
The zoom levels are
defined in the map cache
instance as part of the
base map. You will need
to write code that allows
the user to change this
attribute value.

dvt:map srid Map spatial reference id This data visualization
geographic map
component attribute
specifies the srid (spatial
reference id) of all the
coordinates of the map,
which includes the center
of the map, defined by
starting X and starting Y,
and all the points in the
point theme. You will
need to write code that
allows the user to change
this attribute value.

dvt:map startingX,
startingY

Map X and Y coordinates This data visualization
geographic map
component attribute
specifies the X and Y
coordinate of the center
of the map. The srid for
the coordinate is
specified in the srid
attribute. If the srid
attribute is not specified,
this attribute assumes
that its value is the
longitude of the center of
the map. You will need to
write code that allows the
user to change this
attribute value.

Chapter 38
About User Customization

38-6

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

dvt:projectGantt

dvt:resource
UtilizationGantt

dvt:schedulingGa
ntt

splitterPositi
on

Gantt chart splitter
position

The position of the
splitter in the panel will
remain where last moved
by user.

dvt:timeAxis scale Gantt chart time axes Data visualization
components for project,
resource utilization, and
scheduling Gantt charts
use this facet to specify
the major and minor time
axes in the Gantt chart.
The time scale
(twoyears, year,
halfyears, quarters,
twomonths, months,
weeks, twoweeks, days,
sixhours, threehours,
hours, halfhours,
quarterhours) can be
set by the user using the
menu bar View menu
and the selection will be
retained. Note that a
custom time scale can
also be named for this
component value.

dvt:timeSelector explicitStart,
explicitEnd

Graph start and end
dates

Data visualization area,
bar, combo, line, scatter,
and bubble graph
components use this
child tag attribute to
specify the explicit start
and end dates for the
time selector. Only value-
binding is supported for
this attribute. You will
need to write code that
allows the user to change
this attribute value.

Chapter 38
About User Customization

38-7

Table 38-1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute UI Aspect Affect at Runtime

dvt:treeMap layout Treemap hierarchy layout
options

The data visualization
treemap component
supports three hierarchy
layout options including
squarified (nodes laid out
as square as possible)
and slice and dice
horizontal or vertical
(nodes are laid out
horizontally or vertically
first across the width of
the treemap and then
vertically or horizontally
across the height of the
treemap). You will need
to write code that allows
the user to change the
layout.

User Customization Use Cases and Examples
You can configure an application so that the value of the attributes listed in Table 38-1
can be persisted through the length of the user's session. For example, say your
application contains a table, and a user adjusts the width of a column so that the
contents all display on one line. If you configure your application to use session
change persistence, when the user leaves and then returns to that page, the column
will still be expanded to the previously set width.

Note:

For additional functionality, you can configure your application so that
changes persist in a permanent data repository, meaning they will persist for
that user across multiple sessions. To allow this permanent persistence, you
need to use the full Fusion technology stack. For more information, see the
"Allowing User Customizations at Runtime" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Implementing Session Change Persistence
Persistence of user interface customizations made by users of ADF applications is
controlled by a web.xml configuration setting. When the setting is enabled, ADF Faces
persists user interface changes for the duration of the user's session.

In order for the application to persist user changes to the session, you must configure
your project to enable customizations.

Chapter 38
Implementing Session Change Persistence

38-8

How to Implement Session Change Persistence
You configure your application to enable customizations in the web.xml file.

To implement session change persistence:

1. In the Applications window, double-click the web project.

2. In the Project Properties dialog, select the ADF View node.

3. On the ADF View page, activate the Enable User Customizations checkbox,
select the For Duration of Session radio button, and click OK.

What Happens When You Configure Your Application to Use Change
Persistence

When you elect to save changes to the session, JDeveloper adds the
CHANGE_PERSISTENCE context parameter to the web.xml file, and sets the value to
session. This context parameter registers the ChangeManager class that will be used to
handle persistence. The following example shows the context parameter in the
web.xml file.

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>session</param-value>
</context-param>

What Happens at Runtime: How Changes are Persisted
When an application is configured to persist changes to the session, any changes are
recorded in a session variable in a data structure that is indexed according to the view
ID. Before the RENDER_RESPONSE JSF phase begins, the tag action classes look
up all changes for a given component and apply the changes in the same order as
they were added. This means that the changes registered through the session will be
applied only during subsequent requests in the same session.

What You May Need to Know About Using Change Persistence on
Templates and Regions

When you use session persistence, changes are recorded and restored on
components against the viewId for the given session. As a result, when the change is
applied on a component that belongs to a fragment or page template, it is applicable
only in scope of the page that uses the fragment or template. It does not span all
pages that consume the fragment or template.For example, say your project has the
pageOne.jsf and pageTwo.jsf JSF pages, and they both contain the fragment defined
in the region.jsff page fragment, which in turn contains a showDetail component.
When the pageOne.jsf JSF page is rendered and the disclosed attribute on the
showDetail component changes, the implicit attribute change is recorded and will be
applied only for the pageOne.jsf page. If the user navigates to the pageTwo.jsf page,
no attribute change is applied.

Chapter 38
Implementing Session Change Persistence

38-9

39
Adding Drag and Drop Functionality

This chapter describes how to add drag and drop functionality to your pages, which
allows users to drag the values of attributes or objects from one component to another,
or allows users to drag and drop components. It describes how to add drag and drop
functionality for attributes, objects, collections, components, calendars, and supported
DVT components. It also describes how to drag and drop functionality into and out of a
panelDashboard component.
This chapter includes the following sections:

• About Drag and Drop Functionality

• Adding Drag and Drop Functionality for Attributes

• Adding Drag and Drop Functionality for Objects

• Adding Drag and Drop Functionality for Collections

• Adding Drag and Drop Functionality for Components

• Adding Drag and Drop Functionality Into and Out of a panelDashboard
Component

• Adding Drag and Drop Functionality to a Calendar

• Adding Drag and Drop Functionality for DVT Components

About Drag and Drop Functionality
Drag and drop functionality that you implement for ADF Faces components supports
the end-user experience of interactively dragging a UI element, such as an attribute
value or a UI component, and dropping it onto a supported target destination in the
user interface of the displayed web page. Users of ADF applications can use ADF
Faces drag and drop functionality that has been configured to work with attributes,
objects, collections, components, calendars, and various DVT components.

The ADF Faces framework provides the ability to drag and drop items from one place
to another on a page. In most cases, drag and drop can easily be implemented by
adding the appropriate tags to the source and target and implementing code in a
managed bean. Drag and drop provides users with the GUI experience that is
expected in web applications. For example, in the File Explorer application, you can
drag a file from the Table tab and drop it into another directory folder, as shown in
Figure 39-1.

39-1

Figure 39-1 Drag and Drop in the File Explorer Application

In this scenario, you are actually dragging an object from one collection (Folder0) and
dropping it into another collection (Folder2). This is one of the many supported drag
and drop scenarios. ADF Faces supports the following scenarios:

• Dragging an attribute value from one component instance and copying it to
another. For example, a user might be able to drag an outputText component
onto an inputText component, which would result in the value attribute of the
outputText component becoming the value attribute on the inputText
component.

• Dragging the value of one object and dropping it so that it becomes the value of
another object. For example, a user might be able to drag an outputText
component onto another outputText component, which would result in an array of
String objects populating the text attribute of the second outputText component.

• Dragging an object from one collection and dropping it into another, as shown in
Figure 39-1.

• Dragging a component from one place on a page to another. For example, a user
might be able to drag an existing panelBox component to a new place within a
panelGrid component.

• Dragging an activity in a calendar from one start time or date to another.

• Dragging a component into or out of a panelDashboard component.

• Dropping an object from another component into a DVT Pareto or stock graph.

• Dragging an object from a DVT Gantt chart to another component.

• Dragging a node from or dropping an object to DVT treemap and sunburst
components.

• Dragging and dropping one or more nodes within DVT hierarchy viewers, dragging
one or more nodes from a hierarchy viewer to another component, or dragging
from one or more components to a hierarchy viewer.

• Dragging and dropping an event from a DVT timeline to a collection component
such as a table, or dragging and dropping a row from a table of time-based events
into a timeline.

Chapter 39
About Drag and Drop Functionality

39-2

When users click on a source and begin to drag, the browser displays the element
being dragged as a ghost element attached to the mouse pointer. Once the ghost
element hovers over a valid target, the target component shows some feedback (for
example, it becomes highlighted and the cursor changes to indicate the target is valid).
If the user drags the ghost element over an invalid target, the cursor changes to
indicate that the target is not valid.

When dragging attribute values, the user can only copy the value to the target. For all
other drag and drop scenarios, on the drop, the element can be copied (copy and
paste), moved (cut and paste), or linked (creating a shortcut for a file in a directory in
which the link is a reference to the real file object).

The component that will be dragged and that contains the value is called the source.
The component that will accept the drop is called the target. You use a specific tag as
a child to the source and target components that tells the framework to allow the drop.
Table 39-1 shows the different drag and drop scenarios, the valid source(s) and
target(s), and the associated tags to be used for that scenario.

Table 39-1 Drag and Drop Scenarios

Scenario Source Target

Dragging an attribute value An attribute value on a
component

An attribute value on
another component, as
long as it is the same object
type

Tag:attributeDragSou
rce

Tag:attributeDropTarge
t

Dragging an object from one
component to another

Any component Any component

Tag:attributeDragSou
rce

Tag:dropTarget

Dragging an item from one collection
and dropping it into another

table, tree, and
treeTable components

table, tree, and
treeTable components

Tag:dragSource Tag:collectionDropTarg
et

Dragging a component from one
container to another

Any component Any component

Tag:componentDragSou
rce

Tag:dropTarget

Dragging a calendar activity from one
start time or date to another

calendarActivity
object

calendar component

Tag: None needed Tag:calendarDropTarget

Dragging a panelBox component into
a panelDashboard component.

panelBox component panelDashboard
component

Tag:
componentDragSource

Tag:dataFlavor

Dragging a panelBox component out
of a panelDashboard component.

panelBox component in a
panelDashboard
component

Any component

Tag:
componentDragSource

Tag:dropTarget

Chapter 39
About Drag and Drop Functionality

39-3

Table 39-1 (Cont.) Drag and Drop Scenarios

Scenario Source Target

Dropping an object from another
component into a Pareto or stock
graph.

Any component paretoGraph or
stockGraph component

Tag:dragSource Tag:dropTarget

Dragging an object from a DVT Gantt
chart and dropping it on another
component

Gantt chart Any component

Tag:dragSource Tag:dropTarget

Dragging a node from a DVT
hierarchy viewer, sunburst, or
treemap and dropping it on another
component

hierarchyViewer,
sunburst, or treemap
component

Any component

Tag:dragSource Tag:dropTarget

Dragging an event from a timeline
and dropping it into a collection
component

timeline components table, tree, and
treeTable components

Tag:dragSource Tag:collectionDropTarg
et

You can restrict the type of the object that can be dropped on a target by adding a
dataFlavor tag. This helps when the target can accept only one object type, but the
source may be one of a number of different types. The dataFlavor tag also allows you
to set multiple types so that the target can accept objects from more than one source
or from a source that may contain more than one type. For the drop to be successful,
both the target and the source must contain the dataFlavor tag, and both the Java
type that the dataFlavor encapsulates along with the discriminant need to be same
between the source and the target.

Note:

Drag and drop functionality is not supported between windows. Any drag that
extends past the window boundaries will be canceled. Drag and drop
functionality is supported between popup windows and the base page for the
popup.

Also note that drag and drop functionality is not accessible; that is, there are
no keyboard strokes that can be used to execute a drag and drop. Therefore,
if your application requires all functionality to be accessible, you must provide
this logic. For example, your page might also present users with a method for
selecting objects and a Move button or menu item that allows them to move
those selected objects.

Additional Functionality for Drag and Drop
You may find it helpful to understand other ADF Faces features before you implement
drag and drop. Following are links to other sections that may be useful for
implementing drag and drop.

Chapter 39
About Drag and Drop Functionality

39-4

• Managed beans: You may be using managed beans for your code. For
information about using managed beans, see Creating and Using Managed
Beans.

• Events: Table and tree components fire both server-side and client-side events
that you can have your application react to by executing some logic. For more
information, see Handling Events.

Adding Drag and Drop Functionality for Attributes
You can enable ADF Faces drag and drop functionality for attribute values of ADF
Faces components. Drag and drop functionality that you implement for ADF Faces
components supports the end-user experience of interactively dragging the attribute
value of one component and dropping it onto a supported target component in the user
interface of the displayed web page.

You add drag and drop functionality for attributes by defining one component's
attribute to be a target and another component's attribute to be a source.

Note:

The target and source attribute values must both be the same data type. For
example, attribute drag and drop is available when both the source and
target are of type String. If they are both of type number, they both use the
same converters.

How to add Drag and Drop Functionality
You can drag and drop your target and source components that are already on the
JSF page.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality for Attributes.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

To add drag and drop functionality for attributes:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag and drop an Attribute Drop Target as a child to the target component
on the page.

2. In the Insert Attribute Drop Target dialog, use the Attribute dropdown to select the
attribute that will be populated by the drag and drop action. This dropdown list
shows all valid attributes on the target component.

3. In the Components window, from the Operations panel, in the Drag and Drop
group, drag and drop an Attribute Drag Source as a child to the component that
can provide a value for the target.

Chapter 39
Adding Drag and Drop Functionality for Attributes

39-5

4. In the Insert Attribute Drag Source dialog, use the Attribute dropdown to select
the attribute whose value will be used to populate the target attribute. This
dropdown list shows all valid attributes on the source component.

Adding Drag and Drop Functionality for Objects
You can enable ADF Faces drag and drop functionality for objects that are not
attribute values displayed by ADF Faces components. Drag and drop functionality that
you implement for ADF Faces components supports the end-user experience of
interactively dragging the value of an object and dropping it onto a supported target
object in the user interface of the displayed web page.

When you want users to be able to drag things other than attribute values, or you want
users to be able to do something other than copy attributes from one component to
another, you use the dropTarget tag. Additionally, use the DataFlavor object to
determine the valid Java types of sources for the drop target. Because there may be
several drop targets and drag sources, you can further restrict valid combinations by
using discriminant values. You also must implement any required functionality in
response to the drag and drop action.

For example, suppose you have an outputText component with an array of Strings
and you want the user to be able to drag the outputText component to a panelBox
component and have the panelBox display the String array, as shown in Figure 39-2.

Figure 39-2 Dragging and Dropping an Array Object

The outputText component contains an attributeDragSource tag. However, because
you want to drag an array of String values from the outputText component, you
must use the dropTarget tag instead of the attributeDropTarget tag on the target
outputText component. Also use a dataFlavor tag to ensure that only an array
object will be accepted on the target.

You can also define a discriminant value for the dataFlavor tag. This is helpful if you
have two targets and two sources, all with the same object type. By creating a
discriminant value, you can be sure that each target will accept only valid sources. For
example, suppose you have two targets that both accept an EMPLOYEE object,
TargetA and TargetB. Suppose you also have two sources, both of which are
EMPLOYEE objects. By setting a discriminant value on TargetA with a value of alpha,
only the EMPLOYEE source that provides the discriminant value of alpha will be
accepted.

You also must implement a listener for the drop event. The object of the drop event is
called the Transferable, which contains the payload of the drop. Your listener must

Chapter 39
Adding Drag and Drop Functionality for Objects

39-6

access the Transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object. More details about this
listener are covered in the procedure in Adding Drag and Drop Functionality for DVT
Components..

How to Add Drag and Drop Functionality for a Single Object
To add drag and drop functionality, first add tags to a component that define it as a
target for a drag and drop action. Then implement the event handler method that will
handle the logic for the drag and drop action. Last, you define the sources for the drag
and drop.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality for Objects.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

You will need to complete this task:

Create the source and target components on the page.

To add drag and drop functionality:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Drop Target and drop it as a child to the target component on the
page.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method
on a managed bean that will handle the event (you will create this code in Step 5).

For information about using managed beans, see Creating and Using Managed
Beans.

Tip:

You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see What You May
Need to Know About Using the ClientDropListener.

3. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object. This selection will be used to
create a dataFlavor tag, which determines the type of object that can be dropped
onto the target, for example a String or a Date. Multiple dataFlavor tags are
allowed under a single drop target to allow the drop target to accept any of those
types.

Chapter 39
Adding Drag and Drop Functionality for Objects

39-7

Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the
class name, for example, java.lang.Object[].

4. In the Structure window, select the dropTarget tag. In the Properties window,
select a value for the actions attribute. This defines what actions are supported by
the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste),
and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

The following example shows the code for a dropTarget component inserted into
an panelBox component that takes an array object as a drop target. Note that
because an action was not defined, the only allowed action will be COPY.

<af:panelBox text="PanelBox2">
 <f:facet name="toolbar"/>
 <af:dropTarget dropListener="#{myBean.handleDrop}">
 <af:dataFlavor flavorClass="java.lang.Object[]"/>
 </af:dropTarget>
</af:panelBox>

5. In the managed bean referenced in the EL expression created in Step 2, create
the event handler method (using the same name as in the EL expression) that will
handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped. Valid
return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and
were set when you defined the target attribute in Step 4. This method should
check the DropEvent event to determine whether or not it will accept the drop. If
the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE to indicate that the
drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

Tip:

If your target has more than one defined dataFlavor object, then you
can use the Transferable.getSuitableTransferData() method, which
returns a List of TransferData objects available in the Transferable
object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as
created in Step 3.

Chapter 39
Adding Drag and Drop Functionality for Objects

39-8

Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the
class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the Transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this functionality
supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server
DataFlavor object on the client component, the drop target will be
configured to allow all drops to succeed on the client.

The following example shows a method that the event handler method calls (the
event handler itself does nothing but call this method; it is needed because this
method also needs a String parameter that will become the value of the
outputText component in the panelBox component). This method copies an array
object from the event payload and assigns it to the component that initiated the
event.

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 Object[] drinks =
dropTransferable.getData(DataFlavor.OBJECT_ARRAY_FLAVOR);

 if (drinks != null)
 {
 UIComponent dropComponent = dropEvent.getDropComponent();

// Update the specified property of the drop component with the Object[] dropped
 dropComponent.getAttributes().put("value", Arrays.toString(drinks));

 return DnDAction.COPY;
 }
 else
 {
 return DnDAction.NONE;
 }
 }

In this example, the drop component is the panelBox component. Because the
panelBox does not have a value attribute, you would need to call the following
method to set the text attribute of the panelBox.

dropComponent.getAttributes().put("text", Arrays.toString(drinks));

6. In the Components window, from the Operations panel, drag a Client Attribute
and drop it as a child to the source component on the page.

This tag is used to define the payload of the source for the event. Define the
following for the clientAttribute tag in the Properties window:

• Name: Enter any name for the payload.

Chapter 39
Adding Drag and Drop Functionality for Objects

39-9

• Value: Enter an EL expression that evaluates to the value of the payload. In
the drinks example, this would resolve to the Array that holds the different
drink values.

7. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Attribute Drag Source and drop it as a child to the source
component on the page.

In the Insert Attribute Drag Source dialog, use the dropdown list to select the name
defined for the clientAttribute tag created in the previous step. Doing so makes
the value of the clientAttribute tag the source's payload. The following example
shows the code for an outputText component that is the source of the drag and
drop operation.

<af:outputText value="Drag to see drinks">
 <af:clientAttribute name="drinks" value="#{myBean.drinks}"/>
 <af:attributeDragSource attribute="drinks"/>
</af:outputText>

What Happens at Runtime: How to Use Keyboard Modifiers
When performing a drag and drop operation, users can press keys on the keyboard
(called keyboard modifiers) to select the action they wish to take on a drag and drop.
The drag and drop framework supports the following keyboard modifiers:

• SHIFT: MOVE

• CTRL: COPY

• CTRL+SHIFT: LINK

When a user executes the drag and drop operation, the drop target first determines
that it can accept the drag source's data flavor value. Next, if the source and target are
collections, the framework intersects the actions allowed between the drag source and
drop target and executes the action (one of COPY, MOVE, or LINK) in that order from
the intersection. When there is only one valid action, that action is executed. When
there is more than one possible action and the user's keyboard modifier matches that
choice, then that is the one that is executed. If either no keyboard modifier is used, or
the keyboard modifier used does not match an allowed action, then the framework
chooses COPY, MOVE, LINK in that order, from the set of allowed actions.

For example, suppose you have a drop target that supports COPY and MOVE. First
the drop target determines that drag source is a valid data flavor. Next, it determines
which action to perform when the user performs the drop. In this example, the set is
COPY and MOVE. If the user holds down the SHIFT key while dragging (the keyboard
modifier for MOVE), the framework would choose the MOVE action. If the user is
doing anything other than holding down the SHIFT key when dragging, the action will
be COPY because COPY is the default when no modifier key is chosen (it is first in the
order). If the user is pressing the CTRL key, that modifier matches COPY, so COPY
would be performed. If the user was pressing the CTRL+SHIFT keys, the action would
still be COPY because that modifier matches the LINK action which is not in the
intersected set of allowed actions.

Chapter 39
Adding Drag and Drop Functionality for Objects

39-10

Note:

Because information is lost during the roundtrip between Java and
JavaScript, the data in the drop may not be the type that you expect. For
example, all numeric types appear as double objects, char objects appear
as String objects, List and Array objects appear as List objects, and most
other objects appear as Map objects. For more information, see What You
May Need to Know About Marshalling and Unmarshalling Data..

What You May Need to Know About Using the ClientDropListener
The dropTarget tag contains the clientDropListener attribute where you can
reference JavaScript that will handle the drop event on the client. The client handler
should not take any parameters and return an AdfDnDContext action. For example, if
the method returns AdfDnDContext.ACTION_NONE the drop operation will be canceled
and no server call will be made; if the method returns AdfDnDContext.ACTION_COPY, a
copy operation will be allowed and a server call will be made which will execute the
dropListener method if it exists.

For example, suppose you want to log a message when the drop event is invoked.
You might create a client handler to handle logging that message and then returning
the correct action so that the server listener is invoked. The following example shows a
client handler that uses the logger to print a message.

<script>
/**
 * Shows a message.
 */
function showMessage()
{
 AdfLogger.LOGGER.logMessage(AdfLogger.ALL, "clientDropListener handler,
 copying...");
 return AdfDnDContext.ACTION_COPY;
}
</script>

Adding Drag and Drop Functionality for Collections
You can enable ADF Faces drag and drop functionality for collections displayed by
ADF Faces components. Drag and drop functionality that you implement for ADF
Faces components supports the end-user experience of interactively dragging an
object from one collection and dropping it onto a supported target collection in the user
interface of the displayed web page.

You use the collectionDropTarget and dragSource tags to add drag and drop
functionality that allows users to drag an item from one collection (for example, a row
from a table), and drop it into another collection component such, as a tree. For
example, in the File Explorer application, users can drag a file from the table that
displays directory contents to any folder in the directory tree. Figure 39-3 shows the
File0.doc object being dragged from the table displaying the contents of the Folder0
directory to the Folder3 directory. Once the drop is complete, the object will become
part of the collection that makes up Folder3.

Chapter 39
Adding Drag and Drop Functionality for Collections

39-11

Figure 39-3 Drag and Drop Functionality in the File Explorer Application

As with dragging and dropping single objects, you can have a drop on a collection with
a copy, move, or copy and paste as a link (or a combination of the three), and use
dataFlavor tags to limit what a target will accept.

When the target source is a collection and it supports the move operation, you may
also want to also implement a method for the dragDropEndListener attribute, which is
referenced from the source component and is used to clean up the collection after the
drag and drop operation. See What You May Need to Know About the
dragDropEndListener.

How to Add Drag and Drop Functionality for Collections
To add drag and drop functionality for collections, instead of using the dropTarget tag,
you use the collectionDropTarget tag. You then must implement the event handler
method that will handle the logic for the drag and drop action. Next, you define the
source for the drag and drop operation using the dragSource tag.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality for Collections.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

You will also need to create the source and target components on the page.

To add drag and drop functionality:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Collection Drop Target and drop it as a child to the target collection
component on the page.

Chapter 39
Adding Drag and Drop Functionality for Collections

39-12

2. In the Insert Collection Drop Target dialog, enter an expression for the
dropListener attribute that evaluates to a method on a managed bean that will
handle the event (you will create this code in Step 4).

3. In the Properties window, set the following:

• actions: Select the actions that can be performed on the source during the
drag and drop operation.

If no actions are specified, the default is COPY.

• modelName: Define the model for the collection.

The value of the modelName attribute is a String object used to identify the
drag source for compatibility purposes. The value of this attribute must match
the value of the discriminant attribute of the dragSource tag you will use in a
Step 6. In other words, this is an arbitrary name and works when the target
and the source share the same modelName value or discriminant value.

4. In the managed bean inserted into the EL expression in Step 2, implement the
handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction.
This method should use the DropEvent to get the Transferable object and from
there get the RowKeySet (the rows that were selected for the drag). Using the
CollectionModel obtained through the Transferable object, the actual rowData
can be obtained to complete the drop. The method should then check the
DropEvent to determine whether it will accept the drop or not. If the method
accepts the drop, it should perform the drop and return the DnDAction it performed
-- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return
DnDAction.NONE to indicate that the drop was rejected.

The following example shows the event handler method on the
CollectionDnd.java managed bean used in the collectionDropTarget demo
that handles the copy of the row between two tables.

public DnDAction handleDrop(DropEvent dropEvent)
 {
 return _handleDrop(dropEvent, getTargetValues(), "DnDDemoModel");
 }
private DnDAction _handleDrop(DropEvent dropEvent,
 ArrayList<DnDDemoData> targetValues,
 String discriminator)
{
 Transferable transferable = dropEvent.getTransferable();
 // The data in the transferable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, discriminator);
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 // Get the model for the dragged component.
 CollectionModel dragModel = transferable.getData(CollectionModel.class);
 if (dragModel != null)
 {
 // Set the row key for this model using the row key from the transferable.
 Object currKey = rowKeySet.iterator().next();
 dragModel.setRowKey(currKey);

 // And now get the actual data from the dragged model.

Chapter 39
Adding Drag and Drop Functionality for Collections

39-13

 // Note this won't work in a region.
 //Need to change this to use collectionModel data flavor.
 DnDDemoData dnDDemoData = (DnDDemoData)dragModel.getRowData();

 // Put the dragged data into the target model directly.
 // Note that if you wanted validation/business rules on the drop,
 // this would be different.
 // getTargetValues() is the target collection used by the target component
 if (dropEvent.getProposedAction() == DnDAction.LINK)
 dnDDemoData = DnDDemoData.addALink(dnDDemoData);
 targetValues.add(dnDDemoData);
 }
 return dropEvent.getProposedAction();
 }
 else
 {
 return DnDAction.NONE;
 }
}

5. In the Components window, from the Operations panel, in the Drag and Drop
group, drag and drop a Drag Source as a child to the source component.

6. With the dragSource tag selected, in the Properties window set the actions,
discriminant, and any dragDropEndListener as configured for the target. For
instance, the dragSource tag may appear similar to the following:

<af:dragSource actions="MOVE" discriminant="DnDDemoModel
dragDropEndListener="#{collectionDnD.endListener}"/>

What You May Need to Know About the dragDropEndListener
There may be cases when after a drop event, you have to clean up the source
collection. For example, if the drag caused a move, you may have to clean up the
source component so that the moved item is no longer part of the collection.

The dragSource tag contains the dragDropEndListener attribute that allows you to
register a handler that contains logic for after the drag drop operation ends.

For example, if you allow a drag and drop to move an object, you may have to
physically remove the object from the source component once you know the drop
succeeded. The following example shows a handler for a dragDropEndListener
attribute

public void endListener(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();

 // The data in the transferrable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 Integer currKey = (Integer)rowKeySet.iterator().next();

 // Remove the dragged data from the source model directly.
 // getSourceValues() represents a collection object used by the source
 // component
 Object removed = getSourceValues().remove(currKey.intValue());

Chapter 39
Adding Drag and Drop Functionality for Collections

39-14

 }
 // Need to add the drag source table so it gets redrawn.
 // The drag source component needs to be partially refreshed explicitly, while
 // drop target component automatically refreshed and displayed.

AdfFacesContext.getCurrentInstance().addPartialTarget(dropEvent.getDragComponent());

Adding Drag and Drop Functionality for Components
You can enable ADF Faces drag and drop functionality for entire ADF Faces
components. Drag and drop functionality that you implement for ADF Faces
components supports the end-user experience of interactively dragging a component
and dropping it somewhere else in the user interface of the displayed web page.

You can allow components to be moved from one parent to another, or you can allow
child components of a parent component to be reordered. For example, Figure 39-4
shows the darker panelBox component being moved from being the first child
component of the panelGrid component to the last.

Figure 39-4 Drag and Drop Functionality Between Components

Note:

If you want to move components into or out of a panelDashboard
component, then you need to use procedures specific to that component.
See Adding Drag and Drop Functionality Into and Out of a panelDashboard
Component.

Chapter 39
Adding Drag and Drop Functionality for Components

39-15

How to Add Drag and Drop Functionality for Components
Adding drag and drop functionality for components is similar for objects. However,
instead of using the attributeDragSource tag, use the componentDragSource tag. As
with dragging and dropping objects or collections, you also must implement a
dropListener handler.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality for Components.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

To add drag and drop functionality:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Drop Target and drop it as a child to the target component on the
page.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method
on a managed bean that will handle the event (you will create this code in Step 4).

3. With the dropTarget tag still selected, in the Properties window, select a valid
action set for the actions attribute.

4. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

If the method accepts the drop, it should perform the drop and return the
DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK,
otherwise it should return DnDAction.NONE to indicate that the drop was rejected

This handler method should use the DropEvent event to get the Transferable
object and its data and then complete the move or copy, and reorder the
components as needed. Once the method completes the drop, it should return the
DnDAction it performed. Otherwise, it should return DnDAction.NONE to indicate
that the drop was rejected.

The following example shows the handleComponentMove event handler on the
DemoDropHandler.java managed bean used by the componentDragSource JSF
page in the demo application.

public DnDAction handleComponentMove(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 UIComponent movedComponent = dropTransferable.getData
 (DataFlavor.UICOMPONENT_FLAVOR);
 if ((movedComponent != null) &&
 DnDAction.MOVE.equals(dropEvent.getProposedAction()))
 {
 UIComponent dropComponent = dropEvent.getDropComponent();
 UIComponent dropParent = dropComponent.getParent();
 UIComponent movedParent = movedComponent.getParent();
 UIComponent rootParent = null;
 ComponentChange change = null;

Chapter 39
Adding Drag and Drop Functionality for Components

39-16

 // Build the new list of IDs, placing the moved component after the dropped
 //component.
 String movedLayoutId = movedParent.getId();
 String dropLayoutId = dropComponent.getId();

 List<String> reorderedIdList = new
 ArrayList<String>(dropParent.getChildCount());

 for (UIComponent currChild : dropParent.getChildren())
 {
 String currId = currChild.getId();

 if (!currId.equals(movedLayoutId))
 {
 if(!movedLayoutIdFound && currId.equals(dropLayoutId))
 reorderedIdList.add(movedLayoutId);
 reorderedIdList.add(currId);
 if(movedLayoutIdFound && currId.equals(dropLayoutId))
 reorderedIdList.add(movedLayoutId);
 }
 else
 movedLayoutIdFound = true;
 }

 change = new ReorderChildrenComponentChange(reorderedIdList);
 rootParent = dropParent;
 ChangeManager cm = RequestContext.getCurrentInstance().getChangeManager();

 // add the change
 cm.addComponentChange(FacesContext.getCurrentInstance(),rootParent, change);

 // apply the change to the component tree immediately
 change.changeComponent(rootParent);

 // redraw the shared parent
 AdfFacesContext.getCurrentInstance().addPartialTarget(rootParent);

 return DnDAction.MOVE;
 }
 else
 {
 return DnDAction.NONE;
 }
 }

5. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Component Drag Source and drop it as a child of the source
component on the page.

For instance, the componentDragSource tag may appear similar to the following:

<af:componentDragSource discriminant="col2"/>

Adding Drag and Drop Functionality Into and Out of a
panelDashboard Component

You can enable ADF Faces drag and drop functionality within panelDashboard ADF
Faces components. Drag and drop functionality that you implement for ADF Faces
panelDashboard components supports the end-user experience of interactively

Chapter 39
Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

39-17

dragging a component into or out of the panelDashboard in the user interface of the
displayed web page.

By default the panelDashboard component supports dragging and dropping
components within itself. That is, you can reorder components in a panelDashboard
component without needing to implement a listener or use additional tags. However, if
you want to be able to drag a component into a panelDashboard component, or to
drag a component out of a panelDashboard component, you do need to use tags and
implement a listener. Because you would be dragging and dropping a component, you
use the componentDragSource tag when dragging into the panelDashboard. However,
because the panelDashboard already supports being a drop target, you do not need to
use the dropTarget tag. Instead, you need to use a dataFlavor tag with a
discriminant. The tag and discriminant notify the framework that the drop is from an
external component.

Dragging a component out of a panelDashboard is mostly the same as dragging and
dropping any other component. You use a dropTarget tag for the target and the
componentDragSource tag for the source. However, you must also use the dataFlavor
tag and a discriminant.

How to Add Drag and Drop Functionality Into a panelDashboard
Component

Because the panelDashboard component has built-in drag and drop functionality used
to reorder panelBox components within the dashboard, you need not use a
dropTarget tag, but you do need to use a dataFlavor tag with a discriminant and
implement the dropListener. In that implementation, you need to handle the reorder
of the components.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality Into and Out of a
panelDashboard Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

Before you begin:

1. Create a panelDashboard component. For more information, see Arranging
Contents in a Dashboard.

2. Create another component outside of the panelDashboard that contains panelBox
components. For more information about panelBox components, see How to Use
the panelBox Component.

To add drag and drop functionality into a panelDashboard component:

1. In the Structure window, select the panelDashboard component that is to be the
target component.

2. In the Properties window, for DropListener, enter an expression that evaluates to
a method on a managed bean that will handle the drop event (you will create this
code in Step 6).

Chapter 39
Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

39-18

3. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Data Flavor and drop it as a child to the panelDashboard
component.

4. In the Insert Data Flavor dialog, enter javax.faces.component.UIComponent.

5. In the Properties window, set Discriminant to a unique name that will identify the
components allowed to be dragged into the panelDashboard component, for
example, dragIntoDashboard.

6. In the Components window, from the Operations panel, in the Drag and Drop
group, drag a Component Drag Source and drop it as a child to the panelBox
component that will be the source component.

7. In the Properties window, set Discriminant to be the same value as entered for
the Discriminant on the panelDashboard in Step 5.

How to Add Drag and Drop Functionality Out of a panelDashboard
Component

Implementing drag and drop functionality out of a panelDashboard component is
similar to standard drag and drop functionality for other components, except that you
must use a dataFlavor tag with a discriminant.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality Into and Out of a
panelDashboard Component.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

How to add drag and drop functionality out of a panelDashboard component:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag and drop a Drop Target as a child to the target component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method
on a managed bean that will handle the event (you will create this code in Step 5)
and enter javax.faces.component.UIComponent as the FlavorClass.

3. With the dropTarget tag still selected, in the Properties window, select MOVE as
the value action attribute.

4. In the Structure window, select the dataFlavor tag and in the Properties window,
set Discriminant to a unique name that will identify the panelBox components
allowed to be dragged into this component, for example, dragOutOfDashboard.

5. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

This handler method should use the DropEvent event to get the Transferable
object and its data and then complete the move and reorder the components as
needed. Once the method completes the drop, it should return a DnDAction of
NONE.

Chapter 39
Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

39-19

You can use the
dashboardComponent.prepareOptimizedEncodingOfDeletedChild() method to
animate the removal of the panelBox component.

The following example shows the handleSideBarDrop event handler and helper
methods on the oracle.adfdemo.view.layout.DemoDashboardBean.java
managed bean used by the dashboard JSF page in the demo application.

public DnDAction handleSideBarDrop(DropEvent e)
 {
 UIComponent dragComponent = e.getDragComponent();
 UIComponent dragParent = dragComponent.getParent();
 // Ensure that the drag source is one of the items from the dashboard:
 if (dragParent.equals(_getDashboard()))
 {
 _minimize(dragComponent);
 }
 return DnDAction.NONE; // the client is already updated, so no need to
redraw it again
}

private void _minimize(UIComponent panelBoxToMinimize)
 {
 // Make this panelBox non-rendered:
 panelBoxToMinimize.setRendered(false);

 // If the dashboard is showing, let's perform an optimized render so the
whole dashboard doesn't
 // have to be re-encoded.
 // If the dashboard is hidden (because the panelBox is maximized), we will
not do an optimized
 // encode since we need to draw the whole thing.
 if (_maximizedPanelKey == null)
 {
 int deleteIndex = 0;
 RichPanelDashboard dashboard = _getDashboard();
 List<UIComponent> children = dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBoxToMinimize))
 {
 dashboard.prepareOptimizedEncodingOfDeletedChild(
 FacesContext.getCurrentInstance(),
 deleteIndex);
 break;
 }
 if (child.isRendered())
 {
 // Only count rendered children since that's all that the
panelDashboard can see:
 deleteIndex++;
 }
 }
 }
 RequestContext rc = RequestContext.getCurrentInstance();
 if (_maximizedPanelKey != null)
 {
 // Exit maximized mode:
 _maximizedPanelKey = null;
 UIXSwitcher switcher = _getSwitcher();
 switcher.setFacetName("restored");

Chapter 39
Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

39-20

 rc.addPartialTarget(switcher);
 }
 // Redraw the side bar so that we can update the colors of the opened items:
 rc.addPartialTarget(_getSideBarContainer());
}

6. In the Components window, from the Operations panel, drag and drop a
Component Drag Source as a child of the source panelBox component within the
panelDashboard component.

7. In the Properties window, set Discriminant to be the same value as entered for
the Discriminant on the dataFlavor tag for the target component in Step 4.

Adding Drag and Drop Functionality to a Calendar
You can enable ADF Faces drag and drop functionality for ADF Faces calendar
components. Drag and drop functionality that you implement for ADF Faces calendar
components supports the end-user experience of interactively dragging an activity in a
calendar from one start time or date to another in the user interface of the displayed
web page.

The calendar includes functionality that allows users to drag the handle of an activity to
change the end time. However, if you want users to be able to drag and drop an
activity to a different start time, or even a different day, then you implement drag and
drop functionality. Drag and drop allows you to not only move an activity, but also to
copy one.

How to Add Drag and Drop Functionality to a Calendar
You add drag and drop functionality by using the calendarDropTarget tag. Unlike
dragging and dropping a collection, there is no need for a source tag; the target (that is
the object to which the activity is being moved, in this case, the calendar) is
responsible for moving the activities. If the source (that is, the item to be moved or
copied), is an activity within the calendar, then you use only the calendarDropTarget
tag. The tag expects the Transferable to be a CalendarActivity object.

However, you can also drag and drop objects from outside the calendar. When you
want to enable this, use dataFlavor tags configured to allow the source object (which
will be something other than a calendarActivity object) to be dropped.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see Adding Drag and Drop Functionality to a Calendar.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Additional Functionality for Drag and
Drop.

To add drag and drop functionality to a calendar:

1. In the Components window, from the Operations panel, in the Drag and Drop
group, drag and drop a Calendar Drop Target as a child to the calendar
component.

2. In the Insert Calendar Drop Target dialog, enter an expression for the
dropListener attribute that evaluates to a method on a managed bean that will
handle the event (you will create this code in Step 4).

Chapter 39
Adding Drag and Drop Functionality to a Calendar

39-21

3. In the Properties window, set Actions. This value determines whether the activity
(or other source) can be moved, copied, or copied as a link, or any combination of
the three. If no action is specified, the default is COPY.

4. In the managed bean inserted into the EL expression in Step 2, implement the
handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction.
The DnDAction is the action that will be performed when the source is dropped.
Valid return values are COPY, MOVE, and LINK, and are set when you define the
actions attribute in Step 3. This method should use the DropEvent to get the
Transferable object, and from there, access the CalendarModel object in the
dragged data and from there, access the actual data. The listener can then add
that data to the model for the source and then return the DnDAction it performed:
DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK; otherwise, the listener
should return DnDAction.NONE to indicate that the drop was rejected.

The drop site for the drop event is an instance of the
oracle.adf.view.rich.dnd.CalendarDropSite class. For an example of a drag
and drop handler for a calendar, see the handleDrop method on the
oracle.adfdemo.view.calendar.rich.DemoCalendarBean managed bean in the
ADF Faces Components Demo application.

5. If the source for the activity is external to the calendar, drag a Data Flavor and
drop it as a child to the calendarDropTarget tag. This tag determines the type of
object that can be dropped onto the target, for example a String or a Date object.
Multiple dataFlavor tags are allowed under a single drop target to allow the drop
target to accept any of those types.

6. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object.

Tip:

To specify a typed array in a dataFlavor tag, add brackets ([]) to the
class name, for example, java.lang.Object[].

What You May Need to Know About Dragging and Dropping in a
Calendar

For dragging and dropping activities within a calendar, users can drag and drop only
within a view. That is, users can drag an activity from one time slot to another in the
day view, but cannot cut an activity from a day view and paste it into a month view.

When the user is dragging and dropping activities in the day or week view, the
calendar marks the drop site by half-hour increments. The user cannot move any all-
day or multi-day activities in the day view.

In the week view, users can move all-day and multi-day activities, however, they can
be dropped only within other all-day slots. That is, the user cannot change an all-day
activity to an activity with start and end times. In the month view, users can move all-
day and multi-day activities to any other day.

Chapter 39
Adding Drag and Drop Functionality to a Calendar

39-22

Adding Drag and Drop Functionality for DVT Components
You can enable ADF Faces drag and drop functionality for a variety of Data
Visualization Technology (DVT) components. Drag and drop functionality that you
implement for ADF Faces DVT components supports the end-user experience of
interactively dragging elements of DVT components or the components themselves
and dropping them within the user interface of the displayed web page.

You can configure drag and drop functionality for the following DVT components:

• Pareto and stock graphs (drop target only)

• Gantt charts

• Hierarchy viewers

• Sunbursts

• Thematic Maps

• Timelines

• Treemaps

DVT components use essentially the same process as dragging and dropping other
ADF Faces components. However, DVT components may impose limitations on the
items that you can drag to or drop from the component.

As with dragging and dropping objects or collections, you must also implement a
dropListener handler to respond to the drop requests. The object of the drop event is
called the Transferable, which contains the payload of the drop. Your listener must
access the Transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object.

Adding Drop Functionality for DVT Pareto and Stock Graphs
Pareto and stock graphs can be configured as a drop target to allow drops from other
ADF components. For example, you can configure a stock graph to allow drops from
an ADF table cell.

How to Add Drop Functionality to Pareto and Stock Graphs
To configure a Pareto or stock graph as a drop target, add the af:dropTarget tag as a
child of the Pareto or stock Graph, and add a method in a managed bean to respond
to the drop event. The following example shows a sample drop listener for a graph
configured to accept drops from an ADF table.

You must also configure the ADF Faces component, object, or collection as a drag
source and define the method that will respond to the drag.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see About Drag and Drop Functionality.

You must complete the following tasks:

• Add a Pareto or stock graph to your page.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-23

For help with creating the DVT components, see Introduction to ADF Data
Visualization Components.

• If you plan to allow drops to the DVT component, add the component that will
serve as the drag source to the page.

For help with adding other ADF Faces components, see ADF Faces Components.

• Create the method that will listen for drops on the graph. For information about
using managed beans, see Creating and Using Managed Beans.

To configure a Pareto or stock graph as a drop target:

1. In the Structure window, right-click dvt:paretoGraph or dvt:stockGraph and
choose Insert Inside (Pareto or Stock) > Drop Target.

2. In the Insert Drop Target dialog, specify the DropListener as an EL Expression
that evaluates the reference to the oracle.adf.view.rich.event.DropEvent
method called when a drop occurs on the component.

To specify the DropListener used in How to Add Drop Functionality to Pareto and
Stock Graphs, enter: #{dragAndDrop.fromTableDropListener}.

3. In the Insert Data Flavors dialog, specify the flavorClass, the fully qualified Java
class name for this dataFlavor. If the drop contains this dataFlavor, the drop
target is guaranteed to be able to retrieve an Object from the drop with this Java
type using this dataFlavor.

For example, to specify the flavorClass for a drop target configured to allow drops
from an ADF table, enter: org.apache.myfaces.trinidad.model.RowKeySet.

Example 39-1 Managed Bean Sample for Handling Drag and Drop Target

public class dragAndDrop {
 public DnDAction fromTableDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<RowKeySet> dataFlavor = DataFlavor.getDataFlavor(RowKeySet.class,
"fromTable");
 RowKeySet set = transferable.getData(dataFlavor);
 Employee emp = null;
 if(set != null && !set.isEmpty()) {
 int index = (Integer) set.iterator().next();
 emp = m_tableModel.get(index);
 }
 if(emp == null)
 return DnDAction.NONE;
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 m_graphList.add(emp);
 }
 else if(proposedAction == DnDAction.LINK) {
 m_graphList.add(emp);
 }
 else if(proposedAction == DnDAction.MOVE) {
 m_graphList.add(emp);
 m_tableModel.remove(emp);
 }
 else
 return DnDAction.NONE;
 RequestContext.getCurrentInstance().addPartialTarget(event.getDragComponent());
 return event.getProposedAction();
 }

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-24

You also must implement a listener for the drop event. The object of the drop event is
called the Transferable, which contains the payload of the drop. Your listener must
access the Transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object.

Adding Drag and Drop Functionality for DVT Gantt Charts
When you want users to be able to drag and drop between Gantt charts and other
components, you use the dragSource and dropTarget tags. Additionally, you use the
DataFlavor object to determine the valid Java types of sources for the drop target.
You also must implement any required functionality in response to the drag and drop
action. Both the projectGantt and schedulingGantt components support drag and
drop functionality.

For example, suppose you have an projectGantt component and you want the user
to be able to drag one time bucket to a treeTable component and have that
component display information about the time bucket, as shown in Figure 39-5.

Figure 39-5 Dragging and Dropping an Object

The projectGantt component contains a dragSource tag. And because the user will
drag the whole object and not just the String value of the output text that is displayed,
you use the dropTarget tag instead of the attributeDropTarget tag.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-25

You also use a dataFlavor tag to determine the type of object being dropped. On this
tag, you can define a discriminant value. This is helpful if you have two targets and two
sources, all with the same object type. By creating a discriminant value, you can be
sure that each target will accept only valid sources. For example, suppose you have
two targets that both accept an TaskDragInfo object, TargetA and TargetB. Suppose
you also have two sources, both of which are TaskDragInfo objects. By setting a
discriminant value on TargetA with a value of alpha, only the TaskDragInfo source
that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is
called the Transferable, which contains the payload of the drop. Your listener must
access the Transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object.

How to Add Drag and Drop Functionality for a DVT Gantt Component
To add drag and drop functionality, first add tags to a component that define it as a
target for a drag and drop action. Then implement the event handler method that will
handle the logic for the drag and drop action. Last, you define the sources for the drag
and drop. For information about what happens at runtime, see What Happens at
Runtime: How to Use Keyboard Modifiers. For information about using the
clientDropListener attribute, see What You May Need to Know About Using the
ClientDropListener.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see About Drag and Drop Functionality.

You must complete the following tasks:

• Add the DVT component to your page.

For help with creating the DVT components, see Introduction to ADF Data
Visualization Components.

• If you plan to allow drops to the DVT component, add the component that will
serve as the drag source to the page.

For help with adding other ADF Faces components, see ADF Faces Components.

• If you plan on allowing drags from the DVT component to another component, add
the component that will serve as the drop target to the page.

To add drag and drop functionality:

1. In the Components window, from the Operations panel, drag a Drop Target tag
and drop it as a child to the target component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method
on a managed bean that will handle the event (you will create this code in Step 6).

Tip:

You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see What You May
Need to Know About Using the ClientDropListener..

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-26

3. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object. This selection will be used to
create a dataFlavor tag, which determines the type of object that can be dropped
onto the target. Multiple dataFlavor tags are allowed under a single drop target to
allow the drop target to accept any of those types.

Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the
class name, for example, java.lang.Object[].

4. In the Properties window, set a value for Discriminant, if needed. A discriminant
is an arbitrary string used to determine what sources of the type specified by the
dataFlavor will be allowed as a source.

5. In the Structure window, select the dropTarget tag. In the Properties window,
select a value for Actions. This defines what actions are supported by the drop
target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK
(copy and paste as a link), for example:

MOVE COPY

If no actions are specified, the default is COPY.

The following example shows the code for a dropTarget component that takes a
TaskDragInfo object as a drop source. Note that because COPY was set as the
value for the actions attribute, that will be the only allowed action.

<af:treeTable id="treeTableDropTarget"
 var="task" value="#{projectGanttDragSource.treeTableModel}">
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
 <af:dropTarget actions="COPY"
 dropListener="#{projectGanttDragSource.onTableDrop}">
 <af:dataFlavor flavorClass=
 "oracle.adf.view.faces.bi.component.gantt.TaskDragInfo"/>
 </af:dropTarget>
</af:treeTable>

6. In the managed bean referenced in the EL expression created in Step 2, create
the event handler method (using the same name as in the EL expression) that will
handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped. Valid
return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-27

were set when you defined the target attribute in Step 5. This method should
check the DropEvent event to determine whether or not it will accept the drop. If
the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE to indicate that the
drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

Tip:

If your target has more than one defined dataFlavor object, then you
can use the Transferable.getSuitableTransferData() method, which
returns a List of TransferData objects available in the Transferable
object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as
created in Step 3.

Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the
class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the Transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this functionality
supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server
DataFlavor object on the client component, the drop target will be
configured to allow all drops to succeed on the client.

The following example shows a handler method that copies a TaskDragInfo object
from the event payload and assigns it to the component that initiated the event.

public DnDAction onTableDrop(DropEvent evt)
{
 // retrieve the information about the task dragged
 DataFlavor<TaskDragInfo> _flv = DataFlavor.getDataFlavor(TaskDragInfo.class,
null);
 Transferable _transferable = evt.getTransferable();

 // if there is no data in the Transferable, then the drop is unsuccessful
 TaskDragInfo _info = _transferable.getData(_flv);
 if (_info == null)
 return DnDAction.NONE;

 // find the task
 Task _draggedTask = findTask(_info.getTaskId());
 if (_draggedTask != null) {
 // process the dragged task here and indicate the drop is successful by
returning DnDAction.COPY

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-28

 return DnDAction.COPY;
 }
 else
return DnDAction.NONE;
}

7. In the Components window, from the Operations panel, drag and drop a Drag
Source as a child to the source component.

8. With the dragSource tag selected, in the Properties window, set the allowed
Actions and any needed discriminant, as configured for the target.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers,
Sunbursts, and Treemaps

You can configure hierarchy viewers, sunbursts, and treemaps as drag sources and
drop targets for drag and drop operations between supported components on a page.

Drag and Drop Example for DVT Hierarchy Viewers
Hierarchy viewers support the following drag and drop operations:

• Drag and drop one or more nodes within a hierarchy viewer

• Drag one or more nodes from a hierarchy viewer to another component

• Drag one or more items from another component to a hierarchy viewer

Figure 39-6 shows a hierarchy viewer configured to allow drags and drops within itself.
If you click and hold a node for more than one-half second, you can drag it to the
background to make it another root in the hierarchy or drag it to another node to add it
as a child of that node.

Figure 39-6 Hierarchy Viewer Showing a Node Drag

In this example, if you drag the node to another node, the dragged node and its
children become the child of the targeted node. Figure 39-7 shows the result of the
drag to the node containing the data for Nina Evans. Nancy Green and her
subordinates are now shown as subordinates to Nina Evans.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-29

Figure 39-7 Hierarchy Viewer After Node Drag to Another Node

Drag and Drop Example for DVT Sunbursts
Sunbursts support the drag of one or more nodes to another component. The payload
of the drag is a org.apache.myfaces.trinidad.model.RowKeySet. You can also
configure sunbursts to accept drops from another object.

Figure 39-8 shows a sunburst configured to allow drags from it to an
af:outputFormatted component. If the sunburst is configured for multiple selection,
the user can drag multiple nodes using the Ctrl+click operation.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-30

Figure 39-8 Sunburst Configured as a Drag Source

Drag and Drop Example for DVT Treemaps
Treemaps support the drag of one or more nodes to another component. The payload
of the drag is a org.apache.myfaces.trinidad.model.RowKeySet. You can also
configure treemaps to accept drops from another object.

Figure 39-9 shows a treemap configured as a drop target. In this example, the drag
source is an af:outputFormatted component.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-31

Figure 39-9 Treemap Configured as a Drop Target

How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst,
or Treemap Component

To add drag and drop functionality, first add tags to a supported DVT component that
define it as a target for a drag and drop action. Then implement the event handler
method that will handle the logic for the drag and drop action. Last, you define the
sources for the drag and drop. For information about what happens at runtime, see
What Happens at Runtime: How to Use Keyboard Modifiers. For information about
using the clientDropListener attribute, see What You May Need to Know About
Using the ClientDropListener.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see About Drag and Drop Functionality.

You must complete the following tasks:

• Add the DVT component to your page.

For help with creating the DVT components, see Introduction to ADF Data
Visualization Components.

• If you plan to allow drops to the DVT component, add the component that will
serve as the drag source to the page.

For help with adding other ADF Faces components, see ADF Faces Components.

• If you plan on allowing drags from the DVT component to another component, add
the component that will serve as the drop target to the page.

To add drag and drop functionality to a DVT hierarchy viewer, sunburst, or treemap
component:

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-32

1. To configure the DVT component as a drop target, do the following:

a. In the Components window, from the Operations panel, drag a Drop Target
tag and drop it as a child to a DVT component that supports drag and drop.

b. In the Insert Drop Target dialog, enter an expression that evaluates to a drop
listener method on a managed bean that will handle the event (you will create
this code in Step 1.f).

Tip:

You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see What You
May Need to Know About Using the ClientDropListener..

c. In the Insert Data Flavor dialog, enter the class for the object that can be
dropped onto the target, for example java.lang.Object. This selection will be
used to create a dataFlavor tag, which determines the type of object that can
be dropped onto the target. Multiple dataFlavor tags are allowed under a
single drop target to allow the drop target to accept any of those types.

Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the
class name, for example, java.lang.Object[].

d. In the Properties window, set a value for Discriminant, if needed. A
discriminant is an arbitrary string used to determine which source can drop on
the target. For example, suppose you have two treemaps that both accept a
java.lang.Object, Treemap A and Treemap B. You also have two sources,
both of which are java.lang.Object objects. By setting a discriminant value
on GraphA with a value of alpha, only the java.lang.Object source that
provides the discriminant value of alpha will be accepted.

e. In the Structure window, select the dropTarget tag. In the Properties window,
select a value for Actions. This defines what actions are supported by the
drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste),
and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

The following example shows the code for a treemap component that accepts
a java.lang.Object as a drag source. Note that because COPY was set as the
value for Actions, that will be the only allowed action.

<dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3" colorLabel="Median Household Income
 sizeLabel="Population" summary="Treemap Configured as Drag
Source"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-33

Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dropTarget dropListener="#{treemap.toDropListener}"
 actions="COPY">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
</dvt:treemap>

f. In the managed bean referenced in the EL expression created in Step 1.b,
create the event handler method (using the same name as in the EL
expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a
DnDAction object, which is the action that will be performed when the source is
dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and
DnDAction.LINK, and were set when you defined the target attribute in Step
1.e. This method should check the DropEvent event to determine whether or
not it will accept the drop. If the method accepts the drop, it should perform the
drop and return the DnDAction object it performed. Otherwise, it should return
DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

Tip:

If your target has more than one defined dataFlavor object, then
you can use the Transferable.getSuitableTransferData()
method, which returns a List of TransferData objects available in
the Transferable object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP,
as created in Step 1.c.

Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to
the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the Transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this
functionality supports automatic conversion between Arrays and
Lists.

If the drag and drop framework doesn't know how to represent a
server DataFlavor object on the client component, the drop target
will be configured to allow all drops to succeed on the client.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-34

The following example shows a handler method that copies a
java.lang.Object from the event payload and assigns it to the component
that initiated the event.

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import javax.faces.component.UIComponent;
// variables need by methods
private String dragText = "Drag this text onto a node";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor = DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 if(rowKey != null) {
 sb.append("Drop Site: ");
 sb.append(getLabel(dropComponent, rowKey));
 }
 }
 // Update the output text
 this.dragText = sb.toString();

RequestContext.getCurrentInstance().addPartialTarget(event.getDragComponent()
);
 return event.getProposedAction();
}

public String getDragText() {
 return dragText;
}

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-35

private String getLabel(UIComponent component, Object rowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 TreeNode rowData = (TreeNode) treemap.getRowData(rowKey);
 return rowData.getText();
 }
 return null;
}

private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 ClientRowKeyManager crkm = treemap.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}

2. To configure the DVT component as a drag source, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drag
Source as a child to the DVT component.

b. With the dragSource tag selected, in the Properties window, set the allowed
Actions and any needed discriminant, as configured for the target.

The following example shows the JSP code for a treemap configured as a drag
source. Note that all actions (COPY, MOVE, and LINK) are permitted.

<dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3" colorLabel="Median Household Income
 sizeLabel="Population" summary="Treemap Configured as Drag Source"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dragSource defaultAction="MOVE" actions="COPY MOVE LINK"/>
</dvt:treemap>

3. To use the DVT component as the drop target which will allow drags to it from
another component, in the Components window, from the Operations panel, drag
and drop a Drag Source as a child to the component that will be the source of the
drag.

For example, drag and drop a Drag Source as a child to an af:outputFormatted
component to display node information about a treemap. With the dragSource tag
selected, in the Properties window, set the allowed Actions and any needed
discriminant for the target.

4. To add the DVT component as a drag source for another supported DVT or ADF
Faces component, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, drag and drop a Drop Target onto a treeTable component.

b. In the Insert Drop Target dialog, enter the name of a drop listener that the
component will use to respond to the DVT component drop.

See the examples in this chapter for sample listeners.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-36

c. In the Insert Data Flavor dialog, enter the object that the drop target will
accept. Alternatively, use the dropdown menu to navigate through the object
hierarchies and choose the desired object.

For example, if you want the user to be able to drag a treemap node to a
treeTable component and have that component display information about the
treemap, enter the following for the data flavor:
org.apache.myfaces.trinidad.model.RowKeySet.

d. In the Structure window, right-click the af:dropTarget component and choose
Go to Properties.

e. In the Properties window, in the Actions field, enter a list of the operations
that the drop target will accept, separated by spaces. Allowable values are:
COPY, MOVE, or LINK. If you do not specify a value, the drop target will use
COPY.

The following example shows the sample code for an af:outputFormatted
component configured to allow dragging from a treemap.

<af:outputFormatted value="#{treemap.dropText}" id="of1">
 <af:dropTarget dropListener="#{treemap.fromDropListener}">
 <af:dataFlavor
flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
</af:outputFormatted>

Adding Drag and Drop Functionality for Timeline Components
You can configure timelines as a drop target or drag source between collection
components on a page. For example, you can drag an item from one collection such
as a row from a table, and drop it into a timeline, or drag an event from a timeline and
drop it into a table.

Figure 39-10 shows a timeline configured to allow drags and drops between the
events in a timeline and a row in a table.

Figure 39-10 Timeline Configured for Drag and Drop Between a Table

To add drag and drop functionality, first add tags to a supported DVT component that
define it as a target for a drag and drop action. Then implement the event handler
method that will handle the logic for the drag and drop action. Last, you define the

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-37

sources for the drag and drop. For information about what happens at runtime, see
What Happens at Runtime: How to Use Keyboard Modifiers. For information about
using the clientDropListener attribute, see What You May Need to Know About
Using the ClientDropListener.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more
information, see About Drag and Drop Functionality.

You must complete the following tasks:

• Add the DVT component to your page.

For help with creating the DVT components, see Introduction to ADF Data
Visualization Components.

• If you plan to allow drops to the DVT component, add the component that will
serve as the drag source to the page.

For help with adding other ADF Faces components, see ADF Faces Components.

• If you plan on allowing drags from the DVT component to another component, add
the component that will serve as the drop target to the page.

To add drag and drop support to a timeline:

1. In the Structure window, right-click the timeline component, and select Insert
Inside Timeline > Drop Target.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the timeline's
managed bean. Alternatively, use the dropdown menu to choose Expression
Builder and enter an EL Expression for the drop listener.

For example, to add a method named handleDropOnTimeline() on a managed
bean named dnd, choose Edit, select dnd from the dropdown menu, and click
New on the right of the Method field to create the handleDropOnTimeline()
method.

The following example shows the sample drop listener and supporting methods for
the timeline displayed in Figure 39-10.

// imports needed by methods
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.bean.RequestScoped;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.ModelUtils;
import org.apache.myfaces.trinidad.model.RowKeySet;
// drop listener
public DnDAction handleDropOnTimeline(DropEvent event)
 {

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-38

 Date _date = (Date)event.getDropSite();
 Transferable _transferable = event.getTransferable();
 RowKeySet _rowKeySet = _transferable.getData(DataFlavor.ROW_KEY_SET_FLAVOR);
 Object _rowKey = _rowKeySet.iterator().next();
 EmpEvent _event = (EmpEvent)m_tableModel.getRowData(_rowKey);
 _event.setDate(_date);
 orderInsert(_event);
 RequestContext.getCurrentInstance().addPartialTarget
 (event.getDragComponent());
 return DnDAction.COPY;
 }
 private void orderInsert(EmpEvent event)
 {
 int _index = -1;
 ArrayList _list = (ArrayList)m_timelineModel.getWrappedData();
 for (int i=0; i<_list.size(); i++)
 {
 EmpEvent _current = (EmpEvent)_list.get(i);
 if (event.getDate().before(_current.getDate()))
 {
 _index = i;
 break;
 }
 }
 if (_index == -1)
 _list.add(event);
 else
 _list.add(_index, event);
 ArrayList _list2 = (ArrayList)m_tableModel.getWrappedData();
 _list2.remove(event);
}

3. Click OK, and in the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

4. In the Structure window, right-click the af:dropTarget component and choose Go
to Properties to set the following attributes in the Properties window:

• Actions: Enter a list of the operations that the drop target will accept,
separated by spaces. Allowable values are: COPY, MOVE, or LINK. If you do not
specify a value, the drop target will use COPY.

• Discriminant: Specify the model name shared by the drop target and drag
source for compatibility purposes. The value of this attribute must match the
value of the of the discriminant attribute of the af:dragSource component
you will set for the collection component receiving the drags from the timeline.

5. To configure another collection component as the drag source for drops into the
timeline, do the following:

a. In the Components window, from the Operations panel, drag and drop a Drag
Source tag as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source tag as a child to an af:table
component.

b. In the Properties window, for the component's Actions field, enter a list of the
operations that the drop target will accept, separated by spaces.

c. For the component's Discriminant field, specify the model name shared by
the drop target and drag source for compatibility purposes.

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-39

6. To configure the timeline as a drag source, in the Components window, from the
Operations panel, drag and drop a Drag Source tag as a child to the timeline.

7. In the Structure window, right-click the af:dragSource component and choose Go
to Properties to set the following attributes in the Properties window:

• Actions: Enter a list of the operations that the collection drop target
component will accept, separated by spaces.

• Discriminant: Specify the name of the model shared by the drag source and
collection drop target for compatibility purposes. The value of this attribute
must match the value of the of the modelName attribute of the
af:collectionDropTarget component you will set for the collection
component receiving the drags from the timeline.

8. To make another collection component the drop target for drops from the timeline,
do the following:

a. In the Components window, from the Operations panel, drag and drop a
Collection Drop Target onto the component that will receive the drop.

For example, drag and drop a Collection Drop Target as a child to an
af:table component that displays the results of the drop.

b. In the Insert Drop Target dialog, enter the name of the drop listener or use
the dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean.

The following example shows the sample drop listener for the timeline
displayed in Figure 39-10. This example uses the same imports and helper
methods used in the previous example, and they are not included here.

//Drop Listener
public DnDAction handleDropOnTable(DropEvent event)
{
 Integer _dropSite = (Integer)event.getDropSite();
 Transferable _transferable = event.getTransferable();
 RowKeySet _rowKeySet =
_transferable.getData(DataFlavor.ROW_KEY_SET_FLAVOR);
 Object _rowKey = _rowKeySet.iterator().next();
 EmpEvent _event = (EmpEvent)m_timelineModel.getRowData(_rowKey);
 ArrayList _list = (ArrayList)m_tableModel.getWrappedData();
 _list.add(_dropSite.intValue(), _event);
 ArrayList _list2 = (ArrayList)m_timelineModel.getWrappedData();
 _list2.remove(_event);
 RequestContext.getCurrentInstance().addPartialTarget
 (event.getDragComponent());
 return DnDAction.COPY;
}
private static Date parseDate(String date)
{
 Date ret = null;
 try
 {
 ret = s_format.parse(date);
 }
 catch (ParseException e)
 {
 e.printStackTrace();
 }
 return ret;
}

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-40

c. Click OK, and in the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

d. In the Structure window, right-click the af:dropTarget component and choose
Go to Properties.

e. In the Properties window, in the Actions field, enter a list of the operations
that the drop target will accept, separated by spaces.

f. In the ModelName field, define the model for the collection.The value of the
modelName attribute is a String object used to identify the drag source for
compatibility purposes. The value of this attribute must match the value of the
discriminant attribute of the af:dragSource component.

The following example shows the JSF page sample code for the ADF Faces
Components Demo application illustrated in Figure 39-10. For additional information
about the af:table component, see Using Tables, Trees, and Other Collection-Based
Components.

<dvt:timeline id="tl1" startTime="2010-01-01" endTime="2011-12-31"
 inlineStyle="width:800px;height:400px" itemSelection="single">
 <f:attribute name="horizontalFetchSizeOverride" value="3000"/>
 <dvt:timelineSeries id="ts1" var="evt" value="#{dnd.timelineModel}">
 <dvt:timelineItem id="ti1" value="#{evt.date}" group="#{evt.group}">
 <af:panelGroupLayout id="pg1" layout="horizontal">
 <af:image id="img1" inlineStyle="width:30px;height:30px"
 source="/resources/images/timeline/employment.png"/>
 <af:spacer width="3"/>
 <af:panelGroupLayout id="pg2" layout="vertical">
 <af:outputText id="ot1" inlineStyle="color:#084B8A"
 value="#{evt.description}" noWrap="true"/>
 <af:outputText id="ot2" value="#{evt.date}"
 inlineStyle="color:#6e6e6e" noWrap="true">
 <af:convertDateTime dateStyle="medium"/>
 </af:outputText>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </dvt:timelineItem>
 <af:dragSource actions="COPY" discriminant="model"/>
 <af:dropTarget actions="COPY" dropListener="#{dnd.handleDropOnTimeline}">
 <af:dataFlavor flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"
 discriminant="model2"/>
 </af:dropTarget>
 </dvt:timelineSeries>
 <dvt:timeAxis id="ta1" scale="weeks"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview
</dvt:timeline>
<af:table var="row" value="#{dnd.tableModel}" rowSelection="single"
 inlineStyle="width:370px;height:400px">
 <af:column headerText="ID" width="20">
 <af:outputText value="#{row.id}"/>
 </af:column>
 <af:column headerText="Event" width="340">
 <af:outputText value="#{row.description}"/>
 </af:column>
 <af:dragSource actions="COPY" discriminant="model2"/>
 <af:collectionDropTarget actions="COPY" modelName="model"
 dropListener="#{dnd.handleDropOnTable}"/>
</af:table>

Chapter 39
Adding Drag and Drop Functionality for DVT Components

39-41

40
Using Different Output Modes

This chapter describes how to use ADF Faces to display pages in modes suitable for
printing and emailing. Topics include how to print page contents using the
showPrintablePageBehavior tag and how to create emailable pages with the request
parameter org.apache.myfaces.trinidad.agent.email=true.
This chapter includes the following sections:

• About Using Different Output Modes

• Displaying a Page for Print

• Creating Emailable Pages

About Using Different Output Modes
The entire page of the web pages that comprise an ADF application may not be
suitable for printing, but ADF supports rendering of the content so it is appropriate for
print or email.

ADF Faces enables you to output your page in a simplified mode either for printing or
for emailing. For example, you may want users to be able to print a page (or a portion
of a page), but instead of printing the page exactly as it is rendered in a web browser,
you want to remove items that are not needed on a printed page, such as scroll bars
and buttons. If a page is to be emailed, the page must be simplified so that email
clients can correctly display it.

Note:

By default, when the ADF Faces framework detects that an application is
being crawled by a search engine, it outputs pages in a simplified format for
the crawler, similar to that for an emailable page. If you want to generate
special content for web crawlers, you can use the EL-reachable Agent
interface to detect when an agent is crawling the site, and then direct the
agent to a specified link, for example:

<c:if test="#{requestContext.agent.type == 'webcrawler'}">
 <af:link text="This Link is rendered only for web crawlers"
 destination="http://www.newPage.com"/>
</c:if>

For more information, see the Trinidad Javadoc.

For displaying printable pages, ADF Faces offers the showPrintablePageBehavior tag
that, when used in conjunction with a command component, enables users to view a
simplified version of a page in their browser, which they can then print.

40-1

For email support, ADF Faces provides an API that can be used to convert a page to
one that is suitable for display in the Microsoft Outlook 2007, Mozilla Thunderbird
10.0.5, or Gmail email clients.

Tip:

The current output mode (email or printable) can be reached from
AdfFacesContext. Because this context is EL-reachable, you can use EL to
bind to the output mode from the JSP page. For example, you might allow a
graphic to be rendered only if the current mode is not email using the
following expression:

<af:activeImage source="/images/stockChart.gif"
rendered="#{adfFacesContext.outputMode != "email"}"/>

You can determine the current mode using
AdfFacesContext.getOutputMode().

Output Mode Use Cases
Most web pages are not suitable for print or for emailing, but users may need that
functionality. For example, in the File Explorer application, you could place a button
component inside the toolbar of the panelCollection component that contains a table,
as shown in Figure 40-1.

Figure 40-1 Button to Print Part of a Page

When the user clicks the button, the page is displayed in a new browser window (or
tab, depending on the browser) in a simplified form, as shown in Figure 40-2.

Figure 40-2 Printable Version of the Page

Only the contents of the table are displayed for printing. All extraneous components,
such as the toolbar, buttons, and scroll bars, are not rendered.

Chapter 40
About Using Different Output Modes

40-2

There may be occasions when you need a page in your application to be emailed. For
example, purchase orders created on the web are often emailed to the purchaser at
the end of the session. However, because email clients do not support external
stylesheets which are used to render to web browsers, you can't email the same page,
as it would not be rendered correctly.

Say you have a page that displays a purchase order, as shown in Figure 40-3.

Figure 40-3 Purchase Order Web Page

When the user clicks the Emailable Page link at the top, an actionListener method or
another service appends org.apache.myfaces.trinidad.agent.email=true to the
current URL and emails the page. Figure 40-4 shows the page as it appears in an
email client.

Figure 40-4 Page in an Email Client

Chapter 40
About Using Different Output Modes

40-3

Displaying a Page for Print
You can specify whether or not ADF Faces components that display in a web page
should be printed when the ADF application user prints the web page.

The ADF Faces framework enables you to print versions of your pages that are
suitable for printing when you place the showPrintablePageBehavior tag as a child to
a command component. When clicked, the framework walks up the component tree,
starting with the component that is the parent to the printableBehavior tag, until it
reaches a panelSplitter, panelAccordion, or popup component, or the root of the
tree (whichever comes first). The tree is rendered from there. Additionally, certain
components that are not needed on a printed page (such as buttons and scrollbars)
are omitted.

When the command component is clicked, the action event is canceled. Instead, a
request is made to the server for the printable version of the page.

How to Use the showPrintablePageBehavior Tag
You use the showPrintablePageBehavior tag as a direct child of a command
component.

Before you begin:

It may be helpful to have an understanding of how components will display in a
printable page. For more information, see Displaying a Page for Print.

To use the showPrintablePageBehavior tag:

1. In one of the layout components, add a command component in the facet that
contains the content you would like to print. For procedures, see How to Use
Buttons and Links for Navigation and Deliver ActionEvents.

Note:

While you can insert a showPrintablePageBehavior component outside
of a layout component to allow the user to print the entire page, the
printed result will be roughly in line with the layout, which may mean that
not all content will be visible. Therefore, if you want the user to be able to
print the entire content of a facet, it is important to place the command
component and the showPrintablePageBehavior component within the
facet whose contents users would typically want to print. If more than
one facet requires printing support, then insert one command component
and showPrintablePageBehavior tag into each facet. To print all
contents, the user then has to execute the print command one facet at a
time.

2. In the Components window, from the Operations panel, drag a Show Printable
Page Behavior and drop it as a child to the command component.

Chapter 40
Displaying a Page for Print

40-4

Creating Emailable Pages
Not all ADF Faces components that display in a web page of an ADF application can
be rendered as output for email. However, ADF Faces supports proper rendering of a
large number of components for a variety of email clients.

There may be occasions when you need a page in your application to be emailed. For
example, purchase orders created on the web are often emailed to the purchaser at
the end of the session. However, because email clients do not support external
stylesheets which are used to render to web browsers, you can't email the same page,
as it would not be rendered correctly.

The ADF Faces framework provides you with automatic conversion of a JSF page so
that it will render correctly in the Microsoft Outlook 2007, Mozilla Thunderbird 10.0.5,
or Gmail email clients.

Not all components can be rendered in an email client. The following components can
be converted so that they can render properly in an email client:

• document

• panelHeader

• panelFormLayout

• panelGroupLayout

• panelList

• spacer

• showDetailHeader

• inputText (renders as readOnly)

• inputComboBoxListOfValues (renders as readOnly)

• inputNumberSlider (renders as readOnly)

• inputNumberSpinbox (renders as readOnly)

• inputRangeSlider (renders as readOnly)

• outputText

• selectOneChoice (renders as readOnly)

• panelLabelAndMessage

• image

• tree

• table

• treeTable

• column

• link (renders as text)

The emailable page will render all rows in a table and all nodes in a treeTable with
each node expanded in the page, up to a limit. The default number of rows to display
is 50. The maximum number of rows that a view object will retrieve is limited by the

Chapter 40
Creating Emailable Pages

40-5

data layer (through the MaxFetchSize property) or the application layer (through the
rowLimit property specified in adf-config.xml). The rowLimit property is a global
upper bound for all view object queries in the application. If MaxFetchSize is specified,
rowLimit is ignored for that view object. You can also specify the maximum rows to
display using the table attribute rows for emailable pages. The rows value will be used
only if it is less than the defined value of MaxFetchSize or rowLimit. For tree and
treeTable, use nonScrollableRows to limit the number of rows to display.

Note:

If you include the PanelGroupLayout component while creating an emailable
page, remove the <td width="100%"></td> entry within the <table>… </
table> element in the HTML source. Otherwise, the footer row will not
render properly in the email client.

By default, the emailable page will display with styles inlined directly on the relevant
HTML element's style attribute rather than using an internal stylesheet. You can
configure this behavior by setting the web.xml parameter
oracle.adf.view.DEFAULT_EMAIL_MODE to either internal or inline.

How to Create an Emailable Page
You notify the ADF Faces framework to convert your page to be rendered in an email
client by appending a request parameter to the URL for the page to be emailed.

Before you begin:

It may be helpful to have an understanding of how components will display in an
emailable page. For more information, see Creating Emailable Pages.

To create an emailable page:

1. Insert a command component onto the page to be emailed. For more information,
see Working with Navigation Components.

2. In a managed bean, create an actionListener method or another service that
appends org.apache.myfaces.trinidad.agent.email=true to the current URL of
the page to be emailed.

Note:

By default, the framework will inline the style information onto each
HTML element rather than creating an internal stylesheet. You can
configure this behavior by setting the web.xml parameter
oracle.adf.view.DEFAULT_EMAIL_MODE to either internal or inline.
You can also force a request to render in either internal or inline
mode by setting the request parameter to
org.apache.myfaces.trinidad.agent.email=internal or
org.apache.myfaces.trinidad.agent.email=inline.

3. Select the command component, and in the Properties window, set the method or
service as the value for ActionListener.

Chapter 40
Creating Emailable Pages

40-6

Tip:

If you want to be able to view the email offline, append the following
request parameter to the URL of the page to be emailed:

org.apache.myfaces.trinidad.agent.email=true&oracle.adf.view.rich.rende
r.emailContentType=multipart/related

The framework will convert the HTML to MIME (multipart/related) and
inline the images so the email can be viewed offline.

How to Test the Rendering of a Page in an Email Client
Before you complete the development of a page, you may want to test how the page
will render in an email client. You can easily do this using a Button component.

To test an emailable page:

1. In the Components window, from the General Controls panel, drag and drop a
Button anywhere onto the page.

2. In the Design tab, right-click the Button and then in the Common section set the
Destination to be the page's name plus
org.apache.myfaces.trinidad.agent.email=true.

For example, if your page's name is myPage, the value of the destination attribute
should be:

myPage.jspx?org.apache.myfaces.trinidad.agent.email=true

Figure 40-5 Setting the Destination Attribute

3. Right-click the page and choose Run to run the page in the default browser.

The Create Default Domain dialog displays the first time your run your application
and start a new domain in Integrated WebLogic Server. Use the dialog to define
an administrator password for the new domain. Passwords you enter must be at
least eight characters and must have at least one non-alphabetic character.

4. Once the page displays in the browser, click the Button you added to the page.
This will again display the page in the browser, but converted to a page that can
be handled by an email client.

5. In your browser, view the source of the page. For example, in Mozilla Firefox, you
would select View > Page Source. Select the entire source and copy it.

6. Create a new message in your email client. Paste the page source into the
message and send it to yourself.

Chapter 40
Creating Emailable Pages

40-7

Tip:

Because you are pasting HTML code, you will probably need to use an
insert command to insert the HTML into the email body. For example, in
Thunderbird, you would choose Insert > HTML.

7. If needed, create a skin specifically for the email version of the page using an
agent. The following example shows how you might specify the border on a table
rendered in email.

af|table {
 border: 1px solid #636661;
}

@agent email {
 af|table
 {border:none}
}

af|table::column-resize-indicator {
 border-right: 2px dashed #979991;
}

For more information about creating skins, see Customizing the Appearance Using
Styles and Skins.

What Happens at Runtime: How ADF Faces Converts JSF Pages to
Emailable Pages

When the ADF Faces framework receives the request parameter
org.apache.myfaces.trinidad.agent.email=true in the Render Response phase,
the associated phase listener sets an internal flag that notifies the framework to do the
following:

• Remove any JavaScript from the HTML.

• Add all CSS to the page, but only for components included on the page and global
styles (those without the pipe character (|) in the name).

• Remove the CSS link from the HTML.

• Convert all relative links to absolute links.

• Render images with absolute URLs.

• Inline the style information onto each HTML element rather than creating an
internal stylesheet.

Additionally, if you add the parameter
oracle.adf.view.rich.render.emailContentType=multipart/related the
framework will convert the HTML to MIME (multipart/related) and inline the images so
the email can be viewed offline. The full request parameter would be:

org.apache.myfaces.trinidad.agent.email=true&oracle.adf.view.rich.render.emailContent
Type=multipart/related

Chapter 40
Creating Emailable Pages

40-8

41
Using the Active Data Service with an
Asynchronous Backend

This chapter describes how to register an asynchronous backend with Active Data
Service (ADS) to provide real-time data updates to ADF Faces components.
This chapter includes the following sections:

• About the Active Data Service

• Process Overview for Using Active Data Service

• Implementing the ActiveModel Interface in a Managed Bean

• What You May Need to Know About Maintaining Read Consistency

• Passing the Event Into the Active Data Service

• Registering the Data Update Event Listener

• Configuring the ADF Component to Display Active Data

About the Active Data Service
You can configure certain ADF Faces components to stream data from Active Data
Service (ADS) to provide real-time data updates.

The Fusion technology stack includes the Active Data Service (ADS), which is a
server-side push framework that allows you to provide real-time data updates for ADF
Faces components. You bind ADF Faces components to a data source and ADS
pushes the data updates to the browser client without requiring the browser client to
explicitly request it. For example, you may have a table bound to attributes of an ADF
data control whose values change on the server periodically, and you want the
updated values to display in the table. You can create a Java bean to implement the
ActiveModel interface and register it as an event listener to notify the component of a
data event from the backend, and the component rerenders the changed data with the
new value highlighted, as shown in Figure 41-1.

Figure 41-1 Table Displays Updated Data as Highlighted

41-1

Active Data Service Use Cases and Examples
Using ADS is an alternative to using automatic partial page rendering (PPR) to
rerender data that changes on the backend as a result of business logic associated
with the ADF data control bound to the ADF Faces component. Whereas automatic
PPR requires sending a request to the server (typically initiated by the user), ADS
enables changed data to be pushed from the data store as the data arrives on the
server. Also, in contrast to PPR, ADS makes it possible for the component to rerender
only the changed data instead of the entire component. This makes ADS ideal for
situations where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your
application services do not support ADS, then you also need to create a proxy of the
service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following
ADF Faces components and ADF Data Visualization (DVT) components to work with
active data:

• activeImage

• activeOutputText

• chart (all types)

• gauge (all types)

• pivotTable

• tree

• treeTable

• geoMap (mapPointTheme only)

• sunburst

• treemap

For specific information about ADS support for DVT components, see Active Data
Support.

Additionally, note that collection-based components (such as table, tree, and
pivotTable) support ADS only when the outputText component or sparkChart is
configured to display the active data; other components are not supported inside the
collection-based component.

For details about the active data service framework and important configuration
information, see Using the Active Data Service in Developing Fusion Web Applications
with Oracle Application Development Framework.

Process Overview for Using Active Data Service
Active Data Service (ADS) in the ADF application is configured on the application level
and on the ADF Faces component that you use to stream the active data.

To use ADS, you can optionally configure your application to determine the method of
data transport, as well as other performance options.

Before you begin:

Chapter 41
Process Overview for Using Active Data Service

41-2

Complete the following tasks:

• Implement the logic to fire the active data events asynchronously from the data
source. For example, this logic might be a business process that updates the
database, or a JMS client that gets notified from JMS.

• The Active Data framework does not support complicated business logic or
transformations that require the ADF runtime context, such as a user profile or
security. For example, the framework cannot convert an ADF context locale-
dependent value and return a locale-specific value. Instead, you need to have your
data source handle this before publishing the data change event.

• Before users can run the ADF Faces page with ADS configured for the application,
they must disable the popup blocker for their web browser. Active data is not
supported in web browsers that have popup blockers enabled.

To use the Active Data Service:

1. Optionally, configure ADS to determine the data transport mode, as well as to set
other configurations, such as a latency threshold and reconnect information.
Configuration for ADS is done in the adf-config.xml file.

For details about configuring ADS, see How to Configure the Active Data Service
in Developing Fusion Web Applications with Oracle Application Development
Framework.

2. Optionally, configure a servlet parameter to specify the duration of the active
session before it times out due to user inactivity. Configuration for the client-side
servlet timeout parameter is done in the web.xml file.

For details about configuring the servlet timeout parameter, see How to Configure
Session Timeout for Active Data Service in Developing Fusion Web Applications
with Oracle Application Development Framework.

3. Create a backing bean that implements the ActiveModel interface and register it
as the listener for active data events from your backend.

4. Create a class that extends the BaseActiveDataModel API to pass the Event
object to the ADS framework.

5. Register a data change listener for data change events from the backend.

6. In the web page, configure the ADF Faces component to capture and display the
pushed data by adding an expression to name the managed bean that implements
the ADF component that you use to capture and display the pushed data.

Implementing the ActiveModel Interface in a Managed Bean
When you want to stream data to the ADF Faces components in the view layer of an
ADF application, create a backing bean that implements the ActiveModel interface
and register it as the listener for active data events from your backend.

Create a backing bean that contains the active model implementation as its property.
This class uses an ADS decorator class to wrap the JSF model. This class should also
implement a callback from the backend that will push data into the ADS framework.

You need to create a Java class that subclasses one of the following ADS decorator
classes:

• ActiveCollectionModelDecorator class

Chapter 41
Implementing the ActiveModel Interface in a Managed Bean

41-3

• ActiveGeoMapDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a
default implementation of ActiveDataModel. The ActiveDataModel class listens for
data change events and interacts with the Event Manager.

Specifically, when you implement the ActiveModel interface, you accomplish the
following:

• Wraps the JSF model interface. For example, the
ActiveCollectionModelDecorator class wraps the CollectionModel class.

• Generates active data events based on data change events from the data source.

To implement the ActiveModel interface, you need to implement methods on your
Java class that gets the model to which the data is being sent and registers itself as
the listener of the active data source (as illustrated in the following example):

1. Create a Java class that extends the decorator class appropriate for your
component.

The following sample shows a StockManager class that extends
ActiveCollectionModelDecorator. In this case, the data is displayed for an ADF
Faces table component.

2. Implement the methods of the decorator class that will return the ActiveDataModel
class and implement the method that returns the scalar model.

The following sample shows an implementation of the getCollectionModel()
method that registers with an existing asynchronous backend. The method returns
the list of stocks collection from the backend.

3. Implement a method that creates application-specific events that can be used to
insert or update data on the active model.

The following example shows the onStockUpdate() callback method from the
backend, which uses the active model (an instance of ActiveStockModel) to
create ActiveDataUpdateEvent objects to push data to the ADF Faces
component.

package sample.oracle.ads;

import java.util.List;
import sample.backend.IBackendListener;
import sample.bean.StockBean;
import sample.oracle.model.ActiveStockModel;

import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;
import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;
import oracle.adf.view.rich.model.ActiveDataModel;

import oracle.adfinternal.view.faces.activedata.ActiveDataEventUtil;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.SortableModel;

// 1. This example wraps the existing collection model in the page and implements
// the ActiveDataModel interface to enable ADS for the page.

public StockManager extends ActiveCollectionModelDecorator implements
 IBackendListener

Chapter 41
Implementing the ActiveModel Interface in a Managed Bean

41-4

{
 // 2. Implement methods from ADF ActiveCollectionModelDecorator class to
 // return the model.
 @Override
 public ActiveDataModel getActiveDataModel()
 {
 return stockModel;
 }

 @Override
 protected CollectionModel getCollectionModel()
 {
 if(collectionModel == null)
 {
 // connect to a backend system to get a Collection
 List<StockBean> stocks = FacesUtil.loadBackEnd().getStocks();
 // make the collection become a (Trinidad) CollectionModel
 collectionModel = new SortableModel(stocks);
 }

 return collectionModel;
 }

 // 3. Implement a callback method to create active data events and deliver to
 // the ADS framework.

 /**
 * Callback from the backend to push new data to the decorator.
 * The decorator itself notifies the ADS system that there was a data change.
 *
 * @param key the rowKey of the updated Stock
 * @param updatedStock the updated stock object
 */
 @Override
 public void onStockUpdate(Integer rowKey, StockBean stock)
 {
 ActiveStockModel asm = getActiveStockModel();

 // start the preparation for the ADS update
 asm.prepareDataChange();

 // Create an ADS event, using an _internal_ util.
 // This class is not part of the API
 ActiveDataUpdateEvent event = ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE, // type
 asm.getCurrentChangeCount(), // changeCount
 new Object[] {rowKey}, // rowKey
 null, //insertKey, null as we don't insert stuff
 new String[] {"value"}, // attribute/property name that changes
 new Object[] { stock.getValue()} // the payload for the above attribute
);

 // Deliver the new Event object to the ADS framework
 asm.notifyDataChange(event);

 }

 /**
 * Typesafe caller for getActiveDataModel()
 * @return
 */

Chapter 41
Implementing the ActiveModel Interface in a Managed Bean

41-5

 protected ActiveStockModel getActiveStockModel()
 {
 return (ActiveStockModel) getActiveDataModel();
 }

 // properties
 private CollectionModel collectionModel; // see getCollectionModel()...
 private ActiveStockModel stockModel = new ActiveStockModel();
}

Register the class as a managed bean in the faces-config.xml file. The following
example shows the bean StockManager is registered. Defining the managed bean
allows you to specify the managed bean in an expression for the ADF Faces
component's value property.

...
<managed-bean>
 <managed-bean-name>stockManager</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.view.feature.rich.StockManager
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

What You May Need to Know About Maintaining Read
Consistency

Read consistency ensures that the ADF application pushes active data after the data
refresh by the ADF Faces component but not before an active data event arrives at the
web browser.

Using active data means that your component has two sources of data: the active data
feed and the standard data fetch. Because of this, you must make sure your
application maintains read consistency.

For example, say your page contains a table and that table has active data enabled.
The table has two methods of delivery from which it updates its data: normal table data
fetch and active data push. Say the back end data changes from foo to bar to fred.
For each of these changes, an active data event is fired. If the table is refreshed
before those events hit the browser, the table will display fred because standard data
fetch will always get the latest data. But then, because the active data event might
take longer, some time after the refresh the data change event would cause foo to
arrive at the browser, and so the table would update to display foo instead of fred for
a period of time. Therefore, you must implement a way to maintain the read
consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change
count, which effectively timestamps the data. Both data fetch and active data push
need to maintain this changeCount object by monotonically increasing the count, so
that if any data returned has a lower changeCount, the active data event can throw it
away. For information about how you can use your implementation of the
ActiveDataModel class to maintain read consistency, see Passing the Event Into the
Active Data Service.

Chapter 41
What You May Need to Know About Maintaining Read Consistency

41-6

What You May Need to Know About Navigating Away From
the ADS Enabled Page

When you configure the ADF application to push active data to ADF Faces
components, you should handle navigation events that would terminate ADS so the
user can optionally cancel the action.

When the user attempts to close the browser that displays an ADS-enabled page that
they are viewing, ADS will stop on the browser native window.unload event. For those
applications that want to allow the user to return to the page, the application needs to
display a confirmation prompt so the user can cancel the action. In this case, the
application should use the ADF client listener beforeunload and not the browser
native window.onbeforeunload listener.

For an example of a client listener that can handle the ADF beforeunload event, see
How to Use an ADF Client Listener to Control Navigating Away From a JSF Page.

Passing the Event Into the Active Data Service
When you configure the ADF application to push active data to ADF Faces
components, you create a class that extends BaseActiveDataModel class to pass the
active data event created by your managed bean to the ADS framework.

You need to create a class that extends BaseActiveDataModel class to pass the event
created by your managed bean. The ActiveDataModel class listens for data change
events and interacts with the Event Manager. Specifically, the methods you implement
do the following:

• Optionally, starts and stops the active data and the ActiveDataModel object, and
registers and unregisters listeners to the data source.

• Manages listeners from the Event Manager and pushes active data events to the
Event Manager.

The following examples shows the notifyDataChange() method of the model passes
the Event object to the ADS framework, by placing the object into the
fireActiveDataUpdate() method.

import java.util.Collection;

import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

public class ActiveStockModel extends BaseActiveDataModel
{

 // -------------- API from BaseActiveDataModel ----------

 @Override
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 /* We don't do anything here as there is no need for it in this example.
 * You could use a listenerCount to see if the maximum allowed listerners

Chapter 41
What You May Need to Know About Navigating Away From the ADS Enabled Page

41-7

 * are already attached. You could register listeners here.
 */
 }

 @Override
 protected void stopActiveData(Collection<Object> rowKeys)
 {
 // same as above... no need to disconnect here
 }

 @Override
 public int getCurrentChangeCount()
 {
 return changeCounter.get();
 }

 // -------------- Custom API -----------

 /**
 * Increment the change counter.
 */
 public void prepareDataChange()
 {
 changeCounter.incrementAndGet();
 }

 /**
 * Deliver an ActiveDataUpdateEvent object to the ADS framework.
 *
 * @param event the ActiveDataUpdateEvent object
 */
 public void notifyDataChange(ActiveDataUpdateEvent event)
 {
 // Delegate to internal fireActiveDataUpdate() method.
 fireActiveDataUpdate(event);
 }

 // properties
 private final AtomicInteger changeCounter = new AtomicInteger();
}

Registering the Data Update Event Listener
When you configure the ADF application to push active data to ADF Faces
components, you use the faces-config.xml file to register a data change listener for
data changes on the backend.

You need to register a data change listener for data change events from the backend.
The following example shows the listener bean StockBackEndSystem is registered in
the faces-config.xml file. Note that for this example, expression language is used to
inject a listener to the backend.

...
<managed-bean>
 <managed-bean-name>backend</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.backend.StockBackEndSystem
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>

Chapter 41
Registering the Data Update Event Listener

41-8

 <property-name>listener</property-name>
 <value>#{stockManager}</value>
 </managed-property>
</managed-bean>

Configuring the ADF Component to Display Active Data
When you configure the ADF application to push active data to ADF Faces
components, you add an expression to name the managed bean that implements the
ADF Faces component that you use to display the pushed data.

ADF components that display collection-based data can be configured to work with
ADS and require no extra setup in the view layer. Once the listener is registered, you
can use ADS to stream the data to the view layer. For example, imagine that your
JSPX page uses a table component to display stock updates from a backend source
on which you register a listener.

The following example shows the expression language used on the table component
value attribute to receive the pushed data.

...
<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout topHeight="50px" id="psl1">
 <f:facet name="top">
 <af:outputText value="Oracle ADF Faces goes Push!" id="ot1"/>
 </f:facet>
 <f:facet name="center">
 <!-- id="af_twocol_left_full_header_splitandstretched" -->
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:panelSplitter orientation="horizontal"
 splitterPosition="100" id="ps1">
 <f:facet name="first">
 <af:outputText value="Some content here." id="menu"/>
 </f:facet>
 <f:facet name="second">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center">
 <af:table value="#{stockManager}" var="row"
 rowBandingInterval="0"
 id="table1" emptyText="No data...">
 <af:column sortable="false" headerText="Name"
 id="column1">
 <af:outputText value="#{row.name}" id="outputText1"/>
 </af:column>
 <af:column sortable="false"
 headerText="Value...." id="column2">
 <af:outputText value="#{row.value}"
 id="outputText2" />
 </af:column>
 </af:table>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 </af:decorativeBox>
 </f:facet>

Chapter 41
Configuring the ADF Component to Display Active Data

41-9

 </af:panelStretchLayout>
 </af:form>
 </af:document>
</f:view>

Chapter 41
Configuring the ADF Component to Display Active Data

41-10

Part VII
Appendices

This part contains reference information for your ADF Faces application, including
configuration, message keys, shortcuts, designing and developing for mobile devices,
layout themes, code samples, and troubleshooting.

Specifically, it contains the following appendices:

• ADF Faces Configuration

• Message Keys for Converter and Validator Messages

• Keyboard Shortcuts

• Creating Web Applications for Touch Devices Using ADF Faces

• Quick Start Layout Themes

• Code Samples

• Troubleshooting ADF Faces

A
ADF Faces Configuration

This appendix describes how to configure JSF and ADF Faces features in various
XML configuration files, as well as how to retrieve ADF Faces configuration values
using the RequestContext API and how to use JavaScript partitioning.
This appendix includes the following sections:

• About Configuring ADF Faces

• Configuration in web.xml

• Configuration in faces-config.xml

• Configuration in adf-config.xml

• Configuration in adf-settings.xml

• Configuration in trinidad-config.xml

• Configuration in trinidad-skins.xml

• Using the RequestContext EL Implicit Object

• Performance Tuning

About Configuring ADF Faces
ADF Faces applications use XML descriptor files to configure the ADF Faces and JSF
features of the application. These configuration files identify the rules for navigating
between pages, action listeners, validators, and many other things.

A JSF web application requires a specific set of configuration files, namely, web.xml
and faces-config.xml. ADF Faces applications also store configuration information in
the adf-config.xml and adf-settings.xml files. Because ADF Faces shares the
same code base with MyFaces Trinidad, a JSF application that uses ADF Faces
components for the UI also must include a trinidad-config.xml file, and optionally a
trinidad-skins.xml file. For information about the relationship between Trinidad and
ADF Faces, see Introduction to ADF Faces .

Configuration in web.xml
The web.xml file acts as deployment descriptor for Java-based web applications. With
the help of this file, you can control many aspects of the ADF Faces application’s
behavior, from preloading servlets, to restricting resource access, to controlling
session time-outs.

Part of a JSF application's configuration is determined by the contents of its Java EE
application deployment descriptor, web.xml. The web.xml file, which is located in the /
WEB-INF directory, defines everything about your application that a server needs to
know (except the root context path, which is automatically assigned for you in
JDeveloper, or assigned by the system administrator when the application is
deployed). Typical runtime settings in the web.xmlfile include initialization parameters
and security settings.

A-1

The following is configured in the web.xmlfile for all applications that use ADF Faces:

• Context parameter javax.faces.STATE_SAVING_METHOD set to client

• MyFaces Trinidad filter and mapping

• MyFacesTrinidad resource servlet and mapping

• JSF servlet and mapping

Note:

JDeveloper automatically adds the necessary ADF Faces configurations to
the web.xml file for you the first time you use an ADF Faces component in an
application.

For information about the required elements, see What You May Need to Know About
Required Elements in web.xml.

For information about optional configuration elements in web.xml related to
ADF Faces, see What You May Need to Know About ADF Faces Context Parameters
in web.xml.

How to Configure for JSF and ADF Faces in web.xml
In JDeveloper, when you create a project that uses JSF technology, a starter web.xml
file with default servlet and mapping elements is created for you in the /WEB-INF
directory.

When you use ADF Faces components in a project (that is, a component tag is used
on a page rather than just importing the library), in addition to default JSF configuration
elements, JDeveloper also automatically adds the following to the web.xml file for you:

• Configuration elements that are related to MyFaces Trinidad filter and MyFaces
Trinidad resource servlet

• Context parameter javax.faces.STATE_SAVING_METHOD with the value of client

When you elect to use JSF fragments in the application, JDeveloper automatically
adds a JSP configuration element for recognizing and interpreting.jsff files in the
application.

The following example shows the web.xml file with the default elements that
JDeveloper adds for you when you use JSF and ADF Faces and.jsff files.

For information about the web.xml configuration elements needed for working with JSF
and ADF Faces, see What You May Need to Know About Required Elements in
web.xml.

<?xml version = '1.0' encoding = 'windows-1252'?><web-app xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Empty web.xml file for Web Application</description>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>

Appendix A
Configuration in web.xml

A-2

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

Note:

When you use ADF data controls to build databound web pages, the ADF
binding filter and a servlet context parameter for the application binding
container are added to the web.xml file.

Configuration options for ADF Faces are set in the web.xml file using <context-param>
elements.

To add ADF Faces configuration elements in web.xml:

1. In the Applications window, double-click web.xml to open the file in the overview
editor.

When you use the overview editor to add or edit entries declaratively, JDeveloper
automatically updates the web.xml file for you.

2. To edit the XML code directly in the web.xml file, click Source at the bottom of the
editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the
changes in the overview editor.

For a list of context parameters you can add, see What You May Need to Know About
ADF Faces Context Parameters in web.xml.

What You May Need to Know About Required Elements in web.xml
The required, application-wide configuration elements for JSF and ADF Faces in the
web.xml file are:

• Context parameter javax.faces.STATE_SAVING_METHOD: Specifies where to store
the application's view state. By default this value is client, which stores the
application's view state on the browser client. When set to client, ADF Faces
then automatically uses token-based, client-side state saving. You can specify the
number of tokens to use instead of using the default number of 15. For information

Appendix A
Configuration in web.xml

A-3

about state-saving context parameters, see What You May Need to Know About
ADF Faces Context Parameters in web.xml .

• MyFaces Trinidad filter and mapping: Installs the MyFaces Trinidad filter
org.apache.myfaces.trinidad.webapp.TrinidadFilter, which is a servlet filter
that ensures ADF Faces is properly initialized, in part by establishing a
RequestContext object. TrinidadFilter also processes file uploads. The filter
mapping maps the JSF servlet's symbolic name to the MyFaces Trinidad filter. The
forward and request dispatchers are needed for any other filter that is forwarding
to the MyFaces Trinidad filter.

Tip:

If you use multiple filters in your application, ensure that they are listed in
the web.xml file in the order in which you want to run them. At runtime,
the filters are called in the sequence listed in that file.

• MyFaces Trinidad resource servlet and mapping: Installs the MyFaces Trinidad
resource servlet org.apache.myfaces.trinidad.webapp.ResourceServlet, which
serves up web application resources (images, style sheets, JavaScript libraries) by
delegating to a resource loader. The servlet mapping maps the MyFaces Trinidad
resource servlet's symbolic name to the URL pattern. By default, JDeveloper
uses /adf/* for MyFaces Trinidad Core, and /afr/* for ADF Faces.

• JSF servlet and mapping (added when creating a JSF page or using a template
with ADF Faces components): The JSF servlet servlet
javax.faces.webapp.FacesServlet manages the request processing lifecycle for
web applications that utilize JSF to construct the user interface. The mapping
maps the JSF servlet's symbolic name to the URL pattern, which can use either a
path prefix or an extension suffix pattern.

By default JDeveloper uses the path prefix /faces/*, as shown in the following
code:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

For example, if your web page is index.jspx, this means that when the URL
http://localhost:8080/MyDemo/faces/index.jspx is issued, the URL activates
the JSF servlet, which strips off the faces prefix and loads the file /MyDemo/
index.jspx.

What You May Need to Know About ADF Faces Context Parameters
in web.xml

ADF Faces configuration options are defined in the web.xml file using <context-
param> elements. For example:

<context-param>
 <param-name>oracle.adf.view.rich.LOGGER_LEVEL</param-name>
 <param-value>ALL</param-value>
</context-param>

Appendix A
Configuration in web.xml

A-4

You can also configure your application by setting the context parameter using Java
API. See What You May Need to Know About ADF Faces Window Manager
Configuration.

The following context parameters are supported for ADF Faces.

State Saving
You can specify the following state-saving context parameters:

• org.apache.myfaces.trinidad.CLIENT_STATE_METHOD: Specifies the type of
client-side state saving to use when client-side state saving is enabled by using
javax.faces.STATE_SAVING_METHOD. The values for CLIENT_STATE_METHOD are:

– token: (Default) Stores the page state in the session, but persists a token to
the client. The simple token, which identifies a block of state stored back on
the HttpSession object, is stored on the client. This enables ADF Faces to
disambiguate the same page appearing multiple times. Failover is supported.

– all: Stores all state information on the client in a (potentially large) hidden
form field. It is useful for developers who do not want to use HttpSession.

Performance Tip:

Because of the potential size of storing all state information, you should
set client-state saving to token.

• org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS: Specifies how many
tokens should be stored at any one time per user, when token-based client-side
state saving is enabled. The default is 15. When the number of tokens is
exceeded, the state is lost for the least recently viewed pages, which affects users
who actively use the Back button or who have multiple windows opened at the
same time. If you are building HTML applications that rely heavily on frames, you
would want to increase this value.

Performance Tip:

In order to reduce live memory per session, consider reducing this value
to 2. Reducing the state token cache to 2 means one Back button click is
supported. For applications without support for a Back button, this value
should be set to 1.

• org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE: Specifies whether or not
to globally compress state saving on the session. Each user session can have
multiple pageState objects that heavily consume live memory and thereby impact
performance. This overhead can become a much bigger issue in clustering when
session replication occurs. The default is false.

Appendix A
Configuration in web.xml

A-5

Performance Tip:

Latency can be reduced if the size of the data is compressed. To
optimize performance, set to true.

Debugging
You can specify the following debugging context parameters:

• org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT: ADF Faces, by default,
obfuscates the JavaScript it delivers to the client, stripping comments and
whitespace at the same time. This dramatically reduces the size of the ADF Faces
JavaScript download, but it also makes it tricky to debug the JavaScript. Set to
true to turn off the obfuscation during application development. Set to false for
application deployment.

• org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION: By default this
parameter is false. If it is set to true, ADF Faces will automatically check the
modification date of your JSF and CSS files, and discard the saved state when the
files change.

Performance Tip:

When set to true, this CHECK_FILE_MODIFICATION parameter adds
overhead that should be avoided when your application is deployed. Set
to false when deploying your application to a runtime environment.

• oracle.adf.view.rich.LOGGER_LEVEL: This parameter enables JavaScript logging
when the default render kit is oracle.adf.rich. The default is OFF. If you wish to
turn on JavaScript logging, use one of the following levels: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, and ALL.

Performance Tip:

JavaScript logging will affect performance. Set this value to OFF in a
runtime environment.

• oracle.adf.view.rich.REQUEST_ID_TRACING: This parameter is used for
diagnosing failed partial page rendering (PPR) requests by associating end user
reports with corresponding entries in server-side logs. This is accomplished by
appending the unique ECIF number for the server log to the PPR URL. By default
this parameter is set to off. Set the parameter to PPR to activate the diagnostic
functionality.

File Uploading
You can specify the following file upload context parameters:

Appendix A
Configuration in web.xml

A-6

• org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY: Specifies the maximum
amount of memory that can be used in a single request to store uploaded files.
The default is 100K.

• org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE: Specifies the maximum
amount of disk space that can be used in a single request to store uploaded files.
The default is 2000K.

• org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR: Specifies the directory where
temporary files are to be stored during file uploading. The default is the user's
temporary directory.

Note:

The file upload initialization parameters are processed by the default
UploadedFileProcessor only. If you replace the default processor with a
custom UploadedFileProcessor implementation, the parameters are not
processed.

Save Query Mode
You can specify the following parameter in web.xml to prevent users from creating a
new search, updating an existing search, or deleting an existing saved search, when
the user is in preview mode. This parameter also enables you to disable the saved
searches when the user is in edit mode though the page composer is not running.

• oracle.adf.faces.component.query.saveQueryMode: specifies whether or not
you want the saved searches to be displayed and used when the user is in
preview mode or edit mode. Valid values are:

– default: The user will able to view an edit all saved searches.

– readonly: The user will only be able to view and select saved searches.
However, the user might not be able to update the saved searches.

– hidden: The user will not be able to view any saved searches.

If you set the saveQueryMode attribute to a specific query component, it will override
the global setting. See How to Add the Query Component.

Resource Debug Mode
You can specify the following:

• org.apache.myfaces.trinidad.resource.DEBUG: Specifies whether or not
resource debug mode is enabled. The default is false. Set to true if you want to
enable resource debug mode. When enabled, ADF Faces sets HTTP response
headers to let the browser know that resources (such as JavaScript libraries,
images, and CSS) cannot be cached.

Appendix A
Configuration in web.xml

A-7

Tip:

After turning on resource debug mode, clear your browser cache to force
the browser to load the latest versions of the resources.

Performance Tip:

In a production environment, this parameter should be removed or set to
false.

User Customization
For information about enabling and using session change persistence, see Allowing
User Customization on JSF Pages.

Enabling the Application for Real User Experience Insight
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of
pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user
experience, to monitor your Key Performance Indicators (KPIs) and Service Level
Agreements (SLAs), and to trigger alert notifications on incidents that violate their
defined targets. You can implement checks on page content, site errors, and the
functional requirements of transactions. Using this information, you can verify your
business and technical operations. You can also set custom alerts on the availability,
throughput, and traffic of all items identified in RUEI.

Specify whether or not RUEI is enabled for
oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER by
adding the parameter to the web.xml file and setting the value to true. By default this
parameter is not set or is set to false.

For information about RUEI, see Enabling the Application for Real User Experience
Insight and End User Monitoring in Developing Fusion Web Applications with Oracle
Application Development Framework.

Assertions
You can specify whether or not assertions are used within ADF Faces using the
oracle.adf.view.rich.ASSERT_ENABLED parameter. The default is false. Set to true
to turn on assertions.

Appendix A
Configuration in web.xml

A-8

Performance Tip:

Assertions will affect performance. Set this value to false in a runtime
environment.

Dialog Prefix
To change the prefix for launching dialogs, set the
org.apache.myfaces.trinidad.DIALOG_NAVIGATION_PREFIX parameter.

The default is dialog:, which is used in the beginning of the outcome of a JSF
navigation rule that launches a dialog (for example, dialog:error).

Compression for CSS Class Names
You can set the org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
parameter to determine compression of the CSS class names for skinning keys.

The default is false. Set to true if you want to disable the compression. The
parameter also accepts EL expressions for its value.

Performance Tip:

Compression will affect performance. In a production environment, set this
parameter to false.

Control Caching When You Have Multiple ADF Skins in an Application
The skinning framework caches information in memory about the generated CSS file
of each skin that an application requests. This could have performance implications if
your application uses many different skins. Specify the maximum number of skins for
which you want to cache information in memory as a value for the
org.apache.myfaces.trinidad.skin.MAX_SKINS_CACHED parameter. The default value
for this parameter is 20.

Test Automation
Use the oracle.adf.view.rich.automation.ENABLED parameter to notify ADF Faces
that test automation is being used and turns on external component id attributes. See
Using Test Automation for ADF Faces.

UIViewRoot Caching
Use the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to enable or
disable UIViewRoot caching. When token client-side state saving is enabled, MyFaces
Trinidad can apply an additional optimization by caching an entire UIViewRoot tree
with each token. (Note that this does not affect thread safety or session failover.) This
is a major optimization for AJAX-intensive systems, as postbacks can be processed
far more rapidly without the need to reinstantiate the UIViewRoot tree.

Appendix A
Configuration in web.xml

A-9

You set the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to true to
enable caching. This is the default. Set the parameter to false to disable caching.

Note:

This type of caching is known to interfere with some other JSF technologies.
In particular, the Apache MyFaces Tomahawk saveState component does
not work, and template text in Facelets may appear in duplicate.

Themes and Tonal Styles
Although the oracle.adf.view.rich.tonalstyles.ENABLED parameter is still available
for the purpose of backward compatibility, keep the parameter set to false, and use
themes as a replacement style for the tonal style classes
of.AFDarkTone, .AFMediumTone, .AFLightTone and .AFDefaultTone. Themes are
easier to author than tonal styles; they rely on fewer selectors, and they avoid CSS
containment selectors. For this reason they are less prone to bugs. Due to the
limitation on the number of selectors in one CSS file, both tonal styles and themes
cannot be supported in the same application.

Partial Page Rendering
Use the org.apache.myfaces.trinidad.PPR_OPTIMIZATION parameter to turn partial
page rendering (PPR) optimization on and off. By default, this parameter is set to off.
Set to on for improving the performance and efficiency of PPR.

Partial Page Navigation
Use the oracle.adf.view.rich.pprNavigation.OPTIONS parameter to turn partial
page navigation on and off. By default, the value is off. Partial page navigation uses
the same base page throughout the application, and simply replaces the body content
of the page with each navigation. This processing results in better performance
because JavaScript libraries and style sheets do not need to be reloaded with each
new page. See Using Partial Page Navigation.

Valid values are:

• on: PPR navigation is turned on for the application.

Note:

If you set the parameter to on, then you need to set the partialSubmit
attribute to true for any command components involved in navigation.
For information about partialSubmit, see Events and Partial Page
Rendering.

• off: PPR navigation is turned off for the application.

• onWithForcePPR: When an action on a command component results in navigation,
the action will always be delivered using PPR, as if the component had

Appendix A
Configuration in web.xml

A-10

partialSubmit set to true. For information about partialSubmit, see Events and
Partial Page Rendering. If the component already has partialSubmit set to true,
the framework does nothing. If partialSubmit is not set to true, the entire
document is refreshed to ensure that old page refresh behavior is preserved. The
entire document is also refreshed if the action component does not contain
navigation.

Postback Payload Size Optimization
By default, during PPR, all fields are posted back to the server. For applications on
high latency and/or low bandwidth networks, this could result in poor performance.

Use the oracle.adf.view.rich.POSTBACK_PAYLOAD_TYPE parameter to configure the
application to only post back values of ADF Faces editable components when those
values have changed since the last request.

Valid values are:

• full: all fields are posted (the default).

• dirty: only values of editable components that have changed since the last
request are posted. However, the following will always be posted:

– Values for components that have failed conversion or validation

– Values for any third party components

– Values for components that are bound to request scope or backing bean
scope values.

– Values for the af:codeEditor, af:richTextEditor, af:inputFile
components

Note:

When you select dirty, client components are created for all ADF Faces
editable components. This can result in slightly larger response payload
sizes.

JavaScript Partitioning
Use the oracle.adf.view.rich.libraryPartitioning.DISABLED parameter to turn
JavaScript partitioning on and off. By default, the value is false (enabled). JavaScript
partitioning allows a page to download only the JavaScript needed by client
components for that page.

Valid values are:

• false: JavaScript partitioning is enabled (the default).

• true: JavaScript partitioning is disabled.

For information about using and configuring JavaScript partitioning, see JavaScript
Library Partitioning.

Appendix A
Configuration in web.xml

A-11

Framebusting
Framebusting is a way to prevent clickjacking, which occurs when a malicious website
pulls a page originating from another domain into a frame and overlays it with a
counterfeit page, allowing only portions of the original, or clickjacked, page (for
example, a button) to display. When users click the button, they in fact are clicking a
button on the clickjacked page, causing unexpected results.

Say, for example, that your application is a web-based email application that resides in
DomainA, and a website in DomainB clickjacks your page by creating a page with an
IFrame that points to a page in your email application at DomainA. When the two pages
are combined, the page from DomainB covers most of your page in the IFrame, and
exposes only a button on your page that deletes all email for the account. Users, not
realizing they are actually in the email application, may click the button and
inadvertently delete all their email.

Framebusting prevents clickjacking by using the following JavaScript to block the
application's pages from running in frames:

top.location.href = location.href;

The org.apache.myfaces.trinidad.security.FRAME_BUSTING context parameter
manages framebusting in your application. Valid values are:

• always: The page will show an error and redirect whenever it attempts to run in a
frame.

• differentOrigin: The page will show an error and redirect only when it attempts
to run in a frame on a page that originates in a different domain (the default).

• never: The page can run in any frame on any originating domain.

Note:

For ADF Faces pages, this context parameter is ignored and will behave
as if it were set to never when either of the following context parameters
is set to true:

– org.apache.myfaces.trinidad.util.ExternalContextUtils.isPor
tlet

– oracle.adf.view.rich.automation.ENABLED

Because this is a MyFaces Trinidad parameter, it can also be used for
those pages. Consult the MyFaces Trinidad documentation for
information on using this parameter in a My Faces Trinidad application.

• whitelist: The page uses the value of the oracle.adf.view.ALLOWED_ORIGINS
parameter to specify the origins that are allowed to frame documents in this
application.

The org.apache.myfaces.trinidad.security.FRAME_BUSTING context parameter also
supports EL. If EL is used, the EL will be evaluated once per user session.

If you configure your application to use framebusting by setting the FRAME_BUSTING
parameter to always, then whenever a page tries to run in a frame, an alert is shown to

Appendix A
Configuration in web.xml

A-12

the user that the page is being redirected, the JavaScript code is run to define the
page as topmost, and the page is disallowed to run in the frame.

If your application needs to use frames, you can set the parameter value to
differentOrigin. This setting causes framebusting to occur only if the frame has the
different origin as the parent page. This is the default setting.

Note:

The origin of a page is defined using the domain name, application layer
protocol, and in most browsers, TCP port of the HTML document running the
script. Pages are considered to originate from the same domain if and only if
all these values are exactly the same.

For example, these pages will fail the origin check due to the difference in
port numbers:

• http://www.example.com:8888/dir/page.html

• http://www.example.com:7777/dir/page.html

For example, say you have a page named DomainApage1 in your application that uses
a frame to include the page DomainApage2. Say the external DomainBpage1 tries to
clickjack the page DomainApage1. The result would be the following window hierarchy:

• DomainBpage1

– DomainApage1

* DomainApage2

If the application has framebusting set to be differentOrigin, then the framework
walks the parent window hierarchy to determine whether any ancestor windows
originate from a different domain. Because DoaminBpage1 originates from a different
domain, the framebusting JavaScript code will run for the DomainApage1 page,
causing it to become the top-level window. And because DomainApage2 originates from
the same domain as DomainApage1, it will be allowed to run in the frame.

If you set the FRAME_BUSTING parameter to whitelist, the value of the
oracle.adf.view.ALLOWED_ORIGINS parameter specifies the origins that are allowed to
frame documents in this application.

The ALLOWED_ORIGINS parameter accepts a space-separated list. The format of the list
is the Content Security Policy source list, as described in http://www.w3.org/TR/CSP2/
#source-list. This space-separated list of origins allows wildcarding of the first segment
of the host and port. For example:

http://*.oracle.com:*

Differences from the frame-ancestors specification are that the value * is supported
and indicates that any origin may frame the content. If not specified or if an empty or
null list returns from a value expression, the value defaults to 'self', indicating that
only framing in the same origin is allowed.

When specifying the list of allowed origins, the current origin is not automatically
allowed to frame the the application content. If you want the application to allow this,
explicitly add 'self' to the list of allowed origins.

Appendix A
Configuration in web.xml

A-13

http://www.w3.org/TR/CSP2/#source-list
http://www.w3.org/TR/CSP2/#source-list

The ALLOWED_ORIGINS parameter supports EL. The EL expression should return a
collection of String with each collection item string representing one allowed origin.
The EL expression is evaluated once per user session.

Version Number Information
Use the oracle.adf.view.rich.versionString.HIDDEN parameter to determine
whether or not to display version information an a page's HTML. When the parameter
is set to false, the HTML of an ADF Faces page contains information about the
version of ADF Faces and other components used to create the page as shown in the
following example.

</body><!--Created by Oracle ADF (ADF Faces API -
11.1.1.4.0/ADF Faces Implementation - 11.1.1.4.0, RCF-revision: 39851 (branch:
faces-1003-11.1.1.4.0, plugins: 1.2.3), Trinidad-revision: 1051544 (branch:
1.2.12.3-branch, plugins: 1.2.10), build: adf-faces-rt_101221_0830, libNum:
0355 powered by JavaServer Faces API 1.2 Sun Sep 26 03:21:43 EDT 2010
(1.2)), accessibility (mode:null, contrast:standard, size:medium),
skin:customSkin.desktop (CustomSkin)--></html>

Set the parameter to true to hide this version information. This is the default.

Note:

In a production environment, set this parameter to true to avoid security
issues. It should be set to false only in a development environment for
debugging purposes.

Suppressing Auto-Generated Component IDs
Use the oracle.adf.view.rich.SUPPRESS_IDS context parameter set to auto when
programmatically adding an af:outputText or af:outputFormatted component as a
partial target, that is, through a call to addPartialTarget().

By default, this parameter is set to explicit, thereby reducing content size by
suppressing both auto-generated and explicitly set component IDs except when either
of the following is true:

• The component partialTriggers attribute is set

• The clientComponent attribute is set to true

In the case of a call to addPartialTarget(), the partialTriggers attribute is not set
and the partial page render will not succeed. You can set the parameter to auto to
suppress only auto-generated component IDs for these components.

ADF Faces Caching Filter
The ADF Faces Caching Filter (ACF) is a Java EE Servlet filter that can be used to
accelerate web application performance by enabling the caching (and/or compression)
of static application objects such as images, style sheets, and documents like .pdf
and .zip files. These objects are cached in an external web cache such as Oracle
Web Cache, Oracle Traffic Director, or in the browser cache. The cacheability of
content is largely determined through URL-based rules defined by the web cache

Appendix A
Configuration in web.xml

A-14

administrator. Using ACF, the application administrator or author can define caching
rules directly in the adf-config.xml file. For information about defining caching rules,
see Defining Caching Rules for ADF Faces Caching Filter.

ADF Faces tag library JARs include default caching rules for common resource types,
such as .js, .css, and image file types. These fixed rules are defined in the adf-
settings.xml file, and cannot be changed during or after application deployment. In
the case of conflicting rules, caching rules defined by the application developer in adf-
config.xml will take precedence. For information about settings in adf-settings.xml,
see What You May Need to Know About Elements in adf-settings.xml.

Oracle Web Cache and Oracle Traffic Director must be configured by the web cache
administrator to route all traffic to the web application through the web cache. In the
absence of the installation of Oracle Web Cache or Oracle Traffic Director, the caching
rules defined in adf-config.xml will be applied for caching in the browser if the
<agent-caching> child element is set to true. To configure the ACF to be in the URL
request path, add the following servlet filter definitions in the web.xml file:

• ACF filter class: Specify the class to perform URL matching to rules defined in
adf-config.xml

• ACF filter mapping: Define the URL patterns to match with the caching rules
defined in adf-config.xml

The following example shows a sample ACF servlet definition.

<!- Servlet Filter definition ->x
<filter>
 <filter-name>ACF</filter-name>
 <filter-class>oracle.adf.view.rich.webapp.AdfFacesCachingFilter</filter-class>
</filter>
<!- servlet filter mapping definition ->
<filter-mapping>
 <filter-name>ACF</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

Note:

The ACF servlet filter must be the first filter in the chain of filters defined for
the application.

Configuring Native Browser Context Menus for Command Links
Use the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION context
parameter to enable or disable the end useŕs browser to supply a context menu for
ADF Faces command components that render a link. The context menu may present
menu options that invoke a different action (for example, open a link in a new window)
to that specified by the command component.

By default, this parameter is set to yes, thereby suppressing the rendering of a context
menu for ADF Faces command components. By setting the parameter to no, you can
disable this suppression and allow the native browser context menu to appear. For
information about the ADF Faces command components for which you can configure
this functionality, see

Appendix A
Configuration in web.xml

A-15

Internet Explorer Compatibility View Mode
Running ADF Faces applications in the compatibility mode of Microsoft Internet
Explorer can cause unpredictable behavior. By default, when a user accesses an ADF
Faces application and has their Internet Explorer browser set to compatibility mode,
ADF Faces displays an alert asking the user to disable that mode.

Set the oracle.adf.view.rich.HIDE_UNSUPPORTED_BROWSER_ALERTS context
parameter to IECompatibilityModes to hide these messages from the user.

Note:

Even when these messages are hidden, a warning-level log message is still
reported to the JavaScript log, when the
oracle.adf.view.rich.LOGGER_LEVEL parameter is set to WARNING or more
verbose. See Debugging.

Session Timeout Warning
When a request is sent to the server, a session timeout value is written to the page,
based on the value of the session-timeout parameter. By default, this is set at 60
minutes when the web.xml file is created for you. See session-config in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

You can configure a session timeout warning interval using the context parameter
oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT. When set, the
user is given the opportunity to extend the session in a warning dialog, and a
notification is sent when the session has expired and the page is refreshed. To prevent
the notification of the user too frequently, the timeout warning mechanism will try to
determine that the client is still active by detecting the last keyboard or mouse event
(not specific to the warning dialog). If the last activity was more recent then the session
timeout warning interval, then a request is made to the server to reset the server
session timeout value. Depending on the application security configuration, if no
activity is detected, the user may be redirected to the log in page when the session
expires.

If the value of WARNING_BEFORE_TIMEOUT is less than 120 seconds, if client state saving
is used for the page, or if the session has been invalidated, the feature is disabled.
The session timeout value is taken directly from the session.

The following example shows configuration of the warning dialog to display at 120
seconds before the timeout of the session.

<context-param>
 <param-name>oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_
 TIMEOUT</param-name>
 <param-value>120</param-value>
</context-param>

The default value of this parameter is 120 seconds. Additionally, to prevent notification
of the user too frequently when the session time-out is set too short, the actual value
of WARNING_BEFORE_TIMEOUT is determined dynamically, where the session time-out
must be more than 2 minutes or the feature is disabled.

Appendix A
Configuration in web.xml

A-16

Note:

The WARNING_BEFORE_TIMEOUT (expressed in seconds) should be set to less
than the session-timeout (expressed in minutes)".

JSP Tag Execution in HTTP Streaming
Use the oracle.adf.view.rich.tag.SKIP_EXECUTION parameter to enable or disable
JSP tag execution in HTTP streaming requests during the processing of JSP pages.
Processing of facelets is not included.

By default, this parameter is set to streaming, where JSP tag execution is skipped
during streaming requests. You can set the parameter to off to execute JSP tags per
each request in cases where tag execution is needed by streaming requests.

Clean URLs
Historically, ADF Faces has used URL parameters to hold information, such as
window IDs and state. However, URL parameters can prevent search engines from
recognizing when URLs are actually the same, and therefore interfere with analytics.
URL parameters can also interfere with bookmarking.

By default, ADF Faces removes these internally used dynamic URL parameters using
the HTML5 History Management API. If that API is unavailable, then session cookies
are used.

You can also manually configure how URL parameters are removed using the context
parameter oracle.adf.view.rich.prettyURL.OPTIONS. Set the parameter to off so
that no parameters are removed. Set the parameter to useHistoryApi to only use the
HTML5 History Management API. If a browser does not support this API, then no
parameters will be removed. Set the parameter to useCookies to use session cookies
to remove parameters. If the browser does not support cookies, then no parameters
will be removed.

Page Loading Splash Screen
Use the oracle.adf.view.rich.SPLASH_SCREEN parameter to enable or disable the
splash screen that by default, displays as the page is loading, as shown in Figure A-1.

Figure A-1 ADF Faces Splash Screen

Appendix A
Configuration in web.xml

A-17

By default, this parameter is set to on. You can set it to off, so that the splash screen
will not display.

Graph and Gauge Image Format
Add the oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT parameter to change the
default output format to HTML5 for graph and gauge components.

<context-param>
 <param-name>oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT</param-name>
 <param-value>HTML5</param-value>
</context-param>

By default, this parameter is added to all new applications. Valid values are HTML5
(default) and FLASH.

Geometry Management for Layout and Table Components
Add the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter when you
want to globally control how certain layout components and tables handle being
stretched.

Whether or not certain layout components (af:decorativeBox, af:panelAccordion,
af:panelDashboard, af:panelStretchLayout, af:panelSplitter, af:panelTabbed)
can be stretched is based on the value of the dimensionsFrom attribute. The default
setting for these components is parent, which means the size of the component is
determined in the following order:

• From the inlineStyle attribute.

• If no value exists for inlineStyle, then the size is determined by the parent
container (that is, the component will stretch).

• If the parent container is not configured or not able to stretch its children, the size
will be determined by the skin.

However, if you always want these components to use auto as the value for the
dimensionsFrom attribute (that is, the component stretches if the parent component
allows stretching of its child, otherwise the size of the component is based on its child
components), you can set the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS
parameter to auto. You can then use the dimensionsFrom attribute on an individual
component to override this setting.

Similarly for tables, the autoHeightRows attribute determines whether or not the table
will stretch. By default it is set to -1, which means the table size is based on the
number of rows fetched. However, if the
oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter is set to auto, the
table will stretch when the parent component allows stretching, and otherwise will be
the number of rows determined by the table's fetchSize attribute.

By default, the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter is
set to legacy, which means the components will use their standard default values.

Set oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter to auto when
you want both layout components and tables to always stretch when the parent
component allows stretching.

Appendix A
Configuration in web.xml

A-18

Rendering Tables Initially as Read Only
All the clickToEdit type tables are initially rendered as read only.

Setting the following web.xml param will force all clickToEdit type tables in the
application to render as read only when the table is loaded initially. Clicking on a row
will result in regular clickToEdit behavior. All tables using other editingMode types
will be unaffected.

<context-param>
 <param-
name>oracle.adf.view.rich.table.clickToEdit.initialRender.readOnly</param-
name>
 <param-value>true</param-value>
</context-param>

Scrollbar Behavior in Tables
When you configure your table to use scrolling, in iOS operating systems, by default,
the scrollbars only appear when you mouseover the content. Otherwise, they remain
hidden. On other operating systems by default, the scrollbars always display. You can
use the oracle.adf.view.rich.table.scrollbarBehavior context parameter to have
all operating systems hide the scrollbars until a mouseover.

Figure A-2 shows a table whose scrollbars are hidden.

Figure A-2 Scrollbars are Hidden

Figure A-3 shows the same table when the user hovers over the table, and the
scrollbars are shown.

Appendix A
Configuration in web.xml

A-19

Figure A-3 Scrollbars are Shown

Add the oracle.adf.view.rich.table.scrollbarBehavior when you want to globally
control how the scrollbars are displayed. Set the value to overlay to have the
scrollbars hidden until a mouseover occurs. Set the value to default to always show
the scrollbars.

Note:

The oracle.adf.view.rich.table.scrollbarBehavior parameter also
accepts EL expressions for its value.

Production Project Stage
Use the javax.faces.PROJECT_STAGE context parameter to:

• Force default values if not explicitly configured by XML, and

• Generate a warning if an incorrect value is set in a production environment.

By default the parameter is set to PRODUCTION. For example:

<param-value>PRODUCTION</param-value>

At runtime you can query the Application object for the configured value by calling
Application.getProjectStage(). A warning is generated if one of the following
parameters is set to ON in Production stage:

• oracle.adf.view.rich.ASSERT_ENABLED

• oracle.adf.view.rich.automation.ENABLED (whether set in web.xml or as a System
property)

Additionally, Trinidad and ADF Faces parameters set to FALSE that generate the
warning include:

• org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT

• org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

Appendix A
Configuration in web.xml

A-20

• org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

• org.apache.myfaces.trinidad.resource.DEBUG

• <debug-output> (from trinidad-config.xml file)

Note:

An additional warning is generated if the Trinidad parameters have been set
through XML.

A warning is also generated if the
org.apache.myfaces.trinidad.CLIENT_ID_CACHING System property has
been disabled

Toggle Example Hints
The context parameter oracle.adf.view.rich.component.DEFAULT_HINT_DISPLAY is
a center switch to turn off all the hints across the input fields when set to none.

The web.xml context parameter
oracle.adf.view.rich.component.DEFAULT_HINT_DISPLAY enables you to turn off
hints across all components in the framework when set to none.

By default, the parameter is set to auto and allows the framework to decide the
presentation mode for component hint. The default behavior is to show the hint as a
note window tip on the component when it receives the focus.

The context parameter supports any EL expression returning
oracle.adf.view.rich.component.DefaultHintDisplay.

<context-param>
 <param-name>oracle.adf.view.rich.component.DEFAULT_HINT_DISPLAY</param-
name>
 <param-value>none</param-value>
</context-param>

What You May Need to Know About Other Context Parameters in
web.xml

Other optional, application-wide context parameters are:

• javax.faces.CONFIG_FILE: Specifies paths to JSF application configuration
resource files. Use a comma-separated list of application-context relative paths for
the value, as shown in the following code. Set this parameter if you use more than
one JSF configuration file in your application.

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>
 /WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml
 </param-value>
</context-param>

Appendix A
Configuration in web.xml

A-21

• javax.faces.DEFAULT_SUFFIX: Specifies a file extension (suffix) for JSP pages
that contain JSF components. The default value is .jsp.

Note:

This parameter value is ignored when you use prefix mapping for the
JSF servlet (for example, /faces), which is done by default for you.

• javax.faces.LIFECYCLE_ID: Specifies a lifecycle identifier other than the default
set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_LIFECYCLE
constant.

Caution:

Setting LIFECYCLE_ID to any other value will break ADF Faces.

Configuration in faces-config.xml
The faces-config.xml file contains the configurations for a web application built using
JSF. This file allows you to configure the ADF Faces application, managed beans,
convertors, validators, and navigation.

The JSF configuration file is where you register a JSF application's resources such as
custom validators and managed beans, and define all the page-to-page navigation
rules. While an application can have any JSF configuration file name, typically the file
name is the faces-config.xml file. Small applications usually have one faces-
config.xml file.

When you use ADF Faces components in your application, JDeveloper automatically
adds the necessary configuration elements for you into faces-config.xml. For
information about the faces-config.xml file, see the Java EE 6 tutorial (http://
download.oracle.com/javaee/index.html).

How to Configure for ADF Faces in faces-config.xml
In JDeveloper, when you create a project that uses JSF technology, an empty faces-
config.xml file is created for you in the /WEB-INF directory. An empty faces-
config.xml file is also automatically added for you when you create a new application
workspace based on an application template that uses JSF technology (for example,
the Java EE Web Application template). See Creating an Application Workspace.

When you use ADF Faces components in your application, the ADF default render kit
ID must be set to oracle.adf.rich. When you insert an ADF Faces component into a
JSF page for the first time, or when you add the first JSF page to an application
workspace that was created using the Fusion template, JDeveloper automatically
inserts the default render kit for ADF components into the faces-config.xml file, as
shown in the following example.

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>

Appendix A
Configuration in faces-config.xml

A-22

http://download.oracle.com/javaee/index.html
http://download.oracle.com/javaee/index.html

 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

Typically, you would configure the following in the faces-config.xml file:

• Application resources such as message bundles and supported locales

• Page-to-page navigation rules

• Custom validators and converters

• Managed beans for holding and processing data, handling UI events, and
performing business logic

Note:

If your application uses ADF Controller, these items are configured in the
adfc-config.xml file. See Getting Started with ADF Task Flows in
Developing Fusion Web Applications with Oracle Application Development
Framework.

In JDeveloper, you can use the declarative overview editor to modify the faces-
config.xml file. If you are familiar with the JSF configuration elements, you can use
the XML editor to edit the code directly.

To edit faces-config.xml:

1. In the Applications window, double-click faces-config.xml to open the file in the
overview editor.

When you use the overview editor to add for example, managed beans and
validators declaratively, JDeveloper automatically updates the faces-config.xml
file for you.

2. To edit the XML code directly in the faces-config.xml file, click Source at the
bottom of the editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the
changes in the overview editor.

Tip:

JSF allows more than one <application> element in a single faces-
config.xml file. The Overview mode of the JSF Configuration Editor allows
you to edit only the first <application> instance in the file. For any other
<application> elements, you will need to edit the file directly using the XML
editor.

Appendix A
Configuration in faces-config.xml

A-23

Configuration in adf-config.xml
The adf-config.xml file contains application-level settings that manage the runtime
infrastructure such as failover behavior for the application modules, caching of
resource bundles, automated refresh of page bindings, and so on for your application.

The adf-config.xml file is used to configure application-wide features, like security,
caching, and change persistence. Other Oracle components also configure properties
in this file.

How to Configure ADF Faces in adf-config.xml
Before you can provide configuration for your application, you must first create the
adf-config.xml file. Then you can add configuration for any application-wide Oracle
ADF features that your application will use.

Before you begin:

If not already created, create a META-INF directory for your project.

To create and edit adf-config.xml:

1. If not already created, create a META-INF directory for your project.

2. In the Applications window, right-click the META-INF node, and choose New >
From Gallery.

3. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

Tip:

If you don't see the General node, click the All Technologies tab at the
top of the Gallery.

4. In the Create XML File dialog, enter adf-config.xml as the file name and save it
in the META-INF directory.

5. In the source editor, replace the generated code with the code shown in the
following example.

<?xml version="1.0" encoding="utf-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:ads="http://xmlns.oracle.com/adf/activedata/config">

</adf-config>

6. You can now add the elements needed for the configuration of features you wish
to use.

Defining Caching Rules for ADF Faces Caching Filter
Caching rules for the ADF Faces Caching Filter (ACF) are defined in the adf-
config.xml file, located in the web-application's.adf/META-INF directory. You must

Appendix A
Configuration in adf-config.xml

A-24

configure ACF to be in the request path for these URL matching rules. For information
about adding the ACF servlet filter definition, see ADF Faces Caching Filter.

The single root element for one or more caching rules is <caching-rules>, configured
as a child of the <adf-faces-config> element in the namespace http://
xmlns.oracle.com/adf/faces/config.

A <caching-rule> element defines each caching rule, evaluated in the order listed in
the configuration file. The following example shows the syntax for defining caching
rules in adf-config.xml.

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <caching-rules xmlns="http://xmlns.oracle.com/adf/faces/rich/acf">
 <caching-rule id="cache-rule1">
 <cache>true|false</cache>
 <duration>3600</duration>
 <agent-caching>true|false</agent-caching>
 <agent-duration>4800</agent-duration>
 <compress>true|false</compress>
 <cache-key-pattern>....</cache-key-pattern>
 <search-key>
 <key>key1</key>
 <key>key2</key>
 </search-key>
 <varyBy>
 <vary-element>
 <vary-name><cookieName>|<headerName></vary-name>
 <vary-type>cookie|header</vary-type>
 </vary-element>
 </varyBy>
 </caching-rule>
 </caching-rules>
 </adf-faces-config>
</adf-config>

Each caching rule is defined in a <caching-rule> element. An optional id attribute can
be defined to support rule location. Table A-1 describes the <caching-rule> child
elements used to define the parameters for caching or compressing the objects in the
application.

Table A-1 AFC Caching Rule Elements and Attributes

Rule Element Children Attribute Description and Value

<cache> Specifies whether or not the object must be cached in the web
cache. A value of false will ensure the object is never cached.
The default is true.

<duration> Defines the duration in seconds for which the object will be
cached in the web cache. The default is 300 seconds.

<agent-caching> Specify a value of true to use a browser cache in the absence
of a web cache.

<agent-duration> Defines the duration in seconds for which the object is cached in
a browser cache. The default is -1. If <agent-caching> is
true and <agent-duration> is not defined, then the value for
<duration> is used instead.

Appendix A
Configuration in adf-config.xml

A-25

Table A-1 (Cont.) AFC Caching Rule Elements and Attributes

Rule Element Children Attribute Description and Value

<compress> Specifies whether or not the object cached in the web cache
must be compressed. The default value is true.

<cache-key-pattern> Determines the URLs to match for the rule. One and only one
<cache-key-pattern> element must be defined for the file
extensions or the path prefix of a request URL. A <cache-key-
pattern> value starting with a "*." value will be used as a file
extension mapping, and others will be used as path prefix
mapping.

<search-key> <key> Defines the search keys tagged to the cached object. Each
<caching-rule> can define one <search-key> element with
one or more child <key> elements. The value of a search key is
used in invalidating cached content. A default <search-key> is
added at runtime for the context root of the application in order to
identify all resources related to an application.

<varyBy> <vary-
element> <vary-name>
<vary-type>

Used for versioning objects cached in the web cache. A
<varyBy> element can have one or more <vary-element>
elements that define the parameters for versioning a cached
object. Most static resources will not require this definition.

Each <vary-element> is defined by:

• <vary-name>: Valid values are cookieName for the name
of the cookie whose value the response varies on, or
headerName for the name of the HTTP header whose value
determines the version of the object that is cached in the
web cache.

• <vary-type>: Valid values are cookie or header.
The web cache automatically versions request parameters.
Multiple version of an object will be stored in web cache based
on the request parameter.

Configuring Flash as Component Output Format
By default, the application uses the output format specified for each component. For
example, applications using ADF Data Visualization components can specify a Flash
output format to display animation and interactivity effects in a web browser. If the
component output format is Flash, and the user's platform doesn't support the Flash
Player, as in Apple's iOS operating system, the output format is automatically
downgraded to the best available fallback.

You can configure the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. The valid settings include:

• downgrade: Specify that if the output format is Flash, but the Flash Player isn't
available, then downgrade to the best available fallback. The user will not be
prompted to download the Flash Player.

• disabled: Specify to disable the use of Flash across the application. All
components will be rendered in their non-Flash versions, regardless of whether or
not the Flash Player is available on the client.

Appendix A
Configuration in adf-config.xml

A-26

The following example shows the syntax for application-wide disabling of Flash in adf-
config.xml.

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <flash-player-usage>disabled</flash-player-usage>
 </adf-faces-config></adf-config>

The context parameter also supports an EL Expression value. This allows applications
to selectively enable or disable Flash for different parts of the application, or for
different users, based on their preferences.

Using Content Delivery Networks
Content Delivery Networks (CDNs) improve web application performance by providing
more efficient network access to content. Applications can use a variety of CDN
configurations to optimize the user experience. An increasingly common configuration
is to route all requests through a CDN. The CDN acts as a proxy between the client
and the application. CDN-specific configuration tools can be used to specify caching
and compression rules.

An alternate approach is to limit which requests are routed through the CDN. For
example, only requests for auxiliary resources (images, JavaScript libraries, style
sheets) might be directed to the CDN, while requests for application-generated HTML
content can be served up directly. In this case, it is necessary to convert relative
resource URIs to absolute URIs that point to the host that is serviced by the CDN.

For example, say your application-defined images are held in a local directory named
images. Your code to reference images might look something like the following
example:

<af:image source="/images/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

One way to indicate that the image should be retrieved from a CDN is to explicitly
specify an absolute URI for the image source on the CDN, as shown in the following
example:

<af:image source="http://mycdn.com/images/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

A downside of this approach is that it requires updating many locations (possibly every
image reference) in the application, duplicating the CDN base URI across pages. This
can make enabling and disabling CDN usage or switching from one CDN to another
prohibitively difficult.

An alternative approach might be to EL bind resource-related attributes, as shown in
the following example:

 <af:image source="#{preferences.baseUri}/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

Appendix A
Configuration in adf-config.xml

A-27

This approach allows the CDN base URI to be specified in a single location (for
example, in a managed bean). However, it places a burden on application developers
to use the correct EL expressions throughout their content.

Rather than repeating references to the CDN location (either directly or through EL
expressions) throughout the application, ADF Faces provides a centralized
mechanism for modifying resource URIs. This mechanism allows one or more
prefixes, or "base resource URIs", to be specified for resources. These base resource
URIs are defined in the application's adf-config.xml file, under the http://
xmlns.oracle.com/adf/rewrite/config namespace.

For example, the following code sample specifies that all png images in the images
directory should be rewritten to include the http://mycdn.com prefix.

 <adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>
 <base-resource-uri uri="http://mycdn.com/">
 <match-pattern> ^/.*/images/.*\.png$</match-pattern>
 </base-resource-uri>
 </resource-uris>
 </adf-uri-rewrite-config>

The regular expression specified by the <match-pattern> element (^/.*/images/.*
\.png$) is tested against all resource URIs rendered by the application. Any matching
URIs are transformed to include the prefix specified by the <base-resource-uri>
element's URI attribute.

One advantage of this solution is that it can be used to modify not just application-
defined resource URIs, but URIs for resources that are used by ADF Faces itself. To
simplify this task, ADF Faces exposes a small set of aliases that can be used with the
<match-alias> element in place of regular expressions.

For example, the configuration in the following example applies the http://
mycdn.com/ prefix to all images defined by ADF Faces components:

 <adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>
 <base-resource-uri uri="http://mycdn.com/">
 <match-alias>af:images</match-alias>
 </base-resource-uri>
 </resource-uris>
 </adf-uri-rewrite-config>

Unlike the regular expressions specified via <match-pattern> elements, the aliases
used with <match-alias> do not match application-defined resources. So, for
example, the af:images alias in the above configuration will cause images defined by
ADF Faces components, such as the default background images and icons that come
with ADF Faces, to be prefixed without also prefixing images that are explicitly bundled
with the application.

In addition to the af:images alias, aliases are also provided for targeting the ADF
Faces skins (style sheets), JavaScript libraries, and resource documents.

To set up URIs for a CDN:

1. Create or open the adf-config.xml file (see How to Configure ADF Faces in adf-
config.xml).

Appendix A
Configuration in adf-config.xml

A-28

2. In the overview editor, click the View navigation tab.

3. In the View page, in the Content Delivery Networks (CDN) section, click the Add
icon to add a new row to the Base Resource URIs table.

4. In the new row, in the URI column, enter the URI for the CDN. This will be used to
create the full URI for the given resource. In the Secure URI column, if needed,
enter a prefix when the URI is secure, for example, "https://"

These entries create the <base-resource-uri> element.

5. If you want to share resources across multiple web applications, and each web
application has its own context path, then the URIs to the shared copy of the
resources cannot contain any application-specific segments.

If you want to remove the application-specific context path in the rewritten URI,
select Remove output context path during rewrite.

6. Select any aliases that you want hosted by the CDN. The following aliases are
available:

• af:coreScripts: ADF Faces' JavaScript libraries (used in previous releases)

• af:documents: ADF Faces' HTML resources (for example, blank.html)

• af:images: ADF Faces' and Trinidad's image resources

• af:scripts: ADF Faces' boot and core JavaScript libraries

• af:skins: Skin-generated style sheets

These selections create the <match-alias> elements.

7. To have application-specific resources use the rewritten URI, create a pattern
using a regular express for each resource type. Click the Add icon and enter the
expression, for example:

 ^/.*/images/.*\.png$

Note:

All attribute values may be EL-bound. However, EL-bound attributes are
only evaluated once (at parse time).

These entries create the <match-pattern> elements.

The expression will be tested against rendered resource URIs. If a match is found,
the resource URI is prefixed with the URI specified by the base resource URI
created in Step 4. Multiple patterns may be defined for each base resource URI.

Tip:

Note that in order to minimize runtime overhead, the results of resource
URI rewriting are cached. To prevent excessive caching, pattern
expressions should only target static resources. Dynamically generated,
data-centric resources (for example, resources generated from
unbounded query parameter values) must not be rewritten using the
base resource URI mechanism.

Appendix A
Configuration in adf-config.xml

A-29

The values specified in the match elements are compared against all URIs that
pass through ExteralContext.encodeResourceURL(). If a URI matches, the prefix
specified in the enclosing <base-resource-uri> element is applied.

The following example shows how an application might be configured to use a
CDN.

<adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>
 <base-resource-uri uri="http://mycdn.com/"
 secure-uri="https://mycdn.com"
 output-context-path="remove">
 <match-pattern>^/.*/images/.*\.png$</match-pattern>
 <match-pattern>^/.*\.png\?ln=images$</match-pattern>
 <match-alias>af:documents</match-alias>
 <match-alias>af:scripts</match-alias>
 </base-resource-uri>
 </resource-uris>
</adf-uri-rewrite-config>

What You May Need to Know About Skin Style Sheets and CDN
While you can use the af:skins alias to rewrite skin style sheets to point to the CDN,
in cases where the CDN is configured to proxy requests back to the application server,
problems can arise if a the application is running in a clustered and/or load-balanced
environment.

Skin style sheets are generated and stored on the server that rendered the containing
page content. By routing the style sheet request through the CDN, server affinity may
be lost (for example, if the CDN lives in a different domain, resulting in a loss of the
session cookie). As a result, the style sheet request may be routed to a server that has
not yet generated the requested style sheet. In such cases, the style sheet request will
not complete successfully.

To avoid potential failures in load-balanced and/or clustered environments you should
not rewrite skin style sheet URIs in cases where cookies or session affinity may be
lost.

What You May Need to Know About Preparing Your Resource Files for CDNs
Skin style sheets and JavaScript partition files are dynamically generated at runtime. If
you need to move these resources to the CDN's server, both MyFaces Trinidad and
ADF Faces provide tools to pregenerate and save these files, so that they can then be
uploaded to a static site.

To pregenerate skin style sheets, you use the Trinidad pregeneration service. For
more information, see the Skinning chapter of the Trinidad developer's guide at
http://myfaces.apache.org/trinidad/.

To pregenerate JavaScript partition files, you use the ADF Faces JavaScript library
pregeneration service.

To use the ADF Faces JavaScript library pregeneration service:

1. Turn the service on using a system property.

• Double-click the project. In the Project Properties dialog, select Run/Debug
and click Edit.

Appendix A
Configuration in adf-config.xml

A-30

http://myfaces.apache.org/trinidad/

• Select Launch Settings, and in the Java Options field, enter -
Doracle.adf.view.rich.libraryPartitioning.PREGENERATION_SERVICE=on.

Note:

When
oracle.adf.view.rich.libraryPartitioning.PREGENERATION_SERVICE
is set to on, all other (non-pregeneration) requests in the application will
fail. Only set this to on when you will be pregenerating these files.

2. Set another system property to set a directory to hold the generated file. In the
Java Options field, enter -
Doracle.adf.view.rich.libraryPartitioning.PREGENERATION_SERVICE_TARGET
_DIRECTORY=/home/user/output

If you do not set a directory, the files will be saved to the applications's temporary
directory.

3. Send a request to the /-adf-pregenerate-js-partitions view id. This request
can take the following optional parameters to constrain the files to be generated:

• accessibility:

– screenReader

– default (this is the default)

• optimization:

– none

– simple (this is the default)

• automation:

– enabled

– disabled (this is the default)

For example, the following request generates both screenReader and default
accessibility mode variants with simple JavaScript optimizations applied and
automation disabled.

/root/faces/-adf-pregenerate-js-partitions?
accessibility=screenReader&accessibility=default

Configuration in adf-settings.xml
The adf-settings.xml file keeps the UI project configurations. This file is present in
the .adf\META-INF directory of the ADF application.

The adf-settings.xml file holds project- and library-level settings such as ADF Faces
help providers and caching/compression rules. The configuration settings for the adf-
settings.xml files are fixed and cannot be changed during and after application
deployment. There can be multiple adf-settings.xml files in an application. ADF
settings file users are responsible for merging the contents of their configurations.

Appendix A
Configuration in adf-settings.xml

A-31

How to Configure for ADF Faces in adf-settings.xml
Before you can provide configuration for your application, you must first create the
adf-settings.xml file. Then you can add the configuration for any project features
that your application will use. For information about configurations in this file, see What
You May Need to Know About Elements in adf-settings.xml.

To create and edit adf-settings.xml:

1. The adf-settings.xml file must reside in a META-INF directory. Where you create
this directory depends on how you plan on deploying the project that uses the adf-
settings.xml file.

• If you will be deploying the project with the application EAR file, create the
META-INF directory in the /application_name/.adf directory.

• If the project has a dependency on the adf-settings.xml file, and the project
may be deployed separately from the application (for example a bounded task
flow deployed in an ADF library), then create the META-INF directory in
the /src directory of your view project.

Tip:

If your application uses Oracle ADF Model, then you can create the
META-INF directory in the /adfmsrc directory.

2. In JDeveloper choose File > New > From Gallery.

3. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

Tip:

If you don't see the General node, click the All Technologies tab at the
top of the Gallery.

4. In the source editor, replace the generated code with the code shown in the
following example, using the correct settings for your web application root.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
 xmlns:wap="http://xmlns.oracle.com/adf/share/http/config" >
 <wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
 <web-app-root rootName="myroot" />
 </wap:adf-web-config>
</adf-settings>

5. You can now add the elements needed for the configuration of features you wish
to use. See What You May Need to Know About Elements in adf-settings.xml.

6. Save the file as adf-settings.xml to the META-INF directory created in Step 1.

What You May Need to Know About Elements in adf-settings.xml
The following configuration elements are supported in the adf-settings.xml file.

Appendix A
Configuration in adf-settings.xml

A-32

Help System
You register the help provider used by your help system using the following elements:

• <adf-faces-config>: A parent element that groups configurations specific to ADF
Faces.

• <prefix-characters>: The provided prefix if the help provider is to supply help
topics only for help topic IDs beginning with a certain prefix. This can be omitted if
prefixes are not used.

• <help-provider-class>: The help provider class.

• <custom-property> and <property-value>: A property element that defines the
parameters the help provider class accepts.

The following example shows an example of a registered help provider. In this case,
there is only one help provider for the application, so there is no need to include a
prefix.

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

Caching Rules
Application-specific libraries and JARs contain a variety of resources that may require
caching and/or compression of files. In the event of multiple libraries or JAR files, an
application may include one or more adf-setting.xml files that contain various
caching rules based on matching URLs. The caching rules are merged into an ordered
list at runtime. If a request for a resource matches more than one caching rule, the rule
encountered first in the list will be honored.

The ADF Faces JAR file includes default caching rules for common resource types,
such as.js, .css, and image file types. These fixed rules are defined in the adf-
settings.xml file, and cannot be changed during or after application deployment.
Application developers can define application caching rules in the adf-config.xml file
that take precedence over the rules defined in adf-settings.xml. The following
example shows the adf-settings.xml file for the ADF Faces JAR.

<adf-settings>
 <adf-faces-settings>
 <caching-rules>
 <caching-rule id="cache css">
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.css</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache js">

Appendix A
Configuration in adf-settings.xml

A-33

 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.js</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache png">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.png</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpeg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpeg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache gif">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.gif</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache html">
 <compress>true</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.html</cache-key-pattern>
 </caching-rule>
 </caching-rules>
 </adf-faces-settings>
</adf-settings>

Configuration in trinidad-config.xml
Apache MyFaces Trinidad forms the base for the ADF Faces component set. By
default, the generated trinidad-config.xml file contains only the skin family name.
However, trinidad-config.xml can be used to override the default configurations for
accessibility settings, locale settings, state management, and so on.

When you create a JSF application using ADF Faces components, you configure ADF
Faces features (such as skin family and level of page accessibility support) in the
trinidad-config.xml file. Like faces-config.xml, the trinidad-config.xml file has
a simple XML structure that enables you to define element properties using the JSF
Expression Language (EL) or static values.

Appendix A
Configuration in trinidad-config.xml

A-34

Note:

You can also configure high availability testing support by setting a system
property to use
org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION. See What
You May Need to Know About Configuring a System Property.

How to Configure ADF Faces Features in trinidad-config.xml
In JDeveloper, when you insert an ADF Faces component into a JSF page for the first
time, a starter trinidad-config.xml file is automatically created for you in the /WEB-
INF directory. The following example shows a starter trinidad-config.xml file.

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://xmlns.oracle.com/trinidad/config">

 <skin-family>alta</skin-family>
 <skin-version>v1</skin-version>

</trinidad-config>

By default, JDeveloper configures the alta skin family for a JSF application that uses
ADF Faces. You can change this to skyros, simple, or use a custom skin. If you wish
to use a custom skin, create the trinidad-skins.xml configuration file, and modify
trinidad-config.xml file to use the custom skin. For information about creating
custom skins, see Customizing the Appearance Using Styles and Skins.

Typically, you would configure the following in the trinidad-config.xml file:

• Page animation

• Level of page accessibility support

• Time zone

• Enhanced debugging output

• Oracle Help for the Web (OHW) URL

You can also register a custom file upload processor for uploading files.

In JDeveloper, you can use the XML editor to modify the trinidad-config.xml file.

To edit trinidad-config.xml:

1. In the Applications window, double-click trinidad-config.xml.

2. In the XML editor, you can directly enter code into the XML editor, or you can use
the Structure window to aid you in adding elements. To use the Structure window:

a. In the Structure window, right-click an element and choose either Insert
before or Insert after, and then choose the element you wish to insert.

b. In the Structure window, double-click the newly inserted element. In the
Properties window, enter a value or select one from a dropdown list (if
available).

In most cases you can enter either a JSF EL expression (such as
#{view.locale.language=='en' ? 'minimal' : 'alta'}) or a static value

Appendix A
Configuration in trinidad-config.xml

A-35

(for example., <debug-output>true</debug-output>). EL expressions are
dynamically reevaluated on each request, and must return an appropriate
object (for example, a boolean object).

For a list of the configuration elements you can use, see What You May Need to Know
About Elements in trinidad-config.xml.

Once you have configured the trinidad-config.xml file, you can retrieve the property
values programmatically or by using JSF EL expressions. See Using the
RequestContext EL Implicit Object.

What You May Need to Know About Elements in trinidad-config.xml
All trinidad-config.xml files must begin with a <trinidad-config> element in the
http://myfaces.apache.org/trinidad/config XML namespace. The order of
elements inside of <trinidad-config> does not matter. You can include multiple
instances of any element.

Animation Enabled
Certain ADF Faces components use animation when rendering. For example, trees
and tree tables use animation when expanding and collapsing nodes. The following
components use animation when rendering:

• Table detail facet for disclosing and undisclosing the facet

• Trees and tree table when expanding and collapsing nodes

• Menus

• Popup selectors

• Dialogs

• Note windows and message displays

The type and time of animation used is configured as part of the skin for the
application. See Customizing the Appearance Using Styles and Skins.

You can set the animation-enabled element to either true or false, or you can use
an EL expression that resolves to either true or false. By default animation-enabled
is set to true.

Performance Tip:

While using animation can improve the user experience, it can increase the
response time when an action is executed. If speed is the biggest concern,
then set this parameter to false.

Skin Family
As described in How to Configure ADF Faces Features in trinidad-config.xml,
JDeveloper by default uses the alta skin family for a JSF application that uses ADF
Faces. You can change the <skin-family> value to skyros, simple, or to a custom
skin definition. For information about creating and using custom skins, see
Customizing the Appearance Using Styles and Skins.

Appendix A
Configuration in trinidad-config.xml

A-36

You can use an EL expression for the skin family value, as shown in the following
code:

<skin-family>#{prefs.proxy.skinFamily}</skin-family>

Time Zone and Year
To set the time zone used for processing and displaying dates, and the year offset that
should be used for parsing years with only two digits, use the following elements:

• <time-zone>: By default, ADF Faces uses the time zone used by the application
server if no value is set. If needed, you can use an EL expression that evaluates to
a TimeZone object. This value is used by
org.apache.myfaces.trinidad.converter.DateTimeConverter while converting
strings to Date.

• <two-digit-year-start>: This value is specified as a Gregorian calendar year
and is used by org.apache.myfaces.trinidad.converter.DateTimeConverter to
determine 100 year range for creating dates from String with two digit years. The
resulting Date will be within two-digit-year-start and two-digit-year-start +
100. This element defaults to the year 1950 if no value is set. If needed, you can
use a static integer value, or an EL expression that evaluates to an Integer
object.

For example, if no value is specified, the 100 year range defaults to [1950, 2050],
and the date 01/01/10 is resolved to 01/01/2010.

Enhanced Debugging Output
By default, the <debug-output> element is false. ADF Faces enhances debugging
output when you set <debug-output> to true. The following features are then added to
debug output:

• Automatic indenting

• Comments identifying which component was responsible for a block of HTML

• Detection of unbalanced elements, repeated use of the same attribute in a single
element, or other malformed markup problems

• Detection of common HTML errors (for example, <form> tags inside other <form>
tags or <tr> or <td> tags used in invalid locations).

Performance Tip:

Debugging impacts performance. Set this parameter to false in a production
environment.

Page Accessibility Level
Use <accessibility-mode> to define the level of accessibility support in an
application. The supported values are:

• default: Output supports accessibility features.

Appendix A
Configuration in trinidad-config.xml

A-37

• inaccessible: Accessibility-specific constructs are removed to optimize output
size.

Language Reading Direction
By default, ADF Faces page rendering direction is based on the language being used
by the browser. You can, however, explicitly set the default page rendering direction in
the <right-to-left> element by using an EL expression that evaluates to a Boolean
object, or by using true or false, as shown in the following code:

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

Currency Code and Separators for Number Groups and Decimal Points
To set the currency code to use for formatting currency fields, and define the separator
to use for groups of numbers and the decimal point, use the following elements:

• <currency-code>: Defines the default ISO 4217 currency code used by the
org.apache.myfaces.trinidad.converter.NumberConverter class to format
currency fields that do not specify an explicit currency code in their own converter.
Use a static value or an EL expression that evaluates to a String object. For
example:

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

• <number-grouping-separator>: Defines the separator used for groups of numbers
(for example, a comma). ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. You can use a static value or an EL expression that evaluates to a
Character object. If set, this value is used by the
org.apache.myfaces.trinidad.converter.NumberConverter class while parsing
and formatting.

For example, to set the number grouping separator to a period when the German
language is used in the application, use this code:

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

• <decimal-separator>: Defines the separator (for example, a period or a comma)
used for the decimal point. ADF Faces automatically derives the separator from
the current locale, but you can override this default by specifying a value in this
element. You can use a static value or an EL expression that evaluates to a
Character object. If set, this value is used by the
org.apache.mtfaces.trinidad.converter.NumberConverter class while parsing
and formatting.

For example, to set the decimal separator to a comma when the German language
is used in the application, use this code:

Appendix A
Configuration in trinidad-config.xml

A-38

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

Formatting Dates and Numbers Locale
By default, ADF Faces and MyFaces Trinidad will format dates (including the first day
of the week) and numbers in the same locale used for localized text (which by default
is the locale of the browser). If, however, you want dates and numbers formatted in a
different locale, you can use the <formatting-locale> element, which takes an IANA-
formatted locale (for example, ja, fr-CA) as its value. The contents of this element can
also be an EL expression pointing at an IANA string or a java.util.Locale object.

Output Mode
To change the output mode ADF Faces uses, set the <output-mode> element, using
one of these values:

• default: The default page output mode (usually display).

• printable: An output mode suitable for printable pages.

• email: An output mode suitable for emailing a page's content.

Number of Active PageFlowScope Instances
By default ADF Faces sets the maximum number of active PageFlowScope instances at
any one time to 15. Use the <page-flow-scope-lifetime> element to change the
number. Unlike other elements, you must use a static value: EL expressions are not
supported.

File Uploading
While you can set file uploading parameters in web.xml, configuring file uploading
parameters in trinidad-config.xml has the advantage of supporting EL Expressions
that can be evaluated at runtime to change the value setting. The following elements
are supported:

• <uploaded-file-processor>: This parameter must be the name of a class that
implements the org.apache.myfaces.trinidad.webapp.UploadedFileProcessor
interface, responsible for processing each individual uploaded file as it comes from
the incoming request and making its contents available for the rest of the request.
Most developers will find the default UploadedFileProcessor sufficient for their
purposes, but applications that need to support uploading very large files may
improve their performance by immediately storing files in their final destination,
instead of requiring Apache Trinidad to handle temporary storage during the
request.

• <uploaded-file-max-memory>: Used to set the maximum amount of memory used
during the file upload process before the data will start writing out to disk. This
setting directly overrides the web.xml setting
org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY. This value can be hard
coded or can be explicitly configured with an EL expression that returns a Long
object.

Appendix A
Configuration in trinidad-config.xml

A-39

• <uploaded-file-max-disk-space>: Used to set the maximum amount of disk
space allowed for an uploaded file before an EOFException is thrown. This setting
directly overrides the web.xml setting
org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE. This value can be hard
coded or can be explicitly configured with an EL expression that returns a Long
object.

• <uploaded-file-max-disk-space>: Used to change the default location uploaded
files are stored. This setting directly overrides the web.xml setting
org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR. This value can be hard coded
or can be explicitly configured with an EL expression that returns a String object.

Custom File Uploaded Processor
Most applications do not need to replace the default UploadedFileProcessor instance
provided in ADF Faces, but if your application must support uploading of very large
files, or if it relies heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation.

For example, you could improve performance by using an implementation that
immediately stores files in their final destination, instead of requiring ADF Faces to
handle temporary storage during the request. To replace the default processor, specify
your custom implementation using the <uploaded-file-processor> element, as
shown in the following code:

<uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
</uploaded-file-processor>

Client-Side Validation and Conversion
ADF Faces validators and converters support client-side validation and conversion, as
well as server-side validation and conversion. ADF Faces client-side validators and
converters work the same way as the server-side validators and converters, except
that JavaScript is used on the client.

The JavaScript-enabled validators and converters run on the client when the form is
submitted; thus errors can be caught without a server roundtrip.

The <client-validation-disabled> configuration element is not supported in the rich
client version of ADF Faces. This means you cannot turn off client-side validation and
conversion in ADF Faces applications.

What You May Need to Know About Configuring a System Property
Some Trinidad configuration options are set by a system property. To support high
availability testing, use org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION.
On the system property pass a comma-delimited set of case-insensitive values
including:

• NONE: No state serialization checks are performed (the default).

• ALL: Perform all available tests (unless NONE is also specified, in which case NONE
takes precedence).

Appendix A
Configuration in trinidad-config.xml

A-40

• SESSION: Wrap the Session Map returned by the ExternalContext to test that only
serializable objects are placed in the Session Map, throwing a CastCastException
if the object is not serializable.

• TREE: Aggressively attempt to serialize the component state during state saving
and throw an exception if serialization fails.

• COMPONENT: Aggressively attempt to serialize each component subtree's state
during state saving in order to identify the problem component (slow).

• PROPERTY: Aggressively attempt to serialize each property value during state
saving in order to identify the problem property (slow).

For example, the tester would initially start off validating if the session and JSF state is
serializable by setting the system property to:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree

If a JSF state serialization is detected, the test is rerun with the component and
property flags enabled as:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all

Configuration in trinidad-skins.xml
Existing ADF Faces applications use the skin that the application was configured to
use when the application was created. The trinidad-config.xml file helps you to create
your own custom skin by extending one of the skins provided by ADF Faces.

By default, JDeveloper uses the alta skin family when you create JSF pages with
ADF Faces components. The skin family is configured in the trinidad-config.xml
file, as described in How to Configure ADF Faces Features in trinidad-config.xml. If
you wish to use a custom skin for your application, create a trinidad-skins.xml file,
which is used to register custom skins in an application.

For information about creating custom skins, see Customizing the Appearance Using
Styles and Skins.

Using the RequestContext EL Implicit Object
All the properties defined in an trinidad-config.xml file can be retrieved programatically
with the org.apache.myfaces.trinidad.context.RequestContext class. In addition, the
RequestContext object also exposes several properties of type java.util.Map that help
users write EL expressions.

In ADF Faces, you can use the EL implicit object requestContext to retrieve values
from configuration properties defined in the trinidad-config.xml file. The
requestContext implicit object, which is an instance of the
org.apache.myfaces.trinidad.context.RequestContext class, exposes several
properties of type java.util.Map, enabling you to use JSF EL expressions to retrieve
context object property values.

For example, the EL expression #{requestContext} returns the RequestContext
object itself, and the EL expression #{requestContext.skinFamily} returns the value
of the <skin-family> element from the trinidad-config.xml file.

You can also use EL expressions to bind a component attribute value to a property of
the requestContext implicit object. For example, in the EL expression that follows, the

Appendix A
Configuration in trinidad-skins.xml

A-41

<currency-code> property is bound to the currencyCode attribute value of the JSF
ConvertNumber component:

<af:outputText>
 <f:convertNumber currencyCode="#{requestContext.currencyCode}"/>
</af:outputText>

You can use the following requestContext implicit object properties:

• requestContext.accessibilityMode: Returns the value of the <accessibility-
mode> element from the trinidad-config.xml file.

• requestContext.agent: Returns an object that describes the client agent that is
making the request and that is to display the rendered output. The properties in
the agent object are:

– agentName: Canonical name of the agent browser, (for example, gecko and
ie).

– agentVersion: Version number of the agent browser.

– capabilities: Map of capability names (for example, height, width) and their
values for the current client request.

– hardwareMakeModel: Canonical name of the hardware make and model (for
example, nokia6600 and sonyericssonP900).

– platformName: Canonical name of the platform (for example, ppc, windows,
and mac).

– platformVersion: Version number of the platform.

– type: Agent type (for example, desktop, pda, and phone).

• requestContext.clientValidationDisabled: Returns the value of the <client-
validation-disabled> element from the trinidad-config.xml file.

• requestContext.colorPalette: Returns a Map that takes color palette names as
keys, and returns the color palette as a result. Each color palette is an array of
java.awt.Color objects. Provides access to four standard color palettes:

– web216: The 216 web-safe colors

– default49: A 49-color palette, with one fully transparent entry

– opaque40: A 49-color palette, without a fully transparent entry

– default80: An 80-color palette, with one fully transparent entry

• requestContext.currencyCode: Returns the value of the <currency-code>
element from the trinidad-config.xml file.

• requestContext.debugOutput: Returns the value of the <debug-output> element
from the trinidad-config.xml file.

• requestContext.decimalSeparator: Returns the value of the <decimal-
separator> element from the trinidad-config.xml file.

• requestContext.formatter: Returns a Map object that performs message
formatting with a recursive Map structure. The first key must be the message
formatting mask, and the second key is the first parameter into the message.

• requestContext.helpSystem: Returns a Map object that accepts help system
properties as keys, and returns a URL as a result. For example, the EL expression

Appendix A
Using the RequestContext EL Implicit Object

A-42

#{requestContext.helpSystem['frontPage']} returns a URL to the front page of
the help system. This assumes you have configured the <oracle-help-servlet-
url> element in the trinidad-config.xml file.

• requestContext.helpTopic: Returns a Map object that accepts topic names as
keys, and returns a URL as a result. For example, the EL expression
#{requestContext.helpTopic['foo']} returns a URL to the help topic "foo". This
assumes you have configured the <oracle-help-servlet-url> element in the
trinidad-config.xml file.

• requestContext.numberGroupingSeparator: Returns the value of the <number-
grouping-separator> element from the trinidad-config.xml file.

• requestContext.oracleHelpServletUrl: Returns the value of the <oracle-help-
servlet-url> element from the trinidad-config.xml file.

• requestContext.outputMode: Returns the value of the <output-mode> element
from the trinidad-config.xml file.

• requestContext.pageFlowScope: Returns a map of objects in the pageFlowScope
object.

• requestContext.rightToLeft: Returns the value of the <right-to-left> element
from the trinidad-config.xml file.

• requestContext.skinFamily: Returns the value of the <skin-family> element
from the trinidad-config.xml file.

• requestContext.timeZone: Returns the value of the <time-zone> element from
the trinidad-config.xml file.

• requestContext.twoDigitYearStart: Returns the value of the <two-digit-year-
start> element from the trinidad-config.xml file.

For a complete list of properties, refer to the Java API Reference for Oracle ADF
Faces for org.apache.myfaces.trinidad.context.RequestContext.

Appendix A
Using the RequestContext EL Implicit Object

A-43

Note:

One instance of the
org.apache.myfaces.trinidad.context.RequestContext class exists per
request. The RequestContext class does not extend the JSF FacesContext
class.

To retrieve a configuration property programmatically, first call the static
getCurrentInstance() method to get an instance of the RequestContext
object, and then call the method that retrieves the desired property, as
shown in the following code:

RequestContext context = RequestContext.getCurrentInstance();

// Get the time-zone property
TimeZone zone = context.getTimeZone();

// Get the right-to-left property
if (context.isRightToLeft())
{
 .
 .
 .
}

Performance Tuning
Performance tuning is the process to identify and systematically eliminate
configuration bottlenecks until the ADF Faces application meets its performance
objectives.

In addition to the performance tips related to specific configuration options, see Oracle
Application Development Framework Performance Tuning in Tuning Performance.

Appendix A
Performance Tuning

A-44

B
Message Keys for Converter and Validator
Messages

This appendix lists all the message keys and message setter methods for ADF Faces
converters and validators.
This chapter includes the following sections:

• About ADF Faces Default Messages

• Message Keys and Setter Methods

• Converter and Validator Message Keys and Setter Methods

About ADF Faces Default Messages
ADF Faces provides default text for messages that are displayed when validation or
conversion fails. They work together to minimize the chance that a user would see an
error message and maximize the chance that a user is able to enter valid values.

The FacesMessage class supports both summary and detailed messages. The
convention is that:

• The summary message is defined for the main key. The key value is of the form
classname.MSG_KEY.

• The detailed message is of the form classname.MSG_KEY_detail.

In summary, to override a detailed message you can either use the setter method on
the appropriate class or enter a replacement message in a resource bundle using the
required message key.

You can also override the message string globally instead of having to change the
message string per instance. You use a message bundle so that the custom string will
be available for all instances. For information about overriding default converter and
validator error messages globally, see How to Define Custom Validator and Converter
Messages for All Instances of a Component.

Placeholders are used in detail messages to provide relevant details such as the value
the user entered and the label of the component for which this is a message. The
general order of placeholder identifiers is:

• component label

• input value (if present)

• minimum value (if present)

• maximum value (if present)

• pattern (if present)

You can also use message bundles to set message strings globally at the application
level. See How to Define Custom Validator and Converter Messages for All Instances
of a Component.

B-1

Message Keys and Setter Methods
In ADF Faces, you can replace the default messages with your own messages by
setting the text on the xxxMessageDetail attributes of the validator or converter or by
binding those attributes to a resource bundle using an EL expression. You can also
use placeholders in the messages to include relevant details.

The following information is given for each of the ADF Faces converter and validators:

• The set method you can use to override the message.

• The message key you can use to identify your own version of the message in a
resource bundle.

• How placeholders can be used in the message to include details such as the input
values and patterns.

Converter and Validator Message Keys and Setter Methods
A number of converters and validators provided by ADF Faces help you to add
conversion and validation capabilities to ADF Faces input components in your
application.

The following subsections give the reference details for all ADF Faces converter and
validator detail messages.

af:convertColor
Converts strings representing color values to and from java.awt.Color objects. The
set of patterns used for conversion can be overriden.

Convert color: Input value cannot be converted to a color based on the patterns
set

Set method:

setMessageDetailConvert(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.ColorConverter.CONVERT_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} A color example

af:convertDateTime
Converts a string to and from java.util.Date, and the converse based on the pattern
and style set.

Appendix B
Message Keys and Setter Methods

B-2

Convert date and time: Date-time value that cannot be converted to Date object
when type is set to both

Set method:

setMessageDetailConvertBoth(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_BOTH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

Convert date: Input value cannot be converted to a Date when the pattern or
secondary pattern is set or when type is set to date

Set method:

setMessageDetailConvertDate(java.lang.String convertDateMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_DATE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

Convert date: Input value cannot be converted to a Date when the pattern or
secondary pattern is set or when type is set to time

Set method:

setMessageDetailConvertTime(java.lang.String convertTimeMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_TIME_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

af:convertNumber
Provides an extension of the standard JSF javax.faces.convert.NumberConverter
class. The converter provides all the standard functionality of the default
NumberConverter and is strict while converting to an object.

Appendix B
Converter and Validator Message Keys and Setter Methods

B-3

Convert number: Input value cannot be converted to a Number, based on the
pattern set

Set method:

setMessageDetailConvertPattern(java.lang.String convertPatternMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PATTERN_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The specified conversion pattern

Convert number: Input value cannot be converted to a Number when type is set
to number and pattern is null or not set

Set method:

setMessageDetailConvertNumber(java.lang.String convertNumberMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_NUMBER_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

Convert number: Input value cannot be converted to a Number when type is set
to currency and pattern is null or not set

Set method:

setMessageDetailConvertCurrency(java.lang.String convertCurrencyMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_CURRENCY_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

Convert number: Input value cannot be converted to a Number when type is set
to percent and pattern is null or not set

Set method:

setMessageDetailConvertPercent(java.lang.String convertPercentMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PERCENT_detail

Appendix B
Converter and Validator Message Keys and Setter Methods

B-4

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

af:validateByteLength
Validates the byte length of strings when encoded.

Validate byte length: The input value exceeds the maximum byte length

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.ByteLengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Maximum length

af:validateDateRestriction
Validates that the date is valid with some given restrictions.

Validate date restriction - Invalid Date: The input value is invalid when
invalidDate is within the list of invalidDays

Set method:

setMessageDetailInvalidDays(java.lang.String invalidDays)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.WEEKDAY_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid date

Validate date restriction - Invalid day of the week: The input value is invalid
when the value is one of the weekdays specified in invalidDaysOfWeek

Set method:

setMessageDetailInvalidDaysOfWeek(java.lang.String invalidDaysOfWeek)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.DAY_detail

Placeholders:

Appendix B
Converter and Validator Message Keys and Setter Methods

B-5

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid day of week

Validate date restriction - Invalid month: The input value is invalid when the
value has a month specified in invalidMonths

Set method:

setMessageDetailInvalidMonths(java.lang.String invalidMonths)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.MONTH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid month

af:validateDateTimeRange
Validates that the date entered is within a given range.

Validate date-time range: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed date

Validate date-time range: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed date

Appendix B
Converter and Validator Message Keys and Setter Methods

B-6

Validate date-time range: The input value is not within the range, when minimum
and maximum are set

Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed date
{3} The maximum allowed date

af:validateDoubleRange
Validates that the value entered is within a given range.

Validate double range: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed value

Validate double range: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed value

Validate double range: The input value is not within the range, when minimum and
maximum are set

Set method:

Appendix B
Converter and Validator Message Keys and Setter Methods

B-7

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed value
{3} The maximum allowed value

af:validateLength
Validates that the value entered is within a given range.

Validate length: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed length

Validate length: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed length

Validate length: The input value is not within the range, when minimum and
maximum are set

Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.NOT_IN_RANGE_detail

Appendix B
Converter and Validator Message Keys and Setter Methods

B-8

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed length
{3} The maximum allowed length

af:validateRegExp
Validates an expression using Java regular expression syntax.

Validate regular expression: The input value does not match the specified
pattern

Set method:

setMessageDetailNoMatch(java.lang.String noMatchMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.RegExpValidator.NO_MATCH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The expected pattern

Appendix B
Converter and Validator Message Keys and Setter Methods

B-9

C
Keyboard Shortcuts

This appendix describes the keyboard shortcuts that can be used instead of pointing
devices.
This appendix includes the following sections:

• About Keyboard Shortcuts

• Tab Traversal

• Shortcut Keys

• Default Cursor or Focus Placement

• The Enter Key

About Keyboard Shortcuts
Keyboard shortcuts are helpful to users as they act as an alternative to mouse. Using
keyboard shortcuts for ADF Faces applications can greatly increase your productivity,
reduce repetitive strain, and help keep you focused.

Keyboard shortcuts provide an alternative to pointing devices for navigating the page.
There are five types of keyboard shortcuts that can be provided in ADF Faces
applications:

• Tab traversal, using Tab and Shift+Tab keys: Moves the focus through UI
elements on a screen.

• Accelerator keys (hot keys): bypasses menu and page navigation, and performs
an action directly, for example, Ctrl+C for Copy.

• Access keys: Moves the focus to a specific UI element, for example, Alt+F for the
File menu.

• Default cursor/focus placement: Puts the initial focus on a component so that
keyboard users can start interacting with the page without excessive navigation.

• Enter key: Triggers an action when the cursor is in certain fields or when the focus
is on a link or button.

Keyboard shortcuts are not required for accessibility. Users should be able to navigate
to all parts and functions of the application using the Tab and arrow keys, without
using any keyboard shortcuts. Keyboard shortcuts merely provide an additional way to
access a function quickly.

It is the application developer’s responsibility to provide user assistance that identifies
the application’s available keyboard shortcuts. If the application includes an ADF
component that provides keyboard shortcuts, the developer should also provide a
popup or other help that details the keyboard shortcuts available for the ADF
component.

C-1

Tab Traversal
Tab Traversal can be defined as an order in which the elements of the ADF Faces
user interface receive keyboard focus on successive passes of the Tab key.

Tab traversal allows the user to move the focus through different UI elements on a
page.

All active elements of the page are accessible by Tab traversal, that is, by using the
Tab key to move to the next control and Shift+Tab to move to the previous control. In
most cases, when a control has focus, the action can then be initiated by pressing
Enter.

Some complex components use arrow keys to navigate after the component receives
focus using the Tab key.

Tab Traversal Sequence on a Page
Default Tab traversal order for a page is from left to right and from top to bottom, as
shown in Figure C-1. Tab traversal in a two-column form layout does not follow this
pattern, but rather follows a columnar pattern. On reaching the bottom, the tab
sequence repeats again from the top.

Figure C-1 Tab Traversal Sequence on a Page

Avoid using custom code to control the tab traversal sequence within a page, as the
resulting pages would be too difficult to manage and would create an inconsistent user
experience across pages in an application and across applications.

To improve keyboard navigation efficiency for users, you should set the
initialFocusId attribute on the document. For accessibility purposes, you should
also define a skipLinkTarget and include a skip navigation link at the top of the
page, which should navigate directly to the first content-related tab stop.

Appendix C
Tab Traversal

C-2

Tab Traversal Sequence in a Table
The Tab traversals in a table establishes a unique row-wise navigation pattern when
the user presses the Tab key to navigate sequentially from one cell to another. One of
the following actions can occur when user presses the Enter key in a table cell:

• Clicks on an editable cell and presses Enter key—the focus moves to the editable
cell below in the same column in the next row

• Clicks on an editable cell, edits the contents of the cell, and presses Enter key—
the focus completes the action in the current cell and moves to the editable cell
below in the same column in the next row

• Clicks on an editable cell and presses Tab key without editing the cell, once or
more than once, and then presses Enter key— the focus moves to the editable cell
below in the next row, in the same column where the user started pressing the tab
key.

• Clicks on an editable cell, edits the contents of the cell, and presses Tab key, once
or more than once, then presses Enter key—the focus completes the action in the
current cell where the user started pressing the Tab key. Focus traverses through
the cells sequentially per the number of times the Tab key is pressed. Then, the
focus moves to the editable cell below in the next row, in the same column where
the user started pressing the tab key

• Clicks on a non-editable cell and presses Enter key—the focus moves to the first
editable cell in the next row.

• Clicks on a non-editable cell and presses Tab key, once or more than once, then
presses Enter key—the focus traverses through the cells sequentially per the
number of times the Tab key is pressed and moves to the first editable cell in the
next row.

• Clicks on a cell that contains any command, such as menu, link, or a dialog box,
then presses Enter key—the default action for that command is executed

Note:

When user uses the Tab key to traverse through the cells sequentially and
presses Enter key to move to the next row , a navigation pattern is formed
based on the first set of Tab keys, which is followed in subsequent rows. The
navigational pattern is not recognized if arrow keys are used to navigate from
one cell to another.

Figure C-2 shows an example of a Tab and Enter keys traversal sequence in a table.

Appendix C
Tab Traversal

C-3

Figure C-2 Tab and Enter Keys Traversal Sequence in a Table

In Figure C-2, the user has navigated the rows without editing any cell in the following
way:

1. The user clicks a cell in the inputText column, giving it focus and making it
editable.

Because the Tab key is used to navigate, the inputText column is recognized as
the starting column for the navigation pattern.

2. The user presses the Tab key and moves the focus in the same row to the cell of
the * Required field column.

3. The user presses the Tab key and moves the focus in the same row to the cell of
the inputComboListOf column.

4. The user presses the Enter key and the focus shifts to the inputText column in the
next row.

Appendix C
Tab Traversal

C-4

Shortcut Keys
While it is possible to use the tab key to move from one control to the next in an ADF
Faces application, keyboard shortcuts like the accelerator and access keys are more
convenient and efficient. They help users to navigate around the web application
easily and access a menu or function quickly.

There are various keyboard shortcuts provided by ADF Faces itself, as well as
component attributes that enable you to create specific keyboard shortcuts for your
specific applications. ADF Faces categorizes shortcut keys for components into two
types, accelerator keys and access keys.

Note:

It is the application developer’s responsibility to provide user assistance to
identify the application’s available keyboard shortcuts. Because an ADF
component’s terminology can conflict with an application’s terminology, the
application should also provide a popup or other help that details the
keyboard shortcuts available for that component.

Accelerator Keys
Accelerator keys bypass menu and page navigation and perform actions directly.
Accelerator keys are sometimes also called hot keys. Common accelerator keys in a
Windows application, such as Internet Explorer, are Ctrl+O for Open and Ctrl+P for
Print.

Accelerator keys are single key presses (for example, Enter and Esc) or key
combinations (for example, Ctrl+A) that initiate actions immediately when activated. A
key combination consists of a meta key and an execution key. The meta key may be
Ctrl (Command on a Macintosh keyboard), Alt (Option on a Macintosh keyboard), or
Shift. The execution key is the key that is pressed in conjunction with the meta key.

Some ADF Faces components have their own built-in accelerator keys. For example,
Ctrl+Alt+M is the accelerator key to open the context menu. For more information
about ADF Faces components with their own built-in accelerator keys, see the
component tag documentation.

ADF Faces also enable you to provide custom accelerator keys to specific menu
items, as shown in Figure C-3. All assigned menu accelerator keys are visible when
you open the menu.

Figure C-3 Accelerator Keys in a Menu

Appendix C
Shortcut Keys

C-5

When defining accelerator keys, you must follow these guidelines:

• Because accelerator keys perform actions directly, if a user presses an accelerator
key unintentionally, data may be lost or incorrect data may be entered. To reduce
the likelihood of user error, accelerator keys should be used sparingly, and only for
frequently and repetitively used functions across applications. As a general rule,
less than 25% of available functions should have accelerator keys.

• Custom accelerator keys must not override accelerator keys that are used in the
menus of ADF Faces-supported browsers (see the browser and system
requirements for supported operating systems and browsers in ADF Faces), and
must not override accelerator keys that are used in assistive technologies such as
screen readers.

• Custom menu accelerator keys must always be key combinations. The meta key
may be Ctrl, Ctrl+Shift, or Ctrl+Alt. Ctrl+Alt is the most used metakey because Ctrl
and Ctrl+Shift are commonly used by browsers. The execution key must be a
printable character (ASCII code range 33-126).

• Custom menu accelerator keys must be unique. If a page were to have different
components that used the same accelerator, it would be difficult for the browser to
predict which actions would be executed by the accelerator at any given time.

Note:

In Windows, users have the ability to assign a Ctrl+Alt+character key
sequence to an application desktop shortcut. In this case, the key
assignment overrides browser-level key assignments. However, this feature
is rarely used, so it can generally be ignored.

Certain ADF Faces components have built-in accelerator keys that apply when the
component has focus. Of these, some are reserved for page-level components,
whereas others may be assigned to menus when the component is not used on a
page. Table C-1 lists the accelerator keys that are already built into page-level ADF
Faces components. You must not use these accelerator keys at all.

Table C-1 Accelerator Keys Reserved for Page-Level Components

Accelerator Key Used In Function

Ctrl+Alt+W

Ctrl+Shift+W

Pop-up

Messaging

Secondary Windows

Toggle focus between open
popups.

Ctrl+Alt+P Splitter Give focus to splitter bar.

The menu commands take precedence if they are on the same page as page-level
components, and have the same accelerator keys. For this reason, you must not use
the accelerator keys listed in Table C-3 and Table C-7 in menus when the related
component also appears on the same page.

Appendix C
Shortcut Keys

C-6

Access Keys
Access keys move the focus to a specific UI element, and is defined by the accessKey
property of the ADF Faces component.

Access keys relocate cursor or selection focus to specific interface components. Every
component on the page with definable focus is accessible by tab traversal (using Tab
and Shift+Tab); however, access keys provide quick focus to frequently used
components. Access keys must be unique within a page.

The result of triggering an access key depends on the associated element and the
browser:

• Buttons: In both Firefox and Internet Explorer, access keys give focus to the
component and directly execute the action. Note that in Internet Explorer 7 access
key gives focus to the component, but does not execute the action.

• Links: In Firefox, access keys give focus to the component and directly navigate
the link; in Internet Explorer, access keys give focus only to the link.

• Other Elements: In both browsers, access keys give focus only to the element. For
checkbox components, the access key toggles the checkbox selection. For option
buttons, the access key performs selection of the option button.

Note that the access key could be different for different browsers on different operating
systems. You must refer to your browser's documentation for information about access
keys and their behavior. Table C-2 lists access key combinations for button and
anchor components in some common browsers.

Table C-2 Access Key For Various Browsers

Browser Operating System Key Combination Action

Google Chrome Linux Alt + mnemonic Click

Google Chrome Mac OS X Control + Option +
mnemonic

Click

Google Chrome Windows Alt +mnemonic Click

Mozilla Firefox Linux Alt + Shift + mnemonic Click

Mozilla Firefox Mac OS X Control + mnemonic Click

Mozilla Firefox Windows Alt + Shift + mnemonic Click

Microsoft Internet
Explorer 7

Windows Alt + mnemonic Set focus

Microsoft Internet
Explorer 8

Windows Alt + mnemonic Click or set focus

Apple Safari Windows Alt + mnemonic Click

Apple Safari Mac OS X Control + Option +
mnemonic

Click

Appendix C
Shortcut Keys

C-7

Note:

• Different versions of a browser might behave differently for the same
access key. For example, using Alt + mnemonic for a button component
in Internet Explorer 7 sets focus on the component, but it triggers the
click action in Internet Explorer 8.

• In Firefox, to change the default behavior of the component when access
key combination is used, change the configuration setting for the
accessibility.accesskeycausesactivation user preference.

• Some ADF Faces components that are named as Button do not use
HTML button elements. For example, af:button uses an anchor HTML
element.

If the mnemonic is present in the text of the component label or prompt (for example, a
menu name, button label, or text box prompt), it is visible in the interface as an
underlined character, as shown in Figure C-4. If the character is not part of the text of
the label or prompt, it is not displayed in the interface.

Figure C-4 Access Key

When defining access keys, you must follow these guidelines:

• Access keys may be provided for buttons and other components with a high
frequency of use. You may provide standard cross-application key assignments for
common actions, such as Save and Cancel. Each of these buttons is assigned a
standard mnemonic letter in each language, such as S for Save or C for Cancel.

• A single letter or symbol can be assigned only to a single instance of an action on
a page. If a page had more than one instance of a button with the same
mnemonic, users would have no way of knowing which button the access key
would invoke.

• Focus change initiated through access keys must have alternative interactions,
such as direct manipulation with the mouse (for example, clicking a button).

• The mnemonic must be an alphanumeric character — not a punctuation mark or
symbol — and it must always be case-insensitive. Letters are preferred over
numbers for mnemonics.

• In Internet Explorer, application access keys override any browser-specific menu
access keys (such as Alt+F for the File menu), and this can be a usability issue for
users who habitually use browser access keys. Thus, you must not use access
keys that conflict with the top-level menu access keys in ADF Faces-supported
browsers (for example, Alt+F, E, V, A, T, or H in the English version of Internet
Explorer for Windows XP).

• You are responsible for assigning access keys to specific components. When
choosing a letter for the access key, there are a few important considerations:

Appendix C
Shortcut Keys

C-8

– Ease of learning: Although the underlined letter in the label clearly indicates to
the user which letter is the access key, you should still pick a letter that is easy
for users to remember even without scanning the label. For example, the first
letter of the label, like Y in Yes, or a letter that has a strong sound when the
label is read aloud, such as x in Next.

– Consistency: It is good practice to use the same access key for the same
command on multiple pages. However, this may not always be possible if the
same command label appears multiple times on a page, or if another, more
frequently used command on the page uses the same access key.

– Translation: When a label is translated, the same letter that is used for the
access key in English might not be present in the translation. Developers
should work with their localization department to ensure that alternative
access keys are present in component labels after translation. For example, in
English, the button Next may be assigned the mnemonic letter x, but that letter
does not appear when the label is translated to Suivantes in French.
Depending on the pool of available letters, an alternative letter, such as S or v
(or any other unassigned letter in the term Suivantes), should be assigned to
the translated term.

Note:

For translation reasons, you should specify access keys as part of the label.
For example, to render the label Cancel with the C access key, you should
use &Cancel in the textAndAccessKey property (where the ampersand
denotes the mnemonic) rather than C in the accessKey property. Product
suites must ensure that access keys are not duplicated within each
supported language and do not override access keys within each supported
browser unless explicitly intended.

Shortcut Keys for Common Components
Table C-3 lists the shortcut keys assigned to common components such as Menu,
Menu bar, Multi-Select Choice List, Multi-Select List Box, and so on.

Table C-3 Shortcut Keys Assigned to Common Components

Shortcut Key Components Function

Enter

Spacebar

All components Activate the component, or the
component element that has the
focus.

Tab

Shift+Tab

All components

Flash components like
ThematicMap, Graph, and
Gauge

Move focus to next or previous
editable component.

Ctrl+A All components Select all.

Alt+Arrow Down Multi-Select Choice List

Multi-Select List Box

Open the list.

Use arrow keys to navigate, and
press Enter or Spacebar to select.

Appendix C
Shortcut Keys

C-9

Table C-3 (Cont.) Shortcut Keys Assigned to Common Components

Shortcut Key Components Function

Ctrl+Shift+Home

Ctrl+Shift+End

Multi-Select Choice List

Multi-Select List Box

Select all items from top to current
selection, or select all items from
current selection to bottom.

Arrow Left

Arrow Right

Menu Bar

Splitter

Input Number Slider

Input Range Slider

Input Number Spinbox

Move focus to different menu on a
menu bar.

Move splitter left or right when it is
in focus.

Move slider left or right when input
number slider or input range slider
is in focus.

Increment or decrement the value
when input number spinbox is in
focus.

Arrow Up

Arrow Down

Menu

Splitter

Input Number Slider

Input Range Slider

Move focus to different menu
items in a menu.

Move splitter up or down when it is
in focus.

Move slider up or down when
input number slider or input range
slider is in focus.

Shortcut Keys for Widgets
Table C-4 lists the shortcut keys assigned to common widgets such as Disclosure
control, Hierarchy control, and Dropdown lists.

Table C-4 Shortcut Keys Assigned to Common Widgets

Shortcut Key Components Function

Enter

Arrow Down/Arrow Up

Disclosure Control Open a closed Disclosure control,
or close a open Disclosure control.

A disclosure control is an icon that
indicates that more content is
available to either be shown or
hidden.

Ctrl+Alt+R Active Data Applicable only if the page
contains active data.

Ctrl+Shift+^ Hierarchy Control If in hierarchy viewer, open the
hierarchy popup.

Alt+Down Arrow Dropdown list Open the dropdown list.

Enter Dropdown list Select the focussed option of
dropdown list.

Ctrl+A Multi-Select List Box Select all options.

Ctrl+Shift+Home Multi-Select List Box Select all options from the first
option to the current option.

Appendix C
Shortcut Keys

C-10

Table C-4 (Cont.) Shortcut Keys Assigned to Common Widgets

Shortcut Key Components Function

Ctrl+Shift+End Multi-Select List Box Select all options from the current
option to the last option.

Ctrl+Alt+M Various components Opens the context menu in
components that support it, such
as Calendar and Table.

Ctrl+Shift+W

Ctrl+Alt+W

Various components Toggle between open detachable
menus.

Ctrl+Alt+P Splitter Move focus to next Splitter
component.

Enter Splitter If the Splitter is in focus, toggles
the split section from closed to
open state.

Ctrl+Alt+F4 Tab Remove the tab, if it is removable.

Shortcut Keys for Rich Text Editor Component
Table C-5 lists shortcut keys assigned to the Rich Text Editor component. In regular
mode, all toolbar controls appear on top of the Rich Text Editor area.

Table C-5 Shortcut Keys Assigned to Rich Text Editor Component

Shortcut Key Components Function

Ctrl+B Rich Text Editor Boldface

Ctrl+I Rich Text Editor Italics

Ctrl+U Rich Text Editor Underline

Ctrl+5 Rich Text Editor Strikethrough

Ctrl+E Rich Text Editor Center alignment

Ctrl+J Rich Text Editor Full-justified alignment

Ctrl+L Rich Text Editor Left alignment

Ctrl+R Rich Text Editor Right alignment

Ctrl+H Rich Text Editor Create hyperlink

Ctrl+M Rich Text Editor Increase indentation

Ctrl+Shift+M Rich Text Editor Decrease indentation

Ctrl+Shift+H Rich Text Editor Remove hyperlink

Ctrl+Shift+L Rich Text Editor Bulleted list

Ctrl+Alt+L Rich Text Editor Numbered list

Ctrl+Shift+S Rich Text Editor Clear text styles

Ctrl+Alt+- Rich Text Editor Subscript

Ctrl+Alt++ Rich Text Editor Superscript

Ctrl+Alt+R Rich Text Editor Enable rich text editing mode

Ctrl+Alt+C Rich Text Editor Enable source code editing mode

Appendix C
Shortcut Keys

C-11

Table C-5 (Cont.) Shortcut Keys Assigned to Rich Text Editor Component

Shortcut Key Components Function

Ctrl+Y Rich Text Editor Redo

Ctrl+Z Rich Text Editor Undo

Shortcut Keys for Table, Tree, and Tree Table Components
Table C-6 lists shortcut keys assigned to Table, Tree, and Tree Table. For information
about Tables and Trees, see Using Tables, Trees, and Other Collection-Based
Components.

Table C-6 Shortcut Keys Assigned to Table, Tree, and Tree Table components

Shortcut Key Components Function

Tab

Shift+Tab

Table

Tree Table

Move focus to next or previous cell
or editable component.

In a table, navigate to the next or
previous editable content in cells in
left-to-right direction. If the focus is
on the last cell of a row in the table,
the Tab key moves focus to the first
editable cell in the next row.
Similarly, Shift + Tab moves focus to
the previous row.

Ctrl+A Table

Tree Table

Select all components, including
column headers, row headers, and
data area.

Ctrl+Alt+M Table

Tree

Tree Table

Launch context menu.

You can also launch context menu
by pressing Ctrl+Alt+B.

Ctrl+Shift+^ Tree

Tree Table

Go up one level.

Ctrl+Arrow Right Table

Tree

Tree Table

In a table, expand row.

In a tree or tree table, expand nodes
or detailStamp facets.

Ctrl+Arrow Left Table

Tree

Tree Table

In a table, collapse row.

In a tree or tree table, collapse nodes
or detailStamp facets.

Appendix C
Shortcut Keys

C-12

Table C-6 (Cont.) Shortcut Keys Assigned to Table, Tree, and Tree Table
components

Shortcut Key Components Function

Enter

Shift+Enter

Table

Tree

Tree Table

Navigate to the next editable cell or
previous editable cell of the column.

In a table, navigate to the next or
previous editable content in cells in
top-to-bottom direction.

If focus is on the column header, sort
table data in ascending order.
Pressing Enter again sorts the
column in descending order.

If the focus is on the filter cell,
perform table filtering.

In a table, if the user presses Tab
key to navigate from one cell to
another and presses Enter, move
focus to the next row to follow same
navigational pattern. See Tab
Traversal Sequence in a Table.

Arrow Left

Arrow Right

Table

Tree Table

Move focus.

In a table, when the focus is on an
editable component, move the text
cursor.

Appendix C
Shortcut Keys

C-13

Table C-6 (Cont.) Shortcut Keys Assigned to Table, Tree, and Tree Table
components

Shortcut Key Components Function

Arrow Up

Arrow Down

Table

Tree Table

Move focus.

If a row is selected, move focus to
the previous row or next row. If no
row is selected, scroll the table one
row up or down.

In a table, when the focus is on an
editable component that supports
multiple options (such as
selectOneChoice and
inputNumberSpinBox), scroll the
selected option.

If the first row is selected, move
focus to the column header.

In an editable table, if the user clicks
a cell with an editable component
(such as a text box, or a checkbox),
a button or a link component, focus
is set to the component in the cell.
To use Up and Down arrow keys for
navigation, focus should be moved
from the editable component to the
cell. The user would need to click on
the background of the same cell (or
any cell of the same row) again to
move the focus.

Note: If selectionEventDelay is
enabled, row selection during
keyboard navigation is delayed by
300ms to allow table keyboard
navigation without causing unwanted
row selection.

Ctrl+Arrow Up

Ctrl+Arrow Down

Table Move focus.

If in edit mode, submit the changes
made in the current row and navigate
to the previous row or next row.

In the click-to-edit table, when the
focus is on an editable component
that supports multiple options (such
as selectOneChoice and
inputNumberSpinBox), scroll the
selected option.

Ctrl+Arrow Left

Ctrl+Arrow Right

Table Move focus.

If in edit mode, when the focus is on
an editable component, move the
text cursor.

Shift+Arrow Left

Shift+Arrow Right

Table

Tree Table

Move focus and add to selection.

Ctrl+Shift+Arrow Left

Ctrl+Shift+Arrow Right

Table

Tree Table

Move the selected column to the left
or right.

Appendix C
Shortcut Keys

C-14

Table C-6 (Cont.) Shortcut Keys Assigned to Table, Tree, and Tree Table
components

Shortcut Key Components Function

Shift+Arrow Up

Shift+Arrow Down

Table

Tree Table

Tree

Select multiple rows.

Page Up

Page Down

Table

Tree Table

If a row is selected, scroll and select
the same row of the next or previous
page.

If no row is selected, scroll by one
page.

Alt+Page Up

Alt+Page Down

Table

Tree Table

Horizontally scroll the table to the
right or left.

Space Bar

Ctrl+Space Bar

Table

Tree

Tree Table

Select the node.

To select or remove multiple nodes,
press Ctrl+Space Bar.

Shift+Space Bar Table

Tree Table

Select multiple rows.

Esc Table

Tree Table

Remove selection.

If the focus is on the cell, exit click-
to-edit mode, revert the cell value to
original value, and return focus to the
cell. Press Esc key again to move
focus to the row header.

F2 Table

Tree Table

Activate click-to-edit mode for the
row. Press F2 again to disable cell
navigation mode.

Shortcut Keys for ADF Data Visualization Components
Table C-7 lists shortcut keys assigned to ADF Data Visualization Components
including charts, diagram, Gantt chart, hierarchy viewer components, geographic and
thematic maps, NBox, pivot table, and pivot filter bar. For information about ADF Data
Visualization Components, see Introduction to ADF Data Visualization Components.

Appendix C
Shortcut Keys

C-15

Table C-7 Shortcut Keys Assigned to ADF Data Visualization Components

Shortcut Key Components Function

Arrow Left

Arrow Right

Charts: Area, Bar, Bubble,
Combination, Funnel, Line,
Pie, Scatter, Spark

Chart legend with
horizontal orientation

List region of all Gantt chart
types

Project Gantt chart region

Scheduling Gantt chart
region

Resource Utilization Gantt
chart region

Geographic and Thematic
Map

Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Diagram

Move focus.

If the focus is on the bars in bar
charts, move focus and selection to
bar on left or bar on right.

If the focus is on a pie slice in a pie
chart, move focus and selection to
previous series in a counterclockwise
direction or next series in a clockwise
direction.

If the focus is on a dot, bubble, or bar
in an area, bubble, combination,
funnel, line, scatter, or spark chart,
move focus and selection to the
nearest bar, dot, or bubble on left or
right.

If the focus is on a series in a chart
legend, move focus to series on left
or series on right.

If the focus is on the chart region of
scheduling Gantt, the arrow key
navigation selects the previous or
next taskbar of the current row.

If the focus is on the time bucket of
resource utilization Gantt, the arrow
key navigation selects the previous
or next time bucket in the current
row.

If the focus is on the ADF geographic
map, the arrow key navigation pans
left or right by a small increment.
Press Home or End key to pan by a
large increment.

If the focus is on the node
component of ADF hierarchy viewer,
press Ctrl+Arrow to move the focus
left or right without selecting the
component.

If you are using arrow keys to
navigate cells of an editable pivot
table, each focused cell is activated
for editing before allowing you to
navigate to the next cell, making the
navigation slower. Press the Esc key
to deactivate the edit mode of the
focused cell, and navigate faster. To
edit a cell, press the F2 or Enter key.

If the focus is on the pivot table data
cell, press Ctrl+Arrow Left to jump to
the corresponding row header cell. If
the locale is bidirectional (such as
Arabic), press Ctrl+Arrow Right to
jump to the corresponding row
header cell.

Appendix C
Shortcut Keys

C-16

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

If the focus is on an NBox cell or
node, move focus and selection to
the next or previous cell, parent node
(sorted by size in descending order)
or individual node. Node navigation is
based on list navigation; down or
right moves to the next element and
up or left moves to the previous
element.

Appendix C
Shortcut Keys

C-17

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

Arrow Up

Arrow Down

Charts: Area, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line,
Scatter, Spark

Chart legend with vertical
orientation

List region of all Gantt chart
types

Project Gantt chart region

Scheduling Gantt chart
region

Resource Utilization Gantt
chart region

Geographic and Thematic
Map

Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Move focus.

If the focus is on the bars in
horizontal bar charts, move focus
and selection up or down to next or
previous bar.

If the focus is on a stacked bar chart,
move focus and selection up or down
to next or previous series on the
same bar.

If the focus is on a dot, bubble, or bar
in an area, bubble, combination,
funnel, line, scatter, or spark chart,
move focus and selection up or down
to the nearest bar, dot, or bubble.

If the focus is on a series in a chart
legend, move focus up or down to
next or previous series.

If the focus is on the chart region of
project Gantt, the arrow key
navigation selects previous or next
row.

If the focus is on the chart region
taskbar of scheduling Gantt, the
arrow key navigation selects the first
taskbar of the previous row or the
next row.

If the focus is on the time bucket of
resource utilization Gantt, the arrow
key navigation selects the time
bucket of the previous row or next
row.

If the focus is on the ADF geographic
map component, the arrow key
navigation pans up or down by a
small increment.

If the focus is on the node
component of ADF hierarchy viewer,
press Ctrl+Arrow keys to move the
focus up or down without selecting
the component.

If you are using arrow keys to
navigate cells of an editable pivot
table, each focused cell is activated
for editing before allowing you to
navigate to the next cell, making the
navigation slower. Press the Esc key
to deactivate the edit mode of the
focused cell, and navigate faster. To
edit a cell, press the F2 or Enter key.

If the focus is on the pivot table data
cell, press Ctrl+Arrow Up to jump to

Appendix C
Shortcut Keys

C-18

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

the corresponding column header
cell.

If the focus is on an NBox cell or
node, move focus and selection up or
down to the nearest cell, parent node
(sorted by size in descending order)
or individual node. Node navigation is
based on list navigation; down or
right moves to the next element and
up or left moves to the previous
element.

Page Up

Page Down

Chart legend with vertical
orientation

Chart plot area

Geographic and Thematic
Map

Hierarchy Viewer - diagram

If the focus is on a chart legend,
scroll up or down.

If the focus is on a chart plot area,
pan up or down.

If the focus is on the geographic map
component, the page key navigation
pans up or down by a large
increment.

If the focus is on the diagram of a
hierarchy viewer, press and hold to
Page Up or Page Down keys to pan
up or down. Press Shift+Page Up or
Shift+Page Down to pan left or right.
Press and hold Shift+Page Down to
pan continuously.

+ Geographic and Thematic
Map

Hierarchy Viewer - diagram

Increase zoom level.

If the focus is on the diagram of a
hierarchy viewer, press number keys
1 through 5 to zoom from 10%
through 100%. Press 0 to zoom the
diagram to fit within available space.
Press and hold to continuously
increase zoom.

- Geographic and Thematic
Map

Hierarchy Viewer - diagram

Decrease zoom level.

If the focus is on the diagram of a
hierarchy viewer, press number keys
1 through 5 to zoom from 10%
through 100%. Press 0 to zoom the
diagram to fit within available space.
Press and hold to continuously
decrease zoom.

Ctrl+Alt+M All Gantt chart types

Pivot table

Pivot filer bar

Launch context menu.

Appendix C
Shortcut Keys

C-19

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

Ctrl+Left Arrow

Ctrl+Right Arrow

Charts: Area, Bar, Bar
(Stacked), Bubble, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus to nearest bar, dot, or
bubble to the left or right of the
current selection, but do not select.

If the focus is on a pie slice in a pie
chart, move focus to previous series
in a counterclockwise direction or
next series in a clockwise direction,
but do not select.

If the focus is on a series in a
stacked bar chart, move focus to
nearest series to the left or right of
the selected series, but do not select.

If the focus is on an NBox node,
move focus without selection.

Ctrl+Up Arrow

Ctrl+Down Arrow

Charts: Area, Bar, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line,
Scatter, Spark

NBox

Move focus and to nearest bar, dot,
or bubble above or below the current
selection, but do not select.

If the focus is on a series in a
stacked bar chart, move focus to
nearest series above or below the
selected series, but do not select.

If the focus is on an NBox node,
move focus without selection.

Ctrl+Spacebar Charts: Area, Bar, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus and to nearest bar, dot,
or bubble above or below the current
selection, but do not select.

If the focus is on a series in a
stacked bar chart, move focus to
nearest series above or below the
selected series, but do not select.

If the focus is on an NBox node,
select or multi-select.

Shift+Left Arrow

Shift+Right Arrow

Charts: Area, Bar, Bubble,
Combination, Funnel,
Horizontal Bar, Line, Pie,
Scatter, Spark

NBox

Move focus and multi-select nearest
bar, dot, or bubble to the left or right
of the current selection.

If the focus is on a pie slice in a pie
chart, move focus and multi-select
previous series in a counterclockwise
direction or next series in a clockwise
direction.

If the focus is on a series in a
stacked bar chart, move focus and
multi-select the nearest series to the
left or right of the selected series.

Move focus and multi-select nearest
NBox node left or right.

Appendix C
Shortcut Keys

C-20

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

Shift+Up Arrow

Shift+Down Arrow

Charts: Area, Bar
(Stacked), Bubble,
Combination, Funnel,
Horizontal Bar, Line,
Scatter, Spark

NBox

Move focus and multi-select nearest
bar, dot, or bubble above or below
the current selection.

Move focus and multi-select the
nearest NBox node up or down.

Home Hierarchy Viewer - nodes Move focus to first node in the
current level.

End Hierarchy Viewer - nodes Move focus to last node in the
current level.

Ctrl + Home Hierarchy Viewer - nodes Move focus and select the root node.

< Hierarchy Viewer - nodes Switches to the active node's
previous panel.

> Hierarchy Viewer - nodes Switches to the active node's next
panel.

Ctrl + Enter Hierarchy Viewer - nodes Toggle the display of the children of
the active node.

Ctrl + / Hierarchy Viewer - nodes Synchronize all nodes to display the
active node's panel.

Ctrl+Shift+^ Hierarchy Viewer - nodes Go up one level.

Ctrl+/ Hierarchy Viewer - nodes Switch content panel.

Ctrl+Alt+0 Hierarchy Viewer -
diagrams

Center the active node and zoom the
diagram to 100%.

Tab Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Move focus through elements.

From a component outside an NBox,
move focus from NBox, to legend,
and then to next component. Use
Shift+Tab to move focus to legend, to
NBox, and then to previous
component.

Esc Hierarchy Viewer - nodes

NBox

Return focus to the containing node.

If the focus is on search panel, close
the panel.

Close the Detail window, if it appears
while hovering over a node.

Drill up NBox cell or category node.

Spacebar Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

Select the active node. Press Ctrl
+Spacebar to toggle selection of the
active node, and for selecting
multiple nodes.

Enter Hierarchy Viewer - nodes

Pivot table

Pivot filter bar

NBox

Isolate and select active node. Press
Shift+Enter to toggle the state of the
node.

Drill down NBox category node.

/ Hierarchy Viewer - nodes Toggle control panel state.

Appendix C
Shortcut Keys

C-21

Table C-7 (Cont.) Shortcut Keys Assigned to ADF Data Visualization
Components

Shortcut Key Components Function

[NBox Move focus and selection to the first
node in the cell or container.

] NBox Move focus and selection from the
node to the parent container.

Ctrl+F Hierarchy Viewer - nodes If the ADF hierarchy viewer
component is configured to support
search functionality, open the search
panel.

Ctrl+Alt+1 through Ctrl+Alt
+5

Hierarchy Viewer - nodes Switch diagram layout.

Shift+Alt+Arrow keys Pivot table

Pivot filter bar

Change the layout by pivoting a row,
column, or filter layer to a new
location. Use Shift+Alt+Arrow keys to
perform the following:

• Provide visual feedback,
showing potential destination of
the pivot operation, if the header
layer is selected

• Select different destination
locations.

• Moving or swapping the selected
header layer to the specified
destination.

Some ADF Data Visualization Components provide some common functions to the
end user through menu bar, toolbar, context menu, or a built-in Task Properties dialog
box. You may choose to show, hide, or replace these functionality. If you hide or
replace any functionality, you must provide alternate keyboard accessibility to those
functions.

Shortcut Keys for Calendar Component
The Calendar component has several views: Day view, Week view, Moth view, and
List view.

Table C-8 lists shortcut keys assigned to the Calendar component.

Appendix C
Shortcut Keys

C-22

Table C-8 Shortcut Keys Assigned to Calendar Component

Shortcut Key Components Function

Tab

Shift+Tab

Calendar Move focus.

If the focus is on the calendar toolbar, move
focus through Day, Week, Month, List, Forward
button, Backward button, and Today button.

In the day view, move focus through activities of
the day.

In the week view and month view, move focus
through the Month Day header labels only. Use
Arrow keys to navigate through activities, "+n
more links", and Month Day header labels.

In the month view, if the focus is on a Month
Day header label at the end of the week, move
focus to the Month Day header label of the
following week.

In the list view, move focus to the day, and then
through the activities of the day.

Arrow Left

Arrow Right

Calendar Move focus.

In the day view, Right and Left arrows do not
move focus.

In the week view, if the focus is on an activity,
move focus to the first activity of the previous or
next day. If the previous or next days contain no
activities, move focus to the day header.

In the month view, the following interaction
occurs:

• If the focus is on a Month Day header label,
move focus to the previous or next day
label.

If the focus is on the label of the last day of
the week in the first week of the month,
Right Arrow moves focus to the label of the
first day of the week in the second week of
the month. If the focus is on the label of the
last day of the month, the Right Arrow does
nothing.

• If the focus is on an activity, move focus to
the next activity of the previous or next day.

If the previous or next day does not contain
any activities, move focus to the Month Day
label. If focus is on an activity in the last
day of a week, the Right Arrow does
nothing.

• If the focus is on a "+n more" link, move
focus to the next "+n more" links, if they
exist.

If adjacent "+n more" links do not exist,
move focus to the last activity of the day. If
the "+n more" link resides in a day at the
beginning or end of the week, the Left or
Right Arrow do nothing.

Appendix C
Shortcut Keys

C-23

Table C-8 (Cont.) Shortcut Keys Assigned to Calendar Component

Shortcut Key Components Function

Arrow Up

Arrow Down

Calendar Move focus.

In the day view, move focus through activities.
When activities conflict and appear within the
same time slot, the Down Arrow moves focus
right and the Up Arrow moves focus left.

In the week view, move focus through activities
of the day. If the focus is on the first activity of a
day, the Up Arrow moves focus to the day
header. If the focus is on the day header, the
Down Arrow moves focus to the first activity of
that day. If the day has no activities, the Down
Arrow does nothing.

In the month view, move focus through activities
in a day.

• If the focus is on the first activity in a day,
the Up Arrow moves focus to the Month
day header label.

• If the focus is on the Month Day header
label, the Up Arrow moves focus to the last
activity of the day above it.

• If the focus is on the last activity on a day in
the last week of the month, the Down
Arrow does nothing.

• If the focus is on the month header day
label in the first week of the month, the Up
Arrow does nothing.

Ctrl+Alt+M Calendar Launch context menu.

You can also launch context menu by pressing
Ctrl+Alt+B.

Note:

When using arrows to navigate through activities of a month or week, all-day
activities get focus only when the user is navigating within a day, which an
all-day activity starts on. Otherwise, all-day activities are skipped.

Default Cursor or Focus Placement
When a user opens an input form (built with ADF Faces) to enter some data, the
default cursor is placed on the most suitable component so that the user can proceed
with the help of a keyboard instead of using a mouse first. After the initial focus is set,
the user can take control on cursor position.

The default cursor puts the initial focus on a component so that keyboard users can
start interacting with the page without excessive navigation.

Focus refers to a type of selection outline that moves through the page when users
press the tab key or access keys. When the focus moves to a field where data can be

Appendix C
Default Cursor or Focus Placement

C-24

entered, a cursor appears in the field. If the field already contains data, the data is
highlighted. In addition, after using certain controls (such as a list of values (LOV) or
date-time picker), the cursor or focus placement moves to specific locations predefined
by the component.

During the loading of a standard ADF Faces page, focus appears on the first focusable
component on the page — either an editable widget or a navigation component. If
there is no focusable element on the page, focus appears on the browser address
field.

When defining default cursor and focus placement, you should follow these guidelines:

• ADF Faces applications should provide default cursor or focus placement on most
pages so that keyboard users have direct access to content areas, rather than
having to tab through UI elements at the top of the page.

• You can set focus on a different component than the default when the page is
loaded. If your page has a common starting point for data entry, you may change
default focus or cursor location so that users can start entering data without
excessive keyboard or mouse navigation. Otherwise, do not do this because it
makes it more difficult for keyboard users (particularly screen reader users) to
orient themselves after the page is loaded.

The Enter Key
The Enter key in an ADF Faces application causes a command line, form, or dialog
box to operate its default function. It is typically used to finish an input form and begin
the desired process.

The Enter key triggers an action when the cursor is in certain fields or when focus is
on a link or button. You should use the Enter key to activate a common commit button,
such as in a Login form or in a dialog.

Many components have built-in actions for the Enter key. Some examples include:

• When focus is on a link or button, the Enter key navigates the link or triggers the
action.

• When the cursor is in a query search region, quick query search, or Query-By-
Example (QBE) field, the Enter key triggers the search.

• When in a table, pressing the Enter key triggers one of the following actions:

– Clicks on an editable cell and presses Enter key—the focus moves to the
editable cell below in the same column in the next row

– Clicks on an editable cell, edits the contents of the cell, and presses Enter key
—the focus completes the action in the current cell and moves to the editable
cell below in the same column in the next row

– Clicks on an editable cell and presses Tab key without editing the cell, once or
more than once, and then presses Enter key— the focus moves to the editable
cell below in the next row, in the same column where the user started pressing
the tab key.

– Clicks on an editable cell, edits the contents of the cell, and presses Tab key,
once or more than once, then presses Enter key—the focus completes the
action in the current cell where the user started pressing the Tab key. Focus
traverses through the cells sequentially per the number of times the Tab key is

Appendix C
The Enter Key

C-25

pressed. Then, the focus moves to the editable cell below in the next row, in
the same column where the user started pressing the tab key

– Clicks on a non-editable cell and presses Enter key—the focus moves to the
first editable cell in the next row.

– Clicks on a non-editable cell and presses Tab key, once or more than once,
then presses Enter key—the focus traverses through the cells sequentially per
the number of times the Tab key is pressed and moves to the first editable cell
in the next row.

– Clicks on a cell that contains any command, such as menu, link, or a dialog
box, then presses Enter key—the default action for that command is executed

Note:

When user uses the Tab key to traverse through the cells sequentially
and presses Enter key to move to the next row , a navigation pattern is
formed based on the first set of Tab keys, which is followed in
subsequent rows. The navigational pattern is not recognized if arrow
keys are used to navigate from one cell to another.

Appendix C
The Enter Key

C-26

D
Creating Web Applications for Touch
Devices Using ADF Faces

This appendix describes how to implement web-based applications for touch devices.
This appendix includes the following sections:

• About Creating Web Applications for Touch Devices Using ADF Faces

• How ADF Faces Behaves in Mobile Browsers on Touch Devices

• Best Practices When Using ADF Faces Components in a Mobile Browser

About Creating Web Applications for Touch Devices Using
ADF Faces

Oracle JDeveloper enables developers to rapidly develop applications that run on
multiple touch devices. With the help of the ADF Faces framework, application
developers can quickly develop applications for multiple mobile platforms such as iOS,
Android, and Windows.

The ADF Faces framework is optimized to run in mobile browsers such as Safari,
Chrome, and Microsoft Edge. The framework recognizes when a mobile browser on a
touch device is requesting a page, and then delivers only the JavaScript and peer
code applicable to a mobile device. However, while a standard ADF Faces web
application will run in mobile browsers, because the user interaction is different and
because screen size is limited, when your application needs to run in a mobile
browser, you should create touch device-specific versions of the pages.

This appendix provides information on how ADF Faces works in mobile browsers on
touch devices, along with best practices for implementing web pages specifically for
touch devices.

How ADF Faces Behaves in Mobile Browsers on Touch
Devices

Oracle ADF provides specific features to enable web applications developed with ADF
Faces to run on touch-based devices. These capabilities include support for touch
gesture interactions, adaptive rendering to match mobile browsers capabilities, and
certification on common mobile browsers.

In touch devices, users touch the screen instead of clicking the mouse. ADF faces now
supports touch events too like touchstart, touchend, touchmove, touchcancel.
Advanced drag and drop, tap and hold gestures are also supported. Very basic touch
gestures like tap are mapped to mouse events but advanced support is provided for
iOS and Android platforms. ADF Faces provides peers to handle the conversion in
ADF Faces components. To better handle the conversion differences between touch
devices and desktop devices, for each component that needs one, ADF Faces

D-1

provides both a touch device-specific peer and a desktop-specific peer (for information
about peers, see About Using ADF Faces Architecture).

These peers allow the component to handle events specific to the device. For
example, the desktop peer handles the mouse over and mouse out events, while the
touch device peer handles the touch start and touch end events. The base peer
handles all common interactions. This separation provides optimized processing on
both devices.

The touch device peers provide the logic to simulate the interaction on a desktop using
touch-specific gestures. Table D-1 shows how desktop gestures are mapped to touch
device gestures.

Table D-1 Supported Mobile Browser User Gestures

Mouse
Interaction

Touch Gesture Visual State Example

Click Tap Mouse down Execute a button

Select Tap Selected Select a table row

Multi select Tap selects one, tap
selects another,
tapping a selected
object deselects it

Selected Select multiple graph bars

Drag and
drop in a
simple
interface

Finger down + drag Mouse down Drag a slider thumb or a
splitter

Drag and
drop for use
cases
requiring both
drag and
drop as well
as data tips

Finger down + short
hold + drag

Mouse down Move a task bar in a Gantt
chart

Hover to
show data tip

Finger down + hold Hover (mouseover) Show graph data tip

Hover to
show popup

Finger down + hold Hover (mouseover) Show a popup from a
calendar

Click to
dismiss a
popup

Tap outside of the
popup

Mouse click Dismiss a popup by
clicking outside of it

Line data
cursor on
graph

Finger down + hold Hover Trace along the x-axis of a
graph and at the
intersection of the y-axis,
the data value is displayed
in a tip.

Appendix D
How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-2

Table D-1 (Cont.) Supported Mobile Browser User Gestures

Mouse
Interaction

Touch Gesture Visual State Example

Right-click to
launch a
context menu

Finger down + hold or
finger down + hold +
finger up (when
gesture conflict exists
with another finger
down + hold gesture).

Finger down + hold +
finger up over an area
for Thematic Map.

Show graph or calendar
activity context menu
Context menu on finger up
examples: Graph: finger
down + hold = data tip;
finger up = context menu.

Graph (bubble): finger
down + hold + move =
drag and drop; finger up =
context menu.

Gantt (task bar): finger
down + hold = data tip;
finger down + hold + move
= drag and drop; finger up
= context menu

Pan One finger swipe
(when no conflict with
other gestures).
Otherwise, two finger
swipe

Enabled Pan map

Zoom in/out Double tap (browser
zoom). When in
maximized state,
pinch in/out can
perform zoom.

For Thematic Map,
only pinch in/out.

Enabled Zoom browser screen

Zoom graph or map

Double-click
Thematic
Map
component

Double tap Drilled Drills into an area in an
area data layer.

Hover to
show data tip
or popup in
Thematic
Map

Finger down + hold Hover (mouse-over) Show area or marker data
tip or launch popup.

Double-click
to set anchor
in the
Hierarchy
Viewer
component

Double tap When the
setAnchorListener has
a value, causes the node to
be the root of the tree.
When the value is not set,
double tap causes a
browser zoom.

Double tap a node within a
hierarchy causes it to
become the root node.

Click the
isolate icon
on the
Hierarchy
Viewer
component

Tap node, then tap
isolate icon

Panel card is isolated Tap the top of the card
and then the isolate icon
to view only that card and
any direct reports.

Appendix D
How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-3

Table D-1 (Cont.) Supported Mobile Browser User Gestures

Mouse
Interaction

Touch Gesture Visual State Example

Click the
collapse icon
on the
Hierarchy
Viewer
component

Swipe up on card Collapsed panel card Collapse a panel card

Click the
expand icon
on the
Hierarchy
Viewer
component

Swipe down on card Expanded panel card Expand a collapsed panel
card.

Hover to
show fly out
buttons on
Hierarchy
Viewer

Tap card Fly out buttons display Tap a card to display the
fly out buttons

Click right or
left arrow
buttons on
Hierarchy
Viewer
component

Swipe left or right on
card

Switch panel cards Swipe left to view address,
or swipe right to view
content.

Click
navigation
buttons to
laterally
traverse the
hierarchy

Swipe left or right on
the lateral navigation
line, or tap the arrow,
or touch and short
hold + finger up to
display the navigation
buttons

Traverse the hierarchy View more descendants of
the root node.

na Single tap the
Maximize icon

Maximizes the component

na Double-tap the
Maximize icon or
double-tab the
hierarchy viewer
background

Maximizes the component
and zooms to fit

Use circle,
square, or
polygon tool
on a map to
drag and
select a
region

Finger down, draw
shape

Selected Use finger to select an
area on a map

Use
measurement
tool on a map
to click start
point and end
point

Tap measurement
tool, finger down,
draw line

Line drawn and calculated
distance displayed

Use finger to select
measurement tool, then
tap to select point A and
draw line to point B.

Appendix D
How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-4

Table D-1 (Cont.) Supported Mobile Browser User Gestures

Mouse
Interaction

Touch Gesture Visual State Example

Use area tool
on a map to
click start
point and end
point

Tap area tool, finger
down, draw line

Line drawn and calculated
area displayed

Use finger to select area
tool, then tap to select
point A and draw line to
point B, and so on.

For further optimization, ADF Faces partitions JavaScript, so that the touch device
JavaScript is separated from the desktop JavaScript. Only the needed JavaScript is
downloaded when a page is rendered. Also, when a touch device is detected, CSS
content specific to touch devices is sent to the page. For example, on a touch device,
checkboxes are displayed for items in the shuttle components, so that the user can
easily select them. On a desktop device, the checkboxes are not displayed.

Using device-specific peers, JavaScript, and CSS allows components to function
differently on desktop and touch devices. Table D-2 shows those differences.

Table D-2 Component Differences in Mobile Browsers

Component Functionality Difference from desktop component

selectManyShuttle
and
selectOrderShuttle

Selection Select boxes are displayed that allow users to
select the item(s) to shuttle.

table Selection Users select a row by tapping it and unselect a row
by tapping it again. Multi-select is achieved simply
by tapping the rows to be selected. That is,
selecting a second row does not automatically
deselect the first row.

table Scroll Instead of scroll bars, the table component
displays a footer that allows the user to jump to
specific pages of rows.

The number of rows on a page is determined by
the fetchSize attribute.

ADF Faces dialog
framework

Windows When a command component used to launch the
dialog framework has its windowEmbedStyle
attribute set to window (to launch in a separate
window), ADF Faces overrides this value and sets
it to inlineDocument, so that the dialog is
instead launched inline within the parent window.

menu Detachable
menus

Detachable menus are not supported. The
detachable attribute is ignored.

Appendix D
How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-5

Table D-2 (Cont.) Component Differences in Mobile Browsers

Component Functionality Difference from desktop component

inlineFrame Geometry
management

On touch devices, iFrame components ignore
dimensions, and are always only as tall as their
contents. Therefore, if the inlineFrame is
stretched by its parent, the content may be
truncated, because scroll bars are not used on
touch devices.

When the inlineFrame is stretched by its parent,
40 pixels of padding and overflow are added to the
inline style.

panelBox
andshowDetailHeader

Maximize On touch devices, when showMaximize is set to
auto, a maximize icon displays, allowing the user
to maximize the component to the full browser
window. This icon will not display on desktops.

Various components Icons, buttons,
and links

Icons and buttons are larger and spaces between
links are larger to accommodate fingers

Because some touch devices do not support Flash, ADF Faces components use
HTML5 for animation transitions and the like. This standard ensures that the
components will display on all devices.

Best Practices When Using ADF Faces Components in a
Mobile Browser

To build the ADF Faces application for the touch device in an adaptive, interactive and
gesture friendly way, you must follow some best practices. This will enable a better
user experience and functionalities won’t be limited.

When you know that your application will be run on touch devices, the best practice is
to create pages specific for that device. You can then use code similar to that of the
following example to determine what device the application is being run on, and then
deliver the correct page for the device.

public boolean isMobilePlatform()
{
 RequestContext context = RequestContext.getCurrentInstance();
 Agent agent = context.getAgent();

 return
 Agent.TYPE_PDA.equals(agent.getType()) ||
 Agent.TYPE_PHONE.equals(agent.getType()) ||
 (
 Agent.AGENT_WEBKIT.equals(agent.getAgentName()) &&
 (
// iPad/iPhone/iPod touch will come in as a desktop type and an iphone platform:
 "iphone".equalsIgnoreCase(agent.getPlatformName())
)
);
}

Appendix D
Best Practices When Using ADF Faces Components in a Mobile Browser

D-6

While your touch device application can use most ADF Faces components, certain
functionality may be limited, or may be frustrating, on touch devices. Table D-3
provides best practices to follow when developing an application for touch devices.

Table D-3 Best Practices for ADF Faces Components in a Mobile Browser

Component/Functionality Best Practice

Geometry management Set the
oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS
web.xml parameter to auto.

This setting ensures that the page will flow instead of stretch.
See Geometry Management for Layout and Table Components.

Partial page navigation Using partial page navigation means that the JavaScript and
other client code will not need to be downloaded from page to
page, improving performance. See Using Partial Page
Navigation.

Navigation Provide more direct access to individual pieces of content. A
good rule is to have only one task per page, instead of using
many regions on a page, separated by splitters. For example,
instead of using a panelSplitter with a tree in the left pane to
provide navigation, provide a list-based navigation model.

ADF task flows When using ADF Task flows, use page fragments instead of full
pages. Page fragments are inserted into a page using regions,
which live in the parent document and don't require an iFrame.
If you must use full pages, then do not use the dialog framework,
and instead run them inline with the page.

For information about task flows, see "Getting Started with ADF
Task Flows" in Developing Fusion Web Applications with Oracle
Application Development Framework.

document tag You can configure the document tag to reference a large icon
(typically 129 pixels by 129 pixels). See How to Configure the
document Tag.

Handling touch events on
the richTextEditor
component

When a user clicks the editable area in the richTextEditor
component, the following happens:

• Editable area has focus
• Keyboard is activated
• On all versions of iOS, any touch event listeners added to

the document are disabled
When a user clicks outside the editable area, the following
happens:

• Editable area loses focus (blur)
• Keyboard is closed
• The cursor position is lost (and will not be retained upon

clicking back into the editable area)
• On iOS, touch event listeners are added back to the

document (on blur)
If you add any touch event listeners to the document, you must
use the AdfAgent.addBubbleEventListener() to ensure
that the touch event listeners are removed and restored properly.

richTextEditor editor
window size

Set the rows attribute. If this attribute is not specified, when in
WYSIWYG mode, the edit window will grow with the content
added.

Appendix D
Best Practices When Using ADF Faces Components in a Mobile Browser

D-7

Table D-3 (Cont.) Best Practices for ADF Faces Components in a Mobile
Browser

Component/Functionality Best Practice

Tables By default, when rendered on tablet devices, tables display a
footer that allows the user to jump to specific pages of rows.
However, when you want tables to scroll smoothly using high-
water mark scrolling to mimic scrolling on tablets, you should
change the default setting for the scrollPolicy attribute. High-
water mark scrolling closely resembles the way virtualized touch
scrolling (scrolling in both horizontal and vertical directions)
behaves on tablets. You may use this setting to address
performance problems with virtualized scrolling of table data on
tablets.

For all tables to display on a tablet device with high-water mark
scrolling enabled, you should:

• Set the scrollPolicy attribute to scroll.
For all tables to display on a tablet device with pagination
enabled, you should:

• Set the scrollPolicy attribute to auto (if the page will
only run on a tablet) or set to page (if the page may also run
on a desktop device).

• Set the autoHeightRows attribute to 0. Better, is to set the
oracle.adf.view.rich.geometry.DEFAULT_DIMENSIO
NS parameter to auto, as described for geometry
management in the first row of this table.

If these pagination conditions are not met, the table will display a
scroll bar instead of pages.

For information about table attributes, see Formatting Tables.
For information about flowing layouts and tables, see Geometry
Management for the Table, Tree, and Tree Table Components.

Appendix D
Best Practices When Using ADF Faces Components in a Mobile Browser

D-8

E
Quick Start Layout Themes

This appendix shows how each of the quick start layouts are affected when you
choose to apply themes to them. ADF Faces provides a number of components that
you can use to define the overall layout of a page.
Figure E-1 and Figure E-2 show each of the layouts with and without themes applied.
For information about themes, see Customizing the Appearance Using Styles and
Skins.

Figure E-1 Quick Start Layouts With and Without Themes

E-1

Figure E-2 Quick Start Layouts With and Without Themes

Appendix E

E-2

F
Code Samples

This appendix provides the full length code samples referenced from sections
throughout this guide.
This appendix includes the following sections:

• Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

• Samples for Chapter 29, "Using Map Components"

• Samples for Chapter 31, "Using Treemap and Sunburst Components"

• Samples for Chapter 32, "Using Diagram Components"

Samples for Chapter 4, "Using ADF Faces Client-Side
Architecture"

The adf-js-partitions.xml file is involved in the delivery of JavaScript partitions to the
client. It groups the JavaScript features in partitions.

Following are code examples for using ADF Faces architecture

The adf-js-partitions.xml File
The default ADF Faces adf-js-partitions.xml file has partitions that you can
override by creating your own partitions file. See JavaScript Library Partitioning. The
example below shows the default ADF Faces adf-js-partitions.xml file.

<?xml version="1.0" encoding="utf-8"?>

<partitions xmlns="http://xmlns.oracle.com/adf/faces/partition">

 <partition>
 <partition-name>boot</partition-name>
 <feature>AdfBootstrap</feature>
 </partition>

 <partition>
 <partition-name>core</partition-name>

 <feature>AdfCore</feature>

 <!-- Behavioral component super classes -->
 <feature>AdfUIChoose</feature>
 <feature>AdfUICollection</feature>
 <feature>AdfUICommand</feature>
 <feature>AdfUIDialog</feature>
 <feature>AdfUIDocument</feature>
 <feature>AdfUIEditableValue</feature>
 <feature>AdfUIForm</feature>
 <feature>AdfUIGo</feature>
 <feature>AdfUIInput</feature>

F-1

 <feature>AdfUIObject</feature>
 <feature>AdfUIOutput</feature>
 <feature>AdfUIPanel</feature>
 <feature>AdfUIPopup</feature>
 <feature>AdfUISelectBoolean</feature>
 <feature>AdfUISelectInput</feature>
 <feature>AdfUISelectOne</feature>
 <feature>AdfUISelectMany</feature>
 <feature>AdfUIShowDetail</feature>
 <feature>AdfUISubform</feature>
 <feature>AdfUIValue</feature>

 <!-- These are all so common that we group them with core -->
 <feature>AdfRichDocument</feature>
 <feature>AdfRichForm</feature>
 <feature>AdfRichPopup</feature>
 <feature>AdfRichSubform</feature>
 <feature>AdfRichCommandButton</feature>
 <feature>AdfRichCommandLink</feature>

 <!--
 Dialog is currently on every page for messaging. No use
 in putting these in a separate partition.
 -->
 <feature>AdfRichPanelWindow</feature>
 <feature>AdfRichDialog</feature>

 <!-- af:showPopupBehavior is so small/common, belongs in core -->
 <feature>AdfShowPopupBehavior</feature>
 </partition>

 <partition>
 <partition-name>accordion</partition-name>
 <feature>AdfRichPanelAccordion</feature>
 </partition>

 <partition>
 <partition-name>border</partition-name>
 <feature>AdfRichPanelBorderLayout</feature>
 </partition>

 <partition>
 <partition-name>box</partition-name>
 <feature>AdfRichPanelBox</feature>
 </partition>

 <partition>
 <partition-name>calendar</partition-name>
 <feature>AdfUICalendar</feature>
 <feature>AdfRichCalendar</feature>
 <feature>AdfCalendarDragSource</feature>
 <feature>AdfCalendarDropTarget</feature>
 </partition>

 <partition>
 <partition-name>collection</partition-name>
 <feature>AdfUIDecorateCollection</feature>
 <feature>AdfRichPanelCollection</feature>
 </partition>

 <partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-2

 <partition-name>color</partition-name>
 <feature>AdfRichChooseColor</feature>
 <feature>AdfRichInputColor</feature>
 </partition>

 <partition>
 <partition-name>date</partition-name>
 <feature>AdfRichChooseDate</feature>
 <feature>AdfRichInputDate</feature>
 </partition>

 <partition>
 <partition-name>declarativeComponent</partition-name>
 <feature>AdfUIInclude</feature>
 <feature>AdfUIDeclarativeComponent</feature>
 <feature>AdfRichDeclarativeComponent</feature>
 </partition>

 <partition>
 <partition-name>detail</partition-name>
 <feature>AdfRichShowDetail</feature>
 </partition>

 <partition>
 <partition-name>dnd</partition-name>
 <feature>AdfDragAndDrop</feature>
 <feature>AdfCollectionDragSource</feature>
 <feature>AdfStampedDropTarget</feature>
 <feature>AdfCollectionDropTarget</feature>
 <feature>AdfAttributeDragSource</feature>
 <feature>AdfAttributeDropTarget</feature>
 <feature>AdfComponentDragSource</feature>
 <feature>AdfDropTarget</feature>
 </partition>

 <partition>
 <partition-name>detailitem</partition-name>
 <feature>AdfRichShowDetailItem</feature>
 </partition>

 <partition>
 <partition-name>file</partition-name>
 <feature>AdfRichInputFile</feature>
 </partition>

 <partition>
 <partition-name>form</partition-name>
 <feature>AdfRichPanelFormLayout</feature>
 <feature>AdfRichPanelLabelAndMessage</feature>
 </partition>

 <partition>
 <partition-name>format</partition-name>
 <feature>AdfRichOutputFormatted</feature>
 </partition>

 <partition>
 <partition-name>frame</partition-name>
 <feature>AdfRichInlineFrame</feature>
 </partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-3

 <partition>
 <partition-name>header</partition-name>
 <feature>AdfRichPanelHeader</feature>
 <feature>AdfRichShowDetailHeader</feature>
 </partition>

 <partition>
 <partition-name>imagelink</partition-name>
 <feature>AdfRichCommandImageLink</feature>
 </partition>

 <partition>
 <partition-name>iedit</partition-name>
 <feature>AdfInlineEditing</feature>
 </partition>

 <partition>
 <partition-name>input</partition-name>
 <feature>AdfRichInputText</feature>
 <feature>AdfInsertTextBehavior</feature>
 </partition>

 <partition>
 <partition-name>label</partition-name>
 <feature>AdfRichOutputLabel</feature>
 </partition>

 <partition>
 <partition-name>list</partition-name>
 <feature>AdfRichPanelList</feature>
 </partition>

 <partition>
 <partition-name>lov</partition-name>
 <feature>AdfUIInputPopup</feature>
 <feature>AdfRichInputComboboxListOfValues</feature>
 <feature>AdfRichInputListOfValues</feature>
 </partition>

 <partition>
 <partition-name>media</partition-name>
 <feature>AdfRichMedia</feature>
 </partition>

 <partition>
 <partition-name>message</partition-name>
 <feature>AdfUIMessage</feature>
 <feature>AdfUIMessages</feature>
 <feature>AdfRichMessage</feature>
 <feature>AdfRichMessages</feature>
 </partition>

 <partition>
 <partition-name>menu</partition-name>
 <feature>AdfRichCommandMenuItem</feature>
 <feature>AdfRichGoMenuItem</feature>
 <feature>AdfRichMenuBar</feature>
 <feature>AdfRichMenu</feature>
 </partition>

 <partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-4

 <partition-name>nav</partition-name>
 <feature>AdfUINavigationPath</feature>
 <feature>AdfUINavigationLevel</feature>
 <feature>AdfRichBreadCrumbs</feature>
 <feature>AdfRichCommandNavigationItem</feature>
 <feature>AdfRichNavigationPane</feature>
 </partition>

 <partition>
 <partition-name>note</partition-name>
 <feature>AdfRichNoteWindow</feature>
 </partition>

 <partition>
 <partition-name>poll</partition-name>
 <feature>AdfUIPoll</feature>
 <feature>AdfRichPoll</feature>
 </partition>

 <partition>
 <partition-name>progress</partition-name>
 <feature>AdfUIProgress</feature>
 <feature>AdfRichProgressIndicator</feature>
 </partition>

 <partition>
 <partition-name>print</partition-name>
 <feature>AdfShowPrintablePageBehavior</feature>
 </partition>

 <partition>
 <partition-name>scrollComponentIntoView</partition-name>
 <feature>AdfScrollComponentIntoViewBehavior</feature>
 </partition>

 <partition>
 <partition-name>query</partition-name>
 <feature>AdfUIQuery</feature>
 <feature>AdfRichQuery</feature>
 <feature>AdfRichQuickQuery</feature>
 </partition>

 <partition>
 <partition-name>region</partition-name>
 <feature>AdfUIRegion</feature>
 <feature>AdfRichRegion</feature>
 </partition>

 <partition>
 <partition-name>reset</partition-name>
 <feature>AdfUIReset</feature>
 <feature>AdfRichResetButton</feature>
 </partition>

 <partition>
 <partition-name>rte</partition-name>
 <feature>AdfRichTextEditor</feature>
 <feature>AdfRichTextEditorInsertBehavior</feature>
 </partition>

 <partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-5

 <partition-name>select</partition-name>

 <feature>AdfRichSelectBooleanCheckbox</feature>
 <feature>AdfRichSelectBooleanRadio</feature>
 <feature>AdfRichSelectManyCheckbox</feature>
 <feature>AdfRichSelectOneRadio</feature>
 </partition>

 <partition>
 <partition-name>selectmanychoice</partition-name>
 <feature>AdfRichSelectManyChoice</feature>
 </partition>

 <partition>
 <partition-name>selectmanylistbox</partition-name>
 <feature>AdfRichSelectManyListbox</feature>
 </partition>

 <partition>
 <partition-name>selectonechoice</partition-name>
 <feature>AdfRichSelectOneChoice</feature>
 </partition>

 <partition>
 <partition-name>selectonelistbox</partition-name>
 <feature>AdfRichSelectOneListbox</feature>
 </partition>

 <partition>
 <partition-name>shuttle</partition-name>
 <feature>AdfUISelectOrder</feature>
 <feature>AdfRichSelectManyShuttle</feature>
 <feature>AdfRichSelectOrderShuttle</feature>
 </partition>

 <partition>
 <partition-name>slide</partition-name>
 <feature>AdfRichInputNumberSlider</feature>
 <feature>AdfRichInputRangeSlider</feature>
 </partition>

 <partition>
 <partition-name>spin</partition-name>
 <feature>AdfRichInputNumberSpinbox</feature>
 </partition>

 <partition>
 <partition-name>status</partition-name>
 <feature>AdfRichStatusIndicator</feature>
 </partition>

 <partition>
 <partition-name>stretch</partition-name>
 <feature>AdfRichDecorativeBox</feature>
 <feature>AdfRichPanelSplitter</feature>
 <feature>AdfRichPanelStretchLayout</feature>
 <feature>AdfRichPanelDashboard</feature>
 <feature>AdfPanelDashboardBehavior</feature>
 <feature>AdfDashboardDropTarget</feature>
 </partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-6

 <partition>
 <partition-name>tabbed</partition-name>
 <feature>AdfUIShowOne</feature>
 <feature>AdfRichPanelTabbed</feature>
 </partition>

 <partition>
 <partition-name>table</partition-name>
 <feature>AdfUIIterator</feature>
 <feature>AdfUITable</feature>
 <feature>AdfUITable2</feature>
 <feature>AdfUIColumn</feature>
 <feature>AdfRichColumn</feature>
 <feature>AdfRichTable</feature>
 </partition>

 <partition>
 <partition-name>toolbar</partition-name>
 <feature>AdfRichCommandToolbarButton</feature>
 <feature>AdfRichToolbar</feature>
 </partition>

 <partition>
 <partition-name>toolbox</partition-name>
 <feature>AdfRichToolbox</feature>
 </partition>

 <partition>
 <partition-name>train</partition-name>
 <feature>AdfUIProcess</feature>
 <feature>AdfRichCommandTrainStop</feature>
 <feature>AdfRichTrainButtonBar</feature>
 <feature>AdfRichTrain</feature>
 </partition>

 <partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
 </partition>

 <!--
 Some components which typically do have client-side representation,
 but small enough that we might as well download in a single partition
 in the event that any of these are needed.
 -->
 <partition>
 <partition-name>uncommon</partition-name>
 <feature>AdfRichGoButton</feature>
 <feature>AdfRichIcon</feature>
 <feature>AdfRichImage</feature>
 <feature>AdfRichOutputText</feature>
 <feature>AdfRichPanelGroupLayout</feature>
 <feature>AdfRichSeparator</feature>
 <feature>AdfRichSpacer</feature>
 <feature>AdfRichGoLink</feature>
 </partition>

 <partition>

Appendix F
Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

F-7

 <partition-name>eum</partition-name>
 <feature>AdfEndUserMonitoring</feature>
 </partition>

 <partition>
 <partition-name>ads</partition-name>
 <feature>AdfActiveDataService</feature>
 </partition>

 <partition>
 <partition-name>automation</partition-name>
 <feature>AdfAutomationTest</feature>
 </partition>

</partitions>

Samples for Chapter 29, "Using Map Components"
Using the MapProvider feature, Thematic Map can be configured. The MapProvider
APIs like oracle.adf.view.faces.bi.component.thematicMap.mapProvider.MapProvider
and orace.adf.view.faces.bi.component.thematicMap.mapProvider.LayerArea allow
the custom basemap to be configured and treated like a built-in basemap with all the
same functionalities.

Following are code examples for creating DVT map components.

Sample Code for Thematic Map Custom Base Map
When you create a custom base map for a thematic map you extend
oracle.adf.view.faces.bi.component.thematicMap.mapProvider.MapProvider. The
following is an implementation of the mapProvider class for the Canada custom base
map example:

package oracle.adfdemo.view.feature.rich.thematicMap;

import java.awt.Rectangle;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import java.net.URL;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.zip.ZipInputStream;

import javax.faces.context.FacesContext;

import oracle.adf.share.logging.ADFLogger;
import oracle.adf.view.faces.bi.component.thematicMap.mapProvider.LayerArea;

Appendix F
Samples for Chapter 29, "Using Map Components"

F-8

import oracle.adf.view.faces.bi.component.thematicMap.mapProvider.MapProvider;
import
oracle.adf.view.faces.bi.component.thematicMap.mapProvider.utils.MapProviderUtils;

/**
 * Sample MapProvider instance that translates GeoJSON data from a zip file to
create a custom Canada basemap.
 */
public class DemoMapProvider extends MapProvider {
 private static String zipFile = "/resources/thematicMap/elocation.zip";
 private static final ADFLogger _logger =
ADFLogger.createADFLogger(DemoMapProvider.class);
 private List<String> hierarchy;

 public DemoMapProvider() {
 hierarchy = new ArrayList<String>();
 hierarchy.add("states");
 }

 @Override
 public Collection<LayerArea> getLayerAreas(String layer, Locale locale) {
 String text = getGeoJsonString();
 Map geoJSON = null;
 try {
 geoJSON = (Map) DemoMapProvider.parseJsonString(text);
 } catch (IOException e) {
 _logger.severe("Could not parse geometries.", e);
 }
 return DemoMapProvider.createLayerAreas(geoJSON);
 }

 @Override
 public Collection<LayerArea> getChildAreas(String layer, Locale locale,
Collection<String> areas) {
 return new ArrayList<LayerArea>();
 }

 @Override
 public double getMaxZoomFactor() {
 return 5.0;
 }

 @Override
 public List<String> getHierarchy() {
 return hierarchy;
 }

 /**
 * Loads the geographic geometries stored in local file and returns as string
 * @return
 */
 private static String getGeoJsonString() {
 StringBuilder sb = new StringBuilder();
 BufferedReader br = null;
 ZipInputStream is = null;
 try {
 URL zipUrl =
FacesContext.getCurrentInstance().getExternalContext().getResource(zipFile);
 is = new ZipInputStream(zipUrl.openStream());
 is.getNextEntry();
 br = new BufferedReader(new InputStreamReader(is, "UTF8"));

Appendix F
Samples for Chapter 29, "Using Map Components"

F-9

 String aux = br.readLine();
 while (aux != null) {
 sb.append(aux);
 aux = br.readLine();
 }
 } catch (Exception e) {
 _logger.severe("Could not load geometries from the file " + zipFile, e);
 } finally {
 if (br != null) {
 try {
 is.close();
 br.close();
 } catch (IOException e) {
 // ignore
 }
 }
 }
 return sb.toString();
 }

 /**
 * Parses a JSON string and converts it to the correct Java object
 * @param str The JSON string to parse
 * @return
 * @throws IOException
 */
 private static Object parseJsonString(String str) throws IOException {
 if (str == null)
 return null;

 str = str.trim();

 char firstChar = str.charAt(0);
 if (firstChar == '[' || firstChar == '{') {
 // Array or Map
 // Count the number of open/close arrays or objects
 int numOpen = 0;

 // Quote handling: Count the number of open single/double quotes, except when
there is an
 // open one already. This handles nested single quotes in double quotes, and
vice versa.
 int numSingleQuotes = 0;
 int numDoubleQuotes = 0;

 // Iterate through and split by pieces
 int prevIndex = 1;
 List<String> parts = new ArrayList<String>();
 for (int i = 1; i < str.length() - 1; i++) {
 char iChar = str.charAt(i);
 if (iChar == '[' || iChar == '{')
 numOpen++;
 else if (iChar == ']' || iChar == '}')
 numOpen--;
 else if (iChar == '\'' && numDoubleQuotes % 2 == 0)
 numSingleQuotes++;
 else if (iChar == '"' && numSingleQuotes % 2 == 0)
 numDoubleQuotes++;

 // If split index, store the substring
 if (numOpen == 0 && (numSingleQuotes % 2 == 0 && numDoubleQuotes % 2 == 0)

Appendix F
Samples for Chapter 29, "Using Map Components"

F-10

&& iChar == ',') {
 parts.add(str.substring(prevIndex, i));
 prevIndex = i + 1;
 }
 }

 // Grab the last part if present
 if (prevIndex < str.length() - 1) {
 parts.add(str.substring(prevIndex, str.length() - 1));
 }

 // Decode the parts into the result
 if (firstChar == '[') {
 List ret = new ArrayList();
 for (int arrayIndex = 0; arrayIndex < parts.size(); arrayIndex++)
 ret.add(parseJsonString(parts.get(arrayIndex)));
 return ret;
 } else if (firstChar == '{') {
 Map ret = new HashMap();
 for (String part : parts) {
 part = part.trim();
 int colonIndex = part.indexOf(':');
 String mapKey = part.substring(0, colonIndex);
 mapKey = mapKey.substring(1, mapKey.length() - 1); // 1 to -1 to avoid the
quotes
 Object mapValue = parseJsonString(part.substring(colonIndex + 1,
part.length()));
 ret.put(mapKey, mapValue);
 }
 return ret;
 }
 return null;
 } else if (firstChar == '"') // String
 return str.substring(1, str.length() - 1);
 else if ("true".equals(str))
 return true;
 else if ("false".equals(str))
 return false;
 else
 return Double.parseDouble(str);
 }

 /**
 * Converts a GeoJSON object to a list of LayerArea objects
 * @param geoJSON The GeoJSON object containing this basemap layer's area geometry
data
 * @return
 */
 private static List<LayerArea> createLayerAreas(Map geoJSON) {
 List territories = Arrays.asList(MapProviderBean.territoryNames);
 HashMap<String, DemoLayerArea> areaMap = new HashMap<String, DemoLayerArea>();
 if (geoJSON != null) {
 List features = (List) geoJSON.get("features");
 int numFeatures = features.size();
 for (int j = 0; j < numFeatures; j++) {
 Map feature = (Map) features.get(j);
 Map properties = (Map) feature.get("properties");
 String label = (String) properties.get("POLYGON_NAME");
 // We just want to render canada
 if (!territories.contains(label))
 continue;

Appendix F
Samples for Chapter 29, "Using Map Components"

F-11

 Map geometry = (Map) feature.get("geometry");

 Rectangle2D labelBox = null;
 List<Double> labelBoxList = (List<Double>) feature.get("label_box");
 if (labelBoxList != null) {
 int minX = (int) (labelBoxList.get(0) / 2000);
 int minY = (int) (labelBoxList.get(1) / 2000);
 int maxX = (int) (labelBoxList.get(2) / 2000);
 int maxY = (int) (labelBoxList.get(3) / 2000);
 labelBox = new Rectangle(minX, -minY, maxX - minX, maxY - minY);
 }
 DemoLayerArea area = areaMap.get(label);
 if (area != null)
 area.setPath(area.getPath() +
DemoMapProvider.simplifyGeometries(geometry));
 else
 areaMap.put(label,
 new DemoLayerArea(label, null, label, labelBox,
DemoMapProvider.simplifyGeometries(geometry),
 null));
 }
 }

 List<LayerArea> layerAreas = new ArrayList<LayerArea>();
 for (Map.Entry<String, DemoLayerArea> entry : areaMap.entrySet())
 layerAreas.add(entry.getValue());
 return layerAreas;
 }

 /**
 * Converts and simplifies area geometries to relative path commands
 * @param geometry The map containing an area's coordinates
 * @return
 */
 private static String simplifyGeometries(Map geometry) {
 StringBuilder sb = new StringBuilder();
 String type = (String) geometry.get("type");
 List coords = (List) geometry.get("coordinates");
 int len = coords.size();
 if ("Polygon".equals(type)) {
 for (int i = 0; i < len; i++)
 sb.append(DemoMapProvider.simplifyGeometriesHelper((List) coords.get(i)));
 } else if ("MultiPolygon".equals(type)) {
 for (int i = 0; i < len; i++) {
 List nestCoords = (List) coords.get(i);
 int nestCoordsLen = nestCoords.size();
 for (int j = 0; j < nestCoordsLen; j++)
 sb.append(DemoMapProvider.simplifyGeometriesHelper((List) coords.get(j)));
 }
 }
 return sb.toString();
 }

 /**
 * Helper method for parsing a GeoJSON geometry object
 * @param coords The list of coordinates to simplify and convert to a relative
path command
 * @return
 */
 private static String simplifyGeometriesHelper(List coords) {

Appendix F
Samples for Chapter 29, "Using Map Components"

F-12

 List<Point2D> points = new ArrayList<Point2D>();
 int len = coords.size();
 // Convert coordinates to Point2D objects so we can use MapProviderUtils to
simplify area gemoetries
 // Also reduce data precision by dividing by 2000
 for (int i = 0; i < len; i += 2)
 points.add(new Point2D.Double(Math.floor((Double) coords.get(i) / 2000),
 -Math.floor((Double) coords.get(i + 1) / 2000)));
 return MapProviderUtils.convertToPath(points);
 }
}

Sample Code for Thematic Map Custom Base Map Area Layer
When you create a custom base map for a thematic map you extend
oracle.adf.view.faces.bi.component.thematicMap.mapProvider.LayerArea to get
the data that the thematic map component requires to render a dvt:areaLayer. The
following is an implementation of the layerArea class for the Canada custom base
map example:

package oracle.adfdemo.view.feature.rich.thematicMap;

import java.awt.geom.Rectangle2D;

import oracle.adf.view.faces.bi.component.thematicMap.mapProvider.LayerArea;

public class DemoLayerArea extends LayerArea {

 private String id;
 private String shortLabel;
 private String longLabel;
 private Rectangle2D labelBox;
 private String path;
 private String parent;

 public DemoLayerArea(String id, String shortLabel, String longLabel, Rectangle2D
labelBox, String path, String parent) {
 this.id = id;
 this.shortLabel = shortLabel;
 this.longLabel = longLabel;
 this.labelBox = labelBox;
 this.path = path;
 this.parent = parent;
 }

 @Override
 public String getId() {
 return id;
 }

 @Override
 public String getShortLabel() {
 return shortLabel;
 }

 @Override
 public String getLongLabel() {
 return longLabel;
 }

Appendix F
Samples for Chapter 29, "Using Map Components"

F-13

 @Override
 public Rectangle2D getLabelBox() {
 return labelBox;
 }

 @Override
 public String getPath() {
 return path;
 }

 public void setPath(String path) {
 this.path = path;
 }

 @Override
 public String getParent() {
 return parent;
 }
}

Samples for Chapter 31, "Using Treemap and Sunburst
Components"

In order to add data to the treemap or sunburst using UI-first development, create the
classes, managed beans, and methods that will create the tree model and reference
the classes, beans, or methods in JDeveloper.

Following are code examples for creating treemap and sunburst components.

Sample Code for Treemap and Sunburst Census Data Example
When you create a treemap or sunburst using UI-first development, you can use Java
classes and managed beans to define the tree node and tree model, populate the tree
with data and add additional methods as needed to configure the treemap or sunburst.

The example below shows a code sample defining the tree node in the census data
example. Note that the required settings for label, size, and color are passed in as
parameters to the tree node.

import java.awt.Color;
import java.util.ArrayList;
import java.util.List;

public class TreeNode {
 private final String m_text;
 private final Number m_size;
 private final Color m_color;
 private final List<TreeNode> m_children = new ArrayList<TreeNode>();

 public TreeNode(String text, Number size, Color color) {
 m_text = text;
 m_size = size;
 m_color = color;
 }
 public String getText() {
 return m_text;
 }

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-14

 public Number getSize() {
 return m_size;
 }
 public Color getColor() {
 return m_color;
 }
 public void addChild(TreeNode child) {
 m_children.add(child);
 }
 public void addChildren(List<TreeNode> children) {
 m_children.addAll(children);
 }
 public List<TreeNode> getChildren() {
 return m_children;
 }
 @Override
 public String toString() {
 return m_text + ": " + m_color + " " + Math.round(m_size.doubleValue());
 }
}

To supply data to the treemap or sunburst in UI-first development, add a class or
managed bean to your application that extends the tree node in the above example
and populates it with data. The class to set up the tree model must be an
implementation of the org.apache.myfaces.trinidad.model.TreeModel class. Once
the tree model is defined, create a method that implements the
org.apache.myfaces.trinidad.model.ChildPropertyTreeModel to complete the tree
model.

The example below shows a sample class that sets up the root and child node
structure, populates the child levels with data and defines the color and node sizes in
the census data example.

import java.awt.Color;

import java.util.ArrayList;
import java.util.List;

import org.apache.myfaces.trinidad.model.ChildPropertyTreeModel;
import org.apache.myfaces.trinidad.model.TreeModel;

public class CensusData {

 public static TreeModel getUnitedStatesData() {
 return getModel(ROOT);
 }

 public static TreeModel getRegionWestData() {
 return getModel(REGION_W);
 }

 public static TreeModel getRegionNortheastData() {
 return getModel(REGION_NE);
 }

 public static TreeModel getRegionMidwestData() {
 return getModel(REGION_MW);
 }

 public static TreeModel getRegionSouthData() {

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-15

 return getModel(REGION_S);
 }

 public static TreeModel getDivisionPacificData() {
 return getModel(DIVISION_P);
 }

 private static TreeModel getModel(DataItem rootItem) {
 TreeNode root = getTreeNode(rootItem);
 return new ChildPropertyTreeModel(root, "children");
 }

 private static TreeNode getTreeNode(DataItem dataItem)
 {
 // Create the node itself
 TreeNode node = new CensusTreeNode(dataItem.getName(),
 dataItem.getPopulation(),
 getColor(dataItem.getIncome(), MIN_INCOME, MAX_INCOME),
 dataItem.getIncome());

 // Create its children
 List<TreeNode> children = new ArrayList<TreeNode>();
 for(DataItem childItem : dataItem.children) {
 children.add(getTreeNode(childItem));
 }

 // Add the children and return
 node.addChildren(children);
 return node;
 }

 private static Color getColor(double value, double min, double max) {
 double percent = Math.max((value - min) / max, 0);
 if(percent > 0.5) {
 double modifier = (percent - 0.5) * 2;
 return new Color((int)(modifier*102), (int)(modifier*153), (int)(modifier*51));
 }
 else {
 double modifier = percent *2;
 return new Color((int)(modifier*204), (int)(modifier*51), 0);
 }
 }

 public static class DataItem {
 private final String name;
 private final int population;
 private final int income;
 private final List<DataItem> children;

 public DataItem(String name, int population, int income) {
 this.name = name;
 this.population = population;
 this.income = income;
 this.children = new ArrayList<DataItem>();
 }

 public void addChild(DataItem child) {
 this.children.add(child);
 }

 public String getName() {

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-16

 return name;
 }

 public int getPopulation() {
 return population;
 }

 public int getIncome() {
 return income;
 }

 public List<CensusData.DataItem> getChildren() {
 return children;
 }
 }

 private static final int MIN_INCOME = 0;
 private static final int MAX_INCOME = 70000;

 private static final DataItem ROOT = new DataItem("United States", 301461533,
51425);

 private static final DataItem REGION_NE = new DataItem("Northeast Region",
54906297, 57208);
 private static final DataItem REGION_MW = new DataItem("Midwest Region", 66336038,
49932);
 private static final DataItem REGION_S = new DataItem("South Region", 110450832,
47204);
 private static final DataItem REGION_W = new DataItem("West Region", 69768366,
56171);

 private static final DataItem DIVISION_NE = new DataItem("New England", 14315257,
61511);
 private static final DataItem DIVISION_MA = new DataItem("Middle Atlantic",
40591040, 55726);
 private static final DataItem DIVISION_ENC = new DataItem("East North Central",
46277998, 50156);
 private static final DataItem DIVISION_WNC = new DataItem("West North Central",
20058040, 49443);
 private static final DataItem DIVISION_SA = new DataItem("South Atlantic",
57805475, 50188);
 private static final DataItem DIVISION_ESC = new DataItem("East South Central",
17966553, 41130);
 private static final DataItem DIVISION_WSC = new DataItem("West South Central",
34678804, 45608);
 private static final DataItem DIVISION_M = new DataItem("Mountain", 21303294,
51504);
 private static final DataItem DIVISION_P = new DataItem("Pacific", 48465072,
58735);

 static {
 // Set up the regions
 ROOT.addChild(REGION_NE);
 ROOT.addChild(REGION_MW);
 ROOT.addChild(REGION_S);
 ROOT.addChild(REGION_W);

 // Set up the divisions
 REGION_NE.addChild(DIVISION_NE);
 REGION_NE.addChild(DIVISION_MA);
 REGION_MW.addChild(DIVISION_ENC);

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-17

 REGION_MW.addChild(DIVISION_WNC);
 REGION_S.addChild(DIVISION_SA);
 REGION_S.addChild(DIVISION_ESC);
 REGION_S.addChild(DIVISION_WSC);
 REGION_W.addChild(DIVISION_M);
 REGION_W.addChild(DIVISION_P);

 // Set up the states
 DIVISION_NE.addChild(new DataItem("Connecticut", 3494487, 67721));
 DIVISION_NE.addChild(new DataItem("Maine", 1316380, 46541));
 DIVISION_NE.addChild(new DataItem("Massachusetts", 6511176, 64496));
 DIVISION_NE.addChild(new DataItem("New Hampshire", 1315419, 63033));
 DIVISION_NE.addChild(new DataItem("Rhode Island", 1057381, 55569));
 DIVISION_NE.addChild(new DataItem("Vermont", 620414, 51284));

 DIVISION_MA.addChild(new DataItem("New Jersey", 8650548, 68981));
 DIVISION_MA.addChild(new DataItem("New York", 19423896, 55233));
 DIVISION_MA.addChild(new DataItem("Pennsylvania", 12516596, 49737));

 DIVISION_ENC.addChild(new DataItem("Indiana", 6342469, 47465));
 DIVISION_ENC.addChild(new DataItem("Illinois", 12785043, 55222));
 DIVISION_ENC.addChild(new DataItem("Michigan", 10039208, 48700));
 DIVISION_ENC.addChild(new DataItem("Ohio", 11511858, 47144));
 DIVISION_ENC.addChild(new DataItem("Wisconsin", 5599420, 51569));

 DIVISION_WNC.addChild(new DataItem("Iowa", 2978880, 48052));
 DIVISION_WNC.addChild(new DataItem("Kansas", 2777835, 48394));
 DIVISION_WNC.addChild(new DataItem("Minnesota", 5188581, 57007));
 DIVISION_WNC.addChild(new DataItem("Missouri", 5904382, 46005));
 DIVISION_WNC.addChild(new DataItem("Nebraska", 1772124, 47995));
 DIVISION_WNC.addChild(new DataItem("North Dakota", 639725, 45140));
 DIVISION_WNC.addChild(new DataItem("South Dakota", 796513, 44828));

 DIVISION_SA.addChild(new DataItem("Delaware", 863832, 57618));
 DIVISION_SA.addChild(new DataItem("District of Columbia", 588433, 56519));
 DIVISION_SA.addChild(new DataItem("Florida", 18222420, 47450));
 DIVISION_SA.addChild(new DataItem("Georgia", 9497667, 49466));
 DIVISION_SA.addChild(new DataItem("Maryland", 5637418, 69475));
 DIVISION_SA.addChild(new DataItem("North Carolina", 9045705, 45069));
 DIVISION_SA.addChild(new DataItem("South Carolina", 4416867, 43572));
 DIVISION_SA.addChild(new DataItem("Virginia", 7721730, 60316));
 DIVISION_SA.addChild(new DataItem("West Virginia", 1811403, 37356));

 DIVISION_ESC.addChild(new DataItem("Alabama", 4633360, 41216));
 DIVISION_ESC.addChild(new DataItem("Kentucky", 4252000, 41197));
 DIVISION_ESC.addChild(new DataItem("Mississippi", 2922240, 36796));
 DIVISION_ESC.addChild(new DataItem("Tennessee", 6158953, 42943));

 DIVISION_WSC.addChild(new DataItem("Arkansas", 2838143, 38542));
 DIVISION_WSC.addChild(new DataItem("Louisiana", 4411546, 42167));
 DIVISION_WSC.addChild(new DataItem("Oklahoma", 3610073, 41861));
 DIVISION_WSC.addChild(new DataItem("Texas", 23819042, 48199));

 DIVISION_M.addChild(new DataItem("Arizona", 6324865, 50296));
 DIVISION_M.addChild(new DataItem("Colorado", 4843211, 56222));
 DIVISION_M.addChild(new DataItem("Idaho", 1492573, 46183));
 DIVISION_M.addChild(new DataItem("Montana", 956257, 43089));
 DIVISION_M.addChild(new DataItem("Nevada", 2545763, 55585));
 DIVISION_M.addChild(new DataItem("New Mexico", 1964860, 42742));
 DIVISION_M.addChild(new DataItem("Utah", 2651816, 55642));
 DIVISION_M.addChild(new DataItem("Wyoming", 523949, 51990));

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-18

 DIVISION_P.addChild(new DataItem("Alaska", 683142, 64635));
 DIVISION_P.addChild(new DataItem("California", 36308527, 60392));
 DIVISION_P.addChild(new DataItem("Hawaii", 1280241, 64661));
 DIVISION_P.addChild(new DataItem("Oregon", 3727407, 49033));
 DIVISION_P.addChild(new DataItem("Washington", 6465755, 56384));
 }

 public static class CensusTreeNode extends TreeNode {
 private int income;

 public CensusTreeNode(String text, Number size, Color color, int income) {
 super(text, size, color);
 this.income = income;
 }

 public int getIncome() {
 return income;
 }
 }
}

Finally, to complete the tree model in UI-first development, add a managed bean to
your application that references the class or bean that contains the data and,
optionally, add any other methods to customize the treemap or sunburst.

The example below shows a code sample that will instantiate the census treemap and
populate it with census data. The example also includes a sample method
(convertToString) that will convert the treemap node's row data to a string for label
display.

import org.apache.myfaces.trinidad.component.UIXHierarchy;
import org.apache.myfaces.trinidad.model.RowKeySet;
import org.apache.myfaces.trinidad.model.TreeModel;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;

public class SampleTreemap {
 // Data Model Attrs
 private TreeModel currentModel;
 private final CensusData censusData = new CensusData();
 private String censusRoot = "United States";
 private UITreemap treemap;

 public TreeModel getCensusRootData() {
 return censusData.getUnitedStatesData();
 }
 public TreeModel getCensusData() {
 if ("West Region".equals(censusRoot))
 return censusData.getRegionWestData();
 else if ("South Region".equals(censusRoot))
 return censusData.getRegionSouthData();
 else if ("Midwest Region".equals(censusRoot))
 return censusData.getRegionMidwestData();
 else if ("Northeast Region".equals(censusRoot))
 return censusData.getRegionNortheastData();
 else if ("Pacific Division".equals(censusRoot))
 return censusData.getDivisionPacificData();
 else
 return censusData.getUnitedStatesData();
 }
 public TreeModel getData() {

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-19

 // Return cached data model if available
 if(currentModel != null)
 return currentModel;
 currentModel = getCensusData();
 return currentModel;
 }
 public void setCensusRoot(String censusRoot) {
 this.censusRoot = censusRoot;
 }
 public String getCensusRoot() {
 return censusRoot;
 }
 //Converts the rowKeySet into a string of node text labels.
 public static String convertToString(RowKeySet rowKeySet, UIXHierarchy hierarchy) {
 StringBuilder s = new StringBuilder();
 if (rowKeySet != null) {
 for (Object rowKey : rowKeySet) {
 TreeNode rowData = (TreeNode)hierarchy.getRowData(rowKey);
 s.append(rowData.getText()).append(", ");
 }
 // Remove the trailing comma
 if (s.length() > 0)
 s.setLength(s.length() - 2);
 }
 return s.toString();
 }
 public void setTreemap(UITreemap treemap) {
 this.treemap = treemap;
 }
 public UITreemap getTreemap() {
 return treemap;
 }
}

The code to set up the sunburst census sample is nearly identical since both
components use the same tree model. See Code Sample for Sunburst Managed Bean
for an example.

Code Sample for Sunburst Managed Bean
The following code sample instantiates the census sunburst and populates it with
census data. The example also includes a sample method (convertToString) that will
convert the sunburst node's row data to a string for label display.

import oracle.adf.view.faces.bi.component.sunburst.UISunburst;
import org.apache.myfaces.trinidad.component.UIXHierarchy;
import org.apache.myfaces.trinidad.model.RowKeySet;
import org.apache.myfaces.trinidad.model.TreeModel;

public class SunburstSample {
 // Components
 private UISunburst sunburst;
 // Attributes
 private TreeModel currentModel;
 private final CensusData censusData = new CensusData();
 private String censusRoot = "United States";

 public TreeModel getCensusRootData() {
 return censusData.getUnitedStatesData();
 }

Appendix F
Samples for Chapter 31, "Using Treemap and Sunburst Components"

F-20

 public TreeModel getCensusData() {
 if ("West Region".equals(censusRoot))
 return censusData.getRegionWestData();
 else if ("South Region".equals(censusRoot))
 return censusData.getRegionSouthData();
 else if ("Midwest Region".equals(censusRoot))
 return censusData.getRegionMidwestData();
 else if ("Northeast Region".equals(censusRoot))
 return censusData.getRegionNortheastData();
 else if ("Pacific Division".equals(censusRoot))
 return censusData.getDivisionPacificData();
 else
 return censusData.getUnitedStatesData();
 }
 public TreeModel getData() {
 // Return cached data model if available
 if(currentModel != null)
 return currentModel;
 currentModel = getCensusData();
 return currentModel;
 }
 public void setCensusRoot(String censusRoot) {
 this.censusRoot = censusRoot;
 }
 public String getCensusRoot() {
 return censusRoot;
 }
 public static String convertToString(RowKeySet rowKeySet, UIXHierarchy hierarchy) {
 StringBuilder s = new StringBuilder();
 if (rowKeySet != null) {
 for (Object rowKey : rowKeySet) {
 TreeNode rowData = (TreeNode)hierarchy.getRowData(rowKey);
 s.append(rowData.getText()).append(", ");
 }
 // Remove the trailing comma
 if (s.length() > 0)
 s.setLength(s.length() - 2);
 }
 return s.toString();
 }
 public void setSunburst(UISunburst sunburst) {
 this.sunburst = sunburst;
 }
 public UISunburst getSunburst() {
 return sunburst;
 }
}

Samples for Chapter 32, "Using Diagram Components"
The Create Diagram wizard in JDeveloper provides a default client layout that you can
use or edit to specify the layout of your diagram. The default layout is based on force-
directed graph drawing algorithms.

Following are code examples for creating diagram components using the DVT diagram
layout framework.

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-21

Code Sample for Default Client Layout
When you create a diagram using UI-first development, JDeveloper provides a default
client layout option based on force-directed graph drawing algorithms, which can be
used and edited.

var Application1DiagramLayout = function(layoutContext, optLinkLength, initialTemp) {
 this._layoutContext = layoutContext;
 this._optLinkLength = optLinkLength;
 this._initialTemp = initialTemp;
};

//pad factor for the node size
Application1DiagramLayout.PAD_FACTOR = 1.2;
//initial temperature factor - percent of ideal viewport dimension
Application1DiagramLayout.INIT_TEMP_FACTOR = .25;
//number of iterations to run
Application1DiagramLayout.ITERATIONS = 200;

/**
 * Main function that does the force directed layout (Layout entry point)
 * See algorithm in "Graph Drawing by Force-directed Placement" by Thomas M. J.
Fruchterman and Edward M. Reingold
 * @param {DvtDiagramLayoutContext} layoutContext object that defines a context for
layout call
 */
Application1DiagramLayout.forceDirectedLayout = function(layoutContext)
{
 //pretend that the layout area is just big enough to fit all the nodes
 var maxBounds = Application1DiagramLayout.getMaxNodeBounds(layoutContext);
 var nodeCount = layoutContext.getNodeCount();
 var area = nodeCount * (Application1DiagramLayout.PAD_FACTOR * maxBounds.w) *
(Application1DiagramLayout.PAD_FACTOR * maxBounds.h);
 var initialTemp = Application1DiagramLayout.INIT_TEMP_FACTOR * Math.sqrt(area);

 //optimal link length - default is just the size of an ideal grid cell
 var layoutAttrs = layoutContext.getLayoutAttributes();
 var optLinkLength = (layoutAttrs && layoutAttrs["optimalLinkLength"]) ?
parseFloat(layoutAttrs["optimalLinkLength"]) : Math.sqrt(area / nodeCount);

 //initialize and run the layout
 var layout = new Application1DiagramLayout(layoutContext, optLinkLength,
initialTemp);
 layout.layoutNodes();
 layout.layoutLinks();

 //position labels
 layout.positionNodeLabels();
 layout.positionLinkLabels();
};

/**
 * Layout nodes
 */
Application1DiagramLayout.prototype.layoutNodes = function () {
 this.initForceDirectedPositions();
 var iter = Application1DiagramLayout.ITERATIONS;
 var temp = this._initialTemp;
 for (var i = 0; i < iter; i++) {

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-22

 this.runForceDirectedIteration(temp);
 //after each iteration, decrease the temperature - we do it linearly
 temp = this._initialTemp * (1 - (i + 1)/iter);
 }
};

/**
 * Reposition nodes using force directed algorithm for a single iteration
 * @param {number} t temperature for the iteration that used to limit node
displacement
 */
Application1DiagramLayout.prototype.runForceDirectedIteration = function(t)
{
 //calculate the repulsive force between each two nodes
 var nodeCount = this._layoutContext.getNodeCount();
 for (var ni = 0; ni < nodeCount; ni++) {
 var node = this._layoutContext.getNodeByIndex(ni);
 node.disp = new DvtDiagramPoint(0, 0);
 for (var ni2 = 0; ni2 < nodeCount; ni2++) {
 if (ni == ni2)
 continue;
 var node2 = this._layoutContext.getNodeByIndex(ni2);

 var difference = this._subtractVectors(node.getPosition(),
node2.getPosition());
 var distance = this._vectorLength(difference);
 var repulsion = (this._optLinkLength * this._optLinkLength) / distance;
 node.disp = this._addVectors(node.disp, this._scaleVector(difference,
repulsion / distance));
 }
 }

 //calculate the attractive force between linked nodes
 var linkCount = this._layoutContext.getLinkCount();
 for (var li = 0; li < linkCount; li++) {
 var link = this._layoutContext.getLinkByIndex(li);
 var node = this._getNodeAtCurrentLevel (link.getStartId());
 var node2 = this._getNodeAtCurrentLevel (link.getEndId());
 if (!node || !node2)
 continue;
 var difference = this._subtractVectors(node.getPosition(), node2.getPosition());
 var distance = this._vectorLength(difference);
 var attraction = (distance * distance) / this._optLinkLength;
 node.disp = this._subtractVectors(node.disp, this._scaleVector(difference,
attraction / distance));
 node2.disp = this._addVectors(node2.disp, this._scaleVector(difference,
attraction / distance));
 }

 //limit node displacement by the temperature t and set the position
 for (var ni = 0; ni < nodeCount; ni++) {
 var node = this._layoutContext.getNodeByIndex(ni);
 this._addGravity(node);
 var distance = this._vectorLength(node.disp);
 var pos = this._addVectors(node.getPosition(), this._scaleVector(node.disp,
Math.min(distance, t) / distance));
 node.setPosition(pos);
 }
};

/**

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-23

 * Adds gravity force that attracts a node to the center, the gravity force does not
allow disconnected nodes and branches to be pushed far away from the center
 * @param {DvtDiagramLayoutContextNode} node object that defines node context for
the layout
 */
Application1DiagramLayout.prototype._addGravity = function(node) {
 var gravityAdjustment = .2;
 var distance = this._vectorLength(node.getPosition()); //distance from the center
(0,0)
 var attraction = (distance * distance) / this._optLinkLength;
 node.disp = this._subtractVectors(node.disp,
this._scaleVector(node.getPosition(), attraction / distance * gravityAdjustment));
};

/**
 * Initializes node positions - node positions in force directed layout must be
initialized such that no
 * two nodes have the same position. Position nodes in a circle.
 */
Application1DiagramLayout.prototype.initForceDirectedPositions = function() {
 var nodeCount = this._layoutContext.getNodeCount();
 var angleStep = 2*Math.PI / nodeCount;
 var radius = this._optLinkLength;
 for (var ni = 0; ni < nodeCount; ni++) {
 var x = radius * Math.cos(angleStep * ni);
 var y = radius * Math.sin(angleStep * ni);
 var node = this._layoutContext.getNodeByIndex(ni);
 node.setPosition(new DvtDiagramPoint(x, y));
 }
};

/**
 * Calculate vector length
 * @param {DvtDiagramPoint} p vector
 * @return {number} vector length
 */
Application1DiagramLayout.prototype._vectorLength = function(p) {
 return Math.sqrt(p.x * p.x + p.y * p.y);
};

/**
 * Scale vector
 * @param {DvtDiagramPoint} p vector
 * @param {number} scale scale
 * @return {DvtDiagramPoint} resulting vector
 */
Application1DiagramLayout.prototype._scaleVector = function(p, scale) {
 return new DvtDiagramPoint(p.x * scale, p.y * scale);
};

/**
 * Adds vectors
 * @param {DvtDiagramPoint} p1 vector
 * @param {DvtDiagramPoint} p2 vector
 * @return {DvtDiagramPoint} resulting vector
 */
Application1DiagramLayout.prototype._addVectors = function(p1, p2) {
 return new DvtDiagramPoint(p1.x + p2.x, p1.y + p2.y);
};

/**

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-24

 * Subtract vectors
 * @param {DvtDiagramPoint} p1 vector
 * @param {DvtDiagramPoint} p2 vector
 * @return {DvtDiagramPoint} resulting vector
 */
Application1DiagramLayout.prototype._subtractVectors = function(p1, p2) {
 return new DvtDiagramPoint(p1.x - p2.x, p1.y - p2.y);
};

/**
 * Finds a node for the link by the node id. In case of a link that does not connect
nodes across containers, that will be a node itself.
 * In case when a link connects nodes across containers, that might be one of the
ancestor nodes - the node that has been processed at the current level.
 * @param {string} nodeId id of the node to check
 */
Application1DiagramLayout.prototype._getNodeAtCurrentLevel = function(nodeId) {
 var node;
 do {
 if (!nodeId)
 return null;
 node = this._layoutContext.getNodeById(nodeId);
 nodeId = node.getContainerId();
 } while (!node.disp);
 return node;
};

/**
 * Create links
 */
Application1DiagramLayout.prototype.layoutLinks = function () {
 for (var li = 0;li < this._layoutContext.getLinkCount();li++) {
 var link = this._layoutContext.getLinkByIndex(li);
 link.setPoints(this.getEndpoints(link));
 }
};

/**
 * Get endpoints for the link
 * @param {DvtDiagramLayoutContextLink} link object that defines link context for
the layout
 * @return {array} an array that contains the start X, Y coordinates and the end X,
Y coordinates for the link
 */
Application1DiagramLayout.prototype.getEndpoints = function (link) {
 var n1 = this._layoutContext.getNodeById(link.getStartId());
 var n2 = this._layoutContext.getNodeById(link.getEndId());

 var n1Position = n1.getPosition();
 var n2Position = n2.getPosition();
 if (n1.getContainerId() || n2.getContainerId()) { //for cross-container link
 n1Position = this._layoutContext.localToGlobal(new DvtDiagramPoint(0, 0), n1);
 n2Position = this._layoutContext.localToGlobal(new DvtDiagramPoint(0, 0), n2);
 }

 var b1 = n1.getContentBounds();
 var b2 = n2.getContentBounds();

 var startX = n1Position.x + b1.x + .5 * b1.w;
 var startY = n1Position.y + b1.y + .5 * b1.h;
 var endX = n2Position.x + b2.x + .5 * b2.w;

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-25

 var endY = n2Position.y + b2.y + .5 * b2.h;

 b1 = new DvtDiagramRectangle(n1Position.x + b1.x, n1Position.y + b1.y, b1.w, b1.h);
 b2 = new DvtDiagramRectangle(n2Position.x + b2.x, n2Position.y + b2.y, b2.w,
b2.h);
 var startP = this._findLinkNodeIntersection(b1, startX, startY, endX, endY,
link.getStartConnectorOffset());
 var endP = this._findLinkNodeIntersection(b2, endX, endY, startX, startY,
link.getEndConnectorOffset());
 return [startP.x, startP.y, endP.x, endP.y];
};

/**
 * Find a point where a link line intersects the node boundary - use that point as
the start or the end connection point
 * @param {DvtDiagramRectangle} rect the bounds of the node content
 * @param {number} startX x coordinate for the line start
 * @param {number} startY y coordinate for the line start
 * @param {number} endX x coordinate for the line end
 * @param {number} endY y coordinate for the line end
 * @param {number} connOffset the offset of the start connector
 * @return {DvtDiagramPoint} a point where a link line intersects the node boundary
 */
Application1DiagramLayout.prototype._findLinkNodeIntersection = function (rect,
startX, startY, endX, endY, connOffset) {

 var lineAngle = Math.atan2(endY - startY, endX - startX);
 var cornerAngle = Math.atan2(rect.h, rect.w); // rectangle diagonal from top left
to right bottom
 var bottomRightAngle = cornerAngle;
 var bottomLeftAngle = Math.PI - bottomRightAngle;
 var topRightAngle = - bottomRightAngle;
 var topLeftAngle = - bottomLeftAngle;
 var x = 0, y = 0;
 if (lineAngle >= topLeftAngle && lineAngle <= topRightAngle) { // side top
 x = rect.x + rect.w * .5 + Math.tan(Math.PI / 2 - lineAngle) * (-rect.h * .5);
 y = rect.y;
 }
 else if (lineAngle <= bottomLeftAngle && lineAngle >= bottomRightAngle) { //
side bottom
 x = rect.x + rect.w * .5 + Math.tan(Math.PI / 2 - lineAngle) * (rect.h * .5);
 y = rect.y + rect.h;
 }
 else if (lineAngle <= bottomRightAngle && lineAngle >= topRightAngle) { // side
right
 x = rect.x + rect.w;
 y = rect.y + rect.h * .5 + Math.tan(lineAngle) * (rect.w * .5);
 }
 else { //side left
 x = rect.x;
 y = rect.y + rect.h * .5 + Math.tan(lineAngle) * (- rect.w * .5);
 }

 if (connOffset) {
 x += Math.cos(lineAngle) * connOffset;
 y += Math.sin(lineAngle) * connOffset;
 }
 return new DvtDiagramPoint(x, y);
};

/**

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-26

 * Center node label below the node
 */
Application1DiagramLayout.prototype.positionNodeLabels = function () {
 for (var ni = 0; ni < this._layoutContext.getNodeCount();ni++) {
 var node = this._layoutContext.getNodeByIndex(ni);
 var nodeLabelBounds = node.getLabelBounds();
 if (nodeLabelBounds) {
 var nodeBounds = node.getContentBounds();
 var nodePos = node.getPosition();
 var labelX = nodeBounds.x + nodePos.x + .5 * (nodeBounds.w -
nodeLabelBounds.w);
 var labelY = nodeBounds.y + nodePos.y + nodeBounds.h;
 node.setLabelPosition(new DvtDiagramPoint(labelX, labelY));
 }
 }
};

/**
 * Position link label at the link center
 */
Application1DiagramLayout.prototype.positionLinkLabels = function (layoutContext) {
 for (var ni = 0;ni < this._layoutContext.getLinkCount();ni++) {
 var link = this._layoutContext.getLinkByIndex(ni);
 var linkLabelBounds = link.getLabelBounds();
 if (linkLabelBounds) {
 var points = link.getPoints();
 if (points.length >=4) {
 var startX = points[0], endX = points[points.length-2];
 var startY = points[1], endY = points[points.length-1];
 var labelX = startX + .5 * (endX - startX - linkLabelBounds.w);
 var labelY = startY + .5 * (endY - startY - linkLabelBounds.h);
 link.setLabelPosition(new DvtDiagramPoint(labelX, labelY));
 }
 }
 }
};

/**
 * Helper function that finds max node width and height
 * @param {DvtDiagramLayoutContext} layoutContext Object that defines a context for
layout call
 * @return {DvtDiagramRectangle} a rectangle that represent a node with max width
and max height
 */
Application1DiagramLayout.getMaxNodeBounds = function (layoutContext) {
 var nodeCount = layoutContext.getNodeCount();
 var maxW = 0 , maxH = 0;
 for (var ni = 0;ni < nodeCount;ni++) {
 var node = layoutContext.getNodeByIndex(ni);
 var bounds = node.getContentBounds();
 maxW = Math.max(bounds.w, maxW);
 maxH = Math.max(bounds.h, maxH);
 }
 return new DvtDiagramRectangle(0, 0, maxW, maxH);
};

Code Sample for Simple Circle Layout
For a simple circle layout of nodes and links.

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-27

var LearningDiagramLayouts = {
 simpleVertical : function (layoutContext) {
 var largestNodeBounds =
LearningDiagramLayouts.getMaxNodeBounds(layoutContext);
 var nodeGap = (2 * largestNodeBounds.h);
 var nodeCount = layoutContext.getNodeCount();
 var linkCount = layoutContext.getLinkCount();
 var xPos = 0;
 var yPos = 0;
 var labelXPos = largestNodeBounds.w + 10;

 for (var i = 0;i < nodeCount;i++) {
 var node = layoutContext.getNodeByIndex(i);
 var nodeHeight = node.getContentBounds().h;
 node.setPosition(new DvtDiagramPoint(xPos, yPos));

 var labelHeight = node.getLabelBounds().h;
 var labelYPos = yPos + ((nodeHeight - labelHeight) / 2);

 node.setLabelPosition(new DvtDiagramPoint(labelXPos, labelYPos));
 yPos += (nodeHeight + nodeGap);
 }

 var linkGap = 4;
 var largestLinkLabelBounds =
LearningDiagramLayouts.getMaxLinkLabelBounds(layoutContext);
 for (var j = 0;j < linkCount;j++) {
 var link = layoutContext.getLinkByIndex(j);
 var startNode = layoutContext.getNodeById(link.getStartId());
 var endNode = layoutContext.getNodeById(link.getEndId());
 var linkStartPos = LearningDiagramLayouts.getNodeEdgeMidPoint(startNode,
"s");
 var linkEndPos = LearningDiagramLayouts.getNodeEdgeMidPoint(endNode,
"n");

 var linkLabelXPos;
 var linkLabelYPos = linkStartPos.y + ((linkEndPos.y - linkStartPos.y -
link.getLabelBounds().h) / 2);

 if (linkEndPos.y > linkStartPos.y) {
 link.setPoints([linkStartPos.x, (linkStartPos.y + linkGap),
linkEndPos.x, (linkEndPos.y - linkGap)]);
 linkLabelXPos = linkStartPos.x - (link.getLabelBounds().w + 20);
 } else {
 // need to re-route in this case
 // Segment 1 - keep heading down for a short distance
 var turn1 = new DvtDiagramPoint();
 turn1.x = linkStartPos.x;
 turn1.y = linkStartPos.y + (largestNodeBounds.h/2);
 // Segment 2 - head left far enough to avoid overlap with the other
link labels
 var turn2 = new DvtDiagramPoint();
 turn2.x = turn1.x - (largestLinkLabelBounds.w + 40);
 turn2.y = turn1.y;
 // Segment 3 - Back up the diagram to a point equally above the end
node
 var turn3 = new DvtDiagramPoint();
 turn3.x = turn2.x;
 turn3.y = linkEndPos.y - (largestNodeBounds.h/2);
 // Segment 4 - Back to the center line
 var turn4 = new DvtDiagramPoint();

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-28

 turn4.x = linkEndPos.x;
 turn4.y = turn3.y;
 // Segment 5 - And down to the end node for which
 // we already have the coordinates

 //Now pass in the path:
 link.setPoints([linkStartPos.x, (linkStartPos.y + linkGap),
 turn1.x, turn1.y,
 turn2.x, turn2.y,
 turn3.x, turn3.y,
 turn4.x, turn4.y,
 linkEndPos.x, (linkEndPos.y -
linkGap)]);

 //Finally work out the X position of the label in this case
 linkLabelXPos = turn3.x - (link.getLabelBounds().w + 20);
 }

 link.setLabelPosition(new DvtDiagramPoint(linkLabelXPos, linkLabelYPos));
 }
 },
 /**
 * Utility function to return the size information for
 * the largest node being handled by the layout
 */
 getMaxNodeBounds : function (layoutContext) {
 var nodeCount = layoutContext.getNodeCount();
 var maxW = 0;
 var maxH = 0;
 for (var i = 0;i < nodeCount;i++) {
 var node = layoutContext.getNodeByIndex(i);
 var bounds = node.getContentBounds();
 maxW = Math.max(bounds.w, maxW);
 maxH = Math.max(bounds.h, maxH);
 }
 return new DvtDiagramRectangle(0, 0, maxW, maxH);
 },
 /**
 * Utility function to return the size information for
 * the largest link label being handled by the layout
 */

 getMaxLinkLabelBounds : function (layoutContext) {
 var linkCount = layoutContext.getLinkCount();
 var maxW = 0;
 var maxH = 0;
 for (var i = 0;i < linkCount;i++) {
 var link = layoutContext.getLinkByIndex(i);
 var bounds = link.getLabelBounds();
 maxW = Math.max(bounds.w, maxW);
 maxH = Math.max(bounds.h, maxH);
 }
 return new DvtDiagramRectangle(0, 0, maxW, maxH);
 },
 /**
 * Utility function to return the midpoint of a node edge.
 * Edges are identified as compass points n e s w
 */
 getNodeEdgeMidPoint : function (node, edge) {
 var nodeSize = node.getContentBounds();
 var nodePosition = node.getPosition();

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-29

 var xpos;
 var ypos;

 switch (edge) {
 case "n":
 case "s":
 xpos = nodePosition.x + (nodeSize.w / 2);
 break;
 case "e":
 xpos = nodePosition.x + nodeSize.w;
 break;
 case "w":
 xpos = nodePosition.x;
 break;
 default :
 xpos = 0;
 }

 switch (edge) {
 case "e":
 case "w":
 ypos = nodePosition.y + (nodeSize.h / 2);
 break;
 case "s":
 ypos = nodePosition.y + nodeSize.h;
 break;
 case "n":
 ypos = nodePosition.y;
 break;
 default :
 ypos = 0;
 }

 return new DvtDiagramPoint(xpos, ypos);
 }
}

Code Sample for Simple Vertical Layout
This diagram layout uses a restricted vertical layout with the assumption of no more
than one incoming and one outgoing link per node.

var LearningDiagramLayouts = {
 simpleVertical : function (layoutContext) {
 var largestNodeBounds =
LearningDiagramLayouts.getMaxNodeBounds(layoutContext);
 var nodeGap = (2 * largestNodeBounds.h);
 var nodeCount = layoutContext.getNodeCount();
 var linkCount = layoutContext.getLinkCount();
 var xPos = 0;
 var yPos = 0;
 var labelXPos = largestNodeBounds.w + 10;

 for (var i = 0;i < nodeCount;i++) {
 var node = layoutContext.getNodeByIndex(i);
 var nodeHeight = node.getContentBounds().h;
 node.setPosition(new DvtDiagramPoint(xPos, yPos));

 var labelHeight = node.getLabelBounds().h;
 var labelYPos = yPos + ((nodeHeight - labelHeight) / 2);

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-30

 node.setLabelPosition(new DvtDiagramPoint(labelXPos, labelYPos));
 yPos += (nodeHeight + nodeGap);
 }

 var linkGap = 4;
 var largestLinkLabelBounds =
LearningDiagramLayouts.getMaxLinkLabelBounds(layoutContext);
 for (var j = 0;j < linkCount;j++) {
 var link = layoutContext.getLinkByIndex(j);
 var startNode = layoutContext.getNodeById(link.getStartId());
 var endNode = layoutContext.getNodeById(link.getEndId());
 var linkStartPos = LearningDiagramLayouts.getNodeEdgeMidPoint(startNode,
"s");
 var linkEndPos = LearningDiagramLayouts.getNodeEdgeMidPoint(endNode,
"n");

 var linkLabelXPos;
 var linkLabelYPos = linkStartPos.y + ((linkEndPos.y - linkStartPos.y -
link.getLabelBounds().h) / 2);

 if (linkEndPos.y > linkStartPos.y) {
 link.setPoints([linkStartPos.x, (linkStartPos.y + linkGap),
linkEndPos.x, (linkEndPos.y - linkGap)]);
 linkLabelXPos = linkStartPos.x - (link.getLabelBounds().w + 20);
 } else {
 // need to re-route in this case
 // Segment 1 - keep heading down for a short distance
 var turn1 = new DvtDiagramPoint();
 turn1.x = linkStartPos.x;
 turn1.y = linkStartPos.y + (largestNodeBounds.h/2);
 // Segment 2 - head left far enough to avoid overlap with the other
link labels
 var turn2 = new DvtDiagramPoint();
 turn2.x = turn1.x - (largestLinkLabelBounds.w + 40);
 turn2.y = turn1.y;
 // Segment 3 - Back up the diagram to a point equally above the end
node
 var turn3 = new DvtDiagramPoint();
 turn3.x = turn2.x;
 turn3.y = linkEndPos.y - (largestNodeBounds.h/2);
 // Segment 4 - Back to the center line
 var turn4 = new DvtDiagramPoint();
 turn4.x = linkEndPos.x;
 turn4.y = turn3.y;
 // Segment 5 - And down to the end node for which
 // we already have the coordinates

 //Now pass in the path:
 link.setPoints([linkStartPos.x, (linkStartPos.y + linkGap),
 turn1.x, turn1.y,
 turn2.x, turn2.y,
 turn3.x, turn3.y,
 turn4.x, turn4.y,
 linkEndPos.x, (linkEndPos.y -
linkGap)]);

 //Finally work out the X position of the label in this case
 linkLabelXPos = turn3.x - (link.getLabelBounds().w + 20);
 }

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-31

 link.setLabelPosition(new DvtDiagramPoint(linkLabelXPos, linkLabelYPos));
 }
 },
 /**
 * Utility function to return the size information for
 * the largest node being handled by the layout
 */
 getMaxNodeBounds : function (layoutContext) {
 var nodeCount = layoutContext.getNodeCount();
 var maxW = 0;
 var maxH = 0;
 for (var i = 0;i < nodeCount;i++) {
 var node = layoutContext.getNodeByIndex(i);
 var bounds = node.getContentBounds();
 maxW = Math.max(bounds.w, maxW);
 maxH = Math.max(bounds.h, maxH);
 }
 return new DvtDiagramRectangle(0, 0, maxW, maxH);
 },
 /**
 * Utility function to return the size information for
 * the largest link label being handled by the layout
 */

 getMaxLinkLabelBounds : function (layoutContext) {
 var linkCount = layoutContext.getLinkCount();
 var maxW = 0;
 var maxH = 0;
 for (var i = 0;i < linkCount;i++) {
 var link = layoutContext.getLinkByIndex(i);
 var bounds = link.getLabelBounds();
 maxW = Math.max(bounds.w, maxW);
 maxH = Math.max(bounds.h, maxH);
 }
 return new DvtDiagramRectangle(0, 0, maxW, maxH);
 },
 /**
 * Utility function to return the midpoint of a node edge.
 * Edges are identified as compass points n e s w
 */
 getNodeEdgeMidPoint : function (node, edge) {
 var nodeSize = node.getContentBounds();
 var nodePosition = node.getPosition();
 var xpos;
 var ypos;

 switch (edge) {
 case "n":
 case "s":
 xpos = nodePosition.x + (nodeSize.w / 2);
 break;
 case "e":
 xpos = nodePosition.x + nodeSize.w;
 break;
 case "w":
 xpos = nodePosition.x;
 break;
 default :
 xpos = 0;
 }

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-32

 switch (edge) {
 case "e":
 case "w":
 ypos = nodePosition.y + (nodeSize.h / 2);
 break;
 case "s":
 ypos = nodePosition.y + nodeSize.h;
 break;
 case "n":
 ypos = nodePosition.y;
 break;
 default :
 ypos = 0;
 }

 return new DvtDiagramPoint(xpos, ypos);
 }
}

Appendix F
Samples for Chapter 32, "Using Diagram Components"

F-33

G
Troubleshooting ADF Faces

This appendix describes common problems that you might encounter when designing
the application user interface with the ADF Faces framework and ADF Faces
components and explains how to solve them.
This appendix includes the following sections:

• About Troubleshooting ADF Faces

• Getting Started with Troubleshooting the View Layer of an ADF Application

• Using Test Automation for ADF Faces

• Resolving Common Problems

• Using My Oracle Support for Additional Troubleshooting Information

In addition to this chapter, review Error Messages for information about the error
messages you may encounter.

About Troubleshooting ADF Faces
While designing the ADF application user interface, you might face problems. Certain
guidelines and processes should be followed to identify, diagnose and resolve
problems proactively.

This section provides guidelines and a process for using the information in this
appendix. Using the following guidelines and process will focus and minimize the time
you spend resolving problems.

Guidelines

When using the information in this chapter, please keep the following best practices in
mind:

• After performing any of the solution procedures in this chapter, immediately retry
the failed task that led you to this troubleshooting information. If the task still fails
when you retry it, perform a different solution procedure in this chapter and then
try the failed task again. Repeat this process until you resolve the problem.

• Make notes about the solution procedures you perform, symptoms you see, and
data you collect while troubleshooting. If you cannot resolve the problem using the
information in this chapter and you must log a service request, the notes you take
will expedite the process of solving the problem.

Process

Follow the process outlined in Table G-1 when using the information in this chapter. If
the information in a particular section does not resolve your problem, proceed to the
next step in this process.

G-1

Table G-1 Process for Using the Information in this Chapter

Step Section to Use Purpose

1 Getting Started
with
Troubleshooting
the View Layer
of an ADF
Application

Get started troubleshooting the view layer of an ADF application. The
procedures in this section quickly address a wide variety of problems.

2 Resolving
Common
Problems

Perform problem-specific troubleshooting procedures for the view
layer of an ADF application. This section describes:

• Possible causes of the problems
• Solution procedures corresponding to each of the possible

causes

3 Using My
Oracle Support
for Additional
Troubleshooting
Information

Use My Oracle Support to get additional troubleshooting information.
The My Oracle Support web site provides access to several useful
troubleshooting resources, including links to Knowledge Base articles,
Community Forums, and Discussion pages.

4 Using My
Oracle Support
for Additional
Troubleshooting
Information

Log a service request if the information in this chapter and My Oracle
Support does not resolve your problem. You can log a service request
using My Oracle Support at https://support.oracle.com.

Getting Started with Troubleshooting the View Layer of an
ADF Application

Builtin error messages in Oracle ADF alerts users of a problem and also identifies the
layer of the application that is causing the problem. To optimizing ADF Faces
troubleshooting, certain configuration options should be set.

Oracle ADF has builtin error messages that enable you to determine which layer of
your application may be causing a problem. Error messages are the starting point for
troubleshooting. You can look up error messages in Error Messages, and you may
research a particular error message on the web. Error messages that originate from
your ADF Business Components model layer will have a JBO prefix, whereas all other
ADF layer components, including the ADF Face view layer, will appear as a Java error
message with an Oracle package.

Once you are able to identify the layer, you may run diagnostic tools. You may also
view log files for recorded errors. You can search the technical forums on Oracle
Technology Network for discussions related to an error message. Each of the
component layers for Oracle ADF has its own dedicated forum. You can access the
forum home page for JDeveloper and Oracle ADF under the Development Tools list on
Oracle Technology Network at https://forums.oracle.com/forums/main.jspa?
categoryID=84.

Before you begin troubleshooting, you should configure the ADF application to make
finding and detecting errors easier. Table G-2 summarizes the settings that you can
follow to configure the view layer of an ADF application for troubleshooting.

Appendix G
Getting Started with Troubleshooting the View Layer of an ADF Application

G-2

https://support.oracle.com
https://forums.oracle.com/forums/main.jspa?categoryID=84
https://forums.oracle.com/forums/main.jspa?categoryID=84

Table G-2 Configuration Options for Optimizing ADF Faces Troubleshooting

Configuration Recommendation Description

Enable debug output. To enable debug output, set the following in the trinidad-config.xml
file:

<adf-faces-config xmlns=
 "http://xmlns.oracle.com/adf/view/faces/config">
 <debug-output>true</debug-output>
 <skin-family>oracle</skin-family>
</adf-faces-config>

Improves the readability of HTML markup in the web browser:

• Line wraps and indents the output.
• Detects and highlights unbalanced elements and other common HTML

errors, such as unbalanced elements.
• Adds comments that help you to identify which ADF Faces component

generated each block of HTML in the browser page.

Disable content compression. To disable content compression, set the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
 </param-name>
 <param-value>true</param-value>
 </context-param>

Improves readability by forcing the use of original uncompressed styles.

Unless content compression is disabled, CSS style names and styles will
appear compressed and may be more difficult to read. For information about
how disabling content compression affects readability, see the "Applying the
Finished ADF Skin to Your Web Application" in Developing ADF Skins.

Disable JavaScript compression. To disable JavaScript compression, set the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DEBUG_JAVA_SCRIPT
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows normally obfuscated JavaScript to appear uncompressed as the
source.

Enable client side asserts. To enable client side asserts, set the following in the web.xml file:

<context-param>
 <param-name>
 oracle.adf.view.rich.ASSERT_ENABLED
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows warnings of unexpected conditions to be output to the browser
console.

Appendix G
Getting Started with Troubleshooting the View Layer of an ADF Application

G-3

Table G-2 (Cont.) Configuration Options for Optimizing ADF Faces Troubleshooting

Configuration Recommendation Description

Enable client side logging. To enable client side logging, set the following in the web.xml file:

<context-param>
 <param-name>
 oracle.adf.view.rich.ASSERT_ENABLED
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows log messages to be output to the browser console.

Unless client side logging is enabled, log messages will not be reported in
the client.

Enable more detailed server side
logging.

To enable more detailed server side logging, shut down the application
server and then enter the following setting in the logging.xml file, and
restart the server:

<logger name="oracle.adf.faces" level="CONFIG"/>

or

Use the WLST command:

setLogLevel(logger="oracle.adf" level="CONFIG",
addLogger=1)

or

In Oracle Enterprise Manager Fusion Middleware Control, use the
Configuration page to set oracle.adf, oracle.adfinternal, and
oracle.jbo to level CONFIG.

Allows more detailed log messages to be output to the browser console.

Unless server side logging is configured with a log level of CONFIG or
higher, useful diagnostic messages may go unreported.

Allowed log level settings are: SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, ALL. Oracle recommends CONFIG level or higher; the
default is SEVERE.

Disable HTTP cache headers. To disable HTTP cache headers, set the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.resource.DEBUG
 </param-name>
 <param-value>true</param-value>
 </context-param>

Forces reloading of patched resources.

Unless HTTP cache headers are disabled, the browser will cache resources
to ensure fast access to resources.

After changing the setting, clear the browser cache to force it to reload
resources.

Appendix G
Getting Started with Troubleshooting the View Layer of an ADF Application

G-4

Using Test Automation for ADF Faces
It is important to test that the user interface of your ADF application performs as
expected. There are tools that can help you achieve such automation of your UI
testing to increase the effectiveness, efficiency and coverage of your UI testing.

This section describes best practices for using the ADF Faces test automation
framework.

• Enabling Test Automation for ADF Faces

• Simulating Mouse Events in ADF Faces Test Automation

Enabling Test Automation for ADF Faces
You can enable test automation by setting the
oracle.adf.view.rich.automation.ENABLED parameter in the application’s web.xml
file. This parameter notifies ADF Faces that test automation is being used and turns on
external component id attributes. Note that this parameter only enables the
infrastructure for test automation; it does not initiate testing itself, which requires a tool
such as the open source Selenium IDE.

Tests that you write that rely on the internal component id are always guaranteed to
have a value. The disadvantage is that the internal component id values may change
between ADF Faces releases to support framework enhancements. Therefore, the
tests that you write must not rely on the component id. To build more robust
automated tests, rely on absolute locator id attributes and check that these attributes
have a value.

The oracle.adf.view.rich.automation.ENABLEDparameter accepts the following
values:

• OFF: Indicates the test automation is disabled. This is the appropriate setting for a
production environment.

• FULL: Notifies ADF Faces that test automation is being used and turns on
external component id attributes. Use this setting with caution, and only in a
protected testing environment.

Note:

When the test automation context parameter is set to FULL, the
oracle.adf.view.rich.security.FRAME_BUSTING context parameter
behaves as though it were set to never. The security consequence of
disabling framebusting is that pages of your application will become
vulnerable to clickjacking from malicious websites. For this reason,
restrict the use of the test automation to development or staging
environments and never enable test automation in a production
environment. See Framebusting.

• SAFE: Notifies ADF Faces that test automation is being used and turns on
external component id attributes. This setting is the same as FULL, with the
following differences in how it treats secure information.

Appendix G
Using Test Automation for ADF Faces

G-5

– It does not disable framebusting. That is, the
oracle.adf.view.rich.security.FRAME_BUSTING context parameter does not
behave as though it were set to never.

– JSESSIONID will be encrypted.

– Version number information, described in Version Number Information will not
be shown.

– Logging to the server is disabled.

Performance Tip:

When you enable test automation, a client component is created for every
component on the page. Therefore, set this parameter to OFF in a production
environment.

The oracle.adf.view.rich.automation.ENABLED context parameter that you define in
the application’s web.xml file is EL bindable. For example, you might want the
application to programmatically set test automation mode for a single test user, for all
users of the application, or for a particular user group. The following example shows
how to use an EL expression to set test automation mode for a test user.

<context-param>
<param-name>oracle.adf.view.rich.automation.ENABLED</param-name>
 <param-value>
 #{securityContext.userName == 'testuser' ? 'SAFE' : 'OFF'}
</param-value>
</context-param>

If you enable automation and set oracle.adf.view.rich.automation.ENABLED to SAFE
or FULL, a response cookie is enabled automatically. This response cookie indicates
that the request is coming from an automation run that allows the server to limit the
incoming automation traffic.

Enabling test automation also enables assertions in the running application. If your
application exhibits unexpected component behavior and you begin to see new
assertion failed errors, you will need to examine the implementation details of your
application components. For example, it is not uncommon to discover issues related to
popup dialogs, such as user actions that are no longer responded to.

Here are known coding errors that will produce assertion failed errors only after test
automation is enabled:

• Your component references an ADF iterator binding that no longer exists in the
page definition file. When assertions are not enabled, this error is silent and the
component referencing the missing iterator simply does not render.

• Your component is a partial trigger component that is defined not to render (has
the attribute setting rendered="false"). For example, this use of the rendered
attribute causes an assertion failed error:

<af:button id="hiddenBtn" rendered="false" text="Test"/>
<af:table var="row" id="t1" partialTriggers="::hiddenBtn">

Appendix G
Using Test Automation for ADF Faces

G-6

The workaround for this error is to use the attribute setting visible="false" and
not rendered="false".

• Your components were formed with a nesting hierarchy that prevents events from
reaching the proper component handlers. For example, this nesting is incorrect:

<af:commandLink
 <af:showPopupBehavior
 <af:image
 <af:clientListener

and should be rewritten as:

<af:commandLink
 <af:image
 <af:showPopupBehavior
 <af:clientListener

Note:

System administrators can enable test automation at the level of standalone
Oracle WebLogic Server by starting the server with the command line flag -
Doracle.adf.view.rich.automation.ENABLED= automation-mode. Running
your application in an application server instance with test automation
enabled overrides the web.xml file context parameter setting of the deployed
application.

Simulating Mouse Events in ADF Faces Test Automation
During test automation, you can simulate mouse events that you can use to test
mouse events. To simulate mouse events, you need to first add a test harness that
you can use to set up the environment for a test simulation mouse click before the
test-engine mouse-click simulation occurs. The test harness calls the following
function.

AdfPage.prototype.simulateMouse = function(locator, mouseEvent)

Before you call the function, you need to update your test engine to call the API.

The sample API is given below:

/**
 * Simulate mouse type event using locator.
 * @param {String} locator locator string in the format <scopedId>#<subid>
 * @param {Object} javascript object containing a sparse set of mouse
event name value pairs that will
 * be used to create a mouse event. Defaults will be used
for any missing fields.
 * The defaults are as follows:
 * type: “click”
 * canBubble: true
 * cancelable:true
 * view: the current window
 * detail: 1
 * screenX: 0

Appendix G
Using Test Automation for ADF Faces

G-7

 * screenY: 0
 * clientX: the client location of the X coordinate
of the center of the DOM
 * element returned by the locator
 * clientY: the client location of the Y coordinate
of the center of the DOM
 * element returned by the locator
 * ctrlKey: false
 * altKey: false
 * shiftKey: false
 * metaKey: false
 * button: 0
 * relatedTarget: null
 * If no mouseEvent is provided, a mouseEvent with all of
the defaults will be used.
 * @abstract
 */

After you prepare the environment for the mouse event, this method defers to a test
engine class instance that you will define. By doing so, you are pointing the test engine
class instance back to your normal test engine to test the mouse event. That class
continues to do the normal test procedure for a mouse event that you did before the
start up of the mouse event.

Now create a test engine class to be an instance of the new abstract API class. Your
test engine implementation needs to override this method:

AdfDhtmlTestEngine.prototype.simulateDomMouse = function(domElement,
mouseEvent)
Following is an example of an instance of AdfDhtmlTestEngine, where you need to
add the call to the test framework mouse event code that you just created.

/**
 * Used for testing a custom implementation of AdfDhtmlTestEngine.
 */
function CustomTestEngine()
{
}

// make CustomTestEngine a subclass of AdfDhtmlTestEngine
AdfObject.createSubclass(CustomTestEngine, AdfDhtmlTestEngine);

/**
 * Simulate mouse event on a dom element.
 * @param {String} domElement the domElement receiving the mouse event
 * @param {Object} javascript object containing a sparse set of mouse
event name value pairs.
 * @Override
*/
CustomTestEngine.prototype.simulateDomMouse = function(domElement,
mouseEvent)
{
// Here, call your custom test framework to actually do the mouse event,

Appendix G
Using Test Automation for ADF Faces

G-8

now that the environment is all ready for this event.
}

Finally, ADF should be aware of the new test engine class. You can specify this using
the web.xml parameter. This is important for the functioning of test setup code, like
AdfPage.PAGE.simulateMouse(), that needs to invoke the testing framework function
after doing any necessary setup work.

<context-param>
<description>
This parameter specifies the automation test engine that is being used.
</description>
param-name>oracle.adf.view.automation.TEST_ENGINE</param-name>
<param-value>CustomTestEngine</param-value>

Resolving Common Problems
There are some common problems that may arise while developing your ADF
application user interface. The list of problems with their causes and possible fixes will
help you to resolve issues.

This section describes common problems and solutions.

Application Displays an Unexpected White Background
The ADF application has a default skin that displays a simple or minimal look and feel.
The background of the default skin will appear white.

Cause

The skin JAR files did not get deployed correctly to all applications.

Solution

To resolve this problem:

1. Check that the skin JAR files have been deployed to all applications.

2. Check that the skin name is not misspelled in the profile options. See Applying the
Finished ADF Skin to Your Web Application in Developing ADF Skins.

Application is Missing Expected Images
The skin application must be packaged as an ADF Library JAR file that includes the
image files.

Cause

The skin JAR files were not packaged correctly.

Solution

To resolve this problem:

Appendix G
Resolving Common Problems

G-9

1. Check that the correct target application version was specified when creating the
skin application.

2. Repackage the skin application and create a new ADF Library JAR file, for
information on this, see Packaging an ADF Skin into an ADF Library JAR in
Developing ADF Skins.

ADF Skin Does Not Render Properly
The ADF skin that you created defines style properties that do not render in the
browser as expected.

Cause

Not all ADF skin selectors may be customized and customizing non-valid selectors
may result in unexpected or inconsistent behavior for your application.

Solution

To resolve this problem:

1. Check the setting of the context initialization parameter in the web.xml file. Not all
changes that you make to an ADF skin appear immediately if you set the
CHECK_FILE_MODIFICATION parameter to true. You must restart the web
application to view changes that you make to icon and ADF skin properties.

2. Check that you customized only valid ADF skin selectors, pseudo-elements, and
pseudo-classes, as described in the skinning sections of the ADF Faces
component and ADF Data Visualization (DVT) component chapters of this guide.

ADF Data Visualization Components Fail to Display as Expected
Various ADF Data Visualization (DVT) components rely on Flash to display correctly
and unless Flash is supported by the platform and browser, your application may not
display visual aspects of the DVT components.

Cause

Not all platforms and browsers support Flash. This will force the application to
downgrade to the best available fallback. If the platform is not supported, the
application displays according to the flash-player-usage setting in the adf-
config.xml file.

Solution

To resolve this problem, reinstall the latest Flash version available for your browser.

High Availability Application Displays a NotSerializableException
When you design an application to run in a clustered environment, you must ensure
that all managed beans with a life span longer than one request are serializable.

Cause

When the Fusion web application runs in a clustered environment, a portion of the
application's state is serialized and copied to another server or a data store at the end
of each request so that the state is available to other servers in the cluster.

Appendix G
Resolving Common Problems

G-10

Specifically, beans stored in session scope, page flow scope, and view scope must be
serializable (that is, they implement the java.io.Serializable interface).

Solution

To resolve this problem:

1. Enable server checking to ensure no unserializable state content on session
attributes is detected. This check is disabled by default to reduce runtime
overhead. Serialization checking is supported by the system property
org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION. The following are
system properties and you must specify them when you start the application
server.

2. For high availability testing, start off by validating that the Session and JSF state is
serializable by launching the application server with the system property:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree

3. Add the beans option to check that any serializable object in the appropriate map
has been marked as dirty if the serialized content of the object has changed during
the request:

-
Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree,be
ans

4. If a JSF state serialization failure is detected, relaunch the application server with
the system property to enable component and property flags and rerun the test:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all

Unable to Reproduce Problem in All Web Browsers
You run the application in Microsoft Windows Internet Explorer and verify a problem
but when you run the application in Mozilla Firefox, the problem does not reproduce.
These problems are often visual in nature, such as unintended extra space separating
areas within a web page.

Cause

Settings between browsers vary and can lead to differences in the visual appearance
of your application.

Solution

To resolve this problem:

1. Check browser security settings to ensure they are not misconfigured. For
example, confirm that you have not disabled JavaScript, XML HTTP, or popups.

2. Confirm that Internet Explorer is not being run in compatibility mode. If you see a
dialog that states "the current compatibility setting is not supported," disable
compatibility mode in the browser’s Tools menu.

3. If you observe a JavaScript error, then it is most likely a bug in the browser.
However, it could be an ADF Faces-specific JavaScript error.

4. Optionally, configure an @agent at-rule in the ADF skin file of the application to
define an appearance specific to the desired browser. See "Working with At-
Rules" inDeveloping ADF Skins.

Appendix G
Resolving Common Problems

G-11

Application is Missing Content
The application pages may display areas that appear empty where content is
expected.

Cause

The cause depends on the application design. For example, authorization that you
enforce in the application may be unintentionally preventing the application from
displaying content. Or, when portlets are used, the portlet server may be down.

Solution

To resolve this problem:

1. Check the log file for exceptions. Oracle recommends changing the log level to a
lower level than SEVERE. For information about Oracle Fusion Middleware
logging functionality, see the "Managing Log Files and Diagnostic Data" chapter of
Administering Oracle Fusion Middleware.

2. Look for struck threads, as described in the "Monitor server performance" topic in
the Oracle WebLogic Server Administration Console Online Help. If you find a
stuck thread, examine the thread stack dump.

3. If you observe an HTTP 403 or 404 error on partial page rendering (PPR), then it
is most like a bug.

Browser Displays an ADF_Faces-60098 Error
The application returns a runtime exception in a place that was not expected and is not
handled.

Cause

ADF Faces has received an unhandled exception in some phase of the lifecycle and
will abort the request handling.

Solution

To resolve this problem:

1. This is most likely a logic error in the application.

2. Verify that the server load or the application is not in distress.

Browser Displays an HTTP 404 or 500 Error
The application does not navigate to the expected page and displays an HTTP 404 file
not found error or an HTTP 500 internal server error.

Cause

The cause may be traced to the application server.

Solution

To resolve this problem:

Appendix G
Resolving Common Problems

G-12

1. Verify that the application server is running and that the application is not in
distress, as described in the "Monitor server performance" and "Servers:
Configuration: Overload" topics in the Oracle WebLogic Server Administration
Console Online Help.

2. Check for hung threads.

Browser Fails to Navigate Between Pages
The application fails to navigate to and open an expected target web page.

Cause

The cause may depend on the application design or the cause may be traced to the
application server.

Solution

To resolve this problem:

1. Check for unhandled exceptions specific to an ADF Faces lifecycle thread, as
described in Browser Displays an ADF_Faces-60098 Error.

2. Look for HTTP 404 or 505 errors, as described in Browser Displays an HTTP 404
or 500 Error.

Using My Oracle Support for Additional Troubleshooting
Information

My Oracle Support is Oracle's official electronic on-line support service. You can log a
Service Request to receive personalized, proactive, and collaborative support to
resolve issues specific to Oracle ADF.

You can use My Oracle Support (formerly MetaLink) to help resolve Oracle Fusion
Middleware problems. My Oracle Support contains several useful troubleshooting
resources, such as:

• Knowledge base articles

• Community forums and discussions

• Patches and upgrades

• Certification information

Note:

You can also use My Oracle Support to log a service request.

You can access My Oracle Support at https://support.oracle.com.

Appendix G
Using My Oracle Support for Additional Troubleshooting Information

G-13

https://support.oracle.com

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 12c (12.2.1.4.0)
	New and Changed Features for Release 12c (12.2.1.4.0)
	Other Significant Changes in this Document for Release 12c (12.2.1.4.0)

	Part I Getting Started with ADF Faces
	1 Introduction to ADF Faces
	About ADF Faces
	ADF Faces Framework
	ADF Faces Components

	2 ADF Faces Components Demo Application
	About the ADF Faces Components Demo Application
	Downloading and Installing the ADF Faces Components Demo Application

	3 Getting Started with ADF Faces and JDeveloper
	About Developing Declaratively in JDeveloper
	Creating an Application Workspace
	How to Create an ADF Faces Application Workspace
	What Happens When You Create an Application Workspace

	Defining Page Flows
	How to Define a Page Flow
	What Happens When You Use the Diagrammer to Create a Page Flow

	Creating a View Page
	How to Create JSF Pages
	What Happens When You Create a JSF Page
	What You May Need to Know About Updating Your Application to Use the Facelets Engine
	What You May Need to Know About Automatic Component Binding
	How to Add ADF Faces Components to JSF Pages
	What Happens When You Add Components to a Page
	How to Set Component Attributes
	What Happens When You Use the Properties window

	Creating EL Expressions
	How to Create an EL Expression
	How to Use the EL Format Tags
	How to Use EL Expressions Within Managed Beans

	Creating and Using Managed Beans
	How to Create a Managed Bean in JDeveloper
	What Happens When You Use JDeveloper to Create a Managed Bean
	What You May Need to Know About Component Bindings and Managed Beans

	Viewing ADF Faces Javadoc
	How to View ADF Faces Source Code and Javadoc

	Part II Understanding ADF Faces Architecture
	4 Using ADF Faces Client-Side Architecture
	About Using ADF Faces Architecture
	Adding JavaScript to a Page
	How to Use Inline JavaScript
	How to Import JavaScript Libraries
	What You May Need to Know About Accessing Client Event Sources

	Instantiating Client-Side Components
	How to Configure a Component to for a Client-Side Instance
	What Happens When You Set clientComponent to true

	Listening for Client Events
	How to Listen for Client Events
	How to Use an ADF Client Listener to Control Navigating Away From a JSF Page

	Accessing Component Properties on the Client
	Secure Client Properties
	How to Set Property Values on the Client
	What Happens at Runtime: How Client Properties Are Set on the Client
	How to Unsecure the disabled Property
	How to “Unsynchronize" Client and Server Property Values

	Using Bonus Attributes for Client-Side Components
	How to Create Bonus Attributes
	What You May Need to Know About Marshalling Bonus Attributes

	Understanding Rendering and Visibility
	How to Set Visibility Using JavaScript
	What You May Need to Know About Visible and the isShowing Function

	Locating a Client Component on a Page
	What You May Need to Know About Finding Components in Naming Containers

	JavaScript Library Partitioning
	How to Create JavaScript Partitions
	What Happens at Runtime: JavaScript Partitioning

	5 Using the JSF Lifecycle with ADF Faces
	About Using the JSF Lifecycle and ADF Faces
	Using the Immediate Attribute
	How to Use the Immediate Attribute

	Using the Optimized Lifecycle
	Using the Client-Side Lifecycle
	Using Subforms to Create Sections on a Page
	Object Scope Lifecycles
	Passing Values Between Pages
	How to Use the pageFlowScope Scope Within Java Code
	How to Use the pageFlowScope Scope Without Writing Java Code
	What Happens at Runtime: How Values Are Passed

	6 Handling Events
	About Events and Event Handling
	Events and Partial Page Rendering
	Event and Even Root Components
	Client-Side Event Model

	Using ADF Faces Server Events
	How to Handle Server-Side Events

	Using JavaScript for ADF Faces Client Events
	ADF Faces Client-Side Events
	How to Use Client-Side Events
	How to Return the Original Source of the Event
	How to Use Client-Side Attributes for an Event
	How to Block UI Input During Event Execution
	How to Prevent Events from Propagating to the Server
	How to Indicate No Response is Expected
	What Happens at Runtime: How Client-Side Events Work
	What You May Need to Know About Using Naming Containers

	Sending Custom Events from the Client to the Server
	How to Send Custom Events from the Client to the Server
	What Happens at Runtime: How Client and Server Listeners Work Together
	What You May Need to Know About Marshalling and Unmarshalling Data
	Mapping Java to JavaScript

	Executing a Script Within an Event Response
	Using ADF Faces Client Behavior Tags
	How to Use the scrollComponentIntoViewBehavior Tag

	Using Polling Events to Update Pages
	How to Use the Poll Component

	7 Validating and Converting Input
	About ADF Faces Converters and Validators
	ADF Faces Converters and Validators Use Cases and Examples
	Additional Functionality for ADF Faces Converters and Validators

	Conversion, Validation, and the JSF Lifecycle
	Adding Conversion
	How to Add a Converter
	How to Specify Multiple Converter Patterns
	How to Specify Negative Numbers for Converters
	What Happens at Runtime: How Converters Work
	What You May Need to Know About Number Converters
	What You May Need to Know About Date Time Converters

	Creating Custom ADF Faces Converters
	How to Create a Custom ADF Faces Converter
	Implement Server-Side (Java) Conversion
	Register ADF Faces Converter in faces-config.xml
	Create a Client-Side Version of the Converter
	Modify the Server Converter to Enable Client Conversion

	Using Custom ADF Faces Converter on a JSF Page
	What You May Need to Know About Custom ADF Faces Converters

	How to Declaratively Register a Client-Side Only Converter Script

	Adding Validation
	How to Add Validation
	Using Validation Attributes
	Using ADF Faces Validators

	What Happens at Runtime: How Validators Work
	What You May Need to Know About Multiple Validators

	Creating Custom JSF Validation
	How to Create a Backing Bean Validation Method
	What Happens When You Create a Backing Bean Validation Method
	How to Create a Custom JSF Validator
	What Happens When You Use a Custom JSF Validator

	8 Rerendering Partial Page Content
	About Partial Page Rendering
	Using Partial Triggers
	How to Use Partial Triggers
	What You May Need to Know About Using the Browser Back Button
	What You May Need to Know About PPR and Screen Readers

	Using the Target Tag to Execute PPR
	How to Use the Target Tag to Enable Partial Page Rendering

	Enabling Partial Page Rendering Programmatically
	How to Enable Partial Page Rendering Programmatically

	Using Partial Page Navigation
	How to Use Partial Page Navigation
	What You May Need to Know About PPR Navigation

	Using a Streaming Component to Allow Page Loading
	How to Implement an Instance of AsyncFetch to Fetch Streaming Data
	How to Create a Streaming Component

	Part III Creating Your Layout
	9 Organizing Content on Web Pages
	About Organizing Content on Web Pages
	ADF Faces Layout Components
	Additional Functionality for Layout Components

	Starting to Lay Out a Page
	Geometry Management and Component Stretching
	Nesting Components Inside Components That Allow Stretching
	Using Quick Start Layouts
	Tips for Using Geometry-Managed Components
	How to Configure the document Tag

	Arranging Content in a Grid
	How to Use the panelGridLayout, gridRow, and gridCell Components to Create a Grid-Based Layout
	What You May Need to Know About Geometry Management and the panelGridLayout Component
	What You May Need to Know About Determining the Structure of Your Grid
	What You May Need to Know About Determining Which Layout Component to Use

	Displaying Contents in a Dynamic Grid Using a masonryLayout Component
	How to Use a masonryLayout Component

	Achieving Responsive Behavior Using matchMediaBehavior Tag
	Arranging Contents to Stretch Across a Page
	How to Use the panelStretchLayout Component
	What You May Need to Know About Geometry Management and the panelStretchLayout Component

	Using Splitters to Create Resizable Panes
	How to Use the panelSplitter Component
	What You May Need to Know About Geometry Management and the panelSplitter Component

	Arranging Page Contents in Predefined Fixed Areas
	How to Use the panelBorderLayout Component to Arrange Page Contents in Predefined Fixed Areas

	Arranging Content in Forms
	How to Use the panelFormLayout Component
	What You May Need to Know About Responsive Mode in the panelFormLayout Component
	What You May Need to Know About Using the group Component with the panelFormLayout Component

	Arranging Contents in a Dashboard
	How to Use the panelDashboard Component
	What You May Need to Know About Geometry Management and the panelDashboard Component

	Displaying and Hiding Contents Dynamically
	How to Use the showDetail Component
	How to Use the showDetailHeader Component
	How to Use the panelBox Component
	What You May Need to Know About Disclosure Events
	What You May Need to Know About Skinning and the showDetail Component
	What You May Need to Know About Skinning and the showDetailHeader Component
	What You May Need to Know About Skinning and the panelBox Component

	Displaying or Hiding Contents in Panels
	How to Use the panelAccordion Component
	How to Use the panelTabbed Component
	How to Use the panelDrawer Component
	How to Use the panelSpringboard Component
	What You May Need to Know About Switching Between Grid and Strip Mode
	How to Use the showDetailItem Component to Display Content
	What You May Need to Know About Geometry Management and the showDetailItem Component
	What You May Need to Know About showDetailItem Disclosure Events
	What You May Need to Know About Skinning and the panelTabbed Component

	Adding a Transition Between Components
	How to Use the Deck Component
	What You May Need to Know About Geometry Management and the deck Component

	Displaying Items in a Static Box
	How to Use the panelHeader Component
	How to Use the decorativeBox Component
	What You May Need to Know About Geometry Management and the decorativeBox Component
	What You May Need to Know About Skinning and the panelHeader Component
	What You May Need to Know About Skinning and the decorativeBox Component

	Displaying a Bulleted List in One or More Columns
	How to Use the panelList Component
	What You May Need to Know About Creating a List Hierarchy

	Grouping Related Items
	How to Use the panelGroupLayout Component
	What You May Need to Know About Geometry Management and the panelGroupLayout Component

	Separating Content Using Blank Space or Lines
	How to Use the spacer Component
	How to Use the Separator Component

	10 Creating and Reusing Fragments, Page Templates, and Components
	About Reusable Content
	Reusable Components Use Cases and Examples
	Additional Functionality for Reusable Components

	Using Page Templates
	How to Create a Page Template
	What Happens When You Create a Page Template
	How to Create JSF Pages Based on Page Templates
	What Happens When You Use a Template to Create a Page
	What Happens at Runtime: How Page Templates Are Resolved
	What You May Need to Know About Page Templates and Naming Containers

	Using Page Fragments
	How to Create a Page Fragment
	What Happens When You Create a Page Fragment
	How to Use a Page Fragment in a JSF Page
	What Happens at Runtime: How Page Fragments are Resolved
	What You May Need to Know About Accessing a Page From a Different View ID

	Using Declarative Components
	How to Create a Declarative Component
	What Happens When You Create a Declarative Component
	How to Deploy Declarative Components
	How to Use Declarative Components in JSF Pages
	What Happens When You Use a Declarative Component on a JSF Page
	What Happens at Runtime: Declarative Components

	Adding Resources to Pages
	How to Add Resources to Page Templates and Declarative Components
	What Happens at Runtime: How to Add Resources to the Document Header

	Part IV Using Common ADF Faces Components
	11 Using Input Components and Defining Forms
	About Input Components and Forms
	Input Component Use Cases and Examples
	Additional Functionality for Input Components and Forms

	Defining Forms
	How to Add a Form to a Page
	How to Add a Subform to a Page
	How to Add a Button to Reset the Form

	Using the inputText Component
	How to Add an inputText Component
	How to Add the Ability to Insert Text into an inputText Component

	Using the Input Number Components
	How to Add an inputNumberSlider or an inputRangeSlider Component
	How to Add an inputNumberSpinbox Component

	Using Color and Date Choosers
	How to Add an inputColor Component
	How to Add an InputDate Component
	What You May Need to Know About Including a Default Value for an InputDate Component
	What You May Need to Know About Setting the Time Value for an InputDate Component
	What You May Need to Know About Selecting Time Zones Without the inputDate Component
	What You May Need to Know About Multi-Selection Support in the chooseDate Component
	What You May Need to Know About Creating a Custom Time Zone List

	Using Selection Components
	How to Use Selection Components
	What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component

	Using Shuttle Components
	How to Add a selectManyShuttle or selectOrderShuttle Component
	What You May Need to Know About Using a Client Listener for Selection Events

	Using the richTextEditor Component
	How to Add a richTextEditor Component
	How to Add the Ability to Insert Text into a richTextEditor Component
	How to Customize the Toolbar
	About richTextEditor for UIWebView User-Agent

	Using File Upload
	How to Use the inputFile Component
	How to Configure the inputFile Component to Upload Multiple Files
	What You May Need to Know About Temporary File Storage
	What You May Need to Know About Uploading Multiple Files
	What You May Need to Know About Customizing User Interface of inputFile Component

	Using Code Editor
	How to Add a codeEditor Component

	12 Using Tables, Trees, and Other Collection-Based Components
	About Collection-Based Components
	Collection-Based Component Use Cases and Examples
	Additional Functionality for Collection-Based Components

	Common Functionality in Collection-Based Components
	Displaying Data in Rows and Nodes
	Content Delivery
	Row Selection
	Editing Data in Tables, Trees, and Tree Tables
	Using Popup Dialogs in Tables, Trees, and Tree Tables
	Accessing Client Collection Components
	Geometry Management for the Table, Tree, and Tree Table Components

	Displaying Data in Tables
	Columns and Column Data
	Formatting Tables
	Formatting Columns
	How to Display a Table on a Page
	What Happens When You Add a Table to a Page
	What Happens at Runtime: Data Delivery
	What You May Need to Know About Programmatically Enabling Sorting for Table Columns
	What You May Need to Know About Performing an Action on Selected Rows in Tables
	What You May Need to Know About Dynamically Determining Values for Selection Components in Tables
	What You May Need to Know About Read Only Tables

	Adding Hidden Capabilities to a Table
	How to Use the detailStamp Facet
	What Happens at Runtime: The rowDisclosureEvent

	Enabling Filtering in Tables
	How to Add Filtering to a Table

	Displaying Data in Trees
	How to Display Data in Trees
	What Happens When You Add a Tree to a Page
	What Happens at Runtime: Tree Component Events
	What You May Need to Know About Programmatically Expanding and Collapsing Nodes
	What You May Need to Know About Programmatically Selecting Nodes

	Displaying Data in Tree Tables
	How to Display Data in a Tree Table

	Passing a Row as a Value
	Displaying Table Menus, Toolbars, and Status Bars
	How to Add a panelCollection with a Table, Tree, or Tree Table

	Displaying a Collection in a List
	How to Display a Collection in a List
	What You May Need to Know About Scrollbars in a List View

	Displaying Images in a Carousel
	How to Create a Carousel
	What You May Need to Know About the Carousel Component and Different Browsers

	Exporting Data from Table, Tree, or Tree Tables
	How to Export Table, Tree, or Tree Table Data to an External Format
	What Happens at Runtime: How Row Selection Affects the Exported Data

	Accessing Selected Values on the Client from Collection-Based Components
	How to Access Values from a Selection in Stamped Components.
	What You May Need to Know About Accessing Selected Values

	13 Using List-of-Values Components
	About List-of-Values Components
	Additional Functionality for List-of-Values Components

	Creating the ListOfValues Data Model
	How to Create the ListOfValues Data Model

	Using the inputListOfValues Component
	How to Use the InputListOfValues Component
	What You May Need to Know About Dynamically Creating Auto Suggest Behavior for LOV Components
	What You May Need to Know About Skinning the Search and Select Dialogs in the LOV Components

	Using the InputComboboxListOfValues Component
	How to Use the InputComboboxListOfValues Component

	Using the InputSearch Component
	How to Use the InputSearch Component
	What You May Need to Know About InputSearch Component Tags and REST Data
	What You May Need to Know About InputSearch Attributes
	What You May Need to Know About SearchSection Attributes
	How to Customize InputSearch Component Display Modes
	How to Add Custom Buttons to Suggestions Popup
	What You May Need to Know About SuggestionSection Component
	How to Set Attributes of Suggestion Section
	What You May Need to Know About suggestionSection Attributes
	How to Specify Dependency-Based Filtering on InputSearch Components

	14 Using Query Components
	About Query Components
	Query Component Use Cases and Examples
	Additional Functionality for the Query Components

	Creating the Query Data Model
	How to Create the Query Data Model

	Using the quickQuery Component
	How to Add the quickQuery Component Using a Model
	How to Use a quickQuery Component Without a Model
	What Happens at Runtime: How the Framework Renders the quickQuery Component and Executes the Search

	Using the query Component
	How to Add the Query Component

	15 Using Menus, Toolbars, and Toolboxes
	About Menus, Toolbars, and Toolboxes
	Menu Components Use Cases and Examples
	Additional Functionality for Menu and Toolbar Components

	Using Menus in a Menu Bar
	How to Create and Use Menus in a Menu Bar

	Using Toolbars
	How to Create and Use Toolbars
	What Happens at Runtime: How the Size of Menu Bars and Toolbars Is Determined
	What You May Need to Know About Toolbars

	16 Using Popup Dialogs, Menus, and Windows
	About Popup Dialogs, Menus, and Windows
	Popup Dialogs, Menus, Windows Use Cases and Examples
	Additional Functionality for Popup Dialogs, Menus, and Windows
	What You May Need to Know About ADF Faces Window Manager Configuration

	Declaratively Creating Popups
	How to Create a Dialog
	How to Create a Panel Window
	How to Create a Context Menu
	How to Create a Note Window
	What Happens at Runtime: Popup Component Events
	What You May Need to Know About Dialog Events
	What You May Need to Know About Animation and Popups

	Controlling Display Behavior of Popups
	How to Dismiss a Popup Component Automatically
	What Happens When a Popup Component is Automatically Dismissed

	Declaratively Invoking a Popup
	How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag
	What Happens When You Use af:showPopupBehavior Tag to Invoke a Popup

	Programmatically Invoking a Popup
	How to Programmatically Invoke a Popup
	What Happens When You Programmatically Invoke a Popup

	Displaying Contextual Information in Popups
	How to Create Contextual Information

	Controlling the Automatic Cancellation of Inline Popups
	How to Disable the Automatic Cancellation of an Inline Popup
	What Happens When You Disable the Automatic Cancellation of an Inline Popup

	Resetting Input Fields in a Popup
	How to Reset the Input Fields in a Popup
	What Happens When You Configure a Popup to Reset Its Input Fields

	17 Using a Calendar Component
	About Creating a Calendar Component
	Calendar Use Cases and Examples
	Additional Functionality for the Calendar

	Creating the Calendar
	Calendar Classes
	How to Create a Calendar

	Configuring the Calendar Component
	How to Configure the Calendar Component
	What Happens at Runtime: Calendar Events and PPR

	Adding Functionality Using Popup Components
	How to Add Functionality Using Popup Components

	Customizing the Toolbar
	How to Customize the Toolbar

	Styling the Calendar
	How to Style Activities
	What Happens at Runtime: Activity Styling
	How to Customize Dates

	18 Using Output Components
	About Output Text, Image, Icon, and Media Components
	Output Components Use Case and Examples
	Additional Functionality for Output Components

	Displaying Output Text and Formatted Output Text
	How to Display Output Text
	What You May Need to Know About Allowed Format and Character Codes in the outputFormatted Component

	Displaying Icons
	How to Display Icons

	Displaying Images
	How to Display Images

	Using Images as Links
	How to Use Images as Links

	Displaying Application Status Using Icons
	Playing Video and Audio Clips
	How to Allow Playing of Audio and Video Clips

	19 Displaying Tips, Messages, and Help
	About Displaying Tips and Messages
	Messaging Components Use Cases and Examples
	Additional Functionality for Message Components

	Displaying Tips for Components
	How to Display Tips for Components

	Displaying Hints and Error Messages for Validation and Conversion
	How to Define Custom Validator and Converter Messages for a Component Instance
	How to Define Custom Validator and Converter Messages for All Instances of a Component
	How to Display Component Messages Inline
	How to Display Global Messages Inline
	What Happens at Runtime: How Messages Are Displayed

	Grouping Components with a Single Label and Message
	How to Group Components with a Single Label and Message

	Displaying Help for Components
	How to Create Help Providers
	How to Create a Resource Bundle-Based Provider
	How to Create an XLIFF Provider
	How to Create a Managed Bean Provider
	How to Create an External URL Help Provider
	How to Create a Custom Java Class Help Provider

	How to Register the Help Provider
	How to Access Help Content from a UI Component
	How to Use JavaScript to Launch an External Help Window
	What You May Need to Know About Skinning and Definition Help

	Combining Different Message Types

	20 Working with Navigation Components
	About Navigation Components
	Navigation Components Use Cases and Examples
	Additional Functionality for Navigation Components

	Common Functionality in Navigation Components
	Using Buttons and Links for Navigation
	How to Use Buttons and Links for Navigation and Deliver ActionEvents
	How to Use Buttons and Links for Navigation Without Delivering ActionEvents
	What You May Need to Know About Using Partial Page Navigation

	Configuring a Browser's Context Menu for Links
	How to Configure a Browser's Context Menu for Command Links
	What Happens When You Configure a Browser's Context Menu for Command Links

	Using Buttons or Links to Invoke Functionality
	How to Use an Action Component to Download Files
	How to Use an Action Component to Reset Input Fields

	Using Navigation Items for a Page Hierarchy
	How to Create Navigation Cases for a Page Hierarchy

	Using a Menu Model to Create a Page Hierarchy
	How to Create the Menu Model Metadata
	What Happens When You Use the Create ADF Menu Model Wizard
	How to Bind the navigationPane Component to the Menu Model
	How to Use the breadCrumbs Component with a Menu Model
	How to Use the menuBar Component with a Menu Model
	What Happens at Runtime: How the Menu Model Creates a Page Hierarchy
	What You May Need to Know About Using Custom Attributes

	Creating a Simple Navigational Hierarchy
	How to Create a Simple Page Hierarchy
	How to Use the breadCrumbs Component
	What You May Need to Know About Removing Navigation Tabs
	What You May Need to Know About the Size of Navigation Tabs
	What You May Need to Know About Skinning and Navigation Tabs

	Using Train Components to Create Navigation Items for a Multistep Process
	How to Create the Train Model
	How to Configure Managed Beans for the Train Model
	How to Bind to the Train Model in JSF Pages

	21 Determining Components at Runtime
	About Determining Components at Runtime
	Creating the Model for a Dynamic Component
	How to Create the Model Without Groups
	How to Create the Model Using Groups

	Adding a Dynamic Component as a Form to a Page
	How to Add a Dynamic Component as a Form without Groups to a Page
	How to Add a Dynamic Component as a Form with Groups to a Page

	Adding a Dynamic Component as a Table to a Page
	How to Add a Dynamic Component as a Table Without Groups to a Page
	How to Add a Dynamic Component as a Table with Groups to a Page

	Using Validation and Conversion with Dynamic Components
	Using Dynamic and Static Components Together

	Part V Using ADF Data Visualization Components
	22 Introduction to ADF Data Visualization Components
	About ADF Data Visualization Components
	Chart Component Use Cases and Examples
	Picto Chart Use Cases and Examples
	Gauge Component Use Cases and Examples
	NBox Use Cases and Examples
	Pivot Table Component Use Cases and Examples
	Geographic Map Component Use Cases and Examples
	Thematic Map Component Use Cases and Examples
	Gantt Chart Component Use Cases and Examples
	Timeline Component Use Cases and Examples
	Hierarchy Viewer Component Use Cases and Examples
	Treemap and Sunburst Components Use Cases and Examples
	Diagram Use Cases and Examples
	Tag Cloud Component Use Cases and Examples
	Additional Functionality for Data Visualization Components

	Common Functionality in Data Visualization Components
	Content Delivery
	Automatic Partial Page Rendering (PPR)
	Active Data Support
	Text Resources from Application Resource Bundles

	Providing Data for ADF Data Visualization Components

	23 Using Chart Components
	About the Chart Component
	Chart Component Use Cases and Examples
	End User and Presentation Features of Charts
	Chart Data Labels
	Chart Element Labels
	Chart Sizing
	Chart Legends
	Chart Styling
	Chart Series Hiding
	Chart Reference Objects
	Chart Series Effects
	Chart Series Customization
	Chart Data Cursor
	Chart Time Axis
	Chart Categorical Axis
	Chart Popups and Context Menus
	Chart Selection Support
	Chart Zoom and Scroll
	Legend and Marker Dimming
	Pie Chart Other Slice Support
	Exploding Slices in Pie Charts
	Active Data Support (ADS)
	Chart Animation
	Chart Image Formats

	Additional Functionality for Chart Components

	Using the Chart Component
	Chart Component Data Requirements
	Area, Bar, and Line Chart Data Requirements
	Bubble Chart Data Requirements
	Combination Chart Data Requirements
	Funnel Chart Data Requirements
	Pie Chart Data Requirements
	Scatter Chart Data Requirements
	Spark Chart Data Requirements
	Stock Chart Data Requirements

	Configuring Charts
	How to Add a Chart to a Page
	What Happens When You Add a Chart to a Page

	Adding Data to Charts
	How to Add Data to Area, Bar, Combination, and Line Charts
	How to Add Data to Pie Charts
	How to Add Data to Bubble or Scatter Charts
	How to Add Data to Funnel Charts
	How to Add Data to Stock Charts
	How to Add Data to Spark Charts

	Customizing Chart Display Elements
	How to Configure Chart Labels
	How to Configure Chart Data Labels
	How to Configure Chart Element Labels
	How to Configure Chart Axis Labels

	How to Configure Chart Legends
	How to Format Chart Numerical Values
	How to Format Numeric Values on a Chart's Value, Value Label, or Axis Values
	How to Format Numeric Values on a Chart's Axis Label
	How to Specify Numeric Patterns, Currency, or Percent

	Customizing a Chart Axis
	How to Configure a Time Axis
	How to Customize the Chart Axis
	Configuring Dual Y-Axis

	Adding Reference Objects to a Chart
	How to Add a Reference Object to a Chart
	What You May Need to Know About Adding Reference Objects to Charts

	How to Configure a Stacked Chart
	Customizing Chart Series
	How to Customize a Chart Series
	How to Configure Series Fill Effects on All Series in a Chart

	Customizing Chart Groups
	How to Customize a Chart Group
	How to Configure Hierarchical Labels Using Chart Groups

	How to Configure the Pie Chart Other Slice
	How to Explode Pie Chart Slices
	How to Configure Animation
	What You May Need to Know About Skinning and Customizing Chart Display Elements

	Adding Interactive Features to Charts
	How to Add a Data Cursor
	How to Configure Hide and Show Behavior
	How to Configure Legend and Marker Dimming
	How to Configure Selection Support
	How to Configure Popups and Context Menus
	How to Configure Chart Zoom and Scroll
	How to Configure Chart Overview Window

	24 Using Picto Chart Components
	About the Picto Chart Component
	Picto Chart Use Cases and Examples
	End User and Presentation Features of Picto Charts
	Additional Functionality for Picto Chart Components

	Using the Picto Chart Component
	Picto Chart Data Requirements
	How to Add a Picto Chart to a Page
	What Happens When You Add a Picto Chart to a Page
	Configuring Picto Charts

	25 Using Gauge Components
	About the Gauge Component
	Gauge Component Use Cases and Examples
	End User and Presentation Features of Gauge Components
	Gauge Shape Variations
	Gauge Thresholds
	Gauge Visual Effects
	Active Data Support (ADS)
	Gauge Animation
	Gauge Tooltips
	Gauge Popups and Context Menus
	Gauge Value Change Support
	Gauge Reference Lines (Status Meter Gauges)

	Additional Functionality of Gauge Components

	Using the Gauge Component
	Gauge Component Data Requirements
	How to Add a Gauge to a Page
	What Happens When You Add a Gauge to a Page
	How to Add Data to Gauges
	Configuring Gauges
	Configuring Dial Gauges
	Configuring LED Gauges
	Configuring Rating Gauges
	Configuring Status Meter Gauges

	Customizing Gauge Display Elements
	How to Configure Gauge Thresholds
	Formatting Gauge Style Elements
	How to Change Gauge Size and Apply CSS Styles
	How to Format Gauge Text
	What You May Need to Know About Skinning and Formatting Gauge Style Elements

	How to Format Numeric Data Values in Gauges
	How to Disable Gauge Visual Effects
	How to Configure Gauge Animation
	How to Configure Status Meter Gauge Reference Lines

	Adding Interactivity to Gauges
	How to Configure Gauge Tooltips
	How to Add a Popup or Context Menu to a Gauge
	How to Configure Value Change Support for a Gauge

	26 Using NBox Components
	About the NBox Component
	NBox Use Cases and Examples
	End User and Presentation Features of NBoxes
	Additional Functionality for NBox Components

	Using the NBox Component
	NBox Data Requirements
	Configuring NBoxes
	How to Add an NBox to a Page
	What Happens When You Add an NBox to a Page

	27 Using Pivot Table Components
	About the Pivot Table Component
	Pivot Table and Pivot Filter Bar Component Use Cases and Examples
	End User and Presentation Features of Pivot Table Components
	Pivot Filter Bar
	Pivoting
	Editing Data Cells
	Data and Header Sorting
	Drilling
	Scrolling and Page Controls
	Persistent Header Layers
	Split View of Large Data Sets
	Sizing
	Header Cell Word Wrapping
	Active Data Support (ADS)

	Additional Functionality for the Pivot Table Component

	Using the Pivot Table Component
	Pivot Table Data Requirements
	Configuring Pivot Tables
	How to Add a Pivot Table to a Page
	Configuring Pivot Table Display Size and Style
	What Happens When You Add a Pivot Table to a Page
	What You May Need to Know About Displaying Large Data Sets
	What You May Need to Know About Pivot Tables on Touch Devices
	What You May Need to Know About Skinning and Customizing the Appearance of Pivot Tables

	Configuring Header and Data Cell Stamps
	Using var and varStatus Properties
	How to Configure Header and Data Cell Stamps

	Using Pivot Filter Bars
	Using a Pivot Filter Bar with a Pivot Table
	Using a Pivot Filter Bar with a Graph
	What You May Need to Know About Skinning and Customizing the Appearance of Pivot Filter Bars

	Adding Interactivity to Pivot Tables
	Using Selection in Pivot Tables
	Using Partial Page Rendering
	Exporting from a Pivot Table
	Displaying Pivot Tables in Printable Pages

	Formatting Pivot Table Cell Content With CellFormat
	Using a CellFormat Object for a Data Cell
	Specifying a Cell Format
	Configuring Stoplight and Conditional Formatting Using CellFormat

	28 Using Gantt Chart Components
	About the Gantt Chart Components
	Gantt Chart Component Use Cases and Examples
	End User and Presentation Features
	Gantt Chart Regions
	Information Panel
	Toolbar
	Scrolling, Zooming, and Panning
	Showing Dependencies
	Context Menus
	Row Selection
	Editing Tasks
	Server-Side Events
	Printing
	Content Delivery

	Additional Functionality for Gantt Chart Components

	Using the Gantt Chart Components
	Data for a Project Gantt Chart
	Data for a Resource Utilization Gantt Chart
	Data for a Scheduling Gantt Chart
	Gantt Chart Tasks and Resources
	Configuring Gantt Charts
	How to Add a Gantt Chart to a Page
	What Happens When You Add a Gantt Chart to a Page

	Customizing Gantt Chart Tasks and Resources
	Creating a New Task Type
	Configuring Stacked Bars in Resource Utilization Gantt Charts
	Configuring a Resource Capacity Line
	Displaying Resource Attribute Details
	Configuring Background Bars in Scheduling Gantt Charts

	Customizing Gantt Chart Display Elements
	Customizing Gantt Chart Toolbars and Menus
	Creating Custom Toolbar and Menu Items
	Customizing Gantt Chart Context Menus
	How to Customize the Time Axis of a Gantt Chart
	Creating and Customizing a Gantt Chart Legend
	How to Specify Custom Data Filters
	Specifying Nonworking Days in a Gantt Chart
	How to Specify Weekdays as Nonworking Days
	How to Identify Specific Dates as Nonworking Days

	How to Apply Read-Only Values to Gantt Chart Features
	What You May Need to Know About Skinning and Customizing the Appearance of Gantt Charts

	Adding Interactive Features to Gantt Charts
	Performing an Action on Selected Tasks or Resources
	Using Page Controls for a Gantt Chart
	Configuring Synchronized Scrolling Between Gantt Charts
	Printing a Gantt Chart
	Print Options
	Action Listener to Handle the Print Event

	Adding a Double-Click Event to a Task Bar
	Using Gantt Charts as a Drop Target or Drag Source

	29 Using Timeline Components
	About Timeline Components
	Timeline Use Cases and Examples
	End User and Presentation Features
	Timeline Overview Options
	Layout Options
	Timeline Item Selection
	Content Delivery
	Timeline Image Formats
	Timeline Display in Printable or Emailable Pages

	Additional Functionality for Timeline Components

	Using Timeline Components
	Timeline Component Data Requirements
	Configuring Timelines
	How to Add a Timeline to a Page
	What Happens When You Add a Timeline to a Page

	Adding Data to Timeline Components
	How to Add Data to a Timeline
	What You May Need to Know About Configuring Data for a Dual Timeline
	What You May Need to Know About Adding Data to Timelines

	Customizing Timeline Display Elements
	Customizing Timeline Items
	Configuring a Timeline Item Duration
	How to Add a Custom Time Scale to a Timeline
	What You May Need to Know About Skinning and Customizing the Appearance of Timelines

	Adding Interactive Features to Timelines
	How to Add Popups to Timeline Items
	Configuring Timeline Context Menus

	30 Using Map Components
	About Map Components
	Map Component Use Cases and Examples
	End User and Presentation Features of Maps
	Geographic Map End User and Presentation Features
	Thematic Map End User and Presentation Features

	Additional Functionality for Map Components

	Using the Geographic Map Component
	Configuring Geographic Map Components
	How to Add a Geographic Map to a Page
	What Happens When You Add a Geographic Map to a Page
	What You May Need to Know About Active Data Support for Map Point Themes

	Customizing Geographic Map Display Attributes
	How to Adjust the Map Size
	How to Specify Strategy for Map Zoom Control
	How to Customize and Use Map Selections
	How to Customize the Map Legend
	What You May Need to Know About Skinning and Customizing the Appearance of Geographic Maps

	Customizing Geographic Map Themes
	How to Customize Zoom Levels for a Theme
	How to Customize the Labels of a Map Theme
	How to Customize Color Map Themes
	How to Customize Point Images in a Point Theme
	What Happens When You Customize the Point Images in a Map
	How to Customize the Bars in a Bar Graph Theme
	What Happens When You Customize the Bars in a Map Bar Graph Theme
	How to Customize the Slices in a Pie Graph Theme
	What Happens When You Customize the Slices in a Map Pie Graph Theme

	Adding a Toolbar to a Geographic Map
	How to Add a Toolbar to a Map
	What Happens When You Add a Toolbar to a Map

	Using Thematic Map Components
	Configuring Thematic Maps
	Using the Layer Browser
	How to Add a Thematic Map to a Page
	What Happens When You Add a Thematic Map to a Page
	What You May Need to Know About Thematic Map Image Formats

	Defining Thematic Map Base Maps
	Using Prebuilt Base Maps
	Defining a Custom Base Map Using Map Provider APIs
	Defining a Custom Base Map Using Image Files

	Customizing Thematic Map Display Attributes
	How to Customize Thematic Map Labels
	How to Configure Tooltips to Display Data
	How to Format Numeric Data Values in Area and Marker Labels
	How to Configure Thematic Map Data Zooming
	How to Configure Invisible Area Layers
	What You May Need to Know About Skinning and Customizing the Appearance of a Thematic Map

	Adding Interactive Features to Thematic Maps
	How to Configure Selection and Action Events in Thematic Maps
	How to Add Popups to Thematic Map Areas and Markers
	How to Configure Animation Effects
	How to Add Drag and Drop to Thematic Map Components

	31 Using Hierarchy Viewer Components
	About Hierarchy Viewer Components
	Hierarchy Viewer Use Cases and Examples
	End User and Presentation Features
	Layouts
	Navigation
	Panning
	Control Panel
	Printing
	Bi-directional Support
	State Management

	Additional Functionality for Hierarchy Viewer Components

	Using Hierarchy Viewer Components
	Configuring Hierarchy Viewer Components
	How to Add a Hierarchy Viewer to a Page
	What Happens When You Add a Hierarchy Viewer to a Page
	What You May Need to Know About Hierarchy Viewer Rendering and Image Formats

	Managing Nodes in a Hierarchy Viewer
	How to Specify Node Content
	How to Configure the Controls on a Node
	Specifying a Node Definition for an Accessor
	Associating a Node Definition with a Particular Set of Data Rows
	How to Specify Ancestor Levels for an Anchor Node

	Using Panel Cards
	How to Create a Panel Card
	What Happens at Runtime: How the Panel Card Component Is Rendered

	Configuring Navigation in a Hierarchy Viewer
	How to Configure Upward Navigation in a Hierarchy Viewer
	How to Configure Same-Level Navigation in a Hierarchy Viewer
	What Happens When You Configure Same-Level Navigation in a Hierarchy Viewer

	Customizing the Appearance of a Hierarchy Viewer
	How to Adjust the Display Size and Styles of a Hierarchy Viewer
	Including Images in a Hierarchy Viewer
	How to Configure the Display of the Control Panel
	How to Configure the Display of Links and Labels
	How to Disable the Hover Detail Window
	What You May Need to Know About Skinning and Customizing the Appearance of a Hierarchy Viewer

	Adding Interactivity to a Hierarchy Viewer Component
	How to Configure Node Selection Action
	Configuring a Hierarchy Viewer to Invoke a Popup Window
	Configuring Hierarchy Viewer Drag and Drop
	How to Configure Hierarchy Viewer Drag and Drop
	What You May Need to Know About Configuring Hierarchy Viewer Drag and Drop

	Adding Search to a Hierarchy Viewer
	How to Configure Searching in a Hierarchy Viewer
	What You May Need to Know About Configuring Search in a Hierarchy Viewer

	32 Using Treemap and Sunburst Components
	About the Treemap and Sunburst Components
	Treemap and Sunburst Use Cases and Examples
	End User and Presentation Features of Treemaps and Sunbursts
	Treemap and Sunburst Layouts
	Attribute Groups
	Legend Support
	Pattern Support
	Node Selection Support
	Tooltip Support
	Popup Support
	Context Menus
	Drilling Support
	Other Node Support
	Drag and Drop Support
	Sorting Support
	Treemap and Sunburst Image Formats
	Advanced Node Content
	Printing and Email Support
	Active Data Support (ADS)
	Isolation Support (Treemap Only)
	Treemap Group Node Header Customization (Treemap Only)

	Additional Functionality for Treemap and Sunburst Components

	Using the Treemap and Sunburst Components
	Treemap and Sunburst Data Requirements
	Using the Treemap Component
	Configuring Treemaps
	How to Add a Treemap to a Page
	What Happens When You Add a Treemap to a Page

	Using the Sunburst Component
	Configuring Sunbursts
	How to Add a Sunburst to a Page
	What Happens When You Add a Sunburst to a Page

	Adding Data to Treemap and Sunburst Components
	How to Add Data to Treemap or Sunburst Components
	What You May Need to Know about Adding Data to Treemaps and Sunbursts

	Customizing Treemap and Sunburst Display Elements
	Configuring Treemap and Sunburst Display Size and Style
	What You May Need to Know About Skinning and Configuring Treemap and Sunburst Display Size and Style

	Configuring Pattern Display
	Configuring Treemap and Sunburst Attribute Groups
	How to Configure Treemap and Sunburst Discrete Attribute Groups
	How to Configure Treemap or Sunburst Continuous Attribute Groups
	What You May Need to Know About Configuring Attribute Groups

	How to Configure Treemap and Sunburst Legends
	Configuring the Treemap and Sunburst Other Node
	How to Configure the Treemap and Sunburst Other Node
	What You May Need to Know About Configuring the Treemap and Sunburst Other Node

	Configuring Treemap and Sunburst Sorting
	Configuring Treemap and Sunburst Advanced Node Content
	How to Add Advanced Node Content to a Treemap
	How to Add Advanced Root Node Content to a Sunburst:
	What You May Need to Know About Configuring Advanced Node Content on Treemaps

	How to Configure Animation in Treemaps and Sunbursts
	Configuring Labels in Treemaps and Sunbursts
	How to Configure Treemap Leaf Node Labels
	How to Configure Sunburst Node Labels

	Configuring Sunburst Node Radius
	How to Configure a Sunburst Node Radius
	What You May Need to Know about Configuring the Sunburst Node Radius

	Configuring Treemap Node Headers and Group Gap Display
	How to Configure Treemap Node Headers
	What You May Need to Know About Treemap Node Headers
	How to Customize Treemap Group Gaps

	Adding Interactive Features to Treemaps and Sunbursts
	Configuring Treemap and Sunburst Tooltips
	Configuring Treemap and Sunburst Popups
	How to Add Popups to Treemap and Sunburst Components
	What You May Need to Know About Adding Popups to Treemaps and Sunburst Components

	Configuring Treemap and Sunburst Selection Support
	How to Add Selection Support to Treemap and Sunburst Components
	What You May Need to Know About Adding Selection Support to Treemaps and Sunbursts

	Configuring Treemap and Sunburst Context Menus
	How to Configure Treemap and Sunburst Context Menus
	What You May Need to Know About Configuring Treemap and Sunburst Context Menus

	Configuring Treemap and Sunburst Drilling Support
	How to Configure Treemap and Sunburst Drilling Support
	What You May Need to Know About Treemaps and Drilling Support

	How to Add Drag and Drop to Treemaps and Sunbursts
	Configuring Isolation Support (Treemap Only)
	How to Disable Isolation Support
	What You May Need to Know About Treemaps and Isolation Support

	33 Using Diagram Components
	About the Diagram Component
	Diagram Use Cases and Examples
	End User and Presentation Features of Diagrams
	Additional Functionality for Diagram Components

	Using the Diagram Component
	Diagram Data Requirements
	Configuring Diagrams
	What You May Need to Know About Using the Default Diagram Layout
	How to Add a Diagram to a Page
	What Happens When You Add a Diagram to a Page
	How to Create Diagram Nodes

	Using the Diagram Layout Framework
	Layout Requirements and Processing
	Configuring Diagram Layouts
	How to Register a Custom Layout
	Designing Simple Client Layouts

	34 Using Tag Cloud Components
	About the Tag Cloud Component
	Tag Cloud Use Cases and Examples
	End User and Presentation Features of Tag Clouds
	Additional Functionality for Tag Cloud Components

	Using the Tag Cloud Component
	Tag Cloud Data Requirements
	How to Add a Tag Cloud to a Page
	What Happens When You Add a Tag Cloud to a Page
	Configuring Tag Clouds

	Part VI Completing Your View
	35 Customizing the Appearance Using Styles and Skins
	About Customizing the Appearance Using Styles and Skins
	Customizing the Appearance Use Cases and Examples
	Additional Functionality for Customizing the Appearance

	Changing the Style Properties of a Component
	How to Set an Inline Style
	How to Set a Style Class

	Enabling End Users to Change an Application's ADF Skin
	How to Enable End Users Change an Application's ADF Skin
	What Happens at Runtime: How End Users Change an Application's ADF Skin

	Using Scalar Vector Graphics Image Files
	What You May Need to Know About Inline SVG Support in ADF Faces

	36 Internationalizing and Localizing Pages
	About Internationalizing and Localizing ADF Faces Pages
	Internationalizing and Localizing Pages Use Cases and Examples
	Additional Functionality for Internationalizing and Localizing Pages

	Using Automatic Resource Bundle Integration in JDeveloper
	How to Set Resource Bundle Options
	What Happens When You Set Resource Bundle Options
	How to Create an Entry in a JDeveloper-Generated Resource Bundle
	What Happens When You Create an Entry in a JDeveloper-Generated Resource Bundle

	Manually Defining Resource Bundles and Locales
	How to Create a Resource Bundle as a Property File or an XLIFF File
	How to Create a Resource Bundle as a Java Class
	How to Edit a Resource Bundle File
	How to Register a Locale for Your Application
	How to Register a Resource Bundle in Your Application
	How to Use Resource Bundles in Your Application
	What You May Need to Know About ADF Skins and Control Hints
	What You May Need to Know About Overriding a Resource Bundle in a Customizable Application

	Configuring Pages for an End User to Specify Locale at Runtime
	How to Configure a Page for an End User to Specify Locale
	What Happens When You Configure a Page to Specify Locale
	What Happens at Runtime: How an End User Specifies a Locale

	Configuring Optional ADF Faces Localization Properties
	How to Configure Optional Localization Properties

	37 Developing Accessible ADF Faces Pages
	About Accessibility Support In ADF Faces
	Additional Information for Accessibility Support in ADF Pages
	Accessibility Support Guidelines at Sign-In

	Specifying Component-Level Accessibility Properties
	ADF Faces Component Accessibility Guidelines
	Using ADF Faces Table Components with a Screen Reader
	ADF Data Visualization Components Accessibility Guidelines
	How to Define Access Keys for an ADF Faces Component
	How to Define Localized Labels and Access Keys

	Creating Accessible Pages
	How to Use Partial Page Rendering
	How to Use Scripting
	How to Use Styles
	How to Use Page Structures and Navigation
	How to Use Images and Tables
	How to Use WAI-ARIA Landmark Regions

	Creating Accessible Active Data Components
	How to Customize the Screen Reader Response for Scalar Active Data Components
	How to Customize the Screen Reader Response for Collection-Based Active Data Components
	What You May Need to Know About Pass-Through Attributes

	Running Accessibility Audit Rules
	How to Create an Audit Profile
	How to Run Audit Report

	38 Allowing User Customization on JSF Pages
	About User Customization
	User Customization Use Cases and Examples

	Implementing Session Change Persistence
	How to Implement Session Change Persistence
	What Happens When You Configure Your Application to Use Change Persistence
	What Happens at Runtime: How Changes are Persisted
	What You May Need to Know About Using Change Persistence on Templates and Regions

	39 Adding Drag and Drop Functionality
	About Drag and Drop Functionality
	Additional Functionality for Drag and Drop

	Adding Drag and Drop Functionality for Attributes
	How to add Drag and Drop Functionality

	Adding Drag and Drop Functionality for Objects
	How to Add Drag and Drop Functionality for a Single Object
	What Happens at Runtime: How to Use Keyboard Modifiers
	What You May Need to Know About Using the ClientDropListener

	Adding Drag and Drop Functionality for Collections
	How to Add Drag and Drop Functionality for Collections
	What You May Need to Know About the dragDropEndListener

	Adding Drag and Drop Functionality for Components
	How to Add Drag and Drop Functionality for Components

	Adding Drag and Drop Functionality Into and Out of a panelDashboard Component
	How to Add Drag and Drop Functionality Into a panelDashboard Component
	How to Add Drag and Drop Functionality Out of a panelDashboard Component

	Adding Drag and Drop Functionality to a Calendar
	How to Add Drag and Drop Functionality to a Calendar
	What You May Need to Know About Dragging and Dropping in a Calendar

	Adding Drag and Drop Functionality for DVT Components
	Adding Drop Functionality for DVT Pareto and Stock Graphs
	How to Add Drop Functionality to Pareto and Stock Graphs

	Adding Drag and Drop Functionality for DVT Gantt Charts
	How to Add Drag and Drop Functionality for a DVT Gantt Component

	Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps
	Drag and Drop Example for DVT Hierarchy Viewers
	Drag and Drop Example for DVT Sunbursts
	Drag and Drop Example for DVT Treemaps
	How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst, or Treemap Component

	Adding Drag and Drop Functionality for Timeline Components

	40 Using Different Output Modes
	About Using Different Output Modes
	Output Mode Use Cases

	Displaying a Page for Print
	How to Use the showPrintablePageBehavior Tag

	Creating Emailable Pages
	How to Create an Emailable Page
	How to Test the Rendering of a Page in an Email Client
	What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable Pages

	41 Using the Active Data Service with an Asynchronous Backend
	About the Active Data Service
	Active Data Service Use Cases and Examples

	Process Overview for Using Active Data Service
	Implementing the ActiveModel Interface in a Managed Bean
	What You May Need to Know About Maintaining Read Consistency
	What You May Need to Know About Navigating Away From the ADS Enabled Page
	Passing the Event Into the Active Data Service
	Registering the Data Update Event Listener
	Configuring the ADF Component to Display Active Data

	Part VII Appendices
	A ADF Faces Configuration
	About Configuring ADF Faces
	Configuration in web.xml
	How to Configure for JSF and ADF Faces in web.xml
	What You May Need to Know About Required Elements in web.xml
	What You May Need to Know About ADF Faces Context Parameters in web.xml
	State Saving
	Debugging
	File Uploading
	Save Query Mode
	Resource Debug Mode
	User Customization
	Enabling the Application for Real User Experience Insight
	Assertions
	Dialog Prefix
	Compression for CSS Class Names
	Control Caching When You Have Multiple ADF Skins in an Application
	Test Automation
	UIViewRoot Caching
	Themes and Tonal Styles
	Partial Page Rendering
	Partial Page Navigation
	Postback Payload Size Optimization
	JavaScript Partitioning
	Framebusting
	Version Number Information
	Suppressing Auto-Generated Component IDs
	ADF Faces Caching Filter
	Configuring Native Browser Context Menus for Command Links
	Internet Explorer Compatibility View Mode
	Session Timeout Warning
	JSP Tag Execution in HTTP Streaming
	Clean URLs
	Page Loading Splash Screen
	Graph and Gauge Image Format
	Geometry Management for Layout and Table Components
	Rendering Tables Initially as Read Only
	Scrollbar Behavior in Tables
	Production Project Stage
	Toggle Example Hints

	What You May Need to Know About Other Context Parameters in web.xml

	Configuration in faces-config.xml
	How to Configure for ADF Faces in faces-config.xml

	Configuration in adf-config.xml
	How to Configure ADF Faces in adf-config.xml
	Defining Caching Rules for ADF Faces Caching Filter
	Configuring Flash as Component Output Format
	Using Content Delivery Networks
	What You May Need to Know About Skin Style Sheets and CDN
	What You May Need to Know About Preparing Your Resource Files for CDNs

	Configuration in adf-settings.xml
	How to Configure for ADF Faces in adf-settings.xml
	What You May Need to Know About Elements in adf-settings.xml
	Help System
	Caching Rules

	Configuration in trinidad-config.xml
	How to Configure ADF Faces Features in trinidad-config.xml
	What You May Need to Know About Elements in trinidad-config.xml
	Animation Enabled
	Skin Family
	Time Zone and Year
	Enhanced Debugging Output
	Page Accessibility Level
	Language Reading Direction
	Currency Code and Separators for Number Groups and Decimal Points
	Formatting Dates and Numbers Locale
	Output Mode
	Number of Active PageFlowScope Instances
	File Uploading
	Custom File Uploaded Processor
	Client-Side Validation and Conversion

	What You May Need to Know About Configuring a System Property

	Configuration in trinidad-skins.xml
	Using the RequestContext EL Implicit Object
	Performance Tuning

	B Message Keys for Converter and Validator Messages
	About ADF Faces Default Messages
	Message Keys and Setter Methods
	Converter and Validator Message Keys and Setter Methods
	af:convertColor
	af:convertDateTime
	af:convertNumber
	af:validateByteLength
	af:validateDateRestriction
	af:validateDateTimeRange
	af:validateDoubleRange
	af:validateLength
	af:validateRegExp

	C Keyboard Shortcuts
	About Keyboard Shortcuts
	Tab Traversal
	Tab Traversal Sequence on a Page
	Tab Traversal Sequence in a Table

	Shortcut Keys
	Accelerator Keys
	Access Keys
	Shortcut Keys for Common Components
	Shortcut Keys for Widgets
	Shortcut Keys for Rich Text Editor Component
	Shortcut Keys for Table, Tree, and Tree Table Components
	Shortcut Keys for ADF Data Visualization Components
	Shortcut Keys for Calendar Component

	Default Cursor or Focus Placement
	The Enter Key

	D Creating Web Applications for Touch Devices Using ADF Faces
	About Creating Web Applications for Touch Devices Using ADF Faces
	How ADF Faces Behaves in Mobile Browsers on Touch Devices
	Best Practices When Using ADF Faces Components in a Mobile Browser

	E Quick Start Layout Themes
	F Code Samples
	Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"
	The adf-js-partitions.xml File

	Samples for Chapter 29, "Using Map Components"
	Sample Code for Thematic Map Custom Base Map
	Sample Code for Thematic Map Custom Base Map Area Layer

	Samples for Chapter 31, "Using Treemap and Sunburst Components"
	Sample Code for Treemap and Sunburst Census Data Example
	Code Sample for Sunburst Managed Bean

	Samples for Chapter 32, "Using Diagram Components"
	Code Sample for Default Client Layout
	Code Sample for Simple Circle Layout
	Code Sample for Simple Vertical Layout

	G Troubleshooting ADF Faces
	About Troubleshooting ADF Faces
	Getting Started with Troubleshooting the View Layer of an ADF Application
	Using Test Automation for ADF Faces
	Enabling Test Automation for ADF Faces
	Simulating Mouse Events in ADF Faces Test Automation

	Resolving Common Problems
	Application Displays an Unexpected White Background
	Application is Missing Expected Images
	ADF Skin Does Not Render Properly
	ADF Data Visualization Components Fail to Display as Expected
	High Availability Application Displays a NotSerializableException
	Unable to Reproduce Problem in All Web Browsers
	Application is Missing Content
	Browser Displays an ADF_Faces-60098 Error
	Browser Displays an HTTP 404 or 500 Error
	Browser Fails to Navigate Between Pages

	Using My Oracle Support for Additional Troubleshooting Information

